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A B S T R A C T

The design of smart structures is challenging because of the integrated electromechanical
modelling and optimization of actuators, sensors and load-bearing structures. To simplify the
design process, it is common to decouple some of the components and physics and develop
each part separately, which could lead to suboptimal systems. To improve the overall design
of active structures, we propose an integrated and fully coupled design methodology for
a certain class of smart structures. Specifically, this paper presents a numerical framework
for the simultaneous application of density-based topology optimization of multi-material
conductive compliant mechanisms and a composite multi-layered geometry-projection method
for the optimization of the size, position and orientation of embedded piezoelectric stack
actuators. Their electromechanical properties are represented in a continuum-based setting by
an orientation- and geometry-dependent equivalent material model and their activation depends
on the distribution of conductive material in the structure. Furthermore, a novel constraint
on the polarization of the actuators is proposed to avoid unwanted designs that could cause
their mechanical degradation. A set of numerical examples is analysed and discussed. The
proposed framework exhibits promising results, with significant improvements in comparison
to a benchmark problem.

1. Introduction

Smart structures, also known as active or adaptronic structures, integrate actuation, sensing and control and allow for adaptive
functionalities in lightweight and low energy systems. They are characterized by the interaction of electronic and mechanical
components, aiming at achieving adaptable elastomechanical properties [1]. They have a broad applicability range, such as morphing
aircraft wings [2], structural health monitoring [3], nanomaterials for biomedical applications [4], among other interdisciplinary
fields, combining physical, chemical and biological technologies [5].

Since active structures integrate various multidisciplinary components that have both constructive and competing interrelation-
ships, seeking functional conformity within the system—e.g. by avoiding impedance mismatches—is a challenging aspect of their
design. Hence, smart structure design inherently poses an optimization problem for which different solution strategies may be
taken depending on the degree of coupling of the system components. In principle the most desirable approach is to optimize the
fully coupled system, but because of the difficulty in solving the resulting large multifunctional problems, it is often necessary to
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subdivide the components and optimize each of them individually [1]. This approach may lead to suboptimal solutions from a
systems perspective.

A methodical design approach to generate smart structure configurations in a multicomponent setting, capable of optimizing
or actuation, sensing or energy harvesting applications, is a desirable ultimate goal. As a step in this direction, we propose a
ramework to design active electromechanical systems composed of piezoelectric stack actuators (PSAs) embedded within load-
earing conductive structures in a unified multiphysics setting, based on the combination of a multi-material topology optimization
TO) method and a feature-mapping method. Below various aspects of this framework are introduced and reviewed, after which we
utline the contributions of this paper.

TO generates material layouts based on a set of objective and constraint functions, using computational techniques capable of
aking a large amount of design variables of different degrees of complexity into account simultaneously [6]. One of the most widely
sed variants of TO is the density-based approach, in which 0 or 1 design variables are attributed to each element of a discretized
esign space, representing non-existence or existence of material, respectively. The variables are relaxed for the optimization
roblem to be well-posed, allowing for intermediate values, and the material properties of each element are calculated using a
aterial interpolation law, such as the Solid Isotropic Material with Penalization (SIMP) [7]. Furthermore, multiple materials can

e considered in the method by ascribing two or more design variables per element and applying different material laws [7–11].
nother widely used variant of TO is the level-set approach, in which the shape of a solid structure is determined by regions where
level-set function is greater than a given threshold, with its iso-contour representing the surface of the structure [12]. Changes in

opology can be achieved by updating the level-set function, thus modifying the shape of its iso-contours, and hole nucleation can
ccur by incorporating other techniques, such as topological derivatives [13]. Multi-material design problems can also be considered
n the method by using more than one value for the iso-contours or multiple level-set functions [14–16].

Multi-material TO has been amply applied to the design of smart structures. Sigmund [9] extended TO with multiple materials to
esign electrothermomechanical systems, such as an actuator or a gripper mechanism, where the input electrical voltage triggered
oule heating in the solid material causing thermal expansion. Kögl and Silva [17] proposed a novel material model for the design
f piezoelectric plate and shell actuators as an extension of SIMP, adding the polarization direction of the piezoelectric material
s a design variable in the optimization problem. Carbonari et al. [18] further developed the method to simultaneously optimize
or the distribution of both piezoelectric and non-piezoelectric materials. Other examples of smart structure design through TO are
.g. [19–24].

Of the many components within a smart structure, actuators are the functional elements, transforming input signals into an
utput power, capable of generating work [1]. We focus on piezoelectric actuators, which have received significant attention over
he years, due to advantages such as size compactness, large output forces, flexible design and fast frequency response [25,26].
hey are composed of piezoelectric materials, which exhibit strong electromechanical coupling, generating electrical charges when
ubjected to an external mechanical stress and, inversely, deforming from an applied electric potential. There are several kinds
f piezoelectric actuators, which can be classified according to their modes of actuation and their geometry. The actuation mode
epends on the alignment between the polarization direction of the piezoelectric material and the externally applied electric field.
hen they are aligned, longitudinal and transverse deformations occur, while when they are perpendicular to each other, a shear
ode appears. Additionally, when one end of a piezoelectric actuator is fixed, a bending mode occurs [27]. PSAs are another type of

ctuator, composed of piezoelectric discs or square patches stacked together in alternating polarities, sandwiched between electrodes.
n comparison to other piezoelectric actuator types, they exhibit lower driving voltage, faster response times, larger blocking forces
nd higher eigenfrequencies [28]. For piezoelectric discs of fixed thickness, the longer the PSA, the larger its output for a given
onstant voltage input.

Most TO publications on piezoelectric actuators have considered single or multi-layered configurations with transverse or bending
xcitation modes [17–19,29–40], while very little attention has been devoted to PSAs. Recently Lai et al. [26] proposed an equivalent
ne-dimensional electromechanical model of a PSA based on Euler–Bernoulli beam theory, allowing for the integrated modelling
nd analysis of piezo-actuated compliant mechanisms. The model was developed for the dynamic stiffness matrix method [41], so
ncorporating it into a density-based TO framework is not straightforward. Instead, we propose a novel continuum-based model via
n equivalent piezoelectric material that has geometry dependent properties, calculated based on the length and orientation of the
SA during the design procedure.

PSAs are typically available in regular geometric shapes, and this property should be considered when optimizing a smart
tructure with embedded PSAs. This is not straightforward in the aforementioned TO methods. A class of methods that can
o so is broadly called feature-mapping methods [42]. Wang et al. [33] performed TO of compliant smart structures with
mbedded piezoelectric actuators in a hybrid level-set and nodal density-based approach. Yang et al. [36] optimized the topology of
iezoelectric composites with integrated actuators, geometrically modelled using the Finite Circle Method. Recently Wang et al. [39]
pplied the method of Moving Morphable Components (MMC) and minimum length scale control to obtain optimized compliant
echanisms and actuators. In this work, we apply the geometry projection method [43] to optimize the sizes and placements of

he PSAs. With this method, the lengths and orientations of the PSAs are explicitly known, which synergizes with the proposed
quivalent piezoelectric material model mentioned above.

A PSA should only connect to a load-bearing structure through its ends and bending modes should not occur, since this could
ause delamination between the discs within the PSA and breakage [5,44]. To take these physical considerations into account, the
SA is modelled using geometry-projection via a combination of an active piezoelectric layer, a void layer encapsulating its sides and
2

n electrode layer at its extremities. Therefore, a composite multi-layered adaptation of the geometry-projection method is developed



Computer Methods in Applied Mechanics and Engineering 429 (2024) 117120B.V. de Almeida et al.

d
a
m
a
e
i
a
c
w
w
o

c
s
t
c
a
(

e
i
c
g
c
t

2

w
I
Ω
p
S
e
l

p
w
c

to model the PSA, with distinct material properties being attributed to fixed subregions within its geometry. Furthermore, a novel
polarization constraint is proposed to avoid designs where the PSA acts under tension, which can cause its mechanical degradation.

The proposed framework models the electrical connections between electrodes and actuators explicitly, to obtain more realistic
esigns, which requires strongly-coupled electromechanical equations to model the load-bearing regions of the design. This is
chieved by allowing for a monolithic interpolation between non-conductive (void and solid dielectric) and conductive (solid)
aterials using SIMP and therefore the material interpolation laws require special attention. Yoon and Sigmund [45] proposed
nonlinear continuum-based formulation valid for general media consisting of ideal insulators and conductors for the design of

lectrostatic systems actuated by Coulomb’s forces; they coined a generalized permittivity that is equal to the permittivity of air
n void regions, but equal to a very large number in solid regions. Chen et al. [46] used a simplified model for energy harvesting
pplications by considering the coupled linear equations of piezoelectric media and directly attributing large permittivity values to
onductive media. He et al. [47] applied a further simplification by neglecting the permittivity of conductive materials altogether,
hich avoids numerical issues related to the usage of large values in the analyses, despite compromising its accuracy. In this work
e take a similar approach as [46] and perform a brief investigation on the effect of the permittivity value of the conductive material
n the optimization process.

The main contributions of this work are fourfold: 1) introduction of a continuum equivalent material model for PSAs; 2) a
omposite multi-layered geometry projection method; 3) its simultaneous application to the TO of the load-bearing part of the
mart structure in a multiphysics multi-material dielectric–conductive design; and 4) a polarization constraint for PSAs. Together,
hese advances allow for TO of PSA-driven smart structures considering mechanical and electrical functionality, with realistic and
ontrolled PSA geometries. In this work, two-dimensional (2D) plane strain hypothesis was considered given the planar target
pplications and to simplify the analysis procedure, however most of the developments can be trivially extended to three dimensions
3D). Where relevant, remarks regarding the extension to 3D will be included below.

The paper is divided as follows. In Section 2 the formulation of the equivalent PSA material is derived, the piezoelectric finite
lement discretization is given and the composite multi-layered geometry-projection method used to geometrically model the PSA
s introduced. Section 3 presents the three-phase SIMP interpolation used to interpolate between void, solid dielectric and solid
onductive materials in the load-bearing region of the structure as well as the complete formulation combining it with the composite
eometry-projection method representing the PSAs. The optimization problem is stated in Section 4 with the objective function, the
onstraints, sensitivity analysis and details on the solution process. Results are presented and discussed in Sections 5 and 6 concludes
he paper.

. Modelling

An illustration of how the smart structure is modelled can be seen in Fig. 1. The design domain is represented by the domain Ω,
hich is conceptually divided in two independent ways: a geometric set and a material set, shown in Figs. 1(b) and 1(c), respectively.

n the geometric set, actuators are defined by the domain ΩA, which can be written as the union of all individual actuator domains
A =

⋃

𝑖 ΩA𝑖 . The full domain thus contains ΩA and its complement Ω𝖼
A. The material of each ΩA𝑖 has its own equivalent PSA

roperty, which is derived in Section 2.1. Next, the discretization methodology using the Finite Element Method (FEM) is given in
ection 2.2. Finally, Section 2.3 shows how geometry projection is used to map the geometric variables that describe the PSAs to
lement-wise pseudo-densities, as well as the FEM stiffness matrices associated to each actuator ΩA𝑖 . The material set describes the
oad bearing structure, containing void ΩV, dielectric ΩD and conductive ΩC regions and is introduced in Section 3.

Fig. 1. Conceptual division of the design domain. White is void, grey is dielectric material and red is conductive material. The rectangular blue regions are
stack actuators. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.1. Piezoelectric stack actuator material model

A classical piezoelectric stack actuator (PSA) is composed of multiple thin piezoelectric discs, stacked together with alternating
olarization directions, with electrodes between them. Fig. 2 illustrates the actuator. Compared to a monolithic piezoelectric cylinder
ith the same volume, for a given voltage difference between its ends, the PSA deforms significantly more than the monolithic

ylinder.
Typically, the thickness of the piezoelectric discs ranges from 50 to 100 μm [48]. Since the PSAs are embedded in the topology,

as opposed to considering plate-like actuators, with out-of-plane electrical excitation [39], the behaviour of a PSA has to be taken
3
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Fig. 2. Illustration of a classical PSA. Blue indicates upward and green indicates downward polarization directions. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)

nto account in the model. Although this could be performed in a Finite Element setting by considering a mesh fine enough to
apture the different piezoelectric discs and electrodes, this is computationally expensive. Instead, equivalent piezoelectric material
roperties are proposed to model the behaviour of the PSA. It is assumed that the discs are perfectly bonded to each other.

To obtain the equivalent properties of the PSA, we write the constitutive equations of piezoelectric media in the strain-charge
orm, or d-form, shown in Eq. (1), in Voigt notation. Note that by the IEEE standard for piezoelectricity, the 3rd dimension is
onsidered to be the polarization direction [49].

𝑺 = 𝒔E𝑻 + 𝒅⊤𝑬

𝑫 = 𝒅 𝑻 + 𝜺T𝑬
(1)

𝑻 , 𝑺, 𝑫 and 𝑬 are the stress, strain, dielectric displacement and electric field vectors, respectively. 𝒔E is the compliance matrix
valuated at constant electric field, 𝒅 is the piezoelectric coupling matrix and 𝜺T is the dielectric permittivity evaluated at constant
tress.

Now consider Eq. (1) for a one-dimensional (1D) model, as illustrated in Fig. 3. The polarization direction of the discs of thickness
d is in the 𝑥3 direction. Since neither stresses nor charges are applied to its ends, other than a voltage of value 𝜙, there are no stresses
n the PSA. The electric field in the 𝑥3 direction for each disc may be written as 𝐸3 = − 𝜙

𝑡d
. The total length 𝐿 of the PSA is equal

to 𝑡d times the number of discs 𝑛, i.e. 𝐿 = 𝑛 𝑡d. Thus, 𝐸3 = −𝑛 𝜙𝐿 . Then from the first equation in Eq. (1), we have that the strain in
the PSA is constant and equal to

𝑆33 = −𝑛𝑑33
𝜙
𝐿

(2)

Fig. 3. 1D model of a PSA.

Therefore, the 1D PSA of length 𝐿 may be written as consisting of an equivalent monolithic piezoelectric material with an
equivalent property 𝑑33PSA = 𝑛 𝑑33, with a constant electric field 𝐸3 = − 𝜙

𝐿 [48].
Now, regarding the purely electrical properties of the material, the capacitance 𝐶disc of each disc can be expressed as

𝐶disc =
𝜀T
33𝐴d

𝑡d
(3)

where 𝐴 is the surface area of the discs, which is equal to the cross section area of the PSA.
4

d
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Since the PSA is a parallel connection of 𝑛 discs, then 𝐶PSA = 𝑛𝐶disc. Using this, Eq. (3) and 𝐿 = 𝑛 𝑡d we have that

𝐶PSA =
𝑛2𝜀T

33𝐴d

𝐿
(4)

Therefore the equivalent 𝜀T
33 property of the PSA may be written as 𝜀T

33PSA
= 𝑛2𝜀T

33 [48]. In summary, a 1D PSA of 𝑛 piezoelectric
discs may be modelled as being composed of a single equivalent piezoelectric material with properties shown below, which is
illustrated in Fig. 3(b).

