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Uncertainty in the DTI Visualization )
Pipeline i

Faizan Siddiqui, Thomas Hollt, and Anna Vilanova

Abstract Diffusion-Weighted Magnetic Resonance Imaging (DWI) enables the in-
vivo visualization of fibrous tissues such as white matter in the brain. Diffusion-
Tensor Imaging (DTI) specifically models the DWI diffusion measurements as a
second order-tensor. The processing pipeline to visualize this data, from image acqui-
sition to the final rendering, is rather complex. It involves a considerable amount of
measurements, parameters and model assumptions, all of which generate uncertain-
ties in the final result which typically are not shown to the analyst in the visualization.
In recent years, there has been a considerable amount of work on the visualization
of uncertainty in DWI, and specifically DTI. In this chapter, we primarily focus on
DTI given its simplicity and applicability, however, several aspects presented are
valid for DWI as a whole. We explore the various sources of uncertainties involved,
approaches for modeling those uncertainties, and, finally, we survey different strate-
gies to visually represent them. We also look at several related methods of uncertainty
visualization that have been applied outside DTI and discuss how these techniques
can be adopted to the DTT domain. We conclude our discussion with an overview of
potential research directions.
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1 Introduction

Recent advancements in magnetic resonance imaging (MRI) technology have led
to the development of various remarkable techniques for the interpretation of brain
anatomy. The most promising one is diffusion-weighted imaging (DWI), the only
non-invasive technique for the assessment of brain white matter connectivity. This
approach relies on the measurement of anisotropic diffusion of water molecules.
The imaging and the interpretation of the molecular diffusion have improved with
the development of techniques like diffusion tensor imaging (DTI) and high angular
resolution diffusion imaging (HARDI). In this chapter, we will discuss the visualiza-
tion pipeline of DTI, given its clinical applicability. However, several visualization
strategies and sources of uncertainties associated are valid for more advanced models
like HARDI models.

DTT allows direct in-vivo examination of the fibrous structure in the brain at a
relatively low acquisition cost. By analyzing the three-dimensional shape of the diffu-
sion tensor, it provides valuable information about the microstructure of brain tissues.
Despite many advantages of this technique, some downsides limit its widespread use.
The main reason is that the complexity in the data makes it notoriously difficult to
infer and analyze.

The DTI visualization pipeline consists of four main stages, from data acquisition
to the final visual representation of the results, as shown in Fig. 1. Each stage is based
on assumptions, parameters, and estimations subject to considerable uncertainties.
The uncertainties involved in each of the pipelines’ stage can lead to unpredictable
variations in the final output.

Several state-of-the-art reports exist on DWI visualization [62, 92, 93, 99]. How-
ever, none of them give an overview of uncertainty, or they focus on some specific
aspects. Most of the visualization literature about uncertainty in DTI focuses on
issues related to the visual representation rather than sources of error involved in
the pipeline [36, 47, 92]. In this chapter, we discuss the DTI visualization pipeline
and analyze the sources of uncertainties present at each stage. We briefly cover the
approaches used for quantification of uncertainties, which are often omitted in other
studies [36, 47]. We review state-of-the-art strategies for uncertainty visualization
in DTT and compare their main characteristics and drawbacks. We further investi-
gate several methodologies for uncertainty visualization in other domains that have
not been explored in DWI and discuss how these techniques can be adopted in this
domain. DWI models beyond DTT share a similar pipeline as the one shown in Fig. 1.
However, some parameters, error sources, and visual representations would differ
from the tensor model. Specifically, diffusion modeling and fiber tracking would be
based on different parameters and algorithms. In this chapter, we will indicate the
methods from the DTI that are valid for the more general DWI pipeline.

In Sect. 2, we discuss the background and review the visualization techniques for
DTIL. In Sect. 3, we discuss the sources of uncertainties involved in the visualization
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Fig. 1 The DTI visualization pipeline with sources of uncertainties at each step

pipeline and proceed with the uncertainty modeling techniques in Sect. 4. We review
uncertainty visualization methods in Sect. 5 and conclude with open issues and
research direction in Sect. 6.

2 Background

Diffusion refers to the constant rapid movement of microscopic particles due to the
presence of thermal energy, i.e., ‘Brownian motion’. DWI deals with the diffusion of
water molecules present in biological tissues where the diffusion is usually restricted
due to the hindrance by many obstacles such as axonal membranes, macromolecules,
and myelin. This kind of restricted diffusion is known as anisotropic diffusion. Ste-
jskal and Tanner [94] observed the anisotropic diffusion of water molecules in tissues
and investigated the related modeling of the diffusion effects for MRI. The clinical
application of this technique was first presented by Bihan et al. [61] with the intro-
duction of diffusion MRI along with the concept of apparent diffusion coefficient
(ADC). In some neurological conditions, the amount of diffusion is disturbed in the
affected area. Through studying these changes in diffusion, the abnormalities can be
detected. In the following section, we will summarize how these measurements have
been used to visualize white matter tracts in the brain.

