

Delft University of Technology

Enabling low-latency applications using programmable networks

Turkovic, B.

DOI
10.4233/uuid:10656c8a-d9f0-45bb-a012-e84c8ee745ac
Publication date
2022
Document Version
Final published version
Citation (APA)
Turkovic, B. (2022). Enabling low-latency applications using programmable networks. [Dissertation (TU
Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:10656c8a-d9f0-45bb-a012-
e84c8ee745ac

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:10656c8a-d9f0-45bb-a012-e84c8ee745ac
https://doi.org/10.4233/uuid:10656c8a-d9f0-45bb-a012-e84c8ee745ac
https://doi.org/10.4233/uuid:10656c8a-d9f0-45bb-a012-e84c8ee745ac

ENABLING LOW-LATENCY APPLICATIONS USING
PROGRAMMABLE NETWORKS

ENABLING LOW-LATENCY APPLICATIONS USING
PROGRAMMABLE NETWORKS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op woensdag 26 oktober 2022 om 12:30 uur

door

Belma TURKOVIĆ

Master of Science in Electrical Engineering,
University of Sarajevo, Sarajevo, Bosnië en Herzegovina,

geboren te Zenica, Bosnië en Herzegovina.

Dit proefschrift is goedgekeurd door de promotoren.

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
prof. dr. K.G. Langendoen, Technische Universiteit Delft, promotor
prof. dr. ir. F.A. Kuipers, Technische Universiteit Delft, promotor

Onafhankelijke leden:
Prof. dr. G. Smaragdakis, Technische Universiteit Delft
Prof. dr. A.J. Kassler, Universiteit van Karlstad, Zweden
Prof. dr. ir. D. Colle, Universiteit Gent, België
Prof. dr. ir. G.J. Heijenk, Universiteit Twente
Dr. P. Grosso, Universiteit van Amsterdam
Prof. dr. ir. A.J. van der Veen Technische Universiteit Delft, reservelid

Embedded
Networked
Systems

Keywords: Programmable networks, Low-latency applications, Programmable
data-planes, Software-Defined networking

Copyright © 2022 by B. Turković

ISBN 000-00-0000-000-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

To my parents Berina and Irfan,
for their endless love, support and encouragement.

CONTENTS

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Higher bandwidth ̸= lower latency . 3
1.2 Management of queueing delay. 5

1.2.1 Programmable networks . 8
1.3 Research questions . 10
1.4 Outline . 10

2 Online heavy-hitter detection on programmable hardware 13
2.1 Introduction . 14

2.1.1 Motivation . 14
2.1.2 Main contributions . 15

2.2 Interval measurement . 15
2.2.1 Modulo Sketch . 16

2.3 Sliding window measurement. 17
2.3.1 Sequential Window . 18
2.3.2 Zeroing Window . 19
2.3.3 Sequential Zeroing: Zeroing the Sequential Window. 21

2.4 Evaluation . 21
2.4.1 Experiment setup . 21
2.4.2 Interval measurements . 22
2.4.3 Sliding window measurements. 24

2.5 Related work . 26
2.5.1 Hashpipe . 27

2.6 Conclusion . 28

3 Dynamic network resource scaling 31
3.1 Introduction . 32

3.1.1 Motivation . 32
3.1.2 Contributions . 34

3.2 System Overview . 35
3.2.1 Edge controller. 35
3.2.2 Real-Time Slice Management Framework 37
3.2.3 Network Switching Overhead . 40

vii

viii CONTENTS

3.3 Evaluation . 41
3.3.1 Experiment setup . 41
3.3.2 Switching Delay . 41
3.3.3 Performance Guarantees. 42
3.3.4 Bandwidth utilization . 44

3.4 Related Work . 44
3.5 Conclusion . 45

4 Elastic Network Slicing 47
4.1 Introduction . 48

4.1.1 Scope & Motivation. 48
4.1.2 Contributions & Outline. 50

4.2 Elasticity framework . 50
4.3 Data plane component . 53

4.3.1 Load monitoring . 53
4.3.2 Virtual link configuration, state transfer and flow rerouting 55
4.3.3 Overhead and limitations . 57

4.4 Evaluation . 58
4.4.1 Overall performance . 59
4.4.2 Dataplane vs. controller-driver approach 62
4.4.3 State transfer stress scenario . 63

4.5 Related work . 64
4.6 Conclusion . 65

5 Interactions between Congestion Control Algorithms 67
5.1 Introduction . 68
5.2 Main contributions . 69
5.3 Classification . 69

5.3.1 Loss-based algorithms . 69
5.3.2 Delay-based algorithms . 71
5.3.3 Hybrid algorithms . 71

5.4 Evaluation . 72
5.4.1 Performance metrics. 72
5.4.2 Experiment setup . 73
5.4.3 BW scenario . 74
5.4.4 RTT scenario . 79
5.4.5 Results: QUIC . 85

5.5 Conclusion . 85

6 P4air: Increasing fairness among congestion control algorithms 87
6.1 Introduction . 88

6.1.1 Main contributions . 89
6.2 Classification patterns . 89

6.2.1 Groups of congestion control algorithms 89
6.2.2 RTT fairness . 91

CONTENTS ix

6.3 P4air . 91
6.3.1 Fingerprinting module . 93
6.3.2 Reallocation module . 95
6.3.3 Apply actions module . 97
6.3.4 Overhead & Limitations. 98

6.4 Evaluation . 99
6.4.1 Experiment setup . 99
6.4.2 Tuning of the fingerprinting algorithm 100
6.4.3 P4air performance . 101
6.4.4 Inter- and Intra-Fairness: P4air vs. existing solutions 101
6.4.5 RTT fairness: P4air vs. existing solutions 104

6.5 Deployment considerations. 105
6.6 Related work . 108
6.7 Conclusion . 108

7 In-network fast congestion detection and avoidance 111
7.1 Introduction . 112

7.1.1 Problem definition . 112
7.1.2 Main contributions . 113

7.2 Congestion detection and avoidance in the data plane 113
7.2.1 Local control . 113
7.2.2 Rerouting example . 115

7.3 Evaluation using emulation . 118
7.3.1 Experiment setup . 118
7.3.2 Mininet results . 118

7.4 Proof of concept using P4 hardware. 121
7.4.1 Experiment setup . 121
7.4.2 Hardware Limitations . 122
7.4.3 Netronome Agilio CX SmartNICs results 122

7.5 Conclusion . 123

8 Conclusion 125
8.1 Research questions & contributions. 125

8.1.1 Main research question . 128
8.2 Future work . 128

References 129

Acknowledgements 149

Curriculum Vitæ 151

List of Publications 153

SUMMARY

Throughout the last decades, communication networks have become embedded into al-
most every aspect of our day-to-day lives (e.g., watching movies, online shopping, shar-
ing moments with friends and family). Moreover, as the support for the transport of
audio and video became the norm, new application domains have kept emerging ev-
ery day. One of these, the Tactile Internet, enables the transport of the sense of touch.
Consequently, it allows the end-users to interact with a remote environment in the same
way they would if they were present locally. While such applications could revolutionize
many industries by enabling users to transport their skills (e.g., surgical skills) across the
globe, they pose many new challenges to communication networks, such as the need
for very low latency. Yet, providing low latency is fundamentally different from provid-
ing high bandwidth, and, as this thesis demonstrates, existing solutions developed for
bandwidth-oriented services are not directly applicable to low-latency services.

This thesis explores how programmable networks can be used to facilitate emerging
low-latency services. Specifically, it combines the advantages of (1) Software-Defined-
Networking (SDN), a paradigm in networking that centralizes the control plane, and (2)
programmable data planes, which enable an on-the-fly deployment of novel algorithms
to the network switches. In particular, this thesis explores what SDN controller tasks
are feasible to be offloaded to the data plane, the trade-offs in doing so, and their ben-
efits on low-latency applications. Moreover, it takes advantage of the more fine-grained
monitoring possibilities of programmable data planes and incorporates these measure-
ments into the data plane algorithms. As a result, this thesis develops a set of solutions
that enable network switches to react to short-term changes in the networking traffic
and act independently (or with limited input), improving the Quality of Service (QoS) of
low-latency flows.

First, we investigate the limitations of programmable switches and ways to overcome
them by developing an application to detect heavy hitters (e.g., flows that consume most
resources in the network). Next, we explore the concept of network slicing, i.e., reserving
part of a physical network for a specific service. We demonstrate that network switches
can combine data plane measurements and limited (preconfigured) input from the cen-
tral controller to enable elasticity, i.e., the ability to automatically scale the assigned net-
work resources based on the flows’ requirements with negligible delay. Next, we analyze
the co-existence and interactions between flows using different congestion control al-
gorithms and/or having different RTTs. We use this information to develop a data plane
algorithm to improve their interactions. Finally, we demonstrate how congestion detec-
tion and avoidance can be achieved in the data plane without any assistance from the
end-hosts.

xi

SAMENVATTING

De afgelopen decennia zijn communicatienetwerken niet meer weg te denken uit ons
dagelijks leven, van online winkelen tot het kijken van films, en het delen van speci-
ale momenten met vrienden en familie. Sinds het transporteren van beeld en audio de
norm is geworden, verschijnen er dagelijks nieuwe toepassingsdomeinen. Eén van deze
nieuwe domeinen, het Tactiele Internet, maakt het mogelijk om het gevoel van aanraking
te transporteren. Dit maakt het voor eindgebruikers mogelijk om over verre afstanden
acties uit te voeren, op dezelfde manier als dat de gebruiker lokaal aanwezig zou zijn. Al
kunnen zulke applicaties veel industrieën revolutioneren door gebruikers (e.g., chirur-
gen) hun vaardigheden overal ter wereld—op afstand—toe te laten passen, creëren ze
nieuwe uitdagingen voor communicatienetwerken. Tactiel Internet vereist bijvoorbeeld
een zeer lage latentie. Het verstrekken van een lage latentie is echter fundamenteel ver-
schillend van het verstrekken van hoge bandbreedte, en, zoals deze dissertatie demon-
streert, zijn de bestaande oplossingen voor bandbreedte georiënteerde voorzieningen
niet direct toepasbaar op latentie georiënteerde voorzieningen.

Deze dissertatie onderzoekt hoe programmeerbare netwerken gebruikt kunnen wor-
den om de opkomende latentie-gevoelige applicaties te ondersteunen. De dissertatie
combineert de voordelen van (1) Software-Defined-Networking (SDN), een netwerkpa-
radigma die de control plane centraal stelt, en (2) programmeerbare data planes, welke
het mogelijk maken om direct (on-the-fly) nieuwe algoritmes in te zetten op de netwerk-
knopen. In het bijzonder verkent deze dissertatie welke taken van de SDN-controller
overgenomen kunnen worden door de data plane en de geassocieerde voor- en nade-
len. Hierbij ligt onze focus op applicaties die hoge eisen stellen aan latentie. Daarnaast,
maakt deze dissertatie gebruik van de preciezere meetmogelijkheden van programmeer-
bare data planes en integreert deze metingen in de data plane algoritmes. Het resultaat
van deze dissertatie is een set van oplossingen die netwerkknopen de mogelijk geven
om zelfstandig (of met gelimiteerde instructies) te reageren op kotertermijn veranderin-
gen in het netwerkverkeer. Deze oplossingen verhogen de Quality of Service (QoS) van
netwerkverkeer met lage latentie eisen.

Allereerst onderzoeken we de beperkingen van programmeerbare netwerkknopen
en hoe we deze kunnen overkomen door een applicatie te ontwikkelen die “heavy hit-
ters” (netwerkstromen die de meeste netwerkcapaciteit gebruiken) detecteert. Vervol-
gens onderzoeken we “network slicing”, het reserveren van een deel van het fysieke net-
werk voor een specifieke dienst. We demonstreren dat netwerkknopen data plane me-
tingen kunnen combineren met een kleine (voorgeconfigureerde) hoeveelheid gegevens
van de centrale controller om de elasticiteit van het netwerk (het vermogen om binnen
verwaarloosbare tijd automatisch netwerkmiddelen op te schalen op basis van de eisen
van netwerkstromen) te verhogen. Vervolgens analyseren we het naast elkaar bestaan
van, en de interactie tussen, stromen die verschillende congestie control algoritmes ge-
bruiken en/of verschillende retourtijden hebben. Met behulp van deze informatie ont-

xiii

xiv SAMENVATTING

wikkelen we een data plane algoritme die deze interactie verbetert. Tot slot demonstre-
ren we hoe congestie detectie en vermijding bereikt kunnen worden in de data plane
zonder assistentie van de eindhost.

1
INTRODUCTION

Due to the rising popularity of streaming services, the demand for bandwidth is growing
fast. In fact, video traffic is currently responsible for well over half of all Internet traf-
fic [1, 2]. To cope with this rising trend, multiple strategies that allow network operators
to grow the available capacity exist. For example, operators could improve existing tech-
niques thereby enabling higher data rates through existing fiber-optic links or add more
fiber-optic links across congested routes. Hence, while it may not be cheap, there is no
limit on bandwidth increase over time [3]. However, with the advances in networking,
new application domains are emerging and, as illustrated in Figure 1.1, many of them
no longer require just high bandwidth, but very low latency as well, posing a new chal-
lenge for communication networks [4, 5]. Consequently, while previously just a desirable
feature, low latency has become a hard requirement for many services replacing the pre-
vious “need for speed” with the “need for latency.”

< 1Mbps 1Mbps 10Mbps 100Mbps > 1Gbps

1ms

10ms

100ms

1000ms

Tactile
Internet

Virutal Reality

Augumented Reality

Hologram
Autonomous

driving

Multi-person
video call

Real-time
gaming

Disaster
alert

Automotive
e-call

Electric
grid control

Monitoring
sensor notworks

Remote
device controlling

Personal
cloud

Video
streaming

8k video
streaming

Bi-directional
remote controlling

Bandwidth

La
te

n
cy

Figure 1.1: Bandwidth vs. latency. Network demands of emerging technologies. The orange line represents
new, emerging low-latency services. Based on [6–9].

1

1

2 1. INTRODUCTION

For example, the objective of one of these low-latency application domains, called
the Tactile Internet, is to transmit a sense of touch over the Internet enabling end-users
in different locations to interact in a shared, virtual or physical environment as if they
were in the same room [4, 5, 10–15]. While still in its infancy, Tactile Internet has appli-
cations in industry, robotics, telepresence, virtual reality, augmented reality, healthcare,
road traffic, serious gaming, education, and culture [14]. As an example, imagine a doc-
tor in Delft using a remote robot to perform real-time surgery on a patient in a different
city. Because surgeons have to see and feel what they are doing, multiple modalities –
audio, video, and data involving the sense of touch – need to be sent together and syn-
chronized to improve the surgeons’ perceptual experience. However, in contrast to stan-
dard audio and video streaming services, surgeons’ actions controlling the robot must
be transmitted in the opposite direction closing a control loop with very stringent la-
tency requirements [12]. Therefore, this type of traffic, in addition to a high bandwidth
requirement (due to multiple sent and synced modalities), is also extremely sensitive
to latency, requiring end-to-end latency as low as 1 ms (Figure 1.2). Violating these re-
quirements can produce unwanted effects. Cybersickness (which is similar to motion
sickness [4, 14, 16]) or control loop instability may occur, reducing the medical service
quality and potentially injuring the patient.

Another application domain requiring low-latency is smart grids [17, 18]: modern-
ized power grids that, based on the information collected from them, adjust the produc-
tion and distribution of electricity. Therefore, in contrast to traditional power grids, in
which the devices are monitored manually onsite, smart grids monitor, measure, adjust,
and control these devices’ power usage remotely, over a network. Consequently, previ-
ously unimaginable capabilities, such as self-healing features, i.e., the ability to automat-
ically detect and respond to grid problems and ensure quick recovery after disturbances,
will become a reality [19]. However, while not bandwidth-intense, such services require
an up-to-date collection and exchange of information, results, and decisions, requiring
high reliability and latencies as low as a few milliseconds (Figure 1.2) [18, 20, 21].

Moreover, even existing markets, such as competitive online gaming, would have
a considerable benefit from consistent low-latency responsiveness, especially as video
games move to the cloud streaming model [22–24] and are combined with augmented
and virtual reality technologies [25]. For instance, even for current “traditional” online
games, in a recent survey in the UK, 44% of the participants named “the internet lag-
ging” as the most infuriating aspect of online gaming. Furthermore, a lower, consistent
latency could increase the adaptation and growth of new emerging gaming domains,
such as multiplayer virtual/augmented online reality games. For example, to solve one
of these games’ main bottlenecks – the need for more computational power – service
providers could use centralized cloud services equipped with dedicated GPU cores. Con-
sequently, the cloud would render the graphics and stream it back as a compressed video
to the end-users. However, such a solution would also introduce additional latency to
the already latency-critical control loop of augmented/virtual reality rendering (less than
10 ms round-trip time [26], Figure 1.2), simply due to the physical distance between the
user and the cloud. Similar to the Tactile Internet scenario, violating these requirements
would lead to a poor user experience, low adaptation rate of such games, and potential
cybersickness.

1.1. HIGHER BANDWIDTH ̸= LOWER LATENCY

1

3

Low-latency

Reliability#Devices

Bandwidth

(a) Video streaming (Traditional services)

Low-latency

Reliability#Devices

Bandwidth

(b) Remote surgery (Tactile Internet)

Low-latency

Reliability#Devices

Bandwidth

(c) Precise Load Control (Smart grid).

Low-latency

Reliability#Devices

Bandwidth

(d) Cloud VR Gaming (Real-time gaming)

Figure 1.2: Requirements of different services. Darker squares represent that the specific service has more
stringent requirements for the particular metric.

1.1. HIGHER BANDWIDTH ̸= LOWER LATENCY
Simply defined, latency is the time it takes for a packet to travel from a source to a des-
tination host. While it might seem that merely increasing the bandwidth will lower the
latency, this is not the case. By doing this, the real problem, i.e., the source of the excess
latency, is usually either just temporarily hidden or not targeted at all. To better under-
stand the relation between bandwidth and latency network latency’s main components
need to be understood. A packet typically encounters four types of latency between each
two network nodes [3, 27]:

• Propagation latency: a function of the physical distance between two nodes and
propagation speed of a link.

• Transmission latency: a function of the packet’s size and data rate of a link.

• Processing latency: the time required to inspect the packet header and determine
its destination.

• Queuing latency: the amount of time the packet is waiting in the queue until it can
be transmitted.

The first component, the propagation latency, is dictated only by the physical dis-
tance and material through which the signal travels. As such, it does not depend on the

1

4 1. INTRODUCTION

available bandwidth or any other traffic processed in the network. Moreover, in wired
networks (considered in this thesis), the propagation speed is usually within a small con-
stant factor of the speed of light. Therefore, this latency component is constant on a
given path, cannot be reduced, and represents a lower bound on the end-to-end latency
every packet experiences on a given path [3]. Moreover, in most network deployments,
the propagation latency usually only represents a small portion of the total end-to-end
latency experienced by packets, leaving little room for improvement.

Consequently, to support the emerging low-latency services, one must consider the
other three latency components. For a packet of some constant size, the first of these, the
transmission latency, depends only on each transmitting link’s bandwidth. Therefore, to
reduce it, a network operator can choose to increase the bandwidth on either of the links
or simply reduce the number of traversed links. However, similar to propagation delay,
on a given path transmission latency is constant (given the same packet size), and on
speeds reaching Gbps, for typical network packets (e.g., 1500B), represents only a tiny
portion of the total end-to-end latency, e.g., only a few nanoseconds on a 100Gbps link
per each network node. Therefore, while network operators can reduce this component
through careful planning, the performance gain is limited.

The third component, the processing latency, represents the time network nodes
need to process a packet. For example, each router must examine the packet’s header
to determine the outgoing port before processing the packet further along the path. This
action and many others (e.g., reducing the TTL, changing the MAC addresses), are ap-
plied to each incoming packet. However, as much of this logic is performed in hardware,
these actions are usually fast, constant, and depend solely on the deployed hardware’s
speed. Consequently, they represent a constant factor to the overall end-to-end latency
on a given path. Therefore, similarly to the transmission latency, performance gains,
such as deploying faster hardware or reducing the number of network nodes the packet
traverses, are limited.

It is essential to notice that all of the above-mentioned components (i.e., propaga-
tion, transmission, processing latency) represent a constant small contribution to the
overall end-to-end latency. Therefore, they are predictable and more straightforward to
account for in networks compared to variable delay. In contrast, the last component,
the queuing latency, depends mainly on the amount of traffic and the way that traffic
is handled in a network. Since network traffic can be very bursty while the output links
have a fixed bandwidth, packets might arrive faster than the output links can handle,
causing congestion. To reduce packet loss, each network node is equipped with buffers
absorbing these short-term fluctuations in network traffic. However, packets waiting to
be processed further along the path will experience an increased variable delay depend-
ing on the current queue size, called the queueing latency. As such, these delays may
vary significantly, and controlling and reducing them is crucial and, therefore, the main
topic of this thesis. An obvious solution to this problem is to increase the bandwidth of
these output links or to add more links to the congested routes. However, such a solution
is resource inefficient and would result in low network utilization. Furthermore, increas-
ing the bandwidth will only give more room to the bandwidth-demanding services (e.g.,
downloads, torrents) that seek to claim as many resources as they can, just delaying the
inevitable congestion to a later moment in time.

1.2. MANAGEMENT OF QUEUEING DELAY

1

5

To conclude, two critical network parameters, latency, and bandwidth, usually work
together to dictate all network traffic performance and needs to be managed. However,
while high-bandwidth links are desirable, they do not guarantee a stable end-to-end per-
formance. Networks could be congested at any intermediate node at some point in time
due to, for example, high demand, hardware failures, and concentrated network attacks.
Consequently, to enable bounded end-to-end latency guarantees for low-latency appli-
cations, controlling the queuing latency has to be an explicit design criterion at all de-
velopment and deployment stages.

1.2. MANAGEMENT OF QUEUEING DELAY
As mentioned in the previous section, one of the most significant factors contributing
to queuing delay is congestion, which occurs when a network node is trying to pro-
cess more data than a link can handle. Congestion control, i.e., mechanisms deployed
to minimize the occurrence and the effects of congestion, has been a well-researched
topic since Van Jacobson proposed it for the first time in 1988 [28]. Moreover, from
application-level and TCP/QUIC congestion control algorithms [27–61] to network-based
active queue management [62–77], many different mechanisms have been proposed
over the years. However, at the same time, many of them were considered too compli-
cated, risky, and had poor interoperability with existing mechanisms to be deployed in
production networks. Consequently, the adaptation of many proposed techniques was
slow or non-existent. Instead, network operators often choose the easy route of over-
provisioning, leading to very low utilized, energy-inefficient networks.

Currently, most networks rely only on older proven congestion control algorithms
deployed in the end-hosts to detect congestion informing the end-hosts to modify their
sending rates accordingly. However, for many of the previously mentioned low-latency
services, such as remote surgery or virtual-reality online gaming, this approach is not
feasible. One cannot increase/decrease the rate at the traffic source. Moreover, even
for services where one could, most of these control algorithms would only kick in after
congestion has occurred, and the queues were filled, needing at least one round-trip
time (RTT) to react to the encountered congestion. Thus, potentially critical packets
would already be outdated at their reception, degrading the expected performance with
sometimes very severe consequences (e.g., injury to the patient in remote surgery).

Software-defined networking (SDN [78, 79], Figure 1.3), as a new paradigm in net-
working, offers an alternative. In SDN, network nodes, previously responsible for many
tasks (e.g., routing table build-up using routing protocols such as OFPF), were simpli-
fied to be only responsible for packet forwarding. Hence, SDN network nodes usually
only contain a set of match-action tables that associate a particular set of header fields
(e.g., MAC addresses, IP addresses) to a set of forwarding actions (e.g., output a packet
to a specific port). Moreover, all SDN network nodes are connected to a software-based
controller, a separate entity, that determines the exact table entries, i.e., this mapping be-
tween the match fields (e.g., header fields, metadata) and the forwarding actions. When
the network nodes receive a packet they do not know how to process (i.e., no match is
found in the forwarding tables), they contact the controller, and the controller subse-
quently executes a routing protocol. Finally, upon determining the forwarding rules for
the packet, the controller updates the necessary forwarding tables in the network nodes.

1

6 1. INTRODUCTION

C
o

n
tr

o
lp

la
n

e
d

at
a

p
la

n
e

SDN
(programable control plane,

“dumb” non-programmable switches)

Traditional networks
(control plane in

non-programmable switches)

Control plane

data plane

Routing protocol Central controller

Routing protocol

Figure 1.3: Traditional networks vs. SDN. SDN, in contrast to traditional networking approaches, separates the
control plane and the data plane: central controllers make routing decisions while switches only forward the
traffic.

All subsequent packets belonging to the same flow (i.e., packets having the same values
for all the match fields in the forwarding tables) are processed using these installed rules
and without the need to contact the controller again.

It is crucial to notice that the executed routing algorithm is just another software
application that needs to be installed in the controller. This significantly simplifies the
development and deployment of new custom protocols that previously needed to be
supported in each switch’s ASIC. Moreover, with SDN the central controller has a global
view of the network and all its traffic (in contrast to network nodes in traditional net-
works, Figure 1.3). Hence, it can combine the information from of all the switches to
determine the current network state (e.g., current flows, available links, connections be-
tween nodes, bandwidth available on each link) and, subsequently, adapt to the traffic
and changing network conditions, by, for example, rerouting specific flows from con-
gested routes and/or potentially offering special treatment for particular flows. Taking
advantage of this, many different SDN frameworks trying to improve the Quality of Se-
vice (QoS) have been developed over the years, offering many possibilities for advanced
network reconfiguration and queue management. We can divide these frameworks into
two distinct groups: QoS routing frameworks and resource reservation frameworks.

QoS routing frameworks. Many frameworks use some form of QoS routing to find the
path that satisfies different QoS requirements [80–86]. However, SDN frameworks from
this group depend on very precise monitoring [87, 88]. First, monitoring intervals di-
rectly influence the gathered data’s usefulness, as well as the number of monitoring
packets sent. Even newer monitoring approaches, such as the streaming telemetry, in
which the switches push incremental data updates to the central controller, can gener-
ate too much overhead, depending on the number of subscribed events and still depend
on the latency between switches and the controller [89]. Second, even after congestion is
detected, a non-zero time is needed for the controller to recompute the path and recon-

1.2. MANAGEMENT OF QUEUEING DELAY

1

7

figure the forwarding table entries before switching the flow to a better path (if it exists)
or throttling another flow (by for example rerouting it to a route that has less resources).
At the same time, until rerouted, all packets are processed by the congested node causing
an increase in the total end-to-end delay.

Another option to ensure that the QoS requirements of each flow are satisfied would
be to know in advance, i.e., at the moment a new flow is initiated, its bandwidth de-
mands throughout its duration. By using this knowledge, the central controller could
make sure, while configuring the routes, that the total bandwidth is not exceeded on
each link. However, a flow’s bandwidth demands are usually very variable and unpre-
dictable, i.e., it depends on the current applications’ dynamic and user behavior.

Resource reservation frameworks. Other standard methods to provide QoS in SDN are
(1) to use priority queuing or (2) to implement virtual slicing of the available bandwidth
on all the nodes on the path, reserving parts of it to different services, effectively isolating
them [90–96]. On the one hand, while initially minimizing queuing delay for the higher
prioritized flows, priority queuing can lead to starvation of flows and does not prevent
congestion, especially between flows having the same priority, i.e., belonging to the same
service. In fact, high-priority flows will starve when congestion forces low-priority flows
to occupy all available queue space.

On the other hand, as mentioned above, the maximum, or even the average or cur-
rent bandwidth requirement is usually variable and not known beforehand, providing a
severe flaw in these mechanisms. Moreover, even if we could determine the required
bandwidth, it can be in the order of a few Gbps (e.g., Tactile internet services, aug-
mented, and virtual reality [5–7, 97], Figure 1.1). Therefore, reserving the maximum re-
quired bandwidth for every flow would not be scalable. However, reserving less than
the maximum required bandwidth does not ensure the strict per-flow QoS many low
latency applications need. Besides, networks often will not need to simultaneously sup-
port all of these services with very stringent requirements for all end-hosts. Thus, pro-
visioning the networks to meet all services’ peak requirements would lead to inefficient,
overcompensated, and far too expensive networks. Instead, networks should be flexible
and programmable, adapting to individual end-users and services’ needs and delivering
precisely the needed performance.

One way to improve network flexibility could be to use a central controller to ad-
just the network resources assigned to a service, i.e., increasing or decreasing the re-
sources assigned to a service depending on its current needs. However, such a solution
would still depend on precise monitoring to determine the current service needs. More-
over, as mentioned earlier, pure SDN solutions will always depend on the latency be-
tween switches and the controller. Consequently, the gathered information, as well as
the controller’s calculated best response, might already be outdated before the rules are
pushed to the switches. Therefore, all deployed algorithms will inherently be slow and
potentially lead to oscillations and inconsistencies due to the variable delay between the
switches and the controller.

In conclusion, resource reservation frameworks offer a good starting point, providing
sound isolation between different services. Specifically, by reserving a share of the avail-
able network resources for a service, a network operator can make sure that different ser-
vices will not interfere with each other, i.e., degrade the QoS of either of them. However,

1

8 1. INTRODUCTION

Central controller

SDN
(programable control plane,

“dumb” non-programmable switches)

P4+SDN
(programable control plane,

“smart” programmable switches)
C

o
n

tr
o

lp
la

n
e

d
at

a
p

la
n

e

Central controller

Figure 1.4: SDN vs. P4+SDN. P4 enables the data plane to be programmed as well, providing fully pro-
grammable networks. Previously “dumb” fixed-function switches are replaced by programmable switches able
to execute custom algorithms providing a fast reaction loop for latency-sensitive applications.

at the same time, current SDN implementations lack a fast response to changing service
and traffic requirements and are, as a consequence, unable to adjust the resources to the
current service needs in real-time. Furthermore, they do not provide any mechanisms to
ensure that the same service flows, while isolated from flows belonging to other services,
would achieve good service quality and share the assigned resources fairly.

1.2.1. PROGRAMMABLE NETWORKS

To solve the problems identified in the previous section, i.e., low reaction speed to traf-
fic and user changes of the central controllers, a possible solution would be to switch
back to the traditional network architecture with a distributed control plane. This way,
the switches themselves could react to the traffic changes providing a fast reaction loop.
However, with its traditional fixed functions and lack of reconfigurability, typical network
hardware limits new algorithms’ deployment. This, in turn, limits the agility needed to
support the diverse QoS requirements of newer services. Furthermore, by switching to a
distributed model, all the SDN architecture’s advantages, such as the centralized view of
the network enabling fine-grained traffic management, would be lost.

Programmable switches, another solution offering flexibility, decouple the actual for-
warding program run on the switch from its hardware. Hence, the network operators
could design, implement, test, and, finally deploy, custom forwarding schemes to all
the switches in its network, potentially providing different treatments to different ap-
plications. Moreover, using programmable switches, the network operators would no
longer depend on the vendors to support their specific algorithm, improving the inter-
operability between switches belonging to different vendors, and avoiding vendor lock-
in. However, programmable switches were for years significantly less performant than
legacy fixed-function switches and hence, not a viable option. Nevertheless, with the
new advancements in hardware, they have become available at a comparable price and

1.2. MANAGEMENT OF QUEUEING DELAY

1

9

performance [98]. Moreover, due to the emergence of these switches, new high-level
domain-specific programming languages such as P4 were designed, allowing network
engineers to test and deploy new algorithms quickly without worrying about the details
of the underlying hardware.

However, to be a feasible replacement for a high-performance fixed-function switch,
programmable switches need to process packets at speeds reaching Tbps without any
degradation. Hence, per processed packet, a switch would only have a few ns, limit-
ing the programs and actions (e.g., loops, floating-point operations, memory accesses)
that can be applied to packets (either by the compiler for a specific switch or by not being
supported in the P4 language at all). Therefore, while offering many advantages and flex-
ibility, programmable switches cannot support all imaginable forwarding schemes with-
out any performance loss (or at all). Consequently, algorithms deployed on the switches
must be designed with these restrictions and limitations in mind.

Moreover, while both programmable switches and SDN focus on increasing the net-
work programmability, they address two fundamentally different needs in networking
and are, consequently, not exclusive, but complementary. Hence, programmable switches,
and programming languages such as P4, were not designed, nor are intended to replace
SDN. In contrast, as illustrated in Figure 1.4, an SDN controller will often interact with P4
programmable switches in the same way it would with traditional SDN switches instruct-
ing them on how to process the received packets by filling in a set of match-action tables.
However, in contrast to traditional SDN switches, which were fixed-function switches,
and as such, had a predefined set of tables (as well as header fields one could match
on and actions one could execute), for programmable switches the programmer him-
self/herself can specify the tables, their order, the header fields to match on, and define
custom actions to execute upon a match allowing for custom forwarding schemes and
adaptability while keeping the advantages of an SDN controller.

In addition to this flexibility and agility, P4 programmable switches offer advanced
monitoring features, such as the possibility to gather custom packet meta-data (e.g.,
queue depth, queuing delay). By combining this meta-data with custom forwarding
schemes, switches can react immediately to events such as congestion while processing
a packet - an option not available on traditional fixed-function SDN switches. Hence,
switches can adjust to the current application needs (e.g., providing higher or lower QoS
or re-routing to avoid congestion) on the fly based on the current network state. More
importantly, this process can happen without the latency needed to contact the cen-
tral controller each time (a situation common in many SDN deployments). In fact, the
central controller can be programmed to guide the long-term behavior of the network,
instructing the switches on what to do in certain situations (e.g., if the network is con-
gested, the link is down) while the process of determining the current state, and the for-
warding rules that need to be applied can be left to the switches.

In this thesis, to keep all the SDN’s advantages, but decrease the reaction time, we
use a combination of the programmable switches and the SDN concept. Hence, as ex-
plained above, we design networks in which the central SDN controller, in contrast to
pure SDN frameworks, would only affect the network’s general long-term behavior. To
quickly react to specific events, such as link failures or congestion, the controller will of-
fload part of the control to the programmable switches (that would execute custom for-

1

10 1. INTRODUCTION

warding schemes), reducing the reaction time significantly and, consequently, provide
per-packet QoS for each of the flows. Programmable switches promise more flexibility,
agility, and the possibility of gathering and reacting to important packet meta-data (e.g.,
queue depth and queuing delay) immediately while the switch processes the packet [99].
This way, new forwarding schemes for different traffic types can be implemented and de-
ployed to the switches instantaneously, isolating different applications and adjusting to
their current requirements on the fly. Furthermore, deploying novel, custom algorithms
(e.g., providing higher or lower QoS or re-routing to avoid congestion) makes it possi-
ble to target specifics of low latency applications directly in the data plane. Doing so
reduces the reaction time significantly and, consequently, provides per-packet QoS for
each of these flows.

1.3. RESEARCH QUESTIONS
In the previous section, we identified programmable switches as one of the main tools
enabling low reaction times; however, despite their popularity, the specific means to
control the network delay and provide the requested QoS to all flows inside a network
remain largely undefined. Therefore, we formulate the main research question of this
thesis as follows:

What mechanisms need to be developed and deployed in a programmable network to
support low-latency applications?

First, we start by carefully investigating the limits imposed by programmable switches
and techniques to overcome those limits by presenting best practices for designing data
plane algorithms. Next, in light of these best practices, we develop combined control and
data plane techniques to support the newer low-latency application domains alongside
the traditional bandwidth-oriented applications. Finally, we show that our algorithms
can enable networks to support various services with very diverse QoS requirements si-
multaneously.

In order to refine our research question, we identify three sub-questions that need
to be addressed by any approach that seeks to satisfy QoS requirements for all flows be-
longing to a network:

1. What techniques can be used to overcome the challenges associated with pro-
grammable hardware when designing and deploying network algorithms?

2. How can we allocate network resources to different applications in real-time by
taking into account their individual requirements?

3. How can we provide a fair resource distribution between different flows belonging
to the same service, thus guaranteeing the same performance for all service users?