𝑑33PSA = 𝑛 𝑑33
𝜀T
33PSA

= 𝑛2𝜀T
33

(5)

In order to find the equivalent PSA properties for a 2D case considering plane strain hypothesis, the equivalent 2D strain-charge
onstitutive equations are required. However, this form of the equations cannot be immediately obtained from the 3D case of Eq. (1)
y just ignoring the out-of-plane dimension. Instead, the equations are firstly written in the stress-charge form, or 𝑒-form, shown in
q. (6), and then changed to the strain-charge form, as in Eq. (1).

𝑻 = 𝒄E𝑺 − 𝒆⊤𝑬

𝑫 = 𝒆𝑺 + 𝜺S𝑬
(6)

where 𝒄E is the elasticity matrix evaluated at constant electric field, 𝜺S is the permittivity matrix evaluated at constant strain and 𝒆
is the piezoelectric coupling matrix in this form.

To change between the two forms of the constitutive equations, the following relationships are applied:

𝒔E = 𝒄E−1

𝒅 = 𝒆 𝒔E

𝜺T = 𝜺S + 𝒆 𝒅⊤
(7)

Considering 2D plane strain hypothesis, with direction 𝑥2 as the out-of-plane direction, and that only piezoelectric materials of
rystalline structure class 4mm are taken into account, which are transversely isotropic [49], Eq. (6) may be written as

⎧
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(8)

Common piezoelectric ceramic materials such as barium titanate (BaTiO3) and lead zirconate titanate (PZT) are examples of
uch class of materials. Substituting Eq. (7) into Eq. (8), the constitutive properties in the strain-charge form under plane strain
ypothesis are finally obtained:
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(9)

Now consider the illustrations shown in Fig. 4 of a 2D PSA model. The actuation direction of the PSA is aligned to the polarization
irection 𝑥3. The mechanical and electrical boundary conditions are applied as shown in Fig. 4(a), with a non-zero voltage 𝜙.

Under these assumptions, all stress components are equal to zero in the PSA. Furthermore the transverse electric field 𝐸1 is zero,
ince there are no voltage differences nor charges applied to the surfaces parallel to the 𝑥1 direction. Thus, from the first equation
f Eq. (9), we obtain 𝑆33 = 𝑑33𝐸3. As in the 1D model, the electric field in the 𝑥3 direction within a piezoelectric disc is constant
nd equal to 𝐸3 = − 𝜙

𝑡d
. With 𝐿 = 𝑛 𝑡d, we obtain

𝑆11 = −𝑛 𝑑31
𝜙
𝐿

𝑆33 = −𝑛 𝑑33
𝜙
𝐿

(10)

The capacitance of the PSA for the 2D case can be obtained similarly to the 1D case, since 𝐸1 = 0, yielding the same result as
Eq. (4). Therefore, the equivalent properties of a PSA of 𝑛 discs illustrated in Fig. 4(b) in the strain-charge form are 𝑑 = 𝑛 𝑑 ,
5
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Fig. 4. 2D model of the PSA.

𝑑33PSA = 𝑛 𝑑33 and 𝜀T
33PSA

= 𝑛2𝜀T
33. After using Eq. (7), the following equivalent PSA properties are obtained in the stress-charge form:

𝑒31PSA = 𝑛 𝑒31
𝑒33PSA = 𝑛 𝑒33
𝜀S
33PSA

= 𝑛2𝜀S
33

(11)

The three-dimensional (3D) case is a trivial extension of the 2D case, with the equivalent PSA properties in the stress-charge
orm being the same as the 2D case with an additional 𝑒32PSA = 𝑛 𝑒32.

The proposed equivalent PSA model assumes piezoelectric materials of crystalline structure class 4mm and has two main
imitations. The first one is the assumption of perfect bonding between the piezoelectric discs within the PSA, since in reality
he discs are glued together with a bonding material. The other limitation is that the equivalent properties are only valid for the
implified boundary conditions shown in Fig. 4(a), since the PSA may only be connected to a structural material through its ends.
n Section 2.3.4 an approach to mitigate the second limitation is presented.

To simplify notation, in the following sections the properties of the equivalent piezoelectric material associated to the 𝑞th PSA
re referred to as 𝒄E

𝑞 , 𝒆𝑞 and 𝜺S
𝑞 .

.2. Finite element discretization

The smart structure is designed using density-based TO techniques. The design domain of the structure is represented as Ω
and is illustrated in Fig. 1(a). In this work it is discretized with a homogeneous mesh, although the proposed methodology can be
straightforwardly adapted to inhomogeneous meshes. The linear constitutive piezoelectric relations shown in Eq. (6) are considered,
as well as small deformations and rotations, which are valid assumptions for the analysis of low-voltage actuators [1]. Furthermore,
for simplification purposes, 2D plane-strain hypothesis is considered.

Considering small strain relations and that the electric field is equal to minus the gradient of the electric potential, using the
variational principle for piezoelectric media and only static excitations, the following equilibrium equation is obtained [50]:

𝑲 𝑼 =

[

𝑲uu 𝑲⊤
ϕu

𝑲ϕu −𝑲ϕϕ

]

{

𝒖
𝝓

}

=
{

𝒇
𝒒

}

= 𝑭 (12)

The vectors 𝒖, 𝝓, 𝒇 and 𝒒 are the nodal mechanical displacements, electric potentials, applied forces and electric charges,
respectively. The first two are succinctly referred to by the vector 𝑼 and the last two by 𝑭 . The global stiffness matrix 𝑲
contains three distinct submatrices, namely the assembled mechanical stiffness 𝑲uu, piezoelectric coupling 𝑲ϕu and dielectric 𝑲ϕϕ
matrices [37,51,52].

In this work, the smart structure is excited by input voltages at the boundaries of the domain 𝜕Ω. Thus, 𝑭 = 0 and a prescribed
non-zero voltage 𝜙∗ is applied to Eq. (12) together with fixed displacements (𝒖 = 0) and grounded surfaces (𝝓 = 0). With 𝑛p being
the number of prescribed degrees of freedom, and an under-tilde representing the subblock of a matrix or a vector corresponding
to the free degrees of freedom, the equilibrium equation of the free degrees of freedom can be written as

𝑲
̃
𝑼
̃
= −

𝑛p
∑

𝑗

[

𝑲ϕu
−𝑲ϕϕ

]

̃ 𝑗

𝜙∗ (13)
6
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The element matrices of element 𝑖 prior to the assembly procedure are calculated using Gaussian quadrature as

𝑲uu𝑖 =∫Ω𝑖
𝑩⊤

u 𝒄
E𝑩u dΩ

𝑲ϕu𝑖 =∫Ω𝑖
𝑩⊤

ϕ𝒆𝑩u dΩ

𝑲ϕϕ𝑖 =∫Ω𝑖
𝑩⊤

ϕ𝜺
S𝑩ϕ dΩ

(14)

where matrix 𝑩u relates the nodal displacements 𝒖 with the strain 𝑺 and 𝑩ϕ relates the nodal electric potentials 𝝓 with the
electric field 𝑬.

Note that every element in the mesh is modelled as a piezoelectric material. The non-piezoelectric materials are modelled as
having zero piezoelectric properties 𝑒𝑖𝑗 = 0 and the conductive material as having a very large isotropic dielectric permittivity value
𝜀S
𝑖𝑗 , such that the electric field within it tends to zero when only one voltage value is prescribed [46]. The actual material property

that an element may have is determined by interpolating the possible material properties with certain pseudo-densities. The pseudo-
densities associated to the actuators are obtained using a geometry projection method, which is introduced in Section 2.3, while
the pseudo-densities associated to the material domain are discussed in Section 3.1. Section 3.2 clarifies how the final properties of
each element are obtained.

Since the right-hand side of Eq. (13) depends on the global assembled matrix 𝑲, sensitivity information obtained by differentiat-
ing the equilibrium equations with respect to the pseudo-densities used in the TO procedure may be derived directly from Eq. (12),
with 𝒖 containing zeros where the nodal displacements are fixed, 𝝓 containing zeros where the voltages are grounded and 𝜙∗ where
the voltage is prescribed.

It is known that the large differences in orders of magnitude of the mechanical and permittivity properties cause numerical issues
due to ill-conditioning of the global stiffness matrix 𝑲 . To mitigate this, the properties are scaled similarly to Homayouni-Amlashi
et al. [37].

2.3. PSA geometry modelling

In this work a geometry projection method is applied to model the geometric domain shown in Fig. 1(b). Geometric variables,
represented succinctly as 𝒙, describing the position, size and orientation of rectangular primitives that are used to model the PSA
are applied to a signed-distance function 𝜑(𝒙,𝒑), which can be evaluated at any point in space 𝒑. This function is in turn passed
to a smooth approximate piecewise Heaviside function 𝐻̃ that generates a continuous representation of the primitive. In order to
obtain element-wise pseudo-densities of the primitive in a fixed grid, 𝐻̃(𝜑(𝒙,𝒑)) is evaluated at multiple points 𝒑𝑗 within each grid
element and a volumetric average is calculated using a second order Newton–Cotes rule. [42]

Each PSA is modelled by stacking three different rectangular geometric primitives on top of each other, for void, electrode and
equivalent piezoelectric materials, thus referred to as a ‘‘composite projection’’ scheme, as described in detail in Section 2.3.4. Each
pseudo-density is associated to a certain material property. Furthermore, each PSA has an additional ‘‘opacity variable’’ 𝛼 ∈ [0, 1]
(also called a ‘‘size variable’’ [53] or a ‘‘membership variable’’ [54]), which scales the properties between 0 and 1, so that a PSA
may be removed in the optimization process as 𝛼 → 0.

2.3.1. Rectangular signed-distance function
In the geometry projection method, geometric primitives that may only change in size, position and orientation are described

by geometric variables 𝒙. In this work the geometric primitive is rectangular, in agreement with typical 2D PSA shapes. As shown
in Fig. 5, it is described implicitly by a rectangular signed-distance function, with the geometric variables being the coordinates of
their extremities 𝒙0 and 𝒙f and their width 𝑑.

A rectangular signed-distance function 𝜑(𝒙0,𝒙f, 𝑑,𝒑) = 𝜑(𝒙,𝒑) evaluated at any point in space 𝒑 that has the boundaries of the
rectangular primitive shown in Fig. 5 as its zero-contour line is defined in Eq. (15), with the auxiliary terms defined in Eqs. (16)–(17).

𝜑 (𝒙,𝒑) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−𝒃 ⋅ 𝒂
‖𝒂‖

, if ‖𝒈‖ ≤ 𝑑
2 and 𝒃′ ⋅ 𝒂 < −

√

2
2 ‖𝒃′‖‖𝒂‖

𝒆 ⋅ 𝒂
‖𝒂‖

, if ‖𝒈‖ ≤ 𝑑
2 and 𝒆′ ⋅ 𝒂 >

√

2
2 ‖𝒆′‖‖𝒂‖

‖𝒃′′‖, if ‖𝒈‖ > 𝑑
2 and 𝒃 ⋅ 𝒂 < 0

‖𝒆′′‖, if ‖𝒈‖ > 𝑑
2 and 𝒆 ⋅ 𝒂 > 0

‖𝒈‖ − 𝑑
2
, otherwise

(15)

𝒂 = 𝒙f − 𝒙0 𝒃 = 𝒑 − 𝒙0 𝒆 = 𝒑 − 𝒙f 𝒉 = 𝒃 ⋅ 𝒂
𝒂 ⋅ 𝒂

𝒂 𝒈 = 𝒃 − 𝒉 (16)

𝒃′ = 𝒃 − 𝑑
2

𝒂
‖𝒂‖

𝒆′ = 𝒆 + 𝑑
2

𝒂
‖𝒂‖

𝒃′′ = 𝒃 − 𝑑
2

𝒈
‖𝒈‖

𝒆′′ = 𝒆 − 𝑑
2

𝒈
‖𝒈‖

(17)
7
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Fig. 5. Rectangular geometric primitive. This figure shows the geometric variables 𝒙0, 𝒙f and 𝑑, as well as the auxiliary variables utilized to describe a rectangular
signed-distance function 𝜑(𝒙,𝒑) at a point in space 𝒑.

Fig. 6. Surface plot of the rectangular signed-distance function with a mesh with ℎ = 0.2 in a 100 × 100 domain.

Fig. 6 shows a surface plot of the signed-distance function. Outside the boundaries of the rectangle (i.e. the zero-contour line
shown in black) it is a 𝐶1 continuous function. Within it and including the line, it is 𝐶0 continuous. The isocontours of the proposed
function exactly describe a rectangle, while having the desirable property of signed-distance functions, i.e. that the spatial gradient
is unit ∇𝜑(𝒙,𝒑) = 1, which avoids issues that occur when there is a non-equidistant distribution of level-set contours of geometric
features [55].

2.3.2. Smooth heaviside function
To classify if points are part of a PSA, the signed-distance function 𝜑(𝒙,𝒑) defined in the preceding subsection is passed to a

smooth approximation of a Heaviside function 𝐻̃(𝑥) shown in Eq. (18). It is a continuous piecewise function with a cubic polynomial
interpolation in its transition zone of width 𝑤 [42]. The output is a continuous scalar field between 0 and 1 that determines whether
8
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a region is outside or within the geometric primitive, respectively.

𝐻̃(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 𝑥 < −𝑤
2

2 𝑥
3

𝑤3
− 3𝑥

2𝑤
+ 1

2
, if |𝑥| ≤ 𝑤

2

0, if 𝑥 > 𝑤
2

(18)

Smaller values of 𝑤 make the approximate Heaviside function become sharper, while larger values make it smoother. A value
of 𝑤 = 2ℎ is chosen in this work, where ℎ is the mesh size and is shown in Fig. 7(a). For illustration purposes, the plot obtained for
a larger transition zone of 𝑤 = 20ℎ is shown in Fig. 7(b).

Fig. 7. Plots of 𝐻̃(𝒙) with ℎ = 0.2 in a 100 × 100 domain, for the signed-distance function shown in Fig. 6 with different transition zone widths 𝑤.

2.3.3. Projection into a fixed grid
The scalar field 𝐻̃(𝜑(𝒙,𝒑)) ∈ [0, 1] has to be processed in order for each element to have a unique constant pseudo-density

associated to it. This can be done by performing a volume averaging of 𝐻̃(𝜑(𝒙,𝒑)) within each element, which can be written
mathematically as:

𝜌𝑖(𝒙) =
1
𝑉𝑖 ∫Ω𝑖

𝐻̃(𝜑(𝒙,𝒑)) dΩ (19)

where Ω𝑖 is the volume of element 𝑖 and 𝑉𝑖 = |Ω𝑖|.
In this work, the closed second-order Newton–Cotes rule [42] (i.e. Simpson’s one-third rule) is used to calculate the above

integration numerically. Writing the weights of this integration rule as 𝑤𝑗 for 𝑁 integration points and 𝑗 = 1,… , 𝑁 , then 𝜌𝑖 can be
expressed as:

𝜌𝑖(𝒙) =
𝑁
∑

𝑗
𝑤𝑗𝐻̃𝑖𝑗 (20)

where 𝐻̃𝑖𝑗 is obtained by calculating 𝐻̃(𝜑(𝒙,𝒑𝑗 )) at a point in space 𝒑𝑗 within element 𝑖. For 2D quadrilateral elements, 𝑁 = 32 = 9.

