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ABSTRACT

Among real-time traffic control methods, max-pressure (MP) control stands out due to its sim-
plicity, decentralized nature, and robust theoretical foundation. Besides, advancements in con-
nected vehicle (CV) technology have motivated a significant amount of research into traffic signal
control based on CVs. Nevertheless, few studies have been dedicated to MP control in partially
CV environments and meanwhile consider multi-modal traffic flows. To fill this research gap,
this study proposes CV-based multi-modal MP control (CV-MMP), which calculates the pressure
based on travel time information of CVs weighted by vehicle occupancy. Therefore, a hierarchi-
cal multi-modal traffic signal priority controller is achieved in a soft manner. Besides, adapting
to the requirements of practical applications, CV-MMP is extended to fuse detector data and con-
sider phase switching lost time and cyclic phase sequence. The evaluation results based on a toy
network simulation demonstrate that CV-MMP can significantly reduce transit delay with a small
increase in private vehicle delay, resulting in a significant reduction in average person delay. In
addition, approximately 75% of CBs pass through the network without experiencing delays due to
stopping. Therefore, our method can achieve effective transit signal priority and even transit signal
coordination under single transit requests.

Keywords: Max-pressure control, Connected vehicle, Multi-modal traffic, Transit signal priority
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INTRODUCTION

Traffic signal control is a critical component in managing urban traffic flows, directly impacting
travel efficiency, fuel consumption, and urban air pollution (/-5). According to the control types,
traffic signal control methods can be broadly classified into fixed-time and real-time responsive
systems. Fixed-time control is mostly applied to steady traffic flow scenarios, where a fixed signal
timing scheme is operated during the time-of-day period (6). In contrast, real-time signal control
adapts to varying traffic flows by dynamically adjusting signal timing with actuated or adaptive
control strategies (7).

Among these real-time control methods, the Max-Pressure (MP) control algorithm stands
out due to its simplicity, decentralized nature, and robust theoretical foundation (8). Unlike cen-
tralized systems requiring extensive communication infrastructure, MP control operates effectively
with local information, making it scalable and cost-effective. Its decentralized approach allows
each intersection to make independent decisions, significantly reducing computational complexity
and enhancing resilience to failures. Furthermore, the guarantees of queue stability and throughput
optimality for MP control ensure that it can maintain efficient traffic flow even under varying and
unpredictable traffic conditions (9).

Despite numerous existing studies on MP control, there are still research gaps. On the one
hand, the popularity of connected vehicles (CVs) has fostered a large number of studies dedicated
to CV-based traffic control (/0—-12), yet only a small number of studies have been dedicated to
MP control that is entirely based on CVs and takes full advantage of CV data (/3). On the other
hand, urban road networks need to serve multiple transportation modes, e.g., private cars, buses,
and trams, while few studies have considered multi-modal traffic in MP control (/4). This study
will focus on the application of MP control in multi-modal traffic scenarios and is based on CV
data only.

Literature review

The original MP calculates "pressure" for each possible signal phase by the difference in the num-
ber of vehicles between incoming and outgoing lanes (8, 9). The phase with the highest pressure
is selected at each time step, effectively pushing traffic through the network in a way that balances
demand and reduces overall delay. Subsequent research has focused on improving the original MP
in two ways, including pressure calculation and signal implementation. In this section, we will
first provide an overview of the various variants of MP control, and then pay special attention to
MP control in a partially CV environment and MP control with transit signal priority (TSP).

Variants of MP control

Releasing the ideal assumption of infinite queue capacity by original MP, Gregoire et al., (2015)
(15) introduced capacity-aware MP control that modifies pressure calculation by incorporating
intersection capacity constraints. The use of normalized pressure guarantees work conservation
of the control (i.e., at each time step the existence of a non-empty incoming link and a non-full
outgoing link is sufficient to ensure that at least one vehicle is served) and mitigates congestion
propagation. In order to address the two weaknesses of the original MP, i.e., erratic, unpredictable
phase order and requirement of known turning ratios, Le et al., (2015) (/6) proposed a cyclic MP
control with fixed cycle time and unbiased estimates of turning ratios, which still retain the stability
property. Considering fairness with respect to delay, Wu et al., (2018) (/7) proposed a head-of-line
vehicle delay-based MP control, which can reduce the excessive delay of vehicles in a small queue
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compared to the original MP control. Accounting for the spatial distribution of queues, Li et al.,
(2019) (18) proposed a position-weighted MP that gave higher weights to queues near the ingress
of the road, thus reducing the potential of spillback. Considering phase switching loss, Wang et
al., (2022) (19) extended MP control by introducing a switching rule that reduces the switching
frequency according to the congestion level. Particularly, the position-weighted pressure is further
optimized by policy-gradient reinforcement learning (RL) algorithms.

