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Abstract
With the exponential growth of mobile traffic in 5G networks, accu-
rate forecasting is essential for efficient resource management. This
research provides a comparative analysis of time series forecasting
models for predicting near-future network traffic. Using a public
dataset from a 5G base station in Barcelona, this study evaluates the
performance of a traditional statistical model, against deep learning
models: a Recurrent Neural Network (RNN), a Long Short-Term
Memory (LSTM) and a Google timesFM model.

The results demonstrate that while the SARIMAX model strug-
gles to capture near-future traffic demand, the deep learning ap-
proaches yield significantly higher predictive accuracy. Specifically,
a simple LSTM architecture shows great results, outperforming
even a more complex one. However, the timesFM model, in particu-
lar, shows the most robust generalization capabilities. Additionally,
the models trained on data from one base station do not generalize
well to others, highlighting significant differences in traffic charac-
teristics even between geographically close locations. This suggests
that while locally trained LSTMs are a powerful tool, future work
should focus on developing more adaptive and transferable models,
such as those using federated learning or graph neural networks.

1 Introduction
Since the invention and deployment of the 1G (first generation)
mobile network up until today’s plans of 6G the community has
made significant progress. From the first generation using the ana-
log audio signal to the recent virtualization of core architecture
components, each generation has brought great improvements in
capacity, functionality, and availability. The introduction of Net-
work Function Virtualization (NFV) in 5G networks has created new
opportunities for more sophisticated and at the same time more ac-
curate traffic prediction approaches based on machine learning [1].
As noted by Chakraborty et al. “5G has a very flexible network ar-
chitecture due to virtualization and will come with various customi-
sations based on different use cases,” [2]. However, this flexibility
introduces significant complexity in resource management, making
availability, reliability, and performance optimization increasingly
challenging. The diverse requirements of different networks re-
quire intelligent traffic forecasting mechanisms that can adapt to
rapidly changing network conditions and predict resource demands
across multiple service types simultaneously. Recent forecasts in-
dicate global mobile traffic will increase 10 to 100-fold between
2020 and 2030, driven primarily by video-on-demand services with
high-resolution content. According to ITU-R report M.2370-0, video
content alone is expected to account for two-thirds of all mobile
traffic, while the global number of connected devices is projected
to expand dramatically [3]. Moreover with the recent deployment
and development of IoT (Internet of Things) the demand for low
latency, highly reliable and flexible networks rises. 5G networks
aim to achieve ambitious performance targets, such as ultra-low
latency of 1ms, support for up to 1 million connected devices per
square kilometer, and peak data rates reaching 20 Gbps [3]. These
expectations make it more challenging to predict network traffic.

As the amount of the traffic exponentially increases, the traffic
patterns have become complex. Modern mobile network traffic is
characterized as a non-stationary, multivariate time series, reflect-
ing strong temporal and spatial correlations. These features make
traditional traffic engineering approaches obsolete, and accurate
forecasting and dynamic management essential.

Machine learning (ML) emerges as a powerful tool to address
these challenges. ML models work by using data to identify pat-
terns, make decisions, and learn from them. Number of researchers
focused on showing the efficiency of various ML models and archi-
tectures for traffic forecasting [1] [4] [5]. However, even though
ML approaches were proved useful for 5G traffic prediction, a sig-
nificant research gap persists regarding the practical deployment
and operational efficiency of various ML models in real-world sce-
narios. There is a need to understand the optimal balance between
a model’s predictive accuracy and crucial operational factors such
as its computational cost and its ability to generalize to unforeseen
traffic patterns.

This research focuses on evaluating different ML models on
predicting near-future traffic demand. The main contributions of
this work are:

• How do different ML models compare in terms of computa-
tional resource requirements for training and deployment
in 5G network traffic prediction?

• What is the optimal trade-off between model complexity
and prediction accuracy for near-future traffic demand in
5G networks?

• Which model architecture demonstrates the best general-
ization performance on unseen traffic patterns in 5G net-
works?

