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Abstract

Nonholonomic mechanical systems encompass a large class of practically interesting robotic
structures, such as wheeled mobile robots, space manipulators, and multi-fingered robot
hands. However, few results exist on the cooperative control of such systems in a generic, dis-
tributed approach. In this work we extend a recently developed distributed Interconnection
and Damping Assignment Passivity-Based Control (IDA-PBC) method to such systems. More
specifically, relying on port-Hamiltonian system modelling for networks of mechanical systems,
we propose a full-state stabilization control law for a class of nonholonomic systems within the
framework of distributed IDA-PBC. This enables the cooperative control of heterogeneous,
underactuated and nonholonomic systems with a unified control law. This control law pri-
marily relies on the notion of Passive Configuration Decomposition and a novel, non-smooth
control law proposed here. A low-level collision avoidance protocol based on the Artificial
Potential Fields (APF) method is also implemented in order to achieve dynamic inter-agent
collision avoidance, enhancing the practical relevance of this work. Theoretical results are
tested in different simulation scenarios in order to highlight the applicability of the derived
method.
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Chapter 1

Introduction

An increasing demand in multi-agent systems has been spurred by the benefits obtained
when a single complex system is transformed to an equivalent set of multiple yet simpler
systems. Controlling this set of systems can rely on either a centralized or a distributed
approach. In the distributed approach, lower level components operate on local information
in an appropriate manner to accomplish global goals. This decomposition of a complex
system into simpler units and their distributed control entails great advantages among which,
decreased operational cost, robustness to failure, strong adaptivity and system scalability
[5]. Distributed control of mechanical systems is used in numerous applications such as
collaborative transportation, exploration of unknown or dangerous terrains, large scale sensing
and area monitoring, collaborative construction and autonomously operating vehicle platoons
or spacecraft constellations.

The dynamics of mechanical systems are highly nonlinear. Since control system design re-
lied primarily on linear control theory, nonlinear systems were often linearized and controlled
around an operating point. Another common approach was to render the systems linear
through an internal feedback loop that would cancel any nonlinearities. Both approaches
however have well-known limitations. In the presence of strong nonlinearities, the operation
of the linearized system is restricted in a small region around the operating point while can-
celling nonlinearities usually leads to excessive amount of feedback gains and in general suffers
from robustness issues. For these reasons, a large number of nonlinear control methods has
been developed. For the control of mechanical systems, a class of nonlinear control meth-
ods known as energy-based control has been proven to be especially suitable. The key idea
in modelling such systems stems from analytical dynamics where the energy of the system
(namely the sum of potential, kinetic and dissipation energy) fully determines its behaviour
while another fundamental property, passivity, is instrumental for deriving stabilizing control
laws. The nonlinear system can be controlled by shaping its closed loop energy while respect-
ing the original dynamics, an intrinsically less conservative method which provides higher
performance, cost-effective controllers.
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2 Introduction

1-1 Motivation and Problem Statement

A generic distributed control method that enables heterogeneous groups of underactuated
and fully-actuated, highly nonlinear mechanical systems to cooperatively assume desired
task-space formations has been proposed in [2]. This work extended the nonlinear, energy-
based control method of Interconnection and Damping Assignment Passivity-Based Con-
trol (IDA-PBC) [6] to a distributed setting. This allowed the distributed control of a group
of (possibly underactuated) mechanical systems with non-identical dynamics so that they
can achieve low-level cooperative group objectives known as consensus, synchronization, or
formation problems. These problems are mathematically similar across the wide range of the
previously mentioned applications highlighting the practical importance of the results in [2].

The generality and potential applicability of the work in [2] motivates researchers to seek
ways of relaxing several simplifying assumptions. Initially motivated by this work, in [4] a
novel r-Passivity Based Control (r-PBC) approach has been proposed which can successfully
handle network effects such as communication delays and packet dropouts. Other topics such
as collision avoidance and discretization were also considered and the efficacy of the proposed
novel control law was validated with experimental results.

Motivated to broaden the scope of [2], in this work we aim to extend these results to non-
holonomic mechanical systems and implement a simple low-level collision avoidance protocol.
Nonholonomic mechanical systems encompass a great variety of mechanical systems including
wheeled mobile robots, space robots and other mobile mechanical systems which are often
found in various applications. Moreover, these applications often lead to a cluttered environ-
ment where the agents are likely to collide while performing their collaborative tasks. This
motivates the attempt to implement a low-level, inter-agent collision avoidance protocol that
has inherent similarities with the distributed IDA-PBC approach and can work with the non-
holonomic nature of such systems successfully. The problem we are addressing in this work
can be simply stated as follows:

"Develop a distributed control method which allows a group of non-identical, possibly nonholo-
nomic mechanical systems achieve cooperative objectives while locally avoiding collision with
each other."

1-2 Novelty of This Work

Many powerful techniques have been developed for the feedback control of nonholonomic
mechanical systems, yet, the majority of them rely on specific control forms (e.g. normal
form, power form, chained form) which can be attained typically only by using feedback
linearization [7]. In this work we aim to develop a feedback control method for nonholonomic
systems relying on the benefits of passivity based control. More specifically, we address
the problem of full-state stabilization for nonholonomic mechanical systems applying the
method of Passive Configuration Decomposition developed in [7] to port-Hamiltonian systems.
This is instrumental to expand full-state stabilization in the IDA-PBC framework allowing
for control of both underactuated and nonholonomic mechanical systems. Moreover, we
propose a new potential energy for the shaped, closed-loop dynamics which yields improved
transient response for the stabilization problem of nonholonomic systems. Last but not least
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1-3 Notation 3

we implement a simple protocol that can locally ensure inter-agent collision avoidance. The
efficacy of the aforementioned is illustrated in simulations.

1-3 Notation

In order to distinguish among scalars, vectors and matrices we introduce typographical em-
phasis. Scalars are denoted by non-bold lower-case characters, vectors by bold lower-case
characters while matrices are denoted by bold, upper-case characters.

q ∈ R, q ∈ Rn, Q ∈ Rm×n (1-1)

The notation 0n denotes an n× n matrix with zeros, whereas In denotes the n× n identity
matrix. The notation 0 denotes a zero vector of the appropriate dimension (often expressed
explicitly with subscripts). The subscript ij of Qij denotes the element at the ith row and the
jth column. The transpose of a partial derivative is written as ∂>f

∂x . The Jacobian of scalar
function f to vector x ∈ Rn, is denoted by the column vector:

∂>f

∂x
=
[

∂f
∂x1

· · · ∂f
∂xn

]>
(1-2)

In the following we denote the real numbers with R and the positive real numbers including
zero with R+ . The set of natural numbers excluding zero is denoted N and the set of integers
is written as Z.
For matrix A, we denote the transpose as A>, the inverse as A−1 and the inverse of the
transpose as A−> . The Moore-Penrose pseudo inverse is given by A† =

(
A>A

)−1
A>.

An annihilator for A is A⊥ such that A⊥A = 0 variable dependencies are often left out
if their dependency is clear from context. For example z(q(t)) is written as z(q) where
the dependency on time is implicit. In general the notation ‖q‖ denotes the 2-norm unless
specifically specified otherwise.

1-4 Report Overview

This report is organized as follows. In Chapter 2 we provide the fundamentals of mechanical
system modelling, nonholonomic constraints and port-Hamiltonian systems which constitute
the stepping stone of this work. In Chapter 3 we present a complete approach of IDA-PBC
for nonholonomic systems starting with system matching and concluding with a novel sta-
bilization approach. Chapter 4 extends the single-agent results of the previous chapter to
a distributed setting following the steps in [2] thus completing the problem of distributed
IDA-PBC for nonholonomic agents. We then attempt to make the whole design more practi-
cally relevant in Chapter 5 by introducing a simple collision avoidance protocol that relies on
the Artificial Potential Fields (APF) method. We show that the chosen collision avoidance
scheme can work in accordance with the control design derived in the previous chapters. In
Chapter 6 we provide simulation results for two different scenarios in order to illustrate the
working principles of our control design. We conclude this work in Chapter 7 with a discus-
sion and some conclusions on the derived results, the advantages and the shortcomings of our
approach, followed by recommendations for future work and improvements.
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Chapter 2

Nonholonomic Mechanical Systems

The aim of this chapter is to present a formal mathematical definition of the systems we
analyze in this report and discuss their fundamental properties. In order to keep the report
concise, this is by no means an exhaustive review on mechanical system modelling. Neverthe-
less, it provides the necessary background for the subsequent chapters. For a more detailed
description of mechanical systems modelling the reader is referred to [8, 9, 10].

2-1 Modelling Mechanical Systems

The study of dynamics of particles often relies on the principles of Newtonian Mechanics
which is vectorial in nature. These principles were first introduced by Newton for single point
masses and later expanded by Euler for systems of point masses. According to Newtonian
Mechanics the central notions are expressed with vectors (e.g. acceleration, forces) which are
in general difficult to calculate. Moreover for complex systems the equations of motion are
derived by individually studying each component of the system which results in the necessity of
calculating forces that result from kinematic constraints increasing the number of unknowns in
the problem. For such complex systems the application of Newtonian Mechanics can present
difficulties. An alternate approach is that of Analytical Dynamics which was founded by
Leibniz and Lagrange. In this approach central notions are work and energy which are scalar
quantities. Moreover, the foundation of these principles is realized in such a way that the
calculation of reaction forces from kinematic constraints is not needed. This is the result
of introducing the generalized coordinates which are more abstract mathematical quantities
than physical coordinates but lead to the aforementioned advantages. Last but not least, the
equations of motion derived in Analytical Dynamics have a form that does not depend on the
choice of the generalized coordinates. This approach of Analytical Dynamics is represented
by the Euler-Lagrange equations and Hamilton’s equations. These methods enable one to
obtain a complete set of equations of motion by differentiation of a single scalar function,
namely the Lagrangian function or the Hamiltonian function [9].

Master of Science Thesis Anastasios Tsolakis



6 Nonholonomic Mechanical Systems

2-1-1 Generalized Coordinates and Momenta

Every set of variables that can define the exact location and orientation of the components of
a system is called the set of generalized coordinates. In mechanical systems these generalized
coordinates usually represent length or angle but some times can even represent other more
abstract quantities like energy or momentum. They are often expressed as q ∈ Rn where
n is the number of generalized coordinates. The set of generalized coordinates to define a
dynamical system is not unique. The time derivatives of the generalized coordinates expressed
as q̇ ∈ Rn are the generalized velocities.
A set of generalized coordinates defines the configuration of the system. The configuration
space Q ∈ Rn (or configuration manifold) is the vector space of all possible configurations of
the system. The tangent space of Q at q is denoted as q̇ ∈ TqQ. The tangent space contains
all possible directions on Q that can be followed when the system is at configuration q. In
this work, modelling relies on Hamilton’s equations where the system’s unknowns are the
generalized coordinates and the generalized momenta p ∈ Rn defined as:

p = M(q)q̇ (2-1)

where M(q) denotes the symmetric, positive-definite, mass matrix of the system. The gen-
eralized coordinates and momenta belong to the cotangent bundle (q,p) ∈ T ∗q Q, which is the
set of possible configurations and momenta that the system can reach. We also refer to the
pair (q,p) as the state of the system and denote the state space as X ∈ R2n.

2-1-2 Nonholonomic Constraints

In many cases, the motion of the components of a mechanical system is constrained by kine-
matic relations called kinematic constraints. These kinematic constraints are in general a
set of differential and/or algebraic equations that further dictate the evolution of the system
additionally to the equations of motion. This additional set of equations is satisfied due to
the generation of corresponding generalized constraint forces that are applied on the system.
Constraints can be classified as holonomic when they are algebraic equations of the form
α(q, t) = 0 or non-holonomic when they are equality or inequality equations of the forms
α(q, q̇, t) = 0 (bilateral) or α(q, q̇, t) ≤ 0 (unilateral) correspondingly. When these expres-
sions are explicit functions of time then we refer to them as rheonomic otherwise they are
known as scelronomic. The aforementioned classification is important as to how these con-
straints affect a system. Holonomic constraints are algebraic expressions of the generalized
coordinates and can most of the times vanish if a proper, minimal set of generalized coor-
dinates is chosen to describe the system. On the other hand, nonholonomic constraints are
differential equations of both the generalized coordinates and velocities. These expressions
are neither total differentials nor they can be converted into one via an integrating factor
and thus they are not integrable. As a result, these nonholonomic constraints are additional
differential equations that further dictate the evolution of the system and they need to be
solved along with the system’s equations of motion complicating the analysis. One differ-
ence of critical importance is that nonholonomic constraints do not reduce the configuration
space Q meaning that any configuration is still accessible by the system. Nonetheless, they
reduce the tangent space TqQ meaning that a nonholonomic system can go anywhere but not
howsoever.

Anastasios Tsolakis Master of Science Thesis



2-1 Modelling Mechanical Systems 7

A particularly interesting form of nonholonomic constraints that arise in mechanical systems
is that of Pfaffian Constraints. These are scleroronomic, bilateral nonholonomic constraints
which are linear expressions with respect to the generalized velocities:

A>(q)q̇ = 0 (2-2)

where A(q) ∈ Rn×k is the constraint matrix for a system with n generalized coordinates and
k distinct nonholonomic constraints. These constraints describe various practical phenomena
that arise in mechanical systems including but not limited to:
• Rolling without slipping constraints: wheeled mobile robots (such as differential and
car-like robots) and also in manipulation with multi-fingered robotic hands
• Conservation of angular momentum: arises in space robots, satellites as well as gym-
nastic robots (e.g.: hopping robots)
• Knife edge motion (sledges, sailboats)

These types of systems are very often met in a vast area of robotic applications including
logistics, transportation, area monitoring, space exploration etc.

2-1-3 Hamilton’s Equations

The dynamics of a simple mechanical system with generalized coordinates q ∈ Rn, generalized
momenta p ∈ Rn, generalized forces fq ∈ Rn and which is further imposed to k kinematic
constraints of Pfaffian form can be described by the following set of 2n+k nonlinear Ordinary
Differential Equations (ODEs):[

q̇
ṗ

]
=
[

0n In
−In 0n

] ∂H
∂q (q,p)
∂H
∂p (q,p)

+
[

0n×k
A(q)

]
λ+ fq (2-3a)

0 = A>(q)∂H
∂p

(q,p) (2-3b)

These are the standard Hamilton’s Equations written in matrix notation. Note that the
first term of the right-hand side in (2-3a) represents all inertial and potential forces, the
second term represents forces arising from constraints described in (2-3b) and the third term
represents exogenous forces that act on the system. The pair (q,p)> ∈ R2n is the state of the
system and H(q,p) ∈ R is the Hamiltonian function of the system. For simple mechanical
systems the Hamiltonian function is the mechanical energy of the system defined as the sum
of kinetic energy and potential energy:

H = 1
2p
>M−1p+ V (q) (2-4)

where M(q) = M>(q) > 0n×n denotes the symmetric, positive-definite, mass matrix as
stated before and V (q) ∈ R denotes the potential energy of the system, a scalar quantity that
we assume is a function of the generalized coordinates only. Note also that Equation (2-3)
represent the frictionless dynamics. The Lagrange multipliers λ ∈ Rk denote the magnitude
of the constraint forces which ensure that the constraints are satisfied and A(q) ∈ Rn×k is the
constraint matrix. In the next section we present how the standard Hamilton’s Equations can
be expressed as a port-Hamiltonian system which is more favourable for the control purposes
in subsequent chapters.
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8 Nonholonomic Mechanical Systems

2-2 Port-Hamiltonian Systems

In the previous section we briefly presented Hamilton’s equations which originate from the
filed of analytical dynamics. Another approach that stems from electrical engineering, is the
network approach which constitutes a cornerstone of mathematical systems theory. While
most of the analysis of physical systems has been performed within the Lagrangian and
Hamiltonian framework, the network point of view is prevailing in modelling and simulation
of (complex) physical engineering systems. A framework that combines both points of view
is that of port-Hamiltonian systems. The port-Hamiltonian description offers a systematic
framework for analysis, control and simulation of complex physical systems [11].