These studies have concentrated mainly on analytical models and results of variant MP
control, assuming that the traffic flow parameters, e.g., queues and turning ratios, are known, but
with little consideration of the difficulties of accurate traffic flow parameter collection in practice.
Therefore, Mercader et al., (2020) (20) proposed a cyclic travel-time-based MP control with two
practical advantages: the travel time is easier to collect than queues and travel-time-based pressure
inherently takes into account the capacity of the link.

MP control in CV environments

Recent advances in information technology have made real-time vehicle-to-vehicle (V2V), vehicle-
to-infrastructure (V2I), and vehicle-to-cloud (V2C) communications possible. Such vehicles, which
can provide real-time location and speed information, are referred to as connected vehicles (CVs).
Compared to fixed-location detectors that collect one-dimensional time-series traffic data at spe-
cific locations, CVs as mobile detectors can provide two-dimensional spatiotemporal observations
of traffic flows, which better reflects the operation of traffic flow. Its mobile detection feature
makes the CV data naturally characterized by widespread coverage, making it a cost-effective data
source for traffic management. Nevertheless, the most challenging aspect of applying CV data is
that it only accounts for a certain penetration rate of the full population of vehicles, i.e., CV data
is a sampling observation of the traffic flow. The popularity of CVs in recent years has fostered a
large number of studies on traffic state estimation and signal optimization, e.g., network OD/path
flow estimation (27/-23), intersection queue length/delay estimation (24-28), and fixed/real-time
signal optimization at intersections/arteries/networks (29—-31).

Regarding MP control, only a few studies have been devoted to CV environments. Based
on Little’s Law, Dixit et al., (2020) (32) related queue length to delay and proposed a crowdsourced
delay-based MP control that is suitable for practical implementation. Rather than using point queue
models, Liu et al., (2022) (33) used a store-and-forward model for traffic evolution and proposed a
total delay-based MP control, where the total delay is calculated as the sum of queue length during
the period between decision steps. In particular, this method is applicable to partially CV environ-
ments, although the stability is proved under 100% CV environment. Utilizing a decentralized RL
scheme, Mo et al., (13) proposed a CVLight leveraging CV data for adaptive traffic signal control,
where the reward is the negative value of the capacity-aware pressure.

MP control for multi-modal traffic

Urban road networks need to serve multiple transportation modes including private cars and public
transit. To reduce traffic congestion and lower greenhouse gas emissions, it is necessary to increase
ridership by making public transit a more attractive mobility option, by improving the efficiency
and reliability of the public transit system. TSP at signalized intersections is one of the common
and effective operational strategies. Nevertheless, only a very few studies have considered TSP
in the framework of MP control. Xu et al., (2022) (34) integrate public TSP into MP control by
including hard constraints that give priority for buses. However, the assumption of the existence
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of exclusive bus lanes limits the applicable scenarios of the method. Vlachogiannis et al., (2024)
(14) proposed HumanLight, an RL-based MP control whose reward function employs the concept
of pressure at the person level. The method achieves TSP in a soft manner to some extent by
rewarding higher occupancy vehicles with travel time savings. However, the method assumes that
all vehicles are connected, yet uses queue-based pressure and does not fully exploit the information
provided by CV trajectories. In addition, the RL-based scheme limits its portability.

Contributions of this study
To fill the aforementioned research gaps, this study proposes a CV-based MP control for multi-
modal traffic at signalized intersections, CV-MMP.

1. The proposed method calculates the pressure by the link travel times of CVs weighted
by vehicle occupancy, which is applicable to scenarios with partial CV penetration and
enables hierarchical multi-modal traffic signal priority in a soft way.