1.4. OUTLINE
In this thesis, we systematically investigate the above-mentioned sub-questions and pro-
vide corresponding solutions (Figure 1.5). In particular, we address the first sub-question

1.4. OUTLINE

1

11

Chapter 1 - Introdution

Chapter 2 - Online heavy-hitter detection on programmable hardware

Sub-question 1

Sub-question 2

Chapter 3 - Dynamic network resource scaling

Chapter 4 - Elastic network scaling

Sub-question 3

Chapter 5 - Interactions between congestion control algorithms

Chapter 6 - P4air: Increasing fairness among competing
congestion control algorithms

Chapter 7 - In-network fast congestion detection and avoidance

Chapter 8 - Conclusion

Figure 1.5: Dissertation outline, connection between main challenges (in blue) and chapters.

in Chapter 2 by developing a set of techniques to overcome programmable hardware
limitations. Next, in Chapters 3-4, we address the second sub-question by exploiting the
concept of network slicing. Finally, we take on the third sub-question in Chapters 5-7 by
providing a different solution for two distinct transport choices: (1) transport protocols
using a feedback loop (e.g., TCP/QUIC) and (2) transport protocols without a feedback
loop (e.g., UDP).

In Chapter 2, we first identify the constraints of programmable hardware, imposed to
ensure that a switch’s performance will not degrade by deploying different programs—i.e.,
to ensure that a switch can always run at line rate. Next, using the example of a heavy
hitter detection application (an application that determines if a flow has sent more than
a given percentage of the last sliding window of N packets), we illustrate techniques to
overcome the constraints of programmable hardware while minimizing the resource uti-
lization of the switch.

Chapter 3 shows that many low-latency applications, such as remote teleoperation,
have varying dynamics that often stay far below their highest value. We leverage this fact
by designing a system in which, at any time, the current dynamics govern the amount

1

12 1. INTRODUCTION

of network resources allocated to a flow and, consequently, the QoS experienced. In
particular, we design a data plane scaling solution based on an application’s input. Our
solution modifies the switches’ configurations on the fly by re-routing the flow and re-
allocating the bandwidth assigned to the flow to meet the current application’s needs.

In Chapter 4, we extend our previous scaling approach by designing a general elas-
tic network slicing system. Our solution allows operators to provision a virtual network
per service on top of a single (shared) physical infrastructure, with the ability to auto-
matically provision or release assigned network resources based on the current traffic
demands of the slice. We show that, by being deployed in the data plane, our system
significantly reduces the reaction time and, as a consequence, can on-the-fly adjust to
the changing traffic patterns. Finally, we show that due to a faster reaction, the assigned
resources are more adequately matched to the current traffic needs, leading to less user
traffic degradation and a higher QoS.

Chapter 5 discusses the interactions among different TCP/QUIC flows sharing the
(potentially virtual) network introduced in the Chapter 4. We demonstrate that flows us-
ing different congestion control algorithms, or having different round-trip times (RTTs),
may overpower each other; this results in unfair resource distribution. A subset of the
flows usually claims most of the capacity. Consequently, we show that merely isolating
different services (as in Chapter 4), without taking their flows’ specifics into account, is
not enough to guarantee good performance for all service users.

To solve the above-mentioned problems, in Chapter 6, we make use of programmable
switches to enforce fairness from within the network itself, instead of from the conges-
tion control algorithms running at the endpoints. Our solution continuously monitors
the properties of all flows that pass through a switch and groups them based on the con-
gestion control algorithms’ behavior. Furthermore, it applies appropriate custom mea-
sures to suppress the aggressive flows and boost each group’s smaller flows.

Finally, in Chapter 7, we focus on strict low-latency applications not using TCP/QUIC
congestion control mechanisms and seek to ensure that packets are not dropped or de-
layed at any node in the network. Therefore, we deploy a custom data plane congestion
control and avoidance solution in the forwarding nodes instead of at the source or via
a central controller. To do so, we enable programmable switches to (1) track process-
ing and queuing delays of latency-critical flows and (2) react immediately in the data
plane to congestion by re-routing the affected flows. Furthermore, we show that our
solution ensures per-packet QoS for applications, such as remote surgery, that cannot
reduce their sending rate on demand.

2
ONLINE HEAVY-HITTER DETECTION

ON PROGRAMMABLE HARDWARE

The previous chapter introduced programmable networks, showing that they enable more
flexibility and agility by allowing operators to deploy custom algorithms directly on the
network nodes. However, to run at line-rate, i.e., to process packets without any drop in
throughput, the switches can assign only a limited number of processing cycles to each
processed packet. Consequently, algorithms deployed on programmable network switches
must adhere to stringent memory access rates, and limitations on the types of actions make
many existing algorithms unusable.

This chapter illustrates techniques that can be used to overcome the above-mentioned re-
strictions; we demonstrate these techniques by developing an application to detect heavy
hitters, i.e., large-volume flows that consume a considerable amount of network resources.
In particular, we introduce (1) Modulo sketching, a novel counting scheme that reuses
counters and limits the impact of smaller flows beyond early processing stages. We also de-
scribe (2) Sequential Zeroing, a new approach extending interval-based schemes to sliding
window measurements. To the best of our knowledge, this is the first heavy-hitter detection
solution that provides per-packet granularity at line-rate performance in programmable
networks.

This chapter is based on a published conference paper: B. Turkovic, J. Oostenbrink, F.A. Kuipers, I. Keslassy, A.
Orda, Sequential Zeroing: Online Heavy-Hitter Detection on Programmable Hardware, 2020 IFIP Networking
Conference (Networking), 422-430 (2020) [100]

13

2

14 2. ONLINE HEAVY-HITTER DETECTION ON PROGRAMMABLE HARDWARE

2.1. INTRODUCTION

This chapter is about providing the ability to detect, online, and at high line-rate, whether
each packet going through a programmable switch is part of a heavy-hitter flow, which
is a flow that has exceeded a threshold number of packets in the sliding window of the
last N packets. For network operators, such an ability is crucial to enable fine-grained
Denial-of-Service (DoS) mitigation, traffic anomaly detection, flow-size-aware routing
Quality-of-Service (QoS) management, and load balancing [101–104].

Scope. We consider the problem of enabling per-packet heavy-hitter detection in the
data plane of programmable switches, which use network programming languages such
as P4 [105–108]. P4 defines registers, i.e., stateful memory blocks that the switch can
read from, modify, and/or write to, while packets are being processed. When deployed
in a network, a P4 program works in coordination with a control plane, which configures
the run-time match-action tables and action variables. P4-programmable hardware can
be classified as having either (1) local memory, as in Intel Tofino [98], where packets are
processed through a pipeline of several hardware stages. Each stage has its own sep-
arate memory and processing resources. To maintain a high processing throughput,
typically only one read-modify-write action is allowed per register array; or (2) shared
memory, as in Netronome [109], where concurrent memory accesses to the same regis-
ter array are allowed. Since memory accesses consume most of the processing cycles in
programmable hardware and may lead to race conditions, they should be minimized. In
this chapter, we formulate our algorithms so they could be implemented in both hard-
ware models.

2.1.1. MOTIVATION

Common heavy-hitter detection algorithms (e.g., Space-Saving [110], Memento [101]),
CSS [103], and WCSS [103]) which are optimized for low memory consumption in soft-
ware implementations, violate programmable hardware constraints, as they are not or-
ganized in consecutive simple stages, require too many memory accesses per processed
packet and/or use actions not supported by programmable hardware. Simple sketch-
ing schemes, like Count-Min (CM) [111], have no mechanism to count over the sliding
window of the last N packets, and in fact do not even provide a clear implementation
for counting over periodic intervals, as they do not contain a mechanism to simultane-
ously reset the whole data structure online [112]. Even existing data plane solutions that
were developed for P4, such as HashPipe [102] and PRECISION [104], come with several
limitations: most significantly, (1) they also have no mechanism to count over sliding
windows; and (2) even when counting over periodic intervals, they cannot compute on-
line a count estimate for each packet, unless they recirculate each packet through the
pipeline twice, thereby halving the line rate (see Section 2.5.1). In addition, (3) they also
do not provide a simultaneous memory flushing implementation for counting over peri-
odic intervals; and (4) they intrinsically need flow identifiers for each counter, imposing
a significant memory overhead.

2.2. INTERVAL MEASUREMENT

2

15

2.1.2. MAIN CONTRIBUTIONS

We present a body of solutions for heavy-hitter detection on programmable network hard-
ware, in which we aim at minimizing the false-positive and false-negative rates.

In Section 2.2, we start by considering the easier problem of detecting heavy hit-
ters over a fixed interval of N packets. To do so, we introduce Modulo Sketching, a new
sketching approach. Its most salient feature is that it relies on conditional sketching, a
sketching approach that uses several consecutive stages of counter arrays and attempts
to filter out the non-heavy-hitter packets by stopping them at the first stages. As a result,
heavy-hitter packets are nearly the only ones to reach the last stages, thus (1) reducing
potential collisions between different flows, which in turn reduces the need for a large
memory size; and also (2) reducing memory access rates, since non-heavy-hitter packets
almost never access later stages. Therefore, this approach is particularly adapted to the
common pipeline structure of programmable switches. It stands in contrast to previous
P4-based algorithms like HashPipe and PRECISION, which need to go through all stages
in order to evaluate the size of a packet’s flow (see Section 2.5.1 for details).

Next, in Section 2.3, we consider the case of heavy hitters over sliding windows, which
is our main goal. We attempt to leverage our interval-based Modulo sketch by general-
izing it to sliding windows. Unfortunately, unlike intervals, sliding windows also need
deletions, which introduce additional memory accesses. In addition, implementing a
perfect sliding window would consume a large portion of the limited switch memory,
as it would require us to remember the full packet order. We thus suggest two different
approaches to efficiently approximate a sliding window: (1) Sequential Window, which
relies on control plane intervention, and (2) Zeroing Window, an data plane counter ze-
roing technique. We finally combine both to yield the Sequential Zeroing algorithm in
the data plane.

Finally, in Section 2.4, we evaluate the performance of our new algorithms and demon-
strate how they outperform existing approaches. We run our evaluations both through
simulations and through experiments on a Netronome SmartNIC. In particular, we illus-
trate on CAIDA traces how our final schemes can achieve negligible false-negative rates
and low false-positive rates while providing an estimation for each packet at line rate
using the data plane, even when assuming a small memory consumption of 55kB.

2.2. INTERVAL MEASUREMENT
As a first step towards our goal of determining heavy hitters over the last N packets, we
look at the easier problem of detecting heavy hitters over a fixed interval of N packets.
In other words, our initial goal is to determine for each incoming packet whether its flow
has exceeded a threshold number H of packets within this interval.

We would like to obtain a heavy-hitter detection scheme that satisfies two major cri-
teria: (1) it should not consume too much memory and (2) it should have a low memory
access rate. In addition, as commonly considered in the literature, we assume that false
negatives (failures to detect heavy-hitter flows) carry a higher penalty than false posi-
tives [113, 114].

Conditional sketching. To satisfy these criteria, we introduce the concept of conditional
sketching, a sketching approach that relies on several consecutive pipelined stages of

2

16 2. ONLINE HEAVY-HITTER DETECTION ON PROGRAMMABLE HARDWARE

0

1

0

1

0

0

0

0

1

0

0

0

w
id

th
1

+1

1

0

1

0

0

0

0

w
id

th
2

w
id

th
3

Depth(d = 3)

1: id ←HASH1(flowID) mod width1
2: count1[id] ← (count1[id] + 1) mod th1
3: if count1[id] == 0 then
4: bitArray1(id) ← 1
5: id ←HASH2(flowID) mod width2
6: count2[id] ← (count2[id] + 1) mod th2
7: if count2[id] == 0 then
8: bitArray2(id) ← 1
9: id ←HASH3(flowID) mod width3

10: count3[id] ← (count3[id] + 1)
11: end if
12: end if

Figure 2.1: Modulo sketch with d = 3 stages. The flowID of an incoming packet first hashes into a first-stage
(orange) counter and increments it. If the counter value is th1 −1 and it is incremented to th1 ≡ 0 mod th1,
we reset the counter, set its associated bit to 1, hash the flowID into a second-stage (orange) counter, and
increment that counter as well. If the result is below the threshold th2, we stop here. As the counter’s associated
bit is 0, there is no need to continue to the third stage, and we can evaluate flowID as not a heavy hitter.

counter arrays. Since we want to reduce the overall memory access rate, our key idea is
to stop non-heavy-hitter packets in early stages. Thus the overall number of operations
is significantly reduced, as heavy-hitter flows are nearly the only flows to reach the last
stages.

2.2.1. MODULO SKETCH
We introduce the Modulo sketch algorithm to efficiently implement the concept of con-
ditional sketching. As mentioned, each packet goes through several stages to update
its counters. However, following conditional sketching, most packets will stop updating
counters at the early stages of the stage pipeline. The packets may then continue over
several additional stages without any counter update simply to estimate the packet’s flow
size.

Intuitively, Modulo sketch works like a clock, as it zeroes the counter of the sec-
onds (first stage) when incrementing the counter of the minutes (second stage). It pro-
ceeds in the same way by resetting the minutes (second stage) when incrementing the
hours (third stage), and so on. Thus, Modulo manages to increase its efficiency by both
(1) stopping most counter updates in early stages and (2) reusing the counters.

Architecture. As Figure 2.1 illustrates, the Modulo sketch consists of d successive stages
of counters, where d is the depth of the sketch. Each stage i holds wi d thi counters of ci

bits each. We define the threshold thi of each stage 1 ≤ i ≤ d −1 such that

H >
d−1∏
i=1

thi , (2.1)

where H is the heavy-hitter threshold that was defined above.
In addition, to enable the conditional sketching, we introduce a bit array at each

stage but the last, i.e., each counter in stage 1 ≤ i ≤ d − 1 is provided an additional
initially-null bit that determines whether the packet should continue to the next stage.

2.3. SLIDING WINDOW MEASUREMENT

2

17

Algorithm. As shown in Figure 2.1, upon a packet’s arrival, its flowID is first hashed
onto a counter in the first stage. It then increments this counter. Next, for any stage
1 ≤ i ≤ d −1 but the last, the first time that the resulting counter value reaches thi ≡ 0
mod thi , we set its associated bit to 1, indicating that the threshold has been reached
at least once, and therefore that all subsequent packets hashing to this counter should
continue to the next stage i +1 in order to estimate their flow size. Therefore each packet
goes through all stages with a set bit, until it reaches a stage where it hashes to a counter
with a null bit, in which case it can stop. Since H >∏d−1

i=1 thi (Equation (2.1)), any packet
that stops before the last stage is considered as a non-heavy-hitter. More generally, the
flow size of a packet that sees a counter value vi at each stage i can be estimated as
v1 + th1 · (v2 + th2 · (· · ·+ thd−1 · vd)), which needs to be compared to H .

Threshold details. To fully utilize all the bits of all the counters, we define the threshold
thi of each stage 1 ≤ i ≤ d −1 to be thi = 2ci . We also allocate enough bits to the last-
stage counters so that they never overflow even if a single flow uses N packets, i.e., cd =⌈

log2

(
N+1∏d−1
i=1 thi

)⌉
bits per counter.

Properties. The main advantage of Modulo is its reduced memory consumption at high
scales. If N packets are added to the sketch, at most N /th1 packets reach the second
stage to update it. More generally, at most N /

∏i−1
j=1 th j packets will reach stage i . There-

fore we have an exponentially decreasing load further down the stages, yielding a par-
ticularly scalable architecture. For instance, when doubling the window size N and the
heavy-hitter threshold H , Modulo would only need to double a single threshold. Again,
we can increase the width of the first stages at the expense of smaller widths for the late
stages.

Note that the Modulo sketch presents the drawback of allowing a small number of
false negatives. Specifically, the packet that resets a counter is the one that increments
the next-stage counter. For instance, a first flow F1 may increment a first-stage counter
to 63, but then the packet of another flow F2 may arrive, reach the threshold of 64, reset
this counter, and increment its hashed second-stage counter, thus in a sense stealing the
entire counter value of 64.

2.3. SLIDING WINDOW MEASUREMENT
The goal of this chapter is to compute online heavy hitters over sliding windows. Since in
the previous section, we considered the problem over intervals as a first step, we would
now like to provide ways to generalize interval-based sketching schemes to sliding win-
dows.

However, sliding windows involve both additions and deletions at each packet ar-
rival, and therefore cause many challenges to overcome: (1) we want to delete the last
packet from the counting structure without keeping in memory the list of packets, and
therefore without remembering what the last packet is, as this would significantly in-
crease the memory consumption and the number of memory accesses; (2) the logic
of a conditional sketch-based structure like Modulo breaks down with deletions: e.g.,
we mentioned above the example of a flow F1 contributing 63 packets out of a counter
threshold of 64, and another flow F2 contributing the last packet and consequently in-

2

18 2. ONLINE HEAVY-HITTER DETECTION ON PROGRAMMABLE HARDWARE

crementing its hashed second-stage counter. If we want to delete an F1 packet from the
structure, we would not know how to update the second-stage counters; (3) finally, the
counter increments (due to packet arrivals) and decrements (due to packet deletions) are
not allowed to occur in two different counters of the same stage, since there is a bound
of one memory access per stage, and therefore there needs to be some scheduling of the
memory accesses.

First, in Section 2.3.1 we generalize interval-based approaches to support the sliding
window concept. Next, in Section 2.3.2 we propose a sliding window approach to reset
the counting sketches directly in the data plane, while the packets are processed. Fi-
nally, we combine the advantages of the two previously described approaches to create
a sliding window solution that can maintain accuracy over time without any intervention
from the control plane.

2.3.1. SEQUENTIAL WINDOW

Architecture. As Figure 2.2 illustrates, given some integer parameter k, our Sequential
window scheme periodically implements an interval-based sketching scheme such as
Modulo or Count-Min of depth d every sub-interval of

⌈ N
k

⌉
packets. Therefore, each

window of N packets can be covered by at most k +1 consecutive interval sketches.

Algorithm. At the first incoming packet, we start by counting in the first counting sketch
corresponding to the first sub-interval. Then, every

⌈ N
k

⌉
packets, we keep advancing to

the next counting sketch. When we are done with the last sketch, we can reset the first
one using the control plane, since it counts packets that were received over N packets
ago. Every

⌈ N
k

⌉
packets, we then keep resetting the next sketch in the sequence to start a

fresh sketch for the next sub-interval. Finally, to estimate a count for a given packet, we
simply sum the estimates provided by all the sub-intervals (shown in green in Figure 2.2).

Threshold details. Since we scaled down the N -packet intervals to
⌈ N

k

⌉
-packet sub-

intervals, we want to similarly scale down the thresholds, and therefore update Equa-
tion (2.1) by using a locally-scaled-down heavy-hitter threshold ⌊H/k⌋.

Properties. The Sequential Window approach has several advantages. First, by avoiding
any deletions and including enough sub-intervals to cover the entire sliding window of
N packets, the Sequential Window scheme does not introduce additional false negatives.

Second, the value k helps to trade off the performance against the total number of
stages, thus targeting different hardware platforms as well as different window sizes.
For instance, increasing k will decrease the number of packets processed by each sub-
interval, and therefore reduce the number of unique flows and the number of hash colli-
sions in each stage, thus increasing accuracy. Also it will decrease the number of packets
that are counted outside the window, and therefore further decrease the number of false
positives. On the other hand, it will also need more stages in the implementation.

Third, the Sequential Window approach is easily implementable on any type of pro-
grammable hardware. As illustrated in Figure 2.2, it only requires up to d ·(k+1) memory
accesses per packet, i.e., d · (k +1)−1 reads and 1 read-modify-write. Thus, on hardware
with shared memory, e.g. Netronome, the sketch can easily be tuned by the choice of k
and d to avoid a drop in throughput. Moreover, for other types of hardware, it does not
violate the one-access-per-stage rule.

2.3. SLIDING WINDOW MEASUREMENT

2

19

(d=2) (d=2) (d=2) (d=2)

0 ⌈N /3⌉ 2⌈N /3⌉ 3⌈N /3⌉ 4⌈N /3⌉

N (current window)

63

11

30

28

63

33

3

10

0

1

1

0

0

1

0

1

0

41

4

0

20

33

0

44

1

13

2

63

0

1

1

0

0

1

0

1

34

5

0

0

3

1

3

2

63

6

63

5

1

1

0

0

0

1

0

1

1

12

0

0

17

56

25

3

0

63

8

7+1

0

1

1

0

0

1

0

0

13

0

0

0

Figure 2.2: Sequential Window algorithm with Modulo sketch, using k = 3. The Sequential Window archi-
tecture comprises k + 1 = 4 sub-intervals, each implementing a Modulo sketch with d = 2 stages for ⌈N /k⌉
packets, thus covering the entire window of N packets. An incoming packet would only update its count in the
last sketch (in orange), while reading and summing its count estimate from all 4 sketches (in green and red).

However, there are several disadvantages to this approach. First, the total number of
consumed stages increases by a factor of k +1 compared to any interval-based sketch:
(k+1)·d stages in total. Second, by counting over a larger window than the actual sliding
window, we introduce false positives. Third, and most significantly, all the counters in
the oldest sub-interval need to be reset at the same time using the control plane. Thus,
this approach is not entirely done in the data plane. This control plane resetting may
be an issue on a fast link with a small window. For instance, Intel Tofino switches can
process packets at 6.5 T bps. Assuming a window of N = 216 minimally-sized packets
of 64B and k +1 = 8, then every 81ns the hundreds or thousands of counters of a sub-
interval would need to be reset, which at best increases the processing resources from
the control plane used by the algorithm and at worst is simply impossible, depending on
the hardware platform.

2.3.2. ZEROING WINDOW

Overview. We now look for an alternative way of transforming an interval-based sketch
like Modulo or Count-Min into a sliding-window-based sketch. A significant challenge is
that we need to delete old packets that are not in the sliding window anymore, but on the
other hand we do not want to allocate memory space to remember old packets. Instead,
our first key idea is to loop through all counters and zero them once every N packets,
thus ensuring that packets that have left the sliding window do not influence our counts
anymore. In addition, our second key idea is to make sure that we can do it in the data
plane, and do not require the massive intervention of the control plane anymore.

Initial algorithm. Our Zeroing Window algorithm is relatively straightforward. Consider
a given interval-based sketching algorithm like Modulo or Count-Min. Then, for each
stage i of width wi d thi in the sketching algorithm, Zeroing Window defines a zeroing
period mi = ⌊N /wi d thi ⌋, and essentially resets the next counter at every mth

i packet
that is added to the sketch. Specifically, it resets counter j at packets j ·mi mod N . For

2

20 2. ONLINE HEAVY-HITTER DETECTION ON PROGRAMMABLE HARDWARE

0

0

0

1

1

63

0

1

1

1

+1 0

1

0

1

w
id

th
3

/2
w

id
th

3
/2

w
id

th
2

/2
w

id
th

2
/2

w
id

th
1

/2
w

id
th

1
/2

Depth(d=3)

Figure 2.3: Zeroing Window for a Modulo sketch of depth d = 3 stages. Each stage is subdivided into 2 equal-
size sub-stages (in dashed rectangles), and we are only allowed one memory access per sub-stage. In addi-
tion, assume we want to reset the counters with blue arrows. The incoming packet checks its hashed (orange)
counter in the first stage, which is equal to the first-stage threshold th1 − 1 = 63, and then resets it and in-
crements a (orange) second-stage counter. As a result, we can reset the (purple) first-stage counter in the top
sub-stage, since there is no memory access to this sub-stage. However, we cannot reset the second counter
with an arrow, and therefore will wait for the next time that this sub-stage is not accessed by a packet.

instance, if N = 216 = 65,536 and wi d thi = 1,000, it resets the first counter at packet
65 of the window, the second counter at packet 130, and so on, until the last counter at
packet 65,000. It then resets the first counter again at packet N +65, etc.

Data plane implementation. The above algorithm is simple, but it violates our rule that
each stage should be accessed at most once per packet, since it may want to increment
a counter as well as reset another one within the same stage. Therefore, as Figure 2.3
illustrates, we suggest a data plane implementation of the Zeroing Window algorithm.
We split each stage into two equal-sized and independent sub-stages. Then, we want to
apply the same zeroing scheme to each sub-stage. Assuming that the hashing functions
are uniformly distributed, each sub-stage is only accessed at most half the time by the
inserted packets. Therefore, whenever a counter needs to be reset, it can simply wait for
the next time its sub-stage is free. In the worst case this waiting time is unbounded, and
in the case where all packets are independent it is a geometrically distributed variable of
expected value below 2. In practice, we never encountered any issue with this waiting
time.

Properties. The main benefit of the Zeroing Window scheme is that it manages to op-
erate in the data plane. However, because it resets arbitrary counters in the sketches,
its disadvantage is that it also significantly increases the false negative rate, which we
consider as more costly than the false positive rate. Therefore, we also consider several
ways of reducing these false negatives for different sketching algorithms, at the expense
of increasing the false positives:

Zeroing the Count-Min sketch. When removing values from the CM-sketch, or as in our
case resetting some of the counters to 0, one should apply the median instead of the
minimum [111]. For instance, if the d = 3 counts are 100, 110 and 120, and 120 is zeroed,
the median estimate of 100 is more accurate than the minimum estimate of 0.

Zeroing the Modulo sketch. We now do not stop at the first time that a bit is set to 0

2.4. EVALUATION

2

21

(d=2) (d=2) (d=2) (d=2)

0 ⌈N /3⌉ 2⌈N /3⌉ 3⌈N /3⌉ 4⌈N /3⌉

N (current window)

0

0

0

0

0

0

3

10

0

1

1

0

0

1

1

0

0

0

0

0

63

33

0

44

1

13

2

63

0

1

1

0

1

1

1

0

34

5

0

0

3

1

3

2

63

6

63

5

0

0

1

0

0

1

1

0

33

12

0

0

17

56

25

3

0

63

8

63

0

1

1

0

0

1

1

0

13

+1

0

0

Figure 2.4: Sequential Zeroing scheme, which applies the Zeroing Window technique to the last sub-interval
of the Sequential Window. We use the example of Figure 2.2 with k +1 = 4 sub-intervals, each implementing a
Modulo sketch of depth d = 2. Again, each stage is subdivided into 2 equal-size sub-stages (in dashed rectan-
gles). Assume we want to reset the last (blue) counters of both of the top sub-stages in the left sub-interval that
contains the oldest packets. We can indeed do so without violating memory constraints.

(Modulo sketch), but estimate the flow size using the counts over all stages.

2.3.3. SEQUENTIAL ZEROING: ZEROING THE SEQUENTIAL WINDOW.
We finally introduce a last scheme, denoted Sequential Zeroing, which combines the Ze-
roing approach with the previously-described Sequential window. As Figure 2.4(b) il-
lustrates, Sequential Zeroing removes outdated flow counts from the last sub-interval
of Sequential Window by applying the Zeroing Window algorithm to this sub-interval.
Namely, it can do it automatically in the data plane, without any intervention from the
control plane, by splitting its stages into sub-stages and applying the scheduling de-
scribed above.

2.4. EVALUATION

2.4.1. EXPERIMENT SETUP
We conducted our evaluations, first using simulations in Python, and then experiments
with a Netronome Agilio CX SmartNIC [109].

Hashing. The 5-tuple flow identifier (flowID) consists of the source IP, destination IP,
layer 4 protocol, source port, and destination port. All our implementations used the
CRC16 hash function. Different hash functions were created by appending seed values
to the flow identifiers.

Traces. We classified heavy hitters as flows whose packet counts were above a thresh-
old H = ⌊N /1000⌋, initially considering an interval size of N = 216 packets. Packets were
obtained from (1) 40 different traces collected from an ISP backbone link at the Equinix
data-center in Chicago in January 2016, made available by CAIDA [115], and (2) 10 dif-
ferent traces collected from university campus data centers (UNI1 and UNI2 dataset),
made available by [116]. We observed similar results using both datasets, even though

2

22 2. ONLINE HEAVY-HITTER DETECTION ON PROGRAMMABLE HARDWARE

they have significantly different flow-size distributions (the university traces have more
heavy hitters), and therefore only present the CAIDA. In the hardware evaluation, all the
traces were replayed at the rate of N packets per second.

Metrics. We evaluated all schemes on the percentages of false negatives (percentage
of heavy hitter packets that are not reported) and false positives (percentage of non-
heavy hitter packets that are reported). As previously mentioned, following literature,
we assume that the penalty of false negatives is significantly higher than that of false
positives. We also measured the distribution of the absolute count estimation error.

Comparison baselines. For interval-based evaluations, all of our solutions were com-
pared against the following baseline solutions: (1) Count-Min (CM) sketch [111], (2) Hash-
Pipe [102], (3) HashPipeMod which implements HashPipe using 2B flowID fingerprints
rather than 13B flowIDs (see Appendix), (4) HeavyKeeper [117], and (5) PRECISION [104].
For the sliding-window evaluations, since we are not aware of any other P4 solution that
implements sliding windows, we considered a set of solutions that combine all interval-
based solutions with a periodic resetting of all the counting stages every N packets. In
all evaluations, we fixed a given allocated total memory for a fair comparison.

2.4.2. INTERVAL MEASUREMENTS

False-positive vs. false-negative. Figure 2.5a shows the false-positive vs. false-negative
rates of all schemes given 15kB of memory and an interval of N = 216 packets. HashPipe
and our modified HashPipeMod with flowID fingerprints exhibit many false negatives,
which we try to avoid (note that they would also run at half the line-rate). Count-Min
(CM) performs better, especially with d = 2 stages. Our Modulo scheme performs best,
especially with d = 2.

Memory vs. performance. Figure 2.5a and 2.5b show the performance of our solutions
for two different memory quotas. As expected, assigning more memory improves the
accuracy for all solutions, as the width of the counter arrays can be increased, which
reduces the number of hash collisions. We can see how for small memory allocations,
other approaches start to break down, while the Modulo sketch manages to achieve ac-
ceptable heavy hitter detection. The main reason is a more efficient memory usage:
the total number of counters used in our scheme is much higher than in the other ap-
proaches, since our counters do not need to count up to N and therefore are smaller.
This memory efficiency makes our solution uniquely suitable for programmable hard-
ware.

Tuning of Modulo. Choosing a higher value of th1 that filters more flows and prevents
them from reaching the last stages of the pipeline improves accuracy (Figure 2.5c). Also,
most counters should be placed in the first stages, and only a few of them in the last
stages (Figure 2.5d). This way, due to larger widths in early stages, the probability of col-
lisions in the first stages is also lowered and the number of false positives reduced. How-
ever, this comes at a cost: the probability of a collision between two flows reaching the
last stages is increased, leading to an increased probability of high count over-estimation
(Figure 2.5f).

Interval sizes. In contrast to other schemes, Figure 2.5e shows that Modulo performs
very well with longer interval sizes, suffering only from a small decrease in accuracy (0.12

2.4. EVALUATION

2

23

Related work: Count-Min: 1 d=2 2 d=3 3 d=4 4 HashPipe(d=6)
5 HashPipeMod(d=6) 6 PRECISION(d=2)
7 HeavyKeeper(b=1.08, d=2)

Modulo(d=2): 8 widths={1,0.1}, th1=16 9 widths={1,0.1}, th1=32
10 widths={1,0.1}, th1=64 11 widths={1,0.5}, th1=64
12 widths={1,0.05}, th1=64

Modulo(d=3): 13 widths={1,0.1,0.01}, th={8,8} 14 widths={1,0.1,0.01}, th={16,4}
15 widths={1,0.1,0.01}, th={32,2}

0 2 4 6
0

20

40

60

80

100

7

12 310 15

5

4

6

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

0 2 4 6
0

20

40

60

80

100

5x
1 2 310 15

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

(a) Memory 15kB.

0 5 10 15 20
0

20

40

60

80

100

7

1 2 310 15

5

4

6

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

0 5 10 15 20
0

20

40

60

80

100

5x

7

1 2 3
10 15

5

4

6

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

(b) Reducing memory to 5kB.

0 2 4 6
0

20

40

60

80

100

8910 131415

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

0 2 4 6
0

20

40

60

80

100

5x
9 14

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

(c) Impact of thresholds. Memory 15kB.

0 2 4 6
0

20

40

60

80

100

101112

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

0 2 4 6
0

20

40

60

80

100

5x
10 1112

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

(d) Impact of widths. Memory 15kB.

0 5 10 15 20
0

20

40

60

80

100

110

5

45
4

110

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
] N = 216

N = 222

0 5 10 15 20
0

20

40

60

80

100
7x

5

4

5

4

0 5 10 15 20
0

20

40

60

80

100

7x
10

10

(e) Impact of interval size. Memory 5kB.

0 20 40 60 80 100

10−3

10−2

10−1

100

|CountE st −Count |

C
C

D
F

Count-Min HashPipe

Modulo

(f) CCDF of count estimation error. Memory 15kB.

Figure 2.5: Interval-based simulation of all schemes using 40 different CAIDA traces.

percentage points of false positives) given the same memory consumption (5kB).

Count estimation error. Figure 2.5f shows the complementary cumulative distribution

2

24 2. ONLINE HEAVY-HITTER DETECTION ON PROGRAMMABLE HARDWARE

Related work: Count-Min: 1 d=2 2 d=3 3 d=4 4 HashPipe(d=6)
5 HashPipeMod(d=6) 6 PRECISION(d=2)
7 HeavyKeeper(b=1.08, d=2)

Modulo(d=2): 8 widths={1,0.1}, th1=16 9 widths={1,0.1}, th1=32
10 widths={1,0.1}, th1=64 11 widths={1,0.5}, th1=64
12 widths={1,0.05}, th1=64

Modulo(d=3): 13 widths={1,0.1,0.01}, th={8,8} 14 widths={1,0.1,0.01}, th={16,4}
15 widths={1,0.1,0.01}, th={32,2}

0 2 4 6
0

20

40

60

80

100

321
10

15

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

(a) Memory 15kB.

0 5 10 15 20
0

20

40

60

80

100

32
1
15

10

False Positives [%]
Fa

ls
e

N
eg

at
iv

es
[%

]

0 5 10 15 20
0

20

40

60

80

100

5x1

15

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

(b) Memory 5kB.

Figure 2.6: Netronome SmartNIC hardware experiments for interval-based schemes using 40 different CAIDA
traces.

function (CCDF) of the absolute count estimation error, i.e., the probability of exceeding
a given value. HashPipe is clearly outperformed by all other approaches, which is also
reflected by its large number of false negatives (see Figure 2.5b and 2.5a). Count-Min has
a higher probability than Modulo of being mistaken in the flow count estimation, but a
slightly smaller probability of being significantly mistaken (by more than 17).

Hardware experiments. Figures 2.6a and 2.6b shows run experiments on Netronome
SmartNIC, using the same settings as the simulations of Figures 2.5a and 2.5b, respec-
tively. We assume that the control plane takes time resetting intervals, and runs a full
reset of all counters each time in a somewhat naive way. As expected, we find that this
indeed impacts the performance of all schemes. For example, on Netronome Smart-
NICs, the speed of the control plane is the main limiting factor. Intuitively, resetting the
interval counts is not immediate, i.e., while an RPC call is initiated every second for ev-
ery array to correspond to N packets, these actions are not executed instantaneously,
resulting in an increased number of false negatives. However, other schemes, such as
Hashpipe and PRECISION, cannot provide an online count estimate (see Section 2.5.1).
Similarly, as programmable hardware does not support floating point operations, nor
loops to implement fixed point math, HeavyKeeper cannot be implemented.

2.4.3. SLIDING WINDOW MEASUREMENTS

Control plane solutions. Figure 2.7a and Figure 2.7c show that our Sequential Win-
dow outperforms all resetting solutions that rely on an interval-based scheme and re-
set it periodically. Simply periodically resetting interval-based schemes yields signifi-

2.4. EVALUATION

2

25

Control plane schemes:
Resetting: 1 Count-Min(d=2) 2 Modulo(th=64, widths={1,0.1}

3 Hashpipe(d=6) 4 HashpipeMod(d=6)
5 PRECISION(d=2) 6 HeavyKeeper(d=2, b=1.08)

Sequential Window: 7 Modulo(k=2, th=32, widths={1,0.1})

Data plane schemes:
Zeroing Window: 8 Modulo(th=64, widths={1,0.1}) 9 Count-Min(d=2, Median)

Sequential Zeroing: 10 Modulo(k=2, th=32, widths={1,0.1})

0 2 4 6
0

20

40

60

80

100

O

12

3

4

5

6

7

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

0 2 4 6
0

20

40

60

80

100

O

7x

1
2

6

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

0 2 4 6
0

20

40

60

80

100

O

5x3

5

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

(a) Control plane schemes.