2 Related Work
S/ARIMAX. Traditional approaches to traffic forecasting relied on
statistical models like S/ARIMA/X (described in detail in Appendix
A), however, these approaches are reactive, rather than anticipative,
which leads to suboptimal resource management. Additionally, they
require basic assumptions, such as the linearity of the time series
or following a certain statistical distribution [2].

Recurrent Neural Network. (RNNs) are neural networks designed to
recognize patterns in sequences of data, such as time series. Unlike
feedforward neural networks, RNNs have connections that loop
back. This makes them useful for tasks involving sequential data,
as their output at any given step is influenced by previous inputs
as shown on the figure 1. Alawe et al. showcased a forecasting
approach for 5G Core Network that proved the effectiveness of
recurrent neural networks in predicting the traffic demand [1].

Long Short-Term Memory. (LSTM) is an improved version of the tra-
ditional Recurrent Neural Network. It was specifically designed to
address the limitations of standard RNNs, particularly the vanishing
and exploding gradient problems during training.

LSTMs can retain or discard information selectively over long
sequences, enabling it to capture both short-term dependencies and
long-range temporal patterns more effectively. This makes LSTM
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Figure 1: The difference between Recurrent Neural Networks
and a Feed-Forward Neural Networks

Figure 2: The architecture of LSTM cell design.

particularly suitable for modeling mobile traffic data, which often
includes complex seasonal trends and bursts of activity.

This was shown to be significantly more accurate than statistical
methods by Siami-Namini et al. [6] in their study. They have shown
that the LSTM-based algorithm improved the prediction by 85%
on average compared to ARIMA. Furthermore, the paper reports
no improvement when the number of epochs is changed. Once
the model has ’memorized’ the dependencies in the data further
training does not improve on the model’s efficiency.

Another study showed that traffic forecasting LSTMs model
the real-world traffic scenarios remarkably well [7]. By combining
a deep neural network (DNN) with LSTM the results improved,
showcasing the strength of combining neural network approaches
in forecasting.

Graph Neural Networks. (GNNs) is well-suited approach to predict
traffic. Jiang and Luo [8] provide a survey of GNN applications in
traffic forecasting, highlighting their effectiveness in capturing the
spatial-temporal dependencies inherent in network traffic. GNNs
are particularly well-suited for 5G/6G network traffic prediction
because they can naturally model the network topology and cap-
ture the relationships between different network elements. A great
example of the above-mentioned approach is introduced Spatio-
Temporal Graph Convolutional Networks (ST-GCN) by Yu et al. [4].

Federated Learning. Federated learning is used for distributedmodel
training without sharing raw data by training model locally and
then sharing the results. This is particularly relevant in 5G/6G net-
works, where data may be distributed across multiple base stations

or network regions. Nan et al. [9] introduced a framework called
region-union based federated learning for wireless traffic prediction
in 5G-Advanced/6G networks. Perifanis et al. [5] conducted a com-
prehensive study on federated learning for 5G base station traffic
forecasting, identifying key challenges including data distribution
skew, quantity skew, and temporal skew. Their research showed
that federated models can achieve comparable predictive accuracy
to individual and centralized learning while offering improved pri-
vacy protection.

3 Methodology
3.1 Dataset
For the experiments run during this study we used the data of ap-
proximately 27,000 samples from 3 distinct base stations in Barcelona,
Spain [5]. The dataset was chosen due to its diversity and abun-
dance of data, with measurements recorded at two-minute intervals
from a real LTE Physical Down-link Control Channel (PDCCH).
Every sample consists of 11 features indicating the congestion of
traffic, specifics of these features are detailed in the Appendix A.
Our predictions in this study, however, focused on:

• DownLink: Represents the total volume of data transmit-
ted from the base station to user devices during the two-
minute measurement interval. This metric is indicative of
the download traffic experienced by users connected to the
base station.

• UpLink: Reversely to the DownLink traffic, UpLink corre-
sponds to the total volume of data transmitted from user
devices to the base station.