2. In order to make the proposed CV-MMP control more applicable in practice, we also
consider the phase switching lost time and the cyclic phase sequence in a soft way. Be-
sides, we show the potential of CV-MMP to fuse detector data, which make the method
adaptable to current road networks with variable detector deployment scenarios.

3. Extensive simulation results show that our method can achieve lower person delay and
transit delay, and can even achieve transit signal coordination in the case of a single
transit vehicle request. In addition, the method exhibits low sensitivity to errors in
occupancy estimation for transit vehicles, demonstrating its robustness against imperfect
data.

PRELIMINARIES

Network definition

Without loss of generality, the road traffic network is assumed to have a set .4 of signalized
intersections indexed by n. As presented in Fig. 1 (a), for each intersection n, .#, denotes the set
of input links indexed by i and ¢, denotes the set of output links indexed by o. (i,0) represents
a specific traffic movement, where the first item in this parenthesis indicates the incoming link
and the second item indicates the outgoing link. -/, denotes the specific traffic parameter related to
movement (i,0), e.g., & denotes the turning ratio of movement (i,0) accounting for the input link
i. For brevity, we omit the index used to characterize the time dependence of traffic parameters.
When not specified, these parameters refer to the time step 7y at which the signal timing decision is
taken. On the input link of movement (i,0), ¥, denotes the set of CVs with size X!, #,' denotes the
set of human-driven vehicles (HV) with size X, and 7,/ = ”/70" U 7?0i denotes the set of all vehicles
with size x/ = X! 4+ !, both of which are indexed by vehicle v. Regarding each output link o of
intersection n, it is also the input link of a neighboring intersection, whose corresponding controlled
movements are denoted by set %, and indexed by (o, k). Regarding traffic signals, _#, denotes the
set of all signal phases at intersection n, indexed by j. For each phase j, .#; denotes the set of all
permitted movements.

Information provided by CVs

In this study, those vehicles that can provide real-time location and speed information are re-
ferred to as CVs. In multi-modal traffic scenarios, CVs are broadly categorized into connected
cars (CCs), connected transit vehicles (CTs), and connected emergency vehicles (CEs). Specif-
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FIGURE 1 (a) Network definition and (b) information provided by CVs.

ically, CCs comprise those private or commercial (e.g., shared mobility vehicles) vehicles using
navigation services, which share their positioning information with map companies for travel route
planning. In particular, CCs only account for a certain ratio of all vehicles. CTs include all types of
public transport modes on urban roads, e.g., buses and trams, all of which are already connected to
implement transit priority or time-of-arrival optimization. CEs refer to ambulances and fire trucks,
which are also connected for real-time dispatching needs. In addition to trajectory information,
throughout this study we also assume that CVs can provide occupancy information, i.e., the num-
ber of passengers (including the driver) in the vehicle. For CCs, such information can be shared
by drivers when using navigation services, while for CTs, the occupancy can be estimated by the
boarding and alighting data (35, 36). B

Fig. 1 (b) illustrates the real-time trajectories of CVs on the link. For each CV v € 7, we
can easily extract its real-time link travel time LT T,,

LTT, =ty—t,, (1)

where 1 is the time step 7y at which the signal timing decision is taken and #, is the moment when
the CV entered the link. The expected travel time ET'T, is calculated as

ETT, =1,—1t,, 2)

where 7, is the projected arrival time of CV v, which can be easily estimated by the CV trajectory
(37). Meanwhile, each CV can provide its occupancy information p, (person). Then, the total
person travel time PT' T, of each CV is calculated as

PTT,=p,-LTT,. 3)

METHODOLOGY

In this section, we first summarize two types of MP control with different phase switching modes,
non-cyclic MP and cyclic MP. The former activates the phase with the highest pressure at each
decision step, resulting in a randomized phase order. The latter, on the other hand, switches phases
under the constraint of a pre-defined phase sequence. Then, we propose a CV-based MP control
method, CV-MMP, that is non-cyclic yet considers phase sequences as much as possible, utilizes
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CV information for pressure calculation, and considers multi-modal traffic flows at intersections
in a soft manner.