2.1 Diffusion Tensor

The pattern of diffusion anisotropy of white matter tracts in 3D space can be mathe-
matically modeled by a second order tensor, called the diffusion tensor D, introduced
by Basser et al. [5]. The tensor D is a symmetric, positive definite tensor represented
by a 3 x 3 matrix with six unique elements, denoted by D;; as follows:

Dy Dz D3
D = | Dy Dy Dy (1)
D3y D3 D33
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The diagonal elements in the diffusion tensor D represent the diffusion coeffi-
cients along the principle axes X, y and z, while the off-diagonal elements represent
the correlation of the diffusion between each pair of the principal direction. The
diffusion tensor D is symmetric about the diagonal axis (D;; = Dj;). By analysis of
the eigenvectors and eigenvalues \j,\;,A3 of the diffusion matrix, the length and the
direction of the principal axes of the diffusion tensor can be determined.

The six unique values in the tensor D provide the intervoxel diffusion information
and the microstructure of a particular voxel. However, the six-dimensional diffusion
tensor is hard to infer and present to a user. For this reason, several scalar quantities
have been introduced to simplify the tensor to a single value. Fractional Anisotropy
(FA), the most widely used scalar measure in diffusion tensor imaging [9] , represents
the extent of the diffusion anisotropicity. A lower value of FA indicates that the
diffusion is free (FA = 0; isotropic), while a high value of FA implies that the
diffusion is restricted to a single direction (FA = 1; anisotropic). Another popular
scalar measure in DTI is mean diffusivity (MD), which represents the overall amount
of diffusion. Many other scalar measures have been proposed based on the more
complex behaviour of molecular diffusion and are explained in detail in surveys by
Novikov et al. [75], Rajagopalan et al. [83] and Vilanova et al. [99].

Visualization strategies: A Glyph is a general term for geometrically plotted spec-
ifier that represent multidimensional data values. Data information is mapped to
glyph characteristics such as shape and color. Glyphs provide a way to represent the
full six-dimensional information of a diffusion tensor by mapping the eigenvectors
and eigenvalues to the orientation and shape of a geometric primitive. The most
straight forward approach to visualize the diffusion tensor are ellipsoidal glyphs [82]
as shown in Fig. 2a. The orientation of the ellipsoid represents the direction of the
major eigenvector, while the length represents the corresponding eigenvalue. Westin
et al. [104] introduced three metrics to measure linear (\; > A\,A3), planar (A\;=X; >
A3) and spherical diffusion (A} = A\, = A3). Figure. 2 represents the barycentric space
of diffusion tensor shapes in which the three extremes (linear, planar, and spherical)
are at the corner of triangles. Among several other proposed techniques, the super
quadratic glyph is considered state-of-the-art for glyph-based tensor visualization.
Instead of interpolating between ellipsoidal shapes, Kindlmann [57] represents the
diffusion by superquadrics with shape parameters defined by the barycentric coor-
dinates,as shown in Fig. 2b.
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(a) Ellipsoid glyphs (b) Superquadratic glyphs

Fig. 2 Barycentric space of diffusion tensor shapes
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Outside DTI, glyphs are also used to represent the orientation distribution func-
tion (ODF) of the molecular diffusion, which is commonly estimated by models
that go beyond the diffusion tensor. ODF specifies the overall diffusion in a given
direction, integrated over displacement magnitudes [103]. Spherical polar plots [98]
parametrized surfaces [77], the HARDI glyph [81] and the HOME glyph [89] are
some of the common glyph based visualization techniques for representing ODFs.

2.2 Fiber Tracking

The diffusion tensor provides per-voxel information about the orientation of the
underlying neural tracts by analyzing the derived eigenvectors. By combining this
information with other scalar measure, e.g. FA, one can estimate trajectories of white
matter bundles in 3D space. The process of virtual reconstruction of the neural fiber
tract on the basis of the diffusion tensor field is named Fiber Tracking or Tractography

[8, 71]. These techniques of generating brain anatomical connectivity from the
diffusion information have been summarized in review articles [42, 72, 102]. Fiber

a) Polylines ) Illuminated streamlines
(c¢) Cylindrical tubes (d) Streamtubes

Fig. 3 Visualization techniques for deterministic tractography. Images are generated using
vIST/e [1]
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tracking methods have found its way in many neurological applications [18, 31, 45,
73, 74].

