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ARTICLE INFO ABSTRACT

Keywords: The design of smart structures is challenging because of the integrated electromechanical
Topology optimization modelling and optimization of actuators, sensors and load-bearing structures. To simplify the
Piezoelectricity

design process, it is common to decouple some of the components and physics and develop
each part separately, which could lead to suboptimal systems. To improve the overall design
of active structures, we propose an integrated and fully coupled design methodology for
a certain class of smart structures. Specifically, this paper presents a numerical framework
for the simultaneous application of density-based topology optimization of multi-material
conductive compliant mechanisms and a composite multi-layered geometry-projection method
for the optimization of the size, position and orientation of embedded piezoelectric stack
actuators. Their electromechanical properties are represented in a continuum-based setting by
an orientation- and geometry-dependent equivalent material model and their activation depends
on the distribution of conductive material in the structure. Furthermore, a novel constraint
on the polarization of the actuators is proposed to avoid unwanted designs that could cause
their mechanical degradation. A set of numerical examples is analysed and discussed. The
proposed framework exhibits promising results, with significant improvements in comparison
to a benchmark problem.

Piezoelectric stack actuators
Geometry projection
Smart structures

1. Introduction

Smart structures, also known as active or adaptronic structures, integrate actuation, sensing and control and allow for adaptive
functionalities in lightweight and low energy systems. They are characterized by the interaction of electronic and mechanical
components, aiming at achieving adaptable elastomechanical properties [1]. They have a broad applicability range, such as morphing
aircraft wings [2], structural health monitoring [3], nanomaterials for biomedical applications [4], among other interdisciplinary
fields, combining physical, chemical and biological technologies [5].

Since active structures integrate various multidisciplinary components that have both constructive and competing interrelation-
ships, seeking functional conformity within the system—e.g. by avoiding impedance mismatches—is a challenging aspect of their
design. Hence, smart structure design inherently poses an optimization problem for which different solution strategies may be
taken depending on the degree of coupling of the system components. In principle the most desirable approach is to optimize the
fully coupled system, but because of the difficulty in solving the resulting large multifunctional problems, it is often necessary to

* Corresponding author at: Faculty of Mechanical Engineering, University of Campinas, R. Mendeleyev, 200, 13083-860, Campinas, SP, Brazil.
E-mail address: b135111@dac.unicamp.br (B.V. de Almeida).

https://doi.org/10.1016/j.cma.2024.117120
Received 3 April 2024; Received in revised form 21 May 2024; Accepted 2 June 2024

Available online 15 June 2024
0045-7825/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
mailto:b135111@dac.unicamp.br
https://doi.org/10.1016/j.cma.2024.117120
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2024.117120&domain=pdf
https://doi.org/10.1016/j.cma.2024.117120

B.V. de Almeida et al. Computer Methods in Applied Mechanics and Engineering 429 (2024) 117120

subdivide the components and optimize each of them individually [1]. This approach may lead to suboptimal solutions from a
systems perspective.

A methodical design approach to generate smart structure configurations in a multicomponent setting, capable of optimizing
for actuation, sensing or energy harvesting applications, is a desirable ultimate goal. As a step in this direction, we propose a
framework to design active electromechanical systems composed of piezoelectric stack actuators (PSAs) embedded within load-
bearing conductive structures in a unified multiphysics setting, based on the combination of a multi-material topology optimization
(TO) method and a feature-mapping method. Below various aspects of this framework are introduced and reviewed, after which we
outline the contributions of this paper.

TO generates material layouts based on a set of objective and constraint functions, using computational techniques capable of
taking a large amount of design variables of different degrees of complexity into account simultaneously [6]. One of the most widely
used variants of TO is the density-based approach, in which 0 or 1 design variables are attributed to each element of a discretized
design space, representing non-existence or existence of material, respectively. The variables are relaxed for the optimization
problem to be well-posed, allowing for intermediate values, and the material properties of each element are calculated using a
material interpolation law, such as the Solid Isotropic Material with Penalization (SIMP) [7]. Furthermore, multiple materials can
be considered in the method by ascribing two or more design variables per element and applying different material laws [7-11].
Another widely used variant of TO is the level-set approach, in which the shape of a solid structure is determined by regions where
a level-set function is greater than a given threshold, with its iso-contour representing the surface of the structure [12]. Changes in
topology can be achieved by updating the level-set function, thus modifying the shape of its iso-contours, and hole nucleation can
occur by incorporating other techniques, such as topological derivatives [13]. Multi-material design problems can also be considered
in the method by using more than one value for the iso-contours or multiple level-set functions [14-16].

Multi-material TO has been amply applied to the design of smart structures. Sigmund [9] extended TO with multiple materials to
design electrothermomechanical systems, such as an actuator or a gripper mechanism, where the input electrical voltage triggered
Joule heating in the solid material causing thermal expansion. Kégl and Silva [17] proposed a novel material model for the design
of piezoelectric plate and shell actuators as an extension of SIMP, adding the polarization direction of the piezoelectric material
as a design variable in the optimization problem. Carbonari et al. [18] further developed the method to simultaneously optimize
for the distribution of both piezoelectric and non-piezoelectric materials. Other examples of smart structure design through TO are
e.g. [19-24].

Of the many components within a smart structure, actuators are the functional elements, transforming input signals into an
output power, capable of generating work [1]. We focus on piezoelectric actuators, which have received significant attention over
the years, due to advantages such as size compactness, large output forces, flexible design and fast frequency response [25,26].
They are composed of piezoelectric materials, which exhibit strong electromechanical coupling, generating electrical charges when
subjected to an external mechanical stress and, inversely, deforming from an applied electric potential. There are several kinds
of piezoelectric actuators, which can be classified according to their modes of actuation and their geometry. The actuation mode
depends on the alignment between the polarization direction of the piezoelectric material and the externally applied electric field.
When they are aligned, longitudinal and transverse deformations occur, while when they are perpendicular to each other, a shear
mode appears. Additionally, when one end of a piezoelectric actuator is fixed, a bending mode occurs [27]. PSAs are another type of
actuator, composed of piezoelectric discs or square patches stacked together in alternating polarities, sandwiched between electrodes.
In comparison to other piezoelectric actuator types, they exhibit lower driving voltage, faster response times, larger blocking forces
and higher eigenfrequencies [28]. For piezoelectric discs of fixed thickness, the longer the PSA, the larger its output for a given
constant voltage input.

Most TO publications on piezoelectric actuators have considered single or multi-layered configurations with transverse or bending
excitation modes [17-19,29-40], while very little attention has been devoted to PSAs. Recently Lai et al. [26] proposed an equivalent
one-dimensional electromechanical model of a PSA based on Euler-Bernoulli beam theory, allowing for the integrated modelling
and analysis of piezo-actuated compliant mechanisms. The model was developed for the dynamic stiffness matrix method [41], so
incorporating it into a density-based TO framework is not straightforward. Instead, we propose a novel continuum-based model via
an equivalent piezoelectric material that has geometry dependent properties, calculated based on the length and orientation of the
PSA during the design procedure.

PSAs are typically available in regular geometric shapes, and this property should be considered when optimizing a smart
structure with embedded PSAs. This is not straightforward in the aforementioned TO methods. A class of methods that can
do so is broadly called feature-mapping methods [42]. Wang et al. [33] performed TO of compliant smart structures with
embedded piezoelectric actuators in a hybrid level-set and nodal density-based approach. Yang et al. [36] optimized the topology of
piezoelectric composites with integrated actuators, geometrically modelled using the Finite Circle Method. Recently Wang et al. [39]
applied the method of Moving Morphable Components (MMC) and minimum length scale control to obtain optimized compliant
mechanisms and actuators. In this work, we apply the geometry projection method [43] to optimize the sizes and placements of
the PSAs. With this method, the lengths and orientations of the PSAs are explicitly known, which synergizes with the proposed
equivalent piezoelectric material model mentioned above.

A PSA should only connect to a load-bearing structure through its ends and bending modes should not occur, since this could
cause delamination between the discs within the PSA and breakage [5,44]. To take these physical considerations into account, the
PSA is modelled using geometry-projection via a combination of an active piezoelectric layer, a void layer encapsulating its sides and
an electrode layer at its extremities. Therefore, a composite multi-layered adaptation of the geometry-projection method is developed



B.V. de Almeida et al. Computer Methods in Applied Mechanics and Engineering 429 (2024) 117120

to model the PSA, with distinct material properties being attributed to fixed subregions within its geometry. Furthermore, a novel
polarization constraint is proposed to avoid designs where the PSA acts under tension, which can cause its mechanical degradation.

The proposed framework models the electrical connections between electrodes and actuators explicitly, to obtain more realistic
designs, which requires strongly-coupled electromechanical equations to model the load-bearing regions of the design. This is
achieved by allowing for a monolithic interpolation between non-conductive (void and solid dielectric) and conductive (solid)
materials using SIMP and therefore the material interpolation laws require special attention. Yoon and Sigmund [45] proposed
a nonlinear continuum-based formulation valid for general media consisting of ideal insulators and conductors for the design of
electrostatic systems actuated by Coulomb’s forces; they coined a generalized permittivity that is equal to the permittivity of air
in void regions, but equal to a very large number in solid regions. Chen et al. [46] used a simplified model for energy harvesting
applications by considering the coupled linear equations of piezoelectric media and directly attributing large permittivity values to
conductive media. He et al. [47] applied a further simplification by neglecting the permittivity of conductive materials altogether,
which avoids numerical issues related to the usage of large values in the analyses, despite compromising its accuracy. In this work
we take a similar approach as [46] and perform a brief investigation on the effect of the permittivity value of the conductive material
on the optimization process.

The main contributions of this work are fourfold: 1) introduction of a continuum equivalent material model for PSAs; 2) a
composite multi-layered geometry projection method; 3) its simultaneous application to the TO of the load-bearing part of the
smart structure in a multiphysics multi-material dielectric—conductive design; and 4) a polarization constraint for PSAs. Together,
these advances allow for TO of PSA-driven smart structures considering mechanical and electrical functionality, with realistic and
controlled PSA geometries. In this work, two-dimensional (2D) plane strain hypothesis was considered given the planar target
applications and to simplify the analysis procedure, however most of the developments can be trivially extended to three dimensions
(3D). Where relevant, remarks regarding the extension to 3D will be included below.