Non-cyclic MP

A non-cyclic MP control activates the phase with the maximum pressure at each decision time
step, where the phase pressure is calculated as the sum of the product of the weight and saturation
flow rate for each served movement. The original MP control calculates the movement weight as
the difference between the upstream link queue (point queue, i.e., the number of vehicles) and the
average downstream link queue weighted by the turning ratios (9). Later research on variants of
MP control has focused on exploring the traffic state metrics chosen for pressure calculations, e.g.,
position-weighted queue (/8), travel time (20), head-of-line delay (/7), or vehicle delay (33).

In general, a non-cyclic MP control can be expressed as follows:

Jj =arg ]rg% P;, 4)
where P;= Z wicl (5)
(i,0)e;
and w,=b,— Y ofby. (6)
(0,k)€H,

Eq. (4) activates the phase j* with maximum pressure P;; Eq. (5) calculates the pressure of each
phase j, where w!, denotes the movement weights and ¢, denotes the saturated departure rate. Eq.
(6) calculates the movement weights. b)) is the selected traffic state metric (e.g. pressure, or delay)
of movement (i,0) (i.e., the upstream link) and Y (0.k)e.x, O by 1s the corresponding average value
of the downstream link weighted by turning ratios o.

Cyclic MP

Non-cyclic MP control, although it can achieve better performance by switching phases flexibly,
may be contrary to the driver’s expectation, which means that the driver anticipates the switching
of phases through experience and prepares the vehicle to start in advance. Moreover, a cyclic
signal timing is also more friendly to pedestrians crossing the street, especially at intersections
with unbalanced traffic. Therefore, some studies propose cyclic MP control with a pre-defined
phase sequence.

Typically, the calculation of weights and pressures for cyclic MP control is similar to that
for non-cyclic MP control, with the main difference being the way in which the green phase is
determined. Currently, there are two main types of approaches to determining the green time for
cyclic MP control: one is optimization-based methods that maximize pressure over a long future
period, where hard constraints on the given phase sequence are included (38). The other allocates
the effective green time based on the proportion of pressure to the overall total as follows (16):

f(P))
Z = f (P j ) ’
where g}f is the allocated green time to phase j. G, is the total effective green time (Mercader
et al. (20) exclude minimum green time in G, thus g}k- needs to add minimum green time in such

a case). ] is the proportion determined by phase pressure. f(P;) denotes the function of P;, e.g.,
f(P;) = P; (20) or f(P;) = e"'i with parameter 7 controlling the differences in green ratios (/6).

g; = 9;G, where @;= (7)
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CV-MMP: CV-based multi-modal MP control

CV travel time-based weights

In our partially CV environment, we use the normalized total person travel time to calculate the
movement weight in Eq. (6), then we have

; ZVG“IZ}' PTT, Z(o,k)e% a]? Zvlen//;o PTT, g
0 o 70 - ®)
where ). 7 PTT, calculates the total travel time of CVs of movement (i,0), which is weighted
by occupancy information. ETT is the expected travel time of link i, which can be estimated as
the average ETT, of historical CVs on this link during the same time-of-day period. Considering
instead turning ratios oy, these could also be calibrated by the historical average turning ratio of
CVs, assuming adequate penetration rates (39).

Here we clarify three significant advantages of using normalized vehicle travel time in-
formation for weight calculation. First, similar to the TD-MP (40) which calculated weights by
vehicle delay, the vehicle travel time information also reflects the cumulative delay incurred by
vehicles, which prevents vehicles in movements with low demand from experiencing excessive
delays and improves delay equity. Second, compared to delay-based pressure weights considering
stopped vehicles only, travel time-based pressure weights also consider moving vehicles, which
more comprehensively characterizes the link traffic state. Third, by normalizing the link total
travel time with expected travel time, our weights take into account the capacity of the link to
some extent since the link travel time and link length are positively correlated.

Phase pressure considering lost time

For non-cyclic MP control, we can only determine the next phase at each decision step. Therefore,
when the next phase is different from the current phase, a phase transition period consisting of
yellow and red clearance time needs to be inserted for safety reasons in practical application,
which brings lost time to the next phase, as presented in Fig. 2.

If keeping the phase§ Phase 1
Phase 1 L
If switching the phase ‘ i Phase 2 .
Decision rrl1oment T |

FIGURE 2 Phase switching lost time.