The fiber tracking strategies can be mainly divided into deterministic, probabilis-
tic, and global geometric techniques. Deterministic techniques always produce the
same output with the same set of inputs. Probabilistic techniques, however, add ran-
domness in the tracking process to incorporate the inherent uncertainty. We defer an
extensive discussion of probabilistic methods to Sect. 4. Global geometric methods
deduce connectivity in the white matter by globally optimizing a certain cost function
based on the diffusion tensor information and are outside of the scope of this chapter.

Streamline tracing is the most commonly used algorithm for tractography. It is
a deterministic technique that generates trajectories by integrating the vector field
defined by the main eigenvector at each voxel position. The tracing process ends
when the stopping criteria are met. Several constraints can be used as stopping
criteria, such as maximum turning angle or FA, to limit tracts to the region where
tensors realistically represent the fiber tracts.

Visualization strategies: Line-based approaches are the most straightforward tech-
nique to represent deterministic fiber tracts. Numerous strategies have been intro-
duced for the visualization of the white matter tracts, such as thin polylines [70]
illuminated streamlines [114] or cylindrical tubes [8]. Zhang et al. [112] introduced
streamtubes to encode the local diffusion tensor information along the cross-section
of the fiber tracts at each voxel. This technique has previously been used to represent
the tensor field in fluid dynamics, where they were called Hyper-streamlines [25].
Figure 3 shows the most commonly used representations for deterministic tractog-
raphy.

So far, we have discussed the visualization pipeline methods used in DTI without
the involvement of uncertainties. In the following sections, we will review the sources
of uncertainty present in the pipeline, the modeling techniques and the strategies used
to visualize them.

3 Sources of Uncertainty

Understanding the sources of uncertainties is essential to provide effective visualiza-
tion. The DTI visualization pipeline involves complex stages of mathematical mod-
eling, analysis, mapping, and rendering strategies, therefore, it is prone to uncertainty
from various sources. Noise, patient movement, modeling residuals, and distortion
from imaging artifacts produce uncertainty in the orientation of the diffusion tensor
and are detrimental to fiber tracking algorithms. These uncertainties hamper the link
between the data being measured and visualized. The sources of uncertainty involved
at each stage of the DTI visualization pipeline are shown in Fig. 1. In this section, we
will go through this pipeline and discuss the sources of error present at each stage.
Even though we focus on the DTT modality, several of the sources of uncertainty are
present in DWI pipelines that go beyond DTT.
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3.1 Image Acquisition

MRI-based techniques usually suffer from various acquisition errors such as noise,
motion artifacts, partial volume effects, etc. Signal to noise ratio in DWI sequences
is relatively high given that signal attenuation is being measured. The effect of noise
on the fiber tracking output has been widely studied in literature [3, 46, 59]. There
has been a growing trend of increasing the gradient direction in DTI acquisition
to improve the tractography quality. However, this further increases the acquisition
time. In HARDI, the gradient directions for acquisition are much higher than that of
DTI and, therefore, it needs more time. With higher acquisition time, it is more likely
that the subject move during the scan, which in turn, introduces misalignment in the
acquired image. These kinds of artifacts are known as motion artifacts. Providen-
tially, these misalignments can be corrected during the registration process. Several
automated techniques have been introduced to remove this artifact [113]. The finite
resolution of the results also affects the output of the process. The resolution of a
clinical DWI acquisition is typically in the order of millimeter (mm) in each direc-
tion, which is much lower than that of actual axons. Therefore, the signal values
have to be averaged to be able to fit in a single image voxel. This loss of information
is called the partial-volume effect (PVE). Several studies have been conducted in
neurological literature to investigate the PVE in DTI [84, 85, 101]. Other sources
of error during image acquisition involve magnetic distortion, scanner setting and
others [14].

3.2 Diffusion Tensor Calculation

In DTIL, the diffusion of a water molecule is mathematically represented by a second-
order tensor, known as the diffusion tensor. Numerous measurements are performed
along various gradient directions to determine the molecular diffusion at each voxel.
The least-squares method is the most commonly used fitting technique to calculate the
diffusion tensor, but other more accurate regression procedures can also be used [5,
6]. This fitting procedure introduces a fitting error and involves a model choice.
Therefore it adds variation in the outcome of the DTI procedure. DTI technique can
only estimate one dominant diffusion direction per voxel, and thus, is incapable of
determining the structure where the multi-fiber direction is present and, therefore,
results in unreliable outcomes. HARDI models emerge to overcome this limitation
and able to model complex fibrous regions of the brain. It provides a way to estimate
the multi-fiber populations that can then be used for robust tractography. HARDI
models are more complex and usually introduce more parameters and choices to be
determined than DTL.
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3.3 Fiber Tracking