0 2 4 6
0

20

40

60

80

100

O
10

8
9

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

(b) Data plane schemes.

0 20 40 60 80 100

10−2

10−1

100

|CountE st −Count |

C
C

D
F

Resetting: Count-Min

Resetting: HashPipe

SequentialWin: Modulo

(c) Control plane schemes. Count estimation Error.

0 20 40 60 80 100

10−2

10−1

100

|CountE st −Count |

C
C

D
F

ZeroingWindow: Modulo

SequentialZeroing: Modulo

(d) Data plane schemes. Count estimation Error.

Figure 2.7: Sliding window simulation using 40 different CAIDA traces. Memory 55kB.

cant false negative rates, because at the start of each interval these schemes do not take
into account packets that appeared previously. In contrast, the Sequential Window ap-
proach that implements several sub-intervals of interval-based schemes yields signif-
icantly lower false negative rates, yet the false positive rates are slightly higher (4.19%
with just 55kB).

Data plane solutions. Figure 2.7b shows that our Zeroing algorithm, which periodically
resets each counter, in combination with Modulo attempts to reach some compromise
between false positives and negatives, but still yields a non-negligible rate of false nega-
tives. However, in doing so it always outperforms a solution that resets all counts using
the control plane, by almost halving the percentage of false negatives. Moreover, Se-
quential Zeroing, which combines our two window approaches, Sequential window and
Zeroing Window, by applying the Zeroing Window approach to the last sub-interval of
Sequential Window, outperforms all other schemes, by dramatically lowering the per-

2

26 2. ONLINE HEAVY-HITTER DETECTION ON PROGRAMMABLE HARDWARE

Control plane schemes:
Resetting: 1 Count-Min(d=2) 2 Modulo(th=64, widths={1,0.1}

3 Hashpipe(d=6) 4 HashpipeMod(d=6)
5 PRECISION(d=2) 6 HeavyKeeper(d=2, b=1.08)

Sequential Window: 7 Modulo(k=2, th=32, widths={1,0.1})

Data plane schemes:
Zeroing Window: 8 Modulo(th=64, widths={1,0.1}) 9 Count-Min(d=2, Median)

Sequential Zeroing: 10 Modulo(k=2, th=32, widths={1,0.1})

0 2 4 6
0

20

40

60

80

100

O
7

1
2

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

(a) Control plane schemes.

0 2 4 6
0

20

40

60

80

100

O

8 9

10

False Positives [%]
Fa

ls
e

N
eg

at
iv

es
[%

]

(b) Data plane schemes.

Figure 2.8: Netronome SmartNIC experiments for sliding window schemes using 40 different CAIDA traces.
Memory 55kB.

centage of false negatives (from over 20% to 1.67%) while keeping a reasonable false
positive percentage. Packets from the extra sub-interval are gradually removed, and the
count estimation error, as a result, is reduced (Figure 2.7d).

Count estimation error. Looking at the CCDF of the count estimation error (Figure 2.7c
and Figure 2.7d), we find that the Sequential Zeroing schemes perform best again, even
though they do not need control plane intervention.

Hardware experiments. Figures 2.8a and 2.8b show the results of our experiments on a
Netronome SmartNIC, using the same settings as the simulations of Figures 2.7a and 2.7b,
respectively. Again, our new schemes significantly outperform the others: the Sequen-
tial window is able to maintain high accuracy while our Sequential Zeroing approach
displays a negligible rate of false negatives and only a slight increase in false positives,
compared to other simulations. These slight differences may be due to race conditions
in hardware. In contrast, similarly to the interval based measurements, approaches,
such as the HashPipe and PRECISION cannot provide an online count estimate (see
Section 2.5.1) and, since programmable hardware does not support floating point oper-
ations, nor loops to implement fixed point math, HeavyKeeper cannot be implemented.

2.5. RELATED WORK
Algorithms relating to heavy-hitter detection can be divided into three groups: (1) sam-
pling algorithms, (2) sketch-based algorithms, and (3) counting algorithms.
Sampling algorithms. Sampling algorithms, such as NetFlow [118], Sflow [119], Sam-
ple&Hold [120], are currently widely deployed and used by network operators. In these

2.5. RELATED WORK

2

27

algorithms, nodes usually maintain current flow statistics that are periodically sent to
a remote point for further analysis. However, they do not determine for each packet
whether it belongs to a heavy hitter, which is needed for fine-grained control.
Sketch-based algorithms. Sketch-based algorithms such as ours use specialized data
structures called sketches that hash and count all packets in the switch hardware. In ex-
change for some count overestimation or underestimation, this approach can achieve a
considerably lower memory usage, which makes it especially suitable for programmable
hardware. Unfortunately, existing sketch-based algorithms (e.g., Cold Filter [121], Univ-
Mon [122], Count-Min Sketch [111], Count Sketch [123], Probabilistic lossy counting [124],
CountMax [125], Elastic sketch [126], HeavyKeeper [117]) were not designed with P4-
programmable switches in mind, and often cannot be directly implemented without
modifications or loss of accuracy. For example, to estimate a count of an item, Cold
Filter calculates a minimum of d hashed counters in each stage, violating the constraint
of one memory access per register array present on modern programmable hardware.
Moreover, other meta-algorithms, such as Elastic sketch that relies on the Count-Min
sketch, are orthogonal to our approach and could benefit from using our sketches with
higher accuracy.
Counting algorithms. Counting algorithms (HashPipe [102], PRECISION [104], Space-
Saving Algorithm [110], CSS [103]) maintain a data structure consisting only of heavy-
hitter flows and corresponding counts. The Space-Saving algorithm requires either main-
taining a sorted list or finding an item with the minimum counter value. Unfortunately,
both are either not supported by existing programmable hardware or exceed the avail-
able processing budget. CSS uses TinyTable [127], which also violates the available pro-
cessing budget. Hashpipe [102] is explained in the Section 2.5.1 and PRECISION [104] is
similar. Both were designed for P4, but cannot operate at line-rate.
Sliding window approaches. (WCSS [103], SWAMP [128, 129], Memento [101]) remove
the oldest entries from the counting data structure so that only information about the
last N processed packets is present at the switch. SWAMP [128, 129] maintains an ad-
ditional array with flow identifiers from the last N packets. Every time a new packet ar-
rives the oldest entry from the array is removed and replaced with a new flow identifier.
However, depending on the selected window size, memory consumption is very high.
Ben-Basat et al. present two different solutions in [101, 103] optimized for memory con-
sumption with constant query time. However, their use of TinyTable [127] is unsuitable
for programmable network hardware.

2.5.1. HASHPIPE

HashPipe [102] consists of d consecutive stages, each with its own counter array and its
own hash function. In addition to flow counts, HashPipe also stores the corresponding
flowIDs (see Figure 2.9).

Upon a packet’s arrival, its flowID is hashed to produce an index and compared to the
flow identifier f low I D1 currently stored at that index in the first stage. If the identifiers
do not match, the f low I D1 and count are evicted from the first stage and replaced by
the new flowID and count 1. If the identifiers do match, the count is simply increased
by 1. When a flow identifier f low I Di (and count) is evicted from stage i , HashPipe will
try to store it in the next stage i +1 by following the same process until the last stage is

2

28 2. ONLINE HEAVY-HITTER DETECTION ON PROGRAMMABLE HARDWARE

(B,1)

(M,1)

(S,3)

(E,1)

(S,3)

(E,20)

(T,2)

(R,15)

(B,5)

(T,4)

(Z,20)

(I,43)

(H,40)

(Q,6)

(B,4)

Depth(d=3)

(C,5)
HASH2(C)

(T,2)
HASH3(T)

flowID=B
H

A
S

H
1(

B
)

H
A

S
H

2(
B

)

H
A

S
H

3(
B

)

countEstimate=1+5=6

Figure 2.9: HashPipe algorithm. Based on [102].

reached.
In addition, to compute the count estimate, counts of all matching pairs from each

stage (f low I D,∗) need to be summed. Figure 2.9 illustrates this: flow insertion uses the
red counts, while the count estimation uses the blue counts. As each array can only be
accessed once, each packet would need to go through the pipeline twice to get an esti-
mate for each packet, halving the throughput. Since PRECISION is similar to HashPipe,
it suffers from the same throughput reduction.

For this chapter, we implemented two versions of HashPipe: (1) the original algo-
rithm storing the full flow identifier (13B for a 5-tuple); and (2) HashPipeMod, a mod-
ification of the original algorithm that we introduced for a fairer comparison. Hash-
PipeMod stores a fingerprint of the flow identifier (2B) instead of the full flow identifier.
Thus, HashPipeMod has lower memory consumption than HashPipe, at the cost of in-
troducing false positives (since a non-heavy-hitter flow may obtain the same fingerprint
as a heavy-hitter flow).

2.6. CONCLUSION
In this chapter, we introduced the first heavy-hitter detection algorithm for programmable
switches that provides per-packet granularity at line-rate performance.

To do so, we first introduced the conditional sketching technique that filters most
small flows in early stages, and illustrated it by developing an interval-based sketching
algorithm called Modulo sketch. Next, we addressed the problem of enabling such con-
ditional sketching to work over sliding windows. Specifically, we started with the Sequen-
tial Window algorithm that is based on sub-intervals and needs the control plane. We
then presented the Zeroing Window technique that periodically resets each counter in
any interval-based sketch and which works fully in the data plane. Last, we combined
both techniques to obtain the data plane Sequential Zeroing scheme. In our evalua-
tions, we showed how our techniques significantly improve the accuracy of our estima-
tion when compared to several baseline algorithms inspired by the literature, and imple-
mented our schemes on a Netronome SmartNIC.

In this chapter, beyond bringing sliding-window heavy hitter detection to the data
plane, we introduced techniques, such as (1) zeroing through ping-ponging the memo-
ries, (2) sequential windows, and (3) counter reuse through modulo, that we believe can
also benefit data plane applications in general. Hence, by introducing these techniques,
we have addressed the first challenge, as described in Sec. 1.3 of this thesis, and by build-

2.6. CONCLUSION

2

29

ing upon them in the following chapters, we are able to design more complex algorithms
for programmable data planes.

3
DYNAMIC NETWORK RESOURCE

SCALING

In the previous chapter, we discussed techniques that can be used to overcome certain
hardware-related limitations when deploying algorithms in the data plane. In this chap-
ter, we focus on data plane algorithms that enable low-latency applications such as the
Tactile Internet. To do so, we first consider the network requirements of typical tactile
applications (such as remote tele-operation); we show that these requirements, such as
latency and bandwidth, fluctuate over time rather than remaining static. Consequently,
statically assigning network resources to support these services at their peak is wasteful
and would lead to low utilization. However, allocating fewer resources than an appli-
cation needs at its peak would violate its requirements, degrading the user experience in
potentially critical moments.

To optimize the resource utilization, we leverage the application’s dynamic behavior to de-
sign a system in which the current perceived dynamics govern the number of network re-
sources allocated to the flow—and, consequently, the quality of service (QoS) experienced
by each user. In particular, we design a data plane scaling solution that, based on an
application’s current requirements, modifies the switches’ configurations on the fly by re-
routing the flow and re-allocating the bandwidth assigned to it, ensuring that the current
application’s needs will be met.

This chapter is based on a published conference paper: K. Polachan, B. Turkovic, T.V. Prabhakar, C. Singh, F.A.
Kuipers, Dynamic Network Slicing for the Tactile Internet, 2020 ACM/IEEE 11th International Conference on
Cyber-Physical Systems (ICCPS), 129-140, (2020) [130]

31

3

32 3. DYNAMIC NETWORK RESOURCE SCALING

3.1. INTRODUCTION
As introduced in Chapter 1, the Tactile Internet represents a low-latency application do-
main that enables users at different physical locations to interact with each other as
if they were in the same room. For example, one subset of Tactile Internet applica-
tions involves human operators controlling remote robots, called teleoperators, over a
network. In this scenario, the communication network transports the kinematic (posi-
tion/velocity) commands from the operator-side to the teleoperator-side and feeds back
audio, video and haptic data in the reverse direction. As a result, human operators can
see and feel what the result of their actions is. This allows them to behave and react in the
same way they would in a non-remote scenario and effectively transports their unique
set of skills (e.g., surgeon’s skills, Figure 3.1) over a network to remote locations.

Network

Human
operator

Teleoperator

Figure 3.1: Tactile Internet application in which a human operator is controlling a remote robot, called teleop-
erator, over a network.

3.1.1. MOTIVATION
To guarantee a transparent experience, especially at higher operator’s dynamics (e.g.,
higher hand speeds), Tactile Internet applications can have very stringent network re-
quirements, such as extremely low-latency (order of a few ms), low jitter, high reliability
and high bandwidth (order of Gbps) [131, 132]. At the same time, for many Tactile In-
ternet applications, operator dynamics widely fluctuate and, for most of the time, stay
away from their peak value [130]. Consequently, at lower dynamics the network require-
ments of these flows can be relaxed as well, allowing for higher latencies and less band-
width. For instance, consider Figure 3.2 showing the left-hand movements of a surgeon
performing a suturing operation using a da Vinci Surgical System [133]. The operator’s
dynamics (i.e., the hand speed of the surgeon) along the x axis vary throughout the pro-
cedure, but stay below their peak value (≈ 0.13m/s) most of the time.

If the network provider were to statically allocate network resources to such an appli-
cation based on the peak value the application might require at some time, performance

3.1. INTRODUCTION

3

33

0 20 40 60 80 100 120 140 160 180

0

0.2

0.4

t [s]

P
o

si
ti

o
n

[m
]

x y z

(a) (x, y, z)-positions tracking the left-hand movements of a surgeon performing the surgical task called sutur-
ing using a da Vinci Surgical System.

0 20 40 60 80 100 120 140 160 180
0

0.1
0.2
0.3
0.4

t [sec]

|∆
x

/∆
t
|[m

/s
]

(b) Dynamics in x-position.

0 2 ·10−2 4 ·10−2 6 ·10−2 8 ·10−2 0.1 0.12 0.14
0

20

40

60

|∆x/∆t | [m/s]

D
en

si
ty

(c) Histogram of the dynamics in x-position.

Figure 3.2: Position tracking, dynamics and the histogram of the dynamics of a Left-hand movements of a
surgeon performing a suturing operation using a da Vinci Surgical System.

would be guaranteed during the lifetime of the flow. However, due to the dynamic na-
ture of these applications, allocated resources would be underutilized most of the time
(Figure 3.2). However, if the network operator would reserve less and at any moment
throughout the lifetime of the application, the available network resources would not
able to match the application demands, significant end-to-end latencies and/or packet
drops could occur. As a result, remote teleoperation systems could become unstable
or result in severe operator-side cybersickness [134], an effect which occurs when the
feedback signals are noticeably delayed, resulting in physical and physiological effects
in the operator that prevent her/him from an extended use of the teleoperation sys-
tem [135, 136]. Furthermore, for critical applications, such as telesurgery, in which a
surgeon operates on a remote patient, such side-effects could have significant conse-
quences, potentially resulting in injuries or even the death of the patient. Hence, tri-
als that were performed with teleoperation systems usually involved a guaranteed net-
work bandwidth reserved solely for this purpose (e.g., Lindbergh Operation [137, 138])
and/or networks that had a stable performance (e.g., low jitter, stable available band-
width [138]). Therefore, although teleoperation systems have been around for decades,

3

34 3. DYNAMIC NETWORK RESOURCE SCALING

the fact that the network operator must support the application at its peak as well as
their criticality, restrict their large-scale deployment over public networks, especially
in situations in which human operators need to perform control actions that demand
higher operator dynamics (e.g., complex and/or critical surgeries) and/or cover large
distances [134, 139].

3.1.2. CONTRIBUTIONS
As a way to provide high utilization in the network while maintaining a high quality
of service for the above-mentioned applications, this chapter introduces a dynamic re-
source allocation scheme in which the operator’s dynamics govern the amount of net-
work resources allocated to the application’s network slice, i.e., a part of the network al-
located to a specific application and tailored to its requirements.

timet1 t2t0

High-Dynamics Low-Dynamics High-Dynamics

Figure 3.3: Dynamic network slicing. A tactile application uses a network slice provisioned for high dynamics
(shown in blue). At some point, t1, the network dynamics change, and the previously used blue slice is de-
stroyed. Next, at some point t2 the application dynamics increase, and the blue slice is provisioned, while the
green slice is destroyed.

In particular, our solution routes each Tactile Internet flow through a set of network
slices (each tailored to different dynamics) that are created and destroyed on the fly.
Hence, at any moment, the amount of network resources reserved for an application
matches its current dynamics and its corresponding requirements. Figure 3.3 illustrates
this solution for a Tactile application that uses two slices: one provisioned for high dy-
namics (blue slice) and one provisioned for low dynamics (green slice). First, the Tactile
application uses a network slice provisioned for high dynamics (shown in blue). At some
point, t1, the network dynamics change, and the previously used blue slice is destroyed.
At the same time, the green slice is created, and the application starts utilizing it. To

3.2. SYSTEM OVERVIEW

3

35

determine the set of network slices and the corresponding network requirements that
a Tactile application can use, we leverage the clustering algorithm introduced in [130].
This algorithm clusters the operator’s dynamics based on historical data and maps each
cluster to a resource vector (e.g., maximum latency, minimum bandwidth). The com-
plete system overview is explained in more detail in Section 3.2.

Moreover, to reduce the time needed to destroy and create a new slice, we use a
Software-Defined Networking (SDN) controller to pre-compute the paths for the identi-
fied slices and P4-programmable switches for real-time resource allocation and switch-
ing of slices. This way, by offloading these latency sensitive tasks to the switches, we
significantly reduce the switching time (which could otherwise adversely impact Tactile
applications in potentially critical moments, explained further in Section 3.2.2). Finally,
in Section 3.3, we show that our approach leads to a more efficient network resource uti-
lization but also to savings in aggregate switch memory while keeping the slice switching
latency in control.

3.2. SYSTEM OVERVIEW
Figure 3.4a shows the main building blocks of a solution to enable dynamic resource
scaling: (1) the edge controller and (2) a real-time slice management framework. The
edge controller and all the associated processes (see Figure 3.4b and Figure 3.4c, shown
in gray) were developed as part of a collaboration project and are not part of this the-
sis. More details about them can be found in [130]. In contrast, blocks (and processes)
shown in blue were developed as part of this thesis. Moreover, these blocks can be used
independently of the above-mentioned edge controller as long as there is a component
at the applications side that performs comparable actions, as explained in Section 3.2.1.

3.2.1. EDGE CONTROLLER

The main purpose of the edge controller is to determine the requirements of the pro-
cessed flow and inform the network of their changes. To do so, it performs two main
tasks:

• Before a new tactile flow starts, the edge controller residing at the operator side
requests a set of network slices of specific bandwidth and latency from the net-
work (in particular, from the central SDN controller, see Figure 3.4b). To do so,
in this chapter, we used the custom unsupervised clustering algorithm that does
so based on the available historical trials of the Tactile operation in question, and
the dynamics-to-slice mapping described in [130]. However, any algorithm that
would produce a similar set of slices to be forwarded to the central SDN controller
can be used.

• Through the duration of the Tactile flow, the edge controller monitors the opera-
tors’ dynamics and for each generated packet, decides which slice to use. Finally,
it informs the network by appending this information to the outgoing IP packets
by, for example, modifying the Type of Service (ToS) value. In this chapter, we use
the system described in [130]. However, as mentioned above, any algorithm that
tags the outgoing IP packets based on the application’s requirements can be used.

3

36 3. DYNAMIC NETWORK RESOURCE SCALING

Central SDN controller

Programmable network switches

Edge
controller

Real-Time Slice Management Framework

(a) Main building blocks.

Start

Clustering algorithm
(Determine set of slices
and their corresponding
network requierments

based on historical data)

Request resources
(set of end nodes,

number of slices, bandwidth
and latency per slice)

Calculate routes for
each slice

Enough available
resources?

Provision slice
switching rules

(see Section 3.2.2)

Reject
request

yes

no

StopGo to Figure 3.4c

Ta
ct

ile
ap

p
li

ca
ti

o
n

/
E

d
ge

co
n

tr
o

lle
r

C
en

tr
al

SD
N

co
n

tr
o

lle
r

(b) Actions taken before the start of the Tac-
tile flow.

Start

Measure operators dynamics
& Determine slice to use

Append slice identifier
to outgoing packet

Did the slice
identifier
change?

Append Slice Configuration
header to packet
(see Section 3.2.2)

Process in the
the existing

slice

yes

no

Provision new slice
based on the added Slice

Configuration header
(see Section 3.2.2)

Destroy previously
provisioned slice

Stop

Ta
ct

ile
ap

p
li

ca
ti

o
n

/
E

d
ge

co
n

tr
o

lle
r

P
ro

gr
am

m
ab

le
n

et
w

o
rk

sw
it

ch
es

(c) Actions taken per each packet throught the runtime
of the Tactile flow.

Figure 3.4: Main building blocks and flowchart showing the main processes and interactions between them
that enable dynamic network resource scaling. Blocks shown in gray were developed as part of a collaboration
project and do not represent the authors contributions in this thesis. Blocks shown in blue are part of this
thesis.

3.2. SYSTEM OVERVIEW

3

37

3.2.2. REAL-TIME SLICE MANAGEMENT FRAMEWORK
The second block, the real-time slice management framework enables on-demand pro-
visioning of network resources, i.e., the resources are made available on the fly only when
needed, similarly to computing resources in cloud environments. This way, network uti-
lization is constantly high, as no resources are over-provisioned. At the same time, the
QoS is guaranteed during the whole lifetime of the Tactile application, i.e., the network
is adapting its behavior to match the current Tactile application’s needs. The scaling
process is done at the expense of any other non-Tactile flows, which get the remaining
resources in the network. To enable this on-the-fly network resource management, our
slice management framework consists of two main components:

• Central SDN controller (control plane) that has a global view of the whole network,
as well as the currently present traffic. For every new Tactile flow, the central con-
troller finds the appropriate routes that satisfy the end-to-end slice requirements
according to the current global network state.

• Slice configuration protocol (data plane), deployed using the network program-
ming language P4 [140], that creates/destroys the slices on-the-fly in the data plane
using the information from the edge controller and the pre-computed inputs from
the SDN controller. It provides a fast update loop, enabling the switches to react
quickly to the changes in the application dynamics without the need to contact the
SDN controller. Thus, the slices are created/destroyed at run-time, with negligible
latency overhead.

Every time a new Tactile flow is initiated, the edge controller forwards the slice specifica-
tions (e.g., bandwidth, latency) it wishes to use to the central SDN controller (Figure 3.4).
With its up-to-date overview of the current network state, the SDN controller uses these
slice specifications to calculate the routes that satisfy the QoS (e.g., latency and band-
width) requested for each slice. Finally, these pre-calculated routes are forwarded and
stored in the first switch on the path (i.e., the edge switch to which the Tactile Edge De-
vice is connected) and ready to be used by the second component of our solution: the
slice configuration protocol (blue processes shown in Figure 3.4b).

The slice configuration protocol enables the creation/destruction of network slices
on the fly, directly in the data plane, using just the routes stored in the edge switches.
Whenever the Tactile dynamics change, i.e., the edge controller appends a different slice
identifier to the outgoing packet, the assigned network slice (with a specific latency and
bandwidth constraints) is destroyed, and the resources are freed to be used by other ser-
vices. At the same time, a new slice, corresponding to the new dynamics, is created (blue
processes shown in Figure 3.4c). To ensure that both creation/destruction actions are
executed in real-time, our protocol enables the data-packets to program the data plane
as they pass through the switches.

For example, to create the slice, the first switch appends a special slice configuration
header, containing, among other things, the pre-calculated route to the original Tactile
packet that was received from the edge controller (as explained further in Section 3.2.2).
By reading this special header, every switch in the path configures/updates its forward-
ing and bandwidth reservation rules to correspond to the currently requested slice (as

3

38 3. DYNAMIC NETWORK RESOURCE SCALING

explained further in Section 3.2.2). Thus, as the switches process the first Tactile packet,
a new slice is configured and ready to be used (blue processes shown in Figure 3.4c). All
the subsequent Tactile packets follow this first packet and are routed using the newly cre-
ated rules, which prevents any temporary inconsistencies. In addition, every time a new
slice is created, a similar packet is sent to destroy the slice that was previously used. Ev-
ery switch that processes this packet deletes the configured rules and frees the allocated
bandwidth. This way, the number of installed rules is minimized and the bandwidth re-
leased to be used by other services. Every time the edge controller detects a new change
in dynamics, the whole process repeats.

During the lifetime of a Tactile application, at any moment, only one slice per appli-
cation is configured/used in the switches. Thus, although the rules (processing as well as
bandwidth reservations) for multiple slices are calculated by the controller, only one set
of rules (corresponding to the currently used slice) is active. As a consequence, resources
assigned to slices that are not currently used are free and have no impact on other traffic
present in the network.

When calculating the routes, the SDN controller makes sure that, if the resources
of other slices are to be requested (due to a change in dynamics), they would be avail-
able instantaneously. To do so, the controller keeps track of the amount of bandwidth
allocated on every link to all slices of Tactile flows. Hence, new Tactile flows are only ad-
mitted through switches that will have enough resources available. As a consequence,
during the entire duration of any Tactile flow, resource availability is always guaranteed.
However, this approach also limits the maximum number of Tactile flows that can be
present in the network at the same time. Depending on the exact Tactile application,
this requirement can be relaxed by providing a trade-off between the maximum number
of flows and the probability of a QoS degradation.

SLICE CONFIGURATION PROTOCOL

To switch a Tactile flow f , between two Tactile endpoints, from slice A (with a pre-
calculated route r A) to slice B (with a pre-calculated route rB) two actions need to be
performed: (i) creation of a new slice B , i.e. updating the forwarding rules and allocat-
ing bandwidth for flow f on all switches on path B , and (ii) deleting the old slice A, i.e.
deleting the rules and freeing the allocated bandwidth for flow f on all switches on path
A. To ensure that (i) and (ii) are executed in real-time, we designed a new slice config-
uration protocol that enables the data-packets to create/destroy a network slice as they
pass through the switches.

To perform the above-mentioned actions, our slice configuration protocol uses two
different messages (shown in Figure 3.5): (1) “Slice setup” message to create a new slice
and (2) “Slice delete” message to delete the previously used slice. The field Ports array
represents the pre-calculated route rB (r A) as a sequence of output ports from all the
switches on path B (A). The size of this field depends on the number of switches used on
the path (specified by the field Header Length). Slice ID corresponds to the bandwidth
constraint needed on the path. Based on this parameter, the switches will reserve the
needed amount of bandwidth as the packet passes through them.

In Section 3.2.2, we describe how the pre-calculated routes (by the central SDN con-
troller) are used in the edge switches, while in Section 3.2.2 we describe how we use

3.2. SYSTEM OVERVIEW

3

39

our protocol to change routing entries on the intermediate switches (i.e., in the network
core).

Msg.
type

Slice ID Header Length

Ports array
S - Slice setup

D - Slide delete

Figure 3.5: Slice Configuration Protocol header.

PROCESSING ON THE NETWORK EDGE ROUTER

When a first packet belonging to a Tactile flow is received at the network edge, the router,
based on the flow identifier (source and destination IP addresses, protocol field, and
source and destination ports) and the ToS (Type of Service) field, inserts a new “slice
setup” header between the Ethernet and the IP headers. For example, as shown in Fig-
ure 3.6, when a packet with flow identifier 35 is received, the router checks the table
containing the headers for all the potential slices this flow can use (shown on the left in
Figure 3.6, for memory overhead calculation see Section 3.2.3).

Since the ToS field of the packet is set to 1, the slice with ID 1 is chosen and a header
containing the values 1−4 is inserted between the Ethernet and IP headers. The header
field 1 represents the Sl i ce I D (Figure 3.5) and corresponds to a certain predefined
amount of bandwidth that will be allocated at all the switches for this flow. Similarly,
the next header (value 2) represents the length of the route rB and indicates that two
intermediate switches are present between the Tactile Edge Devices. All other values
represent port numbers used at the intermediate switches (port 3 at the first intermedi-
ate switch and port 4 at the second intermediate switch). In addition, the Ethernet type
is changed to a specific value (0xBB) to indicate the presence of the new header.

To delete the previously used slice, the same procedure is used. An additional packet,
containing “Slice delete” header is sent on the route r A (determined by the flow identifier
and the previously used ToS field).

PROCESSING IN THE NETWORK CORE

When a packet with the Slice Configuration Protocol header is received by the next switch
in the path, additional bandwidth is reserved, and the forwarding table updated (Fig-
ure 3.7). The first intermediate switch, after processing the “Slice setup” header, inserts
a new entry in the forwarding table (shown on the left bottom corner in Figure 3.7). All
the subsequent packets, with flow identifier equal to 35 and belonging to slice 1 (indi-
cated by ToS equal to 1), are processed by this rule and output to port 3. In addition, the
resources reserved for slice 1 are increased by 10 units of bandwidth (shown on the right
bottom corner in Figure 3.7), the used port number field (with the value 3) removed, and
the header length reduced by 1 to represent the number of switches left to configure.
Similarly, when this packet is received by the second intermediate switch, a new rule (to
output packets to port 4) is inserted and the bandwidth allocation table updated.

All subsequent packets with the flow identifier 35, are processed by these newly in-
stalled rules (e.g., output to port 3 on the first switch and port 4 on the second switch),

3

40 3. DYNAMIC NETWORK RESOURCE SCALING

Tactile application/

Edge controller

2 35 2 2 3 4

1 35 1 2 3 4

3 35 3 2 1 1 1

ToS Flow Id. Sl.id Len. port 1 port 2 port 3

Match fields: Header to add:

EthIP EthS1234IP

Flow Id: 35; ToS: 1

Eth. type: 0xBB

Slice Configuration header

Figure 3.6: Processing on network edge. “Slice setup” header is inserted between the Ethernet and IP headers.
Sl

ic
e

C
o

n
fi

gu
ra

ti
o

n
h

ea
d

er

Sl
ic

e
C

o
n

fi
gu

ra
ti

o
n

h
ea

d
er

Eth

IP

Eth

S

1

2

3

4

IP

Eth

S

1

1

4

IP

Eth.

IP

Match fields: Output port & Priority:

Flow Id. Port Priority

66 2 2

35 3 1

Match fields: Bandwidth:

Sl. Id Bw.

2 5

1 +10

Figure 3.7: Processing of a “slice setup” message in the network core. New rules are added as the packet passes
through the switch.

preventing any temporary inconsistencies. When a slice needs to be deleted, a simi-
lar process occurs on every switch in the network. The only difference is that, when a
switch detects a “slice delete” header, network resources would be released (or scaled
down) and processing rules removed.

3.2.3. NETWORK SWITCHING OVERHEAD

Delay Overhead. The contribution to the “switching overhead” by the network is rep-
resented by the additional transmission delay from all the switches due to the increase
in packet size of the first packet processed by the new slice. In the case of a slice setup
message, this overhead is equal to (3.1). Here Shdr is the size of the Slice Configuration
Protocol header (except the Ports Array field), n is the total number of switches in the
path, Rx is the speed of the output link of switch x and Spor t is the size in bits used to
represent one port (usually 8bi t s).

3.3. EVALUATION

3

41

tnet wor k = ∑
1≤x≤n

Shdr + (n −x) ·Spor t

Rx
(3.1)

Memory Overhead. To support such a system, an additional table containing all the pos-
sible headers that can be added needs to be maintained for every Tactile flow at the edge
switch. This overhead for one Tactile flow can be calculated using (3.2). Here nsl i ce is
the number of slices, S f low I D is the size of the chosen flow identifier, usually the 5-tuple
(source IP, destination IP, source port, destination port, transport protocol). However,
the memory consumption is reduced on all the other switches in the path (compared
to a solution where rules are reconfigured in all the switches), as the number of rules
needed in the core switches to process a Tactile flow is reduced to 1 from nsl i ce .

Mnet wor k = ∑
1≤x≤nsl i ce

(
Spor t (n +1)+S f low I D +1

)
(3.2)

3.3. EVALUATION

3.3.1. EXPERIMENT SETUP
To evaluate our slice switching protocol, we emulated the USNET topology (Figure 3.8),
using the Mininet emulator with the P4 software switch (behavioral model [141]). Mul-
tiple Tactile flows were generated between two Tactile Edge Devices T E1 and T E2 and
delay, jitter, and throughput were measured in both directions. After receiving a packet,
T E2 bounced it back to T E1 using the same slice. Tactile flows were routed through 4
slices with RTTs equal to 117.4ms, 29.5ms, 13.4ms, and 5.7ms (determined by the clus-
tering algorithm specified in [130]). Therefore, for each Tactile request, a set of four slices
was calculated by the SDN controller (example set shown in Figure 3.8). To simulate the
traffic belonging to other services, additional TCP traffic was generated using iperf be-
tween different switches in the network. All measurements were repeated 30 times.

Traces. Each Tactile trace was 98 seconds long and contained data from the da Vinci
Surgical System database. For each packet in this trace, the ToS header was set using the
clustering algorithm described in [130] and indicated the slice the packet should be pro-
cessed in. Packet lengths were fixed to 140B (including all the headers) and sent at a rate
that depended on the latency of the current slice (one packet each RT T /2). Thus packets
belonging to slices with stricter latency requirements (and higher dynamics) were also
sent at a faster rate, creating sudden bursts of Tactile traffic in the network.

Comparison baselines. Our approach (P4 + Slicing) was compared to (1) an approach
that uses an SDN controller to compute and install a new slice (both route and band-
width reservation) each time a switch occurs (SDN + Slicing), and (2) an approach that
does not use slicing, but provides QoS guarantees (No Slicing) by reserving either the
maximum or average bandwidth needed by the flow.

3.3.2. SWITCHING DELAY
To demonstrate the advantages of our slice configuration protocol, we evaluated the
time needed to switch between two different slices. This switching delay was measured
as the difference in the delay between the first (with the additional Slice Configuration

3

42 3. DYNAMIC NETWORK RESOURCE SCALING

T E1

T E2

0

1

2

4

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

21

19

20

22

23

2.52

0

2.75

5

9

9

4

10

9 8

3
0

3

2.25

20

0.75

10
10

0

4.5

25

10

9

1

1

7

1.25

0

2.25

10

5.5

10

2

1.75

0

0.5

0.75
1.25

4.5

9

9

Slice 4

Slice 3

Slice 1

Slice 2

Figure 3.8: USNET topology. Link delays are in ms. TE blocks represent Tactile end-hosts.

header) and the second packet processed by the slice. Compared to the solution that
uses a centralized controller to reroute packets (SDN + Slicing), our solution was able
to reduce the switching delay significantly (0.34ms on average compared to 72.68ms on
average). The main reason for the significant increase in performance is the fact that the
(SDN + Slicing) solution forwards the first packet to the controller introducing a signifi-
cant delay penalty, while our solution enables the packets to program the data plane.

Table 3.1: Scenario without any additional TCP traffic. Maximum and average RTT values measured for each
slice for the USNET topology. (metrics calculated for 30 different runs). Values are in ms.

P4 + Slicing SDN + Slicing No Slicing No Slicing
Slice RTT Avgerage Maximum Avgerage Maximum Avgerage Maximum Avgerage Maximum
constraint RTT RTT RTT RTT RTT RTT RTT RTT

1 117.48 65.37 67.00 32.50 44.13 - - - -
2 29.51 27.46 29.28 29.28 36.13 - - - -
3 13.48 10.71 12.77 5.77 24.75 - - - -
4 5.75 3.43 5.74 5.86 21.46 4.53 18.38 - -

Table 3.2: Scenario with additional TCP traffic. Maximum and average RTT values measured for each slice for
the USNET topology. (metrics calculated for 30 different runs). Values are in ms.

P4 + Slicing SDN + Slicing No Slicing No Slicing
(Max. Reserved) (Avg. Reserved)

Slice RTT Avgerage Maximum Avgerage Maximum Avgerage Maximum Avgerage Maximum
constraint RTT RTT RTT RTT RTT RTT RTT RTT

1 117.48 63.07 66.24 63.10 67.64 - - - -
2 29.51 27.65 29.39 39.28 91.92 - - - -
3 13.48 9.92 12.67 57.31 998.74 - - - -
4 5.75 4.11 5.21 67.64 781.76 2.051 15.93 138.88 1539.11

3.3.3. PERFORMANCE GUARANTEES
Figure 3.9 and Tables 3.1 and 3.2 show that, with our proposed (P4+Slicing) solution,
the network can guarantee the performance at any moment during the duration of the

3.3. EVALUATION

3

43

8 9 10 11 12 13 14 15
0

20

40

60

t [s]

D
el

ay
[m

s]

(a) P4 + Slicing.

