

Delft University of Technology

CV-MMP: max-pressure control for multi-modal traffic in partially connected vehicle environments

Tan, Chaopeng; Rinaldi, Marco; van Lint, Hans

Publication date

2025

Document Version

Accepted author manuscript

Citation (APA)

Tan, C., Rinaldi, M., & van Lint, H. (2025). *CV-MMP: max-pressure control for multi-modal traffic in partially connected vehicle environments*. Paper presented at 104th Annual Meeting of the Transportation Research Board (TRB), Washington DC, District of Columbia, United States.

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

<https://www.openaccess.nl/en/you-share-we-take-care>

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

1 **CV-MMP: Max-pressure control for multi-modal traffic in partially connected vehicle
2 environments**

3

4

5

6 **Chaopeng Tan, Ph.D., Postdoc**

7 Department of Transport and Planning

8 Delft University of Technology

9 Gebouw 23, Stevinweg 1, 2628 CN, Delft, Netherlands

10 Email: c.tan-2@tudelft.nl

11

12 **Marco Rinaldi, Ph.D., Assistant Professor**

13 *Corresponding author*

14 Department of Transport and Planning

15 Delft University of Technology

16 Gebouw 23, Stevinweg 1, 2628 CN, Delft, Netherlands

17 Email: m.rinaldi@tudelft.nl

18

19 **Hans van Lint, Ph.D., Professor**

20 Department of Transport and Planning

21 Delft University of Technology

22 Gebouw 23, Stevinweg 1, 2628 CN, Delft, Netherlands

23 Email: j.w.c.vanlint@tudelft.nl

24

25

26

27

28 Word Count: 5913 words + 0 table(s) \times 250 = 5913 words

29

30

31

32

33

34

35 Submission Date: March 12, 2025

1 ABSTRACT

2 Among real-time traffic control methods, max-pressure (MP) control stands out due to its sim-
3 plicity, decentralized nature, and robust theoretical foundation. Besides, advancements in con-
4 nected vehicle (CV) technology have motivated a significant amount of research into traffic signal
5 control based on CVs. Nevertheless, few studies have been dedicated to MP control in partially
6 CV environments and meanwhile consider multi-modal traffic flows. To fill this research gap,
7 this study proposes CV-based multi-modal MP control (CV-MMP), which calculates the pressure
8 based on travel time information of CVs weighted by vehicle occupancy. Therefore, a hierarchi-
9 cal multi-modal traffic signal priority controller is achieved in a soft manner. Besides, adapting
10 to the requirements of practical applications, CV-MMP is extended to fuse detector data and con-
11 sider phase switching lost time and cyclic phase sequence. The evaluation results based on a toy
12 network simulation demonstrate that CV-MMP can significantly reduce transit delay with a small
13 increase in private vehicle delay, resulting in a significant reduction in average person delay. In
14 addition, approximately 75% of CBs pass through the network without experiencing delays due to
15 stopping. Therefore, our method can achieve effective transit signal priority and even transit signal
16 coordination under single transit requests.

17

18 *Keywords:* Max-pressure control, Connected vehicle, Multi-modal traffic, Transit signal priority

1 INTRODUCTION

2 Traffic signal control is a critical component in managing urban traffic flows, directly impacting
3 travel efficiency, fuel consumption, and urban air pollution (1–5). According to the control types,
4 traffic signal control methods can be broadly classified into fixed-time and real-time responsive
5 systems. Fixed-time control is mostly applied to steady traffic flow scenarios, where a fixed signal
6 timing scheme is operated during the time-of-day period (6). In contrast, real-time signal control
7 adapts to varying traffic flows by dynamically adjusting signal timing with actuated or adaptive
8 control strategies (7).

9 Among these real-time control methods, the Max-Pressure (MP) control algorithm stands
10 out due to its simplicity, decentralized nature, and robust theoretical foundation (8). Unlike cen-
11 tralized systems requiring extensive communication infrastructure, MP control operates effectively
12 with local information, making it scalable and cost-effective. Its decentralized approach allows
13 each intersection to make independent decisions, significantly reducing computational complexity
14 and enhancing resilience to failures. Furthermore, the guarantees of queue stability and throughput
15 optimality for MP control ensure that it can maintain efficient traffic flow even under varying and
16 unpredictable traffic conditions (9).

17 Despite numerous existing studies on MP control, there are still research gaps. On the one
18 hand, the popularity of connected vehicles (CVs) has fostered a large number of studies dedicated
19 to CV-based traffic control (10–12), yet only a small number of studies have been dedicated to
20 MP control that is entirely based on CVs and takes full advantage of CV data (13). On the other
21 hand, urban road networks need to serve multiple transportation modes, e.g., private cars, buses,
22 and trams, while few studies have considered multi-modal traffic in MP control (14). This study
23 will focus on the application of MP control in multi-modal traffic scenarios and is based on CV
24 data only.

25 Literature review

26 The original MP calculates "pressure" for each possible signal phase by the difference in the num-
27 ber of vehicles between incoming and outgoing lanes (8, 9). The phase with the highest pressure
28 is selected at each time step, effectively pushing traffic through the network in a way that balances
29 demand and reduces overall delay. Subsequent research has focused on improving the original MP
30 in two ways, including pressure calculation and signal implementation. In this section, we will
31 first provide an overview of the various variants of MP control, and then pay special attention to
32 MP control in a partially CV environment and MP control with transit signal priority (TSP).

33 *Variants of MP control*

34 Releasing the ideal assumption of infinite queue capacity by original MP, Gregoire et al., (2015)
35 (15) introduced capacity-aware MP control that modifies pressure calculation by incorporating
36 intersection capacity constraints. The use of normalized pressure guarantees work conservation
37 of the control (i.e., at each time step the existence of a non-empty incoming link and a non-full
38 outgoing link is sufficient to ensure that at least one vehicle is served) and mitigates congestion
39 propagation. In order to address the two weaknesses of the original MP, i.e., erratic, unpredictable
40 phase order and requirement of known turning ratios, Le et al., (2015) (16) proposed a cyclic MP
41 control with fixed cycle time and unbiased estimates of turning ratios, which still retain the stability
42 property. Considering fairness with respect to delay, Wu et al., (2018) (17) proposed a head-of-line
43 vehicle delay-based MP control, which can reduce the excessive delay of vehicles in a small queue

1 compared to the original MP control. Accounting for the spatial distribution of queues, Li et al.,
2 (2019) (18) proposed a position-weighted MP that gave higher weights to queues near the ingress
3 of the road, thus reducing the potential of spillback. Considering phase switching loss, Wang et
4 al., (2022) (19) extended MP control by introducing a switching rule that reduces the switching
5 frequency according to the congestion level. Particularly, the position-weighted pressure is further
6 optimized by policy-gradient reinforcement learning (RL) algorithms.

7 These studies have concentrated mainly on analytical models and results of variant MP
8 control, assuming that the traffic flow parameters, e.g., queues and turning ratios, are known, but
9 with little consideration of the difficulties of accurate traffic flow parameter collection in practice.
10 Therefore, Mercader et al., (2020) (20) proposed a cyclic travel-time-based MP control with two
11 practical advantages: the travel time is easier to collect than queues and travel-time-based pressure
12 inherently takes into account the capacity of the link.