The paper is divided as follows. In Section 2 the formulation of the equivalent PSA material is derived, the piezoelectric finite
element discretization is given and the composite multi-layered geometry-projection method used to geometrically model the PSA
is introduced. Section 3 presents the three-phase SIMP interpolation used to interpolate between void, solid dielectric and solid
conductive materials in the load-bearing region of the structure as well as the complete formulation combining it with the composite
geometry-projection method representing the PSAs. The optimization problem is stated in Section 4 with the objective function, the
constraints, sensitivity analysis and details on the solution process. Results are presented and discussed in Sections 5 and 6 concludes
the paper.

2. Modelling

An illustration of how the smart structure is modelled can be seen in Fig. 1. The design domain is represented by the domain Q,
which is conceptually divided in two independent ways: a geometric set and a material set, shown in Figs. 1(b) and 1(c), respectively.
In the geometric set, actuators are defined by the domain Q,, which can be written as the union of all individual actuator domains
Qp = UJ; Q. The full domain thus contains Q, and its complement Q}. The material of each Q, has its own equivalent PSA
property, which is derived in Section 2.1. Next, the discretization methodology using the Finite Element Method (FEM) is given in
Section 2.2. Finally, Section 2.3 shows how geometry projection is used to map the geometric variables that describe the PSAs to
element-wise pseudo-densities, as well as the FEM stiffness matrices associated to each actuator ©, . The material set describes the
load bearing structure, containing void Qy, dielectric Qp, and conductive Q. regions and is introduced in Section 3.

Qy
Qy,
Q
A, Qp
O
(a) Full design domain Q. (b) Geometric set. The actuator regions Q, are  (c) Material set. The void Qy, dielectric Q
described using geometry projection. and conductive Q regions are interpolated using

pseudo-densities.

Fig. 1. Conceptual division of the design domain. White is void, grey is dielectric material and red is conductive material. The rectangular blue regions are
stack actuators. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.1. Piegoelectric stack actuator material model

A classical piezoelectric stack actuator (PSA) is composed of multiple thin piezoelectric discs, stacked together with alternating
polarization directions, with electrodes between them. Fig. 2 illustrates the actuator. Compared to a monolithic piezoelectric cylinder
with the same volume, for a given voltage difference between its ends, the PSA deforms significantly more than the monolithic
cylinder.

Typically, the thickness of the piezoelectric discs ranges from 50 to 100 pm [48]. Since the PSAs are embedded in the topology,
as opposed to considering plate-like actuators, with out-of-plane electrical excitation [39], the behaviour of a PSA has to be taken
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(a) Two thin piezoelectric discs with (b) Piezoelectric stack actuator (PSA).
inverted polarization directions.

Fig. 2. Illustration of a classical PSA. Blue indicates upward and green indicates downward polarization directions. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

into account in the model. Although this could be performed in a Finite Element setting by considering a mesh fine enough to
capture the different piezoelectric discs and electrodes, this is computationally expensive. Instead, equivalent piezoelectric material
properties are proposed to model the behaviour of the PSA. It is assumed that the discs are perfectly bonded to each other.

To obtain the equivalent properties of the PSA, we write the constitutive equations of piezoelectric media in the strain-charge
form, or d-form, shown in Eq. (1), in Voigt notation. Note that by the IEEE standard for piezoelectricity, the 3rd dimension is
considered to be the polarization direction [49].

S=s T +d"E

T 1)
D=dT+¢ E

T, S, D and E are the stress, strain, dielectric displacement and electric field vectors, respectively. st is the compliance matrix
evaluated at constant electric field, d is the piezoelectric coupling matrix and €7 is the dielectric permittivity evaluated at constant
stress.

Now consider Eq. (1) for a one-dimensional (1D) model, as illustrated in Fig. 3. The polarization direction of the discs of thickness
14 is in the x5 direction. Since neither stresses nor charges are applied to its ends, other than a voltage of value ¢, there are no stresses
in the PSA. The electric field in the x; direction for each disc may be written as E; = —%. The total length L of the PSA is equal

to 14 times the number of discs n, i.e. L = nty. Thus, E; = —n%. Then from the first equation in Eq. (1), we have that the strain in
the PSA is constant and equal to

Sy = —nd33% @
Al -|los O
 — —_—
(a) Full model. (b) Equivalent model.

Fig. 3. 1D model of a PSA.

Therefore, the 1D PSA of length L may be written as consisting of an equivalent monolithic piezoelectric material with an
equivalent property dy;,., = nds;, with a constant electric field E; = —% [48].
Now, regarding the purely electrical properties of the material, the capacitance Cy; . of each disc can be expressed as

T
633Ad
Iq

Caisc = 3

where Ay is the surface area of the discs, which is equal to the cross section area of the PSA.
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Since the PSA is a parallel connection of n discs, then Cpgy = n Cy;s.. Using this, Eq. (3) and L = nrq we have that

n2el Ag
Cosp = —— @
Therefore the equivalent ¢, property of the PSA may be written as E;P = n?e], [48]. In summary, a 1D PSA of n piezoelectric

discs may be modelled as being composed of a single equivalent piezoelsgctric material with properties shown below, which is
illustrated in Fig. 3(b).
dyz,, =ndsy
T _ 2T )
E33psa — T €33
In order to find the equivalent PSA properties for a 2D case considering plane strain hypothesis, the equivalent 2D strain-charge
constitutive equations are required. However, this form of the equations cannot be immediately obtained from the 3D case of Eq. (1)
by just ignoring the out-of-plane dimension. Instead, the equations are firstly written in the stress-charge form, or e-form, shown in
Eq. (6), and then changed to the strain-charge form, as in Eq. (1).

T=ctS—¢E

s (6)
D=eS+¢E

where cF is the elasticity matrix evaluated at constant electric field, £5 is the permittivity matrix evaluated at constant strain and e
is the piezoelectric coupling matrix in this form.
To change between the two forms of the constitutive equations, the following relationships are applied:

-1
sE = cF
d=es" (@]
el =65 +ed’

Considering 2D plane strain hypothesis, with direction x, as the out-of-plane direction, and that only piezoelectric materials of
crystalline structure class 4mm are taken into account, which are transversely isotropic [49], Eq. (6) may be written as

E E

Ty, ‘o Gs Sh ey

T U | cE E S b E,
3BT |3 C33 33 €33 E,

T3 E S es

55 (€))
Sn

s
) R L AR Y
D; €31 €33 Sis €5, LEs

Common piezoelectric ceramic materials such as barium titanate (BaTiO3) and lead zirconate titanate (PZT) are examples of
such class of materials. Substituting Eq. (7) into Eq. (8), the constitutive properties in the strain-charge form under plane strain
hypothesis are finally obtained:

SE SE
S 11 13 Ty, ds E
Sy =|sE st Ty + dy; { El}
Si3 E||T d 3
s 13 15
55 (9)

T
Ve R I R L
D; d3  ds; T13 e3,] LE3

Now consider the illustrations shown in Fig. 4 of a 2D PSA model. The actuation direction of the PSA is aligned to the polarization
direction x3;. The mechanical and electrical boundary conditions are applied as shown in Fig. 4(a), with a non-zero voltage ¢.

Under these assumptions, all stress components are equal to zero in the PSA. Furthermore the transverse electric field E, is zero,
since there are no voltage differences nor charges applied to the surfaces parallel to the x; direction. Thus, from the first equation
of Eq. (9), we obtain S3; = d33E3. As in the 1D model, the electric field in the x; direction within a piezoelectric disc is constant
and equal to E; = —%. With L = nty, we obtain

¢
Sn:—"dslz
p (10)
S33 = —ndy;—
33 n BT

The capacitance of the PSA for the 2D case can be obtained similarly to the 1D case, since E; = 0, yielding the same result as
Eq. (4). Therefore, the equivalent properties of a PSA of n discs illustrated in Fig. 4(b) in the strain-charge form are d3lps L =0 dsq,

5
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2
aON=s :

(a) Full model. (b) Equivalent model.

7O

Fig. 4. 2D model of the PSA.

d33,, = ndsz; and E;PSA = n2£§3. After using Eq. (7), the following equivalent PSA properties are obtained in the stress-charge form:

€31pgp — €31

€33p50 = N€33 (1)
s _ .2,

E3psa ' 33

The three-dimensional (3D) case is a trivial extension of the 2D case, with the equivalent PSA properties in the stress-charge
form being the same as the 2D case with an additional es,,, = nes.

The proposed equivalent PSA model assumes piezoelectric materials of crystalline structure class 4mm and has two main
limitations. The first one is the assumption of perfect bonding between the piezoelectric discs within the PSA, since in reality
the discs are glued together with a bonding material. The other limitation is that the equivalent properties are only valid for the
simplified boundary conditions shown in Fig. 4(a), since the PSA may only be connected to a structural material through its ends.
In Section 2.3.4 an approach to mitigate the second limitation is presented.

To simplify notation, in the following sections the properties of the equivalent piezoelectric material associated to the gth PSA
are referred to as cg, e, and 62.

2.2. Finite element discretization

The smart structure is designed using density-based TO techniques. The design domain of the structure is represented as Q
and is illustrated in Fig. 1(a). In this work it is discretized with a homogeneous mesh, although the proposed methodology can be
straightforwardly adapted to inhomogeneous meshes. The linear constitutive piezoelectric relations shown in Eq. (6) are considered,
as well as small deformations and rotations, which are valid assumptions for the analysis of low-voltage actuators [1]. Furthermore,
for simplification purposes, 2D plane-strain hypothesis is considered.

Considering small strain relations and that the electric field is equal to minus the gradient of the electric potential, using the
variational principle for piezoelectric media and only static excitations, the following equilibrium equation is obtained [50]:

T
o[l G-
du "Reo q

The vectors u, ¢, f and q are the nodal mechanical displacements, electric potentials, applied forces and electric charges,
respectively. The first two are succinctly referred to by the vector U and the last two by F. The global stiffness matrix K
contains three distinct submatrices, namely the assembled mechanical stiffness K, piezoelectric coupling K, and dielectric K,
matrices [37,51,52].

In this work, the smart structure is excited by input voltages at the boundaries of the domain Q. Thus, F = 0 and a prescribed
non-zero voltage ¢* is applied to Eq. (12) together with fixed displacements (u = 0) and grounded surfaces (¢ = 0). With n,, being
the number of prescribed degrees of freedom, and an under-tilde representing the subblock of a matrix or a vector corresponding
to the free degrees of freedom, the equilibrium equation of the free degrees of freedom can be written as

n,

S [ Ko | s
Ku=-1"2"10¢ 13)
J P j
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The element matrices of element i prior to the assembly procedure are calculated using Gaussian quadrature as

Ky, =/ Bl cEB dQ
Q.

i

Ky, =/Q BjeB,dQ (14)

— T.S
Ky, _/Qqu)e B,dQ

where matrix B, relates the nodal displacements u with the strain S and B, relates the nodal electric potentials ¢ with the
electric field E.