2-2-1 System Input and Output

A port-Hamiltonian system consists of two internal ports, an energy-storing element and an
energy-dissipating element as well as an external port which models the interaction of the
system with its environment [11]. A natural candidate for an energy-storing element of (2-3)
is the Hamiltonian while an energy-dissipating element does not exist having assumed that
the dynamics are frictionless. The external port consists of a type of port variables accessible
for controller action (input) and another type of external port variables corresponds to an
interaction port (output). First, we assume that the generalized forces in Equation (2-3)
comprise the known, input forces which have the input-affine form:

fq = F (q)τ (2-5)

where F (q) ∈ Rn×m is the input matrix and τ ∈ Rm the system’s input. We continue by
driving the following energy balance from (2-3) and (2-5):

dH(q,p)
dt

= ∂>H

∂q
(q,p)q̇ + ∂>H

∂p
(q,p)ṗ = (−ṗ+Aλ+ Fτ )>q̇ + q̇>ṗ = τ>(F>q̇) (2-6)

expressing that the increase in the mechanical energy of the system is equal to the supplied
work (conservation of energy). This motivates to define the output of the system as:

y = F>q̇ = F>(q)∂H
∂p

(q,p) (2-7)

Throughout this work, each agent is assumed to be a simple mechanical system with gener-
alized coordinates q ∈ Rn, generalized momenta p ∈ Rn, input τ ∈ Rm and output y ∈ Rm
and its open-loop, constrained, frictionless dynamics described as:

[
q̇
ṗ

]
=
[

0n In
−In 0n

] ∂H
∂q (q,p)
∂H
∂p (q,p)

+
[

0n×k
A(q)

]
λ+

[
0n×m
F (q)

]
τ

y = F>(q)∂H
∂p

(q,p)

0 = A>(q)∂H
∂p

(q,p)

H = 1
2p
>M−1p+ V (q)

(2-8)
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2-2 Port-Hamiltonian Systems 9

2-2-2 Constraint Transformation

This system described by (2-8) is now closer to the port-Hamiltonian structure that we need
to proceed with the control tasks later on. Notice however that the constraint equation still
appears explicitly in the system description. A classical approach to solve such a problem,
is differentiating expression (2-3b) with respect to time and then after proper substitutions
solve for the Lagrange multipliers λ and get an expression for the constraint forces. However,
the constraint forces, albeit dictating the evolution of the system, are not useful to compute
explicitly. A much more efficient way for handling systems subjected to this class of constraints
is described in [12] which yields the desired port-Hamiltonian form. In the following we briefly
present and explain this approach.
The constraint equation (2-3b) forces the system to evolve on the constrained state space
described as:

Xc =
{

(q,p) ∈ X
∣∣∣∣A>(q)∂H

∂p
(q,p) = 0

}
(2-9)

The idea proposed in [12] is to perform a coordinate transformation of the generalized mo-
menta since it comprises the part of the state that is affected by the constraints. This
coordinate transformation is essentially a projection of the system’s state from X onto the
constrained space Xc described by (2-9). The new coordinates are not canonical in general
but nonetheless they provide new capabilities to the analysis of systems under constraints.
We begin with defining the transformation:

p̃ = T (q)p (2-10)

with T (q) ∈ Rn×n denoting the square, invertible transformation matrix. A natural selection
for this matrix is [13]:

T (q) =
[

S>(q)
A>(q)M−1(q)

]
(2-11)

where matrix S>(q) ∈ R(n−k)×n is the full-rank left annihilator of the constraint matrix
A(q) ∈ Rn×k such that:

S>(q)A(q) = 0(n−k)×k (2-12)

When matrix S>(q) is multiplied with the original generalized momenta (or velocities), results
to the transformed momenta (velocities) which lie on the vector space of "allowable" momenta
(velocities). This is then the orthogonal complement of the constraint velocities given from the
expression A>(q)q̇. The transformation matrix as defined in (2-11), projects the generalized
momenta onto the constraint state space.

Next, partition the generalized momenta as p̃ =
[
p̃1

p̃2

]
with p̃1 ∈ Rn−k and p̃2 ∈ Rk which

results to:
p̃1 = S>(q)p ∈ Rn−k

p̃2 = A>(q)M−1(q)p ∈ Rk
(2-13)

Notice first that p̃2 = 0 over the constraint manifold. Hence, the last k equations give the
constraints instead of the dynamics. Moreover, the introduction of the annihilator removes
the constraint forces from the dynamics of p̃1 in (2-8). For the sake of notation we denote
here p̃1 , p̃.

Master of Science Thesis Anastasios Tsolakis



10 Nonholonomic Mechanical Systems

2-2-3 System Dynamics

Equations (2-8) can then be expressed in the reduced form to which we conclude as the final
form of the open-loop dynamics. The frictionless, implicitly constrained, open-loop dynamics
of each agent with generalized coordinates q ∈ Rn, generalized momenta p̃ ∈ Rn−k, input
τ ∈ Rm and output y ∈ Rm are expressed as:

[
q̇
˙̃p

]
=
[

0n S(q)
−S>(q) Y (q, p̃)

]
︸ ︷︷ ︸

J̃

 ∂H̃
∂q (q, p̃)
∂H̃
∂p̃ (q, p̃)

+
[

0n×m
F̃ (q)

]
τ

ỹ = F̃
>(q)∂H̃

∂p̃
(q, p̃)

H̃(q, p̃) = 1
2 p̃
>M̃

−1(q)p̃+ V (q)

(2-14)

where ỹ(q, p̃) ∈ Rm is the transformed output, H̃(q, p̃) ∈ R the transformed Hamiltonian,
M̃(q) ∈ R(n−k)×(n−k) the transformed generalized mass matrix, F̃ (q) ∈ R(n−k)×m, the trans-
formed control matrix and Y (q, p̃) ∈ R(n−k)×(n−k) is a skew-symmetric matrix that arises
from the existence of constraints and is defined as Y =

(
−pT [Si, Sj ](q)

)
i,j=1,...,n−k

with
[Si, Sj ] denoting the Lie bracket (thus satisfying skew-symmetry). More elaborated expres-
sions of these components are the following:

Y = −Y > =
n∑
i=1

(
∂S>

∂qi
T−1p̃eTi S

)
−

n∑
i=1

(
S>eip̃

>T−>
∂S

∂qi

)
(2-15)

M̃ = M̃
> = S>MS > 0k (2-16)

F̃ = S>F (2-17)

with ei the standard basis vector in Rn. The full derivation of the resulting terms is not
presented here in order to keep the report concise. The interconnection matrix J̃ remains
skew symmetric which ensures that the resulting system admits to the same Hamiltonian
structure as the original system [12].

If we denote x = (q>, p̃>)> ∈ R2n−k the state of the system described by (2-14) then we can
write it in the more general form:

ẋ = f(x) + g(x)τ
ỹ = h(x)

(2-18)

where the vector fields f(·) and g(·) are contained in the distribution D given in (2-20). The
system is described by a set of 2n − k nonlinear, input-affine ODEs with an m-dimensional
input τ and a set of 2n− k initial conditions x0 = (q0

>, p̃0
>)> ∈ Rn−k which can be derived

using the transformation matrix defined in (2-11) as:

p̃0 = T (q0)p0 (2-19)

The physical meaning of the transformed generalized momenta p̃ (and velocity) can be better
interpreted in the example with which we conclude this chapter.
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2-3 System Properties 11

2-3 System Properties

In this section we discuss a few properties of the systems described by Equation (2-14) so as
to provide some further insights and hopefully a more elaborate understanding.

2-3-1 Constraints

A system that is subjected to nonholonomic constraints is known as a Nonholonomic Sys-
tem otherwise, as a Holonomic System. The terms Constrained System or Unconstrained
System are also used interchangeably. Constraints are described by Equation (2-3b) with
rank

(
A(q)

)
= k < n meaning that the columns of A(q) describe k linearly independent

constraints. If there are no constraints (k = 0) then the constraint matrix A(q) is an empty
matrix and thus, matrix S>(q) can be any n×n full-rank matrix as it will satisfy (2-12). We
can then choose S>(q) = In which makes the transformation matrix also become T (q) = In.
Thus, system (2-14) will then take the same form as in (2-8) without the constraints: A(q)
and the second term of the sum in (2-8) vanish, reducing the system’s description to a sim-
pler, holonomic one consisting of 2n nonlinear ODEs. Note also that the annihilator S>(q)
is not unique. The constraint equation (2-3b) determines a k-dimensional distribution D on
Q given at every point q ∈ Q as:

D(q) = kerA>(q) (2-20)

Since S(q) is the orthogonal complement of A>(q), Equation (2-20) can be expressed equiv-
alently as:

D(q) = colS(q) (2-21)

Meaning that any matrix S(q) that satisfies (2-12) is an appropriate choice. Notice that since
this matrix is a function of q some entries may be ill-defined (division by zero). In order to
circumvent this problem we can divide each column by the product of its denominators.

2-3-2 Actuation

The input matrix F (q) ∈ Rn×m is assumed to be of full rank with rank
(
F (q)

)
= m ≤ n

that is, its columns describe m linearly independent actuators. If there are no input forces
(m = 0),the system is referred to as Unforced. If the system is not unforced then we make
the following distinctions: In case that m = n the system is Fully-actuated and matrix
F (q) is a square, full-rank, invertible matrix. In case that m < n then the system is called
Underactuated meaning that there are fewer distinct actuators than degrees of freedom. Notice
that constrained systems are underactuated by definition. Despite the fact that there are fewer
actuators, all degrees of freedom can be controlled if a proper coupling among them exists.
Such systems are particularly common. A characteristic example is that of a quad-rotor with
n = 6 degrees of freedom (full spatial motion) and m = 4 inputs (the four rotors). The quad-
rotor cannot translate sideways directly but this is possible implicitly if a proper tilt is first
realised. We will see in Chapter 3 however that under-actuation complicates that analysis
and makes control of such systems more challenging. Lastly, in the case where m > n the
system is referred to as Over-actuated meaning that there is redundancy in actuators. Such
systems are outside of the scope of this work.
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12 Nonholonomic Mechanical Systems

2-3-3 Heterogeneity

Notice that the system equations (2-14) comprise a minimal set of components with which we
can essentially describe any simple mechanical system. For an unconstrained and unforced
system, if we define the set of generalized coordinates q and the system’s energy H(q,p), for
which we need the mass matrix M(q) and the potential energy V (q), then we can plug this
expressions in (2-14) and derive the equations of motion. If further the system is subjected
to nonholonomic constraints or to input forces we can simply define the matrices A(q) and
F (q) correspondingly. Thus, by a minimal set of components (q, M(q), V (q), A(q), F (q))
we can describe any mechanical system that fulfills the assumptions made so far. This idea of
modelling in the framework of analytical dynamics allows as to use the same set of equations,
namely (2-14), with just different components and still describe any system. This fact is
extremely useful for two main reasons. First of all, it gives us the capability to automatically
derive the equations of motion algorithmically even for very complex systems with a large
number of degrees of freedom which would be impossible to do analytically. Furthermore,
from a control point of view, it is now possible to control a multi-agent system that consists
of Heterogeneous agents, meaning agents that have completely different dynamics (e.g. a
manipulator cooperating with a quad-rotor). This is a great advantage compared to methods
that require the systems controlled to be Homogeneous (i.e. have identical dynamics).

2-3-4 Passivity

We conclude this discussion by introducing the fundamental property of passivity for port-
Hamiltonian systems.

Definition 2.1: Suppose that the system (2-14) with a supply rate w = τ>y and a storage
function V (x) : Rn → R with V (0) = 0 for which the following relation holds:

V (x(t))− V (x(0)) ≤
∫ t

0
y(s)>τ (s)ds (2-22)

Then the system is passive [14].

Differentiating this expression with respect to time we can get the equivalent one:

V̇ ≤ y>τ (2-23)

For the port-Hamiltonian system (2-14), with the Hamiltonian function as storage function,
the control input τ and the conjugate output y as defined in (2-7) we have already shown
in (2-6) that the system is already passive. Passivity is an important property which comes
naturally in mechanical systems stating that the power supply in the system is less or equal
than the rate of energy stored into the system. Rearranging equation (2-6) we have:

Ḣ(q,p) = q̇>(Fτ ) (2-24)

which states from a physical point of view that the rate of change of the mechanical energy is
equal (due to the assumption that it is frictionless) to the power supply to the system where
power is given as the multiplication of the generalized velocities and the conjugate generalized
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2-3 System Properties 13

forces. This property has been a crucial tool for robot control as it allows for exploitation
of the nonlinear dynamics of robotic systems instead of attempting to completely cancel
out and replace it by linear dynamics (e.g. feedback linearization). Furthermore, with its
storage function often serving as a basis for a Lyapunov function construction, the property
of passivity has been instrumental to enforce stability of the closed-loop system in a robust
manner.

Example 1: Constrained Dynamics

In this example we present a simple nonholonomic system in order to elucidate the resulted
open-loop dynamics (2-14). The "knife edge" in Figure (2-1) is a simple nonholonomic system
that moves on a plane with n = 3 degrees of freedom, k = 1 constraint and m = 2 inputs.
The degrees of freedom denoted here as (q1, q2) define its position in this plane and q3 its
orientation. Since the motion is planar, the potential energy is zero V = 0 and the mass matrix
is given as M = diag (m,m, I). Assuming that we can a apply a force on the longitudinal

(a) The control inputs on the knife edge system (b) The transformed generalized velocities

Figure 2-1: The knife edge example: inputs and transformed velocity

direction of the knife edge let it be τx, and a torque, τθ, that can rotate the body with respect
to axis z .The control input is then τ = (τx τθ)> and the input matrix:

F =

cos q3 0
sin q3 0

0 1


The nonholonomic constraint arises from the assumption that the "knife edge" does not slide
sideways. This is expressed as:

sin q3q̇1 − cos q3q̇2 = 0⇒
(
sin q3 − cos q3 0

)
q̇ = 0⇒

A>(q) =
(
sin q3 − cos q3 0

)
Master of Science Thesis Anastasios Tsolakis



14 Nonholonomic Mechanical Systems

An annihilator is then:

S>A = 0⇒ S =


cos q3
sin q3

0
1 0
0 1

 see (2−3−1)=======⇒ S =

cos q3 0
sin q3 0

0 1


Now transform the generalized velocities with the derived annihilator:

˙̃q = S>q̇ =
[
cos q3 sin q3 0

0 0 1

]q̇1
q̇2
q̇3

 =
(

cos q3q̇1 + sin q3q̇2
q̇3

)

The first component of the transformed velocity ˙̃q is the vector sum of the projections of the
generalized velocities q̇1 and q̇2 on the longitudinal axis of the knife edge which is the vector
space of permissible velocities as shown in Figure (2-1). Notice also that the generalized
velocity q̇3 remains intact as it does not appear in the constraint equation. This means
that the generalized variable q3 is free from the constraints, a critical observation for the
stabilization results of Chapter 3. The rest of the components are:

M̃ = S>MS =
[
m 0
0 I

]
F̃ = S>F =

[
1 0
0 1

]
Y =

[
0 0
0 0

]

The first entry of the transformed mass matrix is the linear mass component m which is
the inertia term in the longitudinal direction of the knife edge body. Notice also how in
this example the original input matrix is the same with the annihilator S leading to the
transformed input matrix being the identity matrix.This implies that the control input τ is
directly applied on the acceleration components ṗ1 and ṗ2.
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Chapter 3

IDA-PBC for Nonholonomic Systems

In this chapter we present an extension of the method of Interconnection and Damping As-
signment Passivity-Based Control (IDA-PBC), first proposed in [6], for the system dynamics
that we concluded with in the previous chapter. An extension of the method for nonholonomic
systems was first proposed in [15] and later in [13]. However, the stabilization problem of the
whole configuration is not solved in any existing work as the nature of nonholonomic con-
straints prohibits the stabilization with a smooth control law. This chapter aims to present a
complete proposal tackling first the "Matching Problem" and then the "Stabilization Problem".

3-1 System Matching

3-1-1 Desired System Dynamics

IDA-PBC is a form of nonlinear control that relies on passivity properties to systematically
derive asymptotically stabilizing control laws for systems with a known model or model struc-
ture. The control goal is achieved by energy shaping instead of assigning a fully-prescribed
set of dynamics in order to exploit rather than destroy the internal dynamics of the original
system. This approach has the advantage of not needing high gains and improves robustness.
Specifically, we define the dynamics of the desired system in the Hamiltonian framework by
designing favourable energy terms (i.e. kinetic, potential and dissipation energy). Then we
seek a feedback control law τ ∈ Rm which can transform the original open-loop system to
the desired, closed-loop system. First, we rewrite the open-loop dynamics of the agents of
interest here for completeness.