2.3.4. Composite projection
To mitigate the second limitation of the equivalent PSA material model mentioned at the end of Section 2.1, thin orthotropic

conductive layers are attached to the ends of the PSA, which are stiff only in the direction aligned to the PSA, and compliant in
the other directions, shown as the red region in Fig. 8. For example, 𝑐E

33 may be equal to that of steel, but 𝑐E
11, 𝑐

E
13 and 𝑐E

55 are
significantly smaller. Additionally, an enveloping void region is added to the sides of the PSA to exclusively permit connections
between the equivalent piezoelectric material and the surrounding structure of the mechanism where it is embedded in at the ends
of the PSA.

Each material region of the PSA shown in Fig. 8 can be described by a distinct geometric primitive using the geometry projection
method. So to obtain a density-based representation of the PSA in a fixed mesh, three different pseudo-density fields are obtained
following the methodology shown in the preceding subsections, associated to a void region 𝝆v, an electrode region 𝝆e and a
piezoelectric region 𝝆 , respectively.
9
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Fig. 8. Composite PSA model using geometry projection. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

From Fig. 8, the pseudo-densities of the piezoelectric region in the composite PSA representation shown in blue are 𝝆p. These
ensities are obtained by considering the geometric parameters 𝒙0, 𝒙f and 𝑑 without any modifications and can be written as a

function of 𝝆(𝒙) from Eq. (20).

𝝆p = 𝝆(𝒙0,𝒙f, 𝑑) (21)

The pseudo-densities of the electrode region 𝝆e, shown in red, are obtained considering a length-wise offset of the blue region
y a fixed value 𝑙′. Finally the densities 𝝆v of the void region, shown in white with dashed lines on the boundary, are obtained by
n additional fixed offset of the diameter 𝑑′.

We write new offset (‘‘os’’) geometric design variables 𝒙os
0 , 𝒙os

f and 𝑑os as

𝒙os
0 = 𝒙0 −

𝑙′

2
𝒂

‖𝒂‖

𝒙os
f = 𝒙f +

𝑙′

2
𝒂

‖𝒂‖
𝑑os = 𝑑 + 𝑑′

(22)

where 𝒂 was defined in Eq. (16) and is a vector that goes from the initial extremity of the PSA defined by coordinate 𝒙0 to the other
extremity defined by 𝒙f. Its norm ‖𝒂‖ is equal to the length 𝐿 of the piezoelectric region of the PSA, which determines the number
f piezoelectric discs 𝑛 for a given fixed disc thickness 𝑡d used for the calculation of the equivalent piezoelectric material properties
hown prior in Section 2.1.

With these, 𝝆e and 𝝆v are defined as

𝝆e = 𝝆
(

𝒙os
0 ,𝒙

os
f , 𝑑

)

(23)

𝝆v = 𝝆
(

𝒙os
0 ,𝒙

os
f , 𝑑

os) (24)

Note that, from an implementation point of view, since the rectangular signed-distance function is only exactly rectangular at
ts zero contour line, and assuming for simplicity that 𝑑′ = 𝑙′, it is not possible to define 𝝆v by first calculating 𝜑(𝒙0,𝒙f, 𝑑,𝒑) for 𝝆p
nd then taking a contour line at a different level (e.g. 𝜑(𝒙0,𝒙f, 𝑑) − 𝑑′) to determine 𝝆v, as can be done for the bar-like geometric

primitives with rounded edges from Norato et al. [43] or from Wang et al. [56].

2.3.5. PSA finite element matrices
In Section 2.2, the equilibrium equation Eq. (12) was derived from the constitutive equations Eq. (6) without specifying in

which coordinate system the properties were defined. As mentioned in Section 2.1, by convention the polarization direction of a
piezoelectric material is the 𝑥3 direction [49]. However the material properties of the piezoelectric material in the PSAs are defined
uch that their local 𝑥3 axis is aligned to their actuation directions, i.e. vector 𝒂 from Eq. (16). Thus, the properties of the piezoelectric
aterial of each actuator must be rotated to the global coordinate system before being assembled.
10
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Henceforth an apostrophe (′) will indicate the local coordinate system of each PSA and the elasticity 𝒄E
𝑞 , piezoelectric coupling

𝒆𝑞 and permittivity 𝜺S
𝑞 matrices in the global coordinate system of the 𝑞th actuator are calculated as

𝒄E
𝑞 = 𝑻 ⊤a𝑞 𝒄

E
𝑞
′𝑻 a𝑞

𝒆𝑞 = 𝑹⊤
a𝑞
𝒆′𝑞𝑻 a𝑞

𝜺S
𝑞 = 𝑹⊤

a𝑞
𝜺S
𝑞
′𝑹a𝑞

(25)

From Cook et al. [57, Ch. 2], and utilizing the vector 𝒂𝑞 , which in 2D has components 𝑎𝑞𝑥 and 𝑎𝑞𝑧 , the tensor 𝑻 a𝑞 and vector
𝑹a𝑞 rotation matrices in a 2D setting are defined respectively as:

𝑹a𝑞 =
1

‖𝒂𝑞‖

[

𝑎𝑞𝑧 −𝑎𝑞𝑥
𝑎𝑞𝑥 𝑎𝑞𝑧

]

(26)

𝑻 a𝑞 =
1

‖𝒂𝑞‖2

⎡

⎢

⎢

⎢

⎣

𝑎2𝑞𝑧 𝑎2𝑞𝑥 −𝑎𝑞𝑥𝑎𝑞𝑧
𝑎2𝑞𝑥 𝑎2𝑞𝑧 𝑎𝑞𝑥𝑎𝑞𝑧

2𝑎𝑞𝑥𝑎𝑞𝑧 −2𝑎𝑞𝑥𝑎𝑞𝑧 𝑎2𝑞𝑧 − 𝑎
2
𝑞𝑥

⎤

⎥

⎥

⎥

⎦

(27)

In a 3D setting, the signed-distance function given in Eq. (15) represents a cylinder. Since we only consider transversely isotropic
piezoelectric materials, some simplifications can be made to the corresponding 3D tensor and vector rotation matrices [57, Ch. 2],
which is left for future works.

Therefore, the element-level matrices of element 𝑖 related to actuator 𝑞 can be written by inserting the rotated property matrices
of Eq. (25) into Eq. (14). This is performed for all submatrices, namely the mechanical 𝑲uu, piezoelectric 𝑲ϕu and dielectric 𝑲ϕϕ
submatrices, for both the electrode material and the equivalent piezoelectric material of each PSA, which are succinctly denoted as
𝑲E𝑖𝑞 and 𝑲P𝑖𝑞 , respectively.

With the element matrices of the electrode and piezoelectric regions defined, together with the element matrices of the void
material 𝑲V𝑖 , which are calculated as shown in Eq. (14) with the properties attributed to void materials, and with the pseudo-
densities shown in the previous subsection, the finite element submatrices of the 𝑖th element related to the 𝑞th actuator 𝑲A𝑖𝑞 are
given by Eq. (28), where 𝛼𝑞 ∈ [0, 1] is the aforementioned ‘‘opacity variable’’ that allows the optimization process to remove a PSA.

𝑲Auu𝑖𝑞
= 𝜌

𝑤auu
v𝑖𝑞 𝑲Vuu𝑖

+
(

𝛼𝑞𝜌e𝑖𝑞
)𝑤auu

(

𝑲Euu𝑖𝑞
−𝑲Vuu𝑖

)

+
(

𝛼𝑞𝜌p𝑖𝑞
)𝑤auu

(

𝑲Puu𝑖𝑞
−𝑲Euu𝑖𝑞

)

𝑲Aϕu𝑖𝑞
= 𝜌

𝑤aϕu
v𝑖𝑞 𝑲Vϕu𝑖

+
(

𝛼𝑞𝜌e𝑖𝑞
)𝑤aϕu

(

𝑲Eϕu𝑖𝑞
−𝑲Vϕu𝑖

)

+
(

𝛼𝑞𝜌p𝑖𝑞
)𝑤aϕu

(

𝑲Pϕu𝑖𝑞
−𝑲Eϕu𝑖𝑞

)

𝑲Aϕϕ𝑖𝑞
= 𝜌

𝑤aϕϕ
v𝑖𝑞 𝑲Vϕϕ𝑖

+
(

𝛼𝑞𝜌e𝑖𝑞
)𝑤aϕϕ

(

𝑲Eϕϕ𝑖𝑞
−𝑲Vϕϕ𝑖

)

+
(

𝛼𝑞𝜌p𝑖𝑞
)𝑤aϕϕ

(

𝑲Pϕϕ𝑖𝑞
−𝑲Eϕϕ𝑖𝑞

)

(28)

The penalization values 𝒘a = [𝑤auu , 𝑤aϕu , 𝑤aϕϕ ] are SIMP interpolation exponents. The specific values used in the manuscript are
given in Section 5. Section 3.2 shows how each single finite element submatrix is obtained by combining all individual submatrices
of 𝑲A𝑖𝑞 associated to each actuator.

Note that in Eq. (28) the 𝛼𝑞 variable does not multiply the pseudo-density 𝜌v associated to the void region of the PSA, which
means that as 𝛼𝑞 → 0, the PSA becomes a rectangular void region. If instead 𝛼𝑞 also multiplied 𝜌v, then the void region enveloping the
piezoelectric material of the PSA would become transparent for intermediate 𝛼𝑞 values, allowing the sides of the PSA to electrically
connect to the surrounding conductive material of the material domain. Due to the width 𝑑 of the PSA being smaller than its length,
the transverse electric field component 𝐸′

1 would be larger than its lengthwise component 𝐸′
3. Extra non-physical piezoelectric

actuation could be attained by benefiting from the piezoelectric shear-mode 𝑒′15, which would yield non-physical designs in the
optimization process.

3. Material interpolation

While the previous section dealt with the description of the geometric set, this section is concerned with the material set,
illustrated in Fig. 1(c). The whole domain Ω is divided into a void region ΩV and a solid region ΩS, which in turn is divided
into a dielectric region ΩD and a conductive region ΩC, such that Ω = ΩV ∪ ΩS = ΩV ∪ ΩD ∪ ΩC and the last three regions are
mutually exclusive. The material properties of each of these domains is derived in Section 3.1 using a three-field SIMP interpolation.
Section 3.2 then describes how the element stiffness matrices obtained from the preceding sections are interpolated together yielding
a mathematical representation for the properties of the combined domain Ω, illustrated in Fig. 1(a).

3.1. Multimaterial three-phase interpolation

Simultaneously with the position, size and orientation of the PSAs, the design of the structure in which the PSA is embedded
is also optimized. This domain is represented as the material set in Fig. 1(c). Density-based TO is applied considering two design
variables, which are used to interpolate between void, dielectric and conductive materials. The solid–void densities 𝝆sv control
whether each element should be void (0) or solid (1), and the conductive–dielectric densities 𝝆cd control whether they should be
11

dielectric (0) or conductive (1).
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A three-phase SIMP interpolation [8,58,59] is used to interpolate the properties of the material domain. Since only linear
ypotheses are considered, the interpolation may be applied directly to the 𝑖th element stiffness matrices. The submatrices of the

solid domain of the 𝑖th element 𝑲S𝑖 may be written as:

𝑲Suu𝑖
= ̂̃𝜌

𝑤cduu
cd𝑖

𝑲Cuu𝑖
−
(

1 − ̂̃𝜌cd𝑖

)𝑤cduu 𝑲Duu𝑖

𝑲Sϕu𝑖
= ̂̃𝜌

𝑤cdϕu
cd𝑖

𝑲Cϕu𝑖
−
(

1 − ̂̃𝜌cd𝑖

)𝑤cdϕu 𝑲Dϕu𝑖

𝑲Sϕϕ𝑖
= ̂̃𝜌

𝑤cdϕϕ
cd𝑖

𝑲Cϕϕ𝑖
−
(

1 − ̂̃𝜌cd𝑖

)𝑤cdϕϕ 𝑲Dϕϕ𝑖

(29)

where the subscripts ‘‘C’’ and ‘‘D’’ mean ‘‘conductive’’ and ‘‘dielectric’’, respectively. The SIMP exponents 𝒘cd = [𝑤cduu , 𝑤cdϕu , 𝑤cdϕϕ ]
re only used for interpolating between the conductive and dielectric matrices and their values are given in Section 5. The tilde
∼) denotes fields produced by the standard convolutional or density filter and the hat (∧) accent symbolizes the following smooth
eaviside projection

𝑥̂(𝑥) = 𝐻(𝑥) =
tanh 𝛽𝜂 + tanh 𝛽(𝑥 − 𝜂)
tanh 𝛽𝜂 + tanh 𝛽(1 − 𝜂)

(30)

here 𝛽 is a sharpness parameter and 𝜂 is a threshold parameter. In this work 𝜂 = 0.5. The value of 𝛽 is initially a small value and
increases during the design process using a continuation approach as defined in Section 4.

The submatrices of the material domain of the 𝑖th element 𝑲M𝑖
can be subsequently written as:

𝑲Muu𝑖
= ̂̃𝜌

𝑤svuu
sv𝑖 𝑲Suu𝑖

+
(

1 − ̂̃𝜌
𝑤svuu
sv𝑖

)

𝑲Vuu𝑖

𝑲Mϕu𝑖
= ̂̃𝜌

𝑤svϕu
sv𝑖 𝑲Sϕu𝑖

+
(

1 − ̂̃𝜌
𝑤svϕu
sv𝑖

)

𝑲Vϕu𝑖

𝑲Mϕϕ𝑖
= ̂̃𝜌

𝑤svϕϕ
sv𝑖 𝑲Sϕϕ𝑖

+
(

1 − ̂̃𝜌
𝑤svϕϕ
sv𝑖

)

𝑲Vϕϕ𝑖

(31)

where the SIMP exponents 𝒘sv = [𝑤svuu , 𝑤svϕu , 𝑤svϕϕ ] are only used for interpolating between the solid and void submatrices, and
heir values are given in Section 5.

In this work, void material has a very small Young’s modulus and the permittivity of air. Dielectric material also has the
ermittivity of air. Conductive material has a very large permittivity value. Because of the large difference in orders of magnitude
etween the permittivities of void and conductive materials, the stiffness matrix 𝑲̃ of the equilibrium equation (12) can become
ll-conditioned, even with the scaling of the properties. Therefore, diagonal scaling of 𝑲̃ is performed prior to solving the linear
ystem [57].