8 9 10 11 12 13 14 15
0

20

40

60

t [s]

D
el

ay
[m

s]

(b) SDN + Slicing.

8 9 10 11 12 13 14 15
0

20

40

60

t [s]

D
el

ay
[m

s]

(c) No Slicing (average bandwidth reserved).

8 9 10 11 12 13 14 15
0

20

40

60

t [s]
D

el
ay

[m
s]

(d) No Slicing (maximum bandwidth reserved).

Figure 3.9: Influence of external traffic: Observed one-way delay (RT T /2) for 7 seconds of the Tactile flow
when 4 slices are used for the USNET topology shown in Figure 3.8. Blue line represents the RT T /2 measured
between two Tactile end-host, while the red line represents the RT T /2 constraint of the current used slice
determined based on the current application dynamics.

Tactile flow. The blue line, representing the one-way delay between the two Tactile end-
hosts (T E1 and T E2) was under the red line, representing the delay constraint of the
system corresponding to the current perceived dynamics (i.e., the maximum allowed
delay each packet can experience), during the whole flow duration. When switching
from a high to low RTT slice, packet reordering sometimes occurred at the Tactile end-
host, due to the difference in the slice’s RTTs. However, this will not degrade the system’s
performance, as the later-arriving, outdated packets can simply be discarded.

In contrast, in the scenario (SDN+Slicing), the first packets processed by the slice
experienced a significant increase in delay (Figure 3.9). This effect was more significant
for low-latency slices (Slices 3 and 4), in which the delay constraints were violated for
almost every packet. Due to a higher packet rate, packets arrived at the switches faster
than they were processed by the controller, resulting in more packets being forwarded to
it (as the switches are stateless and hence unaware that a packet was already forwarded
to the controller until the new route is configured), thereby flooding it. This results in
significant packet reordering at the Tactile end-host.

In case (No Slicing) was used and resources corresponding to the maximum possible
dynamics (Slice 4) were reserved, the delay observed by the Tactile flows was the lowest
possible (except for the first packet that is forwarded to the SDN controller and used to
setup the route). However, when we decreased the reserved bandwidth to match the av-
erage amount of resources used by the other two solutions (P4+Slicing, SDN+Slicing), No
Slicing behaved the worst among all the analyzed solutions, by having the highest aver-
age, as well as maximum RTT (see Table 3.1). Especially in moments in which high QoS

3

44 3. DYNAMIC NETWORK RESOURCE SCALING

was required (Slices 3 & 4), and the packet rate was high, Tactile packets were queued
due to insufficient resources thereby violating the RTT constraints (Figure 3.10).

3.3.4. BANDWIDTH UTILIZATION

In our proposed (P4+Slicing) solution, scaling of the reserved bandwidth happens when
the packet (having a different ToS set, indicating to switch slices) was processed at each
switch. Thus, the amount of the bandwidth reserved for Tactile traffic corresponded to
the current packet rate (see Figure 3.10). Similarly, in case (SDN+Slicing) was used, the
SDN controller matched the reserved bandwidth to the one required by the current slice.
However, in case of (SDN+Slicing) the reconfiguration delay in addition would depend
on the delay between the switches and the controller, potentially decreasing the perfor-
mance in cases when the controller is not run on the same machine as the switches. In
case (No Slicing) is used, the resource utilization is either constantly low (max. reserved)
resulting in significant over-provisioning, or insufficient to account for the high dynam-
ics (avg. reserved) resulting in noticeable degradation to the end-users.

0 2 4 6 8 10 12 14
0

2

4

6

·105

t [s]

B
an

dw
id

th
[b
p
s]

P4, SDN + Slicing No Slicing - Max.
No Slicing - Avg.

Figure 3.10: Reserved bandwidth. (P4+Slicing) and (SDN+Slicing) are reserving the same amount of band-
width.

To conclude, our (P4+Slicing) solution is able to satisfy the latency constraints of the
Tactile flow during the whole duration of the flow. In addition to guaranteeing the per-
formance of a Tactile flow, by dynamically routing the traffic through multiple paths and
by scaling the resources, it also minimizes the resources that need to be assigned by the
network provider and maximizes the utilization of the resources assigned to it.

3.4. RELATED WORK
Traditional networks were static and offered very limited possibilities for Quality of Ser-
vice (QoS) provisioning. When assigning resources, network providers were left with two
choices: to either over-provision, i.e. reserve too many resources, but keep the average
utilization low, or to under-provision, i.e. increase the utilization, but reserve insufficient
resources to support the application at its peak load, potentially degrading the end-user
experience.

By splitting the control plane from the data plane, SDN enabled more flexible, fine-
grained QoS provisioning [142] and it facilitated the concept of network slicing, where,

3.5. CONCLUSION

3

45

on top of a common physical infrastructure, different virtual networks, tailored to dif-
ferent traffic needs, can be created, enabling the coexistence of diverse services [143–
145]. Several slicing frameworks, such as FlowVisor [146] and FlowN [147], have been
proposed over the years. However, they focus on creating isolation between the slice
tenants and do not address the specific and very strict per packet QoS requirements of a
Tactile application.

Additionally, many SDN frameworks enabling resource reservations were proposed
over the years [90–95]. However, the time-varying resource requirements of flows were
not taken into account. Moreover, even if dynamic rerouting and resource scaling would
be added to these SDN frameworks, they would still violate the constraints (e.g., end-to-
end latency) of a Tactile application. To add new or to modify existing rules for the net-
work, SDN controllers need to be informed first, resulting in a significant re-configuration
latency penalty. Furthermore, variable latency between the controller and the switches
can lead to inconsistencies in the switch tables. If all the switches are not updated
at exactly the same time, packets can get dropped (due to non-existing rules) or pro-
cessed by outdated rules potentially violating the service-level agreement between the
network provider and the slice tenant [148]. To solve the aforementioned problem, pro-
grammable switches, along with domain-specific programming languages, such as P4,
can be used [140]. They offer the possibility to respond quickly to traffic changes directly
from the data plane, while the data-packets are being processed [27].

Specific to Tactile flows, [149–151] list the benefits of network slicing to guarantee
lower latency, higher reliability and security. However, they consider the network slices
to be static, i.e., the lifetime of these slices extends over the full duration of a Tactile
flow. While the authors of [152, 153] discuss dynamic-aware routing of Tactile flows, ex-
ploiting the burstiness in the packet arrival rates, it is limited to latency and bandwidth
optimization in radio access networks alone. It also does not take into account the vary-
ing dynamics of the Tactile operator. Several works examined how to use time series
methods to cluster/classify human hand motion in a general context (see [154–156]).
However, a framework to adopt these methods in the context of Tactile and dynamic
network slicing, i.e., how to use these algorithms to design slice specifications for given
Tactile quality requirements, is still missing.

In the context of wireless embedded systems, several works have attempted to guar-
antee communication quality to ensure the stable control of remote devices. Some of
these works also address how to dynamically change the communication path between
a controller and a remote device without compromising on stability (see [157] and refer-
ences therein), a concept that bears some similarity to the concept of dynamic network
slicing discussed in this paper. These works, however, focus only on embedded wireless
systems working on a limited number of hops. In particular, they are not tried and tested
on IP network components such as switches, nor do they account for the peculiarity of
historical data to design slices.

3.5. CONCLUSION
In this chapter, we used the fact that the dynamics of a Tactile Internet application vary
over time and are usually under their peak value to dynamically, at runtime, scale the
network resources assigned to this application. To do so, we designed a framework

3

46 3. DYNAMIC NETWORK RESOURCE SCALING

that combines the advantages of a typical SDN architecture, such as the centralized
control and the possibilities of advanced traffic engineering, with the flexibility offered
by the programmable network switches. Next, we showed that, by offloading latency-
sensitive tasks to the programmable switches, our solution can provide hard QoS guar-
antees needed for tactile applications while maintaining high slice utilization and mini-
mizing the used network resources.

While our solution was developed with Tactile Internet applications in mind, it is
generic and can be used for any applications whose requirements vary in time as long as
there is an edge controller that a priori informs the network controller of all the possible
slices that can be used as well as which slice to use at what time.

4
ELASTIC NETWORK SLICING

In the previous chapter, we introduced the network slicing concept by designing a data
plane protocol that adapts to the current application’s requirements. It does so by allocat-
ing or de-allocating network resources assigned to the flow and (optionally) by rerouting
traffic. However, this solution can only scale the network resources vertically (on one net-
work path) and cannot deal with traffic demands that exceed the link limit and network
state. Furthermore, with the rise of programmable data planes, the state of the network
slice and functions can change at rates reaching Tbps, making the traditional controller-
driven state transfer solutions not feasible. Consequently, a data plane component, able
to react to short-term events, is required.

In this chapter, we extend the previously designed framework to support horizontal slic-
ing to solve the issues mentioned above. This form of scaling redistributes the traffic over
multiple paths (with its network functions and state). To do so, we extend the link config-
uration module described in Chapter 3 with two additional data plane components: (1)
load monitoring, able to detect the appropriate scaling moments in the data plane; and
(2) state management, able to maintain a consistent network state.

This chapter is based on a published conference paper: B. Turkovic, S. Nijhus, F.A. Kuipers, Elastic Network
Slicing, NetSoft 2021-IEEE International Conference on Network Softwarization (2021) [158]

47

4

48 4. ELASTIC NETWORK SLICING

4.1. INTRODUCTION
Since their introduction, Software-Defined Networking (SDN) and Network Functions
Virtualization (NFV) have enhanced network flexibility, reconfigurability, and agility [142,
159]. Moreover, when combined, they support offering Quality-of-Service (QoS) through
the concept of network slicing [144, 160].

Network slicing assumes that virtual networks, each tailored to different service needs,
are created on top of a shared physical infrastructure. Each of these virtual networks
consists of virtual nodes and virtual links. As can be seen in Figure 4.1, every virtual
link represents a path with reserved network resources (e.g., bandwidth) in the physical
network. Moreover, those links connect virtual nodes, representing Network Functions
(NFs), that provide a specific network functionality. Stateful NFs, such as firewalls or
heavy-hitter detectors, require knowledge of the previously processed packets to func-
tion correctly, while stateless NFs, such as routing, do not [145].

As traffic volumes are unpredictable and generally change over time, a static slic-
ing solution either over-provisions resources or does not guarantee a certain QoS [130].
A slicing solution that supports elasticity, i.e., the ability to automatically scale the as-
signed network resources to match the current traffic volumes, would solve this prob-
lem. We discern two ways of scaling: (1) vertical scaling, in which slice resources are
scaled up/down at the NF(s) and reserved bandwidth increased/decreased on the virtual
link(s) (Figure 4.2, targeted in Chapter 3), and (2) horizontal scaling, in which a new NF
is deployed/removed and a portion of the traffic redirected by creating/removing virtual
links connected to the slice, to reduce the load on the existing NF (Figure 4.3). This way,
service providers only pay for the resources they use (pay-per-use model), end-users get
their requested level of QoS level, and network providers can support multiple services
simultaneously using fewer resources.

P
h

ys
ic

al
n

et
w

o
rk

Sl
ic

e
2

NF2 NF3
NF1

NF1 NF5NF4

NF5NF4

Sl
ic

e
1

NF1 NF2
NF3 NF4

NF4NF3

Figure 4.1: Network slicing. Several virtual nodes/links may run atop of a physical node/link.

4.1.1. SCOPE & MOTIVATION.
In this chapter, we consider elastic slicing (both vertically and horizontally) in the con-
text of P4-programmable data planes [140]. On the one hand, NFs primarily responsible

4.1. INTRODUCTION

4

49

P
h

ys
ic

al
n

et
w

o
rk

Sl
ic

e
1

2Gbps

2Gbps 2Gbps 2Gbps 2Gbps

2Gbps

NF1 NF2 NF4NF3
2Gbps 2Gbps2Gbps

Scale-
Up

Scale-
Down

P
h

ys
ic

al
n

et
w

o
rk

Sl
ic

e
1

5Gbps

5Gbps 5Gbps 5Gbps 5Gbps

5Gbps

NF1 NF2 NF4NF3
5Gbps 5Gbps5Gbps

Figure 4.2: Vertical scaling. Whenever a new flow joins or the volume of an existing one increases, resource
reservations on all the virtual links are increased (Scaling-Up). Similarly, if the traffic demands decrease re-
source reservations on all the links are decreased (Scaling-Down).

P
h

ys
ic

al
n

et
w

o
rk

Sl
ic

e
1

5Gbps

5Gbps 5Gbps 5Gbps 5Gbps

5Gbps

NF1 NF2 NF4NF3
5Gbps 5Gbps5Gbps

Scale-
Out

Scale-
In

P
h

ys
ic

al
n

et
w

o
rk

Sl
ic

e
1

7Gbps

5Gbps 5Gbps 5Gbps 7Gbps

7Gbps

2Gbps 2Gbps

2Gbps2Gbps

NF1 NF2

NF3’

NF4NF3
7Gbps 2Gbps 2Gbps

5Gbps5Gbps

Figure 4.3: Horizontal scaling. When NF3 is no longer able to process all the incoming traffic without any
QoS degradation, and/or bandwidth assigned on virtual links NF2-NF3 and NF3-NF2 cannot be scaled up, a
new NF3 instance NF3’ is spawned and two new virtual links (NF3’-NF2 and NF3’-NF4) created (Scale-Out).
Similarly, if enough resources to process all the incoming traffic are present on one of the paths, two virtual
nodes are merged into one (Scale-In).

for packet forwarding (e.g., firewalls, NAT, monitoring) might benefit from hardware ac-
celeration by being offloaded to (P4) programmable switches. On the other hand, pro-
grammable hardware can process packets at Tbps speeds [98]. Hence, NF-state may

4

50 4. ELASTIC NETWORK SLICING

change very frequently, making controller-driven scaling and traditional NFV frame-
works (focused on migrating software-maintained states) too time-consuming. More-
over, even if controllers could keep up, migrating an NF, which potentially maintains
hundreds of state variables per flow [161], would overload the controller, thereby pro-
longing the scaling time and leading to state inconsistencies. Yet, up-to-date state infor-
mation is crucial for the correct functioning of many NFs.

Fortunately, programmable switches come with monitoring features that enable the
data plane to report the exact QoS the packets experienced while being processed [27,
99]. And, in contrast to centralized approaches, programmable switches allow us to of-
fload time-sensitive actions from the central controller to the data plane. When com-
bined with the advanced monitoring features, we can quickly detect and react to chang-
ing traffic conditions [130].

4.1.2. CONTRIBUTIONS & OUTLINE.
We present an elastic network-slicing framework for P4-programmable network devices
that economizes on slice resource utilization, while maintaining state consistency and at
low scaling time.

We split our framework into two components: (1) a central controller and (2) a data
plane component. With its global view of the network, the central controller is respon-
sible for long-term network management, such as the (de)allocation of NFs and route
calculation. The data plane component is deployed directly on the switches and only
has a local network view but fast reaction time and accurate traffic information. There-
fore, it is responsible for reacting to time-sensitive operations, such as load monitoring
(Section 4.3.1), state transfer, and virtual link configuration (Section 4.3.2).

In Section 4.4, we evaluate our framework, both through emulation as well as via ex-
periments on programmable hardware, by comparing it to traditional (controller-driven)
approaches. Our experiments show that only by having an “intelligent” data plane, on-
time scaling can be achieved.

4.2. ELASTICITY FRAMEWORK
To support elasticity, we propose a hierarchical framework (Figure 4.4) consisting of:

1. A central controller (CC) that, with its global overview of the available network
resources and existing traffic flows, determines the network’s long-term behavior.
It is responsible for initializing new slices, finding the most appropriate locations
to place NFs during scaling, and guiding the data plane component.

2. The data plane component (DPC) that, based on the central controller’s input and
measured traffic conditions, performs all latency-sensitive tasks. It is responsible
for load monitoring, state transfer, and flow rerouting.

To support the information exchange between different data plane components run-
ning at different switches, we implemented a custom slice management (SM) protocol,
shown in Figure 4.4. During each scaling process (horizontal or vertical), the DPCs ex-
change information and update the slice (e.g., reroute flows, transfer state, adjust band-
width) using the SM header.

4.2. ELASTICITY FRAMEWORK

4

51

Central controller (control plane)

Slice initialization NF (de)allocation DPC maintenance

Virtual node
(data plane)

Fu
n

ct
io

n
s

H
ea

d
er

s Slice management

Type
(3 b)

FlowID
(16 b)

Length
(8 b)

Route
(variable)

Bandw.
(8 b)

States
(variable)

IPEth.

Load

Monitoring

DPC

Virtual link

configuration

State

management
NFs

Figure 4.4: Hierarchical design of the slicing framework.

Monitor NFs

Fully
utilized & traffic

increasing?

Enough
available resources on

each physical link
on the path?

Enough
available

resources on
other paths?

Update DPC
info

Reconfigure
virtual links

Scale-up
(vertical)

Reroute
a flow

Calculate NF
placement

Deploy NF

Update DPC info

Config. virtual links
& transfer state

& reroute flow(s)

Scale-out (horizontal)

no

yes

yes

no

yes

no

Figure 4.5: Flow chart illustrating the process of scaling-out and -up.

4

52 4. ELASTIC NETWORK SLICING

Central controller

Slice initialization NF (de)allocation DPC maintenance

1

1

2Inform the
controller

2

3
Calculate NF placement

Deploy4Load Monitoring

Virtual link
configurationNF2

State management

1

Scale-Out

Central controller

Slice initialization NF (de)allocation DPC maintenance
5

5Indicate
what flows

to divert

6

6

Reroute, transfer state
& create virutal link

Load Monitoring

Virtual link
configurationNF1

State management

Load Monitoring

Load Monitoring

State management

State management

Virtual link
configuration

Virtual link
configuration

NF2

NF2’
6

6

6

Figure 4.6: Interactions between components during scaling-out. DPCs continuously track the slice’s utiliza-
tion (step 1, Section 4.3.1). If they detect overload, they notify the CC (step 2). The CC subsequently determines
the switch where NF2’ will be deployed on and the route to connect the node to the rest of the slice (step 3).
Next, the CC deploys the new NF (step 4) and, upon its completion, informs NF1 to divert a portion of its traffic
to the newly deployed NF2’ (step 5). When a packet of this flow is received, the state from NF2 is transferred to
NF2’, and a virtual link is created using the Slice Management Protocol (step 6, Section 4.3.2).

Figure 4.5 illustrates the processes to react to overload. DPC processes are shown in
green and involve all latency-sensitive tasks. For example, a DPC continuously moni-
tors the slice and quickly detects traffic changes. In contrast to a controller-driven ap-
proach, it makes this decision on a per-packet basis, informing the CC only when scaling
is needed, and does not depend on a monitoring interval or the control plane’s speed. If
detected, the CC (whose processes are shown in blue) first attempts the easier of the
two: vertical scaling. If insufficient resources are available at that path, the CC tries
to reroute a flow to a path that would have enough resources or, ultimately, scales-out.
Since scaling-out is the most involved of these three situations, Figure 4.6 explains the
involved interactions in more detail. It is essential to notice that, while the CC indi-
cates which flows to reroute (green-blue blocks in Figure 4.5), the process of rerout-
ing and state-transfer is completely offloaded to the data plane (Figure 4.6). Therefore,
route/state inconsistencies, due to one switch receiving a controller update (e.g., a new
route) before others or after the state has changed, are avoided.

During under-load detection, the processes are similar (but reversed). As before,
upon detection, DPCs inform the CC, which either scales vertically (scaling-down) or

4.3. DATA PLANE COMPONENT

4

53

horizontally (scaling-in). However, in contrast to the previous example, during under-
load, if enough resources are available on one path so that another one can be merged
into it, the framework will initiate the scaling-in (horizontally) independently of the pos-
sibility to scale-down (vertically, see Section 4.3.1).

4.3. DATA PLANE COMPONENT

How much bandwidth to assign? We decided to use an auto-tuned value ∆B w , which
represents the step in which we increase/decrease reserved bandwidth. If ∆B w is set
low, the reserved bandwidth is increased/decreased in tiny steps. While this increases
resource efficiency, it also leads to instability and frequent scaling processes for dynamic
traffic. If ∆B w is high, resource efficiency reduces, and scaling will occur infrequently.
Our solution initially assigns a low value to ∆B w to preserve the slice resources. After
each scaling event, ∆B w is increased by a factor k, and a timer is started. If another
scaling event occurs within this timer, the same process is repeated. This process con-
tinues until an interval is encountered in which no scaling occurred, which causes ∆B w
to be reset to its initial value. This way, we start scaling conservatively, only assigning
small chunks of bandwidth to the slice. However, if we detect a high increase, we quickly
build-up ∆B w to reduce the number of scaling events.

Since our framework relies on offloading latency-sensitive tasks to the DPC, we will
explain two main tasks: (1) load monitoring and (2) virtual link configuration, state
transfer, and flow rerouting (as well as all involved modules) in more detail.

4.3.1. LOAD MONITORING
Since the scaling procedure is relatively time-consuming and requires many network
updates, frequent scaling would lead to network instability and sub-optimal resource
utilization. To infer the best times for horizontal scaling, for each P4 NF, we deployed
two two-rate three-color meters: growth meter to detect that the slice is close to its full
capacity, and decline meter, to detect that the slice is underutilized.

Growth meter. Scaling-out (and up) is initialized whenever the slice is no longer able
to process all the traffic without any degradation. Consequently, the growth meter rate
threshold needs to be configured low enough to allow the CC to deploy the new NF with-
out any degradation to any of the flows currently processed in the slice. In this chapter,
we set them to ∆BW and 2∆BW less than the reserved bandwidth BWr . Additionally,
to avoid unnecessary NF allocations, too frequent scaling, and instabilities due to traffic
fluctuations, the switches ensure that the traffic is increasing continuously.

To do so, we instructed the switches to track three additional metrics: the growth rate
(Rg), growth counter (Cg), and decline counter (Cd). The growth rate tracks the number
of yellow packets processed in the last Ng packet interval (Figure 4.7). Cg uses Rg to
track the overall trend of the slice utilization and is calculated as follows: if the number
of yellow packets (the growth rate Rg) is increasing between two subsequent intervals
of N packets, or the number of red packets is greater than zero, the Cg is increased by
one. However, if Rg is decreasing, Cg is reset to 0. This way, if the slice utilization is
continuously increasing (for at least M intervals), scaling will occur after at most N ·M
packets since the first yellow/red packet (Figure 4.7). Moreover, to detect under-load,

4

54 4. ELASTIC NETWORK SLICING

NF1

NF26/7

0/3
0/3

6/4

0/4

t/Ng

R

Rg

Cg

1 2 3 4 5

P4 NF overloaded

Scale-Out

NF1

NF2

NF2’

10/3

1/2
1/2

10/0

1/4

t/Ng

R

Rg

Cg

1 2 3 4 5

t/Ng

R

Rg

Cg

1 2 3 4 5

Growth counter never
reaches the threshold M

Constant utilization

Filtering the small
fluctuations

Figure 4.7: Growth meter. If the traffic volumes increase and more and more packets are colored yellow or
red, the growth rate Rg and, consequently, the growth counter Cg increase until Cg reaches the threshold M .
At this moment, scaling is initialized. In contrast, small fluctuations in the traffic volumes or large temporary
peaks are filtered out. The first number above the link represents the amount of reserved bandwidth, while the
second number represents the total amount of bandwidth available on the link (i.e., not assigned to any other
slices).

each switch tracks Cd , increasing it by one if all the packets in an N -interval are green.
Otherwise, it resets it to 0. Consequently, if Cd reaches M , meaning that for the last N ·M
packets, the slice had excess 2∆BW bandwidth, the switch will initiate the scaling-down
process (by ∆BW).

Merging meter. To be able to scale-in, an NF should process less traffic than the max-
imum available on the other NFs implementing the same functionality. As illustrated
in Figure 4.8, the CC configures the rate thresholds by calculating the maximum traf-
fic volume that any of the other NFs can take over. To avoid too frequent scaling and
instabilities, the switches track an additional metric, the merging counter Cm . This met-
ric tracks the number of all-green intervals (in the same way Cd did), and, whenever it
reaches M , scaling-in is initialized. Finally, the CC readjusts the thresholds (Figure 4.8).

Processing at the CC. To filter the requests belonging to the same event (e.g., scaling-up
detected at multiple switches), we implemented a back-off mechanism that, every time
a scaling request is received, checks if other requests were received in at least the last
N ·M ·MSS/BWr eser ved seconds.

4.3. DATA PLANE COMPONENT

4

55

NF1
NF2

NF2’

NF2”

NF34/
1

9/2

5/6
5/4 5/4

9/2 9/2

9/
2

0/5

4/0

18/2

4/0

4/0

Scale-In

NF1
NF2

NF3NF2’0/
4

9/2

9/2
9/0 9/0

9/
2

9/2 9/2

0/5

0/3

18/2

0/3

0/3

Figure 4.8: To merge NF2” into NF2’ or NF2, either of them needs to have enough resources to take over the
traffic processed on NF2” (i.e., 4). DPC maintenance calculates the minimum resources available on the virtual
links connecting NF2 and NF2’ to NF1 and NF3. Finally, it sets the rate thresholds on NF2” to the maximum of
these two: 4. Likewise, the thresholds on NF2 and NF2’ are configured to 4 and 2, respectively. As all the packets
processed on NF2” are green, i.e., NF2” is processing less traffic than the amount of free resources available on
NF2’, scaling-in is initiated and the thresholds recalculated to 0 and 2 for NF2 and NF2’, respectively. The first
number above the link represents the amount of reserved bandwidth, while the second number represents the
total amount of bandwidth available on the link (i.e., not assigned to any other slices).

4.3.2. VIRTUAL LINK CONFIGURATION, STATE TRANSFER AND FLOW REROUT-
ING

To avoid the state and route inconsistencies associated with a controller-driven approach,
our framework reroutes the flows, transfers their state, and updates the resource allo-
cations in the data plane (while processing data-packets), as illustrated in Figure 4.9.
To fill in the Slice Management header, it relies on the central controller’s updates (in
particular, the DPC maintenance module) indicating, among other things, what flow to
divert to the new NF. For example, if the controller decided to reroute B (Figure 4.9), it in-
forms NF1 of this. NF1, after receiving the first packet of flow B forwards it to the original
NF (NF2) to pick up its state (Figure 4.9a). While the original packet is processed fur-
ther along the path (thus avoiding unnecessary delay), a small copy is sent back to NF1,
and, afterwards, NF2’. Each switch on the new virtual link updates its forwarding rules
(e.g., output port stored in a register array) and resource allocation, as this packet passes
through (Figure 4.9b). Since it is not possible to update the bandwidth allocations in P4,
we decided to generate a digest to a local digest listener, while processing this header.

4

56 4. ELASTIC NETWORK SLICING

NF1 NF2

NF2’

B 5 1

A 33 0

0/2
0/3

Eth SM

1 B 0 0 0 N/A

Type Fl.ID Len. Route Bw. State Send pick-up
packet1

Set to send
updates2

3 Return
state

(a) After receiving flow B’s packet, NF1 appends the SM header (shown in green) and forwards it to NF2 (step
1). Upon reception, NF2 creates a copy, updates the SM header (e.g., state information, source route to NF1),
sets a bit register associated with B to 1, indicating that B’s state is migrated (step 2), and returns the packet to
NF1 (step 3).

NF1 NF2

NF2’

1/1

0/3

Eth SM

2 B 2 1 1 5

Update forwarding rule, resources and SM hdr.4

(b) NF1 updates its forwarding rules for flow B, adjusts the allocated bandwidth for the slice to∆BW (1, circled
values, step 4). Next, it updates the SM header (e.g., source route to reach NF2’) and forwards it to NF2’. All
switches in the path repeat this process, updating their forwarding rule to the value from the source route and
allocating the resources.

NF1
NF2

NF2’

B 0 0

A 0 0

1/1 1/2
Eth SM

2 B 0 0 0 5

Update
state 5

(c) Upon reception, NF2’ updates its state.

NF1
NF2

NF2’

B 6 1

A 33 0

B 5 0

A 0 0

1/1 1/2 Eth SM

Update
state7

6Send
update

(d) If a packet of flow B is received at NF2, an update is sent to NF2’.

Figure 4.9: Virtual link configuration & state management module.

4.3. DATA PLANE COMPONENT

4

57

Consequently, this local listener issues the command to update the reservations. When
this packet reaches NF1, all subsequent packets (of flow B) are diverted to NF2, and the
new virtual link is established. Finally, the same process is used to create the other vir-
tual link (connecting NF2’ to the rest of the slice). Moreover, to account for packets that
were already forwarded towards NF2 (before NF1’s rule was updated), we instruct NF2
to send small updates to NF2’, in the same way the first packet was sent, but with a dif-
ferent type (to prevent unnecessary forwarding rules and bandwidth allocation updates
(Figure 4.9d)).

Scaling-in. To avoid the dependency on the incoming packets, we decided to change
the migration procedure during scaling-in by transporting one flow’s state per received
packet destined for NF2’. Thus, in contrast to the example shown in Figure 4.9, we use a
sequential index to read all the active states of the states table and append it to the SM
header. Two situations can occur. First, the data packet can belong to a flow whose state
is still present at NF2. In this case, a small copy to transfer the state of the flow indicated
by the sequential index is sent to NF2, while the original packet is forwarded further
along the path (after updating its state). Second, the packet can belong to a flow whose
state was already transferred to NF2. In this case, in addition to the state information
of the flow indicated by the sequential index, we also forward the data-packet back to
NF2. Upon reception, NF2 updates the state from the SM header as well as the state
belonging to the data-packet. Further, while processing these transfer packets, switch
NF1 adjusts its forwarding rule for the flow in the SM packet to point to NF2 (instead of
NF2’). However, this rule is only put into affect after the state table was transferred (i.e.,
t abl e_si ze packets were sent to NF2’).

Difference with SwingState. In our state migration, we leverage the idea from SwingState [162]
to transport the packets in the data plane. However, in contrast to SwingState, we avoid
the dependency on the incoming traffic patterns, which could lead to a very long scaling-
in process and, consequently, overhead for infrequent flows. Moreover, we combine the
state transfer with rerouting and significantly reduce the number of updates that need
to be sent. To do so, we assume that during horizontal scaling, NFs implementing the
same function execute the same P4 program (i.e., state tables have the same size), and
that the same hash function is used for index calculation (assumption not needed for
SwingState). In scenarios in which this assumption does not hold, the controller can
provide a table index mapping to the switch transferring the state, ensuring consistency.

4.3.3. OVERHEAD AND LIMITATIONS

Collisions. Indices to P4 register arrays storing the state are calculated by hashing the
packet’s header fields. Hence, the probability of hash collisions increases with the num-
ber of concurrent unique flows in a slice. When flows collide, P4 NFs merge their state.
Hence, our framework, which relies on each NF’s state management, does not distin-
guish between colliding flows either and will treat them as the same flow.

Memory overhead. Per state array, DPC uses two bit arrays to store active flows and
transferred flows. Moreover, is uses two registers containing source routes (towards
the next and previous NF), and eleven counters for load monitoring (e.g., number of
red/yellow/green packets in the current and previous intervals, Cd , Cg , Cm)

4

58 4. ELASTIC NETWORK SLICING

Latency and packet overhead. Every time the DPC appends the SM header, it increases
the packet’s transmission delay. Moreover, our solution generates additional packets
(e.g., state transfers, state updates). However, due to the small size of the SM header (a
few bytes), this overhead is not significant and lower than other data plane approaches
(see Section 4.4).

Packet reordering. Like other data plane scaling approaches (e.g., SwingState) packet
reordering can occur if packets are present at the outdated link during rerouting. While
we make sure to reroute these packets, we cannot guarantee that all packets will arrive
at their correct virtual node in correct order. Consequently, NFs that depend on exact
packet order might have their state overwritten by an update packet. To maintain state
consistency, a sequence number can be appended to each packet at the first NF, and the
state only updated if the sequence number is higher than the last received one.

Hybrid scenario (only some P4-programmable switches). To use our approach, switches
acting as NFs must be P4-programmable. For non-virtual nodes, traditional SDN switches
can be used. The only difference would be that to adjust bandwidth reservations a packet
would be sent to the CC resulting in a potential latency increase. Moreover, to avoid po-
tential inconsistencies during rerouting, the controller would, while deploying a new NF,
update the rules on SDN switches connecting this new NF to the rest of the slice.

Recirculations. During the scaling-in process, in some cases we need to read multiple
indexes from the same state register array (i.e., a state belonging to the original flow and
the state belonging to the flow indicated by the sequential index). For switches with
a limited number of memory accesses per register array, we implement these actions
using recirculations.

P4 NF deployment. All currently available programmable hardware requires a firmware
reload when a new P4 program is deployed. Since this is never instantaneous, it can
lead to some downtime, state loss, and service interruptions for all NFs deployed on
the switch and all flows processed by it. Fortunately, various data plane reconfiguration
approaches facilitate uninterrupted reconfigurability of the data plane [163–165], and
should be used to enable dynamic NF placement. In this chapter, for simplicity, the P4-
program contains all the NFs, and we just update a register indicating if the NF is active
or not.

4.4. EVALUATION

Experiment setup. To evaluate our solution, we used two topologies, shown in Fig-
ure 4.10. The first one (Figure 4.10a), was emulated using Mininet with the P4 software-
switch (behavioural model [141]), while the second one (Figure 4.10b) used an Intel
Tofino switch [98]. We observed similar results with both our implementations. A no-
table difference was a more unpredictable latency in Mininet, presumably due to emu-
lation. We will therefore focus mostly on the hardware measurements.

Traffic scenarios. We considered two traffic patterns: (1) baseline scenario (Figure 4.11a),
used to test the scaling processes; and (2) state transfer stress scenario (Figure 4.11a), to
test the state transfer process while scaling-in, especially when some flows send pack-
ets rarely. In all scenarios, the number of TCP/UDP flows (generated using iperf3) was

4.4. EVALUATION

4

59

Cn

C1 S1

Sn
. .. .
. .

2

1 3

4

5

6

7

Clients Servers

(a) Simulation topology (7 nodes, 10 links).

1
3

2
4

Cn

C1 S1

Sn
. .. .
. .

Clients Servers

(b) Experiment topology (Intel switch, 4 nodes, 4 links).

Figure 4.10: Topologies. Blue lines represent the initial slice, while red lines represent the path added during
horizontal scaling.

varied, as well as td , tm , n, k. Moreover, delay tc was added to each control plane re-
quest/replay to account for the slower control plane. Each experiment was run five
times. Since we mainly focused on the data plane’s performance, the controller did not
track the flows’ bandwidths, but always rerouted the last flow that was added to the path.

Comparison baselines. Our monitoring approach has been compared to an approach
that uses an SDN controller to re-configure a slice (both route and bandwidth reserva-
tions) by periodically monitoring the queuing delay/utilization of the slice (controller-
driven approach). We varied the controller’s monitoring delay between 1, 3, and 5 sec-
onds, and the number of successive intervals in which an increase/decrease in queuing
delay/utilization happens from 1 to 3. For the state transfer, we compared our approach
to (1) SwingState [162] and (2) a controller-driven polling approach (i.e., the controller,
while rerouting the flow, also polls for state information). Since we assume that both
the NFs are identical (including the hashing algorithms), for SwingState, we only sent
the state information in the update packets (in contrast to the full copy of the original
packet). This way our solution would not have an unfair advantage.

Performance metrics. We evaluated all our schemes on (1) the average and maximum
round-trip times, (2) the average and maximum jitter, (3) overhead caused by the state-
transfer process (in bytes and packets), (4) percentage of encountered corrupt states dur-
ing transfers (both temporary and at the end of the scaling process), and (5) duration of
the scaling process.