Fiber tracking involves the reconstruction of the fibrous structure of the brain white
matter by gradually following the local fiber orientation estimated from the diffusion
tensor. There are several parameters in fiber tracking to control the tracking process,
however, these parameters add variability to the fiber tracking results. There are four
major sources of uncertainties in the fiber tracking algorithm:

1. Region definition and filtering
2. Numerical approximation

3. Interpolation

4. Stopping criteria

Region definition and filtering: Regions are usually defined by the user to start, end,
or control the fiber pathways. The seeding region refers to the starting point of the
tracking process and defines the initial conditions for numerical integration. Regions
are also used to extract a specific bundle of interest and filter out others to avoid
visual clutter. The region definition in the fiber tracking process also adds variation
in the outcome. Usually, these regions are defined manually, and therefore introduce
an implicit user bias. A minor variation in the definition can result in largely different
pathways. Recently, several techniques have been proposed to minimize the effect
of seed region in the fiber tracking algorithms [21, 46, 102].

Numerical approximation: Different types of numerical approximation schemes
can be implemented in the fiber tracking algorithm. Euler integration is the most
straight forward technique [71] but it is a strong approximation. Higher-order meth-
ods, such as 2nd or 4th order Runge-Kutta methods [8], are typically less sensitive to
noise and can be used for accurate fiber tracking. The integration step, or step size,
further affect the quality of these integration schemes [97].

Interpolation: During the numerical approximation process, most of the time, the
sample position after each integration step lies between volume grid points, hence,
interpolation is needed to estimate values, based on the neighboring grid points.
Several studies have been conducted to address the effect of interpolation in fiber
tracking [32, 109]. Various kinds of interpolation schemes are present, each result
in different pathways, and therefore, add variability in the results.

Stopping criteria: Different scalar measures, such as FA, MD, or curve angle, can
be used as stopping criteria in the fiber tracking process. Fiber tracking algorithms
are often highly sensitive to these values, meaning that a very small variation in
the stopping criteria can lead to a very large change in the resulting fiber [97].
Brecheisen et al. [16] propose a visual exploration tool that allows users to investigate
the behavior and sensitivity of DTI fiber tracking to stopping criteria.

In fiber tracking algorithms for HARDI models the principal directions are
extracted from a multifiber representation which adds another layer of complexity
to the algorithms.
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3.4 Visualization

The visualization stage involves the mapping of the data into a geometric representa-
tion or visual primitives that are finally rendered on to the screen. This process can be
another source the uncertainty. Various photo-realistic rendering techniques are used
to simulate real world lighting as exact as possible, but this further complexity adds
uncertainty in the outcome. Lighting models and shadows enhance the structural
perception of the fibers and as such improve the recognition of the spatial relations
between tracts; however, the controlling parameters can add further variability in the
final results.

4 Uncertainty Modeling

As discussed in the previous section, many sources of uncertainties are present at
each stage of the DTI visualization pipeline that affect the outcome of the process.
These uncertainties propagate through the pipeline adding uncertainty in the derived
quantities including diffusion tensor and fiber orientations. Estimating the error dis-
tribution of different sources is not a straight forward task. Different approaches
have been used to model the uncertainty, however, each with pros and cons. We have
classified the methods used for the uncertainty quantification into two categories:

1. Analytical methods
2. Stochastic methods

4.1 Analytical Methods

Analytical methods refer to approaches that provide an explicit mathematical formu-
lation of the error distribution. These modeling techniques are based on the Bayes the-
orem [56] and were first introduced by Behrens et al. [12] in DWI. They estimated the
probability distribution function (PDF) of the fiber orientation by a Bayesian model.
The main disadvantage of this modeling technique is that they rely on the assumption
of prior and noise present in the data. These techniques are computationally inex-
pensive, however, their dependence on the prior assumption limit their widespread
use. Most of the Bayesian model-based techniques are often combined with random
sampling methods, such as Markov Chain Monte Carlo (MCMC), to determine the
distribution of model parameters [11, 12, 33]. The application of Bayesian model
based methods in DTT and HARDI has been reported several times [48, 54, 64].
Shortest path algorithms are another useful approach for quantifying structural
brain connectivity and were first introduced by O’Donnell et al. [78]. This approach
relies on computing the connections between regions of interest rather than connec-
tions from a seed. Schober et al. [88] presented the distribution of the shortest path
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as a Gaussian process over the solution to an ordinary differential equation (ODE).
This strategy offers novel ways to quantify and visualize uncertainty arising from
the numerical computation and allow marginalization over a space of feasible solu-
tions. Hauberg et al. [40] extended this work and incorporated data uncertainty in
DTI by sub-sampling the diffusion gradients and solving the noisy ODE. Several
other studies using the shortest path algorithms in fiber tracking can be found in the
literature [39, 63].