13 *MP control in CV environments*

14 Recent advances in information technology have made real-time vehicle-to-vehicle (V2V), vehicle-
15 to-infrastructure (V2I), and vehicle-to-cloud (V2C) communications possible. Such vehicles, which
16 can provide real-time location and speed information, are referred to as connected vehicles (CVs).
17 Compared to fixed-location detectors that collect one-dimensional time-series traffic data at spe-
18 cific locations, CVs as mobile detectors can provide two-dimensional spatiotemporal observations
19 of traffic flows, which better reflects the operation of traffic flow. Its mobile detection feature
20 makes the CV data naturally characterized by widespread coverage, making it a cost-effective data
21 source for traffic management. Nevertheless, the most challenging aspect of applying CV data is
22 that it only accounts for a certain penetration rate of the full population of vehicles, i.e., CV data
23 is a sampling observation of the traffic flow. The popularity of CVs in recent years has fostered a
24 large number of studies on traffic state estimation and signal optimization, e.g., network OD/path
25 flow estimation (21–23), intersection queue length/delay estimation (24–28), and fixed/real-time
26 signal optimization at intersections/arteries/networks (29–31).

27 Regarding MP control, only a few studies have been devoted to CV environments. Based
28 on Little's Law, Dixit et al., (2020) (32) related queue length to delay and proposed a crowdsourced
29 delay-based MP control that is suitable for practical implementation. Rather than using point queue
30 models, Liu et al., (2022) (33) used a store-and-forward model for traffic evolution and proposed a
31 total delay-based MP control, where the total delay is calculated as the sum of queue length during
32 the period between decision steps. In particular, this method is applicable to partially CV environ-
33 ments, although the stability is proved under 100% CV environment. Utilizing a decentralized RL
34 scheme, Mo et al., (13) proposed a CVLight leveraging CV data for adaptive traffic signal control,
35 where the reward is the negative value of the capacity-aware pressure.

36 *MP control for multi-modal traffic*

37 Urban road networks need to serve multiple transportation modes including private cars and public
38 transit. To reduce traffic congestion and lower greenhouse gas emissions, it is necessary to increase
39 ridership by making public transit a more attractive mobility option, by improving the efficiency
40 and reliability of the public transit system. TSP at signalized intersections is one of the common
41 and effective operational strategies. Nevertheless, only a very few studies have considered TSP
42 in the framework of MP control. Xu et al., (2022) (34) integrate public TSP into MP control by
43 including hard constraints that give priority for buses. However, the assumption of the existence

1 of exclusive bus lanes limits the applicable scenarios of the method. Vlachogiannis et al., (2024)
 2 (14) proposed HumanLight, an RL-based MP control whose reward function employs the concept
 3 of pressure at the person level. The method achieves TSP in a soft manner to some extent by
 4 rewarding higher occupancy vehicles with travel time savings. However, the method assumes that
 5 all vehicles are connected, yet uses queue-based pressure and does not fully exploit the information
 6 provided by CV trajectories. In addition, the RL-based scheme limits its portability.

7 Contributions of this study

8 To fill the aforementioned research gaps, this study proposes a CV-based MP control for multi-
 9 modal traffic at signalized intersections, CV-MMP.

- 10 1. The proposed method calculates the pressure by the link travel times of CVs weighted
 11 by vehicle occupancy, which is applicable to scenarios with partial CV penetration and
 12 enables hierarchical multi-modal traffic signal priority in a soft way.
- 13 2. In order to make the proposed CV-MMP control more applicable in practice, we also
 14 consider the phase switching lost time and the cyclic phase sequence in a soft way. Be-
 15 sides, we show the potential of CV-MMP to fuse detector data, which make the method
 16 adaptable to current road networks with variable detector deployment scenarios.
- 17 3. Extensive simulation results show that our method can achieve lower person delay and
 18 transit delay, and can even achieve transit signal coordination in the case of a single
 19 transit vehicle request. In addition, the method exhibits low sensitivity to errors in
 20 occupancy estimation for transit vehicles, demonstrating its robustness against imperfect
 21 data.

22 PRELIMINARIES

23 Network definition

24 Without loss of generality, the road traffic network is assumed to have a set \mathcal{N} of signalized
 25 intersections indexed by n . As presented in Fig. 1 (a), for each intersection n , \mathcal{I}_n denotes the set
 26 of input links indexed by i and \mathcal{O}_n denotes the set of output links indexed by o . (i, o) represents
 27 a specific traffic movement, where the first item in this parenthesis indicates the incoming link
 28 and the second item indicates the outgoing link. \cdot_o^i denotes the specific traffic parameter related to
 29 movement (i, o) , e.g., α_o^i denotes the turning ratio of movement (i, o) accounting for the input link
 30 i . For brevity, we omit the index used to characterize the time dependence of traffic parameters.
 31 When not specified, these parameters refer to the time step t_0 at which the signal timing decision is
 32 taken. On the input link of movement (i, o) , $\tilde{\mathcal{V}}_o^i$ denotes the set of CVs with size \tilde{x}_o^i , $\hat{\mathcal{V}}_o^i$ denotes the
 33 set of human-driven vehicles (HV) with size \hat{x}_o^i , and $\mathcal{V}_o^i = \tilde{\mathcal{V}}_o^i \cup \hat{\mathcal{V}}_o^i$ denotes the set of all vehicles
 34 with size $x_o^i = \tilde{x}_o^i + \hat{x}_o^i$, both of which are indexed by vehicle v . Regarding each output link o of
 35 intersection n , it is also the input link of a neighboring intersection, whose corresponding controlled
 36 movements are denoted by set \mathcal{K}_o and indexed by (o, k) . Regarding traffic signals, \mathcal{J}_n denotes the
 37 set of all signal phases at intersection n , indexed by j . For each phase j , \mathcal{M}_j denotes the set of all
 38 permitted movements.

39 Information provided by CVs

40 In this study, those vehicles that can provide real-time location and speed information are re-
 41 ferred to as CVs. In multi-modal traffic scenarios, CVs are broadly categorized into connected
 42 cars (CCs), connected transit vehicles (CTs), and connected emergency vehicles (CEs). Specif-

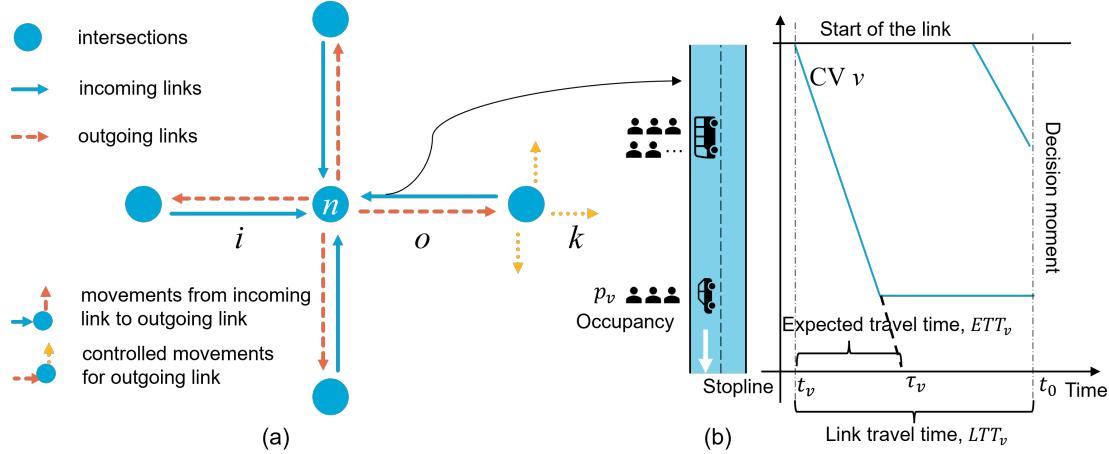


FIGURE 1 (a) Network definition and (b) information provided by CVs.