Referring to Levin et al. (38) and Liu and Gayah (40), with consideration of phase switching
lost time, a lost time parameter &; is added in Eq. (5) to discount ¢!, as follows:
1 if (i,0) € A

Jlast (9)

P, = i6ii d 61':
1= L Wb, and {1—L/T it (i,0) ¢ .4

(ivo)etﬂj l*ast

where T 1is the length of decision steps. L is the phase switching lost time including yellow time,
red clearance time if applicable, and green start lost time. jj, . represents the activated phase
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at the last decision step. When (i,0) € .4 ji » 1.e., the next activated phase is the same as the
current phase, it is essentially an extension of the green time of the current phase, leading to no
lost time. Otherwise, the effective green time of the next activated phase becomes 7' — L, leading
to a discounted saturated departure rate, i.e., (1 —L/T)c.. Especially, the consideration of phase
transition lost time poses a constrainton 7', i.e., T > L.

Activating phase with consideration of phase sequence

Note that existing cyclic MP control activates phases with hard constraints on a pre-defined phase
sequence, which may result in sub-optimal allocation of green time to low-demand movements.
However, we would also like the phase sequence to not be completely chaotic as in the case of
non-cyclic MP control, in order to be more pedestrian-friendly and not betray the expectations of
of the drivers excessively. Therefore, this study proposes a soft sequential activation approach in
the framework of non-cyclic MP control to activate the phases in the specified phase sequence as
much as possible. Note that P; may be negative when the downstream link is more congested than
the upstream link. Here we standardize them to positive values as follows

P;=P;—min{Py|j € 7,} +1 (10)

Note that, this standardization process does not change the relative magnitudes of the pres-

sures as well as the differences between them. Then, given standardized phase pressures P]’- and

phase sequence _7, = {j},»J1.J2, -+, Jjz} at intersection n, we activate phase j* based on the
following activation approach,

jlaﬁ Jar T 7BZ_]PJI'Z} (11)

ok /
J* = arg max (.
JEIn

where f3 is an activation parameter determining the flexibility of the phase sequence and 8 € [0, 1].
A greater  will result in a more flexible phase sequence. Obviously, if B = 1, then the approach
becomes a non-cyclic MP control as each phase has an equal chance of being activated. If § = 0,
then the phase will be activated strictly in the given phase sequence without any phase skipping.
Actually, B%~! can also be understood as a preference parameter of phase jz related to the phase
sequence.

The advantage of the soft activation approach proposed in this study is that it preserves the
flexibility of phases in a few extreme scenarios (e.g., very uneven traffic) while enabling phases
to be executed in the expected sequences in most regular scenarios. By adjusting the activation
parameter J3, traffic engineers can easily decide the degree of phase flexibility, achieving a tradeoff
between control benefits and phase flexibility.

Fusing fixed-location detector data
The store-and-forward queuing model can be used to derive the dynamic queue length on each link
o of the network (i.e., the number of vehicles) based on flow conservation (9, 16, 38).

(e +1) = x0(0) +di () + ), o (0)xo (6) A v (1)85() e (1)

€Sy
—PR ) AR (O (1)eg )], (12)
where x Ay = min{x,y}. x{(t) denotes the number of vehicles of movement (0,k) at time step ¢

(for brevity we omit time step hereafter). d denotes the exogenous demand of movement (o, k)
from input links. Binary variable 77 denotes the signal state of movement (0,k). ¥ = 1 if its green
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phase is activated and otherwise 0. The third term on the right hand side indicates the vehicles from
the upstream intersection and the fourth term indicates the vehicles getting through the current
intersection. This queuing model implicitly assumes that the exogenous demand df(¢), turning
ratios (), and saturated departure rate c{(¢) are known, whereas both need to be measured or
estimated in practical applications.

Here we assume that fixed-location detectors are deployed near the stopline of signalized
intersections, based on which d (¢), &? (), and c{(t) are measured in real-time. Note that, although
some detectors on some links may malfunction, we can still estimate their outputs from the CV
data, considering the broad coverage of CVs. There have been a large number of studies focusing
on the problem of estimating the traffic state of a road network based on CVs or fused CVs and
detectors, including traffic volume/density, queue length, etc (24—26). Considering that traffic state
estimation is not the focus of this study, we assume that the number of vehicles on the link, i.e.,
x{(t), is obtained in real-time by fusing CV and fixed-location detectors.