.2. Full domain interpolation

In this section the formulation of the element matrix that combines both the geometric and the material domains of Fig. 1(a) is
resented. Since each PSA has an orthotropic material aligned to its own orientation and its own 𝛼𝑞 term, if the stiffness matrices
f the PSAs 𝑲A𝑖𝑞 were simply added together, this would mean that an element would have properties of more than one PSA, were
hey to overlap.

Instead, firstly a soft-argument-maximum function, or softargmax, term 𝜎 is used to evaluate 𝛼𝑞𝜌v𝑖𝑞 for each component at every
lement, as done in [53], yielding a value close to 1 for the PSA with largest (𝛼𝑞𝜌v𝑖𝑞 )

𝒘a and a value close to 0 for all other PSAs.
he result of this softargmax for the mechanical and piezoelectric submatrices is calculated as

𝜎uu𝑖𝑞 =
𝑒𝜅(𝛼𝑞𝜌v𝑖𝑞 )

𝑤auu

∑𝑛a
𝑗 𝑒𝜅(𝛼𝑗𝜌v𝑖𝑗 )

𝑤auu
and 𝜎ϕu𝑖𝑞 =

𝑒𝜅(𝛼𝑞𝜌v𝑖𝑞 )
𝑤aϕu

∑𝑛a
𝑗 𝑒𝜅(𝛼𝑗𝜌v𝑖𝑗 )

𝑤aϕu
(32)

where 𝜅 is a sharpness parameter equal to 50 in this work, and 𝑛a is the total number of actuators.
In order to avoid the issue of the softargmax becoming too small due to the 𝛼𝑞 term such that it would make the enveloping void

region of the PSA become slightly ‘‘transparent’’, enabling transverse electrical connections between the PSA and the underlying
conductive material, the softargmax parameter 𝜎ϕϕ𝑖𝑞 for the dielectric submatrix is calculated without the 𝛼𝑞 term:

𝜎ϕϕ𝑖𝑞 =
𝑒𝜅𝜌

𝑤aϕϕ
v𝑖𝑞

∑𝑛a 𝜅𝜌
𝑤aϕϕ
v𝑖𝑗

(33)
12
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Finally, the element submatrices of element 𝑖 that combine the element submatrices of each of the separate geometric and
material sets shown in Figs. 1(b) and 1(c), respectively, can be written as

𝑲uu𝑖 =
𝑛a
∑

𝑞
𝜎uu𝑖𝑞𝑲Auu𝑖𝑞

+

(

1 −
𝑛a
∑

𝑞
𝜎uu𝑖𝑞𝜌

𝑤auu
v𝑖𝑞

)

𝑲Muu𝑖

𝑲ϕu𝑖 =
𝑛a
∑

𝑞
𝜎ϕu𝑖𝑞𝑲Aϕu𝑖𝑞

+

(

1 −
𝑛a
∑

𝑞
𝜎ϕu𝑖𝑞𝜌

𝑤aϕu
v𝑖𝑞

)

𝑲Mϕu𝑖

𝑲ϕϕ𝑖 =
𝑛a
∑

𝑞
𝜎ϕϕ𝑖𝑞𝑲Aϕϕ𝑖𝑞

+

(

1 −
𝑛a
∑

𝑞
𝜎ϕϕ𝑖𝑞𝜌

𝑤aϕϕ
v𝑖𝑞

)

𝑲Mϕϕ𝑖

(34)

In elements where there are no actuators, 𝜌v𝑖𝑞 = 0. This means that the first term in every equation of Eq. (34) is zero and the
erm within the parentheses is equal to 1. Thus, the properties of these elements are exclusively determined by the material matrix
nterpolation 𝑲M𝑖

of Eq. (31). Conversely, in elements where there is at least one actuator, 𝜎𝑖𝑞 will have a value close to 1 for one
of the actuators and a value close to 0 for the others. Then the term in the parentheses will approach 0 and the properties of the
element will be predominantly determined by the actuator with the largest 𝜎𝑖𝑞 value, 𝑲A𝑖𝑞 of Eq. (28).

4. Smart structure design topology optimization formulation

The smart structure is initially described by a general design domain shown in Fig. 9, containing 𝑛a PSAs represented by the
variables 𝒙0, 𝒙𝑓 , 𝑑 and 𝛼 introduced in Section 2.3 and an initial distribution of void, dielectric and conductive materials, represented
via the density-based variables 𝝆sv and 𝝆cd discussed in Section 3.1.

Fig. 9. Design domain and boundary conditions of the smart structure.
Boundary conditions are imposed based on the desired application. For example, in Fig. 9 the design is clamped in the left-hand

ide, rollers are applied on the upper surface, the lower-left surface is electrically grounded and a non-zero (prescribed) voltage is
pplied to the upper-left surface. A spring is connected to a degree of freedom where a displacement is to be maximized, representing
workpiece stiffness.

The design of the smart structure is obtained by performing density-based TO, seeking to maximize the displacement of the node
onnected to the spring. In the following subsection, the formal mathematical statement of the optimization problem is given and
he constraints that are applied to obtain feasible designs are introduced and discussed.

Next, the sensitivities of the objective and constraint functions with respect to the design variables are provided, as well as
he derivatives of the stiffness matrices from Sections 2.3.5 and 3.1. The derivatives of the equivalent piezoelectric properties from
ection 2.1 and of the variables calculated from the geometry projection method in Section 2.3 are given in Appendix A. An overview
f the optimization algorithm is presented in Section 4.6.

In the closing subsection details are given on the optimization parameters, such as the parameters used for the Method of Moving
symptotes (MMA) [60] and how the continuation approach was applied to the Heaviside projection sharpness parameter 𝛽.

4.1. Optimization problem and objective function

The negative-null form of the optimization problem is shown in Eq. (35).

minimize
{𝒙0},{𝒙f},𝒅,𝜶,𝝆sv ,𝝆cd

𝑓 = 𝑳⊤𝒖 =
{

𝑳
𝟎

}⊤

𝑼

subject to 𝑔v ≤ 0

𝑔no ≤ 0

𝑔pol ≤ 0

𝐿min ≤ ‖𝒂𝑞‖ ≤ 𝐿max

(35)
13

𝑞 = 1,… , 𝑛a
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In the problem statement Eq. (35), {𝒙0} and {𝒙f} indicate vectors containing all of the initial and end coordinates of all PSAs,
respectively. Further, the widths 𝑑𝑞 and opacity terms 𝛼𝑞 of all PSAs are stacked together in vectors, 𝒅 and 𝜶. Functions 𝑔v, 𝑔no and

pol are the volume, non-overlap and polarization constraints, respectively, and are introduced in the subsequent subsections.
In the objective function 𝑓 , 𝑳 is a vector of 0’s with a 1 (or a −1, depending on whether it should minimize or maximize) at the

osition of the degree of freedom corresponding to the displacement in vector 𝒖 that should be minimized (or maximized), where
are the nodal mechanical displacements obtained by solving the equilibrium equation (12).

The lengths of the PSAs are constrained using 𝒂 from Eq. (16). A minimum length 𝐿min is imposed on every PSA to avoid a
ossible edge case during the optimization process where 𝒙0 and 𝒙f coincide, making 𝒂 go to 𝟎 and causing division by zero in

the signed-distance function Eq. (15), since ‖𝒂‖ = 0. The optimizer can remove an actuator through its 𝛼𝑞 variable instead. The
maximum lengths 𝐿max may be based on catalogues of manufacturers, for example.

For the box constraints, 𝛼𝑞 , 𝜌sv𝑖 , 𝜌cd𝑖 ∈ [0, 1], with 𝑞 = 1,… , 𝑛a and 𝑖 = 1,… , 𝑛e, where 𝑛e is the total number of elements in
the mesh. 𝒙0𝑞 and 𝒙f𝑞 are constrained to be within the boundaries of the design domain, i.e. 𝒙0𝑞 ,𝒙f𝑞 ∈ Ω. And 𝑑𝑞 ∈ [𝑑min, 𝑑max],
𝑞 = 1,… , 𝑛a, with the minimum and maximum widths taken from catalogues of manufacturers, for example. Also, 𝑑min should be
greater than 2ℎ, with ℎ being the element edge length, to avoid division by zero from vector 𝒈 in the signed-distance function
q. (15).

.2. Volume constraint

In the optimization process the maximum amount of solid material is constrained. It is a limit on the ratio between the volume
f solid material where there are no actuators, i.e. the volume of ΩS ∩Ω𝖼

A, and the volume of the total non-actuator region, i.e. Ω𝖼
A.

f 𝑉f is the maximum solid volume fraction and 𝑉𝑖 is the volume of element 𝑖, then the constraint 𝑔v can be written as

𝑔v =

∑𝑛e
𝑖 𝑉𝑖 ̂̃𝜌sv𝑖

(

1 −
∑𝑛a
𝑞 𝜎v𝑖𝑞𝛼𝑞𝜌v𝑖𝑞

)

∑𝑛e
𝑖 𝑉𝑖

(

1 −
∑𝑛a
𝑞 𝜎v𝑖𝑞𝛼𝑞𝜌v𝑖𝑞

) − 𝑉f (36)

The softargmax parameter 𝜎v𝑖𝑞 is calculated as shown in Eq. (37), where the sharpness parameter 𝜅 is the same as in Eqs. (32)
and (33).

𝜎v𝑖𝑞 =
𝑒𝜅𝛼𝑞𝜌v𝑖𝑞

∑𝑛a
𝑗 𝑒𝜅𝛼𝑗𝜌v𝑖𝑗

(37)

4.3. Non-overlap constraint

It does not make physical sense for two or more actuators to overlap, so a non-overlap constraint is added to the optimization
problem. However, the constraint should be relaxed to allow for the overlap of ‘‘transparent’’ PSAs during the design process. Thus, a
non-overlap constraint is formulated similarly to [39,61], but adapted for the pseudo-density based design of the geometry projection
method, while taking the 𝛼𝑞 values into account.

The idea, as illustrated in Fig. 6 of [39], is that the sum of the volumes of all actuators must be always equal to the sum of the
volume of the elements where there are any actuators. This can be changed to an inequality constraint, since the former should
never be less than the latter, yielding 𝑔no:

𝑔no =
𝑛e
∑

𝑖

𝑛a
∑

𝑞
𝐻no(𝛼𝑞𝜌e𝑖𝑞 )𝑉𝑖 −

𝑛e
∑

𝑖
𝐻no

( 𝑛a
∑

𝑞
𝛼𝑞𝜌e𝑖𝑞

)

𝑉𝑖 − 𝜏 (38)

where 𝜏 is a tolerance, which facilitates the scaling of the constraint for the MMA and can be equal to half of the volume the smallest
element in inhomogeneous meshes, for example. 𝑉𝑖 is the volume of element 𝑖 and 𝐻no is the smooth Heaviside projection Eq. (30)
with a different sharpness parameter, 𝛽no = 10, and a different threshold 𝜂no = 0.1. Note that even if two or more PSAs overlap, if
he sum of their 𝛼𝑞 values is less than 1, then the overlap constraint is not violated.

.4. Polarization constraint

In the considered problem setting, the applied electric field is controlled by the optimizer, and in principle PSAs acting in tension
ould be generated. To prevent this from happening, a polarization constraint is proposed, based on the idea of constraining the
iezoelectric contribution to the stress to always be negative.

The piezoelectric stress is the second term on the right-hand side of the first equation in Eq. (6). By taking the volumetric average
f this quantity in element 𝑖 in the direction of the 𝑞th PSA in the local 𝑥′3 direction it can be written as

𝑇 ′
33𝑖𝑞

= 1
𝑉𝑖 ∫Ω𝑖

−𝑒′33𝑞𝐸
′
3dΩ (39)

Since 𝑒′13 = 𝑒′23 = 0, the integrand −𝑒′33𝑞𝐸
′
33 can be written as −𝟏⊤33𝒆

′
𝑞
⊤𝑬′, where 𝟏33 is the vector {0, 1, 0}⊤ in 2D or {0, 0, 1, 0, 0, 0}⊤

′

14

n 3D. Furthermore, the electric field in the local coordinate system 𝑬 can be obtained from the global coordinate system by rotating
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𝑬 with 𝑹a𝑞 , the same rotation matrix as from Eq. (26). The electric field is related to the electric potential field 𝜙(𝒙) by 𝑬 = −∇𝜙,
here ∇ is the spatial gradient operator, so 𝑇 ′

33𝑖𝑞
can be calculated as

𝑇 ′
33𝑖𝑞

= 1
𝑉𝑖 ∫Ω𝑖

𝟏⊤33𝒆
′
𝑞
⊤𝑹a𝑞∇𝜙 dΩ (40)

With the linearity assumptions discussed in Section 2.2, the electric potential field can be written as the product of an
interpolation matrix of piecewise linear functions defined in element 𝑖 and a vector of the nodal electric potentials from the same
element, 𝝓𝑖. The gradient operator ∇ applied on the interpolation matrix yields 𝑩ϕ mentioned in Section 2.2, used for the calculation
of the element-wise electric and piezoelectric matrices in Eq. (14). Thus, Eq. (40) becomes

𝑇 ′
33𝑖𝑞

= 1
𝑉𝑖 ∫Ω𝑖

𝟏⊤33𝒆
′
𝑞
⊤𝑹a𝑞𝑩ϕ𝝓𝑖 dΩ = 𝟏⊤33𝒆

′
𝑞
⊤𝑹a𝑞 𝜻𝝓𝑖 (41)

The simplification can be made with 𝜻 = 1
𝑉𝑖

∫Ω𝑖 𝑩ϕ dΩ because only 𝑩ϕ is a function of space. Using a homogeneous mesh, 𝜻 can
be calculated only once.

It is known that the maximum possible stress magnitude that 𝑇 ′
33𝑖𝑞

may have is

𝑇 ′
max = 𝑛 𝑒′33

|Δ𝜙|max
‖𝒂𝑞‖

=
‖𝒂𝑞‖
𝑡d

𝑒′33
|Δ𝜙|max
‖𝒂𝑞‖

=
𝑒′33
𝑡d

|Δ𝜙|max (42)

here 𝑒′33 is the 𝑒33 property of the constituent piezoelectric material (i.e. without any modifications based on the length of a PSA)
nd |Δ𝜙|max is the maximum possible electric potential difference, which is known due to the electrical boundary conditions.