1 ically, CCs comprise those private or commercial (e.g., shared mobility vehicles) vehicles using
 2 navigation services, which share their positioning information with map companies for travel route
 3 planning. In particular, CCs only account for a certain ratio of all vehicles. CTs include all types of
 4 public transport modes on urban roads, e.g., buses and trams, all of which are already connected to
 5 implement transit priority or time-of-arrival optimization. CEs refer to ambulances and fire trucks,
 6 which are also connected for real-time dispatching needs. In addition to trajectory information,
 7 throughout this study we also assume that CVs can provide occupancy information, i.e., the num-
 8 ber of passengers (including the driver) in the vehicle. For CCs, such information can be shared
 9 by drivers when using navigation services, while for CTs, the occupancy can be estimated by the
 10 boarding and alighting data (35, 36).

Fig. 1 (b) illustrates the real-time trajectories of CVs on the link. For each CV $v \in \mathcal{V}_o^i$, we can easily extract its real-time link travel time LT_{T_v} ,

$$LTT_v = t_0 - t_v, \quad (1)$$

14 where t_0 is the time step t_0 at which the signal timing decision is taken and t_v is the moment when
 15 the CV entered the link. The expected travel time ETT_v is calculated as

$$ETT_v = \tau_v - t_v, \quad (2)$$

17 where τ_v is the projected arrival time of CV v , which can be easily estimated by the CV trajectory
 18 (37). Meanwhile, each CV can provide its occupancy information p_v (person). Then, the total
 19 person travel time PTT_v of each CV is calculated as

$$PTT_v = p_v \cdot LT T_v. \quad (3)$$

21 METHODOLOGY

22 In this section, we first summarize two types of MP control with different phase switching modes,
 23 non-cyclic MP and cyclic MP. The former activates the phase with the highest pressure at each
 24 decision step, resulting in a randomized phase order. The latter, on the other hand, switches phases
 25 under the constraint of a pre-defined phase sequence. Then, we propose a CV-based MP control
 26 method, CV-MMP, that is non-cyclic yet considers phase sequences as much as possible, utilizes

1 CV information for pressure calculation, and considers multi-modal traffic flows at intersections
 2 in a soft manner.

3 **Non-cyclic MP**

4 A non-cyclic MP control activates the phase with the maximum pressure at each decision time
 5 step, where the phase pressure is calculated as the sum of the product of the weight and saturation
 6 flow rate for each served movement. The original MP control calculates the movement weight as
 7 the difference between the upstream link queue (point queue, i.e., the number of vehicles) and the
 8 average downstream link queue weighted by the turning ratios (9). Later research on variants of
 9 MP control has focused on exploring the traffic state metrics chosen for pressure calculations, e.g.,
 10 position-weighted queue (18), travel time (20), head-of-line delay (17), or vehicle delay (33).

11 In general, a non-cyclic MP control can be expressed as follows:

12
$$j^* = \arg \max_{j \in \mathcal{J}_n} P_j, \quad (4)$$

13 where $P_j = \sum_{(i,o) \in \mathcal{M}_j} w_o^i c_o^i \quad (5)$

14 and $w_o^i = b_o^i - \sum_{(o,k) \in \mathcal{K}_o} \alpha_k^o b_k^o. \quad (6)$

15 Eq. (4) activates the phase j^* with maximum pressure P_j ; Eq. (5) calculates the pressure of each
 16 phase j , where w_o^i denotes the movement weights and c_o^i denotes the saturated departure rate. Eq.
 17 (6) calculates the movement weights. b_o^i is the selected traffic state metric (e.g. pressure, or delay)
 18 of movement (i,o) (i.e., the upstream link) and $\sum_{(o,k) \in \mathcal{K}_o} \alpha_k^o b_k^o$ is the corresponding average value
 19 of the downstream link weighted by turning ratios α_k^o .

20 **Cyclic MP**

21 Non-cyclic MP control, although it can achieve better performance by switching phases flexibly,
 22 may be contrary to the driver's expectation, which means that the driver anticipates the switching
 23 of phases through experience and prepares the vehicle to start in advance. Moreover, a cyclic
 24 signal timing is also more friendly to pedestrians crossing the street, especially at intersections
 25 with unbalanced traffic. Therefore, some studies propose cyclic MP control with a pre-defined
 26 phase sequence.

27 Typically, the calculation of weights and pressures for cyclic MP control is similar to that
 28 for non-cyclic MP control, with the main difference being the way in which the green phase is
 29 determined. Currently, there are two main types of approaches to determining the green time for
 30 cyclic MP control: one is optimization-based methods that maximize pressure over a long future
 31 period, where hard constraints on the given phase sequence are included (38). The other allocates
 32 the effective green time based on the proportion of pressure to the overall total as follows (16):

33
$$g_j^* = \varphi_j G_n \quad \text{where} \quad \varphi_j = \frac{f(P_j)}{\sum_{j \in \mathcal{J}_n} f(P_j)}, \quad (7)$$

34 where g_j^* is the allocated green time to phase j . G_n is the total effective green time (Mercader
 35 et al. (20) exclude minimum green time in G_n , thus g_j^* needs to add minimum green time in such
 36 a case). φ_j is the proportion determined by phase pressure. $f(P_j)$ denotes the function of P_j , e.g.,
 37 $f(P_j) = P_j$ (20) or $f(P_j) = e^{\eta P_j}$ with parameter η controlling the differences in green ratios (16).

1 **CV-MMP: CV-based multi-modal MP control**2 *CV travel time-based weights*

3 In our partially CV environment, we use the normalized total person travel time to calculate the
4 movement weight in Eq. (6), then we have

$$5 \quad w_o^i = \frac{\sum_{v \in \tilde{\mathcal{V}}_o^i} PTT_v}{\overline{ETT}^i} - \frac{\sum_{(o,k) \in \mathcal{K}_o} \alpha_k^o \sum_{v' \in \tilde{\mathcal{V}}_k^o} PTT_{v'}}{\overline{ETT}^o}. \quad (8)$$

6 where $\sum_{v \in \tilde{\mathcal{V}}_o^i} PTT_v$ calculates the total travel time of CVs of movement (i, o) , which is weighted
7 by occupancy information. \overline{ETT}^i is the expected travel time of link i , which can be estimated as
8 the average ETT_v of historical CVs on this link during the same time-of-day period. Considering
9 instead turning ratios α_k^o , these could also be calibrated by the historical average turning ratio of
10 CVs, assuming adequate penetration rates (39).

11 Here we clarify *three significant advantages* of using normalized vehicle travel time in-
12 formation for weight calculation. First, similar to the TD-MP (40) which calculated weights by
13 vehicle delay, the vehicle travel time information also reflects the cumulative delay incurred by
14 vehicles, which prevents vehicles in movements with low demand from experiencing excessive
15 delays and improves delay equity. Second, compared to delay-based pressure weights considering
16 stopped vehicles only, travel time-based pressure weights also consider moving vehicles, which
17 more comprehensively characterizes the link traffic state. Third, by normalizing the link total
18 travel time with expected travel time, our weights take into account the capacity of the link to
19 some extent since the link travel time and link length are positively correlated.

20 *Phase pressure considering lost time*

21 For non-cyclic MP control, we can only determine the next phase at each decision step. Therefore,
22 when the next phase is different from the current phase, a phase transition period consisting of
23 yellow and red clearance time needs to be inserted for safety reasons in practical application,
24 which brings lost time to the next phase, as presented in Fig. 2.

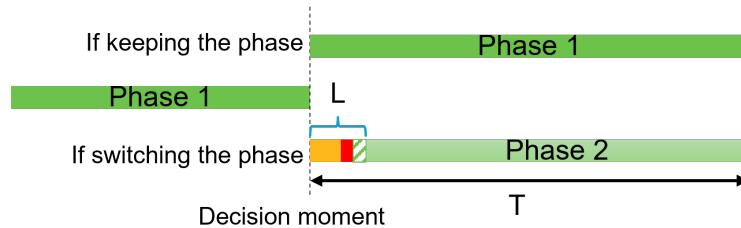


FIGURE 2 Phase switching lost time.

