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Abstract—The use of spreadsheets in industry is widespread
and the information that they provide is often used for decisions.
Research has shown that spreadsheets are error-prone, leading
to the risk that decisions are made on incorrect information.

Software Evolution is a well-researched topic and the results
have proven to support developers in creating better software.
Could this also be applied to spreadsheets? Unfortunately, the
research on spreadsheet evolution is still limited. Therefore, the
aim of this paper is to obtain a better understanding of how
spreadsheets evolve over time and if the results of such a study
provide similar benefits for spreadsheets as it does for source
code.

In this study, we cooperated with Alliander, a large energy
network company in the Netherlands. We conducted two case
studies on two different set of spreadsheets that both were
already maintained for a period of three years. To have a better
understanding of the spreadsheets itself and the context in which
they evolved, we also interviewed the creators of the spreadsheets.

We focus on the changes that are made over time in the
formulas. Changes in these formulas change the behavior of the
spreadsheet and could possibly introduce errors. To effectively
analyze these changes we developed an algorithm that is able to
detect and visualize these changes.

Results indicate that studying the evolution of a spreadsheet
helps to identify areas in the spreadsheet that are error-prone,
likely to change or that could benefit from refactoring. Further-
more, by analyzing the frequency in which formulas are changed
from version to version, it is possible to predict which formulas
need to be changed when a new version of the spreadsheet is
created.

I. INTRODUCTION

The use of spreadsheets is widespread in industry. Panko
[1] estimates that 95% of U.S. firms use spreadsheets in some
form of financial reporting and Winston [2] estimates that
90% of all analysts in industry use spreadsheets for their
calculations. Hermans et al. make compelling arguments that
spreadsheets are code [3] and with an estimate of 500 million
active users worldwide, spreadsheets are a successful end-user
programming language. Notwithstanding their common use,
research has also proven that spreadsheets are error-prone [4]
which can lead to incorrect decisions and loss of money1.

Until now, much of the spreadsheet research was focused
on improving spreadsheets by applying software engineering

1http://www.eusprig.org/horror-stories.htm

methods to them. The concept of testing was brought to
spreadsheets by Rothermel et al. [5] and recently Roy [6]
investigated how users test spreadsheets. Hermans [7] and
Cunha et al. [8] covered the topic of reverse engineering and
proposed methods for extracting class diagrams from spread-
sheets. Several studies were published about the existence of
code smells in spreadsheets [9] [10] [11]. From code smells
it is a small step to refactoring. Both Hermans and Dig [12]
and Badame and Dig [13] proposed tools that support several
refactorings for spreadsheet formulas.

Contrary to the general belief, most spreadsheets are not
one-time models that only exists for a short time. The average
lifetime of a spreadsheet is 5 years and during its lifetime
they are used on average by 12 persons [14]. Because of their
relatively long lifetime, spreadsheets, like software, evolve
over time.

Software evolution is a well-researched topic within the
domain of software engineering [15], [16], [17]. Research
showed that the understanding of source code evolution helps
to identify errors within the software and highlights areas that
are change-prone and could possibly be improved. Could a
better understanding of spreadsheet evolution, bring similar
benefits to the domain of spreadsheets? Unfortunately, research
on spreadsheet evolution is rather limited and a better un-
derstanding of how spreadsheets evolve is needed. We need
answers on questions such as:

• How do spreadsheets evolve over time?
• What is the change frequency?
• What kind of changes are made?
• What are the motivations behind these changes?
• Will the study of spreadsheet evolution contribute to

better change comprehension and prediction of spread-
sheets?

Analyzing the evolution of spreadsheets leads to several
challenges. First, we need to be able to correctly identify the
changes that were made between the different versions of the
spreadsheet. For this study, we are mainly interested in the
changes that were made to the formulas. Changes in these
formulas change the behavior of the spreadsheet and could
possibly introduce errors into the spreadsheet. In this study,
we developed FormulaMatch, an algorithm that identifies and
visualizes these changes.

The second challenge related to the research of spread-
sheet evolution is finding a set of different versions of the2576-3148/18/$31.00 c©2018 IEEE



same spreadsheet that were developed and maintained over
a significant period of time. Dou et al. proposed a semi-
automated approach to identify evolution groups within a
larger spreadsheet group [18]. They applied this approach to
the Enron spreadsheet corpus [?] which resulted in a version-
ed spreadsheet corpus called VEnron that consists of 7,294
spreadsheets spread over 360 evolution groups. The drawback
of this dataset is that we have no access to the creators of the
spreadsheet.