[
q̇
˙̃p

]
=
[

0n S(q)
−S>(q) Y (q, p̃)

] ∂H̃
∂q (q, p̃)
∂H̃
∂p̃ (q, p̃)

+
[

0n×m
F̃ (q)

]
τ

ỹ = F̃
>(q)∂H̃

∂p̃
(q, p̃)

H̃(q, p̃) = 1
2 p̃
>M̃

−1(q)p̃+ V (q)

(3-1)
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16 IDA-PBC for Nonholonomic Systems

Consider the partitioning of the control law τ as:

τ = β(q, p) + τd (3-2)

where β(q, p) implements the feedback law while τ d denotes the new, closed-loop input (a
feed-forward term). Since we aim to shape the potential and kinetic energy of the system,
following the classical approach in [6] and the extension in [13], we define the desired dynamics
in Hamiltonian form as:

[
q̇
˙̃p

]
=

 0n SM̃
−1
Md

−MdM̃
−1
S> J − F̃KvF̃

>

 ∂Hd
∂q (q, p̃)
∂Hd
∂p̃ (q, p̃)

+
[

0n×m
F̃ (q)

]
τd

yd = F̃
>(q)∂Hd

∂p̃
(q, p̃)

Hd(q, p̃) = 1
2 p̃
>Md

−1(q)p̃+ Vd(q)

(3-3)

where Vd ∈ R is the desired potential energy (which is the shaped potential energy of the
closed loop system) and Md ∈ R(n−k)×(n−k) is the desired mass matrix (which shapes the
kinetic energy of the closed loop system). The desired potential energy Vd aims to make the
system evolve towards a new goal configuration denoted as q∗ thus having the property:

q∗ = arg min
q

Vd(q) (3-4)

Kinetic energy shaping aims to solve the matching problem and in addition shapes the tran-
sient response. Matrix J = −J> ∈ R(n−k)×(n−k) is the skew-symmetric, gyroscopic force
matrix which aids in the solution of the matching problem as well, by creating one extra de-
gree of freedom in the matching conditions explained later. The damping matrix denoted as
Kv = Kv

> > 0m induces dissipation to the closed-loop system for asymptotic convergence.
This matrix is free to choose as it does not appear in the so-called matching conditions.

3-1-2 Control Law and Matching Conditions

IDA-PBC aims to find a control input τ of the form (3-2) that transforms the open-loop plant
(3-1) to the desired, closed-loop dynamics (3-3). This is known as the matching problem since
we need to match the controlled system with the desired dynamics. In order to solve the
problem we begin with equating the open-loop dynamics (3-1) with control input (3-2) to the
closed-loop dynamics (3-3) which yields the following equations:

S
∂H̃

∂p̃
= SM̃

−1
Md

∂Hd

∂p̃
(3-5)

− S>∂H̃
∂q

+ Y ∂H̃

∂p̃
+ F̃ β = −MdM̃

−1
S>

∂Hd

∂q
+ J ∂Hd

∂p̃
− F̃KvF̃

>∂Hd

∂p̃
(3-6)

Equation (3-5) is trivially satisfied. In order to solve (3-6) for the feedback law β, define the
left annihilator F̃⊥ ∈ R(n−k−m)×(n−k) of F̃ such that:

F̃⊥F̃ = 0(n−k−m)×m (3-7)
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3-1 System Matching 17

and the full rank matrix [(F̃⊥)>, F̃ ]> ∈ R(n−k)×(n−k). Multiplying (3-6) with the latter
matrix from the left gives: F̃⊥

F̃
>

 F̃ β =

 F̃⊥
F̃
>

(S>∂H̃
∂q
−MdM̃

−1
S>

∂Hd

∂q
− Y ∂H̃

∂p̃
+ J ∂Hd

∂p̃
− F̃KvF̃

>∂Hd

∂p̃

)
(3-8)

Since F̃⊥F̃ = 0(n−k−m)×m by construction the first n − k −m equations of (3-8) give the
necessary conditions and are termed as matching conditions. These conditions are a set of
nonlinear, Partial Differential Equations (PDEs) which can be expressed as:

F̃
⊥
(
S>

∂H̃

∂q
−MdM̃

−1
S>

∂Hd

∂q
− Y ∂H̃

∂p̃
+ J ∂Hd

∂p̃
−
��

���
��

F̃KvF̃
>∂Hd

∂p̃

)
= 0n−k−m (3-9)

Notice that these conditions are not invariant of the control law β and can only be satisfied
by properly selecting Md, J and Vd. Notice also that the last term in this equation vanishes
because of (3-7) rendering the damping matrix free. The last m equations can be solved for
the feedback law since [(F̃⊥)>, F̃ ]> is full rank and thus, invertible:

β =
(
F̃
>
F̃

)−1
F̃
>
(
S>

∂H̃

∂q
−MdM̃

−1
S>

∂Hd

∂q
− Y ∂H̃

∂p̃
+ J ∂Hd

∂p̃

)
−Kv F̃

>∂Hd

∂p̃︸ ︷︷ ︸
yd

(3-10)

The selection of components that satisfy the matching condition (3-9) is not a trivial prob-
lem. Nevertheless, this condition can be reformulated by expanding the Hamiltonian and by
recalling that ∂Hd

∂p̃ = Md
−1p̃. After these considerations, (3-9) can be grouped in its kinetic

and potential energy contributions as:

F̃
⊥
(
S> ∂p̃

>M̃
−1
p̃

∂q −MdM̃
−1
S> ∂p̃

>Md
−1p̃

∂q − 2Y M̃−1
p̃+ 2JMd

−1p̃

)
+

F̃
⊥
(
∂V
∂q −MdM̃

−1
S> ∂Vd∂q

)
= 0n−k−m

(3-11)

To simplify the selection of components for the desired dynamics, (3-11) is split into matching
conditions for the kinetic and potential energy respectively given by:

F̃
⊥

S>∂p̃>M̃−1
p̃

∂q
−MdM̃

−1
S>

∂p̃>Md
−1p̃

∂q
− 2Y M̃−1

p̃+ 2JMd
−1p̃

 = 0n−k−m

(3-12)

F̃
⊥
(
∂V

∂q
−MdM̃

−1
S>

∂Vd
∂q

)
= 0n−k−m (3-13)

Notice that satisfying (3-12) and (3-13) is more conservative that satisfying (3-11). The
feedback law given by (3-10) can be reformulated after considering that yd = F̃

> ∂Hd
∂p̃ . Sub-

stitution of (3-10) into (3-2) gives:

τ =
(
F̃
>
F̃

)−1
F̃
>
(
S>

∂H̃

∂q
−MdM̃

−1
S>

∂Hd

∂q
− Y ∂H̃

∂p̃
+ J ∂Hd

∂p̃

)
−Kvyd + τd (3-14)
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18 IDA-PBC for Nonholonomic Systems

3-1-3 Energy Shaping Components

In the method described earlier our goal is to shape the energy of the closed-loop system so
that we can achieve a desired behaviour. Notice that, the desired mass matrix Md and the
gyroscopic force matrix J , have reduced dimensions due to the system reduction explained
in Section 2-2-2. Since these are user-defined parameters we can choose them arbitrarily if
their respected properties are satisfied (symmetry, positive definiteness and skew-symmetry).
However, as seen in the example of Chapter 2 the reduced generalized momenta do not
correspond directly to the physical properties of the system. Due to this fact, we propose
choosing the desired mass matrix and gyroscopic force matrix in the original configuration
space X denoted as MD and JD since their entries will then have a straightforward physical
meaning. Subsequently we can use the same reduction method that we used for the generalized
momenta and transform them in the constraint configuration space Xc:

Md = S>MDS (3-15)

J = S>JDS (3-16)

The damping matrixKvis an important tuning parameter that guarantees we achieve asymp-
totic stability and also affects the speed of the transient response. Since as seen in the previous
section it does not appear in the matching conditions, it’s a free design parameter that has
the minimal requirements of symmetry and positive definiteness. Inspired by classical con-
trol theory and the idea of critical damping, in Section 7-3-4 we propose a possible tuning
approach of Kv based on the desired mass matrixMD and the desired potential Vd that can
potentially simplify the tuning process.

3-1-4 The Annihilators

We briefly explain the physical meaning of the annihilators S and F̃⊥ . As already discussed,
the column space of the constraint matrix, colA(q), is the space of non-permissible veloci-
ties due to constraints. Its orthogonal complement is the column space of the annihilator,
colS>(q), which is the space of permissible velocities. Similarly, as the column space of the
input matrix colF (q) denotes the space of allowable forces, its orthogonal complement, the
annihilator F̃⊥ is a map to the non-permissible forces. The terms in the parenthesis of Equa-
tion (3-11) denote generalized forces that when multiplied with F̃⊥ need to vanish meaning
that they lie in the space of permissible forces. This is why under-actuation can equivalently
be seen as a fully-actuated system imposed to acceleration constraints [16].

Notice that in the case of nonholonomic systems the input matrix is transformed as F̃ =
S>F . In this example of Chapter 2 these two matrices coincide leading to an invertible
transformed input matrix F̃ . More specifically, if these matrices coincide while they are
semi-orthogonal, then F̃ = In−k. Systems with an invertible matrix F̃ are fully-actuated
constrained systems meaning that they are fully actuated in the constrained space. A formal
condition to characterize an n-degree of freedom constraint system as fully-actuated is the
following:

colA(q)⊕ colF (q) = Rn (3-17)

Such systems are fully-actuated in the constrained space.
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3-2 System Stabilization

3-2-1 The Largest Invariant Set

The problem of feedback stabilization of nonlinear systems has occupied a central role in the
literature of nonlinear systems. One of the most challenging topics in this area is the design
of local (or global) stabilizing control laws for nonholonomic systems with more degrees of
freedom than controls [17]. A well-known negative result regarding the stabilization of such
systems is Brockett’s necessary condition [18]:
Control systems of the form (2-18) with a smooth distribution D that contains f(·) and g(·)
cannot be stabilized by a smooth, time-invariant feedback law.
This result spurred a considerable effort to find either smooth time-invariant control laws
or non-smooth control laws for the stabilization of this class of systems. Many powerful
techniques have been proposed so far, yet, the majority of them relies on specific control
forms (e.g. normal form, power form, chained form etc.) that can be attained typically only
by using feedback linearization or state transformation as in [17]. In the passivity based
control framework, results for nonholonomic systems can be seen in [19] where they rely
on coordinate transformation and the design of non-smooth desired potentials. However,
this coordinate transformation is system specific and the transformed generalized coordinates
loose their physical meaning which makes analysis and control considerably difficult. In
[13] they use IDA-PBC but are concerned with the stabilization of variables that are not
affected by the constraints. The interested reader is motivated to study [20] for a more
in-depth analysis on nonholonomic system stabilization. Before proposing a solution to the
stabilization problem we first elucidate the problem that nonholonomic constraints pose with
an additional illustrative example.
Consider the closed-loop system (3-3) which has resulted from the matching process described
before. We proceed to find the equilibrium of this dynamical system as follows:

q̇ = 0⇒ SM̃
−1
Md

∂Hd

∂p̃
= 0⇒ S>MS

(
S>MS

)−1
MdMd

−1p̃ = 0⇒ p̃ = 0 (3-18)

and using the result from (3-18)

˙̃p = 0⇒ −MdM̃
−1
S>

∂Hd

∂q
+
(
J − F̃KvF̃

>
)
∂Hd

∂p̃
= 0 p̃=0==⇒ S>

∂Vd
∂q

= 0 (3-19)

Which shows that the system will converge to the largest invariant set given as:

Ωinv =
{

(q,0) ∈ X
∣∣∣∣S>(q)∂Vd

∂q
(q) = 0

}
(3-20)

Thus, due to the existence of nonholonomic constraints, the system does not asymptotically
converge to the desired equilibrium expressed in (3-4) but instead at the invariant set defined
in (3-20) validating Brockett’s condition.
Notice that since S>(q) ∈ Rn−k, the largest invariant set is given by n− k equations with n
unknowns leading to an under-determined system of equations. The solution of this system is
a subset of the configuration space that does not necessarily contain the desired equilibrium
q∗. We elaborate on this result in the following example.
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Example 2 (Continued): The Largest Invariant Set

In this example we show the result of using a smooth feedback law to stabilize the knife edge,
the nonholonomic systems used in an earlier example, in order to provide some insight on the
complications that arise in constrained systems.

Figure 3-1: The largest invariant set in the knife edge example

The knife edge system with n = 3 degrees of freedom ((q1, q2) define its position in this plane
and q3 its orientation), is described by the following components in the constraint velocity
space:

V = 0, M̃ =
[
m 0
0 I

]
, S =

cos q3 0
sin q3 0

0 1

 , F̃ =
[
1 0
0 1

]
, Y =

[
0 0
0 0

]

Since matrix F̃ is full-rank the matching conditions seize to exist. For simplicity we also
assume that τd = 0, J = 0 and Md = M̃ with the mass matrix being constant. We also
assign an arbitrary symmetric, positive definite matrix Kv. Hence, the control law (3-14)
takes the simpler form:

τ = −S>∂Vd
∂q
−Kv ˙̃q

The first term represents the potential force that is a function of the generalized coordinates
while the second term denotes the damping forces that are proportional to the transformed
generalised velocities. A common choice for the desired potential function Vd is a smooth,
quadratic function:

Vd = 1
2
(
q − q∗

)>
Q
(
q − q∗

)
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The control law becomes:
τ = −S>Q

(
q − q∗

)
−Kv ˙̃q

Assuming for simplicity that Q = diag (Q1, Q2, Q3) the invariant set (3-20) becomes:

Ωinv =

cos q3Q1(q1 − q∗1) + sin q3Q2(q2 − q∗2) +Q3(q3 − q∗3) = 0
Q3(q3 − q∗3) = 0

The second equation yields the desirable result q3 → q∗3. However, notice that the first
equation of the invariant set becomes:

ε : cos q∗3Q1(q1 − q∗1) + sin q∗3Q2(q2 − q∗2) = 0

which is under-defined and hence has infinite solutions (q1, q2) other than the desired one
(q∗1, q∗2) . This equation represents the straight line on which the system will be stabilized.
Notice how irrespective of the selection of the weighting matrixQ, our selection of q∗3 interferes
with the stabilization of (q1, q2). This result illustrates the fact that there is no smooth control
law that can stabilize the nonholonomic knife edge system at a desired equilibrium q∗.

The aforementioned are also depicted in Figure 3-1 where the invariant set is depicted as the
straight line ε ∈ R2. Each one of the three straight lines depicted in Figure 3-1 results from
different tuning of Q. We can see the components of the potential control force depicted as
one linear spring for (q1, q2) to converge and one torsional spring for the convergence of q3. As
q3 is not tampered with the constraint the system can successfully reach q∗3 but on the other
hand, (q∗1, q∗2) will not in general be reached as the system will be stabilized at a position on
the largest invariant set that has the minimum distance from the desired location (q∗1, q∗2) at
an angle q∗3.

3-2-2 Proposed Solution Overview

The proposed solution consists of two parts. The first part is the adaptation of Passive
Configuration Decomposition to port-Hamiltonian systems. The Passive Configuration De-
composition was introduced in [7] and it was applied on the open-loop Lagrangian Dynamics
of nonholonomic systems. In our case, we apply this method to the Hamiltonian Dynamics
and also to the closed-loop system (3-3) so that we can use the control law (3-14) already
derived. There are two main reasons to extend this result in the framework of IDA-PBC.
First of all, since IDA-PBC has been proven a favourable approach for underactuated sys-
tems, an extension of Passive Configuration Decomposition to port-Hamiltonian systems may
allow the development of stabilizing control laws for systems that are both nonholonomic and
underactuated like the Mobile Inverted Pendulum studied in [13]. Moreover, this result is
fundamental so that in the distributed method developed originally in [2] a combination of
nonholonomic and underactuated systems can participate in a multi-agent cooperative task
(for example a set of quad-rotors reaching consensus with a team of differential robots).

With Passive Configuration Decomposition achieved under some assumptions, the second
part of the proposed solution is a proper choice of the desired potential Vd that relies on
the aforementioned decomposition. More specifically, based on the insight that some of the
configuration variables are free from the nonholonomic constraints, we can use the latter
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22 IDA-PBC for Nonholonomic Systems

to drive the system to the desired equilibrium q∗ from the arbitrary equilibrium, let it be
qω ∈ Ωinv, that the system is stabilized to with a smooth feedback law due to the constraints.
Of course, in order to stabilize the system we conclude to a non-smooth feedback law for
the variables that are free from constraints thus not contradicting with Brockett’s necessary
condition.

3-2-3 Passive Configuration Decomposition for Hamiltonian Systems

The original idea presented in [7] aims to decompose a system’s Lagrange-D’Alembert Dy-
namics into two systems, each evolving on their respective configuration spaces and also
individually inheriting Lagrangian structure and passivity from the original dynamics. Based
on that decomposition they later propose Passivity Based Time-Varying Control (PBVC) and
Passivity Based Switching Control (PBSC) schemes, that by utilizing some control actions
defined on each of the configuration spaces of the two systems, can achieve stabilization.

In this work, we attempt to use the same idea for decomposition but for the port-Hamiltonian
system we have been working on so far. Moreover, in our case this decomposition is applied
on the closed-loop system (3-3) so that we can use the same control law derived in (3-14) and
thus the only remaining task would be to "shape" the energy of the decomposed, closed-loop
system in a suitable manner. That is, after we show that decomposition is possible under
some conditions, we shape the desired potential energy of each subsystem individually in
order to achieve stabilization of the full state space.