3.2 Data Preprocessing
Data preprocessing is an essential step in using machine learning
and statistical models. As the predictions made based on noisy data
would be inaccurate, it is crucial to perform thorough analysis and
implement a data pipeline. The raw and processed data are shown
on the figures 3 and 4 respectively. The data pipeline we decided to
rely on was inspired by the work of Perifanis et al. [5] and is shown
on the figure 5.

Outliers and Missing Data. In the dataset there are multiple outliers
factoring on the model training and the succeeding evaluation. To
mitigate the effects of the outliers the values below 5th quantile and
above 95th have been flattened. Additionally, missing data points
have been filled using forward filling technique.

Data Aggregation. The original interval of two-minutes proved too
be too noisy, taking into account the need for accurate predictions
for the traffic demand. We decided to run the baseline SARIMAX on
the 60-minute interval and ML models on 5-minute interval. This
choice will be further explained in Experiments section 5.

Scaling. Furthermore the data was scaled using MinMax function.
Scaling is a common technique especially in network data, where
the extremely high values influence the weights and biases of the
models.

Data Split. The data from each of the base stations was split into
the training set - 60%, validation set - 20% and 20% test set. This



Figure 3: Original DownLink data in PobleSec base station in Barcelona, Spain.

Figure 4: DownLink data after preprocessing pipeline in PobleSec base station in Barcelona, Spain.

Figure 5: Data processing pipeline.

approach ensures that the models will have satisfactory results
without overfitting.

Exogenous Variables. In this research it was important for the mod-
els to understand the cyclic nature of the data. By using both sine
and cosine transformations on the timestamp, each time point is
represented as a unique coordinate on a circle. This allows the
model to understand the close relationship between time points
like 11 p.m. and 1 a.m., which is critical for accurately capturing
daily and weekly patterns.

3.3 Traffic Forecasting Design
The aim of the research is to compare various models in predicting
near-future traffic demand. The traffic demand understood as the
DownLink and UpLink features, and the near-future is the next
timestep (dependent on the chosen time interval aggregation). For
this several models were chosen varying by their complexity, accu-
racy and training time. The deep learning approaches used in this
research are described in detail by Lim et al. [10].

3.4 Model Selection and Architecture
The models were selected based on the literature review and the
analysis of results obtained in the literature review. Firstly the base-
line models were chosen and implemented, followed with machine
learning approaches.

SARIMAX. As the baseline model the statistical SARIMAX (Sea-
sonal Auto-Regressive Integrated Moving Average with eXogenous
regressors) model has been selected due to its simplicity in imple-
mentation. To make sure that the obtained results are optimal, a
grid search was conducted through model parameters (both sea-
sonal and default auto-regressive, moving average and integrated
components).

RNN. For the first ML approach Recurrent Neural Network (RNN)
was implemented with a structure of 2 hidden layers both of 128
nodes, which is connected to a 2 layer feed-forward neural network
(256, 128 nodes). A simple model was chosen to compare the impact
of model complexity by adding nodes and layers to the architecture
[5].
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LSTM. The selection of the LSTM was partly described in the
background section 2. It is an improvement on the basic RNN cell
by mitigating the exploding/vanishing gradient problem[11]. The
LSTM architecture implemented in this study was adopted from the
work of Nasseri et al. [12] on ambulatory seizure forecasting. This
paper was chosen due to its successful application of deep LSTM
networks to complex, real-world time-series data, demonstrating
great forecasting performance. Both EEG signals and the detailed
traffic network measurements constitute multi-variate time series
data and in both domains, understanding temporal patterns and
feature dependencies is essential for accurate predictions, making
it a good fit for our forecasting usecase. The architecture described
by Nasseri et al. [12] consists of four stacked LSTM layers. Each of
these LSTM layers has 128 hidden nodes. A dropout layer with a
rate of 0.2 is applied.

TimesFM. (Time Series Foundation Model) is a pretrained time-
series foundation model developed by Google Research for time-
series forecasting [13]. It forecasts on uni-variate time series data
and due to its architecture being comprised of transformer modules
it is able to adapt very well to different context lengths and diverse
data. The comparison to a pretrained state-of-the-art forecasting
model was useful for this study, as the computational cost for the
training of this model is none.