Thus, the sign of the piezoelectric stress in element 𝑖 related to the PSA 𝑞 can be calculated as

𝛯𝑖𝑞 =
𝑇 ′
33𝑖𝑞

𝑇 ′
max

(43)

here 𝛯𝑖𝑞 ∈ [−1; 1]. Note, however, that whether or not element 𝑖 is within a PSA has not been considered yet. To do so, and in
rder to obtain an average value over each PSA, a weighted average of 𝛯𝑖𝑞 over 𝑉𝑖𝜌𝑝𝑖𝑞 is calculated, thus yielding the average sign

of the piezoelectric stress of the 𝑞th PSA

𝛯𝑞 =

∑𝑛e
𝑖 𝑉𝑖𝜌𝑝𝑖𝑞𝛯𝑖𝑞
∑𝑛e
𝑖 𝑉𝑖𝜌𝑝𝑖𝑞

(44)

For the actuator to push structures apart, 𝛯𝑞 has to be strictly negative for every actuator 𝑞 = 1,… , 𝑛a. Also, the opaqueness
values 𝛼𝑞 have to be taken into account for the polarization constraint to be ignored during the optimization process for ‘‘transparent’’
actuators. If 𝛯𝑞 is simply multiplied by 𝛼𝑞 , then the sign goes to zero when 𝛼𝑞 → 0, which could violate the constraint and generate
esigns with semi-transparent 𝛼𝑞 . Thus, 𝜖-relaxation is applied, similarly to [62–64]. The polarization constraint is therefore given
y

𝑔pol =
(

𝛯𝑞 + 𝛾 + 𝜖
)

𝛼𝑞 − 𝜖 (45)

where 𝛾 = 0.01 in order for 𝛯𝑞 to be strictly negative and 𝜖 = 0.001.

4.5. Sensitivities

In this subsection the sensitivities of the objective and constraint functions with respect to the design variables are derived. Since
the chain rule is used, the derivatives of the equations from the preceding subsections are given in reverse order of appearance,
with the exception of the derivatives of the equivalent piezoelectric material properties shown in Section 2.1 and the derivatives of
all of the vectors and matrices obtained from the geometry projection method in Section 2.3, which are detailed in Appendix A.

In this section the notation specifying the mechanical uu, piezoelectric ϕu and dielectric ϕϕ submatrices, SIMP exponents (𝑤a,
sv, 𝑤cd) and softargmax values (𝜎𝑖𝑞) is omitted, with the understanding that every element matrix is composed of these submatrices,
hich in turn depend on their own corresponding exponents and softargmax values, to simplify notation. They are explicitly given
hen necessary.

The geometric variables of the 𝑞th PSA, i.e. 𝒙0𝑞 , 𝒙f𝑞 or 𝑑𝑞 , are referred to as 𝑥𝑞 . In the most general case, 𝑧 is used as a universal
esign-variable, representing 𝑥𝑞 , 𝛼𝑞 , 𝜌sv𝑖 or 𝜌cd𝑖 .

Firstly, the derivative of the objective function 𝑓 Eq. (35) with respect to 𝑧 is
𝜕𝑓
𝜕𝑧

= −𝝀⊤1
𝜕𝑲
𝜕𝑧

𝑼 (46)

where 𝑲 and 𝑼 are the global assembled matrix and nodal values, respectively, from Eq. (12). The adjoint vector 𝝀1 is obtained by
solving the adjoint problem

𝑲𝝀1 =
{

𝑳
}

(47)
15
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where 𝑳 is the vector from the definition of the objective function, Eq. (35).

Next the derivative of the global assembled matrix with respect to 𝑧 has to be calculated. Its form changes depending on the
ype of design variable, as can be seen in the following equations. Firstly we define an auxiliary matrix 𝑴 𝑖𝑞 for each element 𝑖 and
SA 𝑞 such that

𝑴 𝑖𝑞 = 𝑲A𝑖𝑞 − 𝜌
𝑤a
v𝑖𝑞𝑲M𝑖

−
𝑛a
∑

𝑗
𝜎𝑖𝑗

(

𝑲A𝑖𝑗 − 𝜌
𝑤a
v𝑖𝑗𝑲M𝑖

)

(48)

Then the derivatives of the mechanical 𝑲uu and piezoelectric 𝑲ϕu submatrices are calculated similarly to each other, with the
ifference being the values of the SIMP exponents 𝑤a, 𝑤sv and 𝑤cd. Additionally, for the electrical submatrix 𝑲ϕϕ the equations are
lightly different, due to the different softargmax parameter 𝜎ϕϕ𝑖𝑞 . Abusing notation by referring to both 𝑲uu and 𝑲ϕu simply as 𝑲,

their derivatives with respect to 𝑥𝑞 and 𝛼𝑞 can be calculated as

𝜕𝑲
𝜕𝑥𝑞

=
𝑛e
∑

𝑖

𝜕𝑲 𝑖
𝜕𝑥𝑞

=
𝑛e
∑

𝑖
𝜎𝑖𝑞

(

𝜕𝑲A𝑖𝑞
𝜕𝑥𝑞

−𝑤a𝜌
𝑤a−1
v𝑖𝑞

𝜕𝜌v𝑖𝑞
𝜕𝑥𝑞

𝑲M𝑖
+ 𝛽𝛼𝑤a

𝑞 𝑤a𝜌
𝑤a−1
v𝑖𝑞

𝜕𝜌v𝑖𝑞
𝜕𝑥𝑞

𝑴 𝑖𝑞

)

(49)

𝜕𝑲
𝜕𝛼𝑞

=
𝑛e
∑

𝑖

𝜕𝑲 𝑖
𝜕𝛼𝑞

=
𝑛e
∑

𝑖
𝜎𝑖𝑞

(

𝜕𝑲A𝑖𝑞
𝜕𝛼𝑞

+ 𝛽𝜌𝑤a
v𝑖𝑞𝑤a𝛼

𝑤a−1
𝑞 𝑴 𝑖𝑞

)

(50)

The sum over the number of elements 𝑛e can be understood as an assembly procedure, with 𝝀1 and 𝑼 in Eq. (46) being the
omplete nodal vectors. However, it is more straightforward to implement 𝜕𝑓

𝜕𝑧 as a summation over the element-level vectors and
matrices, i.e. −∑𝑛e

𝑖 𝝀⊤1𝑖
𝜕𝑲 𝑖
𝜕𝑧 𝑼 𝑖, in which case 𝜕𝑲 𝑖

𝜕𝑧 are the summands of Eqs. (49) and (50).

Then the derivatives of 𝑲ϕϕ with respect to 𝑥𝑞 and 𝛼𝑞 are

𝜕𝑲ϕϕ

𝜕𝑥𝑞
=

𝑛e
∑

𝑖

𝜕𝑲ϕϕ𝑖
𝜕𝑥𝑞

=
𝑛e
∑

𝑖
𝜎ϕϕ𝑖𝑞

( 𝜕𝑲Aϕϕ𝑖𝑞

𝜕𝑥𝑞
+ 𝛽𝛼

𝑤aϕϕ
𝑞 𝑤aϕϕ𝜌

𝑤aϕϕ−1
v𝑖𝑞

𝜕𝜌v𝑖𝑞
𝜕𝑥𝑞

𝑴ϕϕ𝑖𝑞

)

(51)

𝜕𝑲ϕϕ

𝜕𝛼𝑞
=

𝑛e
∑

𝑖

𝜕𝑲ϕϕ𝑖
𝜕𝛼𝑞

=
𝑛e
∑

𝑖
𝜎ϕϕ𝑖𝑞

𝜕𝑲Aϕϕ𝑖𝑞

𝜕𝛼𝑞
(52)

The derivatives of 𝑲uu, 𝑲ϕu and 𝑲ϕϕ, referred to simply as 𝑲 for ease of notation, with respect to 𝜌sv𝑖 and 𝜌cd𝑖 are calculated
as:

𝜕𝑲
𝜕𝜌sv𝑖

=
𝑛e
∑

𝑗

𝜕𝑲𝑗

𝜕𝜌sv𝑖
=

𝑛e
∑

𝑗

(

1 −
𝑛a
∑

𝑞
𝜎𝑗𝑞𝜌

𝑤a
v𝑗𝑞

)

𝑤sv ̂̃𝜌
𝑤sv−1
sv𝑗

(

𝑲S𝑗 −𝑲V

) 𝜕 ̂̃𝜌sv𝑗
𝜕𝜌̃sv𝑗

𝜕𝜌̃sv𝑗
𝜕𝜌sv𝑖

(53)

𝜕𝑲
𝜕𝜌cd𝑖

=
𝑛e
∑

𝑗

𝜕𝑲𝑗

𝜕𝜌cd𝑖
=

𝑛e
∑

𝑗

(

1 −
𝑛a
∑

𝑞
𝜎𝑗𝑞𝜌

𝑤a
v𝑗𝑞

)

𝑤cd ̂̃𝜌
𝑤sv
sv𝑗

(

̂̃𝜌𝑤cd−1
cd𝑗

𝑲C −
(

1 − ̂̃𝜌cd𝑗

)𝑤cd−1
𝑲D

) 𝜕 ̂̃𝜌cd𝑗
𝜕𝜌̃cd𝑗

𝜕𝜌̃cd𝑗
𝜕𝜌cd𝑖

(54)

where, again, care should be taken to use 𝜎ϕϕ𝑖𝑞 for the electrical submatrix. In these equations, the sum over the elements represents
he application of the derivative of the convolutional filter 𝜕 𝜌̃𝑗

𝜕𝜌𝑖
, since this filter distributes information between neighbouring

lements. In the actual implementation, the sum does not have to be performed and 𝜕 𝜌̃𝑗
𝜕𝜌𝑖

represents the application of the
convolutional filter on the vector of size 𝑛e obtained after calculating all other operations in the equation.

The derivative of the volume constraint 𝑔v with respect to 𝜌cd is 0. With an auxiliary variable 𝜓𝑖𝑞 shown in Eq. (55), the derivatives
of 𝑔v with respect to 𝑥𝑞 , 𝛼𝑞 and 𝜌sv are given in Eq. (56).

𝜓𝑖𝑞 = 1 + 𝜅

(

𝛼𝑞𝜌v𝑖𝑞 −
𝑛a
∑

𝑗
𝜎v𝑖𝑗 𝛼𝑗𝜌v𝑖𝑗

)

(55)

𝜕𝑔v
𝜕𝑥𝑞

=
𝛼𝑞

∑𝑛e
𝑖 𝑉𝑖𝜎v𝑖𝑞

(

𝑔v + 𝑉f − ̂̃𝜌sv
)

𝜓𝑖𝑞
𝜕𝜌v𝑖𝑞
𝜕𝑥𝑞

∑𝑛e
𝑖 𝑉𝑖

(

1 −
∑𝑛a
𝑞 𝜎v𝑖𝑞𝛼𝑞𝜌v𝑖𝑞

)

𝜕𝑔v
𝜕𝛼𝑞

=

∑𝑛e
𝑖 𝑉𝑖𝜎v𝑖𝑞

(

𝑔v + 𝑉f − ̂̃𝜌sv
)

𝜓𝑖𝑞 𝜌v𝑖𝑞
∑𝑛e
𝑖 𝑉𝑖

(

1 −
∑𝑛a
𝑞 𝜎v𝑖𝑞𝛼𝑞𝜌v𝑖𝑞

)

𝜕𝑔v
𝜕𝜌sv𝑖

=

∑𝑛e
𝑗 𝑉𝑗

(

1 −
∑𝑛a
𝑞 𝜎v𝑗𝑞𝛼𝑞𝜌v𝑗𝑞

) 𝜕 ̂̃𝜌sv𝑗
𝜕𝜌̃sv𝑗

𝜕 𝜌̃sv𝑗
𝜕𝜌sv𝑖

∑𝑛e 𝑉
(

1 −
∑𝑛a 𝜎 𝛼 𝜌

)

(56)
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The non-overlap constraint 𝑔no of Eq. (38) is only a function of the geometric variables 𝑥𝑞 and of 𝛼𝑞 , so its derivatives with
respect to the density-based variables 𝜌sv𝑖 and 𝜌cd𝑖 are 0. Its other derivatives are

𝜕𝑔no
𝜕𝑥𝑞

= 𝛼𝑞
𝑛e
∑

𝑖
𝑉𝑖

(

𝐻 ′
no(𝛼𝑞𝜌e𝑖𝑞 ) −𝐻

′
no

( 𝑛a
∑

𝑗
𝛼𝑗𝜌e𝑖𝑞

))

𝜕𝜌e𝑖𝑗
𝜕𝑥𝑞

𝜕𝑔no
𝜕𝛼𝑞

=
𝑛e
∑

𝑖
𝜌e𝑖𝑞𝑉𝑖

(

𝐻 ′
no(𝛼𝑞𝜌e𝑖𝑞 ) −𝐻

′
no

( 𝑛a
∑

𝑗
𝛼𝑗𝜌e𝑖𝑗

)) (57)

Finally, for the polarization constraint 𝑔pol Eq. (45), we firstly define an auxiliary term 𝜔𝑞

𝜔𝑞 =
𝛼𝑞

𝑇 ′
max

∑𝑛e
𝑗 𝜌p𝑗𝑞𝑉𝑗

(58)

Then the derivatives of the polarization constraint with respect to the design variables are

𝜕𝑔pol

𝜕𝑥𝑞
= 𝜔𝑞

𝑛e
∑

𝑖

[

(

𝑇 ′
33𝑖𝑞

− 𝛯𝑞𝑇 ′
max

) 𝜕𝜌p𝑖𝑞
𝜕𝑥𝑞

+ 𝜌p𝑖𝑞𝟏
⊤
33

(

𝜕𝒆′𝑞
⊤

𝜕𝑥𝑞
𝑹a𝑞 + 𝒆′𝑞

⊤
𝜕𝑹a𝑞
𝜕𝑥𝑞

)

𝜻𝝓𝑖

]

− 𝝀⊤1+𝑞
𝜕𝑲
𝜕𝑥𝑞

𝑼

𝜕𝑔pol

𝜕𝛼𝑞
= 𝛯𝑞 + 𝛾 + 𝜖 − 𝝀⊤1+𝑞

𝜕𝑲
𝜕𝛼𝑞

𝑼

𝜕𝑔pol

𝜕𝜌sv𝑖
= − 𝝀⊤1+𝑞

𝜕𝑲
𝜕𝜌sv𝑖

𝑼

𝜕𝑔pol

𝜕𝜌cd𝑖
= − 𝝀⊤1+𝑞

𝜕𝑲
𝜕𝜌cd𝑖

𝑼

(59)

where the adjoint vectors 𝝀1+𝑞 are obtained by solving the following adjoint problem for each PSA 𝑞

𝑲𝝀1+𝑞 =

{

𝟎

𝜔𝑞
∑𝑛e
𝑖 𝜌p𝑖𝑞𝑉𝑖

(

𝟏⊤33𝒆
′
𝑞
⊤𝑹a𝑞 𝜻

)⊤

}

(60)

From an implementation perspective, note that the right-hand sides of the adjoint problems shown in Eqs. (47) and (60) are
ndependent of the solution of the state equations, i.e. 𝑼 . This means that all of these right-hand sides can be stacked together with
he right-hand side of the state equation (12) and only one linear system has to be solved per iteration of the optimization problem,
olving simultaneously for 𝑼 and 𝝀𝑗 , where 𝑗 = 1,… , 1 + 𝑛a.