First, recall the closed-loop system derived in the previous section:

[
q̇
˙̃p

]
=

 0n SM̃
−1
Md

−MdM̃
−1
S> J − F̃KvF̃

>

 ∂Hd
∂q (q, p̃)
∂Hd
∂p (q, p̃)

+
[

0n×m
F̃ (q)

]
τd

yd = F̃
>(q)∂Hd

∂p̃
(q, p̃)

Hd(q, p̃) = 1
2 p̃
>Md

−1(q)p̃+ Vd(q)

(3-21)

We are interested in the class of mechanical systems described by (3-21) for which the following
assumptions are made [7]:

1. The system’s configuration space Q can be endowed with the product structure such
that:

Q = S ×R (3-22)

with q =
(
s> r>

)>
, s ∈ Rn−p, r ∈ Rp.

2. The constraint matrix of the nonholonomic Pfaffian constraint (2-3b) is also a function
of only r ∈ R and the constraint acts only on s ∈ S:

A>(q)q̇ =
[
As
>(r) 0k×p

]
q̇ = As

>(r)ṡ = 0k (3-23)

with As(r) ∈ R being full row rank.
3. Its inertia matrix is a function of only r ∈ R, that is, M(q) = M(r)
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The aforementioned properties may seem restrictive but in fact encompass many practically
important and interesting systems (e.g. vertical coin [20], wheeled mobile robots [21], mobile
manipulator [22], beanie [23], hopping robot [10]).

With this structure, we can write the unconstrained distribution (2-21) as:

D(r) = span

[
Ds(r) 0

0 Ip

]
(3-24)

where Ds(r) ∈ R(n−p)×(n−p−k) defines the unconstrained distribution on S such that:

Ds(r)>As(r) = 0(n−p−k)×k (3-25)

Since A(r) is regular and smooth so are D and Ds with rank(D) = n − p − k, ∀r ∈ R. We
can then write the generalized velocities as:

q̇ =
(
ṡ
ṙ

)
=
[
Ds 0
0 Ip

]
︸ ︷︷ ︸

S(q)

(
˙̃s
ṙ

)
(3-26)

where ˙̃s ∈ R(n−p−k) encodes the permissible velocity on S respecting the nonholonomic con-
straint (3-23). We can then partition the mass matrix M(r) as:

M(r) =
[
Ms(r) Msr(r)
Msr

>(r) Mr(r)

]
(3-27)

such that the transformed mass matrix becomes:

M̃(r) = S(r)>M(r)S(r) =
[
D>s MsDs D>s Msr

Msr
>Ds Mr

]
(3-28)

In order to avoid acceleration couplings via the inertia matrix between the s-dynamics and
the r-dynamics which is usually not cancellable we follow another assumption from [7]:

M>
sr(r)Ds(r) = 0p×(n−p−k), ∀r ∈ Rp (3-29)

Thus M̃(r) becomes block-diagonal leading to decoupling of s and r via the inertia matrix.

We can further decompose the transformed generalized momenta as p̃ =
(
p̃s
pr

)
and choose a

block diagonal desired mass matrix Md(r) as:

Md(r) =
[
Mds 0

0 Mdr(r)

]
(3-30)

with with Mds independent from r. The Hamiltonian in (3-21) can be decomposed as:

Hd = 1
2
(
p̃s
> pr

>
) [Mds 0

0 Mdr(r)

](
p̃s
pr

)
+ Vds(s) + Vdr(r)

= 1
2 p̃s

>Mds(r)p̃s + Vds(s)︸ ︷︷ ︸
Hds

+ 1
2pr

>Mdrpr + Vdr(r)︸ ︷︷ ︸
Hdr

(3-31)
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24 IDA-PBC for Nonholonomic Systems

Note that the generalized momenta pr is denoted without a tilde symbol since it is invariant
to the constraints. With zero feed-forward control τd = 0 and with proper block-diagonal
choices for matrices J andKv, system (3-21) can be decomposed in two Hamiltonian systems
(each evolving on its respective configuration space) as:



[
ṡ
˙̃ps

]
=
[

0n−p Ds(D>s MsDs)−1Mds

−Mds(D>s MsDs)−1D>s Js − F̃sKvsF̃s
>

] ∂Hds
∂s (s)

∂Hds
∂p̃s

(p̃s)


yds = F̃s

>∂Hds

∂p̃s

Hds = 1
2 p̃s

>Mds
−1p̃s + Vds(s)

(3-32)



[
ṙ
ṗr

]
=
[

0p Mr
−1Mdr

−MdrMr
−1 Jr − F̃rKvrF̃r

>

] ∂Hdr
∂r (r,pr)
∂Hdr
∂pr

(r,pr)


ydr = F̃r

>∂Hds

∂pr

Hdr = 1
2pr

>Mdr
−1(r)pr + Vdr(r)

(3-33)

The two systems (3-32) and (3-33) are decoupled and each one evolves on its own configuration
manifold S and R respectively thought with a coupling due to the nonholonomic constraint.
Note also that system (3-33) is of the original unconstrained Hamiltonian form. Thus, the
unconstrained variables r are easy to stabilize with a smooth control law whereas, for s, the
stabilization is not straightforward. Based on that fact that ṡ = Ds(r) ˙̃s we can see that
a promising attempt is the following: Drive the s-dynamics to the invariant set Ωinv at a
stabilization point, let it be sω, while recruiting r to "guide" the direction of Ds(r) so as to
steer the system from sω towards s∗. Using this passive configuration decomposition as in [7]
we can proceed in designing a passivity-based switching control law that can asymptotically
stabilize the system in any configuration q∗ =

(
s∗> r∗>

)>
.

3-2-4 Passivity-Based Switching Control

With the control law (3-14) and the aforementioned assumptions we can control independently
the two decomposed systems derived in the previous sections. We begin with analytically
deriving the energy evolution of (3-21) baring in mind the decomposition in the previous
section yielding:

Ḣd = ∂>Hd

∂q
q̇ + ∂>Hd

∂p̃
˙̃p = ∂>Hd

∂s
ṡ+ ∂>Hd

∂p̃s
˙̃ps︸ ︷︷ ︸

Ḣds

+ ∂>Hd

∂r
ṙ + ∂>Hd

∂pr
ṗr︸ ︷︷ ︸

Ḣdr

(3-34)
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So for the system evolving on S we have:

Ḣds =
((((

(((
((((

(((
((

∂>Hd

∂s
Ds(D>s M1Ds)−1Mds

∂Hd

∂p̃s
−
(((

((((
(((

((((
((

∂>Hd

∂p̃s
Mds(D>s M1Ds)−1D>s

∂Hd

∂s

+∂>Hd

∂p̃s

(
Js − F̃sKvsF̃s

>
)

︸ ︷︷ ︸
<0

∂Hd

∂p̃s
≤ 0

(3-35)

with:
Ḣds = 0⇒Mds

−1p̃s = 0⇒ p̃s = 0 (3-36)

˙̃ps = 0⇒ −Mds(D>s M1Ds)−1D>s
∂>Hd

∂s
+
(
Js − F̃sKvsF̃s

>
)
Mds

−1
���

0
p̃s = 0

⇒ D>s (r)∂Vds(s)
∂s

= 0n−p−k
(3-37)

and for the system evolving on R we have in a similar manner:

Ḣdr =
���

���
���

��
∂>Hd

∂r
Mr

−1Mdr
∂Hd

∂pr
−
���

���
���

��
∂>Hd

∂pr
MdrMr

−1∂Hd

∂r

+∂>Hd

∂pr

(
Jr − F̃rKvrF̃r

>
)

︸ ︷︷ ︸
<0

∂Hd

∂pr
≤ 0

(3-38)

with:
Ḣdr = 0⇒Mdr

−1pr = 0⇒ pr = 0 (3-39)

ṗr = 0⇒ −MdrMr
−1 1

2�
��>

0
pr
> ∂Mdr

∂r ��>
0

pr + ∂Vdr(r)
∂r

+
(
Jr − F̃rKvrF̃r

>
)
Mds

−1
��>

0
pr = 0

⇒ ∂Vdr(r)
∂r

= 0p
(3-40)

The goal to stabilize the system at a desired configuration q → q∗ can be achieved by
stabilizing the decomposed variables separately by driving s → s∗ by utilizing r to assist
us and then r → r∗. Thus, according to equations (3-37) and (3-40) we need to design the
desired potential functions Vds and Vdr respectively in a suitable manner. Note also that this
design needs to lead in a time-variant or switching control so as not to be in contradiction
with Brockett’s necessary condition. Based on [7], function Vds : S → R is subjected to the
following:

1. Vds ≥ 0 with the equality holding when s = s∗

2. ∂Vds
∂s = 0, iff s = s∗

3. Vds is radially unbounded

We begin with the s-dynamics for which we choose a quadratic function that satisfies the
aforementioned requirements defined as:

Vds = 1
2(s− s∗)>Qs(s− s∗) (3-41)
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with Qs ∈ R(n−p)×(n−p) a constant symmetric matrix serving tuning purposes. With this
choice equation (3-37) gives:

D>s (r)Qs(s− s∗) = 0n−p−k (3-42)

which describes a k-dimensional affine hyperplane in S ∈ Rn−p that is defined by a set of
n− p− k linear equations. Thus the system will not be stabilized at s∗ but rather at another
point denoted as sω ∈ Ωinv. Let vs = s − s∗ be the vector that we want to drive to zero.
Then, matrix Ds(r)Qs maps this vector to the constrained space as a new vector:

vα = D>s (r)Qsvs ∈ Rn−p−k (3-43)

which is the vector on the constraint space that we are able to drive to zero vα → 0 with
the potential function Vds chosen as in (3-41), and acting only on the constrained variables s
thus driving s→ sω.

We continue with the following critical observation: Since we have assumed that the nonholo-
nomic constraints are a function of only r ∈ R and act only on s ∈ S the constraint equation
(3-23) is now integrable in S and can get the form:

As
>(r)ds

dt
= 0⇒

∫ sω

s
As
>(r) ds =

∫ tω

0
0 dt⇒ As

>(r) (sω − s) = 0 (3-44)

which describes an (n − p − k)-dimensional, affine hyperplane in S ∈ Rn−p that is defined
by a set of k linear equations. This affine hyperplane describes the constraint space that the
system will evolve on, a subspace of S. We observe here that as matrix Ds(r)Qs maps vs
to the constrained space described in (3-44), the same way matrix As>(r) maps vs to the
invariant set defined in (3-42) as the vector:

vω = As
>(r)vs ∈ Rk (3-45)

and since these spaces are the orthogonal complement of each other, we know that vector
vs will go to zero if both vα → 0 and vω → 0 is achieved. We have already showed that
vα → 0 is feasible for the quadratic choice of Vds in (3-41). The concept now is to use the
unconstrained variable r in order to drive vω to zero as well meaning that sω → s∗ and thus
s→ s∗. This is possible by the following quadratic choice:

Vdr = 1
2vω

>Qrvω (3-46)

with Qr ∈ Rk×k a constant symmetric matrix serving tuning purposes. Substituting this
expression into (3-40) yields the following result:

∂Vdr
∂r

= 0⇒ ∂Vdr
∂vω

∂vω
∂r

= 0⇒ vω
>Qr

∂vω
∂r

= 0⇒ ∂>vω
∂r

Qrvω = 0 (3-47)

The system will be stabilized at vω = 0, and since vα = 0 can be driven to zero we conclude
that we get vs = 0 meaning that s → s∗. Note that vα = vα(s, r), vω = vω(s, r) meaning
that both the desired potentials are functions of both the constrained and unconstrained
variables implying a coupling of the systems via the potential components of the control law
(3-14). However, due to orthogonality each desired potential Vds and Vdr leads to potential
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forces that act only on their respective variables. More specifically, the control action on S
is the term D>s (r)Qsvs ∈ Rn−p−k and while a function of r it only acts on the s variables.
Similarly, the control action on R is given by ∂Vdr

∂r = ∂>vω
∂r Qrvω and while it is a function of

s acts only on r.

Remark: Notice that since vω = As
>(r)vs, as s approaches s∗ then vω will also become

arbitrarily small. In order to circumvent this problem we can define:

vsn = vs
‖vs‖

(3-48)

And then redefine vω as:
vω = As

>(r)vsn ∈ Rk (3-49)

which ensures that the control action for the unconstrained variables will have the proper
direction but it will be invariant of how close the system is to s∗.

Having achieved s → s∗ (i.e. stabilizing the constrained variables s which are in general
difficult to handle), we can shift our attention to the unconstrained variables r. The uncon-
strained variables r are not stabilized on the desired equilibrium r∗ since they were used so
far to stabilize the other variables. Now that s = s∗ we can switch to the desired potential
function for r expressed as:

Vdr = 1
2(r − r∗)>Qr(r − r∗) (3-50)

and since the r variables are not hindered by constraints they can be stabilized to the desired
equilibrium r∗. Note that the aforementioned control choices lead to asymptotic stabilization
which is more of theoretical interest since s → s∗ typically takes infinitely long time. For
this reason, we can attain r → r∗ by triggering the switch when the norms ‖s− s∗‖ and

∥∥∥ ˙̃s
∥∥∥

are small enough (i.e. setting stopping criteria). Thus we can define the desired potential to
stabilize r as:

Vdr =


1
2vω

>Qrvω
1
2(r − r∗)>Qr(r − r∗) if ‖s− s∗‖ < sd,

∥∥∥ ˙̃s
∥∥∥ < ṡd

(3-51)

Example 3 (Continued): Full State Stabilization

In this simple example we can provide some insight on the proposed solution giving a graphical
explanation. Consider the knife edge system which has been used so far with n = 3 degrees of
freedom ( where (q1, q2) define its position in this plane, q3 its orientation) and the following
energy components:

V = 0, M =


m 0
0 m

0
0

0 0 I


In the constraint velocity space we also have the following components describing the system:

V = 0, M̃ =
[
m 0
0 I

]
, S =

cos q3 0
sin q3 0

0 1

 , F̃ =
[
1 0
0 1

]
, Y =

[
0 0
0 0

]
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Figure 3-2: Full-state stabilization of the knife edge example

First we investigate if the system can be decomposed as in section 3-2-3. We can set s =
(q1, q2)> and r = (q3) satisfying the first assumption (3-22). Moreover, the second assumption
expressed in (3-23) is also satisfied since the constraint equation is:(

sin q3 − cos q3 0
)
q̇ = 0⇒ As(r)ṡ = 0

with:
Ds(r) =

(
cos q3
sin q3

)

From the mass matrix we have Ms =
[
m 0
0 m

]
, Mrs =

(
0
0

)
and Mr = I thus satisfying

the third assumption that the mass matrix is not a function of s. In addition we have
D>s Mrs = 0 which means that the system can be successfully decoupled.

This particular system is fully actuated in the constrained space since F̃ is invertible. Thus,
the matching conditions vanish. For simplicity, we can then choose Md = M̃ , J = 0n−k
and τd = 0 and a block diagonal damping matrix Kv. Thus the control law (3-14) takes the
simpler form:

τ = −S>∂Hd

∂q
−Kvyd = −D>s

∂Vds
∂s
− ∂Vdr

∂r
−Kvsṡ−Kvrṙ

We choose the desired potentials Vds and Vdr as described in this section with Qs = In−p
and Qr = Ik for simplicity:

Vds = 1
2(s− s∗)>(s− s∗)

Vdr =


1
2vω

>vω
1
2(r − r∗)>(r − r∗) if ‖s− s∗‖ < sd,

∥∥∥ ˙̃s
∥∥∥ < ṡd

(3-52)
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then the invariant set takes the form:

D>s (r)Qs(s− s∗) = 0n−p−k ⇒ (q2 − q∗2) = − cot q3(q1 − q∗1)

Which represents a straight line in the q1 − q2 plane denoted as ε1. From equation (3-44) we
then have:

As
>(r) (sω − s) = 0k ⇒ (q2 − qω2 ) = tan q3(q1 − qω1 )

Which represents another straight line in the q1 − q2 plane denoted as ε2. Notice that if λ1,
λ2 are the respective slopes we have:

λ1λ2 = − cot q3 tan q3 = −1

Implying that ε1 ⊥ ε2. The vectors vα and vω we are trying to drive to zero are given as:

vα = D>s vs = cos q3(q1 − q∗1) + sin q3(q2 − q∗2)

vω = A>s vs = sin q3(q1 − q∗1)− cos q3(q2 − q∗2)

The aforementioned are illustrated in Figure 3-2. The potential forces from the chosen
quadratic desired potentials can be interpreted as the linear spring forces depicted in this
figure: We have a linear spring (∂Vds∂s ) which acts on the constraint space and drives s→ sω

and another linear spring (∂Vdr∂r ) which acts on the invariant set and drives sω → s∗. After
driving s→ s∗ we can switch Vdr and drive also r → r∗ thus achieving full-state stabilization
q → q∗.
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Chapter 4

Distributed IDA-PBC for
Nonholonomic Systems

In this chapter we aim to extend the single-agent results derived so far to a distributed
control scheme. More specifically, in the following sections we are attempting to bridge the
single-agent results of Chapter 3 with the distributed version of Interconnection and Damping
Assignment Passivity-Based Control (IDA-PBC) which was introduced in [1, 2]. This chapter
is based on the original work in [1, 2] and its summary in [3]. We include this part not only
for completeness but also because the system equations are different due to the constrains
which leads to different results as well.