Note that every element in the mesh is modelled as a piezoelectric material. The non-piezoelectric materials are modelled as
having zero piezoelectric properties ¢;; = 0 and the conductive material as having a very large isotropic dielectric permittivity value
?j, such that the electric field within it tends to zero when only one voltage value is prescribed [46]. The actual material property
that an element may have is determined by interpolating the possible material properties with certain pseudo-densities. The pseudo-
densities associated to the actuators are obtained using a geometry projection method, which is introduced in Section 2.3, while
the pseudo-densities associated to the material domain are discussed in Section 3.1. Section 3.2 clarifies how the final properties of
each element are obtained.

Since the right-hand side of Eq. (13) depends on the global assembled matrix K, sensitivity information obtained by differentiat-
ing the equilibrium equations with respect to the pseudo-densities used in the TO procedure may be derived directly from Eq. (12),
with u containing zeros where the nodal displacements are fixed, ¢ containing zeros where the voltages are grounded and ¢* where
the voltage is prescribed.

It is known that the large differences in orders of magnitude of the mechanical and permittivity properties cause numerical issues
due to ill-conditioning of the global stiffness matrix K. To mitigate this, the properties are scaled similarly to Homayouni-Amlashi
et al. [37].

£

2.3. PSA geometry modelling

In this work a geometry projection method is applied to model the geometric domain shown in Fig. 1(b). Geometric variables,
represented succinctly as x, describing the position, size and orientation of rectangular primitives that are used to model the PSA
are applied to a signed-distance function ¢(x, p), which can be evaluated at any point in space p. This function is in turn passed
to a smooth approximate piecewise Heaviside function H that generates a continuous representation of the primitive. In order to
obtain element-wise pseudo-densities of the primitive in a fixed grid, H(@(x, p)) is evaluated at multiple points p ; within each grid
element and a volumetric average is calculated using a second order Newton—Cotes rule. [42]

Each PSA is modelled by stacking three different rectangular geometric primitives on top of each other, for void, electrode and
equivalent piezoelectric materials, thus referred to as a “composite projection” scheme, as described in detail in Section 2.3.4. Each
pseudo-density is associated to a certain material property. Furthermore, each PSA has an additional “opacity variable” a € [0, 1]
(also called a “size variable” [53] or a “membership variable” [54]), which scales the properties between 0 and 1, so that a PSA
may be removed in the optimization process as a — 0.

2.3.1. Rectangular signed-distance function

In the geometry projection method, geometric primitives that may only change in size, position and orientation are described
by geometric variables x. In this work the geometric primitive is rectangular, in agreement with typical 2D PSA shapes. As shown
in Fig. 5, it is described implicitly by a rectangular signed-distance function, with the geometric variables being the coordinates of
their extremities x, and x; and their width d.

A rectangular signed-distance function ¢(x, x¢, d, p) = @(x, p) evaluated at any point in space p that has the boundaries of the
rectangular primitive shown in Fig. 5 as its zero-contour line is defined in Eq. (15), with the auxiliary terms defined in Egs. (16)—(17).

b-a . 2
~Jap ifllsl < § and b -a<-L|lal
e-a N 2
T iflgl <4 and e-a> 2)ellal
CEP=VIB), if gl > ¢ and b-a <0 (15)
lle”1l, if |1 gll > g ande-a>0
||g||—%, otherwise
a=x;— X b=p-x, e=p-—x; h:ua g=b-h (16)
a-a
d a d a d g d §
¥=bp-2 e=e+=-—— b'=b- > e =e- = 17
2 |lall 2 |lall 2 |igll 2 |igll
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Fig. 5. Rectangular geometric primitive. This figure shows the geometric variables x,, x; and d, as well as the auxiliary variables utilized to describe a rectangular
signed-distance function ¢(x, p) at a point in space p.

40

100

100
z 50
0 0 .

Fig. 6. Surface plot of the rectangular signed-distance function with a mesh with 2 =0.2 in a 100 x 100 domain.

Fig. 6 shows a surface plot of the signed-distance function. Outside the boundaries of the rectangle (i.e. the zero-contour line
shown in black) it is a C' continuous function. Within it and including the line, it is C° continuous. The isocontours of the proposed
function exactly describe a rectangle, while having the desirable property of signed-distance functions, i.e. that the spatial gradient
is unit Ve(x, p) = 1, which avoids issues that occur when there is a non-equidistant distribution of level-set contours of geometric
features [55].

2.3.2. Smooth heaviside function

To classify if points are part of a PSA, the signed-distance function ¢(x, p) defined in the preceding subsection is passed to a
smooth approximation of a Heaviside function A (x) shown in Eq. (18). It is a continuous piecewise function with a cubic polynomial
interpolation in its transition zone of width w [42]. The output is a continuous scalar field between 0 and 1 that determines whether
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a region is outside or within the geometric primitive, respectively.

1, ifx<—§
3x 1 . )
Hx) =422 _2X L2 jf|x<¥ 18
(x) o 2w+2’ 1|x|_2 18)
0, ifx>§

Smaller values of w make the approximate Heaviside function become sharper, while larger values make it smoother. A value
of w = 2h is chosen in this work, where 4 is the mesh size and is shown in Fig. 7(a). For illustration purposes, the plot obtained for
a larger transition zone of w = 20A is shown in Fig. 7(b).

(@) w=2h (b) w=20h

Fig. 7. Plots of A(x) with A =0.2 in a 100 x 100 domain, for the signed-distance function shown in Fig. 6 with different transition zone widths w.

2.3.3. Projection into a fixed grid

The scalar field H(g(x,p)) € [0,1] has to be processed in order for each element to have a unique constant pseudo-density
associated to it. This can be done by performing a volume averaging of H(g(x,p)) within each element, which can be written
mathematically as:

no =5 / Ap(x.p)dQ 19)
i Jo,

where Q; is the volume of element i and V; = |Q;].

In this work, the closed second-order Newton-Cotes rule [42] (i.e. Simpson’s one-third rule) is used to calculate the above
integration numerically. Writing the weights of this integration rule as w; for N integration points and j = 1,..., N, then p; can be
expressed as:

N
pix) =Y w;H, (20)

J
where H, ; is obtained by calculating H(p(x,p 1)) at a point in space p; within element i. For 2D quadrilateral elements, N = 32=09

2.3.4. Composite projection

To mitigate the second limitation of the equivalent PSA material model mentioned at the end of Section 2.1, thin orthotropic
conductive layers are attached to the ends of the PSA, which are stiff only in the direction aligned to the PSA, and compliant in
the other directions, shown as the red region in Fig. 8. For example, c3'53 may be equal to that of steel, but cf], cf3 and "?5 are
significantly smaller. Additionally, an enveloping void region is added to the sides of the PSA to exclusively permit connections
between the equivalent piezoelectric material and the surrounding structure of the mechanism where it is embedded in at the ends
of the PSA.

Each material region of the PSA shown in Fig. 8 can be described by a distinct geometric primitive using the geometry projection
method. So to obtain a density-based representation of the PSA in a fixed mesh, three different pseudo-density fields are obtained
following the methodology shown in the preceding subsections, associated to a void region p,, an electrode region p, and a

piezoelectric region p,,, respectively.
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Fig. 8. Composite PSA model using geometry projection. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

From Fig. 8, the pseudo-densities of the piezoelectric region in the composite PSA representation shown in blue are p,,. These
densities are obtained by considering the geometric parameters x(, x; and d without any modifications and can be written as a
function of p(x) from Eq. (20).

pp = plxg, xp, d) 2D

The pseudo-densities of the electrode region p,, shown in red, are obtained considering a length-wise offset of the blue region
by a fixed value /’. Finally the densities p, of the void region, shown in white with dashed lines on the boundary, are obtained by
an additional fixed offset of the diameter d’.

We write new offset (“0s”) geometric design variables xgs, x‘f’S and d° as

' a

xoszx _ L _a

070 2 all
o I a (22)

X = xp+ 2 Tl
d®=d+d
where a was defined in Eq. (16) and is a vector that goes from the initial extremity of the PSA defined by coordinate x, to the other
extremity defined by x;. Its norm ||a|| is equal to the length L of the piezoelectric region of the PSA, which determines the number
of piezoelectric discs n for a given fixed disc thickness ¢4 used for the calculation of the equivalent piezoelectric material properties
shown prior in Section 2.1.
With these, p. and p, are defined as

pe=p(x°, %%, d) (23)
py=p (x,x,d%) 24

Note that, from an implementation point of view, since the rectangular signed-distance function is only exactly rectangular at
its zero contour line, and assuming for simplicity that d’ = /', it is not possible to define p, by first calculating ¢(x,, x¢, d, p) for p;,
and then taking a contour line at a different level (e.g. ¢(x,, x¢, d) — d’) to determine p,, as can be done for the bar-like geometric
primitives with rounded edges from Norato et al. [43] or from Wang et al. [56].

2.3.5. PSA finite element matrices

In Section 2.2, the equilibrium equation Eq. (12) was derived from the constitutive equations Eq. (6) without specifying in
which coordinate system the properties were defined. As mentioned in Section 2.1, by convention the polarization direction of a
piezoelectric material is the x; direction [49]. However the material properties of the piezoelectric material in the PSAs are defined
such that their local x; axis is aligned to their actuation directions, i.e. vector a from Eq. (16). Thus, the properties of the piezoelectric
material of each actuator must be rotated to the global coordinate system before being assembled.

10
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Henceforth an apostrophe (") will indicate the local coordinate system of each PSA and the elasticity c;:, piezoelectric coupling

e, and permittivity 52 matrices in the global coordinate system of the gth actuator are calculated as
E_ T .E/
¢, = Tach Ta,,
e,=R] T (25)
q a, q" 3y
S_ RT .S
£, = Raq £, Raq

From Cook et al. [57, Ch. 2], and utilizing the vector a,, which in 2D has components a, and ag., the tensor Taq and vector
Raq rotation matrices in a 2D setting are defined respectively as:

R, =L [aqz —aqx] (26)
© lagll lag, g,
a, ag, 94x %,
a, = T 111,”2 agx . 4q,9, 27)
2aq,a,, =244 a,, “ﬁz - “i

In a 3D setting, the signed-distance function given in Eq. (15) represents a cylinder. Since we only consider transversely isotropic
piezoelectric materials, some simplifications can be made to the corresponding 3D tensor and vector rotation matrices [57, Ch. 2],
which is left for future works.