3.5 Model Evaluation
The following metrics were used to quantify the prediction error
and the overall performance of the models as proposed in [5]:

• Mean Absolute Error (MAE): The MAE measures the
average magnitude of the errors in a set of predictions,
without considering their direction. It is the average over
the test sample of the absolute differences between predic-
tion and actual observation where all individual differences
have equal weight.

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |

where 𝑛 is the number of samples, 𝑦𝑖 is the actual value,
and 𝑦𝑖 is the predicted value.

• Root Mean Squared Error (RMSE): The RMSE is the
square root of the MSE. It is often preferred over MSE
because it has the same units as the dependent variable,
making it more interpretable. It represents the standard
deviation of the prediction errors.

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2

• Coefficient of Determination (𝑅2): The 𝑅2 coefficient,
also known as the coefficient of determination, provides
a measure of how well the predicted values explain the
variability of the actual values. It indicates the proportion
of the variance in the dependent variable that is predictable
from the independent variables. An 𝑅2 of 1 indicates that
the predictions perfectly fit the data.

𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2

where 𝑦 is the mean of the actual values.

4 Experimental Setup
For this research, many experiments needed to be run simultane-
ously, requiring significant computational resources. To address this
need, the experiments described in section 5 utilized the DelftBlue
supercomputer, a resource provided by the university [14].

For GPU-accelerated experiments, such as the RNN or LSTM
model training, jobs were submitted to the GPU partition. These
jobs were configured to utilize one GPU per task. This setup al-
lowed for efficient processing of computationally intensive machine
learning tasks.

For CPU-bound experiments, including parameter grid searches
for SARIMAX model, jobs were executed on the dedicated compute
partitions. These tasks typically requested 32 CPU cores and were
allocated 96 GB of RAM (3 GB per CPU), providing ample processing
power for larger, parallelizable computations without requiring
GPU acceleration.

5 Experiments and Training
5.1 Baseline Statistical Model
In time series forecasting with statistical models, such as SARIMAX
it is crucial to determine the amount of data that the model is fit
on. As the hourly aggregated data show 6, the congestion is signifi-
cantly higher in the afternoon and evening than in the morning,
showing strong daily patterns . Moreover, the analysis of the figure
7 suggested that there are no significant enough differences be-
tween specific days of the week to justify fitting the SARIMAX on
weekly or two-weekly patterns. However, as the results on the table
1 show, there is a slight improvement from training on 1 week long
dataset. Additionally, the initial experiments of fitting the model
resulted in the model having problem grasping the basic patterns.
Therefore we conducted an interval study to determine, which in-
terval has the best trade-off of the length of the interval (the aim is
to predict near-future traffic demand, so ideally we would keep the
smallest interval) and accuracy. The table 1 is incomplete (N/A - not
available) due to problems with timeout experienced on DelftBlue
compute partition. The longest job runtime allowed is 24 hours, so
as the training size got bigger and the interval smaller it took longer
to test all the parameters for the SARIMAX model. Nonetheless, the
current results show that the only viable choice is the 60-minute
interval and generally results got significantly better as the data
frequency interval increased. Additionally, on this interval the 1
week training/fit set performed the best by a small margin, indicat-
ing that there are some weekly patterns found by the SARIMAX
model.

Training
Size

Data Intervals
5 min 15 min 30 min 60 min

1 day 1,300,797 K 1,109,540 K 77,395 K 51,876 K
1 week N/A 124,011 K 323,018 K 48,802 K
2 weeks N/A N/A N/A 49,931 K

Table 1: Mean Absolute Error results of interval study of
SARIMAX.



Figure 6: Aggregated hourly DownLink and UpLink bitrate
for PobleSec station in Barcelona, Spain.

Figure 7: Weekly Distribution of Downstream Network Traf-
fic at PobleSec Station. The width of each violin indicates the
density of traffic (bps) values for that day, with dashed lines
representing quartiles.

5.2 Training Machine Learning Models
The models were trained on all the features provided in the original
dataset [5], additionally 3 exogenous variables were added to help
the model understand the cyclical patterns of the data.