Given the total number of vehicles x/, and the number of CVs X!, of movement (i,0), the
number of HV is calculated as ¥, = x/, — X' . Then, we extend the Eq. (8) into a more general form
integrating both CV and HV information:

APTT, 4 BETT Lionen; & |Lyero PTTy +HETT'|

Wio— Loc7)

(13)

where the term )} cyi PTT, +xE TT' calculates the total travel time of all vehicles of movement

(i,0). Note that, since we have no detailed trajectory and occupancy information of HVs, we as-
sume that the travel time of each HV is the expected travel time ETT" of the link and the occupancy
is 1. The calculation of the pressure, Eq. (9), and the phase activation function, Eq. (11), for the
proposed CV-MMP with detector data remain unchanged.

We consider two extreme cases: (i) if all vehicles are CVs, Eq. (13) is the same as Eq. (8)
as X = 0, then the method becomes a complete person travel time-based MP control. (ii) If all
vehicles are HVs, Eq. (13) becomes

wh =l — Y, oy
(0.k)€ o
as 770i is empty, then the method degenerates into the original MP control. This implies that our
method may have inherited the two properties of stability and maximum throughput of the original
MP control, although further theoretical proof is needed in future study.

EVALUATION

In this section, we test the CV-MMP with fusing detector data, with accurate occupancy informa-
tion, with considering lost time, and without considering phase sequence as default. The following
variants of CV-MMP are compared to isolate the effects of each component: (i) without occupancy
information, i.e., letting p, of all CVs be 1 in Eq. (3), (ii) with inaccurate occupancy information,
1.e., adding random errors to p,, of CBs, (iii) without considering lost time, i.e., letting 5(’; =1 for
all movements in Eq. (9), (iv) without fusing detector data, i.e., calculating weights by Eq. (8), (v)
with considering phase sequence, i.e., activating the phase by Eq. (11).
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Toy network

The proposed CV-MMP control method is evaluated in a toy network with five intersections in DLR
SUMO (41), including one center intersection and four perimeter intersections, as illustrated in Fig.
3. Each intersection consists of four links and each link comprises three lanes for different turning
directions, i.e., left turn, straight through, and right turn. The turn ratios for the straight-through and
left-turn directions are centered at 0.55 and 0.25 respectively, accompanied by deviations following
a normal distribution. Vehicle inputs at peripheral links follow Poisson distributions with arrival
rates ranging from 0.13-0.18 veh/s. In total, the input volume of the whole network is about 6700
veh/h, corresponding to a demand-to-capacity ratio (d/c) of about 0.8.

500 m
13.89 m/s

1+4 intersections Intersection layout

FIGURE 3 Toy network simulation.

Two types of connected vehicles are included in the 60 min simulation, connected buses
(CBs) and connected cars (CCs). The occupancy (including the driver) of CBs ranges from 16—
86, while that of CCs ranges from 2-5. Regarding HVs, since they are not connected, occupancy
defaults to 1. Under different test scenarios, the penetration rate of CBs is fixed at 3% and the
penetration rate of CCs varies from 0.1-0.9. Considering the phase switching lost time, including
3 seconds of yellow time and 2 seconds of green start lost time, the decision step for CV-MMP is
set to be 10 s.

Result analysis

With and without occupancy information

This section compares the performance of CV-MMP control with and without occupancy informa-
tion. Note that delay here refers to the control delay, i.e., the total time loss of a vehicle due to the
signal control. From Fig. 4 (a) and (b), we can find that:

a. With increasing CC penetration rates, both average vehicle and person delay decrease for
CV-MMP without occupancy information. Besides, the vehicle delay is almost the same
as the person delay under various penetration rates.

b. With increasing CC penetration rates, the average vehicle delay decreases while the av-
erage person delay increases for CV-MMP with occupancy information. Besides, the
average person delay is significantly less than the average vehicle delay, though such
differences decrease with increasing CC penetration rates.

c. Compared to CV-MMP without occupancy information, though the average vehicle de-
lay of CV-MMP with occupancy information increases by 4—6 s/vehicle, the average
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FIGURE 4 CV-MMP performance with and without occupancy information.