In our study, we want to understand the changes and the mo-
tivation behind these changes that occur during the evolution
of a spreadsheet. Access to the creators is therefore crucial.
For this reason, we decided not to use the VEnron corpus,
but to cooperate with Alliander. Alliander is a Dutch energy
network company. They are responsible for the distribution
of electricity and natural gas in a significant part of the
Netherlands. They have 5.7 million customer connections,
maintain a 90,000 km electricity network and a 42,000 km
gas grid and have a yearly revenue of 1.7 billion. Alliander
provided us with two sets of spreadsheets that we could use
for our analysis.

The remainder of this paper is organized in the following
way. In the next section, we provide background information
on spreadsheet evolution and discuss related work. In Section
III we discuss the algorithm that we used to detect changes
between different versions of a spreadsheet. The two case stud-
ies and our findings are presented in Section IV. Some topics
that affect the applicability and suitability of our findings are
discussed in Section V and we end the paper with concluding
remarks in Section VI.

II. BACKGROUND & RELATED WORK

A. Software Evolution

The study of software evolution has provided us with
insights that support developers in creating better software.
The first studies date back to the late 1960s [19] although the
term software evolution itself was not used until 1974 [20].
Lehman and Ramil published a comprehensive summary of
30 years of research on software evolution in 2003 [15].

Research from Novais et. al. provides reasons why the study
of software evolution matters [16]. They conducted a system-
atic mapping study of the goals and purposes of software evo-
lution visualization. The 5 most frequently mentioned purposes
were: change comprehension, change prediction, contribution
analysis, reverse engineering, identification of anomalies, and
development communication.

In one of the early studies on software evolution, Gall et. al.
studied the evolution of the software of a telecommunication
switching system over a period of 21 months [17]. The system
consisted of about 1500 to 2300 programs. They based their
analysis on system properties like size, changing rate, and
growing rate. They defined changing rate as the percentage
of programs of the system which changed from one release to
the next. In a similar manner, growing rate was defined as the
percentage of programs of the system which have been added
(or deleted) from one release to the next. The method Gall

et. al. used to study the evolution of the telecommunication
switching system could also be used to study the evolution of
spreadsheets. Gall et. al. analyzed the changes in the system
on the level of the individual programs. For spreadsheets, this
could be adapted to the level of the individual formulas.

B. Spreadsheet Evolution

Research on spreadsheet evolution is still limited. In pre-
vious work, we compared 54 pairs of spreadsheets [21].
These pairs consisted of the original spreadsheet created by
a customer and a version that was rebuilt by professional
modelers from the company F1F9. The study provided insight
into the effect the rebuilding had on the occurrence of code
smells in formulas. However, each spreadsheet was analyzed
for only two versions and therefore the obtained insights about
the evolution of the spreadsheet were limited.

Most related to our research is the work of Dou et. al. [18].
They propose a semi-automated approach to identify evolved
spreadsheets and recover the embedded version information.
They applied this approach to the Enron corpus [?] [22] and
created VEnron, a spreadsheet corpus with version information
that consists of 360 evolution groups with a total of 7,294
spreadsheets. An evolution group is a set of spreadsheets
that are all originated, either directly or via intermediate
versions, from the same spreadsheet. Of these 360 evolution
groups, 251 groups, consisting of a total of 4,149 spreadsheets,
contained spreadsheets in which formulas were used. The
study was mainly focused on identifying evolution groups
within the Enron corpus, but the authors also compared the dif-
ferent spreadsheets within an evolution group with Microsoft’s
Spreadsheet Compare tool and made a technical classification
of the type of changes they encountered. They studied 4 types
of changes:

• Structural: Changes to the structure of the spreadsheet
like adding or deleting rows.

• Entered values: Changed, added or deleted values (in-
stead of formulas).

• Formulas: Changed, added or deleted formulas.
• Calculated values: Not a change in the formula, but in

the calculated result of the formula, caused by changes
in the input values for the formula.

In this paper, we focus on changes in formulas because a
change in a formula means a change in the functionality
of the spreadsheet. Furthermore, we want to investigate the
motivations behind the change. Is it, for example, because of
a new feature request, to correct an error or to optimize the
performance of the spreadsheet. Dou et. al. were not able to
answer these questions because they did not have access to
the creators of the spreadsheet.