4.4.1. OVERALL PERFORMANCE

Control plane. In all our experiments, we observed that the control plane was limiting
the factor in our framework. For example, the switch generates the digest notification
(i.e., small notifications to the control plane indicating the need for, for example, scaling
and/or rerouting) much faster than control software can process them and adjust the

4

60 4. ELASTIC NETWORK SLICING

f1 f2 f3 f4 f5 f6 f7 TotalFlows:

t1td 2td 3td 4td 5td 6td 7td 8td 9td 10td 11td 12td 13td 14td0

Requested bandwidth

tm

bwi

td
bwmax,l i nk1

bwmax,l i nk1 +bwmax,l i nk2

(a) Baseline scenario.

t1td 2td 3td 4td 5td 6td 7td 8td 9td 10td 11td 12td 13td 14td0

Requested bandwidth tm

tm2

bw0

bwi = bwi−1/ktd

bwmax,l i nk1

(b) State transfer stress scenario.

Figure 4.11: Traffic scenarios.

parameters (e.g., meter rates, deciding which flow to reroute).

Tuning the monitoring module (N , M ,∆B w). Choosing a lower N or M decreases the
detection time since fewer packets need to be processed by the NF to detect overload
(Figure 4.12a). However, we observed that a very low N (e.g., 64) increases the number
of intervals needed for detection (e.g., for M = 5, our framework needed 15 intervals on
average for N = 64 compared to 5 intervals on average for N = 256). Moreover, when
combined with a very high M , the probability of resetting the counter Cg , and missing
the scaling event, increases. Similarly, during scaling-in/scaling-down, low values of N
and M decrease the detection time (Figure 4.12a). However, at the same time, we ob-
served that the probability of scaling-in/scaling-down too quickly (or immediately after
the scaling-up/scaling-out process) increases, leading to instability.

Further, we evaluated the influence of different ∆BW . A higher ∆BW decreases the
number of generated scaling events, but due to the reduced granularity increases the
excess bandwidth (i.e., B wr es −B wr eq , Figure 4.12c). Additionally, since the threshold
needed to trigger scaling-down is set at B wr es − 2∆B w , the excess bandwidth per-link
is usually under 2∆B w (Figure 4.12c). The only difference to this rule occurs when,
due to the adaptive nature in which we assign the bandwidth (e.g., if two subsequent
scaling-up events are registered, we double the ∆B w), the bandwidth is scaled higher
than B wr eq + 2∆B w (Figure 4.12c for bw = 19 and ∆B w = 10). However, if no new
flow is generated, this increase is only temporary and is always followed by a scaling-
down event. Furthermore, if the increased number of scaling events is combined with a
very high M and/or N, by very steep bandwidth increases, the time needed to reach the
needed bandwidth can be very long (and might never be reached during the duration
of the scenario). Hence, we chose N = 128 and M = 5 and ∆B w = 10 as the values that
provided a good trade-off between fast and stable load detection for the remainder of

4.4. EVALUATION

4

61

Scaling-out Scaling-in
N , (bw = 15Mbps) (bw1 = 19Mbps)
M 5 10 25 5 10 25
64 0.98 1.23 2.60 0.90 1.27 3.24

128 1.27 1.91 5.70 1.28 2.90 4.73

256 1.47 2.75 6.59 2.95 3.98 8.07

512 2.42 4.98 12.66 4.34 6.73 14.41

1024 4.49 9.61 24.97 6.86 12.32 27.68

(a) Detection speed (in 1000 · pkt s) of f2 during scaling for
different values of N and M . ∆B w = 10Mbps, bw1 = bw2 =
14Mbps, td = 10.

bw2,
1 2 3

tm

10 4 5 5

7 3 4 5

5 3 4 5

3 2 3 5

1 0 0 0

(b) Number of times (out of 5) scaling
was detected for f2.M = 5, N = 256,bw1 =
25,∆B w = 2.5, td = 15,n f = 2.

Detection speed Detection speed Max. excess Num. of scaling
bw , scaling-up scaling-down bandwidth operations
∆B w 10 5 2.5 10 5 2.5 10 5 2.5 10 5 2.5

11 0.99 0.99 1.24 1.43 1.43 1.43 18 8 3 4.0 8.3 10.0

13 1.31 1.39 1.31 1.61 1.44 1.19 14 9 1.5 4.0 9.0 12.0

15 1.38 1.47 1.30 1.29 1.38 1.12 20 10 5 6.0 10.0 12.0

17 1.26 1.01 1.01 1.34 1.17 1.17 16 6 3.5 6.0 8.0 14.0

19 1.44 1.34 1.35 1.46 1.37 1.12 22 7 2 7.0 10.0 15.0

(c) Baseline scenario (N = 256, M = 5, td = tm = 10s, n f = 2). Detection speed of the second flow (in 1000 ·
pkt s), excess bandwidth (B wr es −B wr eq) and the total number of scaling operations for different values of
bw and ∆B w .

Our approach SwingState +
bw, (dataplane reroute) control plane reroute

tc 0 0.1 1 0 0.1 1
1 0.003 0.003 0.003 0.09 0.09 0.18

4 0.003 0.003 0.003 0.09 0.09 0.20

16 0.003 0.003 0.003 0.18 0.27 1.6

64 0.003 0.003 0.003 0.54 1.63 6.1

262 0.003 0.003 0.003 1.03 3.25 24.2

(d) Traffic volume overhead per flow during scaling-
out (in 1000 · pkt s) for different controller delays tc
and different bw . Values for td are in s. n f = 1

Our approach SwingState +
bw, (dataplane reroute) control plane reroute

w 64 128 256 64 128 256
1 0.02 0.05 0.11 0.18 0.18 0.18

5 0.02 0.05 0.11 0.18 0.19 0.18

10 0.02 0.05 0.11 0.26 0.25 0.25

20 0.02 0.05 0.11 0.36 0.36 0.36

50 0.02 0.05 0.11 0.89 0.85 0.91

(e) Traffic volume overhead during scaling-in (in
1000 · pkt s) for different state table sizes w (size of
the register array) and different bw . tc = 0.01,n f = 2.

Figure 4.12: Evaluation of the separate modules of the framework (4-node topology, TCP). All bandwidth values
are in Mbps.

this chapter.

Scaling-down upon competition of all flows on a path. P4 programs are executed upon
packet reception. Hence, if a switch does not receive packets, the load monitoring mod-
ule will not detect the last scaling-down event. Consequently, at least 2∆B w resources
will remain assigned. The only exception to this is a scaling-in event that releases all
the resources assigned on a path. To avoid these situations, the central controller must
detect these cases and, subsequently, release the assigned resources.

State transfer. SwingState transfers the state in the data plane, but relies on an exter-
nal entity (in this case, the central controller) to reroute the traffic. Hence, until the
controller reroutes the traffic, SwingState continues sending updates to the newly de-
ployed NF. Consequently, as Figure 4.12d illustrates, the overhead of transferring one
flow during scaling-in depends on the controller delay tc and the flow’s bandwidth (how

4

62 4. ELASTIC NETWORK SLICING

many packets are sent before the controller can react). In contrast, our approach in-
corporates a data plane rerouting procedure. Hence, it depends solely on how fast the
network can transport the SM header to the previous NF, which will, upon reception,
update its forwarding rule (i.e., stateful register storing the output port). Furthermore,
during scaling-in, our approach depends on the width of the state array and the number
of flows processed by the NF. For example, if we consider the scenario in Figure 4.12e,
for a table size of 64, our approach sends 64 packets towards the NF to pick up the states
stored in each register. However, the two flows we were transferring in this example had
hashes 41 and 56. Hence, the first 40 packets were processed as usual, and no updates
were created (the bit array index indicated that flows with indexes lower than 40 were
not active). Next, the state for the first flow (with the index 41) was transferred. Next, for
each index between 41 and 56, packets belonging to the first flow triggered an update
for the first flow and were sent back to be processsed by the other NF. Finally, all packets
between 56-64 triggered an update as well (since they can only belong to the flows that
were already transferred). In contrast, SwingState does not have this dependency. How-
ever, it depends on the traffic pattern of the incoming packets. Hence, if an infrequent
flow would need to be transferred during scaling-in, it would delay the whole process
(and the controller would not be able to remove the NF).

4.4.2. DATAPLANE VS. CONTROLLER-DRIVER APPROACH

Control plane vs data plane load monitoring. In our experiments, we observed that
the controller-driven approach is unreliable. When we increased the monitoring inter-
val (from 1 second to 3 or 5 seconds), but kept the number of successive intervals in
which an increase in queuing/utilization should be observed constant (2 or 3), the TCP’s
congestion control mechanisms at the end-hosts kicked-in, reducing the rate and, con-
sequently, the observed queueing delay/utilization. Thus, the controller immediately
detected a decrease and concluded that the congestion was merely a consequence of
a short-term fluctuation and that scaling is not needed. In contrast, if we reduced the
number of successive intervals to 1, we observed that the controller detected the need
for scaling too early and, consequently, oscillated between a scale-in/down and scale-
out/up phase. The data plane solution, due to the possibility of using smaller monitor-
ing intervals (number of packets N) and the possibility of aggregating the statistics on
the switch, detected the overload faster, and, consequently, maintained a lower average
and maximum delay for all the flows (Figure 4.13).

Very low td . As mentioned above, our framework was limited by the latency between
the switches and the central controller. Consequently, in scenarios with a lower td our
framework had less improvement than with higher td (Figure 4.13). Moreover, when we
set td < tc , our framework could not scale in time.

Monitoring overhead and limitations. The CC must periodically query the switches’
registers. This overhead depends on the configured monitoring interval tmon and is
equal to nvn f · tmon . Moreover, during scaling procedures, the CC could not process
all the tasks within the given monitoring interval, resulting in delays. In contrast, by of-
floading monitoring to the data plane, our solution only contacted the controller in case
overload was detected. This resulted in a significant reduction of this overhead to a few
digest notifications per switch for each scaling-event.

4.4. EVALUATION

4

63

Max. delay [ms] Avg. delay [ms]
Slicing approach td = 1 td = 5 td = 10 td = 1 td = 5 td = 10

Our approach 171.0 127.4 58.06 69.8 31.6 38.0

SwingState + Polling 185.5 186.8 186.6 105.7 63.6 54.9

Controller-Driven + Polling 226.3 189.7 186.8 107.1 62.1 53.3

No Slicing 186.8 186.8 186.8 135.9 127.2 125.5

(a) Baseline scenario. Observed maximum and average delay at the end-hosts.

Reserved resources [Gb] Min throughput [%]
Slicing approach td = 1 td = 5 td = 10 td = 1 td = 5 td = 10

Our approach 6.1 12.2 20.6 81.29 99.78 99.89

SwingState + Polling 6.8 14.1 23.4 70.25 90.75 99.85

Controller-Driven + Polling 6.3 13.6 23.6 67.7 90.75 99.83

No Slicing 4.8 10.4 17.4 35.66 59.10 57.99

(b) Baseline scenario. The amount of reserved resources and the minimum throughput per flow among all the
end-hosts.

Corrupt [%] Max. Duration [s]
Slicing approach td = 1 td = 5 td = 10 td = 1 td = 5 td = 10

Our approach 0.00 0.00 0.00 0.001 0.001 0.001

SwingState + Polling 0.00 0.00 0.00 0.1 0.1 0.1

Controller-Driven + Polling 43.0 48.1 55.2 0.1 0.1 0.1

(c) State transfer accuracy and duration.

Overhead [#kB] Overhead
[
#pkt s

]
Slicing approach td = 1 td = 5 td = 10 td = 1 td = 5 td = 10

Our approach 0.28 0.28 0.29 12.2 12 12.4

SwingState + Polling 50.36 46.94 47.93 1398.8 1304.0 1331.5

Controller-Driven + Polling - - - - - -

(d) State transfer overhead.

Figure 4.13: Baseline scenario (4-node topology, TCP, tm = 30, n f = 8, bw = 20Mbps, bwl i nk1 = 100Mbps, tc =
0.1, w = 64.)

State corruption. During every reroute (scaling-in or scaling-out), the controller-driven
approach could not transfer the state in time, causing all rerouted flows to have an in-
correct count. Moreover, while deploying the state, the controller overwrote the present
state in the switches, deleting all the state information and, hence, in contrast to data
plane approaches (our framework, SwingState), it could never recover. Consequently, all
packets that followed had an incorrect count (≈ 50% of the packets, since 4, flows got
rerouted to the second path in Figure 4.13). In contrast, our approach and SwingState
maintained state consistency, with our scheme being faster (due to the offload of the
rerouting procedure to the data plane).

4.4.3. STATE TRANSFER STRESS SCENARIO

To test the scaling-in functionality, we configured the controller to reroute 8 of the 11
flows to the red path. After the first flow was completed, the controller initiated the
scaling-in. We observed that tc (the delay between controller and switch) limited the
speed of the controller-driven approach (Figure 4.14). Moreover, as previously, during
each rerouting, the state was corrupted. In contrast, SwingState and our framework
avoided inconsistencies, recovering from them using update packets. Moreover, low-

4

64 4. ELASTIC NETWORK SLICING

Corrupt [%] Max. duration [s]
Slicing approach td = 1 td = 5 td = 10 td = 1 td = 5 td = 10

Our approach 0.00 0.00 0.00 0.07 0.07 0.07

SwingState 0.00 0.00 0.00 7.3 42.2 86.5

Polling 5.62 5.95 6.14 0.1 0.1 0.1

(a) State transfer accuracy and duration.

Overhead [#kB] Overhead
[
#pkt s

]
Slicing approach td = 1 td = 5 td = 10 td = 1 td = 5 td = 10

Our approach 55.68 55.68 55.68 45 45 45

SwingState 10.48 11.45 12.5 291.2 318.3 347.4

Polling - - - - - -

(b) State transfer overhead.

Figure 4.14: State transfer scenario for the 4-node topology, Overhead during scaling-in. tm = 120, n f = 11,
bw = 1kbps, k = 4, bwl i nk1 = 1.32Gbps, tc = 0, w = 64.

speed flows determined the duration of this process for SwingState (Figure 4.14). In our
experiments, we noticed that iperf3 (which we used to generate traffic) sent bursty traf-
fic, especially at low speeds, and would remain idle the rest of the time. Consequently,
packets originating from flows with the lowest bandwidth occurred even less frequently
than initially expected, and only after the last flow (with the lowest bandwidth) termi-
nated SwingState was able to complete the scaling-in. Furthermore, since our frame-
work was transferring only eight flows but directed 64 packets (table width size) to the
NF, many packets needed to be sent back as an update (since their state was already
transferred), increasing the overhead in bytes.

4.5. RELATED WORK
Over the years, several network-slicing frameworks have been proposed. However, most
of them focus on providing isolation between different slices and do not provide QoS
guarantees inside a slice, cannot handle the problems associated with P4 NFs, and/or do
not adapt to the time-varying requirements that slices may have. The slicing framework
presented in [130] does dynamically scale the resources assigned to a flow. However,
it relies on the network edge to detect when scaling needs to occur and only supports
vertical scaling.

NFV frameworks. Depending on how the state is organized, stored, and accessed, the
different NFV scaling solutions can be divided into local (e.g., [166–170]), remote (e.g., [171]),
and distributed approaches (e.g., [172–174]). Remote approaches store all the state re-
motely at some centralized storage and can thus not be used with P4 NFs, since they
would impose significant performance penalties per processed packet (to retrieve the
state). Local approaches never migrate the state and can, therefore, not deal with sce-
narios in which an increase of the flow’s volume causes NF overload. Additionally, they
must wait for all flows present on an NF to finish before shutting it down, resulting in
inefficient resource utilization. Furthermore, most NFV frameworks were not designed
with P4 NFs in mind. The ones that were, such as P4NFV [175], use a controller-driven
approach and will, consequently, suffer from all aforementioned issues associated with
that approach.

4.6. CONCLUSION

4

65

Data plane state migration. SwingState [162] depends on the arrival pattern of the in-
coming packets and can therefore have a long transfer time. LODGE [176] targets dis-
tributed network applications by creating a shared network state. SNAP [177] and U-
HAUL [178] move only the state of long-lived flows. Thus, these approaches are not well
suited for this chapter’s objective.

4.6. CONCLUSION
This chapter has presented an elastic network-slicing framework for P4-programmable
network devices. The presented framework has a hierarchical design, focusing on both
the control and data planes, and builds on top of the framework presented in the previ-
ous chapter, which focused on vertical scaling. Hence, similar to Chapter 2, the control
plane with its global overview of the network guides the data plane behavior but offloads
all time-sensitive tasks to the fast data plane, which, at time-sensitive moments, per-
forms tasks autonomously and with limited input. However, in contrast to the previous
chapter, the framework removes the application from the scaling process and introduces
the overload (under-load) detection module in the programmable switches. This mod-
ule is primarily responsible for tracking the utilization of the resources assigned to the
slice and, consequently, detects when the slices’ resources need to be readjusted. More-
over, the framework in this chapter enables horizontal scaling by introducing the rerout-
ing and state transfer module. By doing so it allows for more flexibility in the traffic
management module in the central controller, which no longer needs to make sure that
traffic will not exceed the bandwidth of the link and can support flows with changeable
and not predetermined maximal bandwidth.

Finally, the last two chapters addressed the second challenge, described in Sec. 1.3
of this thesis, by introducing a dynamic network slicing framework able to handle the
changeable requirements of different flows and slices in real-time. Moreover, they demon-
strated that offloading time-sensitive tasks to the data plane can increase slice resource
efficiency while minimizing scaling time and maintaining state consistency, especially
when compared to state-of-the-art controller-driven approaches.

5
INTERACTIONS BETWEEN

CONGESTION CONTROL

ALGORITHMS

In the previous two chapters, we focused on service isolation by introducing the concept of
network slicing. However, it is also crucial to satisfy the quality of service (QoS) require-
ments of multiple flows present inside these slices. In the following chapters, we, therefore,
address interactions between these flows. We start with flows that provide a feedback loop
(such as connections which use transport protocols like TCP or QUIC); in particular, we
study the interactions between flows using different congestion control algorithms, i.e., an
essential component of these transport layer protocols crucial in achieving high utiliza-
tion while preventing network overload.

Over the years, many different congestion control algorithms have been developed, each
trying to improve over the others in specific scenarios or for specific applications. However,
the interactions between flows using different algorithms and their co-existence have, to
date, not been thoroughly evaluated. This chapter fills that knowledge gap. We start by
dividing these algorithms into three groups (depending on the metric they use to detect
congestion): loss-based, delay-based, and hybrid congestion control algorithms. Next, we
reveal that resources are rarely distributed fairly through head-to-head comparisons, es-
pecially when flows sharing a link have different round-trip times or belong to different
groups.

This chapter is based on a published conference paper: B.Turkovic, F.A. Kuipers, S. Uhlig, Interactions between
Congestion Control Algorithms, 2019 Network Traffic Measurement and Analysis Conference (TMA) 2019 [179]
and its extended version: B. Turkovic, F.A. Kuipers, S. Uhlig, Fifty shades of congestion control: A performance
and interactions evaluation, arXiv preprint arXiv:1903.03852, (2019) [180]

67

5

68 5. INTERACTIONS BETWEEN CONGESTION CONTROL ALGORITHMS

5.1. INTRODUCTION
When a packet arrives at a switch, it is processed based on the installed forwarding rules
and forwarded to an output link. However, since output links have a fixed bandwidth,
a network node receiving more traffic than the output link can send further along the
network will become congested. Hence, each connection’s maximum rate is limited by
the so-called bottleneck link on the path, i.e., the output link with the least amount of
available resources to process that flow.

To detect this point, during the connection, end-hosts continuously probe for re-
sources by increasing their sending rate. This process continues until a connection reaches
the previously mentioned bottleneck bandwidth (Application-limited domain, Figure 5.1).
By increasing the sending rate further, buffers in the network nodes start to fill, and
queues might form (Queueing domain, Figure 5.1). Packets arrive at the bottleneck faster
than they can be forwarded, causing an increased delay, while the delivery rate remains
the same. Finally, when buffers are full, the network node has to drop packets (Dropping
domain, Figure 5.1). Increasing buffer size will not improve the network’s performance
and instead will lead to bufferbloat, i.e., the formation of queues in the network devices
that unnecessarily add delay to every packet passing through.

Inflight data [bits]

RTT [ms]

maximum
queueing

delay

Queuing in the node(s)

no
queueing

RT Tpr op.

Inflight data [bits]

Delivery rate [Mbps]

B wB tl .

Maximum delivery rate

Optimal point

Optimal point

Application-limited
domain

(Sending less than

the switch can handle)

Queueing domain
(Queues start to fill

and packets

are delayed)

Dropping domain
(Queues are full

and switch starts to

drop packets)

Figure 5.1: Effect of the number of packets sent on the RTT (top) and delivery rate (bottom). Based on [181,
182].

In the wake of the growing demand for higher bandwidth, higher reliability, and
lower latency, novel congestion control algorithms have been developed and deployed.
For example, in 2016, Google published its bottleneck bandwidth and round-trip time
(BBR) congestion control algorithm, claiming it was able to operate without creating
packet loss or filling buffers [181]. Around the same time, TCP LoLa [32] and TIMELY [33]
were proposed, focusing on low latency and bounding of the queuing delay. Moreover,

5.2. MAIN CONTRIBUTIONS

5

69

new transport protocols such as QUIC allow the implementation of algorithms directly
in user-space, facilitating the rapid development of new transport features. However,
congestion control algorithms have been typically developed in isolation, without thor-
oughly investigating their behavior in the presence of other congestion control algo-
rithms, which is the main goal of this chapter.

5.2. MAIN CONTRIBUTIONS
In this chapter, we first divide existing congestion control algorithms into three groups:
loss-based, delay-based, and hybrid. Based on experiments in a testbed, we study the
interactions over a bottleneck link among flows of the same group, across groups, as
well as when flows have different Round-Trip Times (RTTs). We find that flows using
loss-based algorithms are over-powering flows using delay-based, as well as hybrid al-
gorithms. Moreover, when flows using loss-based algorithms fill the queues, an increase
in queuing delay of all the other flows sharing the bottleneck is determined by their pres-
ence. Consequently, non-loss-based groups cannot be used in a typical network, where
flows typically rely on a loss-based algorithm. In addition, we observe that convergence
times can be large, which may surpass the flow duration for many applications. Finally,
we discover that hybrid algorithms, such as BBR, not only favor flows with a higher RTT,
but they also cannot maintain a low queuing delay as promised.

In Section 5.3, we provide an overview and classification of congestion control mech-
anisms. In Section 5.4, we (1) identify a set of key performance metrics to compare them,
(2) describe our measurement setup, and (3) present our measurement results. Addi-
tional measurements are given in [183].

5.3. CLASSIFICATION
Since the original TCP specification (RFC 793 [29]), numerous congestion control algo-
rithms have been developed. In this chapter, we focus mostly on algorithms designed
for wired networks. The algorithms we consider can be used both by QUIC and TCP
and can be divided into three main groups (see Figure 5.2): (1) loss-based algorithms
that detect congestion when buffers are already full and packets are dropped, (2) delay-
based algorithms that rely on RTT measurements and detect congestion by an increase
in RTT, indicating buffering, and (3) hybrid algorithms that use some combination of the
previous two methods.

5.3.1. LOSS-BASED ALGORITHMS
The original congestion control algorithms from [29] were loss-based algorithms with
TCP Reno being the first widely deployed one. With the increase in network speeds,
Reno’s conservative approach of halving the congestion window became an issue. TCP
connections were unable to fully utilize the available bandwidth, so that other loss-
based algorithms were proposed, such as NewReno [30], Highspeed-TCP (HS-TCP [36]),
Hamilton-TCP (H-TCP [37]), Scalable TCP (STCP [42]), Westwood (TCPW [49]), TCPW+
(TCP Westwood+ [50]), TCPW-A [51], and LogWestwood+ [44]. They all improved upon
Reno by including additional mechanisms to probe for network resources more aggres-
sively. However, they also react more conservatively to loss detection events, and dis-

5

70 5. INTERACTIONS BETWEEN CONGESTION CONTROL ALGORITHMS

Single pathMultpath

Loss-based
algorithms

Delay-based
algorithms

Model-based
algorithms

Loss-delay
algorithms

Hybrid algorithms

RFC 793

Tahoe

Reno

NewReno

TCP-SACK

SCTP

HS-TCP

Hamiltion

Hybla

BIC

Cubic

Westwood

Westwood+

TCPW-A

LogWestwood+

DUAL

Vegas

VegasA

NewVegas

FAST

VFAST

TCP-LP

TCP-Nice

LEDBAT

PERT

LoLa

TIMELY

MPPERT

WVegas

Veno

Vegas+

TCP AR

Africa

Compound

Fusion

YeAH

AReno

Libra

Illinois

LIA

OLIA

BLIA

D-LIA

BBR

Rapid

PCC

PCC-Vivace

Remy

Tao

Sprout

Figure 5.2: Classification of different congestion control algorithms. Dotted arrows indicate that one was based
on the other.

5.3. CLASSIFICATION

5

71

criminate between different causes of packet loss.
However, these improvements did not address any of the existing RTT-fairness issues,

but introduced new ones [56, 57]. Indeed, when two flows with different RTTs share the
same bottleneck link, the flow with the lowest RTT is likely to obtain more resources
than other flows. To resolve this issue, BIC [56] and Hybla [57] were proposed. Hybla
modified NewReno’s Slow Start and Congestion Avoidance phases and made them semi-
independent of RTT. However, the achieved RTT-fairness meant that flows with higher
RTTs behaved more aggressively. The main idea of BIC was to use a binary search al-
gorithm to approach the optimal congestion window size. However, later evaluations
showed that BIC can still have worse RTT-fairness than Reno [48]. In response, Cubic
was proposed in [48]. Since Cubic is the current default algorithm in the Linux kernel,
we will use it as a reference for loss-based algorithms throughout this thesis.

5.3.2. DELAY-BASED ALGORITHMS

In contrast to loss-based algorithms, delay-based algorithms are proactive. They try to
find the point when the queues in the network start to fill, by monitoring the variations
in RTT. An increase in RTT, or a packet drop, causes them to reduce their sending rate,
while a steady RTT indicates a congestion-free state. Unfortunately, RTT estimates can
be inaccurate due to delayed ACKs, cross traffic, routing dynamics, and queues in the
network [33, 184].

The first algorithm that used queuing delay as a congestion indicator was TCP Dual.
The first improvement to this algorithm was Vegas [185]. It focuses on estimating the
number of packets in the queues and keeping it under a certain threshold. However, sev-
eral issues were identified. First, when competing with existing loss-based algorithms,
Vegas flows suffer from a huge decrease in performance [186, 187]. Second, it has a
bias towards new flows and, finally, interprets rerouting as congestion [187]. To address
these issues several modifications to Vegas were proposed, including VegasA [187], Ve-
gas+ [186], FAST [188], VFAST [189], and NewVegas [190].

Recently, as low latency and service differentiation became important, several new
algorithms have been proposed. TCP-LP [191, 192], TCP-Nice and LEDBAT [193] focused
on the differentiation between high-priority (foreground) and low-priority (background)
flow. Moreover, Hock et al. designed LoLa [32], focusing on low latency and convergence
to a fair share between flows. To improve performance in datacenter networks, Google
proposed TIMELY [33], which relies on very precise RTT measurements. Since Vegas is
used as the base algorithm by many other delay-based and hybrid algorithms, we use it
as a reference for delay-based algorithms.

5.3.3. HYBRID ALGORITHMS

Hybrid algorithms use both loss and delay as congestion indicators. The first hybrid al-
gorithm was Veno [194]. It is a modification of the Reno congestion control that extends
the additive increase and multiplicative decrease functions by also using queuing delay
as the secondary metric. To efficiently utilize the available bandwidth in high-speed net-
works, many algorithms use similar modifications based on the Vegas or Dual network
state estimations. Some of the most important ones are Africa [195], Compound [196],
and YeAH [197]. Other algorithms modify the congestion window increase function to

5

72 5. INTERACTIONS BETWEEN CONGESTION CONTROL ALGORITHMS

follow a function of both the RTT and the bottleneck link capacity, such as Illinois [198],
AR [199], Fusion [200], TCP-Adaptive Reno (AReno) [201], and TCP Libra [202].

However, in recent years, a set of new algorithms, not relying on the standard AIMD
mechanism but building a network model using the previously mentioned metrics has
emerged. In 2016, Google developed the bottleneck bandwidth and round-trip time
(BBR) algorithm. However, several problems, mostly related to the Probe RTT phase,
were discovered: (1) bandwidth can be shared unfairly depending on the timing of new
flows and their RTT, and (2) unfairness towards other protocols, especially Cubic [182,
203, 204]. At the same time, a new approach to congestion control using online learning
was proposed in PCC [45]. In this thesis, we will refer to these new hybrid algorithms as
model-based algorithms. Similarly to all of the hybrid algorithms that still use the stan-
dard additive-increase/multiplicative-decrease (AIMD) algorithm, we will refer to this
group as a loss-delay sub-group.

We use BBR as our representative for hybrid algorithms, since it is actually deployed
(in Google’s network) and implemented in the Linux kernel (since v4.9).

5.4. EVALUATION
Using the metrics described in Section 5.4.1 and via the set-up described in Section 5.4.2,
in Sections 5.4.3 and 5.4.4 we evaluate the representatives of the three algorithm groups
(Cubic, Vegas and BBR). Additional measurements and results of all other algorithms
that have been implemented in the Linux kernel can be found in [183].

5.4.1. PERFORMANCE METRICS
To be exhaustive, we use the following metrics to compare different congestion control
algorithms:

• Sending rate. Sending rate represents the bit-rate (incl. data-link layer overhead)
of a flow generated by the source, per time unit.

• Throughput. Throughput measures the number of bits (incl. the data-link layer
overhead) received at the receiver, per time unit.

• RTT (round-trip time). RTT represents the time between sending a packet and
receiving an acknowledgement of that packet.

• Goodput. Goodput measures the amount of useful data (i.e., excl. overhead) de-
livered by the network between specific hosts, per time unit. This value is an indi-
cator of the application-level QoS experienced by the end-users as their desire is to
get the resources they requested in the shortest possible time. Goodput is defined
as:

Goodput = (Ds −Dr −Do)

∆t
(5.1)

where Ds is the number of useful bits transmitted, Dr the number of bits retrans-
mitted and Do the number of overhead bits in the time interval ∆t . Additionally,
we use the goodput ratio, i.e., the amount of useful data transmitted divided by

5.4. EVALUATION

5

73

the total amount of data transmitted, computed as:

Goodput_ratio = (Ds −Dr −Do)

Ds
(5.2)

While goodput is comparable to throughput, it excludes packets that were retrans-
mitted or dropped as well as protocol overheads.

• Fairness. Fairness describes how the available bandwidth is shared among multi-
ple users. Ideally, each flow is allocated either the required amount of bandwidth,
if available, or a fair portion if the total demand of all flows exceeds the avail-
able bandwidth. We consider three different types of fairness: (1) intra-fairness
describes the resource distribution between flows running the same congestion
control algorithm; (2) inter-fairness describes the resource distribution between
flows running different congestion control algorithms, and (3) RTT-fairness de-
scribes the resource distribution between flows having different RTTs. Fairness is
represented by Jain’s index [205] and is computed as:

F = (
∑n

i=1 xi)2

n ·∑n
i=1(xi)2 (5.3)

where xi is the throughput of the flow i . This index is based on the throughput and
indicates how fair the available bandwidth at the bottleneck is shared between all
flows present and ranges from 1/n (worst case) to 1 (best case), where n is the
number of flows.

5.4.2. EXPERIMENT SETUP
Each server in our testbed has a 64-bit Quad-Core Intel Xeon CPU running at 3GHz with
4GB of main memory and has 6 independent 1 Gbps NICs. Each server can play the role
of a 6-degree networking node. All nodes run Linux with kernel version 4.13 with the
txqueuelen set to 1000, and were connected as shown in Figure 5.3 with degree 1 ≤ n ≤ 4
(consequence of the limited number of NICs per server in the testbed). Given that the
performance of congestion control algorithms is affected by the bottleneck link on the
path, such a simple topology is sufficient for our purposes. The maximum bandwidth
and the bottleneck (between s1 and s2) was limited to a pre-configured value (100Mbps
in the case of TCP and 10Mbps in the case of QUIC to make sure that the sending rate of
the end-user applications is enough to saturate the bottleneck link) with the use of eth-
tool. To perform measurements, we rely on tshark, iperf, QUIC client and server (avail-
able in the Chromium project [206]) and socket statistics. From traffic traces (before and
after the bottleneck), we calculate the metrics described in Section 5.4.1. All the values
are averaged per flow, using a configurable time interval. We consider the following two
scenarios:

• BW scenario. The purpose of this scenario was to test the interoperability of differ-
ent congestion control algorithms. Each analyzed algorithm is compared to itself
and all others. Host Ci generates TCP flows towards servers running at Si using
different congestion control algorithms (Figure 5.3a).

5

74 5. INTERACTIONS BETWEEN CONGESTION CONTROL ALGORITHMS

Clients Servers

P4air

C1

Cn Sn

S1
.

Bottleneck (limited bandwidth)

(a) BW Scenario.

Clients Servers

P4air

C1

Cn Sn

S1
.

dn

d1

Configurable delay

Bottleneck (limited bandwidth)

(b) RTT scenario.

Figure 5.3: Experiment topology.

• RTT scenario with flows having different RTTs. The purpose of this scenario is
to test the RTT-fairness of different congestion control algorithms. In addition to
the setup of the previous scenario, the delay at links between Si and node 2 is
artificially increased using Linux TC (adding 0−400ms, Figure 5.3b).

We ran these scenarios five times. For all of them, the results we observe lead to
qualitatively similar interactions, as presented in Sections 5.4.3 and 5.4.4.

5.4.3. BW SCENARIO

Intra-Fairness. Delay-based and loss-based algorithms have the best intra-fairness prop-
erties, with an average fairness index within 0.94−0.95 (Table 5.1). Figure 5.4 shows that
Jain’s index is always close to 1, indicating that all present flows receive an equal share of
the resources. In addition, delay-based algorithms operate without filling the buffers, in
contrast to the loss-based algorithms that periodically fill the buffers and drop packets
(Figures 5.4 and 5.6). Further, the convergence time of loss-based algorithms is higher
(≈ 20 s, compared to 5s needed for 2 Vegas flows) and their throughput oscillates the
most from all the evaluated approaches (Figure 5.4). When the number of Cubic flows in-
creases to 4, bandwidth oscillations increase as well, and fairness decreases to 0.82 [183].

In contrast, hybrid-based algorithms (BBR) unexpectedly had the worst intra-fairness
properties. Figure 5.4 shows that they rarely converge to the same bandwidth, but oscil-
late between 30 Mbps and 70 Mbps (every probeRTT phase), even in scenarios in which
they claim a similar share of the available resources on average. The flow that measures
a higher RTT adopts a more aggressive approach and claims more resources, even if the
measured RTT difference is very small (≤ 0.5ms). Hence, they are not particularly stable.
Unexpectedly, when the number of flows increases to 4, the fairness index improves, and
although oscillations go down they are still present.

Inter-Fairness. As expected, flows that use delay-based algorithms experience a huge

5.4. EVALUATION

5

75

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

Cubic(Throughput) Cubic(Throughput)

0.5

0.6

0.7

0.8

0.9

1

Ja
in

in
d

ex

Fairness

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

Vegas(Throughput) Vegas(Throughput)

0.5

0.6

0.7

0.8

0.9

1

Ja
in

in
d

ex

Fairness

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

BBR(Throughput) BBR(Throughput)

0.5

0.6

0.7

0.8

0.9

1

Ja
in

in
d

ex

Fairness

Figure 5.4: BW scenario: Comparison of average RTT, average throughput, and fairness index for representa-
tives of the congestion control algorithm classes groups in case the link is shared by 2 flows using the same
algorithm (time unit 300ms).

decrease in throughput if they share the bottleneck with loss-based flows (Figure 5.5).
This is because they detect congestion earlier, at the point when the queues start to fill.
Loss-based algorithms on the other hand continue to increase their sending rate as no
loss is detected. This increases the observed RTT (Figure 5.6) of all flows, triggering the
delay-based flow to back off [186, 187]. As a consequence, only a few hundred millisec-
onds after the start of the connections, delay-based algorithms reduced their sending
rate to 1/10−1/15 of the sending rate of the loss-based algorithms. This process contin-
ued until almost no resources were available for the delay-based algorithm (Figure 5.5).