25 Referring to Levin et al. (38) and Liu and Gayah (40), with consideration of phase switching
26 lost time, a lost time parameter δ_o^i is added in Eq. (5) to discount c_o^i as follows:

$$27 \quad P_j = \sum_{(i,o) \in \mathcal{M}_j} w_o^i \delta_o^i c_o^i \quad \text{and} \quad \delta_o^i = \begin{cases} 1 & \text{if } (i,o) \in \mathcal{M}_{j_{last}}^* \\ 1 - L/T & \text{if } (i,o) \notin \mathcal{M}_{j_{last}}^* \end{cases} \quad (9)$$

28 where T is the length of decision steps. L is the phase switching lost time including yellow time,
29 red clearance time if applicable, and green start lost time. j_{last}^* represents the activated phase

1 at the last decision step. When $(i, o) \in \mathcal{M}_{j_{last}^*}$, i.e., the next activated phase is the same as the
 2 current phase, it is essentially an extension of the green time of the current phase, leading to no
 3 lost time. Otherwise, the effective green time of the next activated phase becomes $T - L$, leading
 4 to a discounted saturated departure rate, i.e., $(1 - L/T)c_o^i$. Especially, the consideration of phase
 5 transition lost time poses a constraint on T , i.e., $T > L$.

6 *Activating phase with consideration of phase sequence*

7 Note that existing cyclic MP control activates phases with hard constraints on a pre-defined phase
 8 sequence, which may result in sub-optimal allocation of green time to low-demand movements.
 9 However, we would also like the phase sequence to not be completely chaotic as in the case of
 10 non-cyclic MP control, in order to be more pedestrian-friendly and not betray the expectations of
 11 of the drivers excessively. Therefore, this study proposes a soft sequential activation approach in
 12 the framework of non-cyclic MP control to activate the phases in the specified phase sequence as
 13 much as possible. Note that P_j may be negative when the downstream link is more congested than
 14 the upstream link. Here we standardize them to positive values as follows

$$15 \quad P'_j = P_j - \min\{P_{j'} | j' \in \mathcal{J}_n\} + 1 \quad (10)$$

16 Note that, this standardization process does not change the relative magnitudes of the pres-
 17 sures as well as the differences between them. Then, given standardized phase pressures P'_j and
 18 phase sequence $\mathcal{J}_n = \{j_{last}^*, j_1, j_2, \dots, j_Z\}$ at intersection n , we activate phase j^* based on the
 19 following activation approach,

$$20 \quad j^* = \arg \max_{j \in \mathcal{J}_n} \{P'_{j_{last}^*}, P'_{j_1}, \beta P'_{j_2}, \dots, \beta^{Z-1} P'_{j_Z}\} \quad (11)$$

21 where β is an activation parameter determining the flexibility of the phase sequence and $\beta \in [0, 1]$.
 22 A greater β will result in a more flexible phase sequence. Obviously, if $\beta = 1$, then the approach
 23 becomes a non-cyclic MP control as each phase has an equal chance of being activated. If $\beta = 0$,
 24 then the phase will be activated strictly in the given phase sequence without any phase skipping.
 25 Actually, β^{Z-1} can also be understood as a preference parameter of phase j_Z related to the phase
 26 sequence.

27 The advantage of the soft activation approach proposed in this study is that it preserves the
 28 flexibility of phases in a few extreme scenarios (e.g., very uneven traffic) while enabling phases
 29 to be executed in the expected sequences in most regular scenarios. By adjusting the activation
 30 parameter β , traffic engineers can easily decide the degree of phase flexibility, achieving a tradeoff
 31 between control benefits and phase flexibility.

32 *Fusing fixed-location detector data*

33 The store-and-forward queuing model can be used to derive the dynamic queue length on each link
 34 o of the network (i.e., the number of vehicles) based on flow conservation (9, 16, 38).

$$35 \quad x_k^o(t+1) = x_k^o(t) + d_k^o(t) + \sum_{i \in \mathcal{J}_n} \alpha_k^o(t) [x_o^i(t) \wedge \gamma_o^i(t) \delta_o^i(t) c_o^i(t)] \\ 36 \quad - [x_k^o(t) \wedge \gamma_k^o(t) \delta_k^o(t) c_k^o(t)], \quad (12)$$

37 where $x \wedge y = \min\{x, y\}$. $x_k^o(t)$ denotes the number of vehicles of movement (o, k) at time step t
 38 (for brevity we omit time step hereafter). d_k^o denotes the exogenous demand of movement (o, k)
 39 from input links. Binary variable γ_k^o denotes the signal state of movement (o, k) . $\gamma_k^o = 1$ if its green

1 phase is activated and otherwise 0. The third term on the right hand side indicates the vehicles from
 2 the upstream intersection and the fourth term indicates the vehicles getting through the current
 3 intersection. This queuing model implicitly assumes that the exogenous demand $d_k^o(t)$, turning
 4 ratios $\alpha_k^o(t)$, and saturated departure rate $c_k^o(t)$ are known, whereas both need to be measured or
 5 estimated in practical applications.

6 Here we assume that fixed-location detectors are deployed near the stopline of signalized
 7 intersections, based on which $d_k^o(t)$, $\alpha_k^o(t)$, and $c_k^o(t)$ are measured in real-time. Note that, although
 8 some detectors on some links may malfunction, we can still estimate their outputs from the CV
 9 data, considering the broad coverage of CVs. There have been a large number of studies focusing
 10 on the problem of estimating the traffic state of a road network based on CVs or fused CVs and
 11 detectors, including traffic volume/density, queue length, etc (24–26). Considering that traffic state
 12 estimation is not the focus of this study, we assume that the number of vehicles on the link, i.e.,
 13 $x_k^o(t)$, is obtained in real-time by fusing CV and fixed-location detectors.

14 Given the total number of vehicles x_o^i and the number of CVs \tilde{x}_o^i of movement (i, o) , the
 15 number of HV is calculated as $\tilde{x}_o^i = x_o^i - \tilde{x}_o^i$. Then, we extend the Eq. (8) into a more general form
 16 integrating both CV and HV information:

$$17 \quad w_o^i = \frac{\sum_{v \in \tilde{\mathcal{V}}_o^i} PTT_v + \tilde{x}_o^i \overline{ETT}^i}{\overline{ETT}^i} - \frac{\sum_{(o,k) \in \mathcal{K}_o} \alpha_k^o \left[\sum_{v' \in \tilde{\mathcal{V}}_k^o} PTT_{v'} + \tilde{x}_k^o \overline{ETT}^o \right]}{\overline{ETT}^o}. \quad (13)$$

18 where the term $\sum_{v \in \tilde{\mathcal{V}}_o^i} PTT_v + \tilde{x}_o^i \overline{ETT}^i$ calculates the total travel time of all vehicles of movement
 19 (i, o) . Note that, since we have no detailed trajectory and occupancy information of HVs, we as-
 20 sume that the travel time of each HV is the expected travel time \overline{ETT}^i of the link and the occupancy
 21 is 1. The calculation of the pressure, Eq. (9), and the phase activation function, Eq. (11), for the
 22 proposed CV-MMP with detector data remain unchanged.

23 We consider two extreme cases: (i) if all vehicles are CVs, Eq. (13) is the same as Eq. (8)
 24 as $\tilde{x}_o^i = 0$, then the method becomes a complete person travel time-based MP control. (ii) If all
 25 vehicles are HVs, Eq. (13) becomes

$$w_o^i = x_o^i - \sum_{(o,k) \in \mathcal{K}_o} \alpha_k^o x_k^o$$

26 as $\tilde{\mathcal{V}}_o^i$ is empty, then the method degenerates into the original MP control. This implies that our
 27 method may have inherited the two properties of stability and maximum throughput of the original
 28 MP control, although further theoretical proof is needed in future study.