Xu et. al. proposed SpreadCluster, a different approach
for recovering spreadsheet version information [23]. Instead
of clustering spreadsheets based on their filenames, they use
features of the spreadsheet, like table headers and worksheet
names. Their study shows that SpreadCluster can cluster
spreadsheets with a higher precision (78.5% vs. 59.8%) and
recall rate (70.7% vs 48.7%) than the filename approach



that was used in VEnron [18]. Applying SpreadCluster to
the Enron corpus resulted in a new versioned spreadsheet
corpus: VEnron2. This study only focused on the clustering
of spreadsheets and did not analyze the changes within an
identified evolution group of spreadsheets.

C. Comparing Spreadsheets

Chambers et. al. present SheetDiff, a method for identifying
the changes between two spreadsheets [24]. They determine
all individual cell changes between two versions of the spread-
sheet. Next, they optimize the cell changes into higher level
changes like adding or deleting a column. As a result, this
reduces the number of changes that are presented to the user.
In their approach, they detect changes in all cells and not only
the formulas.

Inspired by SheetDiff, Harutyunyan et. al. developed Row-
ColAlign, an algorithm that can identify differences between
two spreadsheets that is based on an algorithm for solving the
one dimensional longest common subsequence problem [25].
RowColAlign is very successful in identifying changes caused
by row insertion, row deletion, and cell level edits. However,
it does not take into account operations such as copy-paste or
cell-fill. Furthermore, the algorithm has not been applied to
spreadsheets with cells containing formulas.

D. Spreadsheet Evolution Challenges

Studying spreadsheet evolution comes with its own chal-
lenges. It starts with the lack of version control systems
(VCS). Spreadsheet users do not use Github or SVN because
VCS are in general not suited to store the version history of
spreadsheets. The lack of version control systems, also means
that there are no commits and no commit messages. As a
result, it is challenging to find a group of spreadsheets that
belong to the same overall project. If such a group is found
the next challenge is to determine the exact order in which
they were created.

The next step in analyzing the evolution of spreadsheets
is comparing the different versions of a spreadsheet in an
evolution group. Finding changes between two versions of
a program is relatively straightforward. Most programming
languages are text-based and programs, classes and methods
are organized in text files. Modern version control systems
provide ’Diff’ tools to highlight the differences between two
versions on the level of code lines or even words.

A normal ’Diff’ tool is not able to compare two spread-
sheets. Spreadsheets are not text-based files. A workbook
consists of worksheets and worksheets consists of cells. The
information in a spreadsheet is entered in a cell. To track
changes in a spreadsheet you have to track changes on cell
level. But what if a user inserts a row or a column or both.
How should a compare tool determine which cells should be
compared to each other?

Another important difference between source code and
spreadsheets is the combination of data and code. In a spread-
sheet data and code exist next to each other. If a user changes
a numeric value in a single cell then all formulas that make

reference to this cell will calculate a different outcome. If
you compare the spreadsheet these changes will be detected.
However, no change was made to any formula and one could
argue that the spreadsheet is still unchanged.

An additional problem is the way the structure of a
spreadsheet influences the formulas. The example of Figure
1 elucidates this problem.

(a) Original formula

(b) Changed formula after inserting column B

Fig. 1. The effect of changes in structure on formulas

Figure 1a shows a formula in cell C1 that adds up the
values in cell A1 and B1, resulting in a calculated value of 25.
Assume a user inserts a new column after column A. The result
is shown in Figure 1b. Because of a structural change in the
worksheet (adding a new column) the formula has changed.
However, the function of this formula is still unchanged, as is
its calculated value.

Now imagine that this spreadsheet contained 1,000 rows
and that the formula in cell C1 of Figure 1a was copied down
to all 1,000 rows. In that case, a single insertion of a new
column would result in 1,000 formula changes. If these were
all taken into account while comparing the two versions of
the spreadsheet, the number of reported changes would be
overwhelming and analysis of the differences between the two
versions would be challenging.

III. DETECTING CHANGES

As stated in the Section II, analyzing changes between
two spreadsheets is difficult. Simple structural changes to a
worksheet, like inserting a row or a column, can lead to a
myriad of changes (see Figure 1). The goal of our study
is to understand how spreadsheets evolve. We are especially
interested in how formulas change over time. The formulas
in a spreadsheet can be compared with the source code of
a program. It determines its functionality, and it is in the
formulas where most errors emerge. Furthermore, one would
not argue that a program has been changed when it is run
for a second time with different data. The same holds true for
spreadsheets. If just the data has been changed the spreadsheet
should be considered as unchanged.