Number of Epochs. One of the most essential factors in training
a well-performing model is choosing the number of epochs. The
optimal number of training epochs depends on both dataset size
and model complexity. Larger datasets and more complex models
generally require more epochs to learn diverse patterns and con-
verge properly, while smaller datasets and simpler models require
fewer epochs. It is crucial to balance this to avoid underfitting or
overfitting. For the simpler LSTM architecture the results showed
that overfitting happened around epoch 100 as shown on the figure
8.

Aggregation Interval. Similarily, as with the baseline SARIMAX
model it was crucial to find the optimal interval to train the model
on. As the machine learning models can capture more complex
patterns and handlemore data than the statistical ones, the 5-minute
interval performed the best, as shown on the 10.

Sequence Length. An important factor in the training of forecasting
models is the sequence length, which defines how far back is the
model looking to predict the next values. The models were trained

Figure 8: Train and validation loss over 200 epochs.

Figure 9: Predictions of LSTM model trained on 5-minute
aggregated data with a 12-hour sequence length (predictions
in red).

for 50 epochs using the Adam optimizer and a mean squared error
loss function. The specific hyperparameters are detailed below:

• Learning Rate: 0.0001
• Dropout: 0.3
• Maximum Gradient Normalization: 5.0

They were decided upon either by inspecting the hyperparameters
used in work of Perifanis et al. [5] or by testing various values
independently from each other. The best performing model made
its predictions based on the last 12 hours of previous data, its results
are visible on the figure 9.

Sequence
Length

Data Intervals
5 min 15 min 30 min 60 min

3 hours 32,219,820 34,141,059 37,285,673 43,748,567
6 hours 32,809,894 34,694,601 37,285,673 46,159,320
12 hours 31,714,775 33,825,514 36,683,636 43,748,567

Table 2: Mean Absolute Error for different sequence length in
training the simple LSTMmodel in predicting the DownLink
bitrate in PobleSec station.

Locality of Patterns. In the original dataset [5] there are data points
from 3 base stations: PobleSec, LesCorts and Elborn. We conducted
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another series of experiments to find out how well does a model
trained on one station’s data perform on another’s test set. To do
this, we trained an LSTM on PobleSec’s train set and run the fore-
cast on LesCorts test set. For comparison we also present the MAE
from a model trained on LesCorts data (model LC) and timesFM
model (model TFM). As shown in the table 3, the timesFM’s and
LesCorts’ errors are comparable, however the one trained on an-
other’s stations data performed worse. This show the effectivness
of local training or using a complex pretrained model.

Model Trained On MAE on LesCorts’ Test Set
PobleSec 17,643,929
LesCorts 12,650,551
timesFM (Pre-trained) 12,286,798

Table 3: Comparison ofMeanAbsolute Error (MAE) for Three
LSTM Models Evaluated on LesCorts’ Test Set.

Model Evaluation Metrics
MAE RMSE 𝑅2

RNN - paper 34,156,115 51,659,843 0.724
LSTM - paper 33,402,828 50,769,234 0.733
LSTM - simple 32,809,894 49,888,285 0.743

TimesFM 33,098,485 51,145,692 0.731
Table 4: Metric comparison for different ML models for 5-
minute aggregated data in predicting DownLink bitrate in
PobleSec station.

Computational Cost. In terms of computational cost comparison
the metric used in this study is the number of FLOPs (floating point
operations) of the model. It counts every addition, subtraction,
multiplication or division operation done during the runtime of
the model. This metric shows the efficiency of the model before
training enabling engineers to opt for a more optimal solution. The
table 5 below shows as expected that the RNNmodel is significantly
lighter than even the simple LSTM model. As the paper LSTM does
not obtain better results according to the metrics in the table 4
and performs more FLOPs in total, the simple LSTM is a better
fit for this particular forecasting task. Additionally, we can see
that the Google TimesFM is particularly expensive in terms of
FLOPs, however contrary to the paper LSTM its results prove its
usefulness. TimesFM does not require training time and is adjusted
to any univariate time series making it a great solution for various
usecases. Moreover, timesFM can be further finetuned for a specific
dataset, which improves the MAE by approximately 7%.