4-1 Towards a Distributed Solution

4-1-1 Local and Cooperative Variables

In order to extend the method presented so far to a distributed setting, further assumptions
need to be posed. We begin by splitting the generalized coordinates q ∈ Rn into θ ∈ Rn−l
and x ∈ Rl. In the distributed setting, agents should cooperatively control variable x while
locally stabilizing their local variable θ. Following this separation, we define a new variable
z(q) = z(x, θ) ∈ Rl such that z → z∗ and θ → θ∗ implies that x → x∗. For particular
definitions of z(q) we can ensure that the matching conditions are never violated, which is
essential in the shaping of the cooperative potential in Section 4-2. With this new definition
of variables, interest goes to systems for which the potential can be written as:

Vd(q) = Vl(q) + Vc(z(q)) (4-1)

Herein, Vl(q) is the locally stabilizing potential function and Vc(z(q)) is the cooperative po-
tential function. The latter function is free as long as Vd(q) remains positive definite in a
neighbourhood near the goal q∗. In the control law, the partial derivative of the potential
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function ∂Vd(q)
∂q appears. After posing assumption (4-1) for the potential energy, this derivative

can be written as:
∂Vd
∂q

= ∂Vl
∂q

+ Ψ∂Vc
∂z

(4-2)

with:

Ψ = ∂z

∂q
=
[
∂z1(q)
∂q

,
∂z2(q)
∂q

, . . . ,
∂zl(q)
∂q

]
=


∂z1(q)
∂q1

. . . ∂zl(q)
∂q1...
...

∂z1(q)
∂qn

. . . ∂zl(q)
∂qn

 ∈ Rn×l (4-3)

If now Vl is selected such that:

F⊥
(
∂V

∂q
−MdM

−1∂Vl
∂q

)
= 0 (4-4)

holds, then the the potential matching condition (3-13) can be satisfied by requiring:

F⊥MdM
−1Ψ = 0(n−m)×l (4-5)

Note that requiring (4-4) and (4-5) to hold is more conservative than for the potential (3-13)
to hold. Nevertheless this strategy ensures that the matching equations are always satisfied,
while Vc(z(q)) is free in z(q). Therefore any positive definite potential is admissible as Vc,
while the existing single-agent solutions can be used for local stabilization and kinetic energy
shaping. With the aforementioned considerations, the control law (3-14) can be rewritten by
categorizing the appearing terms as:

τ = σ −Φ∂Vc
∂z
−Kvyd + τd (4-6)

where the term σ ∈ Rm achieves energy shaping for stabilization:

σ =
(
F̃
>
F̃

)−1
F̃
>

S>∂H̃
∂q
−MdM̃

−1∂
(

1
2 p̃
>Md

−1p̃+ Vl
)

∂q
− Y ∂H̃

∂p̃
+ J ∂Hd

∂p̃

 (4-7)

Matrix Φ ∈ Rm×l denotes the matrix that ensures that the matching conditions are satisfied,
while the cooperative potential remains free:

Φ =
(
F̃
>
F̃

)−1
F̃
>
MdM

−1S>Ψ (4-8)

4-1-2 Connection With Passive Configuration Decomposition

Consider the Passive Configuration Decomposition in Section 3-2-3 where we are interested
in systems whose generalized coordinates q can be decomposed as q =

(
s> r>

)>
, s ∈

Rn−p, r ∈ Rp and assume that the necessary assumptions made in that section hold. The
unconstrained variables r are used by the agent so that the constrained variables s can be
stabilized first and then, by switching the control law, they can be stabilized subsequently
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to an arbitrary position. This means that the unconstrained variables r need to act as local
variables until the constrained variables are stabilized. After this task is completed, we have
the freedom to choose if the r variables are going to remain local or if they will become
cooperative variables as well. In the latter scenario, they need to be communicated via the
network too.

Let’s consider the general case in which we want to stabilize all variables q =
(
s> r>

)>
co-

operatively. Since stabilization of the constrained variables s happens by properly driving the
unconstrained variables r first, the latter need information on variables s of the other agents
since these constitute the goal in a cooperative task. Then, the r variables can be coopera-
tively stabilized if shared after the switching of Vdr in (3-51) takes place. The unconstrained
variables r then act as cooperative variables for both goals. In case that we are not interested
in cooperative stabilization of the s variables (i.e. they are not shared), r act first as a local
variables driving s→ s∗ and then after switching they can be stabilized cooperatively.

We introduce here the switching function swh defined as:

swh =

 1 if ‖s− s∗‖ < sd and
∥∥∥ ˙̃s
∥∥∥ ≤ ˙̃sd

0 otherwise
(4-9)

where sd and ˙̃sd are sufficiently small switching criteria introduced for practical reasons as
discussed in Section 3-2-4. This switch turns on the "holonomic" action in a constraint system
when the constrained variables have been stabilized successfully. We can then partition the
local potentials as:

Vl(q) = Vls(q) + (1− swh)Vlr(q) (4-10)

while the cooperative potential can partitioned as:

Vc(q) = Vcs(zs) + swhVcr(zr) (4-11)

where the subscripts "s" and "r" in the cooperative variables z denote the dependence on either
the unconstrained or the constrained variables respectively. For a nonholonomic system, the
local potential Vlr will serve the nonholonomic purpose of the unconstrained variables r
and when this is complete, it will vanish leaving control of these variables to the cooperative
potential Vcr(zr) if necessary. Note that the local potential Vls(q) may contain another subset
of variables s not used as cooperative variables but as variables that need to be stabilized
locally for example the pendulum angle of an inverted mobile pendulum [13]. In case of a
holonomic system we can simply set swh = 1 ∀t which will yield the original IDA-PBC
control law.
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4-2 Distributed IDA-PBC for Nonholonomic Systems

4-2-1 Total System Description

Consider N agents, where each agent i with ni generalized coordinates, ki Pfaffian constraints
and mi control inputs is described by the Hamiltonian dynamics (3-1) as:



[
q̇i
˙̃pi

]
=
[

0ni Si(qi)
−Si>(qi) Yi(qi, p̃i)

] ∂H̃i
∂qi

(qi, p̃i)
∂H̃i
∂p̃i

(qi, p̃i)

+
[

0ni×mi

F̃i (qi)

]
τi

ỹi = F̃i
> (qi)

∂H̃i

∂p̃i
(qi, p̃i)

H̃i (qi, p̃i) = 1
2 p̃i
>M̃i

−1 (qi) p̃i + Vi (qi)

(4-12)

Each of the dynamic parameters and dimensions may be different for each agent which allows
the multi-agent system to be heterogeneous. Moreover, some agents may be not imposed to
any nonholonomic constraints in which case Si = Ini , Yi = 0ni , M̃i = Mi and F̃i = Fi thus
the dynamics take the original holonomic form (for example found in [2]). We can write the
dynamics of the total system, consisting of these N agents, as:



[
˙̄q
˙̄p

]
=

 0n̄ S̄(q̄)
−S̄>(q̄) Ȳ (q̄, p̄)

 ∂H̄
∂q̄ (q̄, p̄)
∂H̄
∂p̄ (q̄, p̄)

+
[

0n̄×m̄
F̄ (q)

]
τ̄

ȳ = F̄
>(q̄)∂H̄

∂p̄
(q̄, p̄)

H̄(q̄, p̄) = 1
2 p̄
>M̄

−1(q̄)p̄+ V̄ (q̄)

(4-13)

where the bar notation denotes composed system components explicitly given by:

n̄ =
N∑
i=1

ni, m̄ =
N∑
i=1

mi, k̄ =
N∑
i=1

ki, V̄ =
N∑
i=1

Vi

M̄ =


M̃1

. . .
M̃N

 , F̄ =


F̃1

. . .
F̃N

 , q̄ =


q1
...
qN

 , p̄ =


p̃1
...
p̃N



S̄ =


S1

. . .
SN

 , Ȳ =


Y1

. . .
YN

 , τ̄ =


τ1
...
τN

 , ȳ =


ỹ1
...
ỹN


(4-14)

Anastasios Tsolakis Master of Science Thesis



4-2 Distributed IDA-PBC for Nonholonomic Systems 35

Following the single-agent case, the IDA-PBC method defines a control input τ̄ that changes
the uncontrolled network dynamics (4-14) into the asymptotically stable dynamics:

[
˙̄q
˙̄p

]
=

 0n̄ S̄M̄
−1
M̄d

−M̄dM̄
−1
S̄
>

J̄ − F̄ K̄vF̄
>

 ∂H̄d
∂q̄ (q̄, p̄)
∂H̄d
∂p̃ (q̄, p̄)

+
[

0n̄×m̄
F̄ (q̄)

]
τ̄d

ȳd = F̄
>(q̄)∂H̄d

∂p̄
(q̄, p̄)

H̄d(q̄, p̄) = 1
2 p̄
>M̄d

−1(q̄)p̄+ V̄d(q̄)

(4-15)

The desired dynamics for the total system are equivalent to those in the single-agent case and
a similar approach will be followed. Splitting the desired total potential energy into local and
cooperative components as explained in Section 4-1 yields:

V̄d = V̄c +
N∑
i=1

Vl,i (4-16)

where Vs,i are the known potentials Vl for each single-agent solution that serve local stability
purposes and V̄c is a potential to be designed for cooperative objectives.

4-2-2 Matching Conditions and Control Law

Since the composed system description is equivalent to the description of the single-agent,
the results of Section 3-1-2 are directly expendable to the multi-agent case. The control law
is then expressed as:

τ̄ (q̄, p̄) =
(
F̄
>
F̄

)−1
F̄
>
(
S̄
>∂H̄

∂q̄
− M̄dM̄

−1
S̄
>∂H̄d

∂q̄
− Ȳ ∂H̄

∂p̄
+ J̄ ∂H̄

∂p̄

)
−K̄vȳd+τ̄d (4-17)

The kinetic and potential matching conditions are expressed as:

F̄
⊥

S̄>∂p̄TM̄−1
p̄

∂q̄
− M̄dM̄

−1
S̄
>∂p̄TM̄d

−1
p̄

∂q̄
− 2Ȳ M̄−1

p̄+ 2J̄M̄d
−1
p̄

 = 0n̄−k̄−m̄

(4-18a)

F̄
⊥
(
S̄
>∂V̄

∂q̄
− M̄dM̄

−1
S̄
>∂V̄d
∂q̄

)
= 0n̄−k̄−m̄ (4-18b)

Note that τ̄ (q̄, p̄) can in general be a function of all coordinates in the system. Since we seek
for a distributed solution, this information is not necessarily available for agent i. Some of
the information has to be communicated over a network between agents. This network can
be modelled by a communication graph G termed here as the position graph. In Appendix
A a brief summary of graph theory is presented. We assume that the communication among
agents is delay free since network effects are beyond the scope of this work. The interested
reader is refereed to [4] for further information on the topic.
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4-2-3 Control Objectives

The overall objective is to have each agent i stabilize its own local coordinates θi ∈ Rni−l at
θ∗i while achieving a desired stationary formation between the agents in xi ∈ Rl coordinates.
The latter objective is presented as a formation in zi ∈ Rl. The aforementioned objectives can
be grouped as individual local and cooperative objectives. Local objectives include stationary
formation and local stabilization and are expressed respectively as:

lim
t→∞

∥∥q̇i(t)∥∥ = 0, ∀i = 1, ..., N (4-19)

lim
t→∞

∥∥∥θi(t)− θ∗i (t)
∥∥∥ = 0, ∀i = 1, ..., N (4-20)

Cooperative objectives include reaching a desired inter-agent formation with or without leader.
These objectives are expresses as:

lim
t→∞

∥∥∥zi(t)− zj(t) + z∗ij
∥∥∥ = 0, ∀(i, j)|Aij > 0 (4-21)

lim
t→∞

∥∥∥zi(t)− z∗i (t)
∥∥∥ = 0, ∀i|Bi > 0 (4-22)

where Aij denotes the adjacency matrix and Bi the leader matrix. These matrices describe
the network topology and are further explained in Appendix A. Equation (4-21) expresses the
formation forming objective among the agents. For the special case of z∗ij = 0, ∀(i, j)|Aij >
0 the problem is termed as consensus or synchronization. Equation (4-22) describes the
formation objective for leader agents where z∗i denotes their goal configuration. Lastly, if Bi =
0, ∀i = 1, ..., N then no leaders exist in the network. In order to achieve the aforementioned
objectives suitable choices for the design components V̄c and K̄v should be made.

Selection of the cooperative component V̄c depends on the cooperative objectives described
in (4-21) and (4-22). In [2] its selection is proposed as a quadratic function of the form:

V̄c = 1
4

N∑
i=1

N∑
j=1

(
zi − zj + z∗ij

)T
Aij

(
zi − zj + z∗ij

)

+ 1
2

N∑
i=1

(
zi − z∗i

)T
Bi
(
zi − z∗i

) (4-23)

Note that V̄c > 0 and V̄c = 0 if and only if the objective is reached. The Jacobian of the
potential function is:

∂V̄c
∂z̄

=


Bi
(
z1 − z∗1

)
+
∑N
j=1A1j

(
z1 − zj + z∗1j

)
...

BN
(
zN − z∗N

)
+
∑N
j=1ANj

(
zN − zj + z∗Nj

)
 (4-24)

which is only zero at the desired formation. The Jacobian for each agent i depends not only
on its own coordinates, but also on the coordinates of its neighbours introducing interaction
among them. These inter-agent terms describe the energy contained in the interconnections.

Last but not least, a proper damping matrix should be selected in order to achieve the
stationary formation objective expressed in (4-19) making the system asymptotically stable.
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This matrix enters the control law through the product K̄vȳd. Hence, its block diagonal terms
describe local damping, while its off-diagonal blocks describe inter-agent damping. Since the
latter requires that the agents exchange velocities consider this information exchange over a
velocity graph, let it be Gv so that it is not necessarily the same as the position graph G.
Then consider to partition K̄v as:

K̄v = Lv +Bv > 0 (4-25)

where Lv is the Laplacian matrix and Bv denotes the leader matrix of the velocity graph
(see Appendix A). Through this choice the positivity condition on the damping matrix is
translated to conditions on the network. Given the partitioning in (4-25) the damping term
in the control law can be expressed as:

− K̄vȳd = −K̄v ˙̄q =


−Bv1q̇1 −

∑N
j=1Av1j

(
q̇1 − q̇j

)
...

−BvN q̇N −
∑N
j=1AvNj

(
q̇N − q̇j

)
 (4-26)

Two implementation examples that lead to asymptotic convergence are:

1. All agents are leader on the velocity graph.

2. The velocity graph is connected and there is at least one leader on the velocity graph.

The first example requires that all agents can measure their velocity, but does not require inter-
agent communication therefore locally satisfy the damping condition. The second example
introduces inter-agent damping by using a velocity graph. Note that there are more possible
network topologies that satisfy the damping conditions.

4-2-4 Distributed IDA-PBC Solutions

In this section a summary of the solution to the distributed IDA-PBC problem is presented.
This summary covers solely the underactuated solutions, since these solutions contain the fully
actuated solutions as a special case. For the solution of the distributed IDA-PBC problem
it is essential that single-agent solutions exist so that Vs,i, Ji and Md,i are known for each
subsystem.

Consider combining the single-agent IDA-PBC solutions of all agents in a system as:

M̄d =


Md,1

. . .
Md,N

 , J̄ =


J1

. . .
JN



K̄v =


Kv,1

. . .
Kv,N

 , F̄
⊥ =


F1
⊥

. . .
FN
⊥


(4-27)
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It can be shown that using these definitions, the kinetic energy matching condition of the
multi-agent systems (4-13) and (4-15) separates into N independent Partial Differential Equa-
tions (PDEs) given by:

Fi
⊥

Si>∂p̃iTM̃i
−1
p̃i

∂qi
−Md,iM̃i

−1
Si
>∂p̃i

TMd,i
−1p̃i

∂qi
− 2YiM̃i

−1
p̃i + 2JiMd,i

−1p̃i


= 0ni−ki−mi ∀i = 1, . . . , N

(4-28)
These PDEs correspond to the single-agent kinetic matching condition (3-12) and hence are
satisfied by the use of existing single-agent solutions. Similarly to the single agent case,
separating the multi-agent potential energy matching condition gives:

Fi
⊥
(
Si
>∂Vi
∂qi
−Md,iM̃i

−1
Si
>∂V̄d
∂qi

)
= 0ni−ki−mi ∀i = 1, . . . , N (4-29)

In order to satisfy both local and cooperative objectives while satisfying the potential match-
ing condition consider the partitioning of the potential energy as:

V̄d = V̄c +
N∑
i=1

Vs,i (4-30)

Similarly to the single agent case consider to structure V̄c as:

V̄c(z̄(q̄)) = V̄c
(
z̄1 (q̄1) , . . . , z̄N (q̄N )

)
(4-31)

so that the partial derivatives to local coordinates qi satisfy:

∂V̄c
∂qi

= Ψi
∂V̄c
∂zi

(4-32)

with Ψi denoting the transpose Jacobian:

Ψi = ∂Tzi
∂qi

=


∂z1,i(q)
∂q1,i

· · · ∂zl,i(q)
∂q1,i

...
...