The number of detected changes reduces if only changes in
the individual formulas are taken into account and all changes



in structure, data and formatting are ignored. However, it still
can result in thousands of changes. More complex spreadsheets
contain a lot of formulas. For example, one of the models that
we used in our case studies contained about 100,000 formulas.
In such a spreadsheet, as described in the previous Section, a
single change like moving a cell, can lead to a change in
thousand related formulas. Presenting all these changes to the
user, will not help them to understand the risks induced by
the applied changes.

A. Unique Formulas

For this reason, the evaluation is reduced to only the unique
formulas. We make use of the R1C1 notation of a formula to
detect the unique formulas in a spreadsheet [26]. In Figure
2 we illustrate this with an example. In Figure 2a we see a
small spreadsheet with 8 formulas. None of these formulas
are the same. However, if we switch in Figure 2b from A1
notation (meaning the cell on the first row and the first column
is referred to as A1) to the R1C1 notation (meaning that same
cell is now referred to as R1C1) most of the formulas are the
same. It turns out, as highlighted in Figure 2c, that there are
actually only two unique formulas.

(a) Formulas in A1 notation

(b) Formulas in R1C1 notation

(c) Visualization of unique formulas

Fig. 2. Detecting Unique Formulas

B. Similarity score

When comparing two spreadsheets we start with detecting
the unique formulas. For every formula in the first version
V0, we have to find the equivalent in the second version V1.
It is not possible to use the cell address, because it could

have been changed if rows or columns were added or deleted.
Furthermore, we have to take into account that the formula
itself could have been changed.

To find a matching formula we analyze the similarity of the
formulas in their R1C1 notation. As a measure of similarity
we use the Levenshtein Distance [27], [28]. It denotes the
minimum number of operations needed to transform one string
into the other. A larger distance means that the strings are less
similar.

With this similarity measure, we can match the formulas in
V0 with the formulas in V1 that have the highest similarity.
Still, this does not guarantee a perfect match, as different
formulas can have the same similarity score. To overcome
this the formulas are also compared to the following additional
properties:

• Calculated result: the outcome of the formula.
• Parse tree depth: This is a measure of how nested a

formula is.
• Path depth: a formula in a spreadsheet can make reference

to another formula which again can make a reference
to another formula. The path depth is the length of the
complete calculation chain.

• Direct dependents: the number of cells that make a
reference to the outcome of the formula.

• Direct precedents: the number of cells that are used by
the formula as input.

C. Matching Algorithm

Trying to match the formulas in V0 with the formulas in
V1, based on the maximum similarity score while taking into
account the additional properties gives good results when the
number of formulas in both versions are the same and no
formulas have been added or deleted. To correctly handle the
addition or deletion of formulas a more sophisticated matching
algorithm is needed.

In their paper “College Admissions and the Stability of
Marriage” [29], Gale and Shapley describe an easy and elegant
algorithm that solves the problems caused by the adding and
deleting of formulas. They describe an algorithm that solves
the so-called College Admission problem. In this problem,
colleges are considering a set of n applicants. They can only
accept a quota of q applicants. Of course, applicants want
to be accepted at the college of their preference. Gale and
Shapley designed an algorithm that will lead to an optimal
stable assignment, meaning that: “every applicant is at least
as well off under it as under any other stable assignment”
[29].

To accomplish this, every college should make an ordered
list of their preferred applicants and every applicant should
make an ordered list of their preferred colleges. Then the
algorithm can be applied as follows:

1) All applicants apply to the college of their first choice.
2) A college with a quota of q places q highest ranking

applicants on its waiting list and rejects the rest.
3) Rejected applicants then apply for their second choice.



4) Each college selects the top q from the new applicants
and those on its waiting list, put these on its new waiting
list and rejects the rest.

5) This is repeated until all applicants are either on a
waiting list or have been rejected by all of their preferred
colleges.

We applied this idea to develop FormulaMatch, an algorithm
that we can use for our matching problem. For each formula
in V0 (’the colleges’) we created an ordered list of preferred
formulas in V1 (’the applicants’) using the similarity score.
Also for all formulas in V1, we created an ordered list for
their preferred formulas in V0. Every formula in V0 can only
be matched to exactly one formula in V1, so we set the quota
of the V0 formulas to 1. Then we applied the steps of the
algorithm.