29 EVALUATION

30 In this section, we test the CV-MMP with fusing detector data, with accurate occupancy informa-
 31 tion, with considering lost time, and without considering phase sequence as default. The following
 32 variants of CV-MMP are compared to isolate the effects of each component: (i) without occupancy
 33 information, i.e., letting p_v of all CVs be 1 in Eq. (3), (ii) with inaccurate occupancy information,
 34 i.e., adding random errors to p_v of CVs, (iii) without considering lost time, i.e., letting $\delta_o^i = 1$ for
 35 all movements in Eq. (9), (iv) without fusing detector data, i.e., calculating weights by Eq. (8), (v)
 36 with considering phase sequence, i.e., activating the phase by Eq. (11).

1 **Toy network**

2 The proposed CV-MMP control method is evaluated in a toy network with five intersections in DLR
 3 SUMO (41), including one center intersection and four perimeter intersections, as illustrated in Fig.
 4 3. Each intersection consists of four links and each link comprises three lanes for different turning
 5 directions, i.e., left turn, straight through, and right turn. The turn ratios for the straight-through and
 6 left-turn directions are centered at 0.55 and 0.25 respectively, accompanied by deviations following
 7 a normal distribution. Vehicle inputs at peripheral links follow Poisson distributions with arrival
 8 rates ranging from 0.13-0.18 veh/s. In total, the input volume of the whole network is about 6700
 9 veh/h, corresponding to a demand-to-capacity ratio (d/c) of about 0.8.

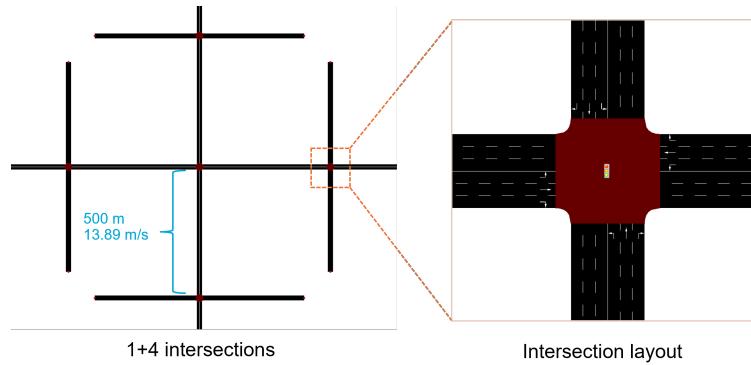


FIGURE 3 Toy network simulation.

10 Two types of connected vehicles are included in the 60 min simulation, connected buses
 11 (CBs) and connected cars (CCs). The occupancy (including the driver) of CBs ranges from 16–
 12 86, while that of CCs ranges from 2–5. Regarding HVs, since they are not connected, occupancy
 13 defaults to 1. Under different test scenarios, the penetration rate of CBs is fixed at 3% and the
 14 penetration rate of CCs varies from 0.1–0.9. Considering the phase switching lost time, including
 15 3 seconds of yellow time and 2 seconds of green start lost time, the decision step for CV-MMP is
 16 set to be 10 s.

17 **Result analysis**

18 *With and without occupancy information*

19 This section compares the performance of CV-MMP control with and without occupancy information.
 20 Note that delay here refers to the control delay, i.e., the total time loss of a vehicle due to the
 21 signal control. From Fig. 4 (a) and (b), we can find that:

- 22 a. With increasing CC penetration rates, both average vehicle and person delay decrease for
 23 CV-MMP without occupancy information. Besides, the vehicle delay is almost the same
 24 as the person delay under various penetration rates.
- 25 b. With increasing CC penetration rates, the average vehicle delay decreases while the aver-
 26 age person delay increases for CV-MMP with occupancy information. Besides, the
 27 average person delay is significantly less than the average vehicle delay, though such
 28 differences decrease with increasing CC penetration rates.
- 29 c. Compared to CV-MMP without occupancy information, though the average vehicle de-
 30 lay of CV-MMP with occupancy information increases by 4–6 s/vehicle, the average

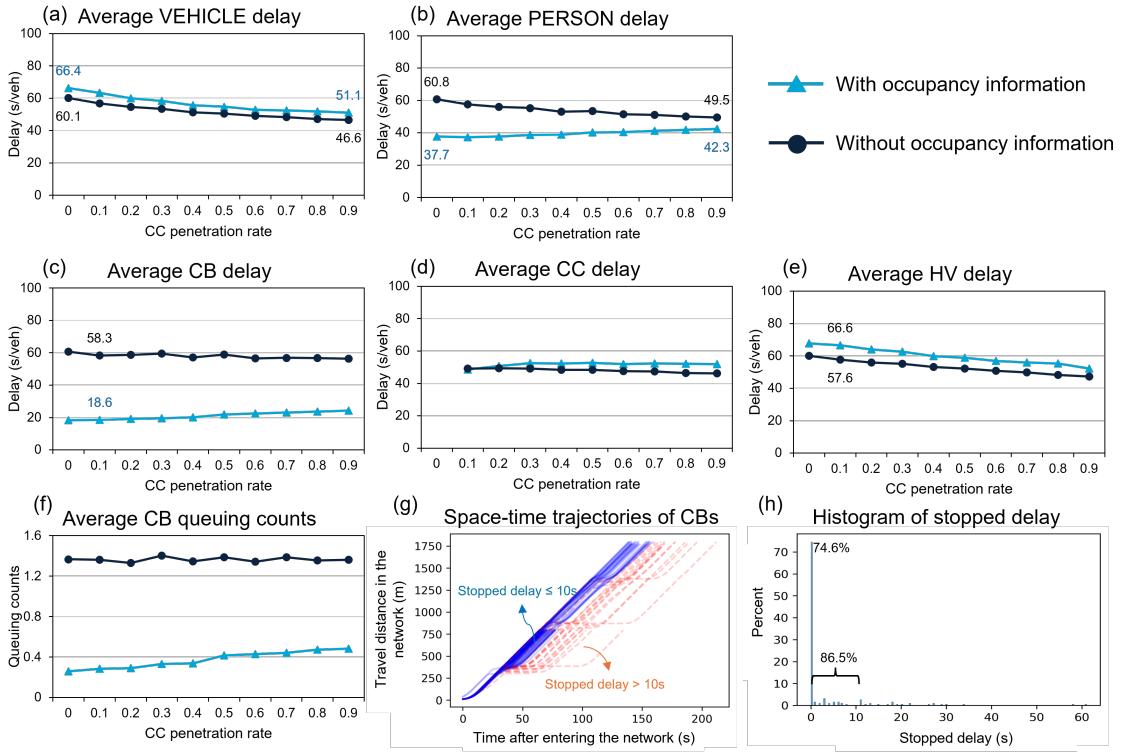


FIGURE 4 CV-MMP performance with and without occupancy information.

person delay decreases significantly, varying from 7–23 s/person as CC penetration rate decreases.

The above results can be interpreted by the detailed performance of each type of vehicle presented in Fig. 4 (c)–(e):

d. After utilizing occupancy information, the proposed CV-MMP control significantly reduces the delay of those CVs with high occupancy, i.e., CBs, accompanied by a very small sacrifice of delay of the other vehicles, i.e., CCs and HVs. For instance, at a 0.1 penetration rate of CCs, the average CB delay decreases by almost 68.1%, while the average HV delay only increases by 15.6% and the average CC delay almost has no change.

In terms of the number of vehicles, CBs only accounted for 3% of the total, and after CV-MMP utilizing the occupancy information, the average vehicle delay still increased due to the increase in other vehicle (accounting for 97%) delays, even though CB delays were significantly reduced. As for the person delay, since the occupancy of CB is very high, the total person delay of CBs is also high as a percentage of the total, so the decrease in CB delay can lead to a significant decrease in average person delay.