∂z1,i(q)
∂qni,i

· · · ∂zl,i(q)
∂qni,i

 ∈ Rni×l (4-33)

The PDEs in (4-29) can then also be partitioned after substitution of (4-30) in (4-29) as:

Fi
⊥
(
Si
>∂Vi
∂qi
−Md,iM̃i

−1
Si
>∂Vs,i
∂qi

−Md,iM̃i
−1
Si
>Ψi

∂V̄c
∂zi

)
= 0ni−ki−mi ∀i = 1, . . . , N

(4-34)
The single-agent solutions ensure that:

F̄i
⊥
Md,iM̃i

−1
Si
>Ψi = 0ni−ki−mi ∀i = 1, . . . , N (4-35)

Therefore:

F̄i
⊥
Md,iM̃i

−1
Si
>∂V̄c
∂qi

= F̄i
⊥
Md,iM̃i

−1
Si
>Ψi

∂V̄c
∂zi

= 0ni−ki−mi ∀i = 1, . . . , N (4-36)
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And also:

Fi
⊥
(
Si
>∂Vi
∂qi
−Md,iM̃i

−1
Si
>∂Vs,i
∂qi

)
= 0ni−ki−mi ∀i = 1, . . . , N (4-37)

Meaning that the potential matching condition is also satisfied and hence the matching con-
ditions are satisfied. The control law for agent i is formulated by substituting quadratic
potential (4-23) as well as the single agent solutions (4-27) into (4-17) resulting in:

τi = σi + Φi

Bi (z∗i − zi)+
N∑
j=1
Aij

(
zj − zi − r∗ij

)−Bvi yd,i +
N∑
j=1
Avij

(
yd,j − yd,i

)
(4-38)

where σi ∈ Rmi denotes the locally stabilising control for agent i, given by:

σi =(
F̃i
>
F̃i

)−1
F̃i
>

Si>∂H̃i

∂qi
−Md,iM̃i

−1
Si
>
∂
(

1
2 p̃i
>Md,i

−1p̃i + Vs,i
)

∂qi
− Yi

∂H̃i

∂p̃i
+ Ji

∂Hd,i

∂p̃i


(4-39)

with:
Φi =

(
F̃i
>
F̃i

)−1
F̃i
>
Md,iM̃i

−1Ψi (4-40)

the matrix for agent i that ensures that the matching conditions are satisfied, while the
cooperative potential remains free.
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Chapter 5

Collision Avoidance

While the developed methodology presented so far can achieve multi-agent coordination it
does not guarantee collision avoidance between an agent and the physical obstacles that exist
in its environment or among agents themselves. The problem of collision avoidance is far
from trivial and has drawn a lot of attention in the research community for decades. In this
chapter we aim to present a simple method to achieve dynamic collision avoidance in the
local environment of each agent and show how it can be implemented in accordance with the
results for nonholonomic systems derived in the previous chapters.

5-1 The Collision Avoidance Problem

5-1-1 Brief Overview

Numerous approaches serving collision avoidance have been developed so far. Many of them
rely on fundamentally different frameworks. Following [24] two initial distinctions can be
made in collision avoidance methods:
• Motion Planning Techniques
• Obstacle Avoidance Techniques

Motion planning techniques consider the collision avoidance problem as a motion planning
problem to begin with, by designing collision free trajectories in the configuration space of
the agent. This approach has the advantage of giving complete and global solutions but when
the surroundings are unknown and unpredictable these techniques often fail. Moreover, the
obstacle representation in the configuration space can prove to be really difficult for complex
obstacle geometries when also the rotational, three-dimensional motion of an agent is taken
into account. Last but not least, path planning methods usually aim to present a higher
level control strategy and do not accomplish path following directly. Nevertheless approaches
such the Probabilistic Roadmap (PRM), Rapidly Exploring Random Tree (RRT) and their
optimal versions, have yielded successful collision free path planning [25, 26, 27]. Moreover,
there exist control schemes such as Model Predictive Control (MPC) that integrate the entire
motion planning problem (path generation and path following) simultaneously.
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Obstacle avoidance techniques have the objective to move an agent towards a target location
free of collisions with the obstacles collected by the sensors during motion execution. The
advantage of reactive obstacle avoidance is to compute motion by introducing the sensor
information within the control loop, used to adapt the motion to any contingency incompatible
with initial plans. The main disadvantage of considering the reality of the world during
execution is locality.

A taxonomy of obstacle avoidance techniques is described in [24]. The different methods in
literature can be distinguished as:

1. Heuristic methods which were the first techniques used to generate motion based on
sensors.

2. Methods of physical analogies which assimilate the obstacle avoidance problem. Among
those, the Artificial Potential Fields method is known for its widespread use along with
some of its variants e.g. the Navigation Functions.

3. Methods of subsets of controls which compute an intermediate set of motion controls
and next they choose one of them as a solution. They can be further distinguished in
two types:

• Methods that compute a subset of motion directions (Vector Field Histogram
(VFH), Obstacle Restriction Method (ORM), Steer Angle Field Approach (SAFA)
• Methods that compute a subset of velocity controls (Dynamic Window Approach
(DWA), Velocity Obstacles Velocity Obstacles (VO), Optimal Reciprocal Collision
Avoidance Optimal Reciprocal Collision Avoidance (ORCA)

4. Methods that use high level information (nearness diagram navigation)

Among these approaches, we are going to elaborate on the method of Artificial Potential Fields
(APF) since it has inherent similarities to the extension of Interconnection and Damping
Assignment Passivity-Based Control (IDA-PBC) presented in the previous chapters. More
details on the method and its implementation in this work will follow in the subsequent
sections.

5-1-2 Problem Definition

We begin with the problem definition based on [3]. Let W denote the workspace of N robots,
Vi(qi) ⊂ W be the volume occupied by agent i with configuration qi and V denote the volume
occupied by all agents as a function of their configuration:

V̄(q̄) ,
N⋃
i=1
Vi (qi) (5-1)

The free configuration space of agent i from all the other agents j 6= i is described as follows:

Fagents
i (q̄) =

qi
∣∣∣∣∣∣

N⋃
i=1,j 6=i

Vi (qi) ∩ Vj
(
qj
)

= ∅

 (5-2)
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In a similar manner we express the volume that is occupied by an obstacle i at time t as
Oi(t) ⊂ W and denote the total space occupied by Nobs obstacles by:

Ō(t) ,
Nobs⋃
i=1
Oi(t) (5-3)

The free configuration space of agent i from all the obstacles is described as follows:

Fobs
i (t) =

{
qi|Vi (qi) ∩ Ō(t) = ∅

}
(5-4)

Thus, for each agent i the free configuration space from both other agents and obstacles can
be defined as the set:

Fi(q̄, t) = Fobs
i (t) ∩ Fagents

i (q̄) (5-5)

The control objectives described in (4-19)-(4-22) with the derived control law (4-38) then
need to be achieved under the condition:

qi ∈ Fi(q̄, t) ∀i ∈ N, ∀t (5-6)

so that collision avoidance is achieved successfully.

5-2 The Artificial Potential Field Method

5-2-1 Basic Concept

The APF method [28] relies on the idea that the agent moves in a field of forces that result
from an artificial potential field. This potential field is usually the sum of an attractive field
that moves the agent towards the control objective and several repulsive fields that prevent
the agent from colliding with other agents or obstacles in its workspace. We have already
seen that in the distributed IDA-PBC framework we design a desired potential function V̄c
so that the agents achieve their cooperative tasks (cooperative potential). Thus, in our case
the cooperative function is utilized as the attractive component of the APF method. Since
V̄c in (4-23) is free in z (as described in Section 4-1), it can be extended by incorporating a
repulsive field as follows:

V̄c = V̄att + V̄rep (5-7)

where V̄att denotes the attractive potential such as the quadratic potential described in (4-23)
and V̄rep denotes the repulsive potential field used for collision avoidance. The attractive
potential field is assumed to be of quadratic form as it is the case in (4-23). The repulsive
potential filed should be designed so that it creates a potential barrier around the obstacles’
surfaces and become negligible beyond them. In the classical potential field method [28],
the repulsive potential field for each obstacle is described by the Force Inducing an Artificial
Repulsion from the Surface (FIRAS) function described as:

Vrepi (Oi) =

 1
2η
(

1
ρ −

1
ρ0

)2
, if ρ ≤ ρ0

0, if ρ > ρ0
(5-8)
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Figure 5-1: An example of the resulting potential field from the summation of an attractive
quadratic field and the repulsive FIRAS Function

where η ∈ R denotes a scaling factor of the field, ρ ∈ R is the shortest distance to the obstacle
and ρ0 ∈ R is the radius of effect of the potential field. A simple representation of the function
described in (5-8) is illustrated in Figure 5-1. The total repulsive field is simply the sum of
all the repulsive fields from every obstacle:

V̄rep =
Nobs∑
i=1

V i
rep (Oi) (5-9)

Thus, the total potential field in (5-7) can be designed as described here so that the control
tasks (4-19) - (4-22) and the task of collision avoidance are integrated in the expression of V̄c
and solved by the same control law (4-38).

5-2-2 Limitations

The method of APF is generally easy to implement and as discussed in the previous section
it seems particularly suitable to use in the context of IDA-PBC. However the method suffers
from well-known limitations. A systematic criticism of the method is presented in [29] which
includes the following [30]:

1. Trap situations due to local minima
2. No passage between closely spaced obstacles
3. Oscillations in the presence of obstacles
4. Oscillations in narrow passages

Moreover, another limitation presented in [30] with a possible solution is the problem of
Goals Non-Reachable with Obstacles Nearby (GNRON). Among the aforementioned, the
major problem is non-convexity of the total potential field: the interaction of the attractive
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field and the repulsive fields often creates stationary points (either local minima or saddle
points) which lead to failure.

With the issues discussed so far, it is clear that this method has a local perspective of the
robot environment. This implies that it can probably be considered as an integral part of a
higher level motion planner that is able to find simpler collision-free trajectories in complex
environments and leave the task for fast, real time collision avoidance in the local environment
to the APF method. For the purpose of local collision avoidance another favourable attribute
of APF is that it can be extended to handle dynamic environments, i.e. environments in which
the obstacles are in motion, something particularly useful for cooperative tasks in multi-agent
systems as these agents will often follow intersecting trajectories. An extension of the APF
with dynamic obstacles is presented in [31].

5-3 Proposed Repulsive Field

5-3-1 Design of the Repulsive Field

In this section we will design a repulsive field based on [31] in order to achieve inter-agent
dynamic collision avoidance. As mentioned earlier, we will use this repulsive field to achieve
collision avoidance in the local environment of the agent rather than to present a complete
global motion planner. As stated in [31], in a highly dynamic environment where both the
target and the obstacles are moving, the situations where the configuration of the obstacles
and target keeps static are rare. To solve the problem of local minima in this case the simplest
method is to keep the agents under the influence of the virtual forces as usual and wait for
the obstacles or the target to change its motion.

We begin with the assumption that each agent knows the position, momenta and shape of
the neighboring agents which are in the range of possible collision. In order to simplify the
approach, we assume that the volume occupied by each agent is a sphere with its center
and radius so that it encompasses the true volume of the agent. This assumption leads to a
more conservative solution since some free space might be assumed as occupied. Nonetheless,
according to [32] this is not limiting as approximations of the real objects can be realized with
a number of spheres [33]. This approach greatly simplifies the collision avoidance task. Since
the spheres are invariant of rotations, the scope of collision avoidance can be reduced to the
subset of the transnational components (transnational displacements, velocities etc.).

Let ci = ci(zi) denote the center of each sphere encompassing agent i and ρ0i its radius. In
many cases where the cooperative variables denote the position of an agent we might as well
have ci = zi otherwise this center can denote the coordinates of another part of the agent
e.g. the center of the links of an agent-manipulator which we want them to be avoided by
the rest of the agents. In this subsection, let also pi denote the transnational component of
the momenta of each agent, that is, the component that leads to the translational motion of
the spheres.

The magnitude of the relative momenta between two agents is given by:

pij =
(
pi − pj

)>
nij (5-10)
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where nij denotes the unit vector the points from the center of agent i to the center of agent
j. If pij ≤ 0 then the agents are moving away from each other and no avoidance motion is
needed. If pij > 0 then the agents are moving towards each other and collision avoidance is
needed. Consider the case where the agents move towards each other. Assume that for each
agent a maximum translational force of magnitude Fmaxi can be applied in order to reduce its
momentum. Ignoring its peer’s intentions for an avoiding maneuver, the distance that agent
i will travel before pij reduces to zero is:

ρmij =
p2
ij

2miFmaxi
(5-11)

Let also ρij = ρij(zi, zj) denote the distance between the centers ci and cj of agents i, j and
ρ0ij = ρ0i + ρ0j the sum of the radius of each pair of agents. The repulsive field can then be
defined as follows:

Vrepij (zi, zj , pij) =


0 if ρij − ρmij ≥ ρ0ij or pij ≤ 0

ηij

(
1

ρij−ρmij
− 1

ρ0ij+ρmij

)2
if 0 < ρij − ρmij < ρ0ij and pij > 0

not defined if pij > 0 and ρij < ρmij
(5-12)

In case that ρij−ρmij ≥ ρ0ij or pij ≤ 0 the two agents are either far enough or they are moving
away from each other thus collision avoidance is not needed. In case that 0 < ρij−ρmij < ρ0ij
and pij > 0 the agents are moving towards each other and they are at collision proximity
meaning that collision avoidance is necessary. In the last case where we have pij > 0 and
ρij < ρmij collision avoidance cannot be avoided since the agents move towards each other
and the current distance ρij is less than the minimum distance that the agent will travel with
full breaking power. In that case, we might as well have the repulsive potential activated in
order to at least reduce the severity of the unavoidable collision. Notice also that in the case
that the repulsive field is activated we have:

lim
ρij→ρmij

ηij

(
1

ρij − ρmij
− 1
ρ0ij + ρmij

)2

→∞ (5-13)

For an easier implementation, we introduce here the switching function swrepij defined as
follows:

swrepij =
{

0 if ρij − ρmij ≥ ρ0ij or pij ≤ 0
1 otherwise (5-14)

in order to activate or deactivate the repulsive fields around agent i, with swrepii = 0 ∀i ∈ N .
The total repulsive filed for agent i is then given as:

V̄rep = 1
2

N∑
i=1

N∑
j=1

swrepiiηij

(
1

ρij(zi, zj)− ρmij (pij)
− 1
ρ0ij + ρmij (pij)

)2

(5-15)

The total repulsive filed is then summed to the previously defined cooperative function (4-23)
which yields the new cooperative potential:

V̄c = 1
4

N∑
i=1

N∑
j=1

(
zi − zj + z∗ij

)T
Aij

(
zi − zj + z∗ij

)
+ 1

2

N∑
i=1

(
zi − z∗i

)T
Bi
(
zi − z∗i

)

+ 1
2

N∑
i=1

N∑
j=1

swrepiiηij

(
1

ρij(zi, zj)− ρmij (pij)
− 1
ρ0ij + ρmij (pij)

)2 (5-16)
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The control law remains the same as expressed in (4-38). The cooperative component will then
be responsible for collision avoidance as it is the part of the control law which is responsible
to dictate the motion in the (cooperative) workspace of each agent. In Figure 5-2 a schematic

Figure 5-2: A schematic representation of the proposed collision avoidance approach

representation of the aforementioned is presented. Here we highlight the main differences
with the approach we were inspired from in [31]. First of all, since we restricted our scope to
inter-agent collision avoidance, we use the generalized momenta instead of the velocities of the
agents. Although the idea is essentially the same, the momentum contains more information
than the velocity as it describes also the inertia and thus the "stubbornness" of each agent
movement. This acts as a weighting factor to the mutual collision avoidance maneuvers of
the agents: the agent with more momentum will deviate from its course less compared to
the agent with less momentum which will be easier to follow an avoiding maneuver. Another
important difference is the utilization of the distance of deceleration ρmij . In our case, this
distance is used as an increment to the summed radius of the two agents virtually enlarging
the volume of the "true" volume of the two agents encompassed by the virtual spheres so
that deceleration stars early enough in order to avoid collision. This increment is radius
is illustrated in Figure 5-2 where agent i is illustrated as a single point in 2-D space and
perceives agent j as an obstacle incremented by its own size plus the distance ρmij . Last but
not least, notice that the repulsive potential is a function of the generalized momenta of the
agents since pij = pij(pi,pj). In the original approach [31], the repulsive force is the gradient
of the repulsive potential with respect to both the positions and velocities of the agents. In
our approach, since we want to integrate the repulsive potential to the existing distributed
control law, the repulsive force results as the gradient of the repulsive potential with respect
to the cooperative variables (i.e. coordinates) only.
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5-3-2 Connection to this Work and Implementation

The key tool to handle nonholonomic systems in this work, is the freedom to manipulate
the constraint-free variables so that stabilization in the constrained space S is feasible. A
repulsive field like the one designed in the previous subsection will lead to a different evolution
of the unconstrained variables and the stabilization task will probably fail. Another key
insight is that the repulsive field is usually designed in task-space physical coordinates. These
coordinates are most of the times the constrained variables s (e.g. the xy− position of
a differential robot on a plane). This motivates the design of the repulsive field on the
constrained space so that it does not interfere with the unconstrained variables r. The
repulsive field can be then expressed as:

V̄rep = 1
2

N∑
i=1

N∑
j=1

swrepiiηij

(
1

ρij(zsi , zsj ) −
1

ρ0ij + ρmij (pij)

)2

(5-17)

while ρij , ρ0ij , and ρmij regard the constrained variables s. A repulsive field on the constrained
space S will act on the "attracting" vector vs changing its magnitude and direction. The
resulting vs vector will be affected by the (local) repulsive field in a way to drive the system
far from the source of repulsion. The change in magnitude means some deceleration in case
the repulsive field is approached head on while the change in direction means that the system
wants to follow an evasive maneuver. Recall that the control action for the unconstrained
variables r is characterized by the vector:

vω = A>s vs

This vector, as already discussed, drives the unconstrained variables r so that the system
"aligns" to the attractor (represented by vs) in the constrained space S. Hence, a change of
vs due to the repulsive field will be followed by an appropriate change of vector vω so that
the motion can continue as desired. Nevertheless, the problem of local minima still remains
a major one and this approach still remains of local interest for fast and dynamic collision
avoidance action rather than a complete motion planning approach for nonholonomic systems.
We provide here a practical representation of the potential energy shaping with some tuning
parameters as used in the simulations of Chapter 6.