The result of FormulaMatch provides us for each formula
in V0 with a matching formula in V1. Based on the similarity
scores we know if the formula was changed or not. It is
possible that no matching formula was found, meaning that
this formula was deleted in V1. It is also possible that for
a formula in V1 no matching formula in V0 was found. In
terms of the algorithm, it was rejected. Rejected formulas are
not existing in V0 and therefore, were added in V1.

Figure 3 shows a visualization of FormulaMatch2. All
unique formulas are indicated with an identifier (FXX). If they
were changed, they are highlighted in orange and in a comment
the old and new version of the formula in R1C1 notation is
displayed. Deleted formulas are highlighted in red and newly
created formulas in green.

IV. SPREADSHEET EVOLUTION IN TWO INDUSTRIAL CASE
STUDIES

A. Setup

The goal of this paper is to obtain a better understanding
of spreadsheet evolution. With the results of the case studies
we will answer the following research questions:

RQ1 How do spreadsheets evolve over time?
RQ2 How common are changes in formulas during the life-

span of a spreadsheet?
RQ3 What are the reasons behind the changes?
RQ4 To what extent can the results of a spreadsheet evolution

study, support end-users in creating spreadsheets that are
easier to maintain and contain fewer errors?

For the case studies, we cooperated with Alliander. Al-
liander is one of the large energy network companies in the
Netherlands and we had the opportunity to work with employ-
ees from the Analytics group of the Asset Management depart-
ment. They provide data-based insights from maintenance and
failure reports to support the development and maintenance
of the energy network. We asked them to provide us with
examples of spreadsheets that they created and maintained for
several years. Based on this request we received two spread-
sheet evolution groups that together contained a total of 73

2To protect the sensitive data in the spreadsheet, all column and row headers
in the example have been replaced with the term ’label’

spreadsheets. Before we started the case studies we provided
the owners of the spreadsheets with information about the
setup of the study and they gave us a short explanation about
the purpose and context of their spreadsheets.

In the design of our study, we followed a mixed methods
approach [30]. We started with a quantitative phase that
consisted of a detailed analysis of the evolution of the received
spreadsheets and followed up with a qualitative phase that
consisted of interviews with the creators of the spreadsheets.

During the two case studies, the procedure was as follows:
First, we asked the creators of the spreadsheet to put the
spreadsheets in the evolution group in the correct update order.
Subsequently, we analyzed the spreadsheets with our Spread-
sheet Scantool and ran for each pair of consecutive versions of
the spreadsheets our FormulaMatch algorithm. Based on the
outcome of this analysis we summarized the evolution of the
spreadsheet with the below-mentioned metrics. These metrics
are the same as used by Gall et. al.[17], but we have adjusted
them in the following way to make them suitable for the use
with spreadsheets.

• Size: As stated in Section II, data and code are combined
in a spreadsheet. The code in a spreadsheet is formed by
the formulas and the number of unique formulas (see Sec-
tion III-A) is used in this study, as metric for size. Still,
formulas are not the only component of a spreadsheet
that is responsible for its growth. A spreadsheet can also
grow in size by just adding data to it. Therefore, we also
use the number of non-empty cells as a metric for size.

• Changing rate: is defined as the percentage of unique for-
mulas in the spreadsheet that changed from one version
to the next.

• Growing rate: is defined as the percentage of unique
formulas that have been added (or deleted) from one
version to the next.

Subsequently, we used the results from the FormulaMatch
algorithm to manually inspect all changes that occurred in the
unique formulas. After that, we interviewed the creators of the
spreadsheets and asked them the following questions:

1) How would you describe the development process of the
spreadsheet?

2) Which parts in the spreadsheet do you consider com-
plex?

3) Which important changes that you made in your spread-
sheets do you remember?

4) What were the main reasons behind the changes you
made in the spreadsheets?

The answer to these questions, combined with the data col-
lected from the analysis of the spreadsheets, provides more
background and context of the evolution process and will
enable us to answer the research questions.

After these questions we discussed the findings of our
analysis with the creators, to get a better understanding of
the motivations behind some of the changes. We also asked
them if and how the results of the study could help them to
create and maintain better spreadsheets.