In Fig. 4 (f)–(h), we further provide some detailed results on the performance of CBs. Fig. 4 (f) shows that, similar to the average CB delay presented in Fig. 4 (c), average CB queuing counts are also significantly reduced under various CC penetration rates considering CV-MMP utilizing occupancy information. Fig. 4 (g) presents the detailed space-time trajectories of CBs at a 0.3 CC penetration rate, where solid lines represent CBs with stopped delay (the duration when the vehicle speed is 0) no more than 10 s and dashed lines represent CBs with stopped delay greater than 10 s. Fig. 4 (h) presents the percentage of CBs for different stopped delays. As shown, 74.6% of CBs

1 did not experience a stopped delay and 86.5% of CBs experienced a stopped delay of no more than
 2 10 s. These results suggest that:

3 e. The proposed CV-MMP control with occupancy information can significantly reduce
 4 the average delay and queuing counts of CBs and thus achieves TSP in a soft manner.
 5 When there are no conflicting transit requests, the proposed CV-MMP control can even
 6 achieve CB signal coordination on arbitrary paths, i.e., CBs experiencing no stopped
 7 delays without pre-defining coordinated paths.

8 *Impact of CB occupancy errors*

9 In practical application, the occupancy information of transit vehicles normally needs to be esti-
 10 mated, which suffers from inevitable errors (35). Therefore, in this section, we test the performance
 11 of the proposed CV-MMP control with inaccurate occupancy information, where the CC penetra-
 12 tion rate is 0.2. Here we added random errors on bus occupancy to model estimation errors, which
 13 follow Normal distributions $Normal(0, \sigma^2)$. Fig. 5 presents the average delay of CBs, vehicles,
 14 and persons under varying σ . Note that $\sigma = 0$ represents the case with accurate occupancy infor-
 15 mation. We can find:

16 f. The proposed CV-MMP control is robust to occupancy errors of transit vehicles as both
 17 average CB, vehicle, and person delay almost remain unchanged across varying σ .

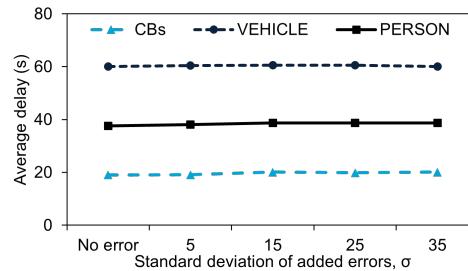


FIGURE 5 Impact of occupancy errors.

18 *With and without considering lost time*

19 Note that disregarding the lost time does not mean that we ignore the phase transition period
 20 (yellow time and red clearing time), but rather that we do not take into account the discounting
 21 of the saturated departure rate due to the phase switching lost time, i.e., $\delta_o^i = 1$ for all movements
 22 when calculating the phase pressure based on Eq. (9). Fig. 6 presents the results of CV-MMP with
 23 and without considering phase switching lost time and we find that:

24 g. Compared to CV-MMP without considering lost time, considering lost time can improve
 25 both average vehicle and person delay under various CC penetration rates. This is be-
 26 cause, as evidenced by Fig. 6 (c), considering lost time can significantly reduce the num-
 27 ber of phase switching under various CC penetration rates, thus raising the cumulative
 28 effective green time of the whole road network.

29 *With and without fusing detector data*

30 This section evaluates the performance of CV-MMP in scenarios with and without fusing detector
 31 data. As shown in Fig. 7 (a) and (b):

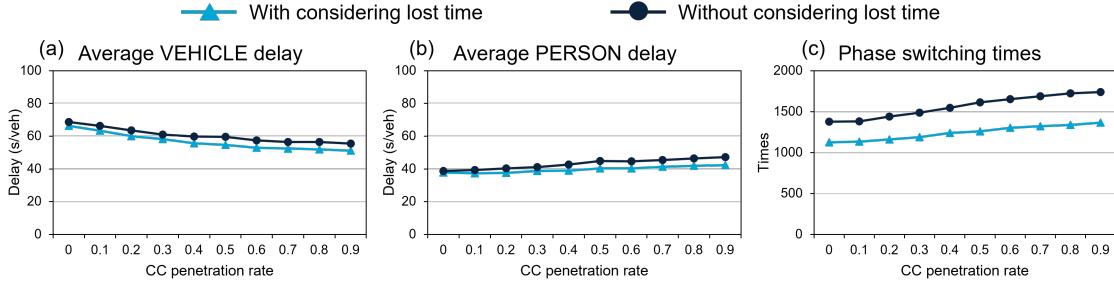


FIGURE 6 CV-MMP performance with and without considering lost time.

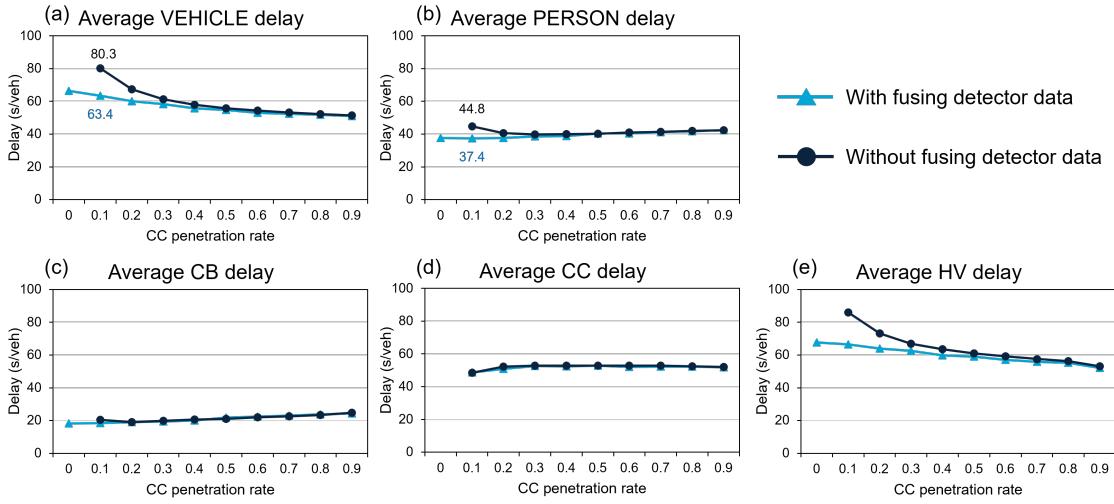


FIGURE 7 CV-MMP performance with and without fusing detector data.

1 h. By fusing detector data, both the average vehicle and person delays of CV-MMP are
 2 improved under various CC penetration rates. Such improvements are more significant
 3 under lower CC penetration rates. When the CC penetration rate is 0.1, the improvements
 4 of the average vehicle and person delays reach 21% and 16.5%, respectively.

5 Fig. 7 (c)–(e) shows that:

6 i. The average CB and CC delays are almost the same under various CC penetration rates
 7 for CV-MMP with and without fusing detector data, while the average HV delay sig-
 8 nificantly decreases after CV-MMP fusing detector data. This suggests that fusing the
 9 detector data mainly improves the efficiency of the HV and has less effect on the CV.
 10 j. When the CC penetration rate reaches 30%, the CV-MMP control can then discard the
 11 detector data for traffic signal control altogether, as the fusing detector data produces
 12 very limited marginal benefit beyond this point.