4.2 Stochastic Methods

Describing the probability distribution analytically and propagating it through the
visualization pipeline is extremely difficult and often not feasible. The alternative
and the most straight forward way to estimate the probability distribution func-
tion is to repeat the acquisition multiple times, this approach is called the bootstrap
method [27]. However, for robust estimation of the PDFs, hundreds of data sets are
required, which is not practical in a clinical setting. Several stochastic techniques
were proposed to overcome this limitation [20]. Among them, the most widely used
techniques are residual bootstrapping and wild bootstrapping [106]. These techniques
rely on a single scan and estimate the probability distribution from the residuals that
remain after fitting diffusion tensor to the data. In residual bootstrapping [24], the
distribution is estimated by randomly assigning the residuals among gradient direc-
tions. Another possibility is to resample the data based on randomly flipping the
sign of the residuals by assuming symmetry in the distribution. The latter approach
is called wild bootstrapping [23]. A detailed comparison of bootstrap methods has
been presented by Chung et al. [20]. Stochastic bootstrapping has been widely used
for DTI [50, 60, 79, 100]. These techniques generate multiple DTT volumes through
stochastic simulations for estimating the probability distribution, however, they are
computationally very expensive.

Various stochastic algorithms were introduced to incorporate uncertainty in trac-
tography by adding randomness in the tracking process. These techniques are called
probabilistic tractography [11, 87, 95]. These algorithms estimate the probability
density function of the fiber orientation at each voxel and determine the propagation
direction by drawing random samples from the distribution. Probabilistic fiber track-
ing is preferable in most cases as it takes uncertainty into account and can estimate
the confidence interval for each reconstructed pathways, however, they are compu-
tationally expensive [12, 26]. Koch et al. [58] propose to use Monte Carlo random
walks for the estimation of the fiber connectivity. The fiber tracking algorithm pro-
ceeds through each randomly selected neighboring voxel depending on the angle
between the voxel’s main eigenvector and its connecting angle with the neighboring
voxels. A similar approach has been used in other studies to establish a connectivity
map in a probabilistic sense [10, 13, 34, 80]. Monte Carlo methods have also been
used to generate fiber tracks based on random particle movement [38]. The PDF
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obtained from the analytical methods can be used to perform tractography with these
stochastic techniques [33, 48]. These studies are based on DTI, however, the concept
is extendable to HARDI as well, but they are not used much in this context [64].

5 Uncertainty Visualization

So far, we have discussed the sources of uncertainty present in the visualization
pipeline and the methods used for their quantification. Visualization provides a way to
communicate data effectively and efficiently, however, uncertainty is often omitted in
the process. Visualizing uncertainty information in DWI can help assess the accuracy
of the acquisition and modeling, which ultimately guide the users in making critical
decisions. However, the visualization of complex data in itself is not straightforward,
adding uncertainty representation to it further complicates the process. Issues of
visual cluttering and loss of anatomical context are some of the few complications
when visualizing uncertainties.

In this section, we will survey the strategies used for the visualization of the
uncertainties in DTI and also discuss some related techniques used in the HARDI
model. We also summarize these strategies in Table 1. The modeling column refers
to the uncertainty quantification techniques, such as stochastic, bootstrapping, or
analytical methods. Domain indicates the application area of the study and ensemble
column categorizes the method into the local or global level. The representation
specifies the measure used for the aggregations of the ensemble, and finally, the
visualization column indicates the technique used to display the uncertainties. The
visualization of uncertainty in DTI can roughly be divided into two categories.

1. Local uncertainty visualization
2. Global uncertainty visualization

5.1 Local Uncertainty Visualization

Local representations of the uncertainty depict variation per voxel inside the vector
or tensor fields. Glyphs are typically used to depict the voxel-wise information of the
data. Several glyph-based techniques have been proposed to visualize the inherent
local uncertainty in DTIL. Jones et al. [SO] proposed a method to represent the confi-
dence interval of the main fiber direction by rendering an uncertainty cone, as shown
in Fig. 4a. Basser et al. [4] used a similar technique to represent the main eigenvector
and their associated uncertainties. This visualization approach allows the represen-
tation of the main diffusion direction and the confidence interval concurrently, also
described in Table 1. Schultz et al. [90] demonstrate a new glyph design, called
HiFiVE, that provides a more detailed impression of the uncertainty. It represents
the variation corresponding to the main eigenvector by rendering a double cone (blue
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Table 1 Summary of uncertainty representation and visualization strategies