Fig. 3. Visualization of FormulaMatch

B. Case Study I: failure density in the natural gas distribution
network

The first case study concerns a failure density model for
the gas distribution network. It reports monthly on failure
incidents, causes of failures and it provides a forecast for the
coming months of the year. We received 35 spreadsheets that
span a period of almost 3 years. The first spreadsheet dates
back to February 2014 and the last version is from January
2017.

Fig. 4. Evolution of size of the spreadsheet over several versions

Figure 4 shows the evolution of size in number of cells over
the different versions of the spreadsheet. As stated in Section
II, spreadsheets consist of data and code. When analyzing the
size of the spreadsheet, a distinction has to be made between
data and formulas. Therefore, in the chart we show the number
of non-empty cells as a metric for the size of the data and
the number of unique formulas as metric for the formulas.
The spreadsheet starts in version V01 with 383 non-empty
cells and grows in V35 to 36,079 cells. The unique formulas

grow from 8 in V01 to 87 in V35. These 87 unique formulas
represent a total of 2,046 formulas.

Although the growth of the data and the unique formulas
follow a comparable pattern, there is no relation between the
two. During the interview, we discussed the growth patterns
with the creator of the spreadsheet. The two steep increases (A
and B in Figure 4) of non-empty cells were related to adding
and extending a reference table with zip code information
of the Netherlands. The increases in unique formulas that
occurred at almost the same moments were related to new
information requests and were not related to the zip code table.

Fig. 5. Changing and growing rate of the spreadsheet over several versions

Figure 5 displays both the changing and growing rate of the
spreadsheet. In the early versions, the model was extended
with new functionality. We see this between V03 and V04
and around V11 to V14. This corresponds to the growth of
the unique formulas shown in Figure 4. During this time
frame, new functionality was added to the model based on
requests from end-users for more detailed information. At the
same time, there were almost no changes. Only a small spike



around V10 and V11 (See A in Figure 5) with a changing
rate of 10%. These changes coincide with a year-end rollover.
Something similar can be seen a year later from version 24
to 25. Some formulas needed to be changed when the model
was transferred from one year to another.

Until version 14 there are, except for the year-end rollover,
no changes in the existing formulas. This changed in version
15, from that moment the changing rate continuously stays
at a level of about 40%. We discussed this with the creator
of the spreadsheet. In V14 a set of formulas were added that
needed to be adjusted every time data for a new month was
added. Therefore, it stands out that in V19 the changing rate
suddenly drops back to 0%. In this version, new data for the
month was added, but the adjustments in the formulas were
forgotten.

Fig. 6. Frequency distribution of formula changes

In the 35 versions of the spreadsheet, 617 changes to unique
formulas were detected. These 617 changes were made to only
62 unique formulas, meaning that a lot of unique formulas
were changed multiple times. Figure 6 shows the frequency
distribution of these changes. About half of the formulas were
changed between one and four times, the other half between
thirteen and twenty times. This relates to the set of formulas
that had to be changed every month. It started in V15 with 25
formulas and was later, in V20, extended to 30 formulas.

During the interview, the creator of the spreadsheet summa-
rized the changes that were made in the 35 different versions as
providing gradually more information to the end-users of the
spreadsheet. The spreadsheet is part of a monthly reporting
cycle and by providing more information a lot of recurring
questions could already be answered based on the information
in the spreadsheet. The change that was remembered the most
coincides with the spike in the changing rate in V24 (see
Figure 5).

According to the creator of the spreadsheet, the most
complex part of the spreadsheet are the formulas that calculate
a forecast for the coming months. From the 617 changes, only
3 were related to this part of the spreadsheet. In this case, the
complexity of a formula was not a driver for frequent change.

The main reasons for changing formulas in the spreadsheet,
mentioned during the interview, are 1) incorporating new
requests from the end-users of the spreadsheet or 2) changing
formulas to make future updates and maintenance easier. The
creator of the spreadsheet is well aware of the fact that there
are areas in the spreadsheet that could be improved. It should
not be necessary to update formulas every time data is added
to the spreadsheet. However, it is not always easy to find the
time to implement such changes.

C. Case Study II: Failure analysis of the Medium Voltage Grid

The second case study is a set of spreadsheets providing
Alliander with an analysis and forecast of failures in the
Medium Voltage Electricity Grid. The set consists of 38
spreadsheets with a time span of 38 months, from January
2014 to February 2017.