5

76 5. INTERACTIONS BETWEEN CONGESTION CONTROL ALGORITHMS

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

BBR(Throughput) Cubic(Throughput)

0.5

0.6

0.7

0.8

0.9

1

Ja
in

in
d

ex

Fairness

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

Vegas(Throughput) Cubic(Throughput)

0.5

0.6

0.7

0.8

0.9

1

Ja
in

in
d

ex

Fairness

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

Vegas(Throughput) BBR(Throughput)

0.5

0.6

0.7

0.8

0.9

1

Ja
in

in
d

ex

Fairness

Figure 5.5: BW scenario: Comparison of average throughput and fairness index for representatives of the con-
gestion control algorithm groups in case the link is shared by 2 flows using different algorithms (time unit
300ms).

A similar behaviour is observed when a bottleneck is shared between flows from a
hybrid and a delay-based algorithm: BBR outperforms Vegas. However, the difference in
the throughput is less significant than the one observed in the previous scenario, with
the Vegas flow claiming almost 40Mbps on average (Table 5.1). When we increase the
number of Vegas or BBR flows at the bottleneck to four, the new flows increase their
bandwidth at the expense of the BBR flow, reducing its share from 50Mbps down to
20Mbps, and increasing the fairness index to 0.9−0.94 [183]. This is a consequence of
the fact that BBR tries to operate without filling the queues, allowing the delay-based
algorithm to grow and claim more bandwidth. Thus, we conclude that, in contrast to
loss-based algorithms, delay-based algorithms can co-exist with hybrid-based ones.

5
.4

.E
V

A
L

U
A

T
IO

N

5

77

Table 5.1: BW scenario with 2 flows: Different metrics for representatives of the three congestion control algorithm groups (calculated for 5 different runs).

Protocol Group Algorithm Average Average Average Average Average Average
goodput goodput ratio RTT sending rate throughput Jain index
[Mbps] [%] [#packet s] [ms] [Mbps] [Mbps]

TCP

Loss- vs.
Loss-based

Cubic 44.98 93.57 76.65 48.77 46.59
0.95

Cubic 43.15 93.78 78.32 50.98 46.59
Delay- vs.
Delay-based

Vegas 43.81 94.81 1.66 48.65 45.47
0.94

Vegas 42.72 94.76 1.68 49.79 44.38

Hybrid vs. Hybrid
BBR 44.98 92.32 3.21 52.18 46.70

0.86
BBR 42.72 94.39 3.24 46.89 44.36

Loss-based vs.
Hybrid

Cubic 82.29 94.27 70.37 90.91 85.05
0.59

BBR 7.56 88.86 174.38 8.87 7.89
Loss- vs.
Delay-based

Cubic 87.73 94.34 67.16 97.30 90.66
0.52

Vegas 1.74 91.57 139.79 2.00 1.82
Delay-based vs.
Hybrid

Vegas 38.37 94.34 4.55 37.31 39.83
0.84

BBR 48.56 94.68 4.25 61.65 50.37

5

78 5. INTERACTIONS BETWEEN CONGESTION CONTROL ALGORITHMS

0 10 20 30 40 50 60
0

50
100
150
200

t [s]

R
T

T
[m

s]

Cubic(RTT) Cubic(RTT)

0 10 20 30 40 50 60
0
1
2
3
4

t [s]

R
T

T
[m

s]

Vegas(RTT) Vegas(RTT)

0 10 20 30 40 50 60
0
2
4
6
8

t [s]

R
T

T
[m

s]

BBR(RTT) BBR(RTT)

0 10 20 30 40 50 60
0

100

200

300

t [s]

R
T

T
[m

s]

BBR(RTT) Cubic(RTT)

0 10 20 30 40 50 60
0

100

200

300

t [s]

R
T

T
[m

s]

Vegas(RTT) Cubic(RTT)

0 10 20 30 40 50 60
0
2
4
6
8

t [s]

R
T

T
[m

s]

Vegas(RTT) BBR(RTT)

Figure 5.6: BW scenario: Comparison of average RTT for representatives of the congestion control algorithm
classes groups (time unit 300ms).

5.4. EVALUATION

5

79

When the bottleneck is shared between a hybrid and a loss-based algorithm, Cubic
outperforms BBR, reducing its share of resources to as little as 8% on average (Table 5.1),
confirming results from [207]. The fairness index at the start of the connection is very low
as Cubic claims all the available bandwidth at the expense of the BBR flow. After the Cu-
bic flow fills the buffers, BBR measures an increased RTT and adopts, as a consequence,
a more aggressive approach (Figures 5.6 and 5.5). However, packet loss triggers Cubic’s
back-off mechanism, allowing BBR to measure a lower RTT estimate. Consequently, BBR
reduces its rate, allowing the Cubic flow to claim more bandwidth again.

Moreover, when we increase the number of Cubic flows to three, the throughput of
the BBR flow drops close to zero. Similarly, even three BBR flows are not able to compete
with one Cubic flow, with each of them claiming approximately 5% of the total band-
width on average [183].

Delay. Even if one loss-based algorithm is present at the bottleneck, the observed de-
lay is determined by it, nullifying the advantages of delay-based and hybrid algorithms,
namely the prevention of the queue buildup. BBR, as well as Vegas, which claim to be
able to operate with a small RTT, suffer from a huge increase in average RTT (by more
than 100 ms, Table 5.1) when competing with Cubic (compared to 1−5ms without Cu-
bic). However, when a link is shared between a hybrid and a delay-based flow, both of
them are able to maintain a low RTT. In such scenarios, hybrid algorithms, such as BBR,
due to their more aggressive approach compared to delay-based algorithms, determine
the RTT. Vegas flows, as a consequence, suffer from a small increase in RTT (from 1.68ms
to 4.55ms, Table 5.1).

Summary. In terms of fairness, the only combination that works well together is delay
and hybrid algorithms. In such a scenario, delay is low and the throughput fairly shared,
the more flows the fairer the distribution of resources. Hybrid, as well as delay-based al-
gorithms, suffer from a huge increase in the observed delay if even one loss-based algo-
rithm is present at the bottleneck making them unusable in typical networks consisting
of many different flows. We observe that the most popular TCP flavour, Cubic, is prone
to oscillation and has a high convergence time (≈ 20s). Further, we observe that BBR is
not stable, reacting to very small changes in the observed RTT, which was not previously
reported in the literature.

5.4.4. RTT SCENARIO
We observe RTT-fairness issues for all three groups of algorithms. Even though loss-
based algorithms such as Cubic claim good RTT-fairness properties, they favour the flow
with a lower RTT [208]. This is most noticeable when analyzing two Cubic flows in Fig-
ure 5.7. Even when the number of flows increases to 4 (Figure 5.8), the flow with the
lowest RTT immediately claims all the available resources, leaving less than half to the
other flows in the first 30 s. Several improvements addressing this problem, such as TCP
Libra [202] have been proposed. However, current kernel implementations do not cap-
ture these improvements.

The fairness index for delay-based algorithms slowly increases over time, but due
to a very conservative congestion avoidance approach of Vegas, even after 60s, flows
do not converge (Figure 5.7). When we increase the number of Vegas flows to four, the
dynamics at the bottleneck become more complex with the newest flow (with the highest

5

80 5. INTERACTIONS BETWEEN CONGESTION CONTROL ALGORITHMS

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

Cubic(Through., 0ms) Cubic(Through., 200ms)

0.5

0.6

0.7

0.8

0.9

1

Ja
in

in
d

ex

Fairness

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

Vegas(Through., 0ms) Vegas(Through., 200ms)

0.5

0.6

0.7

0.8

0.9

1

Ja
in

in
d

ex

Fairness

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

BBR(Through., 0ms) BBR(Through., 200ms)

0.5

0.6

0.7

0.8

0.9

1

Ja
in

in
d

ex

Fairness

Figure 5.7: RTT scenario: Comparison of average throughput, and fairness index for representatives of the
congestion control algorithm classes in case the link is shared by 2 flows using the same algorithm (time unit
300ms).

RTT) claiming the largest share of resources at the end (Figure 5.8). Moreover, contrary
to the previous scenarios, in the slow start phase, Vegas flows fill the bottleneck queue
and the observed queuing delay increases to 70ms. However, after 30s the queues are
drained, fairness improves, and the observed queuing delay is very low for all flows (2−
3ms, Figure 5.9).

Hybrid-based algorithms, such as BBR, favour the flow with the higher RTT, confirm-
ing results from [182, 207]. The flow with a higher RTT overestimates the bottleneck
link, claiming all the available resources and increasing the queuing delay (Figure 5.7)
by a factor of more than 10 (from ≈ 4ms to ≈ 50ms). Moreover, when we increase the

5.4. EVALUATION

5

81

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

Cubic(Through., 50ms) Cubic(Through., 100ms)
Cubic(Through., 150ms) Cubic(Through., 200ms)

0.25

0.5

0.75

1

Ja
in

in
d

ex

Fairness

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

Vegas(Through., 50ms) Vegas(Through., 100ms)
Vegas(Through., 150ms) Vegas(Through., 200ms)

0.25

0.5

0.75

1

Ja
in

in
d

ex

Fairness

0 10 20 30 40 50 60
0

20

40

60

80

100

t [s]

T
h

ro
u

gh
p

u
t[

M
b

p
s]

BBR(Through., 50ms) BBR(Through., 100ms)
BBR(Through., 150ms) BBR(Through., 200ms)

0.25

0.5

0.75

1

Ja
in

in
d

ex

Fairness

Figure 5.8: RTT scenario: Comparison of average throughput, and fairness index for representatives of the
congestion control algorithm classes in case the link is shared by 4 flows using the same algorithm (time unit
300ms).

number of BBR flows to four, contrary to expectations, the average RTT increases signifi-
cantly (by a factor of almost 30) reaching values comparable to the ones observed by the
loss-based algorithms in the same scenario although only BBR flows were present at the
bottleneck (Figure 5.8, Table 5.3).

5

82
5

.IN
T

E
R

A
C

T
IO

N
S

B
E

T
W

E
E

N
C

O
N

G
E

S
T

IO
N

C
O

N
T

R
O

L
A

L
G

O
R

IT
H

M
S

Table 5.2: RTT scenario: Different metrics for representatives of the congestion control algorithm groups in case the link is shared by two flows using the same
algorithm (calculated for 5 different runs).

Protocol Group Algorithm Average Average Average Average Average Average
goodput goodput ratio RTT sending rate throughput Jain index
[Mbps] [%] [#packet s] [ms] [Mbps] [Mbps]

TCP

Loss- vs.
Loss-based

Cubic(0ms) 65.67 94.07 233.09 75.47 67.88
0.76

Cubic(200ms) 21.88 93.80 435.53 25.36 22.92
Delay- vs.
Delay-based

Vegas(0ms) 14.99 94.21 32.03 18.91 15.62
0.66

Vegas(200ms) 72.60 94.31 228.96 81.48 75.08

Hybrid vs. Hybrid
BBR(0ms) 8.90 91.98 50.08 9.87 9.24

0.56
BBR(200ms) 79.54 94.39 249.56 90.97 82.1

5
.4

.E
V

A
L

U
A

T
IO

N

5

83

Table 5.3: RTT scenario: Different metrics for representatives of the congestion control algorithm classes in case the link is shared by four flows using the same
algorithm (calculated for 5 different runs).

Protocol Group Algorithm Average Average Average Average Average Average
goodput goodput ratio RTT sending rate throughput Jain index
[Mbps] [%] [#packet s] [ms] [Mbps] [Mbps]

TCP

Loss-based

Cubic(50ms) 47.48 93.86 216.60 53.66 49.59

0.69
Cubic(100ms) 15.32 92.39 264.99 17.71 16.09
Cubic(150ms) 11.70 91.62 316.87 13.62 12.32
Cubic(200ms) 13.68 92.33 368.14 15.78 14.39

Delay-based

Vegas(50ms) 27.32 92.98 94.50 31.09 28.54

0.62
Vegas(100ms) 41.85 93.88 144.11 47.13 43.63
Vegas(150ms) 7.50 90.80 196.87 8.62 7.90
Vegas(200ms) 11.57 91.47 245.18 13.22 12.16

Hybrid

BBR(50ms) 7.11 88.01 203.63 42.56 7.44

0.63
BBR(100ms) 15.23 91.61 253.49 21.43 16.06
BBR(150ms) 22.20 93.59 302.70 18.81 23.45
BBR(200ms) 42.39 94.18 353.22 15.97 44.70

5

84 5. INTERACTIONS BETWEEN CONGESTION CONTROL ALGORITHMS

0 10 20 30 40 50 60
0

200

400

600

t [s]

R
T

T
[m

s]

Cubic(RTT, 0ms) Cubic(RTT, 200ms)

0 10 20 30 40 50 60
0

100

200

t [s]

R
T

T
[m

s]

Vegas(RTT, 0ms) Vegas(RTT, 200ms)

0 10 20 30 40 50 60
0

100

200

300

t [s]

R
T

T
[m

s]

BBR(RTT, 0ms) BBR(RTT, 200ms)

0 10 20 30 40 50 60
0

200

400

t [s]

R
T

T
[m

s]

Cubic(RTT, 50ms) Cubic(RTT, 100ms)
Cubic(RTT, 150ms) Cubic(RTT, 200ms)

0 10 20 30 40 50 60
0

200

400

t [s]

R
T

T
[m

s]

Vegas(RTT, 50ms) Vegas(RTT, 100ms)
Vegas(RTT, 150ms) Vegas(RTT, 200ms)

0 10 20 30 40 50 60
0

200

400

t [s]

R
T

T
[m

s]

BBR(RTT, 50ms) BBR(RTT, 100ms)
BBR(RTT, 150ms) BBR(RTT, 200ms)

Figure 5.9: BW scenario: Comparison of average RTT for representatives of the congestion control algorithm
classes groups (time unit 300ms).

5.5. CONCLUSION

5

85

Summary. We observe that RTT-fairness is poor for all groups of algorithms. Delay-
based algorithms are the only ones that can maintain a low delay compared to the other
two groups. However, they still do not converge towards their fair share. Loss-based al-
gorithms such as Cubic perform poorly, contrary to expectations and their own claims,
favouring flows with lower RTTs. When loss-based algorithms converge to a fair share,
the convergence time is so slow that the average fairness index is still low (0.69 on av-
erage). Finally, hybrid algorithms such as BBR suffer from significant dynamics in the
sharing among its own flows, favoring those with higher RTT and significantly increas-
ing the queuing delay. Hence, we observe that even when only BBR flows are present on
the bottleneck, the claim of being able to operate without filling the buffers is not true.

5.4.5. RESULTS: QUIC
When QUIC is used with different congestion control algorithms, we observe similar in-
teractions as earlier. With BBR, we observe the same RTT-unfairness properties as with
the TCP BBR, which always favours the flows with a higher RTT (with an average fair-
ness index of 0.59). Similarly, QUIC with Cubic always favours the flow with a lower RTT.
However, the difference between the throughput of the two QUIC Cubic flows is much
smaller than the one observed for the TCP equivalent, with an average fairness index of
0.93. In all our QUIC scenarios where hybrid (BBR) and loss-based (Cubic) flows com-
pete, Cubic outperforms BBR. Over time, as QUIC BBR flows detect a higher RTT and
adopt a more aggressive approach, BBR grabs more bandwidth at the expense of the Cu-
bic flows. However, this process is slow and the throughput of the BBR flow remains low.
Detailed measurements of QUIC can be found in [183].

5.5. CONCLUSION
After dividing existing congestion control algorithms into three groups (loss-based algo-
rithms, delay-based algorithms, and hybrid algorithms), we studied their interactions.

We observed multiple fairness issues, among flows of the same group, across differ-
ent groups, as well as when flows having different RTTs were sharing a bottleneck link.
We found that delay-based, as well as hybrid algorithms, suffer from a decrease in per-
formance when competing with flows from the loss-based group, making them unusable
in a typical network where the majority of flows will rely on a loss-based algorithm. Not
only do they get an unfair share of the available bandwidth, but they also suffer from
a huge increase in the observed delay when the loss-based algorithms fill the queues.
The only combination that worked well together was delay and hybrid algorithms: the
observed RTT was low and resources shared fairly (the more flows the fairer the distri-
bution of resources). Finally, we found that hybrid algorithms, such as BBR, are very
sensitive to changes in the RTT, even if that difference is very small (≤ 0.5ms). They not
only favour the flow with a higher RTT at the expense of the other flows, but they also
cannot maintain a low queuing delay as promised even if they are the only flows present
in the network.

Therefore, our work shows that to support applications that require low latency, a
good congestion control algorithm on its own won’t be enough, especially since most
networks typically process flows using different congestion control algorithms. Further,

5

86 5. INTERACTIONS BETWEEN CONGESTION CONTROL ALGORITHMS

as congestion control algorithms are not determined by the network but by the end-
hosts, they can never be enforced by the network operator. However, having all the end-
host agree on the same protocol is complex, and even then, does not necessarily guar-
antee fairness (see Section 5.4.4). Moreover, newer transport protocols such as QUIC,
enable the end-users to design their own congestion protocol directly in user-space,
thereby only increasing the already present diversity in the networks. Hence, guaran-
teeing that flows of a given group (in terms of the type of congestion control) will receive
their expected share of resources requires that resource isolation be provided between
the different groups, which is explored in more detail in the following chapter.

6
P4AIR: INCREASING FAIRNESS

AMONG CONGESTION CONTROL

ALGORITHMS

In the previous chapter, we showed that congestion control algorithms—because they are
usually developed in isolation rather than with reference to interactions with other proto-
cols and algorithms—tend to overpower each other. This results in unfair resource distri-
bution, with a subset of the flows usually claiming most resources.

To solve this problem, we use programmable switches and the network programming lan-
guage P4 to enforce fairness from within the network itself, instead of from the congestion
control algorithms that run at the end-points. Our solution P4air, continuously moni-
tors the properties of all flows that pass through a switch and groups them based on the
behavior of the congestion control algorithms used. Furthermore, it applies appropriate
measures to suppress the aggressive flows and boost the smaller flows for each group. Us-
ing modern programmable hardware (Intel Tofino switch), our experiments demonstrate
that in terms of fairness, P4air performs significantly better than current state-of-the-art
solutions.

This chapter is based on a published conference paper: B.Turkovic, F.A. Kuipers, P4air: Increasing Fairness
among Competing Congestion Control Algorithms, 28th IEEE International Conference on Network Protocols
(ICNP), (2020) [77]

87

6

88 6. P4AIR: INCREASING FAIRNESS AMONG CONGESTION CONTROL ALGORITHMS

6.1. INTRODUCTION
The field of congestion control – a key component of transport-layer protocols – contin-
ues to see innovation through many novel proposals, each claiming superiority for spe-
cific applications or scenarios [27, 31–35, 38–41, 43, 45–47, 52–55, 58, 209]. Furthermore,
new transport protocols, such as QUIC and MPQUIC, facilitate the rapid development
of new transport features directly in the user space, enabling even more customization
and more diverse network protocols in the future [59–61].

However, due to this abundance of new protocols and algorithms, it has become
almost impossible to take their interactions with other protocols and algorithms into
account. Consequently, even for algorithms designed with good fairness properties in
mind, multiple fairness issues exist, especially when bottleneck links are shared between
flows using different congestion control algorithms or having different Round-Trip Times
(RTTs) [57, 183, 187, 210–215]. For example, classic TCP flows (using loss-based algo-
rithms) fill the bottleneck queues (resulting in high queuing delay) and only react to the
resulting packet loss. These algorithms overpower newer congestion control algorithms
that also take delay measurements into account, nullifying their inherent advantages
(e.g., low queuing delay) and making them unusable in a typical network, where the ma-
jority of flows still rely on loss-based algorithms. Furthermore, even when only flows
using newer algorithms are present at the bottleneck, fairness can still be low, especially
among flows having different RTTs.

Active queue management (AQM) solutions [62, 66, 67, 71–73, 76] have been pro-
posed to improve fairness by deploying different dropping policies at the bottleneck.
They detect congestion in the queue buildup phase, improving the end-to-end latency,
and forcing the most aggressive flows to back off. However, by doing so, they only tar-
get one of the many metrics congestion control algorithms use to detect congestion (i.e.,
packet loss). In other words, they treat all flows as loss-based and are oblivious to the
specific congestion control algorithms used. This has multiple disadvantages:

1. Algorithms that do not use loss as a metric (e.g., BBRv1) are never targeted by
AQMs, potentially allowing them to overpower traditional loss-based algorithms
(that would back-off upon detecting loss).

2. For algorithms that use delay as their primary metric, instead of targeting the more
appropriate metric (increase in RTT) and avoiding the unnecessary retransmis-
sions, AQMs trigger a more severe back-off mechanism by targeting packet loss.

3. AQMs usually react too late, i.e., when the buffer is already partially full, and the
back-off mechanism of the delay-based algorithm was already triggered (due to
the increase in RTT).

Moreover, most AQM solutions target the network edge and are not well suited for the
network core that simultaneously processes thousands of flows. For example, state-of-
the-art algorithms have problems when operating with many flows or are too expensive
to be implemented in devices, especially due to the high number of queues needed for
ideal performance [216–220].

6.2. CLASSIFICATION PATTERNS

6

89

6.1.1. MAIN CONTRIBUTIONS
In this chapter, by taking advantage of the possibilities of switches with P4-programmable
data planes, we develop P4air, a P4 application, run entirely in the data plane, that en-
forces fairness between all flows present on a switch. We show that P4air, in addition
to improved fairness, can run on modern programmable hardware at line-rate (speeds
reaching Tbps) without any loss of accuracy or performance.

First, we extend the analysis of the inter-, intra-, and RTT-fairness properties of con-
gestion control algorithms from the previous chapter using all the algorithms present in
the Linux kernel in Section 6.2. We use this as a base to determine the metrics P4air will
use to classify the congestion control algorithms into the previously defined four groups
with high inter-fairness properties and similar behavior. Second, in Section 6.3.1, we
develop a “fingerprinting” solution that can classify, directly in the data plane, the al-
gorithms into the previously defined groups. Furthermore, for each group, we allocate
several queues. To adapt to the current network state, we develop, in Section 6.3.2, a
queue reallocation algorithm (in the data plane) that favors groups with most flows by
assigning more queues to them. Next, in Section 6.3.3, we complement our fingerprint-
ing solution by developing an AQM-like solution, leveraging different metrics per group
to detect congestion by applying custom actions to flows. In Section 6.4, we evaluate our
solution by comparing it to different queue management techniques available on pro-
grammable hardware and implementable in P4 and show that our solution can increase
fairness while maintaining high utilization. Section 6.5 highlights several deployment
considerations. We present related work in Section 6.6 and conclude in Section 6.7.

6.2. CLASSIFICATION PATTERNS

6.2.1. GROUPS OF CONGESTION CONTROL ALGORITHMS
To determine the patterns P4air will track, we start by extending our evaluation from
Chapter 5 to all available algorithms in the Linux kernel (Figure 6.1). Using the same
setup as in Chapter 5, and the same fairness index (i.e., Jain’s index [205]), we observe
similar results, i.e., the fairness index is (1) high if flows use algorithms that rely on the
same metric, or (2) low if flows use algorithms that rely on different metrics (Figure 6.1a).

First, we use these observations to further split the hybrid group of algorithms in
two distinct groups with good fairness properties: called the model and the loss-delay
algorithms. Next, we use these observations to identify the metrics and patterns P4air
will track for each identified group of congestion control algorithms:

• Purely loss-based algorithms. Algorithms from this group, such as Reno [221]
and Cubic [222] (default algorithm in the Linux kernel), only rely on packet loss
to detect congestion and are the most aggressive among all the analysed groups.
Queues are filled periodically and the sending rate is reduced only after detecting
loss. Consequently, we choose a consistent queue build-up as the main identifying
pattern of this group.

• Delay-based algorithms. Algorithms from this group are proactive and among the
least aggressive of the analysed algorithms. They try to detect the point at which
the queues start to fill and reduce their sending rate after detecting an increase

6

90 6. P4AIR: INCREASING FAIRNESS AMONG CONGESTION CONTROL ALGORITHMS

H
S-

T
C

P

ST
C

P

H
T

C
P

B
IC

C
u

b
ic

N
ew

R
en

o

H
yb

la

Ye
A

H

Il
lin

o
is

Ve
n

o

W
es

tw
o

o
d

+

B
B

R

Ve
ga

s

Lo
La

HS-TCP 0.98 0.75 0.92 0.95 0.88 0.94 0.72 0.73 0.76 0.66 0.70 0.60 0.53 0.58

STCP 0.75 0.99 0.80 0.83 0.83 0.81 0.77 0.78 0.83 0.71 0.70 0.58 0.53 0.57

HTCP 0.92 0.80 0.99 0.84 0.96 0.99 0.81 0.88 0.88 0.78 0.86 0.57 0.52 0.56

BIC 0.95 0.83 0.84 0.98 0.80 0.85 0.66 0.68 0.66 0.61 0.67 0.59 0.53 0.67

Cubic 0.88 0.83 0.96 0.80 0.99 0.97 0.87 0.89 0.88 0.82 0.88 0.58 0.53 0.56

New Reno 0.94 0.81 0.99 0.85 0.97 0.99 0.83 0.88 0.89 0.78 0.87 0.57 0.53 0.55

Hybla 0.72 0.77 0.81 0.66 0.87 0.83 0.99 0.96 0.98 0.92 0.97 0.58 0.52 0.56

YeAH 0.73 0.78 0.88 0.68 0.89 0.88 0.96 0.99 0.98 0.92 0.97 0.62 0.52 0.56

Illinois 0.76 0.83 0.88 0.66 0.88 0.89 0.98 0.98 0.99 0.92 0.95 0.58 0.52 0.54

Veno 0.66 0.71 0.78 0.61 0.82 0.78 0.92 0.92 0.92 0.98 0.93 0.60 0.52 0.54

Westwood+ 0.70 0.70 0.86 0.67 0.88 0.87 0.97 0.97 0.95 0.93 1.00 0.58 0.52 0.54

BBR 0.60 0.58 0.57 0.59 0.58 0.57 0.58 0.62 0.58 0.60 0.58 0.94 0.65 0.79

Vegas 0.53 0.53 0.52 0.53 0.53 0.53 0.52 0.52 0.52 0.52 0.52 0.65 1.00 0.67

LoLa 0.58 0.57 0.56 0.67 0.56 0.55 0.56 0.56 0.54 0.54 0.54 0.79 0.67 0.80

Purely loss-based
Metric: loss

Loss-delay
Metric: loss, delay

Model-
based

Delay-
based
Metric:
delay

(a) Inter- and Intra-fairness (100 Mbps, 100 ms).

H
S-

T
C

P

ST
C

P

H
T

C
P

B
IC

C
u

b
ic

N
ew

R
en

o

H
yb

la

Ye
A

H

Il
lin

o
is

Ve
n

o

W
es

tw
o

o
d

+

B
B

R

Ve
ga

s

Lo
La

0 ms 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.98 1.00 0.94 1.00 0.80

20 ms 0.79 0.92 0.94 0.74 0.84 0.85 0.89 0.86 0.92 0.91 0.86 0.56 0.83 0.73

40 ms 0.70 0.83 0.89 0.68 0.80 0.74 0.89 0.78 0.82 0.85 0.77 0.54 0.82 0.59

60 ms 0.67 0.79 0.88 0.66 0.72 0.69 0.94 0.74 0.77 0.83 0.71 0.55 0.78 0.59

80 ms 0.62 0.73 0.87 0.63 0.75 0.67 0.95 0.74 0.74 0.80 0.69 0.56 0.82 0.59

100 ms 0.59 0.74 0.84 0.63 0.73 0.66 0.95 0.73 0.80 0.79 0.65 0.56 0.80 0.62

120 ms 0.59 0.68 0.82 0.60 0.82 0.60 0.96 0.74 0.82 0.78 0.63 0.58 0.82 0.56

140 ms 0.57 0.65 0.80 0.59 0.78 0.59 0.95 0.71 0.83 0.76 0.61 0.57 0.85 0.57

160 ms 0.56 0.64 0.79 0.58 0.76 0.60 0.95 0.69 0.83 0.75 0.59 0.58 0.72 0.55

180 ms 0.56 0.63 0.74 0.56 0.78 0.59 0.95 0.82 0.79 0.72 0.59 0.58 0.81 0.55

200 ms 0.54 0.61 0.70 0.55 0.73 0.58 0.95 0.90 0.78 0.74 0.57 0.59 0.77 0.54

220 ms 0.54 0.61 0.69 0.55 0.76 0.59 0.95 0.79 0.64 0.65 0.56 0.58 0.79 0.59

240 ms 0.56 0.55 0.70 0.56 0.71 0.58 0.94 0.82 0.68 0.65 0.55 0.58 0.8 0.59

260 ms 0.55 0.54 0.65 0.56 0.69 0.56 0.94 0.80 0.63 0.56 0.55 0.58 0.73 0.56

Purely loss-based
Metric: loss

Loss-delay
Metric: loss, delay

Model-
based

Delay-
based

Metric:
delay

(b) RTT-fairness (100 Mbps).

Figure 6.1: Fairness between two flows sharing a bottleneck that (a) use different algorithms, but have the
same RTT, and (b) use the same algorithm, but have different RTTs (the first column indicates the difference
in RTTs). Red squares represent the intra- and RTT-fairness properties of the four groups. The fairness index
ranges from 0.5 (worst) to 1 (best). The results were obtained using the Mininet emulation environment with
a bandwidth limit of 100 Mbps.

6.3. P4AIR

6

91

in RTT (or eventually packet loss). Consequently, they prevent queue build-up,
and, if no flows using algorithms belonging to other congestion control groups are
present, the queue should remain nearly constant, which we use as the identifying
pattern.

• Loss-delay algorithms. Some of the best-known algorithms from this group are
TCP Compound (default algorithm for Windows Server until 2019 [223]) and TCP
Illinois [198]. Since they incorporate delay measurements in the congestion win-
dow calculation, they are less aggressive than the purely loss-based group. How-
ever, they still mostly use loss as their primary metric and only reduce the sending
rate upon detecting loss. Thus, queues are still filled (albeit at a slower pace). Con-
sequently, we use the same pattern as for purely loss-based algorithms, i.e., con-
stant queue build-up, for this group of algorithms as well. To differentiate between
these two groups, we, in addition, track how fast the queue is being filled.

• Model-based hybrid algorithms. Algorithms from this group try to build a model
of the network, instead of using the standard AIMD (additive increase/multiplicative
decrease) algorithm. The bottleneck bandwidth and round-trip time (BBR) algo-
rithm [34], with its periodic pattern of increasing/decreasing the sending rate, is
the best-known example of this group. However, unlike other protocols, it relies
neither on packet loss or increase in RTT to detect congestion. Thus, to detect this
algorithm, we instruct the switches to track the pattern of increasing/decreasing
the sending rate.

Since model-based algorithms can employ very different methods to estimate the
available resources in the network, further sub-groups with their distinct patterns could
be formed. Moreover, since the aggressiveness of the loss-delay and purely-loss algo-
rithms can vary, they also can be further subdivided.

6.2.2. RTT FAIRNESS
Grouping flows based solely on the metric used to detect congestion does not guarantee
good fairness (Figure 6.1b). On the one hand, algorithms using the AIMD algorithm usu-
ally favor the flow with a lower RTT. This flow has a faster update loop and can, therefore,
adjust its sending rate more often, claiming more resources. On the other hand, model-
based algorithms, such as BBR, favor flows with higher RTTs, by allowing them more
time to probe for resources and to dominate the queues in the process [210, 224, 225].
Consequently, when designing P4air we take these differences into account by choosing
custom actions targeting each group’s specifics.

6.3. P4AIR
To detect the patterns and features of different algorithm groups, we decided to make
use of switches with programmable data planes. On the one hand, they offer the possi-
bility to gather and export important packet meta-data (e.g., timestamps from different
stages of processing, queue depth, etc.) directly from the data plane [99]. On the other
hand, they support stateful processing, which enables the switches to track the way flows

6

92 6. P4AIR: INCREASING FAIRNESS AMONG CONGESTION CONTROL ALGORITHMS

Programmable switch

P4air algorithm (ingress)

P4air algorithm (egress)

1 Fingerprinting
UPDATESTATS(num_pkts, id)
if rtt = 0 then

group ← mice
CALCULATERTT

else if t− start > rtt then
if group = mice and

SLOWSTARTEND then
group ← delay
ASSIGNQUEUE(id)

end if
UPDATEBWEST(stats, id)
UPDATEGROUP(stats, id)
RESETSTATS(num_pkts, id)

end if

Reallocation
if recirculated then

UPDATEGROUPREGISTER(group, id)
REALLOCATION(groups)

end if

2

3 Apply actions
switch group do

case delay
DELAYPACKET

case loss, loss−delay
DROPPACKET

case model
ADJUSTRECEIVERWINDOW

end switch

4 Fingerprinting
UPDATESTATS(enq_len, id)
if t− start > rtt then

UPDATEAGGRESSIVNES(stats, id)
UPDATEGROUP(stats, id)
RESETSTATS(enq_len, id)
start ← t

end if

5 Reallocation
if group is changed then

id ← LASTADDED(old_group)
UPDATELASTADDED(group)
RECIRCULATEPACKET

end if

Packet queuing and scheduling
(Round robin)

Ants

Mice

Delay-based

Delay-based

Loss-delay

Loss-delay

Purely loss-based

Purely loss-based

Model-based

Figure 6.2: P4air algorithm. Every incoming packet is processed through three modules: (1) Fingerprinting
module that determines the group (or sub-group) of the flow the packet belongs to (Section 6.3.1); (2) Re-
allocation module that processes the groups’ updates, as well as the allocation of queues between groups
(Section 6.3.2); and (3) Apply actions module that executes custom actions on packets to enforce fairness be-
tween flows being processed in the same queue (Section 6.3.3).

react to certain events, such as loss or an increase in queue size. By leveraging these
two features, we have designed an algorithm, called P4air, that enforces fairness among

6.3. P4AIR

6

93

competing congestion control algorithms.
P4air consists of three modules split between the ingress and egress blocks (Fig-

ure 6.2): (1) Fingerprinting module that groups flows based on their congestion control
algorithm (Section 6.3.1); (2) Reallocation module that, when necessary, redistributes
the queues between groups (Section 6.3.2); and (3) Apply actions module that enforces
fairness among flows processed in the same queue by applying custom actions (Sec-
tion 6.3.3).

6.3.1. FINGERPRINTING MODULE
The fingerprinting algorithm tracks the way the flows react to certain events, distinguish-
ing between short-lived and long-lived flows, as well as different groups of congestion
control algorithms (as discussed in Section 6.2) used by long-lived flows.

Short-lived flows. Whenever P4air receives a packet belonging to a new flow, it classifies
it as a short-lived flow (Figure 6.2). It distinguishes between two groups of short-lived
flows: (1) ant flows, i.e., short, sparse flows that only transport a few, but usually critical,
packets (e.g., ARP, DNS, DHCP) and (2) mice flows, i.e., TCP/QUIC flows still in the slow-
start phase.

End of the slow-start phase. Mice flows typically transport only a small amount of data
and, consequently, do not send enough to congest the switch on their own. However, if
a long-lived flow would reside in this queue, it could significantly degrade their perfor-
mance, causing unnecessary delays or even dropped packets. Thus, P4air implements
a mechanism to detect the end of the slow-start phase, thereby distinguishing between
long- and short-lived flows.

To do so, P4air first uses the timestamps of packets involved in the 3-way handshake,
to estimate the flow’s RTT. To be precise, it subtracts the timestamp of the first SYN from
the first packet sent after this SYN. Next, it estimates the bandwidth-delay product (BDP)
as the product between the flow’s “fair” share – namely the output rate divided by the
number of long-lived connections – and the estimated RTT of the flow. This value de-
scribes the number of packets (bytes) that should be sent per RTT for the TCP connec-
tion to fully utilize its share without filling the queues. Finally, P4air will reclassify a flow
into one of the long-lived groups upon detecting either of the two following patterns:
(1) a decrease in the number of processed packets (bytes) per RTT or (2) the number of
processed packets (bytes) reaching the BDP within an RTT interval. Additionally, upon
detecting the second pattern, P4air proactively drops a packet, forcing the flow to en-
ter the congestion-avoidance phase. This way, the very aggressive slow-start phase is
reduced to only the time needed to reach the bandwidth share the flow should ideally
claim, avoiding the queue buildup for the mice queue.