V̄c =

ks

1
4

N∑
i=1

N∑
j=1

(
zsi

− zsj
+ z∗

sij

)T
Aij

(
zsi

− zsj
+ z∗

sij

)
+ 1

2

N∑
i=1

(
zsi

− z∗
si

)T
Bi

(
zsi

− z∗
si

)+

kr

1
4

N∑
i=1

N∑
j=1

swhi

(
zri

− zrj
+ z∗

rij

)T
Aij

(
zri

− zrj
+ z∗

rij

)
+ 1

2

N∑
i=1

swhi

(
zri

− z∗
ri

)T
Bi

(
zri

− z∗
ri

)+

η

1
2

N∑
i=1

N∑
j=1

swrepii

(
1

ρij(zi, zj) − ρmij (pij)
− 1
ρ0ij + ρmij (pij)

)2


(5-18)
The local potential for the of each agent can be expressed as:

Vli(qi) = Vlsi(qi) + (1− swhi)krVlri(qi) (5-19)
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with
Vlri(qi) = ∂>V̄c

∂si
As(ri)As(ri)>

∂V̄c
∂si

(5-20)

where ks, kr and η are tuning parameters for the cooperative and local potential setting the
intensity of the attractive forces in the constrained and unconstrained space as well as the
repulsive forces in the constrained space. The switches swhi and swrepij are designed for each
agent as descibed in the previous sections.
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Chapter 6

Case Studies

In this chapter we aim to illustrate the applicability and practicality of the results derived
throughout this work via simulations. The simulations were carried out in Matlab and
Simulink. In the Matlab environment, we first check the user-defined elements of each
system and the elements of the network so that they satisfy necessary properties (agreeable
dimensions, symmetry, positive definiteness etc.). Then the systems’ dynamics are generated
automatically based on user defined information and automatically saved as Matlab func-
tions. The Simulink file, having access to the systems’ dynamics, is used as a solver for
the Ordinary Differential Equations (ODEs). We have set an automatic solver selection with
a variable-step as no in depth study was realized in order to choose a solver. Nonetheless,
with these default settings the problems were solved without failure. We begin this chapter
by briefly describing the systems used in simulations. Subsequently, four different simulation
scenarios elucidate different aspects of the theoretical results.

6-1 Systems Introduction

One of the main purposes of this work is to highlight the practicality of distributed IDA-PBC
for nonholonomic systems. Practical applications that are favourable to be addressed with
the approach developed in this work include but are not limited to collaborative transporta-
tion, exploration of unknown or dangerous terrains, large scale sensing and area monitoring.
Such high-level tasks can be decomposed into different, simpler low-level cooperative group
objectives known as consensus, synchronization, or formation problems which are mathemat-
ically similar across the wide spectrum of the previously mentioned applications. An example
in collaborative transportation could be that of a group of robotic arms that collaboratively
grasps objects from a wheeled mobile robot. In area monitoring, we may require the deploy-
ment of different wheeled mobile robots that need to reach a specified formation in the area
of interest so that sufficient area coverage is achieved. In the following simulations we show
how we can fulfill these low-level tasks.
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6-1-1 The 3-DoF Manipulator

One particularly useful class of robotic agents for various tasks in the realms of logistics and
manufacturing are robotic manipulators. These robots can perform tasks such as picking and
placing objects, assembling components or participating in other manufacturing processes. A
drawing of a simple 3-DoF manipulator is presented in Figure 6-1. This system has n = 3

Figure 6-1: A schematic representation of a 3-DoF manipulator

degrees of freedom q =
(
q1 q2 q3

)>
, with each component representing a joint angle. The

system is holonomic with k = 0 constraints and fully actuated with m = 3 control inputs.
The control inputs are torques that are directly applied on the joint angles. The end-effector
of the is robotic arm can move in the subset of three-dimensional space that the length of the
robot links allow it to. The mass matrix of this system according to [10] is given as:

M =

 M11 M12 M13
M21 M22 M23
M31 M32 M33

 (6-1)
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where:

M11 = Iy2 sin2 q2 + Iy3 sin2(q2 + q3) + Iz1 + Iz2 cos2 q2 + Iz3 cos2(q2 + q3)

+m2
l22
4 cos2 q2 +m3

(
l1 cos(q2) + l23

4 cos(q2 + q3)
)2

M12 = 0
M13 = 0
M21 = 0

M22 = Ix2 + Ix3 +m3l
2
1 +m2

l22
4 +m3

l23
4 + 2m3l1

l3
2 cos q3

M23 = Ix3 +m3
l23
4 +m3l1

l3
2 cos q3

M31 = 0

M32 = Ix3 +m3
l23
4 +m3l1

l3
2 cos q3

M33 = Ix3 +m3
l23
4

(6-2)

With where mi is the mass of each link and Ixi , Iyi , and Izi are the moments of inertia about
the x−, y−, and z−axes of the ith link frame. Note that several of the moments of inertia
of the different links do not appear in this expression. This is because the limited degrees of
freedom of the manipulator do not allow arbitrary rotations of each joint around each axis.
The potential energy of the system is the sum of the potential energy of each link:

V (q) = m1gr1z +m2gr2z +m3gr3z

= m1g
l1
2 +m2g

(
l1 + l2

2 cos q2

)
+m3g

(
l1 + l2 cos q2 + l3

2 cos(q2 + q3)
)

(6-3)

The system is fully-actuated so the input matrix is simply the identity matrix F = I3 and
unconstrained thus A = 03. With this set of information the system is fully defined. The
system is holonomic and fully-actuated meaning simplifying its control.

6-1-2 The Differential Robot

The differential robot is a nonholonomic system that is frequently met both in academia and
the industry. These mobile robots are very compact and agile and virtually all consumer
robots on the market today use differential steering primarily for its low cost and simplicity.
The movement of this mobile robot is based on two separately driven wheels placed on either
side of the robot body. It can change its direction by varying the relative rate of rotation of its
wheels and hence does not require an additional steering motion. In practice, additional caster
wheels may be added to balance the robot. A drawing of a differential robot is presented in
Figure 6-2. This system has n = 3 degrees of freedom q =

(
q1 q2 q3

)>
, k = 1 constraints

and m = 2 control inputs, the torques on each one of the two wheels. The rotation of each
wheel can also be seen as a degree of freedom but usually these are omitted as we are interested
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Figure 6-2: A schematic representation of a differential robot

in the planar motion of the robot.The mass matrix of this system is given as:

M =

 m 0 0
0 m 0
0 0 I

 (6-4)

where m is the mass of the robot and I is the moment of inertia with respect to its planar
rotation. Since the system performs planar motion, its potential energy is zero:

V (q) = 0 (6-5)

The system is actuators are two motors, each one applying a torque at each wheel. This
results in a translational force that acts on the longitudinal axis and a torque that rotates
the robot. The input matrix is then:

F (q) =


cos q3
r

cos q3
rsin q3

r
sin q3
r

d
2 −d

2

 (6-6)

Where r is the wheel radius and d the distance between the two wheel centers. The system
is subjected to the nonholonomic constraint:

sin q3q̇1 − cos q3q̇2 = 0⇒
(
sin q3 − cos q3 0

)
q̇ = 0⇒

A>(q) =
(
sin q3 − cos q3 0

)
Both the constraint matrix and the mass matrix satisfy the conditions expressed in Section
3-2-3 so that it can be controlled with the derived control laws.
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6-2 Scenario 1

Before jumping into the previously mentioned cooperative tasks we first demonstrate here a
comparison between our approach and the Passivity Based Switching Control (PBSC) that
was introduced in [7]. We aim to show that with our approach we can significantly reduce
the time to achieve stabilization in the constrained space under the exact same conditions.
For illustration we use the differential robot as it is one of the systems also used in [7]. Note
that in [7] a Passivity Based Time-Varying Control (PBVC) is also derived but we will not
illustrate these results here. Moreover, here we implement the solution proposed in [7] but not
the exact simulation scenarios. Nevertheless, the response of the simulated system is similar
to the original one.

The differential robot’s constrained coordinates are s =
(
q1 q2

)>
while the unconstrained

one is r = q3 Assume that the robot starts with initial position q0 =
(
1 1 0

)>
and needs

to reach the point s∗ =
(
4 4

)>
with an arbitrary orientation r = q3.

According to [7], the desired potential can be designed as:

V1 = 1
2ks(s− s

∗)>Qs(s− s∗)︸ ︷︷ ︸
Vs

+ 1
2kr(r − rσ)>(r − rσ)︸ ︷︷ ︸

Vrσ

(6-7)

where ks, kr and Qs are tuning parameters and rσ is a constant at which we want r to be
stabilized and σ is to embed a switching sequence. Then s will converge to the switching
manifold Gσ ⊂ S:

Gσ =
{
s ∈ S

∣∣∣∣D>s (rσ)∂Vs
∂s

= 0
}

(6-8)

With two switching manifolds (σ = 1, 2) and r1 = −π/2, r2 = 0 then the idea is to stabilize
r at each of one of the aforementioned manifolds sequentially triggering the switch when
stabilization has been practically achieved (when s is close enough to Gσ and small enough
velocity). This is by no means an extensive description of the method as we only present what
is necessary for the comparison that follows. The interested reader can find more details on
this approach along with validating results in [7].

According to what we proposed in Chapter 3 the desired potential can be designed as:

V2 = 1
2ks(s− s

∗)>Qs(s− s∗)︸ ︷︷ ︸
Vs

+ 1
2kr

(
s− s∗

‖s− s∗‖

)>
As(r)As(r)>

(
s− s∗

‖s− s∗‖

)
︸ ︷︷ ︸

Vr

(6-9)

where As> =
(
sin q3 − cos q3

)
according to Section 3-2-3 and Section 6-1-2. The system has

mass matrix M = I3 for simplicity and V = 0 as it performs a planar motion. The values
of the control parameters are presented in Table 6-1. We denote as system 1 the differential
robot controlled as in [7] (existing solution) while system 2 denotes the differential robot
controlled by the proposed solution in this work. Applying the aforementioned potentials and
setting the control parameters to the values shown in Table 6-1 we simulate the differential
robot under to different subjected to the two different control approaches.
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The results of this simulation scenario are illustrated in the following figures along with
some brief discussion. In Figure 6-3 the trajectories of the same system for the two different

Figure 6-3: Scenario 1: A comparison of the two trajectories

control approaches is illustrated. We see the differential robot in its initial state while its
final state is hidden so that the trajectories near the goal are clearly visible. First of all,
we observe that with our approach we can directly converge to s∗ without having to switch
between manifolds. Moreover, we can observe that with the existing solution, since a practical
switching criterion needs to be implemented, the system will be stabilized at an offset from
the desired configuration (here we have set sd = 0.05m meaning that every time s is closer
than sd to each manifold the switching is triggered). Thus, the constrained variable s can only

(a) Existing solution (b) Proposed solution

Figure 6-4: Scenario 1: The state evolution of the differential robot

reach s∗ up to some tolerance. This of course can be set arbitrarily small though convergence
time will probably increase considerably.
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In Figure 6-4 we can see the evolution of the state of each system. It is clear that under the
same conditions we can achieve stabilization of the constrained variables much faster (settling
time at around t = 5s) compared to the existing solution. Moreover, due to the fact that we
do not require any switching, no oscillations are observed in the generalized momenta.

(a) Existing solution (b) Proposed solution

Figure 6-5: Scenario 1: The control inputs on the wheels of the differential robot

Regarding the control inputs on the wheels, it is clear that in our approach the control
action required is much less and without any odd switching when the system approaches
the goal (Figure 6-5). Before we end this section we emphasize here that the solution from

ks Qs kr Kv

5 I2 9 5 · I2

Table 6-1: Control parameters for Scenario 1

[7] implemented here is similar up to the method and not the exact parameters. Perhaps
different values for rσ could yield a better transient response. Nevertheless, the values used are
according to what is proposed in their work and also the resulted trajectories are similar. Note
that a PBVC approach is also implemented in their work that results to different trajectories.
It is claimed in [7] that the PBVC approach achieves faster stabilization in the constrained
space. Even in this approach the trajectories are still not directly leading to the goal as they
rather have a spiral-like shape. Note also that our control law in this example is smooth.
This does not contradict with Brockett’s necessary condition as full-state stabilization is not
achieved. Achieving full-state stabilization requires switching from the potential function (6-9)
to a another smooth potential that can stabilize the unconstrained variable r subsequently. In
order to highlight the difference in the stabilization approach of the constrained variables s =(
q1 q2

)>
we ignore the stabilization of the unconstrained variable q3. Full-state stabilization

is illustrated in Section 6-3 (Scenario 2).

Master of Science Thesis Anastasios Tsolakis



58 Case Studies

6-3 Scenario 2

In this scenario we want the nonholonomic knife edge system (description in the examples of
Chapter 2 and Chapter 3) and the end-effector of the 3-DoF manipulator to reach consensus.
Specifically we want to show that it is possible to address the unconstrained variable of the
knife edge system as a local variable. We can first use it to reach consensus and then stabilize
it locally at a desired set point thus not needing to exchange it via the network.

(a) Trajectories in Scenario 2 - Isometric View (b) Trajectories in Scenario 2 - Top View

Figure 6-6: Scenario 2: The trajectories of the knife edge system and the 3-DoF manipulator

The cooperative variables of the knife edge system is the xyz coordinates of its center while
the for the 3-DoF manipulator these are the coordinates of its end-effector. Notice that
consensus is reached approximately at time t = 11s and then the control of the knife edge
switches to achieve stabilization of the local variable q3 (orientation) of the knife edge system.
Since the unconstrained dynamics have been successfully stabilized, the task of stabilizing the
unconstrained variable (orientation) is relatively easy between two stable configurations.

(a) The state evolution of the knife edge system (b) The state evolution of the 3-DoF manipulator

Figure 6-7: Scenario 2: The state evolution for the two systems respectively
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The transient response is smooth even when the control law switches. However, we observe
that since we are stabilizing the variables sequentially, more time is needed for full-state
stabilization. This can be seen in Figure 6-8 where consensus is achieved at roughly time
t = 11s while full-state stabilization needs additional four seconds.

Figure 6-8: Scenario 2: The evolution of the cooperative variables

Overall, we can see that in this simple scenario the consensus problem successfully achieved
while the unconstrained variable of the nonholonomic system can be controlled independently
leading to full-state stabilization. In Section 6-4 (Scenario 3) we will also demonstrate how
this variable can be used as a cooperative variable as well. The control parameters for this
scenario can be are illustrated in Table 6-2.

ks kr η Kv1 Kv2

3 2.5 30 diag(9, 15) diag(90, 16, 16)

Table 6-2: Control parameters for Scenario 2
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6-4 Scenario 3

In this scenario we want to demonstrate how a group of differential robots can reach a desired
formation. The robots need to reach this formation with one of the agents being the group
leader.