Fig. 7. Evolution of size of the spreadsheets over several versions

The evolution of size for the complete set of spreadsheets
is shown in Figure 7. The data component in this spreadsheet
is much larger in comparison with the spreadsheets from the
first case study. The chart indicates two moments (A and B
in Figure 7) where the number of non-empty cells suddenly
changes. In June 2014 the number of cells changes from
99,091 cells to 695,471. In the interview, we asked the creator
about the reason for this change. Until that time the analysis
was based on the last twelve months of data. As from June
2014, this was extended to a time span of five years.

In November 2016 a large part of the data is deleted,
reducing the size of the model to 529,853 cells. First, we
assumed that old data was removed from the model. We
discussed this during the interview and it turned out that this
was only a partial explanation of the size reduction. Indeed one
year of data was deleted but at that time the model contained
almost one million non-empty cells and it started to get really
slow. Closer inspection of the source data revealed that it was
possible to reduce it by filtering out rows with a status that
was not needed for the calculations. It was this filtering that
was mainly responsible for the size reduction.

The model started with one pivot table and without formu-
las. in Figure 7 we can see that there were three distinctive
moments that new unique formulas were added to the model:



mid-2014, early 2016 and late 2016. In all cases, the reasons
behind the addition of new formulas were requests for more
insights from the end-users of the spreadsheet. The ratio of
unique formulas to formulas is about 1 to 1,000, which is
much higher than in the first case study where it was about
1 to 25. This high ratio can be explained by the fact that
the model contains a data set of about 10,000 rows and that
formulas are defined for each individual row. This means one
unique formula with 9,999 siblings.

Fig. 8. Changing and growing rate of the spreadsheets over several versions

The changing and growing rate are shown in Figure 8. The
three moments when formulas were added to the model are
clearly recognizable. In comparison with the first case study,
this model is much more stable. The changing rate stays below
ten percent for most of the time. However, also in this model,
there are formulas changed in almost every version. Figure 9
illustrates this.

Fig. 9. Distribution of change frequency of formulas

In the 38 versions of the spreadsheet 76 changes were made
to only 18 unique formulas. The majority of these formulas
were only changed once but there are four formulas that were
changed multiple times. We discussed this in the interview
with the creator of the spreadsheet. There were two formulas
that had to be changed every month. The range that was used

in these formulas to calculate a forecast had to be adjusted.
The other two formulas had to change only once a year. The
logic for the calculation of a KPI was different in the last
month of the year than in the other months. Finally, we saw
that at the end of 2016 a set of four new formulas were added
that had the year hardcoded in the formula. These formulas
had to be changed at the beginning of 2017.

This model started with one pivot table. When we asked
the creator of the spreadsheet to summarize the development
of the model in the 38 consecutive versions, he explained that
most changes had to do with new information requests from
the end-users of the spreadsheet, but also to replace the pivot
table with formulas to mitigate the risk that the spreadsheet
was updated without updating the pivot table and therefore
presenting information that was outdated.

According to the creator of the spreadsheet, the most
complex part of the model was related to the calculation of
the long-term and short-term trend of the failure analysis.
Although complex, the formulas used for this calculation were
stable. They were not changed in any of the 38 spreadsheets.

The changes that were remembered the most by the creator
of the spreadsheet, coincide with the three spikes in the growth
rate in Figure 8.

The creator of the spreadsheet was well aware of the formu-
las that needed maintenance every month and also possesses
the knowledge of how to change them. Finding the time and
priority is, in this case, the limiting factor.

D. Conclusion

Based on the information collected during the case studies,
we revisit the research questions.

RQ1 How do spreadsheets evolve over time? In both
cases, it is clear that the spreadsheets grow over time, both
in the number of non-empty cells as unique formulas. It also
became clear that, for the cases considered, there is no direct
relation between the growth in data and the growth in unique
formulas. Spreadsheets that exists for a longer time-span are
often used for reporting purposes. The growth of the data is
caused by adding more data points to the analysis. Growth in
unique formulas is caused by adding new functionality to the
spreadsheet.

RQ2 How common are changes in formulas during the
life-span of a spreadsheet? For both cases, unique formulas
were changed in almost every version. Only the number of
changes differed between the two cases. The addition of new
data points made it necessary to change the logic of some
of the formulas. In the context of a spreadsheet this sounds
reasonable but translated to the context of software evolution
it would mean that source code need to be changed every time
the program is run with new data.