Long-lived flows. Upon reclassifying a flow as a long-lived flow, P4air continuously ex-
ecutes two actions: (1) tracking of flow statistics, used to determine the group of the
congestion control algorithm; and (2) recalculating the group, upon detecting specific
patterns.

Tracking of flow statistics. For each processed packet P4air updates the following two
statistics: (1) the number of processed packets (or bytes), and (2) the depth of the queue
at the moment before the packet is placed in (enqueue queue length). In addition, as

6

94 6. P4AIR: INCREASING FAIRNESS AMONG CONGESTION CONTROL ALGORITHMS

most congestion control algorithms change their behavior each RTT to react to events
(or lack of them), we decided to aggregate these statistics per RTT. Furthermore, due to
constraints of P4 programs (imposed to make sure that switches will run at line-rate),
in particular, the lack of division and floating-point operations needed to track average
values, we decided to store their maximum values.

Moreover, based on them, P4air tracks two additional metrics, called aggressiveness
and BwEst counter. Aggressiveness tracks how fast a queue is being filled, differentiating
between delay-, loss-delay, and purely loss-based algorithms. Every time the maximum
enqueue length increases by 1%, aggressiveness is increased by 1. Otherwise, the ag-
gressiveness is reset to 0. The BwEst counter tracks the number of patterns of increasing
sending rate (by a factor of at least 1.125), which is typically used while probing for more
bandwidth.

As illustrated in Figure 6.2, the fingerprinting module is split between the ingress
and egress blocks. To account for all packets belonging to a flow, including the ones
dropped due to congestion, we decided to track the number of packets, as well as BwEst
(calculated using (BwEst), in the ingress block. Similarly, since queuing statistics are not
available in the ingress block (as the packet was not yet processed in the queue), the
enqueue length, as well as aggressiveness, are tracked in the egress block.

Recalculating the group. We decided to, initially, classify all long-lived flows into the
most conservative group (delay-based). Only upon detecting a more aggressive behav-
ior, we reclassify them into more aggressive groups: at first loss-delay and, finally, the
purely loss-based group. This way, for delay-based flows, a queue build-up is avoided,
preventing them from sharing the queue with more aggressive flows (and triggering their
back-off mechanism in the process). To do so, at the end of each RTT interval, P4air uses
the flow’s statistics (as well as the statistics from the previous RTT interval) to tracks the
following patterns:

• A continuous increase in the maximum enqueue depth for at least mLD RTT inter-
vals, without any reduction in the sending rate, causes the newest flow assigned to
the delay-based group to be reclassified as loss-delay.

• A continuous increase in the maximum depth of the queue for mPL (mPL > mLD)
subsequent RTT intervals, causes the newest flow assigned to the loss-delay group
to be reclassified as purely loss-based. This way, algorithms that use delay as
their secondary metric (loss-delay) are differentiated from purely loss-based al-
gorithms.

• A periodic pattern of increasing/decreasing the sending rate (tracked using the
BwEst metric and parameter mM), causes the flow to be classified as model-based
(BBR), exploiting the fact that in each probe (drain) bandwidth phase, a BBR flow
deliberately increases (decreases) the sending rate by 1.25 (0.75) times the mea-
sured bandwidth-delay product.

Parameters mLD , mPL , and mM , are configurable and define the sensitivity of the
Fingerprinting module. By lowering these values, we decrease the time needed to detect
each group. However, the probability of misclassification might increase, especially for

6.3. P4AIR

6

95

the more conservative groups. By increasing these values, more aggressive classes (e.g.,
the loss-based group) might never be detected, which reduces the accuracy.

Figure 6.3 illustrates the fingerprinting process for the representatives of the four
groups: Cubic for purely loss-based, Illinois for loss-delay, Vegas for delay-based, and
BBR for model-based algorithms. First, P4air classifies all four flows as mice flows. After
they reach their BDP, P4air drops a packet, forcing all four flows to enter the congestion-
avoidance phase, and classifies them into the delay-based group. However, Cubic, Illi-
nois, and BBR start filling the queues, without backing off and are reclassified into the
loss-delay group. Next, due to Cubic’s very aggressive approach, the queues and the
aggressiveness continue to increase, causing P4air to classify it into its correct group:
purely loss-based. Similarly, after P4air detects the periodic increase in BBR’s sending
rate, it reclassifies it into the model-based group. In this scenario, this occurs after this
pattern is recognized twice.

Location vs. accuracy. As Figure 6.3 illustrates, to correctly detect the more aggressive
flows, P4air needs to be deployed on the bottleneck switch, i.e. a switch at which the
queues are formed. Otherwise, due to no increase in the queuing delay, the Fingerprint-
ing module would classify these algorithms as delay-based algorithms. However, when
loss and loss-delay algorithms are not filling the queues, they would also not interfere
with the present delay-based algorithms. In other words, if there would not be a bot-
tleneck, there would also not be a problem that P4air needs to solve. In contrast, algo-
rithms like BBR (that do not rely on the queuing metrics) can always be detected due to
their periodic pattern.

6.3.2. REALLOCATION MODULE
Every time the Fingerprinting module reclassifies a flow, the Reallocation module exe-
cutes two actions: (1) it stores and updates the flow’s group, and (2) it runs the queue
reallocation algorithm, making sure that long-lived flows are distributed evenly across
all available queues.

Updating and storing of the group. For most flows, group recalculation can only be
done in the egress block, i.e., after the egress statistics (e.g., aggressiveness, enqueue
depth) are known. However, to ensure that the packet is queued correctly, the flow’s
group needs to be known in the ingress block. Consequently, the register (stateful mem-
ory array) storing the estimated group must be allocated in the ingress block and is, as
such, not accessible from the egress block. To solve the abovementioned problem, P4air
recirculates all packets that trigger a reclassification (Figure 6.2).

Queue reallocation algorithm. To leverage standard scheduling mechanisms, such as
Round Robin (RR) or FQ (Fair Queuing), we designed a queue reallocation algorithm.
Moreover, to be able to deploy this algorithm on the hardware switches running at line-
rate, we avoided operations that would introduce significant computational overhead
(e.g., loops and floating-point operations). Our algorithm makes sure that groups that
have more flows are also assigned more queues, thereby distributing all the flows evenly
across all the available queues. First, to ensure that packets belonging to the same flow
are processed in the same queue, P4air uses an additional register array to store the
queue information. Furthermore, for every recirculated packet, P4air updates this reg-
ister to make sure that flows belonging to the same group are processed together, by

6

96 6. P4AIR: INCREASING FAIRNESS AMONG CONGESTION CONTROL ALGORITHMS

Statistics tracked by the P4 switch:

num_pkts
[
#pkt s

]
enq_len

[
#pkt s

]
BwEst Counter Aggressivness

Detected algorithm group:

mice delay-based loss-delay purely loss-based

model-based

0 15 30 45 60 75 90
0

25
50
75

100
125
150

t/RT T

(a) Purley loss-based (Cubic)

0

20

40

60

80

100

0

4

8

12

16

20

0

4

8

12

16

20

0 15 30 45 60 75 90
0

25
50
75

100
125
150

t/RT T

(a) Loss-delay (Illinois)

0

20

40

60

80

100

0

4

8

12

16

20

0

4

8

12

16

20

0 15 30 45 60 75 90
0

25
50
75

100
125
150

t/RT T

(c) Delay-based (Vegas)

0

20

40

60

80

100

0

4

8

12

16

20

0

4

8

12

16

20

0 15 30 45 60 75 90
0

25
50
75

100
125
150

t/RT T

(d) Model-based (BBR)

0

20

40

60

80

100

0

4

8

12

16

20

0

4

8

12

16

20

Figure 6.3: Fingerprinting module. Illustration of the P4air data plane fingerprinting algorithm for the repre-
sentatives of the four groups of congestion control algorithms. The lines represent flow statistics and different
background colors represent the outcome of the fingerprinting algorithm as measured by the switch. The
following configuration was used: the maximum queue size was 100 packets, the output rate 1000 pps, RTT
100 ms, mLD = 4, mPL = 10, mM = 2, n f low s = 1.

6.3. P4AIR

6

97

assigning a new queue using a sequential index (one per-group). As the next step, it
updates the boundaries of each group (parameters li) according to Figure 6.4.

#pkt_(n, recirculated) #pkt_(n+j, recirculated)

time

if c1 = 0 and c2 > fpq then
l1 ← l1 +1
c1 ← fpq
c2 ← c2 − fpq

end if

if c2 = 0 and c1 > fpq then
l1 ← l1 −1
c1 ← c1 − fpq
c2 ← fpq

end if

c1 ← c1 −1
c2 ← c2 −1
c1 ← c1 +1

Previous group: (mice)
New group: (delay-based)

Previous group: (delay-based)
New group: (loss-delay)

l1
l1

Queues: Delay-based Loss-delay

Figure 6.4: Simplified representation of the reallocation algorithm’s mechanism for recalculating li (bound-
aries between groups) for two groups. Every time a packet is recirculated, a set of counters ci , which track the
number of flows that need to be added to the group i for l1 to change, is either incremented (counter belonging
to the previous group) or decremented (counter belonging to the new group). If any of the counters reaches
zero, while the other one is higher than f pq (flows per queue), l1 is recalculated. Every time f pq is increased,
values ci are increased by the number of queues assigned per class (2 in this example).

For every other packet (not recirculated), P4air checks if the stored queue is outside
of the corresponding li values (that might have been updated) and, if so, assigns a new
queue using the sequential index (Figure 6.5). This way, whenever reallocation occurs,
P4air reassigns all flows processed in the queue that was assigned to a different group
uniformly among the other remaining queues belonging to the group. Similarly, it as-
signs the first f pq −1 flows (and the flow that triggered the li update) belonging to the
group that gained a queue to the new queue.

6.3.3. APPLY ACTIONS MODULE
Traditional AQMs can only probabilistically drop packets or use ECN marking to trigger
the senders to back off. However, as mentioned earlier, for some congestion control
algorithms, less severe actions, such as delaying a packet, might be more appropriate.
Furthermore, newer congestion control algorithms might not react to these indicators
and require new actions to be designed. Hence, to target each group’s specifics, P4air
uses the custom actions listed below.

Dropping a packet. This action targets the algorithms that use loss as the primary metric
(purely loss-based and loss-delay algorithms), similar to standard AQMs.

Delaying a packet. This action targets delay-based algorithms. By delaying (instead of
dropping) a packet, they will back off, reducing the need for retransmissions and improv-
ing the average end-to-end delay in the process. Just delaying a packet is not possible in
P4, thus, we implemented this action by recirculating a packet back to the ingress.

Changing the receiver window. A flow’s sending rate is determined by the minimum
of the receiver and congestion windows. Thus, by reducing the receiver window, the
sender is forced to back off. However, to do so, the window in the ACK packets, sent from

6

98 6. P4AIR: INCREASING FAIRNESS AMONG CONGESTION CONTROL ALGORITHMS

l2=5

l1=2 l1=2 l1=2 l1=2 l1=2

l2=4 l2=4 l2=4 l2=4

l3=6 l3=6 l3=6 l3=6 l3=6

#pkt_(n)

time

(recirculated)
#pkt_(n+i1) #pkt_(n+i2) #pkt_(n+i3) #pkt_(n+i4)

(recirculated)

1 Update l2

(l2 ← l2 −1)
(k3 ← fpq)

Queue number 4

(loss-delay queue)

is assigned to

purely loss-based

group

1 Check

previously

assigned queue:

4 (≥ l2)

2 Assign new
queue: 2

3 Update

sequential index

1 Check

previously

assigned queue:

4 (≥ l2)

2 Assign new
queue: 3

3 Update

sequential index

1 Check

previously

assigned queue:

4 (≥ l2)

2 Assign new
queue: 2

3 Update

sequential index

1 Assign
new

queue: 4

2 Update

counter k3

(k3 ← k3 −1)
(until it

reaches 0)

Queues: Delay-based Purely-loss-basedLoss-delay Model-based

Figure 6.5: Reassigning flows. Packet n, a recirculated loss-delay packet that is reclassified to the purely-loss
group, updates l2 (the boundary between loss-delay and loss algorithm). After loss-delay packets (n+i1, n+i2,
n+ i3, shown in yellow) belonging to flows that were previously processed in queue 4 are received, their queue
is reassigned using a sequential index. Similarly, new purely-loss based flows (packet n + i4) are assigned to
queue 4.

receiver to sender, needs to be modified. For this action to work, packet transfers in both
directions have to cross the same bottleneck.

Sensitivity. The sensitivity of the Apply actions module, i.e., how often P4air applies ac-
tions to the flows, determines the link utilization, as well as the distribution of resources
among flows. If the sensitivity is set too high, back-off mechanisms are triggered before
the flows even started congesting the network, leading to low utilization. In contrast,
if configured too low, they are triggered too late (or at all), allowing aggressive flows to
claim more resources and leading to unfairness. Consequently, to keep the utilization
high, while still targeting aggressive flows, we decided to execute this module only when
the flow the packet belongs to is sending above its BDP.

6.3.4. OVERHEAD & LIMITATIONS.
Memory overhead. Contrary to standard AQM solutions, such as Codel, the memory
overhead of P4air scales linearly on both the number of flows it wishes to track (127b per
flow), as well as the number of output ports ((5+nqueues) log2(n f low s)+3log2(nqueues)+
8log2(n f low s /nqueues) bits per output port). However, as Table 6.1 illustrates, memory
is mostly consumed by the Fingerprinting module to track the current RTT interval and
current flow statistics (parameterα). Since flows from the loss- and model-based groups

6.4. EVALUATION

6

99

Table 6.1: Memory consumption on a 24-port switch. β is the memory used to track the current group and
queue and α the memory used to track the RTT and flow statistics.

n f low s
Total Fingerprinting Reallocation
[kB] α [%] β [%] [%]

210 17.53 86.89 5.84 7.27
211 33.92 89.81 6.04 4.16
212 66.57 91.53 6.15 2.32
213 131.73 92.51 6.22 1.28

should not be reclassified (except if mM and mPL are misconfigured, see Figure 6.7b),
memory consumption can be significantly reduced by only keeping track of their group
and queue (parameter β) and not their RTT and flow statistics (parameter α).

Recirculations. Recirculated packets compete for resources with incoming packets, caus-
ing potential drops in throughput. However, while updating the group, their amount per
flow is at most 4 (maximum number of re-classifications per-flow). Furthermore, due to
the lack of other ways to delay a packet, recirculations are used in the Apply actions mod-
ule to target the delay-based algorithms. However, due to the very conservative nature
of these algorithms, we did not experience any noticeable negative effect on the switch’s
performance.

Collisions. As one of the main building blocks of P4air, we use hash tables, since they are
supported on all programmable hardware. To generate an index to access them, P4air
calculates a hash based on the flow identifier (5-tuple consisting of source and destina-
tion IP, layer 4 protocol, source and destination ports). However, when the number of
concurrent unique flows increases, so does the probability of hash collisions. When two
flows collide, P4air will see them as one, potentially misclassifying them and reducing
fairness.

Packet reordering. During reallocation, flows might be processed by two queues at the
same time, potentially leading to packet reordering. However, we did not experience any
related noticeable issues in our experiments.

BDP calculation. Due to the lack of support for floating-point operations on hardware
switches, the sensitivity of the Apply actions module must be approximated using the
estimated RTT, i.e. RT TE st >> s, where s is calculated to be close to the BDP of the
flow, e.g. ⌈log 2(num_ f low s)+ log 2(packet_leng th ·T hr oug hput)⌉. Consequently,
to keep the utilization high, we decided to slightly postpone the actions, allowing flows
to partially fill the queues.

6.4. EVALUATION

6.4.1. EXPERIMENT SETUP

Performance metrics. To evaluate P4air, we used the following metrics: (1) detection
delay as the number of RTT intervals needed to recognize the correct congestion control
group; (2) detection accuracy as the percentage of correctly classified flows; (3) utiliza-
tion as the percentage of the total available bandwidth used by all the connections, (4)

6

100 6. P4AIR: INCREASING FAIRNESS AMONG CONGESTION CONTROL ALGORITHMS

Clients Servers

P4air

C1

Cn Sn

S1
.

RTTn

RTT1

Bottleneck (limited output rate to 1000 pkts/s)
& limited queue length (100 pkts)

(a) Simulation topology (using the bmv2 switch and Mininet).

Clients

Servers

P4air

C1

C4

C2

C3

SBottleneck

RTT2

RTT3

RTT1

RTT4

(b) Experiment topology (using the Tofino switch [98]). All links are 10 Gbps.

Figure 6.6: Topologies.

RTT increase (due to queuing), (5) the fraction of throughput each flow received, and (6)
fairness index.

Comparison baselines. We compared our solution against (1) a simple switch without
an algorithm to improve fairness (No AQM) and (2) an algorithm that provides flow sep-
aration based on the hash of the 5-tuple (as commonly used in vendor implementa-
tions [226]) by enqueuing packets into different queues (Different Queues). Further-
more, we tested two versions of P4air: (1) Idle P4air (Fingerprinting + Reallocation) and
(2) P4air (Fingerprinting + Reallocation + Apply actions).

Topology. We have used the topologies shown in Figure 6.6. Given that the performance
of congestion control algorithms is affected by the bottleneck link on the path, such sim-
ple topologies suffice for our purposes. We performed the experiments using (1) the
Mininet emulation environment with the P4 software switch (bmv2[141], Figure 6.6a)
and (2) a testbed with a Intel Tofino switch [98] (Figure 6.6b). To perform measurements,
we relied on tcpdump, iperf3, socket statistics, and P4 statistics exported directly from
the switch.

6.4.2. TUNING OF THE FINGERPRINTING ALGORITHM

P4air has multiple tunable parameters (mLD , mPL , and mM) that provide a trade-off
between detection accuracy and detection delay. Figures 6.7a and 6.8c show the impact
of changing the mLD , mLD , and mLD on the detection of each group.

Choosing mLD = 4. As all flows are, by default, assigned into the delay-based group, the
choice of mLD should ensure that only delay-based flows remain, while all the others are
reclassified into the loss-delay group. By analyzing the detection time and accuracy for
different values of mLD (Figure 6.7a - 6.8a), we find that for mLD = 4, the probability of
false positives for the delay-based algorithms is low enough.

6.4. EVALUATION

6

101

Choosing mPL = 12. By increasing mPL , the probability of misclassifying a loss-delay
algorithm decreases, even for the aggressive algorithms from this group (e.g., Illinois,
Figure 6.7b). However, in addition to the increase in detection delay (Figure 6.8b), the
accuracy of the fingerprinting module for the least aggressive purely loss-based algo-
rithms, such as New Reno, decreases as well (Figure 6.7b). Thus, we choose mPL = 12, as
the best compromise between accuracy and detection delay.

Choosing mM = 4. Finally, we evaluated the influence of mM on the detection accuracy
of the model-based algorithms. All algorithms probe for bandwidth in their slow-start
phase and, depending on their classification into the delay-based group (when the track-
ing for aggressiveness and BWEst starts), they can cross the threshold mM . However, only
BBR does so periodically, every 10 seconds, and will always be correctly identified if mM

is set high enough.

6.4.3. P4AIR PERFORMANCE

Resource utilization. Our Tofino implementation, when tracking a maximum of 216

flows, used less than 14% of the available header and metadata memory, less than 18%
of the total register memory and less than 5% of hash generators available on the switch
(shared between forwarding and P4air).

The RTT-estimation algorithm. First, we evaluated the accuracy of the RTT estimation
by varying the link delay and external traffic. In all the scenarios without external traf-
fic, the difference between the configured and estimated RTT was less than 0.52ms (≤
1.5% of RT Tcon f , Figure 6.9a). As this value was nearly constant in our experiments, we
conclude that this overhead is the processing delay on both the servers and the switch.
Furthermore, as Figure 6.9b illustrates, by processing the new flows in a separate queue
(as in P4air), the effect of long-lived connections on the RTT accuracy is not significant.

Sensitivity. If the sensitivity of the Apply actions module (s) is set too high, all flows
are punished too aggressively and the overall utilization drops significantly, reaching as
little as 50%. In contrast, if s is set too low, aggressive flows are never punished and the
fairness will remain low (Figure 6.9c).

Different actions. The action to change the receiver window offered the biggest perfor-
mance boost (Figuress 6.10b, Figure 6.12b).

6.4.4. INTER- AND INTRA-FAIRNESS: P4AIR VS. EXISTING SOLUTIONS

Effect of fingerprinting. Distributing flows to queues based on their congestion con-
trol group significantly improves fairness (Figure 6.10a), especially when the number of
flows increases and their interactions become more detrimental. As Figure 6.11b illus-
trates, P4air (and Idle P4air) leverage the good intra-fairness properties of most algo-
rithms and flows, consequently, rarely overpower each other, i.e., their throughput is
clustered around the ideal throughput. In contrast, by queuing flows without taking into
account their group (Different Queues), two distinct clusters are present: (1) overpow-
ered flows at 6−7% of the ideal throughput and (2) aggressive flows at multiples of the
ideal throughput.

Effect of the Apply actions module. Fingerprinting flows improves fairness, but does not
prevent queue buildup. However, the Apply actions module targets the aggressive flows,

6

102 6. P4AIR: INCREASING FAIRNESS AMONG CONGESTION CONTROL ALGORITHMS

mLD HS-T
CP

STCP
HTCP

BIC Cubic

New
Reno

Hybla

YeAH
Ill

in
ois

Veno
W

estw
ood+

BBR
Vegas

LoLa

1 100 100 100 100 100 100 100 100 100 100 100 100 100 100

2 100 100 100 100 100 100 100 100 100 100 100 100 100 35

3 100 99 100 100 100 100 99 99 100 100 100 97 8 1

4 100 100 100 100 100 100 99 99 100 100 100 95 0 0

5 100 100 100 100 100 100 100 100 100 100 100 98 0 0

6 100 100 100 100 100 100 100 97 100 70 100 99 0 0

(a) Percentage of flows classified as belonging to the loss-delay group depending on mLD .

mPL HS-T
CP

STCP
HTCP

BIC Cubic

New
Reno

Hybla

YeAH
Ill

in
ois

Veno
W

estw
ood+

BBR
Vegas

LoLa

6 100 100 100 100 100 100 100 93 96 33 100 100 0 0

8 100 100 100 100 100 90 100 55 60 0 89 33 0 0

10 100 100 100 100 100 87 89 36 38 0 34 0 0 0

12 99 100 100 80 100 30 100 0 0 0 0 0 0 0

14 100 100 100 37 100 0 100 0 0 0 0 0 0 0

16 100 100 100 0 100 0 100 0 0 0 0 0 0 0

18 100 92 100 0 100 0 100 0 0 0 0 0 0 0

(b) Percentage of flows classified as belonging to the purely loss-based group depending on mPL .

mM HS-T
CP

STCP
HTCP

BIC Cubic

New
Reno

Hybla

YeAH
Ill

in
ois

Veno
W

estw
ood+

BBR
Vegas

LoLa

1 19 47 39 77 17 14 62 49 22 15 14 100 18 19

2 21 24 8 9 2 0 37 21 2 0 0 100 0 0

3 0 11 1 0 0 0 9 19 1 0 0 100 0 0

4 0 0 0 0 0 0 0 0 0 0 0 100 0 0

5 0 0 0 0 0 0 0 0 0 0 0 100 0 0

6 0 0 0 0 0 0 0 0 0 0 0 100 0 0

(c) Percentage of flows classified as belonging to the model-based group depending on mM .

Figure 6.7: Tuning of the fingerprinting module (bmv2 switch). The algorithms that should be classified as such
are shown in blue. Misclassified algorithms are shown in red. Algorithms that use different metrics (model-
based group) are shown in yellow. Each scenario is run 10 times for 10 different RTTs ranging from 50ms to
150ms with a step of 10ms (100 in total).

forcing them to back off and, consequently, lowers the increase in RTT due to queuing
(Figures 6.11a). Furthermore, when the number of flows per queue increases, the Apply
actions module makes sure that they remain fair to each other (Figure 6.10b and 6.10a).

Idle P4air vs. P4air. When a small number of flows compete per queue (n f low s < 128),
the Fingerprinting and the Reallocation modules are enough to achieve good fairness
properties (Figure 6.10a). However, to reduce the queuing delay and to target a higher
number of flows, the Apply actions module is needed.

Utilization. As Figure 6.11a illustrates, both versions of P4air were able to maintain a

6.4. EVALUATION

6

103

mLD HS-T
CP

STCP
HTCP

BIC Cubic

New
Reno

Hybla

YeAH
Ill

in
ois

Veno
W

estw
ood+

BBR
Vegas

LoLa

1 5.8 5.8 5.8 6.0 5.8 6.0 4.7 5.8 5.8 5.8 5.9 5.8 5.7 9.9

2 7.2 7.2 7.2 7.2 19.0 7.2 9.0 7.2 7.2 7.3 7.2 7.3 7.2 62.1

3 14.2 20.5 16.9 16.7 16.6 18.4 15.8 36.1 182.7 128.1 121.8 19.7 7.8 21.0

4 15.5 23.3 19.2 19.5 17.3 38.7 17.8 37.7 192.5 135.3 123.9 22.3 - -
5 18.5 26.8 21.6 23.1 19.6 63.8 18.9 40.6 189.7 133.2 126.0 24.2 - -
6 20.4 28.9 23.4 44.5 19.6 96.3 19.4 61.5 199.0 134.7 133.8 25.9 - -

(a) Average RTT interval in which the flow was classified as belonging to the loss-delay group depending on
mLD .

mPL HS-T
CP

STCP
HTCP

BIC Cubic

New
Reno

Hybla

YeAH
Ill

in
ois

Veno
W

estw
ood+

BBR
Vegas

LoLa

6 29.7 42.4 27.8 26.8 51.5 159.4 21.2 197.4 324.4 265.1 136.9 32.0 - -
8 35.4 46.2 30.3 69.1 51.9 219.8 24.4 224.2 386.7 - 264.3 245.8 - -

10 41.1 56.4 33.3 168.8 55.5 261.5 56.1 351.0 377.4 - 300.4 - - -
12 60.3 75.4 52.0 257.9 60.5 296.7 25.3 - - - - - - -
14 163.1 105.3 59.5 329.3 63.5 0 41.6 - - - - - - -
16 163.9 149.7 66.4 0 64.9 0 49.7 - - - - - - -
18 250.9 189.7 122.2 0 71.9 0 49.9 - - - - - - -

(b) Average RTT interval in which the flow was classified as belonging to the purely loss-based group de-
pending on mPL .

mM HS-T
CP

STCP
HTCP

BIC Cubic

New
Reno

Hybla

YeAH
Ill

in
ois

Veno
W

estw
ood+

BBR
Vegas

LoLa

1 22.3 11.4 25.2 9.5 19.9 10.0 11.9 11.2 74.3 10.4 10.2 18.1 10.2 6.7

2 51.3 15.4 31.8 106.8 29.0 - 30.4 13.2 244.5 - - 24.4 - -
3 - 17.0 - 28.0 - - 17.4 13.1 556.0 - - 40.1 - -
4 - - - - - - - - - - - 47.7 - -
5 - - - - - - - - - - - 58.2 - -
6 - - - - - - - - - - - 71.8 - -

(c) Average RTT interval in which the flow was classified as belonging to the model-based group depending
on mM .

Figure 6.8: Classification speed of the fingerprinting module (bmv2 switch). Each scenario is run 10 times for
10 different RTTs ranging from 50ms to 150ms with a step of 10ms (100 in total).

high link utilization (≥ 91%), similarly to the results achieved by the comparison base-
lines (Different Queues and NoAQM).

Inter-Fairness. Both P4air versions were able to significantly outperform the compar-
ison baselines and realize a fair distribution of resources (Figure 6.10a). Therefore, our
results show that by using more information about the flow, such as the group of the
congestion control algorithm, the switch can target the flow’s specifics, thereby enabling
a fairer distribution of resources.

6

104 6. P4AIR: INCREASING FAIRNESS AMONG CONGESTION CONTROL ALGORITHMS

25 50 75 100 125 150
0

0.2
0.4
0.6
0.8

1

RT Tcon f . [ms]

∆
R

T
T

[m
s] Tofino ([ms])

0.0
0.5
1.0
1.5
2.0
2.5

∆
R

T
T

[%
]Tofino ([%])

(a) Average error in the RTT estimation for different RTTs. Each scenario is run 10 times (Confidence intervals
90%).

1 2 4 6 8 10 12 14

103
104
105
106

5.7 5.9 5.8 5.7 5.7 5.8

13.1 12.8

5.1 5.4 6
7.3 7 7.1 7.1 7.2

Additional traffic
[
Gbps

]

∆
R

T
T

[µ
s] same queue different queue

(b) Average error in the RTT estimation for different levels of congestion. Each scenario is run 10 times (Confi-
dence intervals 90%).

0.83 0.9
70

80

90

100 13 13
14

14

15

15

Jain’s index

U
ti

li
za

ti
o

n
[%

]

(c) Sensitivity. Cubic is shown in red, Illinois in orange, and the value s inside the circles. Each scenario is run
4 times.

Figure 6.9: Evaluation of the P4air algorithm on a Intel Tofino switch.

6.4.5. RTT FAIRNESS: P4AIR VS. EXISTING SOLUTIONS

Effect of fingerprinting. While distributing flows to different queues, Idle P4air does not
take into account the flows’ RTT (but only the group), causing the flows with different
RTTs to compete inside the same queue. However, in comparison to Different Queues,
the Reallocation module makes sure that flows are more uniformly distributed between
the queues. Consequently, the fairness index is higher (Figures 6.12a and 6.12d).

Effect of the Apply actions module. To increase the fairness, the Apply actions module is
needed, especially when the RTT differences between the flows increase. As Figure 6.12d
illustrates, P4air merges the two groups, the very aggressive flows at the right side and
the overpowered flows at the left side, into one.

Utilization. As a consequence of the Apply actions module, i.e. the actions applied to
the most aggressive flows, P4air had the lowest utilization compared to all the other so-

6.5. DEPLOYMENT CONSIDERATIONS

6

105

4 8 16 32 64 128 256
0.004

0.498

1.000

n f low s (num of flows)

Ja
in

’s
in

d
ex

P4Air Idle P4Air Different Queues No AQM

(a) Average Inter- and intra- fairness. The share of flows per group was varied between 0% and 100% with a
step of 25%. All flows had the same RTT. For each n f low s , each combination (35 different) is run 4 times (140
in total). Theoretical minimum is shown as a dashed black line.

Cubic [%] 100 75 75 75 50 50 50 50 50 50 25 25 25 25 25 25 25 25

Illinois [%] 0 25 0 0 50 0 0 25 25 0 0 0 75 50 0 25 50 25

BBR [%] 0 0 25 0 0 50 0 25 0 25 0 75 0 25 50 0 0 50

Vegas [%] 0 0 0 25 0 0 50 0 25 25 75 0 0 0 25 50 25 0

P4Air 0.92 0.89 0.93 0.92 0.89 0.94 0.92 0.90 0.89 0.91 0.89 0.96 0.88 0.86 0.92 0.89 0.87 0.90

Idle P4Air 0.91 0.75 0.82 0.93 0.61 0.92 0.76 0.78 0.75 0.69 0.55 0.68 0.95 0.63 0.58 0.76 0.64 0.78

Different Queues 0.85 0.42 0.23 0.89 0.40 0.83 0.38 0.22 0.43 0.28 0.43 0.55 0.87 0.40 0.26 0.38 0.43 0.22

No AQM 0.94 0.29 0.19 0.94 0.32 0.95 0.20 0.18 0.43 0.18 0.34 0.22 0.95 0.29 0.17 0.17 0.19 0.15

Cubic [%] 25 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Illinois [%] 0 25 100 0 0 75 75 0 25 25 0 50 50 0 50 25 25

BBR [%] 25 25 0 100 0 0 25 75 75 0 25 50 0 50 25 50 25

Vegas [%] 50 25 0 0 100 25 0 25 0 75 75 0 50 50 25 25 50

P4Air 0.89 0.88 0.87 1.00 0.94 0.84 0.87 0.96 0.93 0.86 0.88 0.86 0.88 0.77 0.88 0.89 0.87

Idle P4Air 0.75 0.69 0.48 0.69 0.94 0.55 0.53 0.71 0.59 0.76 0.81 0.76 0.57 0.64 0.60 0.70 0.62

Different Queues 0.49 0.24 0.49 0.74 0.91 0.46 0.26 0.59 0.58 0.38 0.25 0.36 0.41 0.39 0.24 0.21 0.36

No AQM 0.60 0.18 0.39 0.16 0.96 0.32 0.17 0.18 0.22 0.39 0.18 0.19 0.17 0.31 0.19 0.15 0.18

(b) Average inter- and intra- fairness for 128 flows (zoomed-in version of one of the scenarios shown in Fig-
ure 6.10a). The share of flows per group is varied between 0% and 100% with a step of 25% (shown at the top).
Each ratio is run 4 times (Confidence intervals 90%).

Figure 6.10: Inter- and intra-Fairness. Comparison of the P4air algorithm to the comparison baselines on a
Intel Tofino switch.

lutions (although still ≥ 90%).

Large ∆RT T . P4air was able to maintain a high fairness index, especially for lower
∆RT T values. However, as we increased ∆RT T , the fairness index reduced, although
it was still higher than the comparison baselines.

6.5. DEPLOYMENT CONSIDERATIONS
While our evaluation demonstrates performance gains, especially in terms of fairness,
a more extensive evaluation in more complex scenarios (involving multiple switches) is
recommended. Furthermore, several limitations of the current implementation, listed
below, should be considered.

Weighted queuing algorithms. If an algorithm that supports dynamic weights per queue
is supported by the switch, flows belonging to the same group can be assigned into one
queue with a weight set to the number of flows present, ensuring that all groups get their
fair share of resources, simplifying P4air by making the queue reallocation algorithm

6

106 6. P4AIR: INCREASING FAIRNESS AMONG CONGESTION CONTROL ALGORITHMS

1 1.2 1.4 1.6 1.8 2 2.2 2.4
90
92
94
96
98

100

RTT - RTTcon f [ms]

U
ti

li
za

ti
o

n
[%

]

P4Air Idle P4Air Different Queues No AQM

(a) Average delay vs. average utilization for scenarios shown in Figure 6.10b. Ideal operating point (0,100%).

0 1 2 3 4 5 6 7
0

2

4

Throughput / Ideal_Throughput

R
T

T
-

R
T

T
co

n
f

[m
s] P4Air Idle P4Air Different Queues No AQM

(b) Average RTT vs. throughput per flow for a scenario with 128 flows, with each group having 25% of the flows
(zoomed-in version of one of the scenarios shown in Figure 6.10b). Ideal operating point is (1,0).

Figure 6.11: Inter- and intra-Fairness. Comparison of the P4air algorithm to the comparison baselines on a
Intel Tofino switch.

obsolete.

RTT-estimation algorithm. In our current implementation, to ensure an accurate RTT
estimate, packets involved in the 3-way handshake should not be delayed at any other
switch in the network, nor should the connection’s RTT change. An inaccurate RTT esti-
mate has the biggest effect on the sensitivity of the Apply actions module, as actions on
flows with an overestimated RTT are applied later, allowing them to claim more band-
width. Consequently, P4air’s fairness properties might decrease, but should remain as
high as those of Idle P4air. There are three possible solutions to this problem: (1) the
RTT-estimation algorithm can be extended to make use of the other switches (or at least
all the bottlenecks) in the path to periodically summarize the total queuing delay (simi-
lar to [99]); (2) the RTT algorithm can be replaced with the one presented in [227]; (3) the
Apply actions module could be modified to avoid the metrics that depend on the RTT
estimate (e.g., queuing delay instead of BDP).

Queue-assignment imbalance. In the current implementation, we assume that flows
complete uniformly across all queues. Otherwise, an imbalance in the queue assign-
ment might occur, leading to more flows competing inside the same queue and receiv-
ing a lower share of the resources. To remove this assumption, P4air can be modified
to keep track of the number of flows processed by each queue, as well as the identifiers
of the queues (per group) having ≤ f pq flows. This way, by sacrificing more memory
(nqueues log2(n f low s)+4log2(nqueues)), we can make sure that all queues process a sim-
ilar amount of flows by enqueuing new flows into the saved queue (with ≤ f pq flows).