13 *With and without considering phase sequence*

14 This section evaluates the effect of the proposed soft sequential activation approach, where differ-
 15 ent values of activation parameter β are tested at a CC penetration rate of 0.3. Recall that, $\beta = 1$
 16 and $\beta = 0$ represent two extreme cases: completely non-cyclic and completely cyclic. The ratio
 17 of disordered switching is used to indicate the ratio of incorrect switching that violates the prede-

1 fined phase sequence, which can equally be interpreted as the proportion of the decisions skipping
 2 phases. As shown in Fig. 8:

3 k. With the activation parameter decreasing from 1 to 0, the ratio of disordered switching
 4 almost decreases linearly from 0.56 to 0, while the average delay of CBs increases gradu-
 5 ally from 19.5 s/CB to 42.5 s/CB. Since the traffic is more balanced across links in our
 6 scenario, the performance of CBs is mainly affected when considering a cyclic phase
 7 sequence, under which, some CBs are forced to wait for one more phase, thus increasing
 8 the number of CB queuing counts and delays.
 9 1. We suggest adopting a β between 0.5–0.6 for a tradeoff between the CB performance
 10 and the ratio of disordered switching. At these points, the ratio of disordered switching
 11 decreases to within 25%, and the average CB delay increases by only 18%.

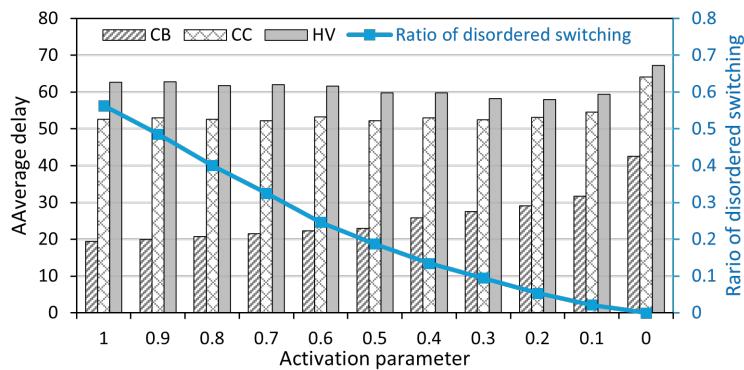


FIGURE 8 CV-MMP performance with and without considering phase sequence.

12 CONCLUSION AND FUTURE WORK

13 To fill the research gap that few studies have considered multi-modal traffic for MP control in
 14 partially CV environments, this study proposed CV-MMP control, which calculated the pressure
 15 based on the travel time of CVs weighted by their occupancy information. In particular, consider-
 16 ing the requirements of practical applications, we further consider the phase switching lost time
 17 and cyclic phase sequence by introducing a lost time parameter and an activation parameter. Be-
 18 sides, CV-MMP has the potential to fuse fixed-location detector data for enhanced performance
 19 under low-penetration-rate CV environments, adapting to variable detector deployment scenarios
 20 in current road networks.

21 Extensive simulation tests on a toy network demonstrated that (i) CV-MMP significantly
 22 reduces average delay (e.g., -68.1% at 0.1 CC penetration rate) for high-occupancy vehicles, such
 23 as buses, with limited increase (+15.6%) in low-occupancy vehicles, i.e., private cars, leading to
 24 a significant reduction in average person delay (-35.2%). (ii) CV-MMP can even enable transit
 25 signal coordination, as the majority (about 75%) of buses do not experience stopped delays in the
 26 network. This can also be demonstrated by the significant reduction in the number of queuing
 27 counts of buses (-79% at 0.1 CC penetration rate). (iii) After considering the phase switching lost
 28 time, the performance of CV-MMP can be further improved due to the reduced phase switching
 29 frequency. (iv) Fusing fixed-location detector data can also enhance the performance of CV-MMP,
 30 mainly in scenarios with CC penetration rates less than 0.3. (v) By introducing an activation

1 parameter, the CV-MMP can combine both cyclic and non-cyclic phase switching, achieving a
2 tradeoff between the bus performance and the ratio of disordered switching.

3 There are several possible future research directions. First, theoretical proofs of the stability
4 and maximum throughput of the proposed CV-MMP control are required. Second, we need to test
5 the performance of CV-MMP based on a real road network under various traffic scenarios (e.g.,
6 containing a wider variety of vehicles including cars, buses, trams, and emergency vehicles) and
7 unbalanced traffic flows.

8 AUTHOR CONTRIBUTIONS

9 The authors confirm their contribution to the paper as follows: study conception: Marco Rinaldi;
10 methodology design: Chaopeng Tan; data collection: Chaopeng Tan; analysis and interpretation
11 of results: Chaopeng Tan, Marco Rinaldi; draft manuscript preparation: Chaopeng Tan, Marco
12 Rinaldi, Hans van Lint; funding acquisition: Hans van Lint, Marco Rinaldi. All authors reviewed
13 the results and approved the final version of the manuscript.

14 ACKNOWLEDGEMENT

15 The authors would like to acknowledge the financial contribution of the EU Horizon Europe Re-
16 search and Innovation Programme, Grant Agreement No. 101103808 ACUMEN.

17 REFERENCES

- 18 1. Guo, Q., L. Li, and X. J. Ban, Urban traffic signal control with connected and auto-
19 mated vehicles: A survey. *Transportation research part C: emerging technologies*, Vol.
20 101, 2019, pp. 313–334.
- 21 2. Kwak, J., B. Park, and J. Lee, Evaluating the impacts of urban corridor traffic signal opti-
22 mization on vehicle emissions and fuel consumption. *Transportation Planning and Tech-
23 nology*, Vol. 35, No. 2, 2012, pp. 145–160.
- 24 3. Boukerche, A., D. Zhong, and P. Sun, Feco: An efficient deep reinforcement learning-
25 based fuel-economic traffic signal control scheme. *IEEE Transactions on Sustainable
26 Computing*, Vol. 7, No. 1, 2021, pp. 144–156.
- 27 4. De Coensel, B., A. Can, B. Degraeuwe, I. De Vlieger, and D. Botteldooren, Effects of
28 traffic signal coordination on noise and air pollutant emissions. *Environmental Modelling
29 & Software*, Vol. 35, 2012, pp. 74–83.
- 30 5. Coelho, M. C., T. L. Farias, and N. M. Routhail, Impact of speed control traffic signals on
31 pollutant emissions. *Transportation Research Part D: Transport and Environment*, Vol. 10,
32 No. 4, 2005, pp. 323–340.
- 33 6. Tan, C., Y. Cao, X. Ban, and K. Tang, Connected Vehicle Data-Driven Fixed-Time Traffic
34 Signal Control Considering Cyclic Time-Dependent Vehicle Arrivals Based on Cumulative
35 Flow Diagram. *IEEE Transactions on Intelligent Transportation Systems*, 2024.
- 36 7. Qadri, S. S. S. M., M. A. Gökçe, and E. Öner, State-of-art review of traffic signal control
37 methods: challenges and opportunities. *European transport research review*, Vol. 12, 2020,
38 pp. 1–23.
- 39 8. Varaiya, P., The max-pressure controller for arbitrary networks of signalized intersections.
40 In *Advances in dynamic network modeling in complex transportation systems*, Springer,
41 2013, pp. 27–66.

1 9. Varaiya, P., Max pressure control of a network of signalized intersections. *Transportation*
2 *Research Part C: Emerging Technologies*, Vol. 36, 2013, pp. 177–195.

3 10. Feng, Y., K. L. Head, S. Khoshmagham, and M. Zamanipour, A real-time adaptive signal
4 control in a connected vehicle environment. *Transportation Research Part C: Emerging*
5 *Technologies*, Vol. 55, 2015, pp. 460–473.

6 11. Li, W. and X. Ban, Connected vehicles based traffic signal timing optimization. *IEEE*
7 *Transactions on Intelligent Transportation Systems*, Vol. 20, No. 12, 2018, pp. 4354–4366.

8 12. Tan, C. and K. Yang, Privacy-preserving adaptive traffic signal control in a connected
9 vehicle environment. *Transportation research part C: emerging technologies*, Vol. 158,
10 2024, p. 104453.