Therefore, the element-level matrices of element i related to actuator ¢ can be written by inserting the rotated property matrices
of Eq. (25) into Eq. (14). This is performed for all submatrices, namely the mechanical K, piezoelectric Kyu and dielectric Ky
submatrices, for both the electrode material and the equivalent piezoelectric material of each PSA, which are succinctly denoted as
Kg, and Kp, , respectively.

With the element matrices of the electrode and piezoelectric regions defined, together with the element matrices of the void
material Ky, which are calculated as shown in Eq. (14) with the properties attributed to void materials, and with the pseudo-
densities shown in the previous subsection, the finite element submatrices of the ith element related to the gth actuator K, are
given by Eq. (28), where «, € [0, 1] is the aforementioned “opacity variable” that allows the optimization process to remove a PSA.

_ Wayy Wayy _ Wayy _
KAuu,-q - pviq KVuu,- + (aqpeiq) KEuu,q KVuu,- + (aqppfq) Kpuu,-q KEuu,-q

Wa w, w.
_ pu a, Ay _
K Aguy =P KV¢u, + (aqpeiq) pu (KEW(,, - KVW ) + (a, ppiq) pu (Kl’a)u[,, KEQ)UM,) (28)

q
w,

a, w, w,
pvil]¢¢ KV¢¢i + (aq pe.-q) A (KE¢¢,-4 - KV¢¢1 ) + (aq pp’_q) A ( KP¢¢,., - I(Eq)%7 )

The penalization values w, = [w, ,w, ou> Way, ¢] are SIMP interpolation exponents. The specific values used in the manuscript are
given in Section 5. Section 3.2 shows how each single finite element submatrix is obtained by combining all individual submatrices
of K, associated to each actuator.

Note that in Eq. (28) the «, variable does not multiply the pseudo-density p, associated to the void region of the PSA, which
means that as a, — 0, the PSA becomes a rectangular void region. If instead a, also multiplied p,, then the void region enveloping the
piezoelectric material of the PSA would become transparent for intermediate «, values, allowing the sides of the PSA to electrically
connect to the surrounding conductive material of the material domain. Due to the width d of the PSA being smaller than its length,
the transverse electric field component E| would be larger than its lengthwise component E; Extra non-physical piezoelectric
actuation could be attained by benefiting from the piezoelectric shear-mode e/, which would yield non-physical designs in the
optimization process.

K =
Apoiq

3. Material interpolation

While the previous section dealt with the description of the geometric set, this section is concerned with the material set,
illustrated in Fig. 1(c). The whole domain Q is divided into a void region Qy and a solid region Qg, which in turn is divided
into a dielectric region Qp and a conductive region Q¢, such that @ = Qy U Qg = Qy U Qp U Q¢ and the last three regions are
mutually exclusive. The material properties of each of these domains is derived in Section 3.1 using a three-field SIMP interpolation.
Section 3.2 then describes how the element stiffness matrices obtained from the preceding sections are interpolated together yielding
a mathematical representation for the properties of the combined domain €, illustrated in Fig. 1(a).

3.1. Multimaterial three-phase interpolation

Simultaneously with the position, size and orientation of the PSAs, the design of the structure in which the PSA is embedded
is also optimized. This domain is represented as the material set in Fig. 1(c). Density-based TO is applied considering two design
variables, which are used to interpolate between void, dielectric and conductive materials. The solid-void densities pg, control
whether each element should be void (0) or solid (1), and the conductive-dielectric densities p.4 control whether they should be
dielectric (0) or conductive (1).

11
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A three-phase SIMP interpolation [8,58,59] is used to interpolate the properties of the material domain. Since only linear
hypotheses are considered, the interpolation may be applied directly to the ith element stiffness matrices. The submatrices of the
solid domain of the ith element K may be written as:

_ aledyy _ s Wedyy
Ksuu, - pcd[ Kcuu,- (1 pcd[> KDuu,-
Wed Wed
_ 2 du _ _ 2 du
KS¢“1 - pCdi KC¢“[ (1 Ped; ) KD¢“:' (29)
_ aWedyy ( 5 )deq»(h
Ky, =Peg, Kegy, =17 Peq; Kby,

where the subscripts “C” and “D” mean “conductive” and “dielectric”, respectively. The SIMP exponents weq = [teq,» Wed o> Wedyy )
are only used for interpolating between the conductive and dielectric matrices and their values are given in Section 5. The tilde
(~) denotes fields produced by the standard convolutional or density filter and the hat (A) accent symbolizes the following smooth
Heaviside projection

tanh fn + tanh f(x — n)

¥ = H&) = 5+ tanh g — 1)

(30)

where f is a sharpness parameter and # is a threshold parameter. In this work # = 0.5. The value of # is initially a small value and
increases during the design process using a continuation approach as defined in Section 4.

The submatrices of the material domain of the ith element K can be subsequently written as:

Ky, = P K, + (1=70™ ) Ky
o " Ky o+ (1= A ™) Ky 31
Ky, = 5:/S,V¢¢ Ky, <1 = :fs,vw ) Ky,

where the SIMP exponents wg, = [wg, . Wsy o Wsvy, | ATE only used for interpolating between the solid and void submatrices, and
their values are given in Section 5.

In this work, void material has a very small Young’s modulus and the permittivity of air. Dielectric material also has the
permittivity of air. Conductive material has a very large permittivity value. Because of the large difference in orders of magnitude
between the permittivities of void and conductive materials, the stiffness matrix K of the equilibrium equation (12) can become
ill-conditioned, even with the scaling of the properties. Therefore, diagonal scaling of K is performed prior to solving the linear
system [57].

3.2. Full domain interpolation

In this section the formulation of the element matrix that combines both the geometric and the material domains of Fig. 1(a) is
presented. Since each PSA has an orthotropic material aligned to its own orientation and its own «a, term, if the stiffness matrices
of the PSAs K A, Were simply added together, this would mean that an element would have properties of more than one PSA, were
they to overlap.

Instead, firstly a soft-argument-maximum function, or softargmax, term ¢ is used to evaluate %Py, for each component at every
element, as done in [53], yielding a value close to 1 for the PSA with largest (o, pvlq)"’a and a value close to O for all other PSAs.
The result of this softargmax for the mechanical and piezoelectric submatrices is calculated as

k(a, py, ) duu K@, p )w3<|)u
e atvig X atvig
Og, = ——— and Opu, = (32)
K Z”a ’f(ajﬂv,j)ua““ ' ny Kk(ajpy )LL%U
. jPvij
j ¢ Zj e Y

where « is a sharpness parameter equal to 50 in this work, and #, is the total number of actuators.

In order to avoid the issue of the softargmax becoming too small due to the a, term such that it would make the enveloping void
region of the PSA become slightly “transparent”, enabling transverse electrical connections between the PSA and the underlying
conductive material, the softargmax parameter Oy for the dielectric submatrix is calculated without the a, term:

Wa,
ewviqw
G¢¢iq = —WH(M; (33)
Zr-la i
J

12
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Finally, the element submatrices of element i that combine the element submatrices of each of the separate geometric and
material sets shown in Figs. 1(b) and 1(c), respectively, can be written as

Na 1
— _ Wayy
Kuu,» - Z O'uu,-q KAuuiq + <1 Z O-uuiq pvzq > KMuu,
q q
la ' wy
— _ bu
K‘buf - Z U‘bulq KAni)u,-q +{1 Z 0¢ulq pviq KMni)u,- (34)
q q

la ta w.
— A
K‘M)i - Z O iy KA¢¢1q + <1 B Z Ooaiy Puiy > KM¢¢i
q q

In elements where there are no actuators, py,, = 0. This means that the first term in every equation of Eq. (34) is zero and the
term within the parentheses is equal to 1. Thus, the properties of these elements are exclusively determined by the material matrix
interpolation Ky of Eq. (31). Conversely, in elements where there is at least one actuator, o;, will have a value close to 1 for one
of the actuators and a value close to O for the others. Then the term in the parentheses will approach 0 and the properties of the
element will be predominantly determined by the actuator with the largest o, value, K Ay of Eq. (28).

4. Smart structure design topology optimization formulation
The smart structure is initially described by a general design domain shown in Fig. 9, containing n, PSAs represented by the

variables x,, x s, d and « introduced in Section 2.3 and an initial distribution of void, dielectric and conductive materials, represented
via the density-based variables pg, and p.q discussed in Section 3.1.

Fig. 9. Design domain and boundary conditions of the smart structure.

Boundary conditions are imposed based on the desired application. For example, in Fig. 9 the design is clamped in the left-hand
side, rollers are applied on the upper surface, the lower-left surface is electrically grounded and a non-zero (prescribed) voltage is
applied to the upper-left surface. A spring is connected to a degree of freedom where a displacement is to be maximized, representing
a workpiece stiffness.

The design of the smart structure is obtained by performing density-based TO, seeking to maximize the displacement of the node
connected to the spring. In the following subsection, the formal mathematical statement of the optimization problem is given and
the constraints that are applied to obtain feasible designs are introduced and discussed.

Next, the sensitivities of the objective and constraint functions with respect to the design variables are provided, as well as
the derivatives of the stiffness matrices from Sections 2.3.5 and 3.1. The derivatives of the equivalent piezoelectric properties from
Section 2.1 and of the variables calculated from the geometry projection method in Section 2.3 are given in Appendix A. An overview
of the optimization algorithm is presented in Section 4.6.

In the closing subsection details are given on the optimization parameters, such as the parameters used for the Method of Moving
Asymptotes (MMA) [60] and how the continuation approach was applied to the Heaviside projection sharpness parameter f.

4.1. Optimization problem and objective function
The negative-null form of the optimization problem is shown in Eq. (35).

T
minimize f=LTu= { } U
{x0).{x¢}.d.@.psy.ped 0
subject to g, <0
8no <0 35
8pol 0
Lyin < ”aq” < Liax

g=1,....,n,

13
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In the problem statement Eq. (35), {x,} and {x;} indicate vectors containing all of the initial and end coordinates of all PSAs,
respectively. Further, the widths d, and opacity terms «, of all PSAs are stacked together in vectors, d and a. Functions g, g,, and
8pol are the volume, non-overlap and polarization constraints, respectively, and are introduced in the subsequent subsections.

In the objective function f, L is a vector of 0’s with a 1 (or a —1, depending on whether it should minimize or maximize) at the
position of the degree of freedom corresponding to the displacement in vector u that should be minimized (or maximized), where
u are the nodal mechanical displacements obtained by solving the equilibrium equation (12).