F. Siddiqui et al.

References Modeling Domain Ensemble Representation Visualization

Jones et al. [50] | Stochastic DWI Local Direction Interval glyph
interval

Basser et al. [4] | Stochastic DWI Local Direction Interval glyph
interval

Schultz Stochastic DWI Local Probability Hlfive glyph

et al. [90] distribution

Jones et al. [52] | Stochastic DWI Local Mean and Overlay glyph
median

Zhang - DWI Local Mean and Halo and texture

etal. [110] variance

Zhang - DWI Local Difference Overlay glyph

etal. [111] encoding

Tournier Stochastic DWI Local ODF mean and | Semi-transparent

etal. [96] variance glyph

Jiao et al. [49] Stochastic DWI Local ODF SIP Volume rendered

glyph

Basser et al. [7] | Analytical DWI Local Mean and Superimpose glyph
covariance

Abbasloo Analytical DWI Local Mean and Overlay/Animation

etal. [2] covariance glyph

Gerrits et al. [35] | Analytical Both Local Mean and Superimpose glyph
covariance

Wittenbrink Bootstrap Non-DWI Local Mean and Flow-field glyph

etal. [108] variance

Zuketal. [115] | Bootstrap Non-DWI Local Probability Flow-field glyph
distribution

Hlawatsch Bootstrap Non-DWI Local Mean and Flow-field glyph

et al. [43] variance

Lodha et al. [65] | Bootstrap Non-DWI Local Interval Flow-field glyph

Otten et al. [76] | — DWI Global Line and interval | Illustrative

Hermosilla - DWI Global Line and interval | Tllustrative

etal. [41]

Brecheisen Stochastic DWI Global Line and interval | Illustrative

etal. [15]

Corouge Bootstrap DWI Global Ensembles Spaghetti plot

etal. [22]

Bjornemo Stochastic DWI Global Ensembles Spaghetti plot

etal. [13]

Jones et al. [51] | Stochastic DWI Global Ensembles Spaghetti plot

Hangmann Stochastic DWI Global Ensembles Color coded

et al. [38] spaghetti plot

Ehricke Stochastic DWI Global Ensembles Color coded

et al. [28] spaghetti plot

Enders et al. [29] | — DWI Global Fiber clusters Wrapped

geometrical hull
Chenetal. [19] |- DWI Global Fiber clusters Wrapped

geometrical hull

(continued)
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Table 1 (continued)
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References Modeling Domain Ensemble Representation Visualization

Merhof - DWI Global Fiber clusters Wrapped

et al. [68] geometrical hull

Jones et al. [53] | Bootstrap DWI Global Ensemble/local Streamtubes
estimates

Wiens Stochastic DWI Global Ensemble/local | Streamtubes

etal. [107] estimates

Goldau Stochastic DWI Global Fiber density Stipples glyphs

et al. [37]

Hlawitschka Stochastic DWI Global Fiber density Stipples glyphs

et al. [44]

Goldau Stochastic DWI Global Fiber density Stipples glyphs

et al. [36]

Brown et al. [17] | Stochastic DWI Global Fiber density Confidence region

Schultz Stochastic DWI Global Connectivity Confidence region

etal. [91] Probability

Kapri et al. [55] | — DWI Global Connectivty Volume rendering
Probability

McGraw Stochastic DWI Global Connectivity Volume rendering

etal. [67] Probability

Koch et al. [58] | Stochastic DWI Global Connectivity Density map
Probability

Parker et al. [80] | Stochastic DWI Global Connectivity Density map
Probability

Kaden et al. [54] | Analytical DWI Global Connectivity Density map
Probability

Schober Analytical DWI Global Ensembles Wobbly Spaghetti

et al. [88] plot

Hauberg Analytical DWI Global Ensembles Wobbly spaghetti

et al. [40] plot

Mirzargar Bootstrap Non-DWI Global Band Depth Wrapped

et al. [69] geometrical hull

Whitaker Bootstrap Non-DWI Global Band Depth Contour lines

etal. [105]

Ferstl et al. [30] | Bootstrap Non-DWI Global Line and interval | Wrapped

geometrical hull
Sanyal et al. [86] | Bootstrap Non-DWI Global Mean and std. Ribbon

deviation

color) and the density estimation of the uncertainty around it (represented as a gray
surface), as shown in Fig. 4b.