.6. Optimization flowchart

Fig. 10 shows a flowchart of the optimization procedure. At the start of the algorithm, the initial values of the geometric (𝒙0, 𝒙f,
𝑑 and 𝛼) and density-based (𝜌sv and 𝜌cd) design variables are specified, together with the material properties and the optimization
parameters. Next, the iterative loop starts, with the convolutional filter and Heaviside projection applied to the density-based design
variables, yielding ̂̃𝜌sv and ̂̃𝜌cd. Then the geometric design variables are used to calculate the pseudo-densities that describe the
material regions within the PSA 𝜌v, 𝜌e and 𝜌v, following Eqs. (15) to (24).

The element-level stiffness matrices are then calculated as in Eq. (34), which after the assembly procedure yield the global
stiffness matrix 𝑲 from Eq. (13). This equation is solved to find the nodal displacements 𝒖 and electric potentials 𝝓, which are used
to calculate the objective and constraint functions presented in Eq. (35).

At this point in the algorithm, the convergence and the stopping criteria are evaluated. If both are not met, the sensitivities are
calculated as presented in Section 4.5 and the results are passed to the subsolver of the optimization algorithm, i.e. the MMA. The
design variables are updated and a new iteration begins. When either of the aforementioned criteria is met, the optimization is
finalized.

4.7. Optimization approach

The optimization problem posed in Eq. (35) was solved using a nested analysis and design approach, wherein at each iteration
of the design process the equilibrium Eqs. (12) are solved, the objective and constraint functions are evaluated, their sensitivities
are calculated and new values are ascribed to the design variables 𝒙0𝑞 , 𝒙f𝑞 . 𝑑𝑞 and 𝛼𝑞 for 𝑞 = 1,… , 𝑛a, as well as 𝜌sv𝑖 and 𝜌cd𝑖 for
𝑖 = 1,… , 𝑛e.

As previously mentioned, the MMA is used as the optimization algorithm. For the considered problem with diverse design
variables, it was found that additional care must be taken in ensuring the stability of the optimization. For the MMA, the geometric
design variables are normalized to be within 0 and 1, as done in [43]. The move limits of the geometric design variables and 𝛼 were
set to 0.01 and the move limits of the density-based variables to 0.08, based on initial experiments. Additionally, from the note
published by Svanberg [65], the c parameter was set to 106. For lower values of c the volume and maximum length constraints
17
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Fig. 10. Flowchart of the optimization algorithm.

The values of the objective and constraint functions are normalized at each iteration of the design process for the MMA. The
initial normalization value of the objective function 𝑓0 is calculated based on the maximum theoretical output of a 1D PSA bar. It
is:

𝑓0 = 10⌊log10 𝑑
′
33𝑛max|Δ𝜙|max⌋ (61)

here 𝑑′33 is the piezoelectric property of the constituent material in strain-charge form, 𝑛max = 𝐿max
𝑡d

is the maximum number of
layers in the PSA during the optimization, |Δ𝜙|max is the maximum applied voltage difference at the boundaries, and ⌊⋅⌋ is the floor
function. Then the ratio 𝑓

𝑓0
is checked every 30 iterations: if 𝑓

𝑓0
< 0.1, 𝑓0 is divided by 10; else if 𝑓

𝑓0
> 100, 𝑓0 is multiplied by 10;

therwise 𝑓0 remains unchanged. The normalization values of the constraints 𝑔v, 𝑔no and 𝑔pol are 0.01, ℎ2

20 and 0.1, respectively.
The maximum length constraints of the PSAs are normalized by dividing by 𝐿max

10 and the minimum length constraints by dividing
by 𝐿min

10 .
A continuation approach is used for the Heaviside sharpness parameter 𝛽 of Eq. (30), starting from 0.05 and increasing in 4%

every iteration until it reaches 80. A direct solver was applied for the solution of the linear systems to obtain the results shown in
the subsequent section.

5. Results

5.1. Inverter-like mechanism

The methods presented in this subsection were applied to the inverter-like mechanism shown in Fig. 11. Its dimensions are
0.10 × 0.05 m2 and its domain was discretized with 400 × 200 = 80 000 elements. A spring of stiffness 𝑘 = 109 N

m is attached to
the horizontal degree of freedom of the upper-right node, which will have its displacement minimized. Furthermore, a non-design
domain of 5×2.5 mm2 is considered in the upper-right corner, made of solid dielectric material. A maximum solid fraction of 𝑉f = 25%
of the design domain is set. The rest of the domain is initialized with 𝜌sv𝑖 = 𝜌cd𝑖 = 0.23 for all elements 𝑖 = 1,… , 𝑛e, to account for
the small rectangular non-design domain and start the optimization with a feasible volume. The number of PSAs and their initial
positions, sizes and orientations are given in each of the following subsections. In all cases the radius of the density filter was 2 mm.
The piezoelectric disc thickness was constant equal to 𝑡d = 0.5 mm. The offset parameters were 𝑙′ = 6ℎ and 𝑑′ = 8ℎ.

The bottom one-third of left surface is grounded, while the upper one-third has a prescribed non-zero voltage equal to 100 V.
The minimum and maximum PSA lengths are 5 mm and 30 mm, respectively, and the minimum and maximum PSA widths are
2 mm and 10 mm, respectively. The initial values of the length and width are 15 mm and 5 mm, respectively, and an initial 𝛼𝑞
value of 0.5, in all cases except for a benchmark problem. The softargmax sharpness parameter for the geometry projection method
was 𝜅 = 50.

The dielectric material has the same mechanical properties of steel, a Young’s modulus of 200 GPa and a Poisson’s ratio of 0.29,
but with the dielectric permittivity of air, i.e. 8.9073 ⋅ 10−12 F

m . The conductive material is slightly less stiff, with a Young’s modulus
f 190 GPa, to encourage the optimization process to only use conductive material where necessary, a Poisson’s ratio of 0.29 and a
arge absolute permittivity of 8.9073 ⋅10−3 F , i.e. 109 larger than that of air. Void material has the permittivity of air, Poisson’s ratio
18
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Fig. 11. General design of the inverter-like mechanism.

of steel but a Young’s modulus of 200 Pa, i.e. 10−9 that of the dielectric material. All of these materials have 0 piezoelectricity. The
elasticity, piezoelectricity and dielectric permittivity matrices of the electrode and piezoelectric materials are given in Appendix B.

The SIMP penalization exponents for the mechanical, piezoelectric and electric properties are given in brackets in that order.
They are 𝒘a = [3, 3, 3], 𝒘sv = [3, 3, 2] and 𝒘cd = [3, 3, 2]. The optimization stops either when the average change in the design
variables is lower than 10−4 or when 300 iterations are reached.

In the figures illustrating the topologies, ̂̃𝝆
𝑤cduu
cd is shown. Only solid elements are shown by thresholding ̂̃𝝆sv ≥ 0.5. For the

illustration of the displaced structure, post-processing is applied to smoothen the design by firstly converting element-level values
to nodal ones and then thresholding the solid–void regions with a value of 0.5. Additionally, in all figures the components of the
PSAs are illustrated by thresholding 𝜌𝑞 at 0.5, where 𝜌𝑞 here can be any of the geometric pseudo-densities of Section 2.3. The solid
piezoelectric region is coloured with a white to green gradient, since 𝛼𝑞𝜌p𝑖𝑞 can hold values between 0 and 1. A grey arrow shows
the polarization direction of the PSA. Similarly, the electrode regions are coloured with a white to yellow gradient.

The method was implemented in Python, a high-level general-purpose programming language, with some wrapped C components.
The Intel PARDISO solver of the Intel oneAPI Math Kernel Library [66] was used as the linear system solver, a free to use and free to
redistribute software, according to Intel’s Simplified Software License (Version October 2022). Each iteration of the algorithm for the
considered mesh of 80 000 elements takes on average 3 s on a desktop computer with an Intel i9-9900KF CPU. Since performance
was not the focus of this study, future works may improve on this by, e.g.: using more sophisticated and efficient solvers, such
as multigrid [67]; adapting the code to run in more performant hardware, such as a cluster with GPUs [68] and/or FPGAs; using
commercial instead of free software and programming languages.

5.1.1. Benchmark result — fixed PSA geometry
In this subsection, a design obtained from only optimizing for the solid–void and conductive–dielectric material distributions of

the underlying compliant mechanism is shown, considering a fixed location and geometry for a single PSA. The length and diameter
of the PSA are equal to the maximum values for the more general cases, i.e. 30 mm and 10 mm, respectively, and 𝛼 = 1. The PSA
is centred in the design domain with a rightwards polarization direction, as shown in Fig. 12.

The final topology obtained from the optimization process is shown in Fig. 13(a), with dielectric material in blue and conductive
material in red. The entire solid region is load-bearing, with conductive material being mostly utilized to connect the PSA to the
prescribed voltages, and dielectric material where the electrical connections are not required.

The displacements are magnified by a factor of 2000 and the displaced structure is shown in Fig. 13(b). The undeformed
configuration is shown in light grey in the background. Dielectric material is shown in dark grey, while a red to blue colour scheme
shows the voltage distribution on the conductive material. It can be seen that the voltages in the conductive material seem to be
either 0 V or 100 V, as expected, due to the large permittivity values used to model the conductive material. Furthermore, the
design works as intended, moving the upper right-most corner to the left.

Fig. 12. Initial design for one PSA. The grey area has 𝜌𝑠𝑣 = 𝜌𝑐𝑑 = 0.23.
19
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Fig. 13. Final topology of the benchmark problem with fixed PSA geometry, position and orientation. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 14. Optimization history of the benchmark problem.

The convergence histories are depicted in Fig. 14. Smooth and steady convergence is observed, the volume constraint is active
while the polarization constraint is only active in the initial iterations. A final value of the objective function of −1.7003 ⋅ 10−6 m
was obtained.

5.1.2. Single PSA
In this subsection, a result is presented with the complete optimization problem for one PSA. Similarly to the previous subsection,

the PSA is initially centred in the design domain with a rightwards polarization direction as illustrated in Fig. 12, although now
with 𝛼 = 0.5, an initial diameter of 5 mm and an initial length of 15 mm.

The final topology can be seen in Fig. 15. The orientation of the PSA in the final design rotated in 58.95 deg in the clock-wise
direction. The length and the diameter of the PSA are equal to their maximum allowable values, i.e. 30 mm and 10 mm, respectively,
with 𝛼 = 1. This was expected, since a thicker PSA has a larger blocking force and a longer PSA has a larger stroke, especially
considering piezoelectric layers of constant thickness.

The convergence histories can be seen in Fig. 16. Similar behaviour as in the benchmark example is observed, indicating that the
chosen variable scaling is effective. The polarization constraint again is inactive in all but the first iterations. The objective function
decreased smoothly until the optimization converged in iteration 227, reaching a value of −2.4930 ⋅ 10−6 m, 46.64% better than the
benchmark problem.

5.1.3. The importance of the polarization constraint
If the problem shown in the previous subsection is optimized without considering the proposed polarization constraint, the

topology shown in Fig. 17 is obtained. As can be seen from the displaced structure in Fig. 17(b), the PSA is under tension, pulling
two structural regions together, which is not desirable.

The design was obtained in 290 iterations with an objective function value of −2.6311 ⋅10−6 m, i.e. even lower than the previous
case. The better objective function is expected, since in this configuration less energy is used for the elastic deformation of the
20
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Fig. 15. Final topology of the single PSA problem.

Fig. 16. Optimization history of the single PSA problem.

Fig. 17. Final topology without polarization constraint.

underlying mechanism in comparison to the design when the PSA is in compression. We can conclude that the polarization constraint
is essential to guide the design to an optimized solution based on a PSA in compression, even when it is inactive in most iterations.

5.1.4. Larger conductive permittivity
The choice of the permittivity value for the conductive and electrode materials influences the behaviour of the optimization

procedure. Since a comprehensive study of the influence of this parameter on the final obtained designs is out of scope for this
paper, in this section only one example showing this influence is presented. Specifically, the 𝜀S values shown in Appendix B were
multiplied by 100.

Different from the previous results, the conductive material is used sparingly, as can be seen in the final optimized design in
Fig. 18(b). The thin conductive material seems to describe electrical wires connecting the PSA to the electrical boundary regions.
By looking at the solid–void distribution ̂̃𝝆 in Fig. 18(a), it can be seen that the conductive materials in the ‘‘wires’’ exist in grey
21
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Fig. 18. Final topology for a higher permittivity value of conductive and electrode materials.

regions, thus exhibiting low mechanical stiffness. Despite having intermediate solid–void values 𝜌sv, the conductivity is still quite
large, since the permittivity of the conductive material in this example is 7 orders of magnitude larger than that of the piezoelectric
material. Fig. 18(c) shows the deformed structure. The final length and diameter of the PSA are equal to the largest admissible
values, i.e. 30 mm and 15 mm, respectively.

The final objective value was −2.6658 ⋅ 10−6 m, which is better than the previous result obtained for a single PSA, since the
conductive material applied here is a better conductor. Thus, there are less electrical losses in the conductive material, which means
that there is a larger electric potential difference between the electrodes of the PSA.

5.1.5. No equivalent piezoelectric properties
Without the equivalent piezoelectric properties for the PSA shown in Section 2.1, the optimization design problem will fail to

mimic the physical behaviour of a PSA. The maximum possible piezoelectric stress within a finite element, i.e. 𝑇 ′
max, will depend on

the minimum length of the PSA instead of its maximum length, since, for a fixed maximum voltage difference |Δ𝜙|max, the electric
field 𝐸′

3 within the PSA will be largest when the distance between the electrodes is smallest, 𝐿min. Thus, in this case, 𝑇 ′
max will be:

𝑇 ′
max = 𝑒′33

|Δ𝜙|max
𝐿min

(62)

additionally, the normalization parameter of the objective function 𝑓0 is calculated similarly to Eq. (61), but with 𝑛max = 1.
Furthermore, for the conductive material to behave the same as in the three initial examples, the permittivity values of the

conductive and electrode materials have to be scaled based on the relationship between the equivalent permittivity 𝜀S
PSA33

and that
of the piezoelectric material 𝜀S

33, as in Eq. (11). Since 𝐿max = 30 mm and 𝑡d = 0.5 mm, then 𝑛 = 60 and the previous values of the
conductive and electrode permittivities have to be divided by 𝑛2 = 3600.

The final topology and displaced structure obtained for these settings can be seen in Fig. 19. The length of the actuator is
24.7304 mm and its final width is 6.5415 mm.

The final design converged in 261 iterations and the value of the objective function was −2.9334⋅10−8 m, two orders of magnitude
worse than before. This was expected, since a monolithic piezoelectric material will not be able to produce the same actuation as
the PSA composed of multiple discs, given a fixed input voltage.
22
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Fig. 19. Final topology without the proposed equivalent piezoelectric material property for the actuator.