The lengths of the PSAs are constrained using a from Eq. (16). A minimum length L, is imposed on every PSA to avoid a
possible edge case during the optimization process where x, and x; coincide, making a go to 0 and causing division by zero in
the signed-distance function Eq. (15), since [la|| = 0. The optimizer can remove an actuator through its «, variable instead. The
maximum lengths L., may be based on catalogues of manufacturers, for example.

For the box constraints, Ay, Psy;s Ped, € [0,1], with ¢ = 1,...,n, and i = 1,...,n,, where n, is the total number of elements in
the mesh. X, and x¢, are constrained to be within the boundaries of the design domain, i.e. xo,» X, € Q. And d; € [dpin, dmaxl,
q =1,...,n,, with the minimum and maximum widths taken from catalogues of manufacturers, for example. Also, d;, should be
greater than 2h, with s being the element edge length, to avoid division by zero from vector g in the signed-distance function
Eq. (15).

4.2. Volume constraint

In the optimization process the maximum amount of solid material is constrained. It is a limit on the ratio between the volume
of solid material where there are no actuators, i.e. the volume of Qg N QS, and the volume of the total non-actuator region, i.e. Q;.
If V; is the maximum solid volume fraction and V; is the volume of element i, then the constraint g, can be written as

n, 2
Z,’e Vipsvl (1 - Zga Gv,qaqpv,q)
8y = " N
Zie 7 (1 - an o-viqaqpv’,q)

The softargmax parameter %y, is calculated as shown in Eq. (37), where the sharpness parameter « is the same as in Egs. (32)
and (33).

v, (36)

e’(aqﬂv,vq
Gv,q = Ena eKa/le_/ (37
J

4.3. Non-overlap constraint

It does not make physical sense for two or more actuators to overlap, so a non-overlap constraint is added to the optimization
problem. However, the constraint should be relaxed to allow for the overlap of “transparent” PSAs during the design process. Thus, a
non-overlap constraint is formulated similarly to [39,61], but adapted for the pseudo-density based design of the geometry projection
method, while taking the a, values into account.

The idea, as illustrated in Fig. 6 of [39], is that the sum of the volumes of all actuators must be always equal to the sum of the
volume of the elements where there are any actuators. This can be changed to an inequality constraint, since the former should
never be less than the latter, yielding g,,:

Ne Mg

8o = D, ), Hnolagpe, Vi = Z Hy, <Z a[,pe,q> V-1 (38)
i q i q

where 7 is a tolerance, which facilitates the scaling of the constraint for the MMA and can be equal to half of the volume the smallest
element in inhomogeneous meshes, for example. V; is the volume of element i and H,, is the smooth Heaviside projection Eq. (30)
with a different sharpness parameter, g,, = 10, and a different threshold 5,, = 0.1. Note that even if two or more PSAs overlap, if
the sum of their «, values is less than 1, then the overlap constraint is not violated.

4.4. Polarization constraint

In the considered problem setting, the applied electric field is controlled by the optimizer, and in principle PSAs acting in tension
could be generated. To prevent this from happening, a polarization constraint is proposed, based on the idea of constraining the
piezoelectric contribution to the stress to always be negative.

The piezoelectric stress is the second term on the right-hand side of the first equation in Eq. (6). By taking the volumetric average
of this quantity in element i in the direction of the gth PSA in the local x/ direction it can be written as
T, == /Q oy EjaQ (39)

i
q i 2

13~ 33

Since e’ e’23 =0, the integrand —e;3 E'. can be written as —1;3e;TE’, where 153 is the vector {0, 1, 0}" in 2D or {0,0,1,0,0,0}"
q
in 3D. Furthermore, the electric field in the local coordinate system E’ can be obtained from the global coordinate system by rotating

14



B.V. de Almeida et al. Computer Methods in Applied Mechanics and Engineering 429 (2024) 117120

E with Raq, the same rotation matrix as from Eq. (26). The electric field is related to the electric potential field ¢(x) by E = —V¢,
where V is the spatial gradient operator, so T;, can be calculated as
3314

1 T T
T, =7 /Q Le, R, VpdQ (40)

1 i

With the linearity assumptions discussed in Section 2.2, the electric potential field can be written as the product of an
interpolation matrix of piecewise linear functions defined in element i and a vector of the nodal electric potentials from the same
element, ¢,. The gradient operator V applied on the interpolation matrix yields By, mentioned in Section 2.2, used for the calculation
of the element-wise electric and piezoelectric matrices in Eq. (14). Thus, Eq. (40) becomes

p 1 T T 4T T
Tssiq = 7,/9 1e, Ry By dQ=13e, R, (P, (41

The simplification can be made with ¢ = & /Q B, dQ because only By, is a function of space. Using a homogeneous mesh, { can

be calculated only once.
It is known that the maximum possible stress magnitude that 7;, may have is
iq

/
|Ablmax _ llagll  1A¢] %3
T =g —Imax _ 7 ﬂ=;|A¢| (42)
ma TS T T S e T g
where ¢/, is the e;; property of the constituent piezoelectric material (i.e. without any modifications based on the length of a PSA)
and |A¢|nax is the maximum possible electric potential difference, which is known due to the electrical boundary conditions.

Thus, the sign of the piezoelectric stress in element i related to the PSA ¢ can be calculated as

5, = (43)

where Z;, € [~1;1]. Note, however, that whether or not element i is within a PSA has not been considered yet. To do so, and in
order to obtain an average value over each PSA, a weighted average of =;, over V; Prig is calculated, thus yielding the average sign
of the piezoelectric stress of the gth PSA
n, —_
2 Vibn, Zig
= — (44)
Zi Vip Piq
For the actuator to push structures apart, =, , has to be strictly negative for every actuator g = 1,...,n,. Also, the opaqueness
values a, have to be taken into account for the polarization constraint to be ignored during the optimization process for “transparent”
actuators. If = is simply multiplied by «,, then the sign goes to zero when «, — 0, which could violate the constraint and generate

designs with semi-transparent «,. Thus, e-relaxation is applied, similarly to [62-64]. The polarization constraint is therefore given
by

[n|

gp01=(§q+y+e>aq—e (45)

where y = 0.01 in order for =, to be strictly negative and e = 0.001.

4.5. Sensitivities

In this subsection the sensitivities of the objective and constraint functions with respect to the design variables are derived. Since
the chain rule is used, the derivatives of the equations from the preceding subsections are given in reverse order of appearance,
with the exception of the derivatives of the equivalent piezoelectric material properties shown in Section 2.1 and the derivatives of
all of the vectors and matrices obtained from the geometry projection method in Section 2.3, which are detailed in Appendix A.

In this section the notation specifying the mechanical ,, piezoelectric g, and dielectric ,, submatrices, SIMP exponents (w,,
Wy, Weq) and softargmax values (o;,) is omitted, with the understanding that every element matrix is composed of these submatrices,
which in turn depend on their own corresponding exponents and softargmax values, to simplify notation. They are explicitly given
when necessary.

The geometric variables of the gth PSA, i.e. Xo,» Xf, OF d, are referred to as x,. In the most general case, z is used as a universal
design-variable, representing x,, ¢, pgy, OF peq,-

Firstly, the derivative of the objective function f Eq. (35) with respect to z is

af 70K

Lo rdr

0z 1oz
where K and U are the global assembled matrix and nodal values, respectively, from Eq. (12). The adjoint vector A, is obtained by
solving the adjoint problem

K, = {5} (47)
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where L is the vector from the definition of the objective function, Eq. (35).

Next the derivative of the global assembled matrix with respect to z has to be calculated. Its form changes depending on the
type of design variable, as can be seen in the following equations. Firstly we define an auxiliary matrix M, for each element i and
PSA ¢ such that

Na
M,’a M)a
M, =Ky, —py Ky, - z o (Ka,, = Py’ Ky, (48)
J

Then the derivatives of the mechanical K, and piezoelectric K, submatrices are calculated similarly to each other, with the
difference being the values of the SIMP exponents w,, ws, and w.4. Additionally, for the electrical submatrix K, the equations are
slightly different, due to the different softargmax parameter Oy Abusing notation by referring to both K, and K, simply as K,
their derivatives with respect to x, and «, can be calculated as

Ne e 0K d d
K K, Aig wy—1 pV:q W, wy—1 prq
i b rala LT (o rantel Gt SRR et 49
1 1
n, n,
0K _ v 9K, _ ¢ IKa, ga!
Zn — ) + a M. 50
da, T oo, Zalq da, ﬁﬂ “ 0

The sum over the number of elements n, can be understood as an assembly procedure, with A, and U in Eq. (46) being the

complete nodal vectors. However, it is more straightforward to implement ‘)’Z’ as a summation over the element-level vectors and
aK
A,T

matrices, i.e. — Y

—i U in which case aa are the summands of Egs. (49) and (50).

Then the derivatlves of K, with respect to x, and a, are

0K 0K lle A w, w,  —10py

b ¢¢, _ Pig A A Vig
ox, 4 Z Ty ( +fag M wa, oy, ax, My, (51)
9Ky "Kw, < Am,q

(52)

Jda =IZ

q

2 Cbbig " pq

The derivatives of K, K, and K, referred to simply as K for ease of notation, with respect to pg, and p.q, are calculated

as:
n n, n 5 0.
0K S JK; & : w o] 0Dsy; 0Psy,
- — 1- . a 'sv (K -K ) > 53
6psvi ; apsvi ; ; O_jqujq svpsv S; \ aﬁsv/ dpsv‘- (53)
e 9K . e 1a -1 0/) d; ap
0K j w Aleq—1 2 Wed < cd;
= = 1— ) 6,.p,% |w ps"<p° K—(l—p ) K) (54)
apcdi ; apcd, ;( ; Jjq vjq> cdPsv cd; C cd; ’)pcd apcd

where, again, care should be taken to use Oy for the electrical submatrix. In these equations, the sum over the elements represents
the application of the derivative of the convolutional filter a—z/, since this filter distributes information between neighbouring
elements. In the actual implementation, the sum does not have to be performed and 7’ represents the application of the
convolutional filter on the vector of size n, obtained after calculating all other operations in the equation.