person delay decreases significantly, varying from 7-23 s/person as CC penetration rate
decreases.
The above results can be interpreted by the detailed performance of each type of vehicle
presented in Fig. 4 (c)—(e):
d. After utilizing occupancy information, the proposed CV-MMP control significantly re-
duces the delay of those CVs with high occupancy, i.e., CBs, accompanied by a very
small sacrifice of delay of the other vehicles, i.e., CCs and HVs. For instance, at a 0.1
penetration rate of CCs, the average CB delay decreases by almost 68.1%, while the av-
erage HV delay only increases by 15.6% and the average CC delay almost has no change.
In terms of the number of vehicles, CBs only accounted for 3% of the total, and after
CV-MMP utilizing the occupancy information, the average vehicle delay still increased due to the
increase in other vehicle (accounting for 97%) delays, even though CB delays were significantly
reduced. As for the person delay, since the occupancy of CB is very high, the total person delay of
CBs is also high as a percentage of the total, so the decrease in CB delay can lead to a significant
decrease in average person delay.
In Fig. 4 (f)—(h), we further provide some detailed results on the performance of CBs. Fig.
4 (f) shows that, similar to the average CB delay presented in Fig. 4 (c), average CB queuing counts
are also significantly reduced under various CC penetration rates considering CV-MMP utilizing
occupancy information. Fig. 4 (g) presents the detailed space-time trajectories of CBs at a 0.3 CC
penetration rate, where solid lines represent CBs with stopped delay (the duration when the vehicle
speed is 0) no more than 10 s and dashed lines represent CBs with stopped delay greater than 10
s. Fig. 4 (h) presents the percentage of CBs for different stopped delays. As shown, 74.6% of CBs
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did not experience a stopped delay and 86.5% of CBs experienced a stopped delay of no more than
10 s. These results suggest that:
e. The proposed CV-MMP control with occupancy information can significantly reduce
the average delay and queuing counts of CBs and thus achieves TSP in a soft manner.
When there are no conflicting transit requests, the proposed CV-MMP control can even
achieve CB signal coordination on arbitrary paths, i.e., CBs experiencing no stopped
delays without pre-defining coordinated paths.

Impact of CB occupancy errors
In practical application, the occupancy information of transit vehicles normally needs to be esti-
mated, which suffers from inevitable errors (35). Therefore, in this section, we test the performance
of the proposed CV-MMP control with inaccurate occupancy information, where the CC penetra-
tion rate is 0.2. Here we added random errors on bus occupancy to model estimation errors, which
follow Normal distributions Normal(0,6?). Fig. 5 presents the average delay of CBs, vehicles,
and persons under varying o. Note that 6 = 0 represents the case with accurate occupancy infor-
mation. We can find:

f. The proposed CV-MMP control is robust to occupancy errors of transit vehicles as both

average CB, vehicle, and person delay almost remain unchanged across varying ©.

80
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>
©
3
° 40 —
()]
©
e
420’ e == = e = = = = = = = = =)
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No error 5 15 25 35

Standard deviation of added errors, o

FIGURE 5 Impact of occupancy errors.

With and without considering lost time

Note that disregarding the lost time does not mean that we ignore the phase transition period
(yellow time and red clearing time), but rather that we do not take into account the discounting
of the saturated departure rate due to the phase switching lost time, i.e., 8. = 1 for all movements
when calculating the phase pressure based on Eq. (9). Fig. 6 presents the results of CV-MMP with
and without considering phase switching lost time and we find that:

g. Compared to CV-MMP without considering lost time, considering lost time can improve
both average vehicle and person delay under various CC penetration rates. This is be-
cause, as evidenced by Fig. 6 (c), considering lost time can significantly reduce the num-
ber of phase switching under various CC penetration rates, thus raising the cumulative
effective green time of the whole road network.

With and without fusing detector data
This section evaluates the performance of CV-MMP in scenarios with and without fusing detector
data. As shown in Fig. 7 (a) and (b):
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FIGURE 6 CV-MMP performance with and without considering lost time.
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FIGURE 7 CV-MMP performance with and without fusing detector data.

h. By fusing detector data, both the average vehicle and person delays of CV-MMP are
improved under various CC penetration rates. Such improvements are more significant
under lower CC penetration rates. When the CC penetration rate is 0.1, the improvements
of the average vehicle and person delays reach 21% and 16.5%, respectively.