11 13. Mo, Z., W. Li, Y. Fu, K. Ruan, and X. Di, CVLight: Decentralized learning for adaptive
12 traffic signal control with connected vehicles. *Transportation research part C: emerging*
13 *technologies*, Vol. 141, 2022, p. 103728.

14 14. Vlachogiannis, D. M., H. Wei, S. Moura, and J. Macfarlane, HumanLight: Incentivizing
15 ridesharing via human-centric deep reinforcement learning in traffic signal control. *Trans-*
16 *portation Research Part C: Emerging Technologies*, Vol. 162, 2024, p. 104593.

17 15. Gregoire, J., X. Qian, E. Frazzoli, A. De La Fortelle, and T. Wongpiromsarn, Capacity-
18 aware backpressure traffic signal control. *IEEE Transactions on Control of Network Sys-*
19 *tems*, Vol. 2, No. 2, 2014, pp. 164–173.

20 16. Le, T., P. Kovács, N. Walton, H. L. Vu, L. L. Andrew, and S. S. Hoogendoorn, Decentral-
21 *ized signal control for urban road networks. Transportation Research Part C: Emerging*
22 *Technologies*, Vol. 58, 2015, pp. 431–450.

23 17. Wu, J., D. Ghosal, M. Zhang, and C.-N. Chuah, Delay-based traffic signal control for
24 throughput optimality and fairness at an isolated intersection. *IEEE Transactions on Ve-*
25 *hicular Technology*, Vol. 67, No. 2, 2018, pp. 896–909.

26 18. Li, L. and S. E. Jabari, Position weighted backpressure intersection control for urban net-
27 *works. Transportation Research Part B: Methodological*, Vol. 128, 2019, pp. 435–461.

28 19. Wang, X., Y. Yin, Y. Feng, and H. X. Liu, Learning the max pressure control for urban
29 traffic networks considering the phase switching loss. *Transportation Research Part C:*
30 *Emerging Technologies*, Vol. 140, 2022, p. 103670.

31 20. Mercader, P., W. Uwayid, and J. Haddad, Max-pressure traffic controller based on travel
32 times: An experimental analysis. *Transportation Research Part C: Emerging Technologies*,
33 Vol. 110, 2020, pp. 275–290.

34 21. Cao, Y., K. Tang, J. Sun, and Y. Ji, Day-to-day dynamic origin–destination flow estimation
35 using connected vehicle trajectories and automatic vehicle identification data. *Transporta-*
36 *tion Research Part C: Emerging Technologies*, Vol. 129, 2021, p. 103241.

37 22. Wang, Q., Y. Yuan, Q. Zhang, and X. T. Yang, Signalized arterial origin-destination flow
38 estimation using flawed vehicle trajectories: A self-supervised learning approach without
39 ground truth. *Transportation Research Part C: Emerging Technologies*, Vol. 145, 2022, p.
40 103917.

41 23. Ma, W., J. Yuan, K. An, and C. Yu, Route flow estimation based on the fusion of probe
42 vehicle trajectory and automated vehicle identification data. *Transportation Research Part*
43 *C: Emerging Technologies*, Vol. 144, 2022, p. 103907.

1 24. Zheng, J. and H. X. Liu, Estimating traffic volumes for signalized intersections using con-
2 nected vehicle data. *Transportation Research Part C: Emerging Technologies*, Vol. 79,
3 2017, pp. 347–362.

4 25. Comert, G. and M. Cetin, Analytical evaluation of the error in queue length estimation at
5 traffic signals from probe vehicle data. *IEEE Transactions on Intelligent Transportation
6 Systems*, Vol. 12, No. 2, 2011, pp. 563–573.

7 26. Tan, C., J. Yao, K. Tang, and J. Sun, Cycle-based queue length estimation for signalized
8 intersections using sparse vehicle trajectory data. *IEEE Transactions on Intelligent Trans-
9 portation Systems*, Vol. 22, No. 1, 2019, pp. 91–106.

10 27. Tan, C., J. Yao, X. Ban, and K. Tang, Cumulative flow diagram estimation and prediction
11 based on sampled vehicle trajectories at signalized intersections. *IEEE Transactions on
12 Intelligent Transportation Systems*, Vol. 23, No. 8, 2021, pp. 11325–11337.

13 28. Tan, C., J. Yao, K. Tang, et al., Joint estimation of multi-phase traffic demands at signalized
14 intersections based on connected vehicle trajectories. *arXiv preprint arXiv:2210.10516*,
15 2022.

16 29. Tan, C., Y. Ding, K. Yang, H. Zhu, and K. Tang, Connected Vehicle Data-driven Robust
17 Optimization for Traffic Signal Timing: Modeling Traffic Flow Variability and Errors.
18 *arXiv preprint arXiv:2406.14108*, 2024.

19 30. Yao, J., C. Tan, and K. Tang, An optimization model for arterial coordination control based
20 on sampled vehicle trajectories: The STREAM model. *Transportation research part C:
21 emerging technologies*, Vol. 109, 2019, pp. 211–232.

22 31. Al Islam, S. B., A. Hajbabaie, and H. A. Aziz, A real-time network-level traffic signal
23 control methodology with partial connected vehicle information. *Transportation Research
24 Part C: Emerging Technologies*, Vol. 121, 2020, p. 102830.

25 32. Dixit, V., D. J. Nair, S. Chand, and M. W. Levin, A simple crowdsourced delay-based
26 traffic signal control. *PLoS one*, Vol. 15, No. 4, 2020, p. e0230598.

27 33. Liu, H. and V. V. Gayah, A novel max pressure algorithm based on traffic delay. *Trans-
28 portation Research Part C: Emerging Technologies*, Vol. 143, 2022, p. 103803.

29 34. Xu, T., S. Barman, M. W. Levin, R. Chen, and T. Li, Integrating public transit signal
30 priority into max-pressure signal control: Methodology and simulation study on a down-
31 town network. *Transportation Research Part C: Emerging Technologies*, Vol. 138, 2022,
32 p. 103614.

33 35. Özgün, K., M. Günay, D. Başaran, and J. Ledet, Estimation of alighting counts for public
34 transportation vehicle occupancy levels using reverse direction boarding. *Journal of Public
35 Transportation*, Vol. 25, 2023, p. 100070.

36 36. Zhu, M., W. Zhu, J. M. Lutin, Z. Cui, and Y. Wang, Developing a practical method to
37 compute state-level bus occupancy rate. *Journal of Transportation Engineering, Part A:
38 Systems*, Vol. 147, No. 6, 2021, p. 05021001.

39 37. Ban, X. J., P. Hao, and Z. Sun, Real time queue length estimation for signalized intersec-
40 tions using travel times from mobile sensors. *Transportation Research Part C: Emerging
41 Technologies*, Vol. 19, No. 6, 2011, pp. 1133–1156.

42 38. Levin, M. W., J. Hu, and M. Odell, Max-pressure signal control with cyclical phase struc-
43 ture. *Transportation Research Part C: Emerging Technologies*, Vol. 120, 2020, p. 102828.

1 39. Mousavizadeh, O., M. Keyvan-Ekbatani, and T. M. Logan, Real-time turning rate estimation
2 in urban networks using floating car data. *Transportation research part C: emerging*
3 *technologies*, Vol. 133, 2021, p. 103457.

4 40. Liu, H. and V. V. Gayah, Total-delay-based max pressure: a max pressure algorithm consider-
5 ing delay equity. *Transportation Research Record*, Vol. 2677, No. 6, 2023, pp. 324–
6 339.

7 41. Lopez, P. A., M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich,
8 Lücken, J. Rummel, P. Wagner, and E. Wießner, Microscopic traffic simulation using
9 sumo. In *2018 21st international conference on intelligent transportation systems (ITSC)*,
10 IEEE, 2018, pp. 2575–2582.