The derivative of the volume constraint g, with respect to p4 is 0. With an auxiliary variable y;, shown in Eq. (55), the derivatives
of g, with respect to x,, @, and py, are given in Eq. (56).

ny
W =1+x <aqpv,,, - 2o, a,-pv,/) (55)
J

n, 5 by,
og, a, Z,‘e Vio'v,-q (gv+Vf_psv) Wiqqu

qu Z;’e v, (1 _ ZZa Gv,qaqpviq)

I X Vioy,, (80 + V= bsy) Vig py,

G 3 (1= oy g, ) o
og, Z;’e Vi (1 -X leqaqp"ﬂl) Z;::j ZZ_::,]
g (1= T, )
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The non-overlap constraint g,, of Eq. (38) is only a function of the geometric variables x, and of «,, so its derivatives with
respect to the density-based variables pg, and pq, are 0. Its other derivatives are

og < e,
axno =a, 2 v, <Hr’m(oque <Za pe,,,)) iy

K

(57)
98no
0aq B Z pe,q H (aqpe Z @ per/
Finally, for the polarization constraint g, Eq. (45), we firstly define an auxiliary term o,
S (58)
0w = —9
q =
max Zne Pp ia V]
Then the derivatives of the polarization constraint with respect to the design variables are
T
agpol = appiq T ae; A aR T
axq =, Z ( Hquax> E-’_ppiqlfﬁ ER% +eq c¢ Al+qa U
()g 1 —_
po =E,+r+e— /IIT U
oa +4 0
s q (59)
&pol
pol _ [lr+ 0K 9K o
0psy, 1 0psy,
980l _ .7 0K
al’cd,- I+ ‘)Pcd,»

where the adjoint vectors 4,,, are obtained by solving the following adjoint problem for each PSA ¢

0
K, = T T (60)
* {wq 30 o, Vi (156, Ry ) }

From an implementation perspective, note that the right-hand sides of the adjoint problems shown in Egs. (47) and (60) are
independent of the solution of the state equations, i.e. U. This means that all of these right-hand sides can be stacked together with
the right-hand side of the state equation (12) and only one linear system has to be solved per iteration of the optimization problem,
solving simultaneously for U and 4 s where j =1,...,1+n,.

4.6. Optimization flowchart

Fig. 10 shows a flowchart of the optimization procedure. At the start of the algorithm, the initial values of the geometric (x,, x;,
d and «) and density-based (pg, and p.q) design variables are specified, together with the material properties and the optimization
parameters. Next, the iterative loop starts, with the convolutional filter and Heaviside projection applied to the density-based design
variables, yielding jg, and j.q. Then the geometric design variables are used to calculate the pseudo-densities that describe the
material regions within the PSA p,, p. and p,, following Egs. (15) to (24).

The element-level stiffness matrices are then calculated as in Eq. (34), which after the assembly procedure yield the global
stiffness matrix K from Eq. (13). This equation is solved to find the nodal displacements u and electric potentials ¢, which are used
to calculate the objective and constraint functions presented in Eq. (35).

At this point in the algorithm, the convergence and the stopping criteria are evaluated. If both are not met, the sensitivities are
calculated as presented in Section 4.5 and the results are passed to the subsolver of the optimization algorithm, i.e. the MMA. The
design variables are updated and a new iteration begins. When either of the aforementioned criteria is met, the optimization is
finalized.

4.7. Optimization approach

The optimization problem posed in Eq. (35) was solved using a nested analysis and design approach, wherein at each iteration
of the design process the equilibrium Egs. (12) are solved, the objective and constraint functions are evaluated, their sensitivities
are calculated and new values are ascribed to the design variables Xo,» Xf, dy and a, for g = 1,...,n,, as well as pg,, and p 4, for
i=1,...,n

As previously mentioned, the MMA is used as the optimization algorithm. For the considered problem with diverse design
variables, it was found that additional care must be taken in ensuring the stability of the optimization. For the MMA, the geometric
design variables are normalized to be within 0 and 1, as done in [43]. The move limits of the geometric design variables and « were
set to 0.01 and the move limits of the density-based variables to 0.08, based on initial experiments. Additionally, from the note
published by Svanberg [65], the ¢ parameter was set to 10°. For lower values of ¢ the volume and maximum length constraints
become frequently violated in the initial iterations of the optimization process.
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Set the initial topology, Apply convolutional filter and Calculate the PSA pseudo-
material properties, Heaviside projection to density densities 0p, po and py from
optimization parameters based design variables g and g, the geometric design variables

Run the MMA subsolver Calculate the element level
Calculate the sensitivities |—> and update the matrices shown in Eq. (36)
desien variables and ansemble the _global
i stiffness matrix.

Calculate the objective Solve Eq. (13) to obtain
and constraint functions the nodal displacements
given in Eq. (37) and electric potentials

Convergence or
stopping criteria met?

Fig. 10. Flowchart of the optimization algorithm.

The values of the objective and constraint functions are normalized at each iteration of the design process for the MMA. The
initial normalization value of the objective function f is calculated based on the maximum theoretical output of a 1D PSA bar. It
is:

fo= 10l0g10 3 nmax | Al max | 61)

where d;, is the piezoelectric property of the constituent material in strain-charge form, ny,, = Lmax i the maximum number of
layers in the PSA during the optimization, |A¢|y.x is the maxlmum applied voltage difference at the %oundarles and |-| is the floor
function. Then the ratio <~ fr) is checked every 30 iterations: 1f = < 0.1, f, is divided by 10; else if f > 100, f, is multiplied by 10;

otherwise f,, remains unchanged. The normalization values of the constraints g, gn, and g, are O 01, —2 and 0.1, respectively.
The maximum length constraints of the PSAs are normalized by dividing by “‘a" and the minimum length constraints by dividing
by “““.

A continuation approach is used for the Heaviside sharpness parameter § of Eq. (30), starting from 0.05 and increasing in 4%
every iteration until it reaches 80. A direct solver was applied for the solution of the linear systems to obtain the results shown in
the subsequent section.

5. Results
5.1. Inverter-like mechanism

The methods presented in this subsection were applied to the inverter-like mechanism shown in Fig. 11. Its dimensions are
0.10 x 0.05 m? and its domain was discretized with 400 x 200 = 80000 elements. A spring of stiffness k = 10° X is attached to
the horizontal degree of freedom of the upper-right node, which will have its displacement minimized. Furthermore, a non-design
domain of 5x2.5 mm? is considered in the upper-right corner, made of solid dielectric material. A maximum solid fraction of V; = 25%
of the design domain is set. The rest of the domain is initialized with pg, = p.q, = 0.23 for all elements i = 1,..., n,, to account for
the small rectangular non-design domain and start the optimization with a feasible volume. The number of PSAs and their initial
positions, sizes and orientations are given in each of the following subsections. In all cases the radius of the density filter was 2 mm.
The piezoelectric disc thickness was constant equal to 74 = 0.5 mm. The offset parameters were !’ = 64 and d’ = 8h.

The bottom one-third of left surface is grounded, while the upper one-third has a prescribed non-zero voltage equal to 100 V.
The minimum and maximum PSA lengths are 5 mm and 30 mm, respectively, and the minimum and maximum PSA widths are
2 mm and 10 mm, respectively. The initial values of the length and width are 15 mm and 5 mm, respectively, and an initial «,
value of 0.5, in all cases except for a benchmark problem. The softargmax sharpness parameter for the geometry projection method
was k = 50.

The dielectric material has the same mechanical properties of steel, a Young’s modulus of 200 GPa and a Poisson’s ratio of 0.29,
but with the dielectric permittivity of air, i.e. 8.9073-10~!2 5 The conductive material is slightly less stiff, with a Young’s modulus
of 190 GPa, to encourage the optimization process to only use conductive material where necessary, a Poisson’s ratio of 0.29 and a
large absolute permittivity of 8.9073-1073 5, i.e. 10° larger than that of air. Void material has the permittivity of air, Poisson’s ratio
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Fig. 11. General design of the inverter-like mechanism.

of steel but a Young’s modulus of 200 Pa, i.e. 10~ that of the dielectric material. All of these materials have 0 piezoelectricity. The
elasticity, piezoelectricity and dielectric permittivity matrices of the electrode and piezoelectric materials are given in Appendix B.

The SIMP penalization exponents for the mechanical, piezoelectric and electric properties are given in brackets in that order.
They are w, = [3,3,3], ws, = [3,3,2] and w.q = [3,3,2]. The optimization stops either when the average change in the design
variables is lower than 10~% or when 300 iterations are reached.

In the figures illustrating the topologies, f)z;d"“ is shown. Only solid elements are shown by thresholding py, > 0.5. For the

illustration of the displaced structure, post-processing is applied to smoothen the design by firstly converting element-level values
to nodal ones and then thresholding the solid-void regions with a value of 0.5. Additionally, in all figures the components of the
PSAs are illustrated by thresholding p, at 0.5, where p, here can be any of the geometric pseudo-densities of Section 2.3. The solid
piezoelectric region is coloured with a white to green gradient, since «, pp,, can hold values between 0 and 1. A grey arrow shows
the polarization direction of the PSA. Similarly, the electrode regions are coloured with a white to yellow gradient.

The method was implemented in Python, a high-level general-purpose programming language, with some wrapped C components.
The Intel PARDISO solver of the Intel oneAPI Math Kernel Library [66] was used as the linear system solver, a free to use and free to
redistribute software, according to Intel’s Simplified Software License (Version October 2022). Each iteration of the algorithm for the
considered mesh of 80000 elements takes on average 3 s on a desktop computer with an Intel i9-9900KF CPU. Since performance
was not the focus of this study, future works may improve on this by, e.g.: using more sophisticated and efficient solvers, such
as multigrid [67]; adapting the code to run in more performant hardware, such as a cluster with GPUs [68] and/or FPGAs; using
commercial instead of free software and programming languages.

5.1.1. Benchmark result — fixed PSA geometry

In this subsection, a design obtained from only optimizing for the solid-void and conductive—dielectric material distributions of
the underlying compliant mechanism is shown, considering a fixed location and geometry for a single PSA. The length and diameter
of the PSA are equal to the maximum values for the more general cases, i.e. 30 mm and 10 mm, respectively, and « = 1. The PSA
is centred in the design domain with a rightwards polarization direction, as shown in Fig. 12.

The final topology obtained from the optimization process is shown in Fig. 13(a), with dielectric material in blue and conductive
material in red. The entire solid region is load-bearing, with conductive material being mostly utilized to connect the PSA to the
prescribed voltages, and dielectric material where the electrical connections are not required.

The displacements are magnified by a factor of 2000 and the displaced structure is shown in Fig. 13(b). The undeformed
configuration is shown in light grey in the background. Dielectric material is shown in dark grey, while a red to blue colour scheme
shows the voltage distribution on the conductive material. It can be seen that the voltages in the conductive material seem to be
either 0 V or 100 V, as expected, due to the large permittivity values used to model the conductive material. Furthermore, the
design works as intended, moving the upper right-most corner to the left.

Fig. 12. Initial design for one PSA. The grey area has p,, = p., = 0.23.
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(a) f)sv > 0.5 and distribution of P,

d“'““. (b) Voltage distribution in the conductive material of the displaced structure
(magnified by a factor of 2000).