Analysis of Results
Machine Learning approaches for traffic demand forecasting re-
quire varying computational resources. In the section 5.2, we per-
formed analysis based on the FLOPs (floating point operations)
and parameter count. As the models get more complex, with an
increasing number of parameters, so does the number of FLOPs
increase, leading to a rise in the computational cost of both training
and deployment.

Model Number of FLOPs Number of parameters
RNN - paper 40.81 ×106 76.29 K
LSTM - simple 94.33 ×106 123.46 K
LSTM - paper 359.8 ×106 470.14 K

Google TimesFM 10211.5×109 498,828.96 K
Table 5: Number of FLOPS and parameters for all the models

For instance, the Recurrent Neural Network (RNN) model, with
40.81 × 106 FLOPs and 76.29 K parameters, proved to be signifi-
cantly "lighter" than the Long Short-Term Memory (LSTM) models.
This efficiency makes RNNs a potentially more suitable option for
resource-constrained environments, despite their typically lower
predictive accuracy compared to more complex architectures. A
notable finding from our experiments highlights that the paper
inspired LSTM architecture, while possessing a higher number of
FLOPs (359.8 × 106) and parameters (470.14 K), did not achieve
better evaluation metrics than the "simple LSTM" model (4.33× 106

FLOPs and 123.46 K parameters). This suggests that for the specific
task of near-future traffic forecasting, simply increasing model com-
plexity does not guarantee improved performance, and can instead
lead to suboptimal resource utilization.

Conversely, the Google TimesFM model, despite its extremely
high FLOPs (10211.5 × 109), offers a distinct advantage: it requires
no training time as it is a pre-trained foundation model. This char-
acteristic makes it a highly valuable solution for various use cases,
particularly where rapid deployment and adaptability are crucial,
outweighing its high deployment-time computational load. Under-
standing these trade-offs between model complexity, computational
cost, and performance is essential for engineers to select the most
optimal forecasting solution for 5G network traffic.

6 Responsible Research
This section outlines the ethical considerations and the steps taken
to ensure the reproducibility of this research.

The primary ethical cotnsideration in network traffic analysis is
user privacy. The dataset used in this study was published by Perifa-
nis et al. [5], which consists of features related to traffic congestion.
As the data is aggregated and does not have any user identification,
the user privacy concerns are minimized. By using this pre-existing,
public dataset, this research avoids interaction with sensitive user
data. To ensure the findings of this study can be independently
verified, the following methodological steps have been detailed in
section 3:

• Public dataset description
• Data preprocessing pipeline
• Traffic forecasting design
• Model architecture
• Evaluation metrics used

and the specifics of the models are described in section 5:
• number of epochs
• learning rate
• dropout
• gradient normalization
• optimizer



Figure 10: Evaluation metric results for different aggregation intervals for a simple 2-layer LSTM architecture.

• loss function

LLMs where used to improve flow of text and grammatical mis-
takes only. They didn’t have any contribution to the contents of
this research paper. The examplary prompts are included in the
Appendix B.

7 Conclusions and Future Work
This research comprehensively compared and evaluated several
time series forecasting models. The baseline Seasonal Autoregres-
sive Integrated Moving Average with Exogenous Regressors (SARI-
MAX)model exhibited considerable computational overhead during
parameter fitting via grid search, and its performance was limited.
While it captured fundamental hourly patterns, it consistently un-
dervalued peak traffic periods. In contrast, the Recurrent Neural
Network (RNN) model significantly outperformed the baseline,
achieving a solid improvement in predictive accuracy. The timesFM
foundation model demonstrated the most robust generalization
capabilities on previously unseen traffic patterns, however, this
enhanced performance came at the cost of requiring the highest
computational resources for its deployment. Furthermore, experi-
ments, where models trained on data from one station were tested
on another, yielded unsatisfactory results. This observation strongly
suggests significant variety in network traffic flow characteristics,

even among stations within the same city. Future work might in-
clude adjusting the codebase for federated learning, which would
enable using one global model to predict the network traffic in
multiple stations. Additionally, Graph Neural Networks have been
proven to be effective in traffic demand prediction. [4] and could
be compared to the models compared in this work.
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Appendix A

SARIMAX
• S (Seasonal): This component accounts for seasonality in

the data, meaning patterns that repeat over fixed periods
(e.g., daily, weekly, or yearly cycles).