Figure 6-9: Scenario 3: The trajectories followed by the differential robots

Moreover, the simple collision avoidance protocol is implemented as well to show how these
agents can perform avoiding maneuvers while reaching for their goal configurations. In con-
trast to Scenario 2, here the unconstrained variables act at first as a local variables for
stabilization in the constraint space of each agent and subsequently as a cooperative variables
so that formation can be achieved in the full state-space (relative positions and orientation).

(a) The state evolution of the knife edge system (b) The state evolution of the 3-DoF manipulator

Figure 6-10: Scenario 3: The evolution of the cooperative variables (x and y coordinates)
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These trajectories are illustrated in Figure 6-9 with the initials positions of the agents in
a darker shade than the final configurations. The agents start from an equilateral triangle
formation and need to form an equilateral triangle again, mirrored to the first one with respect
to the horizontal axis passing through the triangle’s center of gravity. When they reach that
formation, they also need to be oriented symmetrically and point to a direction away from
the triangle (3π

4 relative angle to each other).

Notice that the leader robot which starts at the very bottom reaches its target configuration
without encountering the other agents. The trajectories of other two agents on the other
hand intersect and the collision avoidance maneuver is clear in the same figure. In Figure

Figure 6-11: Scenario 3: The evolution of the cooperative variables (orientation) of the agents

6-10 we can see the x and y coordinates of the agents. In the x direction, the leader does not
move while the other agents reach a relative position of x12 = 4m which is the original side
of the triangle. In the y direction, the leader reaches the target position while the other two
agents reach consensus at the desired distance from the leader. Lastly, in Figure 6-11 we can
observe how the robots reach a formation in the unconstrained variables (orientation) as well.
The switching is visible at approximately time t = 18s for the orientation of agent 3. Notice
also that between times t = 18s and t = 18s, the orientations of agents 2 and 3 change so
that an avoiding maneuver can be achieved thus proving that the collision avoidance protocol
in Chapter 5 can work well with the stabilization results derived in Chapter 3. The control
parameters for this scenario can been in Table 6-3.

ks kr η Kv1 Kv2 Kv3

5 10 37 diag(60, 60) diag(60, 60) diag(60, 60)

Table 6-3: Control parameters for Scenario 3

Master of Science Thesis Anastasios Tsolakis



62 Case Studies

6-5 Scenario 4

Finally, we present a scenario that simulates a practical application in logistics. We assume
that a couple of manipulators are responsible to grasp packages which are transported by
differential robots and lie on top of the latter. Each differential robot needs to approach the
vicinity of its counterpart manipulator while avoiding collision with the other mobile robot
and the base of the manipulators. Likewise the end-effector of each manipulator needs to
approach the respective differential robot.

(a) Trajectories in Scenario 4 - Isometric View (b) Trajectories in Scenario 4 - Top View

Figure 6-12: Scenario 4: The trajectories of the differential robots and manipulators

The light blue dashed circle seen in Figure 6-12 denotes a desired clearance around differential
robot 1 (starting in xy position (1, 1)). The red dashed circle denote the effective radius of
the repulsive fields caused by the other agents. In Figure 6-12b the avoiding maneuver of
differential robot 2 (starting in xy position (0.5, 4)) can also be seen.

(a) The state evolution of differential robot #1 (b) The state evolution of manipulator #1

Figure 6-13: Scenario 4: The state evolution for the first set of cooperative systems
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(a) The state evolution of differential robot #2 (b) The state evolution of manipulator #2

Figure 6-14: Scenario 4: The state evolution for the second set of cooperative systems

In Figures 6-13 and 6-14 we can see the evolution of the state of each system. Notice how
around time t = 2sec the two mobile robots meet and collision avoidance is activated. This
causes the two robots to almost stop instantaneously as the repulsive forces cause deceleration.

Figure 6-15: Scenario 4: The evolution of the cooperative variables of all systems

The intense oscillations that are visible in the generalized momenta are due to the switch
we have used for the implementation of dynamic collision avoidance: when the momenta
approach close to zero values then collision avoidance does not pose a considerable danger
and the repulsive field is deactivated temporarily until the agents start building up speed.
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ks kr η Kv1 Kv2 Kv3 Kv4

3 9 30 diag(10, 60) diag(36, 19, 19) diag(10, 60) diag(36, 19, 19)

Table 6-4: Control parameters for Scenario 4

In Figure 6-15 we can see that consensus is much faster when stabilization of the unconstrained
variables is not required although collision avoidance in this extreme scenario is a major
hindrance to the fulfillment of the cooperative task. The control parameters for this scenario
can be seen in Table 6-4.
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Chapter 7

Conclusions and Recommendations

In this chapter we conclude this work with a brief summary in Section 7-1 and a discussion
reflecting on its contributions and limitations in Section 7-2. In Section 7-3 we discuss about
potential improvements and recommendations for future research.

7-1 Summary

In this work we have extended the novel, distributed control method proposed in [2] to
the widely applicable class of nonholonomic mechanical systems. Specifically we have pre-
sented step-by-step how the dynamics of such systems can be transformed to an equivalent
port-Hamiltonian expression suitable to be addressed with Interconnection and Damping As-
signment Passivity-Based Control (IDA-PBC) following [12]. We then presented in detail
how these transformed dynamics can be shaped via IDA-PBC and derived the transformed
control laws and matching conditions that result from the so-called system matching. In
order to complete the task of control and stabilization of nonholonomic mechanical systems
we first apply the Passive Configuration Decomposition proposed in [7] to the closed-loop
port-Hamiltonian system model which is instrumental for the stabilization of the constrained
generalized coordinates. We conclude the topic of stabilization of nonholonomic systems by
proposing a novel desired potential that is able to stabilize the full state of such systems
with an evident improvement in the transient response. The single-agent results are then
extended to a multi-agent setting following the top-down distributed approach proposed in
[2]. This approach which originally allows distributed cooperation of heterogeneous and un-
deractuated mechanical systems is now extended to encompass the practically relevant class
of nonholonomic mechanical systems proposing a unified cooperative control law for systems
with completely different dynamics and limitations (under-actuation, constraints, etc.). Last
but not least, a simple inter-agent collision avoidance protocol is implemented which enhances
the applicability of this work. The derived control approach was tested in various simulations
and successfully addressed the desired objectives in each simulation scenario.
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7-2 Discussion and Conclusions

In this work we addressed the problem of distributed control for nonlinear, nonholonomic
mechanical systems. The problem we posed in the introduction was stated as:

"Develop a distributed control method which allows a group of non-identical, possibly nonholo-
nomic mechanical systems achieve cooperative objectives while locally avoiding collision with
each other."

Reflecting on the results of this work we discuss how this problem was eventually approached
and what are the implications of this approach. First of all, port-Hamiltonian modelling
allows for the cooperation among heterogeneous agents rendering it more generic and widely-
applicable compared to system specific methods that exist for multi-agent systems. From a
control perspective, the framework of IDA-PBC allows for control across the wide spectrum
of motion of these systems rather than a small region around a desired setpoint which is most
usual with conventional linear methods. Moreover, respecting the original system dynamics
avoids the use of high feedback gains and leads to more robust and cost-effective controllers.
Compared to optimization-based methods, the advantage of an energy-based control method
like IDA-PBC is less computational complexity as there is no need to solve non-convex op-
timization problems with less certainty about solution convergence and online computation
feasibility. Nonetheless, the simplicity of the method comes with limitations such as reaching
targets in finite time, imposing hard constraints or achieving a desired form of optimality
with respect to desired metrics. Among nonlinear control methods, IDA-PBC allows control
of underactuated systems which are often met in practical applications (e.g. quad-rotors,
overhead cranes etc.). The results in [2] show how these systems can be controlled in a dis-
tributed fashion, following cooperative tasks while they stabilize their local dynamics with
existing single-agent solutions. In this work we further extend the applicability of the method
to the class of nonholonomic systems which are traditionally controlled at a kinematic level
and often with feedback linearization techniques that are system specific, or coordinate trans-
formations to achieve non-smooth dynamics which are again most of the times system specific
and detach any physical intuition on the resulting system. The desired potential proposed
for the stabilization of the constrained variables in this work is expressed in a generic form
encompassing a wide class of nonholonomic systems that meet rather mild assumptions and
demonstrates significantly improved transient response. The collision avoidance problem with
a limited scope to inter-agent collision avoidance was addressed with a dynamic variation of
the Artificial Potential Fields (APF). Implementation of this method was straightforward
in the context of IDA-PBC since they share intrinsic similarities and allowed for collision
avoidance in a dynamic environment with moving obstacles. The efficacy of the aforemen-
tioned was tested in various simulation scenarios. However, experimental work is essential
in order to fortify the validity of these results. The lack of experimental results indeed gives
rise to research questions and future recommendations to enhance this work by withdraw-
ing simplifying assumptions. Improvements and recommendations are discussed in the next
section.
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7-3 Recommendations

7-3-1 Controllability Analysis

In Chapter 3 we showed that under some assumptions nonholonomic mechanical systems
imposed to Pfaffian constraints can have their full state-space stabilized to desired configu-
rations. This however should be permissible by the nonholonomic constraints (2-2). In order
to answer this question a proper controllability analysis should be followed using tools from
differential geometry and nonlinear control theory, more specifically Frobenius’ theorem and
nonlinear controllability [10]. This study will shed light on the applicability of the method on
different nonholonomic systems based on their controllability properties, whether they are for
example Small-Time Locally Accessible (STLA) or Small-Time Locally Controllable (STLC).
This will allow for testing the method on more practically interesting nonholonomic systems
such as robotic automobiles or space robots with nonholonomic constraints arising from con-
servation of angular momentum.

7-3-2 Robustness and Robustification

Throughout this work we have assumed ideal conditions for many different aspects. We
assume that the agent dynamics and parameters are completely known, no disturbances occur
and we also assume that communication is realized via an ideal network with uninterrupted
communication. However, the real world is full of uncertainties that can severely deteriorate
the performance of the derived control laws. Generally speaking there various sources of
uncertainties. In the context of this work we can distinguish between uncertainties related to
the network and uncertainties that are related to the dynamics of the agents.
In [4], a novel r-Passivity-Based Control method was proposed that can successfully ad-
dress uncertainties that stem from network effects such as communication delays and packet
dropouts. An interesting research question is to investigate the compatibility between this
work and the work in [4] so as to see if a merged solution can be formulated allowing for control
of nonholonomic systems in the framework of r-Passivity with robustness to network effects.
Nevertheless, we point out here that this task might be challenging as the proposed method
in [4] addressed fully-actuated systems while nonholonomic systems are underactuated by
definition.
The models that describe mechanical systems are usually accurate since they rely on simple
principles like Newton’s law of motion and other realistic assumptions. However, the parame-
ters in these models are often uncertain and sometimes impossible to measure while dominant
uncertainty usually stems from inertial parameters. Parameter uncertainty can deteriorate
performance and compromise stability. A possible solution to this problem is parameter
estimation relying on the fact the the differential equations describing mechanical systems,
albeit highly nonlinear, are in fact linear to the parameters. The differential equations can
be expressed as:

ζ(t) = χ>ξ(t) (7-1)
where ζ (observation) and ξ (regressor) denote parameter independent terms that can be
measured and χ (regressand) denotes the lumped up parameters which can be estimated as
the solution to a Least Squares problem if persistent excitation and a significant amount of
data is gathered and processed properly with filters and robust differentiators.
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7-3-3 Collision Avoidance

The APF method we implemented for collision avoidance is favourable for its simplicity and
promptness that allows for highly dynamic environments and its scalability which renders it
suitable for multi-agent systems. However, as already discussed in Section 5-2-2, the method
has well-known limitations with the occurrence of local minima perhaps being the major one.
One way to circumvent this problem, as also proposed in [4] is to combine this low-level
collision avoidance approach with a higher-level motion planners that can compute collision
free paths and set them as reference trajectories to the lower-level controller. Moreover, as also
stated in [4], integration of the derived low-level control with higher level planning methods
could lead to novel applications that go beyond the formation of configurations.

7-3-4 Critical Damping Assignment

As we briefly described the method of IDA-PBC in Section 3-1 we made clear that several
parameters need to be tuned to either solve the matching conditions or achieve the desired
transient response. While tuning the parameters for the different simulation scenarios, it
was noticed that tuning the damping matrix Kv for each agent played a significant role
in the transient response of the total system. Moreover, since this matrix does not appear
in the matching conditions, it’s a free design parameter. Notice that when analyzing the
response of mechanical systems or other second order systems in control theory, one important
metric is the damping ratio ζ, a measure describing how rapidly the oscillations decay when
systems exhibit oscillatory behavior. When a system is critical damped (ζ = 1), it returns to
equilibrium in the minimum amount of time. Since in critical damping the damping coefficient
is a function of the inertial and restoring characteristics of the system, it is interesting to
investigate if Kv can also be expressed as a function of the desired mass matrix Md(q) and
the desired potential Vd(q) in a way that can lead to "critical damping" in higher dimensions.
Since critical damping usually refers to linear systems, an approximation of the stiffness
matrix is then:

K(q) = ∂2Vd(q)
∂q∂q

(7-2)

with the damping matrix for critical damping expressed for example as:

Kv(q) = 2F (q)>
(
K(q)M(q)

) 1
2F (q) (7-3)

inspired by the simple, single degree of freedom linear oscillator.
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Appendix A

Brief Graph Theory

In this appendix only some few definitions are given. For more details the reader is referred
to [1]. The simplest description of the interconnection structure of a network is provided by

Figure A-1: A simple undirected network graph with the neighboring agents exchanging their
state (q,p) in order to achieve the formation and inter-agent collision avoidance tasks

a graph, which formalizes the patterns of linkages between different units, or nodes.
Let G = (V, E) denote a graph with vertices V and edges E = (V × V). Every vertex v ∈ V
represents a mechanical system, while every edge eij = (vi, vj) ∈ E represents a one-way
communication link between two systems. Graphs can be classified as either directed or
undirected and weighted or unweighted.
The set of neighbours of vertex i, denoted by Ni, is the set of vertices vj for which eij ∈ E . If
for every edge eij = (vi, vj) ∈ E , eij = (vj , vi) ∈ E then graph G is undirected. It is directed
otherwise.
A path of length r is a sequence (v0, v1, ..., vr) of distinct vertices such that:

(vi, vi+1) ∈ E ∀i = 0, 1, ..., r − 1 (A-1)
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A graph is termed strongly connected if there exists a path between every pair of vertices.

For each pair of edges (i, j), (j, i) between agents, there is an associated symmetric weight
matrix Aij = Aji > 0l known as the adjacency matrix and defined as:

Aij =


Aij,11 Aij,12 · · · Aij,1`
Aij,12 Aij,22

... . . .
Aij,1` Aij,``

 (A-2)

If there are no edges between vertex i and j, then Aij = Aji = 0l Self-edges are not allowed,
such that Aii = 0l
The adjacency components Aij can be used to construct a symmetric Laplacian matrix L ∈
RNl×Nl that encodes the network topology, defined as:

L =


∑N
j=1A1j −A12 · · · −A1N
−A12

∑N
j=1A2j

... . . .
−A1N

∑N
j=1ANj

 (A-3)

If agent i is a leader, it has an associated leader weight Bi = BiT > 0l. If agent j is a follower,
its leader weight satisfies Bi = 0l. The leader matrix is defined as:

B =


B1

. . .
BN

 ≥ 0N`, Bi =


Bi,11 · · · Bi,1`
...

...
Bi,1` · · · Bi,``

 (A-4)

If the graph is connected and there is at least one leader (at least one Bi > 0), the matrix
L+B > 0N is symmetric positive definite.
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Glossary

List of Acronyms

PBSC Passivity Based Switching Control
PBVC Passivity Based Time-Varying Control
IDA-PBC Interconnection and Damping Assignment Passivity-Based Control
r-PBC r-Passivity Based Control
ODEs Ordinary Differential Equations
PDEs Partial Differential Equations
MPC Model Predictive Control
PRM Probabilistic Roadmap
RRT Rapidly Exploring Random Tree
VFH Vector Field Histogram
ORM Obstacle Restriction Method
SAFA Steer Angle Field Approach
DWA Dynamic Window Approach
APF Artificial Potential Fields
VO Velocity Obstacles
ORCA Optimal Reciprocal Collision Avoidance
FIRAS Force Inducing an Artificial Repulsion from the Surface
GNRON Goals Non-Reachable with Obstacles Nearby
STLA Small-Time Locally Accessible
STLC Small-Time Locally Controllable
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