RQ3 What are the reasons for the changes? The motiva-
tion for most changes in the formulas is new feature requests
from the end-users of the spreadsheet. Another reason for
change is to improve the maintainability of the spreadsheet.
A third reason, that was not mentioned during the interviews,



but of which we found examples in our evolution study, is the
correction of an error that was made in a previous version.

RQ4 To what extent can the results of a spreadsheet
evolution study, support end-users in creating spreadsheets
that are easier to maintain and contain fewer errors?
When we discussed the results of the evolution study with the
creators of the spreadsheet, several suggestions were made
about how these results could support a spreadsheet user in
making a better model:

• Summarize the changes that are made in a new version. It
helps the creator of the spreadsheet to detect if all changes
are intended and correctly implemented. Choosing to
only show the changes in unique formulas instead of all
formulas helps to present the changes in a concise way
to the creator of the spreadsheet.

• Provide the creator of the spreadsheet with a list of
formulas that were frequently changed in earlier versions
of the spreadsheet. This could function as a checklist to
make sure that all necessary changes have been made

• Suggest formulas that are candidates for refactoring.
Formulas that have to be changed in every new version
can often be rewritten in such a way that changes are not
necessary.

• Highlight sudden drops or spikes in changing and grow-
ing rates. They sometimes indicate anomalies in the
spreadsheet. For example, a sudden drop in the changing
rate from 32% to 0% between V18 and V19 in case study
I revealed a set of formulas that should have been updated
but were not.

V. DISCUSSION

A. Threats to validity

The cooperation with Alliander gave us a unique oppor-
tunity to study spreadsheet evolution in real-life scenarios.
However, a real-life dataset comes with the price of reduced
repeatability. We strongly support open data, but because the
spreadsheets contain sensitive information, we are not able to
share them.

A threat to the external validity of our study concerns the
representativeness of the selected set of spreadsheets that we
analyzed in this paper. The aim of this study is to gain a better
understanding of the evolution of spreadsheets. The direct ac-
cess to the creators of the spreadsheet is of decisive importance
to obtain this understanding, but also sets a practical limit on
the number of spreadsheets that could be included. However,
if we look at properties, like size and number of formulas, of
the spreadsheets then they are comparable to the spreadsheets
in the Enron corpus [?] and with this respect, they seem to be
representable.

B. VBA Code, Pivot Tables, and Charts

In this study, we have chosen to study the evolution of
spreadsheets by analyzing the changes in formulas. They
determine the functionality of the spreadsheet and it is in
the formulas that most errors occur. However, there are other
components in spreadsheets that evolve over time, such as

pivot tables, charts, and VBA code. In future research, we
will shift our focus to these components.

VI. CONCLUDING REMARKS

The aim of this paper is to get a better understanding of
the evolution of spreadsheets. In the two case studies, we
saw that spreadsheets grow over time, both in data as in the
number of formulas. The main drivers for the growth of the
formulas are new feature requests from the end-users of the
spreadsheet. Besides new feature requests also improving the
maintainability was mentioned as a motivation to implement
changes and finally, we saw that some changes were related to
bug fixing. In both case studies, there was a certain percentage
of formulas (48% in study I and 22% in study II) that changed
in almost every version. Results show that these formulas
had to be adjusted when new data points were added to the
spreadsheet.

The contributions of this paper are as follows:
• FormulaMatch: an algorithm to match unique formulas of

two different versions of the same spreadsheet (Section
III).

• Two case studies in which a detailed study is made of the
evolution of a spreadsheet. In both cases, the analyzed
spreadsheets had a time-span of three years (Section IV).

• Insights from spreadsheet users about how the results of
an evolution study can support them in creating better
spreadsheets (Section IV).

This research gives rise to several directions for future work.
The FormulaMatch algorithm in combination with the concept
of unique formulas makes it possible to present in a concise
way the changes between two versions of a spreadsheet. We
will research if it is possible to further improve the results by
combining the FormulaMatch algorithm with other algorithms
that detect structural changes in spreadsheets. Furthermore,
the case studies showed that measuring the change frequency
of formulas over the life-span of a spreadsheet supports 1)
the identification of formulas that are good candidates for
refactoring or 2) predicting which formulas need to be changed
in the version on hand. We are planning to develop a tool that
uses this change frequency analysis to present this information
to the user. Finally, we will study the evolution of VBA code,
pivot tables, and charts within a spreadsheet.
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