Fig. 7 (c)—(e) shows that:

1. The average CB and CC delays are almost the same under various CC penetration rates
for CV-MMP with and without fusing detector data, while the average HV delay sig-
nificantly decreases after CV-MMP fusing detector data. This suggests that fusing the
detector data mainly improves the efficiency of the HV and has less effect on the CV.

j. When the CC penetration rate reaches 30%, the CV-MMP control can then discard the
detector data for traffic signal control altogether, as the fusing detector data produces
very limited marginal benefit beyond this point.

With and without considering phase sequence

This section evaluates the effect of the proposed soft sequential activation approach, where differ-
ent values of activation parameter 3 are tested at a CC penetration rate of 0.3. Recall that, B = 1
and B = 0 represent two extreme cases: completely non-cyclic and completely cyclic. The ratio
of disordered switching is used to indicate the ratio of incorrect switching that violates the prede-



O 00 9 N Lt W=

—_ —
—_ O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Tan, Rinaldi, and Lint 15

fined phase sequence, which can equally be interpreted as the proportion of the decisions skipping
phases. As shown in Fig. 8:

k. With the activation parameter decreasing from 1 to 0, the ratio of disordered switching
almost decreases linearly from 0.56 to 0, while the average delay of CBs increases grad-
ually from 19.5 s/CB to 42.5 s/CB. Since the traffic is more balanced across links in our
scenario, the performance of CBs is mainly affected when considering a cyclic phase
sequence, under which, some CBs are forced to wait for one more phase, thus increasing
the number of CB queuing counts and delays.

1. We suggest adopting a B between 0.5-0.6 for a tradeoff between the CB performance
and the ratio of disordered switching. At these points, the ratio of disordered switching
decreases to within 25%, and the average CB delay increases by only 18%.

80 0.8
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70 - L 07 £
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o ] @
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° 2
2 40 04 3
2 30 | L 03 2
<< o
< 20 L 020
hel
10 F 01l
o

0 - 0

0.6 05 . .
Activation parameter

FIGURE 8 CV-MMP performance with and without considering phase sequence.

CONCLUSION AND FUTURE WORK

To fill the research gap that few studies have considered multi-modal traffic for MP control in
partially CV environments, this study proposed CV-MMP control, which calculated the pressure
based on the travel time of CVs weighted by their occupancy information. In particular, consid-
ering the requirements of practical applications, we further consider the phase switching lost time
and cyclic phase sequence by introducing a lost time parameter and an activation parameter. Be-
sides, CV-MMP has the potential to fuse fixed-location detector data for enhanced performance
under low-penetration-rate CV environments, adapting to variable detector deployment scenarios
in current road networks.

Extensive simulation tests on a toy network demonstrated that (i) CV-MMP significantly
reduces average delay (e.g., -68.1% at 0.1 CC penetration rate) for high-occupancy vehicles, such
as buses, with limited increase (+15.6%) in low-occupancy vehicles, i.e., private cars, leading to
a significant reduction in average person delay (-35.2%). (ii) CV-MMP can even enable transit
signal coordination, as the majority (about 75%) of buses do not experience stopped delays in the
network. This can also be demonstrated by the significant reduction in the number of queuing
counts of buses (-79% at 0.1 CC penetration rate). (iii) After considering the phase switching lost
time, the performance of CV-MMP can be further improved due to the reduced phase switching
frequency. (iv) Fusing fixed-location detector data can also enhance the performance of CV-MMP,
mainly in scenarios with CC penetration rates less than 0.3. (v) By introducing an activation
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parameter, the CV-MMP can combine both cyclic and non-cyclic phase switching, achieving a
tradeoff between the bus performance and the ratio of disordered switching.

There are several possible future research directions. First, theoretical proofs of the stability
and maximum throughput of the proposed CV-MMP control are required. Second, we need to test
the performance of CV-MMP based on a real road network under various traffic scenarios (e.g.,
containing a wider variety of vehicles including cars, buses, trams, and emergency vehicles) and
unbalanced traffic flows.
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