Another way to represent the uncertainty in multivariate data is to estimate its
covariance. It does not only express the variance in each coefficient but also indi-
cates their linear dependencies. Since the diffusion tensor is a second-order tensor,
its covariance is represented by a fourth-order tensor, however, the visualization of
the fourth-order tensor is rather difficult in this context. Basser et al. [7] presented a
novel technique for the spectral decomposition of the fourth-order covariance tensor
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Fig. 4 Glyphs with uncertainty encoding

and introduced the concept of tensorial normal distribution. They proposed a glyph
representation, called radial glyphs , which depicts the overall variance and a com-
posite glyph for representing the eigentensor of the fourth-order covariance. They
visualized the expected mean tensor and its standard deviation as three isosurfaces.
Abbasloo et al. [2] highlight that the radial glyph does not convey the correlation
with the mean tensor and also suffers from high visual complexity in the tensor field.
They proposed a more intuitive approach for the visualization of the covariance by
using multiple levels of detail. Unlike Basser et al., Abbasloo et al. visualize the con-
fidence interval at each eigenmode separately by glyph overlays and used animation
to visualize the differences in each mode. Gerrits et al. [35] pointed out the short-
coming in both of these visualization techniques and proposed a generic approach
that incorporates all the coefficients of the mean tensor and covariance in a single
glyph.

Various studies have been published concerning the representation of the tensor
ensemble directly. Jones et al. [52] visualize the ensemble data simply by overlaying
several glyphs. Although the superposition depicts the overall picture of the data, it
adds visual clutter and occlusion during display. To remedy this, Zhang et al. [111]
used transparency to minimize the occlusion. Abbasloo et al. [2] tried to minimize this
problem by rendering the superimposed glyphs in complementary colors. Zhang et
al. [110] proposed an approach to decompose the tensor data into three properties (i.e.,
scale, shape, and orientation), representing the structure of the underlying fibers, and
measure the variation per property. A glyph based representation has been presented
in this study to visualize the ensemble effectively. The variation in the ensemble is
represented by Halo and texture over the surface as shown in Fig. 4c.
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The orientation distribution function (ODF), associated with HARDI, specifies the
overall amount of diffusion in a given direction. Unlike the diffusion tensor model,
ODFs can have multiple maxima, and therefore are capable of modeling complex
fibrous structure more accurately than DTI. However, this technique is computa-
tionally expensive. The representation of the ODF itself is a challenging task and
adding uncertainty information only increases the complexity. Jiao et al. [49] pro-
posed a technique to visualize uncertainty over polar ODF glyphs by using a volume
rendering technique. They introduced shape inclusion probability (SIP) function to
represent the orientation uncertainty of the tensor. Tournier et al. [96] presented
a method to visualize uncertainties associated with ODFs by using semitransparent
glyphs. They represent the mean ODF by the opaque surface and the mean + standard
deviation by the transparent surface, as shown in Fig. 4d.

The visualization of uncertainty in a diffusion tensor is similar to the uncertainty
representation in a vector field where orientation is considered important. Several
glyph-based techniques exist in this scope. Wittenbrink et al. [108] presented a glyphs
based representation of the uncertainty for atmospheric and oceanographic data.
Likewise, Hlawatsch [43] and Lodha et al. [65] visualize the local uncertainty in a
fluid flow field using glyphs. Zuk et al. [115] proposed a glyph design to provide
uncertainty information in a bidirectional vector field. These techniques rely on the
representation of the vector direction and magnitude with encoded uncertainties to
depict the local uncertainty present in the field.

5.2 Global Uncertainty Visualization

In contrast to the local strategies, global uncertainty visualization in DTI aims at
providing information on how accurate fiber tract information is throughout the com-
plete tensor field, and how the inherent uncertainties accumulate during the tracking
process. In DWI independently of DTI or HARDI models being used, probabilistic
tractography is often used to incorporate these uncertainties. The most widely used
approach to visualize fibers obtained through probabilistic tractography is to super-
impose the resulting fibers in a so-called spaghetti plot [13, 22, 51], see Fig. 5a.
This visualization technique, however, does not depict a clear view of the region-
wise fiber connections and its uncertainty and suffers from strong cluttering. Color
coding the fiber tracts according to their seed points [22] does not suffice to mini-
mize the complexity of the visualization. Schober et al. [88] and Hauberg et al. [40]
used wobbly spaghetti plot that emphasize the fact that the individual resulting paths
cannot be considered as real fibers in the brain which is a common misinterpretation
in spaghetti plot. Instead, they are uncertain estimates of fibers.

To overcome the complexity and clutter caused by the multiple superimposed
tracts, Enders et al. [29] presented a technique to group the fibers related to a cer-
tain nerve tract and generate a surface that wraps the resulting fibers. Similarly,
Mehrof et al. [68] and Chen et al. [19] presented a method to cluster the fiber with
a proximity-based algorithm and generate hulls encompassing the fiber bundles, as
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Fig. 5 Global uncertainty visualization strategies

shown in Fig. 5b. The anatomical grouping helps the user to understand the under-
lying fibrous structure. Outside of DTI, Frest et al. [30] used a similar technique to
visualize uncertainty in flow field ensembles. They performed principal component
analysis to cluster the streamlines in a low dimensional space and determine the mean
and confidence interval in an ensemble. These representations are visualized with a
line enclosed by a transparent surface. The geometrical hulls and enclosed surfaces
reduce clutter, however, they cannot resolve complex cluster shapes. To alleviate
these problems, Illustrative techniques have been proposed to represent the confi-
dence interval of the fiber bundle by creating silhouette, outline, and contours [15,
76], as shown in Fig. 5c.