Fig. 13. Final topology of the benchmark problem with fixed PSA geometry, position and orientation. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Optimization history of the benchmark problem.

The convergence histories are depicted in Fig. 14. Smooth and steady convergence is observed, the volume constraint is active
while the polarization constraint is only active in the initial iterations. A final value of the objective function of —1.7003 - 10~® m
was obtained.

5.1.2. Single PSA

In this subsection, a result is presented with the complete optimization problem for one PSA. Similarly to the previous subsection,
the PSA is initially centred in the design domain with a rightwards polarization direction as illustrated in Fig. 12, although now
with « = 0.5, an initial diameter of 5 mm and an initial length of 15 mm.

The final topology can be seen in Fig. 15. The orientation of the PSA in the final design rotated in 58.95deg in the clock-wise
direction. The length and the diameter of the PSA are equal to their maximum allowable values, i.e. 30 mm and 10 mm, respectively,
with a = 1. This was expected, since a thicker PSA has a larger blocking force and a longer PSA has a larger stroke, especially
considering piezoelectric layers of constant thickness.

The convergence histories can be seen in Fig. 16. Similar behaviour as in the benchmark example is observed, indicating that the
chosen variable scaling is effective. The polarization constraint again is inactive in all but the first iterations. The objective function
decreased smoothly until the optimization converged in iteration 227, reaching a value of —2.4930- 107% m, 46.64% better than the
benchmark problem.

5.1.3. The importance of the polarization constraint

If the problem shown in the previous subsection is optimized without considering the proposed polarization constraint, the
topology shown in Fig. 17 is obtained. As can be seen from the displaced structure in Fig. 17(b), the PSA is under tension, pulling
two structural regions together, which is not desirable.

The design was obtained in 290 iterations with an objective function value of —2.6311-107° m, i.e. even lower than the previous
case. The better objective function is expected, since in this configuration less energy is used for the elastic deformation of the
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Fig. 15. Final topology of the single PSA problem.
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Fig. 16. Optimization history of the single PSA problem.

)

Conductve

5 S
Dielectric

Wedyy

(@) Py, > 0.5 and distribution of f)c g (b) Voltage distribution in the conductive material of the displaced structure
(magnified by a factor of 2000).

Fig. 17. Final topology without polarization constraint.

underlying mechanism in comparison to the design when the PSA is in compression. We can conclude that the polarization constraint
is essential to guide the design to an optimized solution based on a PSA in compression, even when it is inactive in most iterations.

5.1.4. Larger conductive permittivity

The choice of the permittivity value for the conductive and electrode materials influences the behaviour of the optimization
procedure. Since a comprehensive study of the influence of this parameter on the final obtained designs is out of scope for this
paper, in this section only one example showing this influence is presented. Specifically, the £5 values shown in Appendix B were
multiplied by 100.

Different from the previous results, the conductive material is used sparingly, as can be seen in the final optimized design in
Fig. 18(b). The thin conductive material seems to describe electrical wires connecting the PSA to the electrical boundary regions.
By looking at the solid-void distribution p, in Fig. 18(a), it can be seen that the conductive materials in the “wires” exist in grey
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(a) Distribution of pg,. (b) pg > 0.5 and distribution of f):';d““. The seemingly “disconnected wires”
appear due to the low density regions seen in Fig. 18(a).

Voltages (V)

(c) Voltage distribution in the conductive material of the displaced structure
(magnified by a factor of 2000).

Fig. 18. Final topology for a higher permittivity value of conductive and electrode materials.

regions, thus exhibiting low mechanical stiffness. Despite having intermediate solid-void values pg,, the conductivity is still quite
large, since the permittivity of the conductive material in this example is 7 orders of magnitude larger than that of the piezoelectric
material. Fig. 18(c) shows the deformed structure. The final length and diameter of the PSA are equal to the largest admissible
values, i.e. 30 mm and 15 mm, respectively.

The final objective value was —2.6658 - 10~° m, which is better than the previous result obtained for a single PSA, since the
conductive material applied here is a better conductor. Thus, there are less electrical losses in the conductive material, which means
that there is a larger electric potential difference between the electrodes of the PSA.

5.1.5. No equivalent piezoelectric properties

Without the equivalent piezoelectric properties for the PSA shown in Section 2.1, the optimization design problem will fail to
mimic the physical behaviour of a PSA. The maximum possible piezoelectric stress within a finite element, i.e. T, will depend on
the minimum length of the PSA instead of its maximum length, since, for a fixed maximum voltage difference |A¢g| ., the electric

field E} within the PSA will be largest when the distance between the electrodes is smallest, Ly;;,. Thus, in this case, T, will be:

max
_ s |APlmax

’
Tmax =é3

Lmin 62)
additionally, the normalization parameter of the objective function f; is calculated similarly to Eq. (61), but with ng,, = 1.

Furthermore, for the conductive material to behave the same as in the three initial examples, the permittivity values of the
conductive and electrode materials have to be scaled based on the relationship between the equivalent permittivity EIS’S Ass and that
of the piezoelectric material 523, as in Eq. (11). Since Lg,, = 30 mm and 74 = 0.5 mm, then n = 60 and the previous values of the
conductive and electrode permittivities have to be divided by n* = 3600.

The final topology and displaced structure obtained for these settings can be seen in Fig. 19. The length of the actuator is
24.7304 mm and its final width is 6.5415 mm.

The final design converged in 261 iterations and the value of the objective function was —2.9334-10~% m, two orders of magnitude
worse than before. This was expected, since a monolithic piezoelectric material will not be able to produce the same actuation as
the PSA composed of multiple discs, given a fixed input voltage.
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Fig. 19. Final topology without the proposed equivalent piezoelectric material property for the actuator.

Fig. 20. Initial configuration for two PSAs. The grey area has p,, = p., = 0.23, as in the preceding results.

5.1.6. Two PSAs and the effect of y

In this subsection, four different topologies are shown, considering two PSAs with either downward or upward polarization
directions and two different values of y, which is the parameter in the polarization constraint shown in Eq. (45) that enforces strict
inequality of the average piezoelectric stresses in each PSA. The initial design is shown in Fig. 20, where the polarization directions
may be both downward or both upward.

The final designs are shown in Fig. 21. For the case where the PSAs are initially oriented downwards, a value of y = 0.01 causes
one of the two PSAs to vanish for the polarization constraint to be satisfied and the final value of the objective function is similar
to that of the design with one PSA. By increasing y to 0.5, the optimization process is able to find a local optimum where both PSAs
can be used under compression, thus yielding a better objective function value. For the case where the PSAs are initially oriented
upwards, a value of y = 0.01 has the same effect as before, yielding a final design where one of the PSAs vanishes and the value
of the objective function is similar to that of one PSA. However, the result obtained with y = 0.5 in this case did not inhibit the
vanishing of one PSA and it yielded a slightly worse objective function value, as can be seen in the captions on Fig. 21.

5.1.7. Two overlapping PSAs

Finally, a result is shown where two PSAs are initially overlapping. Fig. 22 shows the initial topology. Since the initial value of
a, is 0.5 for both PSAs, the dark green region where both PSAs intersect each other has a sum ZZa %Py, for each element i equal
to 1.0 and the lighter green regions have this sum equal to 0.5.

The final design can be seen in Fig. 23. It converged in 243 iterations to an objective function value of —2.3240 - 107% m. It can
be seen that both PSAs are solid (o, = 1), however, the smaller PSA has both of its ends connected to the same conductive material.
This occurs because there is enough of a voltage gradient in the conductive material such that the polarization constraint is satisfied
and a small improvement on the objective function can be obtained.

Fig. 24 shows the non-overlap constraint g,, during the iterations of the optimization process. It is initially slightly positive, but
quickly becomes feasible with a small decrease of «, and is never again violated.

23



B.V. de Almeida et al. Computer Methods in Applied Mechanics and Engineering 429 (2024) 117120

(a) Downwards with y = 0.01. f = —2.7346- 10™° m. (b) Downwards with y =0.5. f = —3.0542-10™° m.

(c) Upwards with y = 0.01. f = —2.6837-107° m.

(d) Upwards with y =0.5. f =—2.4046-10"° m.

Fig. 21. Final topologies obtained for two PSAs considering two different initial orientations and two different y values. The objective function value f is shown
for each design.

Fig. 22. Initial design of overlapping PSAs.
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Fig. 23. Final topology for the initially overlapping PSAs.
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Fig. 25. General design of the cantilever mechanism.

5.2. Cantilever mechanism

The proposed method was also applied for the design of a cantilever mechanism illustrated in Fig. 25, which is clamped on
the left-hand side, has the same electrical boundary conditions as the inverter-mechanism and the objective is to maximize the
upward vertical displacement of the lower-right tip, which is connected to a workpiece stiffness k. Problems of this kind could be
encountered in the design of precision positioning mechanisms for e.g. optical components. The material properties and optimization
parameters are taken from the previous results. Multiple initial conditions are explored considering both one and two PSAs, with
both the initial and optimized topologies shown in Fig. 26. Specifically for the design of Fig. 26a, the convergence and displaced
structure can be seen in Fig. 27.

In general, it can be seen that the initial configuration is highly influential on the final design, which is expected, since
a gradient based optimizer such as the MMA can only converge to a local optimum and is consistent with other results from
literature [36,39,69]. Furthermore, the additional sizing and “opacity” variables in this work can cause more local optima to exist
in comparison to the cited references. For example, in Fig. 26 it can be seen that topologies with two PSAs yield better optima than
one PSA when both actuators can be fully utilized for the maximization of the desired output displacement. The best and worst
obtained designs differ by a factor of 1.67 in performance, which is significant and a result of the non-convexity of the problem.
Therefore, the exploration of multiple initial configurations is recommended in order to find better optimized designs.

6. Conclusion

The paper proposes a unified multiphysics framework combining multi-material density-based topology optimization and a
composite multi-layered geometry-projection method to find optimized designs of smart structures composed of piezoelectric
stack actuators (PSAs) modelled as having continuum equivalent piezoelectric geometry-dependent properties embedded within
conductive load-bearing structures. Furthermore, a novel polarization constraint was defined that successfully inhibits undesirable
designs which are improper for the use of PSAs.