Fig. 20. Initial configuration for two PSAs. The grey area has 𝜌𝑠𝑣 = 𝜌𝑐𝑑 = 0.23, as in the preceding results.

5.1.6. Two PSAs and the effect of 𝛾
In this subsection, four different topologies are shown, considering two PSAs with either downward or upward polarization

directions and two different values of 𝛾, which is the parameter in the polarization constraint shown in Eq. (45) that enforces strict
inequality of the average piezoelectric stresses in each PSA. The initial design is shown in Fig. 20, where the polarization directions
may be both downward or both upward.

The final designs are shown in Fig. 21. For the case where the PSAs are initially oriented downwards, a value of 𝛾 = 0.01 causes
one of the two PSAs to vanish for the polarization constraint to be satisfied and the final value of the objective function is similar
to that of the design with one PSA. By increasing 𝛾 to 0.5, the optimization process is able to find a local optimum where both PSAs
can be used under compression, thus yielding a better objective function value. For the case where the PSAs are initially oriented
upwards, a value of 𝛾 = 0.01 has the same effect as before, yielding a final design where one of the PSAs vanishes and the value
of the objective function is similar to that of one PSA. However, the result obtained with 𝛾 = 0.5 in this case did not inhibit the
vanishing of one PSA and it yielded a slightly worse objective function value, as can be seen in the captions on Fig. 21.

5.1.7. Two overlapping PSAs
Finally, a result is shown where two PSAs are initially overlapping. Fig. 22 shows the initial topology. Since the initial value of

𝛼𝑞 is 0.5 for both PSAs, the dark green region where both PSAs intersect each other has a sum ∑𝑛a
𝑞 𝛼𝑞𝜌p𝑖𝑞 for each element 𝑖 equal

to 1.0 and the lighter green regions have this sum equal to 0.5.
The final design can be seen in Fig. 23. It converged in 243 iterations to an objective function value of −2.3240 ⋅ 10−6 m. It can

be seen that both PSAs are solid (𝛼𝑞 = 1), however, the smaller PSA has both of its ends connected to the same conductive material.
This occurs because there is enough of a voltage gradient in the conductive material such that the polarization constraint is satisfied
and a small improvement on the objective function can be obtained.

Fig. 24 shows the non-overlap constraint 𝑔no during the iterations of the optimization process. It is initially slightly positive, but
quickly becomes feasible with a small decrease of 𝛼 and is never again violated.
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Fig. 21. Final topologies obtained for two PSAs considering two different initial orientations and two different 𝛾 values. The objective function value 𝑓 is shown
for each design.

Fig. 22. Initial design of overlapping PSAs.

Fig. 23. Final topology for the initially overlapping PSAs.
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Fig. 24. Non-overlap constraint 𝑔no history.

Fig. 25. General design of the cantilever mechanism.

5.2. Cantilever mechanism

The proposed method was also applied for the design of a cantilever mechanism illustrated in Fig. 25, which is clamped on
the left-hand side, has the same electrical boundary conditions as the inverter-mechanism and the objective is to maximize the
upward vertical displacement of the lower-right tip, which is connected to a workpiece stiffness 𝑘. Problems of this kind could be
encountered in the design of precision positioning mechanisms for e.g. optical components. The material properties and optimization
parameters are taken from the previous results. Multiple initial conditions are explored considering both one and two PSAs, with
both the initial and optimized topologies shown in Fig. 26. Specifically for the design of Fig. 26a, the convergence and displaced
structure can be seen in Fig. 27.

In general, it can be seen that the initial configuration is highly influential on the final design, which is expected, since
a gradient based optimizer such as the MMA can only converge to a local optimum and is consistent with other results from
literature [36,39,69]. Furthermore, the additional sizing and ‘‘opacity’’ variables in this work can cause more local optima to exist
in comparison to the cited references. For example, in Fig. 26 it can be seen that topologies with two PSAs yield better optima than
one PSA when both actuators can be fully utilized for the maximization of the desired output displacement. The best and worst
obtained designs differ by a factor of 1.67 in performance, which is significant and a result of the non-convexity of the problem.
Therefore, the exploration of multiple initial configurations is recommended in order to find better optimized designs.

6. Conclusion

The paper proposes a unified multiphysics framework combining multi-material density-based topology optimization and a
composite multi-layered geometry-projection method to find optimized designs of smart structures composed of piezoelectric
stack actuators (PSAs) modelled as having continuum equivalent piezoelectric geometry-dependent properties embedded within
conductive load-bearing structures. Furthermore, a novel polarization constraint was defined that successfully inhibits undesirable
designs which are improper for the use of PSAs.

Nineteen numerical examples were provided and discussed, demonstrating the capabilities of the proposed design methodology.
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Fig. 26. Initial (top) and optimized (bottom) results for multiple cantilever mechanism configurations. Red regions are conductive and blue are dielectric. The
final objective function values are (a) −1.8341 μm, (b) −2.2156 μm, (c) −2.0717 μm, (d) −2.2110 μm, (e) −3.0611 μm (best), (f) −2.3476 μm, (g) −2.0809 μm, (h)
−2.3088 μm, (i) −2.0862 μm.. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 27. Displaced structure (left, magnified by a factor of 2000) and convergence history (right) of the result shown in Fig. 26a.

lead to suboptimal designs. The proposed methodology is capable of yielding designs of smart structures with embedded actuators
exclusively under compression, while allowing for the overlap of grey actuators during the optimization process. The main drawback
of the method is its susceptibility to local optima, which can commonly be seen in literature for feature-mapping based methods.
Exploration of multiple initial configurations and problem parameters is recommended to reduce the likelihood of obtaining inferior
local optima, as demonstrated for the cantilever mechanism design problem.

We have not considered stress constraints in the smart structure optimization, as this was not the focus of this study. This however
results in typical thin flexures, that may be hard to produce and prone to failure. Extending the problem formulation with adequate
stress constraints, also regarding the material interfaces, is identified as a topic for future research. Additional topics for future works
include non-linear effects inherent in piezoelectric actuators subject to higher input voltages; dynamic inputs for the application in
vibration suppression and energy harvesting; simultaneous optimization of control parameters, broadening the scope to realize the
design of a fully coupled smart structure; and extension to 3D.
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Appendix A. Sensitivities for the equivalent piezoelectric material properties and geometry projection method

As in Section 4.5, the geometric design variables of the 𝑞th PSA 𝒙0𝑞 , 𝒙f𝑞 and 𝑑𝑞 are represented by 𝑥𝑞 . The notation specifying
the mechanical uu, piezoelectric ϕu and dielectric ϕϕ submatrices, SIMP exponents (𝑤a, 𝑤sv, 𝑤cd) and softargmax values (𝜎𝑖𝑞) is
also omitted. The derivatives of the 𝑲A𝑖𝑞 matrices of Eq. (28) with respect to 𝑥𝑞 and 𝛼𝑞 can be calculated, respectively, as

𝜕𝑲A𝑖𝑞
𝜕𝑥𝑞

=
𝜕𝜌v𝑖𝑞
𝜕𝑥𝑞

𝑲V +𝑤a𝛼
𝑤a
𝑞

[

𝜌𝑤a−1
e𝑖𝑞

𝜕𝜌e𝑖𝑞
𝜕𝑥𝑞

(

𝑲E𝑖𝑞 −𝑲V

)

+ 𝜌𝑤a−1
p𝑖𝑞

𝜕𝜌p𝑖𝑞
𝜕𝑥𝑞

(

𝑲P𝑖𝑞 −𝑲E𝑖𝑞

)

]

+ 𝛼𝑤a
𝑞

[

(

𝜌𝑤a
e𝑖𝑞 − 𝜌

𝑤a
p𝑖𝑞

) 𝜕𝑲E𝑖𝑞 + 𝜌𝑤a
p𝑖𝑞

𝜕𝑲P𝑖𝑞
] (63)
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r

t

w

w
a

𝜕𝑲A𝑖𝑞
𝜕𝛼𝑞

= 𝑤a𝛼
𝑤a−1
𝑞

[

𝜌𝑤a
e𝑖𝑞

(

𝑲E𝑖𝑞 −𝑲V

)

+ 𝜌𝑤a
p𝑖𝑞

(

𝑲P𝑖𝑞 −𝑲E𝑖𝑞

)]

(64)

The derivatives of the submatrices of the equivalent piezoelectric material 𝑲P𝑖𝑞 and the electrode material 𝑲E𝑖𝑞 matrices with
espect to 𝑥𝑞 use Eq. (14). Omitting the subscripts P and E for ease of notation, their derivatives can be written once as

𝜕𝑲uu𝑖
𝜕𝑥𝑞

=∫Ω𝑖
𝑩⊤

u
𝜕𝒄E

𝜕𝑥𝑞
𝑩u dΩ

𝜕𝑲ϕu𝑖
𝜕𝑥𝑞

=∫Ω𝑖
𝑩⊤

ϕ
𝜕𝒆
𝜕𝑥𝑞

𝑩u dΩ

𝜕𝑲ϕϕ𝑖
𝜕𝑥𝑞

=∫Ω𝑖
𝑩⊤

ϕ
𝜕𝜺S

𝜕𝑥𝑞
𝑩ϕ dΩ

(65)

where the properties are in the global coordinate system.
The submatrices of 𝑲P𝑖𝑞 use the equivalent piezoelectric material properties in the global coordinate system 𝒄E

p, 𝒆p and 𝜺S
p, and

their derivatives with respect to 𝑥𝑞 are, from Eq. (25):

𝜕𝒄E
p

𝜕𝑥𝑞
=
𝜕𝑻 ⊤a𝑞
𝜕𝑥𝑞

𝒄E
p
′𝑻 a𝑞 + 𝑻 ⊤a𝑞 𝒄

E
p
′ 𝜕𝑻 a𝑞
𝜕𝑥𝑞

(66)

𝜕𝒆p𝑞
𝜕𝑥𝑞

=
𝜕𝑹⊤

a𝑞
𝜕𝑥𝑞

𝒆′p𝑞𝑻 a𝑞 +𝑹⊤
a𝑞

𝜕𝒆′p𝑞
𝜕𝑥𝑞

𝑻 a𝑞 +𝑹⊤
a𝑞
𝒆′p𝑞

𝜕𝑻 a𝑞
𝜕𝑥𝑞

(67)

𝜕𝜺S
p𝑞

𝜕𝑥𝑞
=
𝜕𝑹⊤

a𝑞
𝜕𝑥𝑞

𝜺S
p
′
𝑞
𝑹a𝑞 +𝑹⊤

a𝑞

𝜕𝜺S
p
′
𝑞

𝜕𝑥𝑞
𝑹a𝑞 +𝑹⊤

a𝑞
𝜺S

p
′
𝑞

𝜕𝑹a𝑞
𝜕𝑥𝑞

(68)

Similarly, the submatrices of 𝑲E𝑖𝑞 use the electrode material properties in the global coordinate system 𝒄E
e , 𝒆e and 𝜺S

e , and their
derivatives with respect to 𝑥𝑞 are, also from Eq. (25):

𝜕𝒄E
e

𝜕𝑥𝑞
=
𝜕𝑻 ⊤a𝑞
𝜕𝑥𝑞

𝒄E
e
′𝑻 a𝑞 + 𝑻 ⊤a𝑞 𝒄

E
e
′ 𝜕𝑻 a𝑞
𝜕𝑥𝑞

(69)

𝜕𝒆e𝑞
𝜕𝑥𝑞

=
𝜕𝑹⊤

a𝑞
𝜕𝑥𝑞

𝒆′e𝑻 a𝑞 +𝑹⊤
a𝑞
𝒆′e
𝜕𝑻 a𝑞
𝜕𝑥𝑞

(70)

𝜕𝜺S
e𝑞

𝜕𝑥𝑞
=
𝜕𝑹⊤

a𝑞
𝜕𝑥𝑞

𝜺S
e
′𝑹a𝑞 +𝑹⊤

a𝑞
𝜺S

e
′ 𝜕𝑹a𝑞
𝜕𝑥𝑞

(71)

The derivatives of the equivalent piezoelectric matrix and of the dielectric permittivity matrix are matrices of zeros, except for
he positions where there are 𝑒31, 𝑒33 and 𝜀S

33. From Eq. (11), Section 2.1, the derivatives are

𝜕𝑒′31PSA

𝜕𝑥𝑞
= 𝜕𝑛
𝜕𝑥𝑞

𝑒′31 =
𝑒′31
𝑡d

𝜕‖𝒂𝑞‖
𝜕𝑥𝑞

=
𝑒′31
𝑡d

𝜕𝒂𝑞
𝜕𝑥𝑞

𝒂𝑞
‖𝒂𝑞‖

𝜕𝑒′33PSA

𝜕𝑥𝑞
= 𝜕𝑛
𝜕𝑥𝑞

𝑒′33 =
𝑒′33
𝑡d

𝜕‖𝒂𝑞‖
𝜕𝑥𝑞

=
𝑒′33
𝑡d

𝜕𝒂𝑞
𝜕𝑥𝑞

𝒂𝑞
‖𝒂𝑞‖

𝜕𝜀S′
33PSA

𝜕𝑥𝑞
= 𝜕𝑛2

𝜕𝑥𝑞
𝜀S′
33 = 2𝑛

𝜀S′
33
𝑡d

𝜕‖𝒂𝑞‖
𝜕𝑥𝑞

= 2𝑛
𝜀S′
33
𝑡d

𝜕𝒂𝑞
𝜕𝑥𝑞

𝒂𝑞
‖𝒂𝑞‖

(72)

From Eq. (16), the derivatives of 𝒂𝑞 with respect to the geometric design variables are

𝜕𝒂𝑞
𝜕𝒙0𝑞

= −𝐈
𝜕𝒂𝑞
𝜕𝒙f𝑞

= 𝐈
𝜕𝒂𝑞
𝜕𝑑𝑞

= 𝟎 (73)

here 𝐈 is an identity matrix of size 2 × 2 in 2D or 3 × 3 in 3D.
The derivatives of the rotation matrices 𝑹a𝑞 and 𝑻 a𝑞 of the 𝑞th PSA with respect to 𝑑𝑞 are equal to 0. Since their derivatives

ith respect to 𝒙0𝑞 and 𝒙f𝑞 yield third-order tensors, they are given in index notation in terms of the 𝑘th component of vectors 𝒙0𝑞
nd 𝒙f𝑞 . Additionally, two auxiliary vectors are used: 𝒆1 = {1, 0}⊤ and 𝒆2 = {0, 1}⊤.