To improve the understanding of ensembles of curves, it has been proposed to
visualize the statistical information such as mean or confidence intervals rather than
the direct ensemble visualization as spaghetti plot. Table 1 indicates the various
representations used by the studies. These representations, e.g, mean and confidence
interval, are the summarization of the raw samples. Unlike scalar values, the statistical
measures are not well defined for curves, and therefore, several approaches have been
proposed for the estimation of these terms. Brecheisen et al. [ 15] proposed to compute
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median and confidence intervals based on pre-selected distance measures between
curves. In the field of fluid dynamics, a band-depth concept [66] has been introduced
to analyze curve ensembles in two-dimensions [105] and three-dimensions [69]. This
concept provides a way to determine centrality within the present curves and estimate
the variations. Sanyal et al. [86] visualize the uncertainty in the wind trajectories by
creating a ribbon along the ensemble mean. The width of a ribbon represents the
variability at each point.

A widely used approach for the visualization of the global uncertainty is to repre-
sent and visualize measures derived from the probabilistic tractography. Voxel-wise
fiber density computes the probability that a fiber tract traverses a voxel for a given
seed region [17]. Voxel-wise fiber density [28, 38] helps to infer the anatomical
connections. Another measure is the connectivity probability, which represents the
probability of a fiber tract crossing a given voxel while connecting two fixed anatom-
ical regions [91]. Von Kapri et al. [55] and McGraw et al. [67] used volume rendering
for the visualization of density maps, as shown in Fig. 5d. The global visualization
of the fiber tracts does not provide the local tensor information. To visualize the local
uncertainty along with the probabilistic tracts, a stream tube technique has been pro-
posed [53, 107], which maps the local uncertainty measure onto the cross-section of
the tube.

A common problem with the three-dimensional approaches is that the geomet-
rical representation often occludes the underlying information, hampering its inter-
pretation. Various slice-based methods have been proposed for the visualization of
probabilistic fibers [58, 80]. These techniques have been used in neuroscience as
they provide a way to directly visualize the anatomical information, making it easy
to interpret anatomical context. Goldou et al. [36, 37] presented a novel slice based
approach for visualizing the probability by rendering fiber stipples. The number of
stipples, present at a particular region depicts the fiber density. Hlawitschka et al. [44]
proposes to use poisson-disk sampling for the generation of the fiber stipples.

Table 1 summarizes the survey indicating the domain, representation, and visu-
alization strategies used to display the uncertainty. The table covers the approaches
used for local and global uncertainty visualization in both the DWI and non-DWI
domain.

6 Conclusion

Diffusion-weighted imaging relies on complex stages of signal acquisition, math-
ematical modeling, model assumptions, and hence, is exposed to many sources of
uncertainty. Excluding this uncertainty from the visualization does not only affect
the result but also cripples the user to make an effective decision. However, the
efficient visualization of the uncertainty in DWI is nontrivial, as the data itself has
high visual complexity and adding uncertainty to it only adds further complexity. In
this chapter, we explored uncertainty in the various stages of the DTI visualization
pipeline. Several of the problems and solutions discussed throughout this chapter are
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also valid for other models beyond Diffusion tensor, such as HARDI models. Even
though we have not covered the technical background, where applicable, we have
discussed the applicability of the strategies beyond DTI. Further, we have reviewed
applicable uncertainty visualization techniques beyond the DWI domain.

DWT1 s still a growing field, considering the recent advancements and the frequent
development of new techniques, this survey should not be considered complete, it
rather should be enhanced in the future. Studies on uncertainty visualization so far are
mostly focused on the research aspect, however, no uncertainty visualization solution
exist to specifically support clinical tractography. Visual analytics, an emerging field
in visualization, can be helpful in enabling detailed analysis of uncertainty present
in DWI data, building on the top of the studies present in this survey. Most of the
presented studies deal with uncertainty on the noise and modeling level, dealing with
other sources of uncertainty and visualizing them as a whole part of the exploration
is another open research direction.

We focus on the visualization pipeline and techniques mostly related to DTI, a
study including other modeling techniques would be beneficial. In summary, even
though the uncertainty visualization in DWI has evolved considerably in the last few
years, we believe, a lot of work still needs to be done for the effective visualization
and exploration of DWI data.
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