Nineteen numerical examples were provided and discussed, demonstrating the capabilities of the proposed design methodology.
As shown in the benchmark problem, a priori fixing the position, size and orientation of the actuators in the optimization process may
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Fig. 26. Initial (top) and optimized (bottom) results for multiple cantilever mechanism configurations. Red regions are conductive and blue are dielectric. The
final objective function values are (a) —1.8341 pm, (b) —2.2156 pm, (c) —2.0717 pm, (d) —2.2110 pm, (e) —3.0611 pm (best), (f) —2.3476 pm, (g) —2.0809 pm, (h)
—2.3088 pm, (i) —2.0862 pm.. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 27. Displaced structure (left, magnified by a factor of 2000) and convergence history (right) of the result shown in Fig. 26a.

lead to suboptimal designs. The proposed methodology is capable of yielding designs of smart structures with embedded actuators
exclusively under compression, while allowing for the overlap of grey actuators during the optimization process. The main drawback
of the method is its susceptibility to local optima, which can commonly be seen in literature for feature-mapping based methods.
Exploration of multiple initial configurations and problem parameters is recommended to reduce the likelihood of obtaining inferior
local optima, as demonstrated for the cantilever mechanism design problem.

We have not considered stress constraints in the smart structure optimization, as this was not the focus of this study. This however
results in typical thin flexures, that may be hard to produce and prone to failure. Extending the problem formulation with adequate
stress constraints, also regarding the material interfaces, is identified as a topic for future research. Additional topics for future works
include non-linear effects inherent in piezoelectric actuators subject to higher input voltages; dynamic inputs for the application in
vibration suppression and energy harvesting; simultaneous optimization of control parameters, broadening the scope to realize the
design of a fully coupled smart structure; and extension to 3D.
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Appendix A. Sensitivities for the equivalent piezoelectric material properties and geometry projection method

As in Section 4.5, the geometric design variables of the gth PSA Xo,» Xf, and d, are represented by x,. The notation specifying
the mechanical ,, piezoelectric 4, and dielectric g, submatrices, SIMP exponents (w,, wg,, wcq) and softargmax values (c;,) is
also omitted. The derivatives of the K Ay matrices of Eq. (28) with respect to x, and «, can be calculated, respectively, as

0K, 0py 0pe dpy,.
iq iq wy wa—l iq _ wa—l Pig ( _ )
—— = Ky + w0, | =, (KEM KV) o Ky, - Kg,

q q
Wy Wy Wy aKErq Wy aI<Piq

(63)
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4= waaqwa_l [p:’a (KEM -K ) +pp <K _— KE/_q)] (64)

iq

0K,

da,

The derivatives of the submatrices of the equivalent piezoelectric material KP and the electrode material KE matrices with
respect to x, use Eq. (14). Omitting the subscripts P and E for ease of notation, their derivatives can be written once as

0K . E
axuu' :/ BI?}LBU dQ
q Q; X
0Ky,
by, :/ B; ﬂBu do (65)
ox, Q. ox,
OK pg, 06
.Xq Q, .Xq

where the properties are in the global coordinate system.
The submatrices of Kpiq use the equivalent piezoelectric material properties in the global coordinate system cg, e, and -EISJ, and

their derivatives with respect to x, are, from Eg. (25):

ock 0T, LT,
e = +TT F— = (66)
(3xq 6xq 6x
de, OR; L 9ep, , T,
4= T R, —T, R
o, = ox, 0Tt R G Ta R ©7)
0eS  ORT aes’ oR

Pq 4 s’ T_Pa TS %

= R. +R R, +R — 68

ox, ox, py ey + 2 0x, a, * a,%py 0x, (68)

Similarly, the submatrices of Ky use the electrode material properties in the global coordinate system cE, e, and £5, and their
derivatives with respect to x, are, also from Eq. (25):

T
ock T, ,0T,

e 4 E T .E 4
— = T, +T —_ 69
ox, 0x, e Ta, a,Ce ox, (69)
de, OR] oT,

q q T 7 q

= T. + 70

ox, ox, Cela, a,%e ox, (70)
oes  OR] oR,

R 'R, +RT — (71)
ox, ox, 6xq

The derivatives of the equivalent piezoelectric matrix and of the dielectric permittivity matrix are matrices of zeros, except for
the positions where there are ez, e3; and £§3. From Eq. (11), Section 2.1, the derivatives are

! ’ ’
ae31PSA _on J o= eﬂ‘)”aq“ _ eiaaq a,
ox, ox, 31 tq  0x, tq 0x4 llagll
de’ ’ ’
Besa _ on , _ e ollagll ey 0a, a 72)
dx,  ox 3= ty 0x,  tq 0x, ||la,ll
q q d q d “%q lI%
s s s’
“33psa _ on® S B ollagll ) da, a,
ox, ax £33 7 4 0x, ’d Bx ||a Il

From Eq. (16), the derivatives of a, with respect to the geometric design variables are

da, . da, I da, 0 73)
0qu T 0qu - @ -

where I is an identity matrix of size 2 x 2 in 2D or 3 x 3 in 3D.
The derivatives of the rotation matrices R, and T,, of the gth PSA with respect to d, are equal to 0. Since their derivatives
with respect to X, and xg, yield third-order tensors, they are given in index notation in terms of the kth component of vectors Xo,

and x,- Addltlonally, two auxiliary vectors are used: e; = {1,0}T and e, = {0,1}7.

oR,, _ [aqz —aqx] 1 [—ezk ey, ] 74)
6xoqk ||aq||2 ag, llagll €, €
oR,, _ % [aaz _aqx] —elk] 75)
Oxys lla lI? lag, llagll elk e,

28



B.V. de Almeida et al.

a? a? —a, a
oT q qx ax "4z
2y zam( 2 2
= 7 a, a, ag, a, |+
o, et : :
* 2a, a —2a, a a® —a*
4%, x4, q. 9y
| —Zaqz €2 —2aqx 1y
_||a B —Zaqxelk —2aqzezk
q
—Zaqzelk - Zaqxezk 2aqzelk + Zaqxezk
ai aZ _aqxaqz
aT"‘q Zaqk 22 2x '
= il % 4 4.9, |+
oxg la *| "o :
* 2a, a —2a, a a* —a?
ax“a; 4x“qz 4z dx
| 2aqzezk 2aqxe1k
TPHE Zaqxelk Zaqzezk
q

2a, e), +2a, 5 —2a,e, —2a, e
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ag.e1, Tag e

4:€1, T 9q, 2 (76)
—2a, ey +2a, e,
T4g€1) T g,
e, tag. e 77)

20,3, — 205 ¢,

For the derivatives of Py Pe, and Pp,, with respect to the geometric variables x,, firstly we have to define the derivatives of
the offset geometric variables with respect to the original ones using Eq. (22):

a xOS
Oll

0x
04

deS
0‘]

ox
fll

0xOS
0‘]

od,

<

0s
X I 1 a,®a,
= =+ —I- T
oxg, 2 \ llagll lla,ll

My (;I_ L)
axo, ~ 2\ Tl Tl l®
ad;’S
od,
6x?: B 6d;’5 ~ 6d;’5
ad, 0x0q dqu

where ® means outer product.

Then, using pi(x,) from Eq. (20), the derivatives of Puys Pey,

0ppiq

oax,
Oq

2 Pe,,

ox,
04

dpy,

iq

ox
0‘]
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0x
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0s 0s 0S 0s 0S 0S
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6qu axoq 0qu axoq

0S 0s 0S 0s 0S 0S oS 0S
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- 0S 0s
X ox X ox
Z 0, 0y 9 fy 0q

Similarly, their derivatives with respect to xp, are

appiq

ax
f‘l

7} Pe,,

ax
f‘l

ap

Vig
ox
f‘l

9pi(xg,» X¢,, dy)

6xf
q
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And their derivatives with respect to d, are

app[q
od,

0pe.

q
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3/7/(3‘70‘], X, d,)
ad,,
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29

(78)

(79)

and Pp,, with respect to X, can be found using Egs. (21)-(24):

(80)

(81)

(82)
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Writing p;(x,) from Eq. (20) as a function of any geometric parameter x, (including the offset ones), its derivative with respect
to x,, is:
q

a/)i(xq) _ i w. aﬁij(xq)

(83)
ox, = J ox,
The derivative of the piecewise smooth Heaviside H(x) from Eq. (18) is:
2
- 3 .
6 — = if|x]<¥
) 1005 2w =5 (84)
X 0, otherwise.

Finally, the derivatives of the rectangular signed-distance function ¢(x,, p) from Eq. (15) with respect to the geometric variables
of the gth PSA can be written as shown in the following equations. Here the subscript “q” referring to the gth PSA was omitted for
simplicity.

g+a . 5
fal if g < £ and & - a <~ L1/l
g . 5
“lall if gl < % and ¢/ - a > %”e'”“a”
9¢ 1 de-a g . d
=y | bt — =) if >>and b-a<0 (85)
x| ( 2a-aien) "1 3 a
1 de-a & . d
e —— if >>ande-a>0
le"l[2 a-algl llgll 3 e-a
ca otherwise
a-allgll
g . 5
“lall if l|gll < % and b’ - a < —%Ilb'||||a||
g-a . 5
Ta if lgll <  and ¢’ - a > %||e’||||a||
o | db-a g . J
99 )] —=-—== if gl >%and b-a<0
ox; | 15712 a-alel el >3 a (86)
1 db-a & . d
— | - if >Z-ande-a>0
o (52 e ) iet>fandea
_ba s otherwise
a-algll
; 2
0 if llgll < % and b"a<—%|lblllllall
0 if [|gll < % and e’ -a> \/glle/llllall
9 1 d . d
90 _J sy (5 ~lsl) iflgl> § and b-a <0 &)
1 d . d
s (5 lel) iflel > £ ande-a>0
-1 otherwise
2
Note that %Z'p) does not have to be calculated at every sampling point, but only where the derivative of H (¢ (x,.p)) is
non-zero.

Appendix B. Properties of the electrode and piezoelectric materials.

The piezoelectric material of each disc within the PSA is PZT-5. Its elastic stiffness, piezoelectric and dielectric permittivity
matrices are shown in Egs. (88), (89) and (90), respectively, in the local coordinate system.

121 754 752
754 121 752

Cglz 752 752 111 ’ GPa 88)
21
23
12.3
eé: 12.3 % (89)

30



B.V. de Almeida et al. Computer Methods in Applied Mechanics and Engineering 429 (2024) 117120

14.61

e = 14.61 100 (90)
p m
15.05

The material of the electrode has the elastic stiffness matrix shown in Eq. (91). It has no piezoelectricity and an isotropic absolute
permittivity of 8.9073 - 1073 E, i.e. the same as of the conductive material.

262.09 107.05 107.05
107.05  262.09 107.05
= 107.05  107.05 262.09 - 10°

e 77519 - 107 Pa D

7.7519 - 107
7.7519 - 107
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