𝜕𝑹a𝑞
𝜕𝑥0𝑞𝑘

=
𝑎𝑞𝑘

‖𝒂𝑞‖2

[

𝑎𝑞𝑧 −𝑎𝑞𝑥
𝑎𝑞𝑥 𝑎𝑞𝑧

]

+ 1
‖𝒂𝑞‖

[

−𝑒2𝑘 𝑒1𝑘
−𝑒1𝑘 −𝑒2𝑘

]

(74)

𝜕𝑹a𝑞
𝜕𝑥𝑓𝑞𝑘

= −
𝑎𝑞𝑘

‖𝒂𝑞‖2

[

𝑎𝑞𝑧 −𝑎𝑞𝑥
𝑎𝑞𝑥 𝑎𝑞𝑧

]

+ 1
‖𝒂𝑞‖

[

𝑒2𝑘 −𝑒1𝑘
𝑒1𝑘 𝑒2𝑘

]

(75)
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w

𝜕𝑻 a𝑞
𝜕𝑥0𝑞𝑘

=
2𝑎𝑞𝑘
‖𝒂𝑞‖4

⎡

⎢

⎢

⎢

⎣

𝑎2𝑞𝑧 𝑎2𝑞𝑥 −𝑎𝑞𝑥𝑎𝑞𝑧
𝑎2𝑞𝑥 𝑎2𝑞𝑧 𝑎𝑞𝑥𝑎𝑞𝑧

2𝑎𝑞𝑥𝑎𝑞𝑧 −2𝑎𝑞𝑥𝑎𝑞𝑧 𝑎2𝑞𝑧 − 𝑎
2
𝑞𝑥

⎤

⎥

⎥

⎥

⎦

+

1
‖𝒂𝑞‖2

⎡

⎢

⎢

⎢

⎣

−2𝑎𝑞𝑧𝑒2𝑘 −2𝑎𝑞𝑥𝑒1𝑘 𝑎𝑞𝑧𝑒1𝑘 + 𝑎𝑞𝑥𝑒2𝑘
−2𝑎𝑞𝑥𝑒1𝑘 −2𝑎𝑞𝑧𝑒2𝑘 −𝑎𝑞𝑧𝑒1𝑘 − 𝑎𝑞𝑥𝑒2𝑘

−2𝑎𝑞𝑧𝑒1𝑘 − 2𝑎𝑞𝑥𝑒2𝑘 2𝑎𝑞𝑧𝑒1𝑘 + 2𝑎𝑞𝑥𝑒2𝑘 −2𝑎𝑞𝑧𝑒2𝑘 + 2𝑎𝑞𝑥𝑒1𝑘

⎤

⎥

⎥

⎥

⎦

(76)

𝜕𝑻 a𝑞
𝜕𝑥f𝑞𝑘

= −
2𝑎𝑞𝑘
‖𝒂𝑞‖4

⎡

⎢

⎢

⎢

⎣

𝑎2𝑞𝑧 𝑎2𝑞𝑥 −𝑎𝑞𝑥𝑎𝑞𝑧
𝑎2𝑞𝑥 𝑎2𝑞𝑧 𝑎𝑞𝑥𝑎𝑞𝑧

2𝑎𝑞𝑥𝑎𝑞𝑧 −2𝑎𝑞𝑥𝑎𝑞𝑧 𝑎2𝑞𝑧 − 𝑎
2
𝑞𝑥

⎤

⎥

⎥

⎥

⎦

+

1
‖𝒂𝑞‖2

⎡

⎢

⎢

⎢

⎣

2𝑎𝑞𝑧𝑒2𝑘 2𝑎𝑞𝑥𝑒1𝑘 −𝑎𝑞𝑧𝑒1𝑘 − 𝑎𝑞𝑥𝑒2𝑘
2𝑎𝑞𝑥𝑒1𝑘 2𝑎𝑞𝑧𝑒2𝑘 𝑎𝑞𝑧𝑒1𝑘 + 𝑎𝑞𝑥𝑒2𝑘

2𝑎𝑞𝑧𝑒1𝑘 + 2𝑎𝑞𝑥𝑒2𝑘 −2𝑎𝑞𝑧𝑒1𝑘 − 2𝑎𝑞𝑥𝑒2𝑘 2𝑎𝑞𝑧𝑒2𝑘 − 2𝑎𝑞𝑥𝑒1𝑘

⎤

⎥

⎥

⎥

⎦

(77)

For the derivatives of 𝜌v𝑖𝑞 , 𝜌e𝑖𝑞 and 𝜌p𝑖𝑞 with respect to the geometric variables 𝑥𝑞 , firstly we have to define the derivatives of
the offset geometric variables with respect to the original ones using Eq. (22):

𝜕𝒙os
0𝑞

𝜕𝒙0𝑞
=
𝜕𝒙os

f𝑞
𝜕𝒙f𝑞

= 𝐈 + 𝑙′

2

(

1
‖𝒂𝑞‖

𝐈 −
𝒂𝑞 ⊗ 𝒂𝑞
‖𝒂𝑞‖3

)

𝜕𝒙os
0𝑞

𝜕𝒙f𝑞
=
𝜕𝒙os

f𝑞
𝜕𝒙0𝑞

= − 𝑙
′

2

(

1
‖𝒂𝑞‖

𝐈 −
𝒂𝑞 ⊗ 𝒂𝑞
‖𝒂𝑞‖3

)

𝜕𝑑os
𝑞

𝜕𝑑𝑞
= 1

(78)

𝜕𝒙os
0𝑞

𝜕𝑑𝑞
=
𝜕𝒙os

f𝑞
𝜕𝑑𝑞

=
𝜕𝑑os

𝑞

𝜕𝒙0𝑞
=
𝜕𝑑os

𝑞

𝜕𝒙f𝑞
= 𝟎 (79)

here ⊗ means outer product.
Then, using 𝜌𝑖(𝑥𝑞) from Eq. (20), the derivatives of 𝜌v𝑖𝑞 , 𝜌e𝑖𝑞 and 𝜌p𝑖𝑞 with respect to 𝒙0𝑞 can be found using Eqs. (21)–(24):

𝜕𝜌p𝑖𝑞
𝜕𝒙0𝑞

=
𝜕𝜌𝑖(𝒙0𝑞 ,𝒙f𝑞 , 𝑑𝑞)

𝜕𝒙0𝑞
𝜕𝜌e𝑖𝑞
𝜕𝒙0𝑞

=
𝜕𝜌𝑖(𝒙os

0𝑞
,𝒙os

f𝑞
, 𝑑𝑞)

𝜕𝒙os
0𝑞

𝜕𝒙os
0𝑞

𝜕𝒙0𝑞
+
𝜕𝜌𝑖(𝒙os

0𝑞
,𝒙os

f𝑞
, 𝑑𝑞)

𝜕𝒙os
f𝑞

𝜕𝒙os
f𝑞

𝜕𝒙0𝑞
𝜕𝜌v𝑖𝑞
𝜕𝒙0𝑞

=
𝜕𝜌𝑖(𝒙os

0𝑞
,𝒙os

f𝑞
, 𝑑os
𝑞 )

𝜕𝒙os
0𝑞

𝜕𝒙os
0𝑞

𝜕𝒙0𝑞
+
𝜕𝜌𝑖(𝒙os

0𝑞
,𝒙os

f𝑞
, 𝑑os
𝑞 )

𝜕𝒙os
f𝑞

𝜕𝒙os
f𝑞

𝜕𝒙0𝑞

(80)

Similarly, their derivatives with respect to 𝒙f𝑞 are

𝜕𝜌p𝑖𝑞
𝜕𝒙f𝑞

=
𝜕𝜌𝑖(𝒙0𝑞 ,𝒙f𝑞 , 𝑑𝑞)

𝜕𝒙f𝑞

𝜕𝜌e𝑖𝑞
𝜕𝒙f𝑞

=
𝜕𝜌𝑖(𝒙os

0𝑞
,𝒙os

f𝑞
, 𝑑𝑞)

𝜕𝒙os
0𝑞

𝜕𝒙os
0𝑞

𝜕𝒙f𝑞
+
𝜕𝜌𝑖(𝒙os

0𝑞
,𝒙os

f𝑞
, 𝑑𝑞)

𝜕𝒙os
f𝑞

𝜕𝒙os
f𝑞

𝜕𝒙f𝑞

𝜕𝜌v𝑖𝑞
𝜕𝒙f𝑞

=
𝜕𝜌𝑖(𝒙os

0𝑞
,𝒙os

f𝑞
, 𝑑os
𝑞 )

𝜕𝒙os
0𝑞

𝜕𝒙os
0𝑞

𝜕𝒙f𝑞
+
𝜕𝜌𝑖(𝒙os

0𝑞
,𝒙os

f𝑞
, 𝑑os
𝑞 )

𝜕𝒙os
f𝑞

𝜕𝒙os
f𝑞

𝜕𝒙f𝑞

(81)

And their derivatives with respect to 𝑑𝑞 are
𝜕𝜌p𝑖𝑞
𝜕𝑑𝑞

=
𝜕𝜌𝑖(𝒙0𝑞 ,𝒙f𝑞 , 𝑑𝑞)

𝜕𝑑𝑞
𝜕𝜌e𝑖𝑞
𝜕𝑑𝑞

=
𝜕𝜌𝑖(𝒙os

0𝑞
,𝒙os

f𝑞
, 𝑑𝑞)

𝜕𝑑𝑞
𝜕𝜌v𝑖𝑞 =

𝜕𝜌𝑖(𝒙os
0𝑞
,𝒙os

f𝑞
, 𝑑os
𝑞 )

os

(82)
29

𝜕𝑑𝑞 𝜕𝑑𝑞
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t

s

Writing 𝜌𝑖(𝑥𝑞) from Eq. (20) as a function of any geometric parameter 𝑥𝑞 (including the offset ones), its derivative with respect
o 𝑥𝑞 is:

𝜕𝜌𝑖(𝑥𝑞)
𝜕𝑥𝑞

=
𝑁
∑

𝑗
𝑤𝑗

𝜕𝐻̃𝑖𝑗 (𝑥𝑞)
𝜕𝑥𝑞

(83)

The derivative of the piecewise smooth Heaviside 𝐻̃(𝑥) from Eq. (18) is:

𝜕𝐻̃(𝑥)
𝜕𝑥

=

⎧

⎪

⎨

⎪

⎩

6 𝑥
2

𝑤3
− 3

2𝑤
, if |𝑥| ≤ 𝑤

2

0, otherwise.
(84)

Finally, the derivatives of the rectangular signed-distance function 𝜑(𝑥𝑞 ,𝒑) from Eq. (15) with respect to the geometric variables
of the 𝑞th PSA can be written as shown in the following equations. Here the subscript ‘‘𝑞’’ referring to the 𝑞th PSA was omitted for
implicity.

𝜕𝜑
𝜕𝒙0

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝒈 + 𝒂
‖𝒂‖

if ‖𝒈‖ ≤ 𝑑
2 and 𝒃′ ⋅ 𝒂 < −

√

2
2 ‖𝒃′‖‖𝒂‖

−
𝒈

‖𝒂‖
if ‖𝒈‖ ≤ 𝑑

2 and 𝒆′ ⋅ 𝒂 >
√

2
2 ‖𝒆′‖‖𝒂‖

− 1
‖𝒃′′‖

(

𝒃 + 𝑑
2
𝒆 ⋅ 𝒂
𝒂 ⋅ 𝒂

𝒈
‖𝒈‖

)

if ‖𝒈‖ > 𝑑
2 and 𝒃 ⋅ 𝒂 < 0

− 1
‖𝒆′′‖

𝑑
2
𝒆 ⋅ 𝒂
𝒂 ⋅ 𝒂

𝒈
‖𝒈‖

if ‖𝒈‖ > 𝑑
2 and 𝒆 ⋅ 𝒂 > 0

𝒆 ⋅ 𝒂
𝒂 ⋅ 𝒂

𝒈
‖𝒈‖

otherwise

(85)

𝜕𝜑
𝜕𝒙f

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−
𝒈

‖𝒂‖
if ‖𝒈‖ ≤ 𝑑

2 and 𝒃′ ⋅ 𝒂 < −
√

2
2 ‖𝒃′‖‖𝒂‖

𝒈 − 𝒂
‖𝒂‖

if ‖𝒈‖ ≤ 𝑑
2 and 𝒆′ ⋅ 𝒂 >

√

2
2 ‖𝒆′‖‖𝒂‖

1
‖𝒃′′‖

𝑑
2
𝒃 ⋅ 𝒂
𝒂 ⋅ 𝒂

𝒈
‖𝒈‖

if ‖𝒈‖ > 𝑑
2 and 𝒃 ⋅ 𝒂 < 0

1
‖𝒆′′‖

(

𝑑
2
𝒃 ⋅ 𝒂
𝒂 ⋅ 𝒂

𝒈
‖𝒈‖

− 𝒆
)

if ‖𝒈‖ > 𝑑
2 and 𝒆 ⋅ 𝒂 > 0

− 𝒃 ⋅ 𝒂
𝒂 ⋅ 𝒂

𝒈
‖𝒈‖

otherwise

(86)

𝜕𝜑
𝜕𝑑

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 if ‖𝒈‖ ≤ 𝑑
2 and 𝒃′ ⋅ 𝒂 < −

√

2
2 ‖𝒃′‖‖𝒂‖

0 if ‖𝒈‖ ≤ 𝑑
2 and 𝒆′ ⋅ 𝒂 >

√

2
2 ‖𝒆′‖‖𝒂‖

1
2‖𝒃′′‖

(𝑑
2
− ‖𝒈‖

)

if ‖𝒈‖ > 𝑑
2 and 𝒃 ⋅ 𝒂 < 0

1
2‖𝒆′′‖

(𝑑
2
− ‖𝒈‖

)

if ‖𝒈‖ > 𝑑
2 and 𝒆 ⋅ 𝒂 > 0

−1
2

otherwise

(87)

Note that 𝜕𝜑(𝑥𝑞 ,𝒑)
𝜕𝑥𝑞

does not have to be calculated at every sampling point, but only where the derivative of 𝐻̃
(

𝜑
(

𝒙𝑞 ,𝒑
))

is
non-zero.

Appendix B. Properties of the electrode and piezoelectric materials.

The piezoelectric material of each disc within the PSA is PZT-5. Its elastic stiffness, piezoelectric and dielectric permittivity
matrices are shown in Eqs. (88), (89) and (90), respectively, in the local coordinate system.

𝒄E
p
′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

121 75.4 75.2
75.4 121 75.2
75.2 75.2 111

21
21

23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

GPa (88)

𝒆′p =
⎡

⎢

⎢

12.3
12.3

⎤

⎥

⎥

C
m2

(89)
30

⎣−5.4 −5.4 15.8 ⎦
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p

𝜺S
p
′ =

⎡

⎢

⎢

⎣

14.61
14.61

15.05

⎤

⎥

⎥

⎦

10−9 F
m (90)

The material of the electrode has the elastic stiffness matrix shown in Eq. (91). It has no piezoelectricity and an isotropic absolute
ermittivity of 8.9073 ⋅ 10−3 F

m , i.e. the same as of the conductive material.

𝒄E
e
′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

262.09 107.05 107.05
107.05 262.09 107.05
107.05 107.05 262.09 ⋅ 109

7.7519 ⋅ 107

7.7519 ⋅ 107

7.7519 ⋅ 107

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Pa (91)
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