• AR (Autoregressive): The autoregressive part indicates
that the model uses the linear combination of past obser-
vations (lagged values) to predict future values. It captures
the dependence between an observation and a number of
lagged observations.

• I (Integrated): The "integrated" aspect refers to the differ-
encing of raw observations to make the time series station-
ary. Differencing involves subtracting the previous obser-
vation from the current observation. This step is necessary
to remove trends or seasonality that can make a time series
non-stationary and difficult to model.

• MA (Moving Average): The moving average part signifies
that themodel uses the dependency between an observation
and a residual error from a moving average model applied
to lagged observations. It incorporates the error terms of
past predictions into the current prediction.

• X (Exogenous): This denotes the inclusion of external
variables. These are factors that are not part of the time
series itself but can influence its behavior (e.g. network-
related parameters in traffic forecasting).

Dataset Features
• DownLink: Represents the total volume of data transmit-

ted from the base station to user devices during the two-
minute measurement interval. This metric is indicative of
the download traffic experienced by users connected to the
base station.

• UpLink: Reversely to the DownLink traffic, UpLink corre-
sponds to the total volume of data transmitted from user
devices to the base station.

• RNTIs (RNTI Count): The Radio Network Temporary
Identifier is a unique temporary identifier assigned to each
active user equipment (UE) by the base station. The RNTI
Count therefore quantifies the number of active user de-
vices currently being served by the base station during the
observed period.

• RB Up (Resource Block Up): Resource Blocks (RBs) are
the fundamental units of radio spectrum allocation. This
feature indicates the number of resource blocks specifically
allocated for uplink data transmission (from UEs to the base
station) within the two-minute interval.

• RB Down (Resource Block Down): Reversely to the RB
Up data, RB Down are the fundamental units allocated for
downlink data transmission.

• RB Up Var (Resource Block Up Variance): Measures the
statistical variance of the number of resource blocks allo-
cated for uplink data transmission. High variance suggests
significant fluctuations or instability in uplink resource
allocation over the observed interval.

• RB Down Var (Resource Block Down Variance): Mea-
sures the statistical variance of the number of resource
blocks allocated for downlink data transmission.

• MCS Up (Modulation and Coding Scheme Up): Mod-
ulation and Coding Schemes determine the efficiency of
data transmission over the wireless channel. This feature
represents the average MCS level utilized for uplink trans-
missions, reflecting the channel quality and efficiency for
data uploaded by users.

• MCS Down (Modulation and Coding Scheme Down):
This indicates the average or predominant MCS level uti-
lized for downlink transmissions, reflecting the channel
quality and efficiency for data downloaded by users.

• MCS Up Var (Modulation and Coding Scheme Up Vari-
ance): Measures the statistical variance of the MCS levels
applied to uplink transmissions. High variance may sug-
gest dynamic radio conditions or diverse user equipment
capabilities influencing uplink transmission efficiency.

• MCSDownVar (Modulation andCoding SchemeDown
Variance): Measures the statistical variance of the MCS lev-
els applied to downlink transmissions. Similar to MCS Up
Var, high variance can point to changing radio conditions
affecting the efficiency of downlink data delivery.
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Appendix B
Use of Large Language Models
In the writing process of this research paper we used the help of
LLMs. The prompts used were focused on improving the grammar
and the flow of the text, not the content itself, such as: "Proofread
the paper, check the grammar and spelling." or "I am writing an
academic paper and this section feels out of place, please identify
informal sentences.". As mentioned before the LLMs were also used
to help the flow of the text, to make sure that the ideas presented
are connected well.