6.5. DEPLOYMENT CONSIDERATIONS

6

107

0 1 3 5 7 10
0.004

0.484

1.000

∆RT T

Ja
in

’s
in

d
ex

P4Air Idle P4Air Different Queues No AQM

(a) Average RTT Fairness for 256 different flows. Each link delay was configured to a multiple of ∆RT T . All
flows used the same congestion control algorithm (one of the four groups). For each ∆RT T , each group (4
different) is run 4 times (16 in total).

∆RT T = 1ms ∆RT T = 10ms

Cubic Illinois BBR Vegas Cubic Illinois BBR Vegas

P4air 0.92 0.81 0.90 0.91 0.73 0.55 0.83 0.55

Idle P4Air 0.93 0.51 0.69 0.91 0.66 0.49 0.38 0.48

Different Queues 0.68 0.50 0.58 0.60 0.39 0.31 0.19 0.52

No AQM 0.88 0.35 0.24 0.88 0.34 0.32 0.18 0.49

(b) RTT Fairnes for 256 different flows running the same congestion control algorithm for two different values
of∆RT T (two zoomed-in scenarios shown in Figure 6.12a). Each scenario is run 4 times (Confidence intervals
90%). Theoretical minimum is 1/256 ≈ 0.004.

1 1.2 1.4 1.6 1.8 2 2.2 2.4
90
92
94
96
98

100

RTT - RTTcon f [ms]

U
ti

li
za

ti
o

n
[%

]

P4Air Idle P4Air Different Queues No AQM

(c) Average delay vs. average utilization for scenarios shown in Figure 6.12b. Ideal operating point is (0,100%).

0 1 2 3 4 5 6 7
0

2

4

Throughput / Ideal_Throughput

R
T

T
-

R
T

T
co

n
f

[m
s] P4Air Idle P4Air Different Queues No AQM

(d) Average RTT vs. throughput per flow for a scenario with 256 BBR flows with ∆RT T = 1ms (zoomed-in
version of one of the scenarios shown in Figure 6.12b). Ideal operating point is (1,0).

Figure 6.12: RTT-Fairness. Comparison of the P4air algorithm to the comparison baselines on a Intel Tofino
switch.

6

108 6. P4AIR: INCREASING FAIRNESS AMONG CONGESTION CONTROL ALGORITHMS

Note that such an imbalance is also possible with all AQMs, which usually assign flows
to queues based on the hash of a flow identifier.

Traffic shaping mechanisms & Multiple bottlenecks. Traffic shaping mechanisms (e.g.,
other AQMs, P4air) deployed at other switches on the path and/or the presence of multi-
ple bottlenecks might impact the patterns tracked by P4air and lead to misclassification.
As (some) flows are shaped already and thus perform fair, this may not be an issue (or
they could form a separate “marked” group). Nonetheless, a more extensive evaluation
of the impact of different shaping mechanisms and multiple bottlenecks on the finger-
printing accuracy is needed.

P4air placement in complex topologies. With only a few strategically placed P4air
switches, overall network behavior might benefit greatly. Developing a placement al-
gorithm to determine the locations and amount of P4air switches in complex topologies
has been beyond the scope of this work, but is important to consider when implement-
ing P4air.

6.6. RELATED WORK
Many AQM algorithms (RED [62], ARED [63], SRED [64], FRED [65], REM [66], CHOKe [67],
BLUE [73], AVQ [68], AN-AQM [69], DC-AQM [70], CoDel [71], PIE [72], SFB [73], SBQ) [74],
SFQRED [75], FQ_CODEL [76]) were designed to detect and overcome static queues, re-
ducing the queuing delay in the process. Classic AQMs, like RED, probabilistically drop
packets based on the average number of packets inside a queue. However, studies have
shown that their optimal configurations vary depending on parameters, such as capacity
and number of flows, which causes network instabilities and traffic disruptions [65, 228–
230].

Newer AQMs, like CoDel (Controlled Delay) and PIE (Proportional Integral controller
Enhanced), were designed to overcome these issues and are, consequently, easier to
manage and configure [71]. Moreover, when combined with scheduling algorithms pro-
viding isolation, such as FQ, they ensure high fairness at a wide range of bandwidths and
flows. However, as a reaction to queue build-up, they can only drop a packet. Hence, they
(1) cannot target newer congestion control algorithms that do not use loss as a metric,
(2) lead to (potentially unnecessary) retransmissions, (3) usually require many queues,
which are scare resources in hardware switches, and (4) do not take advantage of the
inherently good intra-fairness properties that most congestion control algorithms have.

In contrast, solutions such as Virtualized Congestion Control create a translation
layer in a hypervisor, enabling an easy upgrade of legacy algorithms and offering a data-
center operator the ability to implement a single fair algorithm [231]. However, multiple
issues might occur: (1) tenants might expect more isolation, (2) it is unusable in cases
when flows are originating from multiple data-centers (using different “fair” algorithms),
and (3) the solution can only implement certain TCP flavors by violating the TCP end-
to-end semantics (i.e., acknowledging the packets not yet received).

6.7. CONCLUSION
In this chapter, we first developed a fingerprinting algorithm that harnesses the power
of programmable data planes to detect the congestion control algorithms used by flows.

6.7. CONCLUSION

6

109

By instructing the bottleneck switch to track very simple metrics, such as queuing de-
lay and sending rate, our algorithm is able to track the way the flows react to specific
events (e.g., queue buildup), allowing it to classify the flows into one of the delay-, loss-,
and hybrid (and its sub-groups delay-loss, and model-based) groups. Second, we used
this knowledge, and the fact that most algorithms have very good intra-fairness prop-
erties, to enqueue flows using similar algorithms into the same queue. Third, for each
of these groups, we developed custom actions, able to target their specifics, which we
used to punish the most aggressive flows. P4air incorporates the aforementioned three
elements, thereby enabling a switch to target each flow specifically and ensure a fair dis-
tribution of resources among all flows in the process.

7
IN-NETWORK FAST CONGESTION

DETECTION AND AVOIDANCE

In the previous chapter, we presented a solution called P4air that can ensure fairer resource
distribution and lower queuing delay when deployed on a switch. However, P4air treats
all flows in the same way and, to be effective, relies on the end-hosts, implementing the
congestion control algorithms, to react to the applied actions and back off upon detecting
congestion. However, some low-latency applications, such as remote surgery, might not
rely on protocols with such a feedback loop. Additionally, they require extremely low end-
to-end latency and almost zero packet loss and, consequently, cannot be targeted by P4air.

To provide high QoS for these flows and to target protocols without a feedback loop (such
as UDP), we use programmable data planes to gather and react to important packet meta-
data, such as queue load, while the switch processes the data packets. To do so, we develop
a method for congestion avoidance in which switches (1) track processing and queuing
delays of latency-critical flows, and (2) react immediately in the data plane to congestion
by rerouting the affected flows. Through a proof-of-concept implementation in software
and on real hardware, we demonstrate that our data plane approach reduces jitter and
average and maximum delay compared to non-programmable approaches.

This chapter is based on a published workshop paper: B. Turkovic, F.A. Kuipers, N. van Adrichem, K. Lan-
gendoen, Fast network congestion detection and avoidance using P4, Proceedings of the 2018 Workshop on
Networking for Emerging Applications and Technologies, 45-51 (2018) [106]

111

7

112 7. IN-NETWORK FAST CONGESTION DETECTION AND AVOIDANCE

7.1. INTRODUCTION
For long, available network capacity has been the most important Quality-of-Service
(QoS) parameter to optimize for. Recently, with the emergence of novel application do-
mains such as the Tactile Internet – where the objective is to transport a sense of touch
over the Internet – and supporting communications technologies such as 5G, low la-
tency has also become a crucial QoS parameter. Tactile Internet applications need very
low latency (≈ 1ms), low jitter, high bandwidth (in the order of Gbps) and high reliability
[131, 232].

Tactile Internet traffic could be very bursty, depending on the required modalities
(audio, video, and/or haptic) and the compression levels that can be achieved at a given
time. While haptic prediction algorithms might relax the latency requirement, consis-
tent feedback and a maximum delay bound are necessary for a haptic system to be sta-
ble. Consequently, to minimize the end-to-end latency, packets of Tactile Internet flows
should not be delayed on any node on the path nor be dropped by the network. This
requires network nodes to be able to quickly detect and react to any changes in the net-
work state, such as buffers filling up.

As explained in Chapter 1, a packet typically encounters four types of network delay,
namely transmission, propagation, processing, and queuing delays. Out of them, the
propagation and transmission delays only depend on parameters such as the physical
distance, propagation speed, packet size and/or the data rate of the link, and as such are
constant for a packet of some constant size on a given path (Chapter 1). However, the
processing and queuing delays depend on the amount of traffic and how it is handled in
the network. As such, they may vary significantly and controlling and reducing them is
of importance and therefore the main topic of this chapter.

7.1.1. PROBLEM DEFINITION
One of the most important factors that contributes to queuing delay is congestion, which
occurs when a network node is trying to process more data than the link can periodically
handle.

Congestion control mechanisms of traditional transport protocols such as TCP de-
tect congestion at the sender node and modify the sending rate accordingly. In the case
of tactile traffic, such an approach is not feasible as we are not allowed to buffer or in-
crease/decrease the rate at the tactile source. Furthermore, many congestion control
algorithms only kick in after congestion has occurred and need at least one round-trip
time (RTT) to react to the perceived congestion. Software-defined networking (SDN
[78, 79]), as a new paradigm in networking, offers an alternative. Because every node
in the network is controlled from software-based controllers, these controllers have a
centralized view of the network and are able to react and adapt to changing network
conditions faster. A common method to provide QoS in SDN is to implement virtual
slicing of the available bandwidth on all the nodes on the path, reserving parts of it for
different services or to use priority queuing. But, as the required bandwidth can be in
the order of a few Gbps [131], reserving the maximum required bandwidth for every
flow is not scalable. Priority queuing, while initially minimizing queuing delay for the
higher prioritized flows, can lead to starvation of flows and does not prevent conges-
tion. In fact, high-priority flows will starve when congestion forces low-priority flows

7.2. CONGESTION DETECTION AND AVOIDANCE IN THE DATA PLANE

7

113

to occupy all available queue space. Alternatively, IEEE 802.1TSN works on standardiz-
ing specialized schedulers for Time-Sensitive Networks (TSN) such as time-aware traffic
shapers [233], though those solutions require a closed-circuit network to operate. There
are many frameworks that use some form of QoS routing to find the path that satisfies
different QoS requirements. However, SDN frameworks from this group depend on some
form of monitoring ([87, 88]). Incorrectly set monitoring intervals have direct influence
on the usefulness of the gathered data as well as the number of probe packets sent. Addi-
tionally, after congestion is detected, a certain time is needed for the controller to recom-
pute the path and reconfigure table entries before switching the flow to a better path. To
avoid the aforementioned artifacts, the main problem to be solved is How to enable con-
gestion control and avoidance in the forwarding nodes?, instead of at the source or via a
controller.

7.1.2. MAIN CONTRIBUTIONS
In Section 7.2, we propose a hierarchal control model for latency-critical flows. Our solu-
tion contains a small program running directly on the switches and has real-time access
to latency monitoring data to quickly reroute traffic when degradation is detected.

In Section 7.3, we evaluate our solution both by emulation through software switches
as well as with physical P4 hardware. We compare our solution against a congestion-
agnostic approach as well as to congestion-avoidance approaches that make use of prob-
ing.

7.2. CONGESTION DETECTION AND AVOIDANCE IN THE DATA

PLANE
If end-to-end delay, as well as jitter, needs to be kept under a certain threshold, the main
challenge is to detect and react to any increase in delay when data is being processed
at the switches and not (only) at the source. If every switch minimizes the total delay
per node (for certain traffic flows) to a configurable value, maximum end-to-end delay
becomes predictable.

Recently, in the wake of SDN, programmable switches have appeared along with
domain-specific programming languages such as P4 to program them [140]. P4 offers
the possibility to gather and export important packet meta-data (timestamps from dif-
ferent stages of processing, queue depths, etc.) directly from the data plane while the
data-packets are being processed. To leverage this unique possibility of collecting packet
meta-data, we propose a hierarchal architecture, as shown in Figure 7.1, to detect and
avoid congestion:

A local control module at the P4 switches, as elaborated on in Section 7.2.1, monitors
the state of all the low-latency flows, while a central controller configures the latency
thresholds and other parameters.

7.2.1. LOCAL CONTROL
A local Congestion Detection and Avoidance module, see Figure 7.2, is developed to
monitor the processing and queuing delays.

If the module determines that one of these delay components is increasing for a

7

114 7. IN-NETWORK FAST CONGESTION DETECTION AND AVOIDANCE

Central
Controller

Tactile Internet Module

Network Manager and Monitoring
Module

Device and Packet Manager
Module

Standard routing Module

gRPC/Thrift

gRPC/Thrift server
Congestion Detection

and Avoidance Module
Programmable
network nodeD

at
a-

p
la

n
e

C
o

n
tr

o
l

p
la

n
e

Figure 7.1: Hierarchical design of the control plane.

Programmable network node

Congestion Detection
and Avoidance Module

tprocesing tqueuing

if congested
reconfigure

Ethernet IP

Ethernet

tqueuing

tprocesing

IP Ethernet IPingress egress

Figure 7.2: Detection of congestion in the data plane. Every switch has a small congestion avoidance module,
gathering statistics (processing and queuing delay).

latency-critical flow, and congestion is likely to occur, it preemptively switches the traffic
to a better backup path if it exists or signals to the previous node in the path that it is
congested and that it should not forward any more packets belonging to that flow.

According to the P4_14 [234] and P4_16 [235] language specifications, table entries at
a switch cannot be modified without the intervention of the control plane (controller).
Thus, in order to achieve rerouting in the data plane we are left with two choices: (1) add
both entries (backup and primary) to a table and decide which rule to apply based on
some meta-data stored in the registers, or (2) send packets or packet digest notifications
to a local listener that tracks the flows and acts as a small local control plane.

If we use meta-data and registers, we need to apply more tables, increasing process-
ing delay per packet, and store more table entries in the switches than necessary. Addi-
tionally, because meta-data and register values would affect table lookups, there will be
no gain in doing table lookup caching, which can have a significant influence on perfor-
mance.

The second option uses packet copies or packet digests, which are two of the mech-
anisms by which the data plane can send notifications to the control plane. One of the

7.2. CONGESTION DETECTION AND AVOIDANCE IN THE DATA PLANE

7

115

S2

S1 S3

S4

S5

S6

S7

Tactile

Host 1

Tactile

Host 2

Non-Tactile

Host 3

Non-Tactile

Host 2

Non-Tactile

Host 1
Non-Tactile

Host 4

Figure 7.3: The green line is primary path and the purple line is the path that traffic will take in case any of the
routers in the path detects congestion. To be effective, both paths have the same weight and are equally good.

advantages of a digest packet is that it is typically much smaller than the original packet.
Also, different digest messages can be used for different types of traffic, making this ap-
proach easily extensible without any significant changes in the data/control plane. We
have implemented a digest listener that is running on the same machine as the switch
itself and makes local routing decisions based on the digest data.

This module, based on the measured values of the queuing and processing delays,
reroutes the flow if it detects an increase in delay for the subsequent m packets. While
digest notifications are very small, the rate at which they are generated can be very high
if we want to obtain delay information about every packet on the path. To avoid over-
loading the local control application, we decided to shift the detection of the congestion
to a P4 program and use digests to generate congestion notification to the local module
only when the delay increases above a certain threshold.

The number of packets m, as well as the threshold values for queuing tq and pro-
cessing tp delays are configurable and depend on the type of hardware used, as well as
the sensitivity needed. If the thresholds are too small, the local controller might reroute
traffic unnecessarily, potentially increasing the jitter as well as creating additional load
on the central controller that needs to recalculate a new backup route, delete rules from
the old primary path and install new backup rules. Otherwise, if too big, the controller
might react too late, detecting congestion too late and thus providing little increase in
performance when compared to legacy solutions.

7.2.2. REROUTING EXAMPLE

In order to have adequate backup paths available, for every new tactile flow two paths
that satisfy the latency requirement of that flow are calculated, as shown in Figure 7.3.
The green path (s1-s3-s5-s7) is used as the primary path. The purple path (s1-s4-s6-s7)
is used as backup. Multiple primary and/or backup paths could also have been used,
but we have opted for single paths since it requires less processing (in terms of packet
re-ordering) at the end-node.

In case an increase in queuing delay is detected on switch s1, the local control pro-
gram will change the output port for this flow to s4 (as shown in Figure 7.4). Switch s1 is

7

116 7. IN-NETWORK FAST CONGESTION DETECTION AND AVOIDANCE

S2

S1 S3

S4

S5

S6

S7

Tactile

Host 1

Tactile

Host 2

Non-Tactile

Host 3

Non-Tactile

Host 2

Non-Tactile

Host 1
Non-Tactile

Host 4

Reroute to backup

Eth. IP Eth. IP

Eth. IP

Eth.
IP

S2

S1 S3

S4

S5

S6

S7

Tactile

Host 1

Tactile

Host 2

Non-Tactile

Host 3

Non-Tactile

Host 2

Non-Tactile

Host 1
Non-Tactile

Host 4

Eth. IP

Eth. IP

Eth.
IP

Eth.
IP

Figure 7.4: If a new flow is initialized between non-tactile hosts 1 and 2, the total traffic processed on the
output link on switch S1 (to switch S3, that is part of the primary path for tactile traffic as well), might exceed
the available bandwidth. Consequently, switch S1 will detect this, and since it already knows a better backup
route it will consequently reroute the traffic to S4. Finally, the backup route (purple) becomes the new primary
route, and the controller calculates a new backup route and removes the previous primary route (green).

still used, as output ports and consequently output queues are different and not affected
by the detected queue build-up. The tactile route is already configured on switches
s4 and s6 and thus rerouting is achieved instantly. The local control programs at the
switches determine the output port based on the input they receive from a central con-
troller that tracks the link utilizations and delays on all the nodes in the network by sam-
pling the network constantly.

In case switch s5 detects congestion (increased queuing delay on the tactile queue
to s7 or increased processing delay) it has no better route configured and can thus only
signal to its predecessor that the output link is congested. It thus sends a control message
(congestion notification) to s3, who forwards it to s1. When s1 receives this message it
will switch the affected tactile flow to s4 (as shown in Figure 7.5).

It is important to notice that links of the backup path are different than the links
of the primary path after s1 (the switch that can actually perform the fail-over). The
paths are calculated this way in order to prevent the backup path from forwarding the
traffic to the same congested link as the primary path. The central controller, which has
knowledge about the whole network, computes these paths periodically, based on the

7.2. CONGESTION DETECTION AND AVOIDANCE IN THE DATA PLANE

7

117

S2

S1 S3

S4

S5

S6

S7

Tactile

Host 1

Tactile

Host 2

Non-Tactile

Host 3

Non-Tactile

Host 2

Non-Tactile

Host 1
Non-Tactile

Host 4

Send congestion notification

Eth. IP Eth. IP
Eth.

IP
Eth.

IP

S2

S1 S3

S4

S5

S6

S7

Tactile

Host 1

Tactile

Host 2

Non-Tactile

Host 3

Non-Tactile

Host 2

Non-Tactile

Host 1
Non-Tactile

Host 4

Reroute to backup

CN CN

S2

S1 S3

S4

S5

S6

S7

Tactile

Host 1

Tactile

Host 2

Non-Tactile

Host 3

Non-Tactile

Host 2

Non-Tactile

Host 1
Non-Tactile

Host 4

Eth. IP

Eth.
IP

Eth.
IP

Eth.
IP

Figure 7.5: If a new flow is initialized between non-tactile hosts 3 and 4, the total traffic processed on the the
output link on switch S5 (to switch S7, that is part of the primary path for tactile traffic as well), might exceed
the available bandwidth. Consequently, switch S5 will detect this, and since it does not know a better route
to tactile host 2 (backup route) it will send a Congestion Notification (CN) packet to switch S3 informing S3
not to send packets through him. When S1 (that knows the backup route) receives this control packet it will
consequently reroute the traffic to S4. Finally, the backup route (purple) becomes the new primary route, and
the controller calculates a new backup route and removes the previous primary route (green).

current network state. When a flow is switched to a backup route, that route becomes
the new primary path and a new backup must be computed and installed.

7

118 7. IN-NETWORK FAST CONGESTION DETECTION AND AVOIDANCE

7.3. EVALUATION USING EMULATION
We have evaluated our solution, via the set-up described in Section 7.3.1, using the
Mininet emulation environment with the P4 software switch (behavioral model, nick-
named bmv2 [141]).

7.3.1. EXPERIMENT SETUP

Multiple flows were generated and RTT, maximum RTT, packet loss, as well as ingress
processing, queuing, jitter, detection and reaction delays were measured. Per tactile
flow, one primary and one backup route were configured. Additional traffic was gen-
erated to create congestion on different intermediate nodes on the primary route. Each
tactile traffic trace was 15 seconds long, and these scenarios were repeated 40 times.

We varied the detection threshold for processing and queuing delays, as well as the
number of consecutive packets m that need to have an increased delay in order to de-
tect congestion. Scenario DataplaneX _m represents a scenario where the thresholds for
processing and queuing delays were X times the processing and queuing delays on the
switch if no additional load was generated and m is as defined before.

Our approach was compared to (1) an approach that uses no congestion detection
and never recomputes paths (scenario No CC), which is mimicking traditional routing
protocols such as OSPF and (2) an SDN-like approach that uses a centralized controller
and periodically sends probe packets (scenarios ProbingX sec), to determine the current
network state and detect congestion. We used different monitoring intervals, namely 1,
2, and 5 sec.

7.3.2. MININET RESULTS

We have used the network topology displayed in Figure 7.3. The rate of all the bmv2 out-
put queues was limited to 170000 pkts/s (≈ 200Mbps) in order to make sure that there
would be a queue build-up. With this configuration, as the packet arrival rate is smaller
than what the bmv2 ingress pipeline can process (≈ 1Gbps on a server in our testbed),
the bandwidth, and not the processing is the bottleneck. If the rate of the output queues
is not limited, when the maximum throughput is reached, packets are dropped before
the ingress pipeline, and there is no queue build-up, since the egress pipeline is usually
faster than that of the ingress in bmv2.

In our scenario, 8000 packets per second (≈ 4Mbps with a packet size of 64B) were
injected by the tactile flow that we were interested in. If the amount of additional traffic
was below the configured bottleneck bandwidth of ≈ 200Mbps, the switches could pro-
cess the low-latency data at line rate (Figure 7.6). When the volume of additional traffic
approached 200 Mbps, the delay on node s3 increased, as the total amount of traffic
exceeded the configured rate of the output queue. This was also the point were all the
evaluated approaches correctly detected congestion and reconfigured the path for the
tactile data.

Detection time. In the probing scenarios, as the controller uses increased delay of probe
packets as an indication of congestion, the smaller the probing interval, the faster the
controller was able to detect congestion, as shown in Figure 7.6c. As the volume of addi-
tional traffic increased, the number of dropped probe packets, as well as the maximum

7.3. EVALUATION USING EMULATION

7

119

delay, increased as well. In these scenarios, when no probe was returned within the
probing interval, the controller assumed that the packet was lost and the link congested.
This is why the detection delay in Figure 7.6c is higher than expected (half the monitoring
interval). By comparing the values for the maximum detection delay, we observed that
in the worst case it is approximately two times the value of the probing interval, which
corresponds to one probe packet being sent immediately after congestion (in the queue
build-up phase) and the subsequent packet being lost. Thus, the controller needed to
wait for the timeout value (one monitoring interval) to expire.

In case the detection was done using the measurements in the data plane, the con-
troller was always able to detect the changes very fast, by observing the data itself in-
dependently of the probe packets that were sent. The advantage of this approach is
especially noticeable when detection time is compared to other approaches, as shown
in Figure 7.6c. An increased number of subsequent packets m (Dataplane12_20) in-
creases detection delay. However, this increase is very small when compared to scenarios
ProbingX sec.

Reaction time. After detecting congestion, in case of the probing scenarios, the con-
troller needed to find a new route and install new table entries starting from the end of
the path in order to minimize the number of dropped packets. After traffic was switched,
some packets were still present in the queues of the congested node. Consequently,
packets arrived in the wrong order at the endpoints.

All data plane schemes only needed to update one table entry. The switches could
immediately forward traffic on the new path and thus the total time needed to switch
the traffic was minimized.

Delay and jitter measurements. The data plane schemes, as a consequence of fast de-
tection, had the lowest average and maximum delay, as can be seen in Figure 7.6e. In-
creasing the number of subsequent packets m has a negative influence on the maximum
delay, as well as maximum jitter, especially in case of very high additional traffic.

Average loss. In the case of no congestion control (scenario No CC), packets were queued
until the buffer limit on s3 was reached, causing an increased number of dropped pack-
ets as can be seen in Figure 7.6b. All probing scenarios (Probing5sec, Probing3sec and
Probing 1Sec) were able to detect and reduce the number of dropped packets. By com-
paring the loss values, we can see that data plane approach was the only one that could
keep the loss value at 0%. For the probing solutions the loss increased with the amount
of additional traffic, due to faster overruns of buffers.

Artifacts caused by the environment: One of the identified problems was that, de-
pending on the configured threshold for the detection in the data plane, the probability
of false negatives was significant (scenario Dataplane2_5). In these scenarios, although
the threshold was set to twice the value of the queuing delay when no additional traffic
was generated, switches detected congestion every time. By increasing the value of the
threshold, or the number of subsequent packets needed, the value of false positives can
be reduced, as shown in Figure 7.6d, while maintaining the QoS parameters at almost
the same level.

7

120 7. IN-NETWORK FAST CONGESTION DETECTION AND AVOIDANCE

No CC Probing5sec Probing3sec Probing1Sec
Dataplane2_5 Dataplane12_5 Dataplane12_20

100 150 200 250
0

10

20

30

Additional traffic [Mbps]

R
T

T
[m

s]

(a) Avarage RTT for tactile data.

100 150 200 250
0

20

40

Additional traffic [Mbps]

[%
]

(b) Avarage loss for tactile data.

200 220 240 260 280
0

5

10

Additional traffic [Mbps]

[m
s]

(c) Congestion detection + reaction delay..

100 150 200 250
0

20

40

60

80

100

Additional traffic [Mbps]

[%
]

(d) Percentage of tactile data that was rerouted to the
backup path..

100 150 200 250

10

20

30

40

50

Additional traffic [Mbps]

R
T

T
[m

s]

(e) Maximum RTT for tactile data.

100 150 200 250

20

40

Additional traffic [Mbps]

[m
s]

(f) Comparison of maximum variation in RTT..

Figure 7.6: Mininet scenario (Confidence intervals 90%). Comparison of different QoS parameters for different
schemes when congestion is present.

7.4. PROOF OF CONCEPT USING P4 HARDWARE

7

121

S1

S2

S3

S4

Non-Tactile

Host 3

Non-Tactile

Host 2

Non-Tactile

Host 1

Non-Tactile

Host 4

Non-Tactile

Host RTactile

Host 2

Tactile

Host 1

Figure 7.7: Hardware topology

7.4. PROOF OF CONCEPT USING P4 HARDWARE

7.4.1. EXPERIMENT SETUP

We have built a proof of concept using our P4 hardware testbed that consists of physi-
cal general-purpose servers enhanced with smart network interface cards (Netronome
Agilio CX 2x10GbE), which were connected as shown in Figure 7.7. All the servers used
Thrift RPC as the control interface and ran Ubuntu with kernel version 4.10.

Two different data plane approaches were evaluated. The first one (DP_direct) did all
the processing in the data plane, while the second one (DP_listener) implemented the
detection of delay increase in the data plane and did all the subsequent processing of
the notifications in the local digest listener module. Our approach was compared to an
approach that does no congestion control (scenario No CC, as in Section 7.3) as well as
to an approach that uses periodic sampling of the current state of the network stored in
switch registers (Probing1sec-5sec). All scenarios were repeated 50 times.

A tactile flow was generated between switches s1 and s4, while additional traffic was
passing between hosts h1-h4 and hr, generating congestion on the output port of switch
s2. The tactile flow had a throughput of 20 kpps (≈ 240Mbps with packet size of 1500 B),
while the additional traffic had a throughput of 1.5 Mpps (where the packet size varied
between 64 B and 1100 B), creating load in the range of≈ 750 Mbps to≈ 13 Gbps. The first
and last second of the trace were not taken into account for latency and jitter measure-
ments and additional traffic started 2s after the tactile traffic in order to observe queue
build-up. To achieve high accuracy (nanosecond range), as well as to limit the influence
of external factors (e.g., processing in the driver, kernel, etc.), latency was measured in
the data plane at switch s1. Every tactile packet that was processed was equipped with
an additional header field storing a 64-bit ingress time-stamp (when the packet was re-
ceived from t1) or an egress time-stamp (when the packet was forwarded to t2). Since
there is no external syncing between the switches, tactile traffic was routed back from s4
to switch s1, which inserted both timestamps, as shown in Figure 7.7.

7

122 7. IN-NETWORK FAST CONGESTION DETECTION AND AVOIDANCE

7.4.2. HARDWARE LIMITATIONS
We encountered several limitations when we evaluated our scheme using the above-
mentioned testbed. In an initial experiment, while measuring the ingress and egress
processing delays, the delay between these two stages (which should represent queuing
delay) was constant, even when the switch was congested and the total end-to-end delay
increased. Because we were unable to obtain queuing delay information directly from
the P4 program, we measured the total delay on the switch (from the ingress MAC com-
ponent to the egress MAC component). An ingress time-stamp (the time in nanoseconds
when the ingress MAC component receives the packet) was attached to the packet data
structure while the packet was being processed at the card and could be inserted by the
P4 program itself. In order to get the egress time-stamp, we added a special 32-bit header
to the start of the packet. When the egress MAC component of the SmartNIC receives
this special header it attaches the egress counter-value “time-stamp” and forwards the
packet to the next switch. Since no external syncing is implemented, counter values can
only be used for latency measurements inside one card. A subsequent switch in the path
keeps track of the difference between these values in a register and based on that value
decides whether the previous switch is congested or not. If it determines that the previ-
ous switch is congested it will send a congestion notification back, that, when received
by s1, will trigger the rerouting to the backup path (s1-s3-s4). Thus, the detection of the
congestion was shifted by one node, increasing the reaction time when compared to the
emulated environment.

7.4.3. NETRONOME AGILIO CX SMARTNICS RESULTS
Measurements shown in Figure 7.9 demonstrate a functional proof of concept. All the
evaluated data plane approaches, DP_listener and DP_direct, outperformed the other
analyzed approaches by keeping all the analyzed QoS parameters on par with scenarios
where no congestion was present. While we have plotted only DP_direct_1.5_10 and
DP_listener_1.5_10 in Figures 7.8a and 7.8b, all other analyzed data plane scenarios had
similar performance.

Average and maximum delay When the switches were not congested, the data plane ap-
proaches, as a consequence of additional processing, had higher average and maximum
delay than the other evaluated approaches (from ≈ 1,900 in scenario No CC to ≈ 2,000
for Dataplane_listener and ≈ 2,500[c ycles/8] in case of Dataplane_direct). The signifi-
cant increase in average as well as maximum delay for the Dataplane_direct scenario is
a consequence of a more complex data plane implementation, since multiple tables and
registers are needed to keep the per-flow state.

For higher volumes of additional traffic, only direct data plane approaches were able
to keep the maximum delay at the same level as before, as shown in Figure 7.8a. Switch
s1 was the one that rerouted the traffic, causing delay between detection and reaction.
Even the data plane approaches were unable to keep the maximum latency value below
a certain threshold, especially for higher m.

Maximum jitter was lowest for No CC approach and DP_direct (Figure 7.8d). The
relatively high jitter for the other approaches is a consequence of switching paths. The
first packet that is processed on the backup path has a very low RTT compared to the
ones that are still processed by the congested nodes.

7.5. CONCLUSION

7

123

No CC Probing5Sec Probing3Sec
Probing1Sec DP_direct_1.5_1 DP_direct_1.5_10

DP_listener_1.5_1 DP_listener_1.5_10

0.5 1

·104

0.2

0.4

0.6

0.8

1
·104

Additional traffic [Mbps]

R
T

T
[c

yc
le

s/
8]

(a) Avarage RTT for tactile data.

500 1,000
0

5

10

15

20

Additional traffic [Mbps]

[%
]

(b) Average loss for tactile data.

0.5 1

·104

0.5

1

·104

Additional traffic [Mbps]

[c
yc

le
s/

8]

(c) Maximum RTT for tactile data.

0.5 1

·104

0.2

0.4

0.6

0.8

1
·104

Additional traffic [Mbps]

R
T

T
[c

yc
le

s/
8]

(d) Maximum jitter for tactile data.

Figure 7.8: Netronome SmartNIC scenario (Confidence intervals 90%). Comparison of different QoS parame-
ters for different schemes when additional traffic is generated to create congestion at node s2.

Congestion detection and sensitivity. Increasing the detection threshold, shown in Fig-
ure 7.9b, has a negative influence as we miss the start queue buildup phase and, con-
sequently, more packets are affected by congestion. By decreasing the threshold, even
when the value of additional traffic was not high enough to cause congestion, all ana-
lyzed approaches (including the Probing scenarios) detected it. In cases when both pri-
mary and backup paths have high link utilizations, this behavior may lead to too many
recalculations and path switching, which would degrade the overall performance. This
can be resolved by increasing the number of packets used to detect congestion, as shown
in Figure 7.9a.

7.5. CONCLUSION

To quickly detect and avoid congestion within a network, we have proposed a P4-based
technique that enables measuring delays and rerouting in the data plane. Our approach

7

124 7. IN-NETWORK FAST CONGESTION DETECTION AND AVOIDANCE

Probing1Sec DP_direct_2_1 DP_direct_2_10
DP_listener_2_20 DP_listener_2_50 DP_listener_1.5_10

DP_listener_2.5_10

0.5 1

·104

0

20

40

60

80

100

Additional traffic [Mbps]

[%
]

(a) The influence of the number of packets m used
to detect congestion on the average percentage of
packets that were processed on the backup path.

0.5 1

·104

0

20

40

60

80

100

Additional traffic [Mbps]

[%
]

(b) The influence of detection threshold (tp + tq)
on the average percentage of packets that were pro-
cessed on the backup path.

Figure 7.9: Netronome SmartNIC scenario (Confidence intervals 90%). Comparison of different QoS parame-
ters for different schemes when additional traffic is generated to create congestion at node s2.

offers two main advantages. First, the detection time is reduced and congestion is de-
tected per flow. Thus, only the affected flows are rerouted and QoS degradation of other
flows is avoided. Second, after detection, the reaction time is minimized as a local con-
troller, based on input from a central controller, intervenes by configuring a better route.
Therefore, no new flow rules need to be installed and the load on the central controller
is reduced.

We encountered some limitations during evaluation of our solution using Netronome
P4 SmartNICs, such as a limit on range matching, a performance penalty due to disabled
caching, as well as lack of information about the queuing delay of the current switch.
Nonetheless, we were able to show the feasibility of our solution in both emulated and
physical networks.

While the presented approach requires specialized hardware (P4-capable switches),
in a hybrid network where only some nodes can be programmed, detection time as well
as reaction time to congestion might still be reduced using this scheme, when the nodes
are placed at crucial points in the network such as the network edge. Additionally, our
solution can easily be extended to a solution that uses bandwidth reservation and/or
priority queuing.

8
CONCLUSION

In the thesis, we systematically proposed, implemented, and evaluated solutions to en-
able low-latency services as well as the coexistence of these services with the traditional
bandwidth-oriented services. Our solutions, built upon the premise that future networks
will have both programmable control, and data planes, demonstrate how offloading the
sensitive tasks (e.g., load detection, congestion control group detection, congestion de-
tection) to the data plane significantly improves the reactiveness and flexibility of a net-
work, a crucial requirement for emerging services.

This chapter first addresses the sub-questions posed in the introduction and, sub-
sequently, summarizes them to answer the main research question. Finally, it discusses
possible future research directions that could further increase the flexibility of networks
and, consequently, enable the transparent coexistence of multiple services with different
network requirements.

8.1. RESEARCH QUESTIONS & CONTRIBUTIONS
In addition to the main research question, this thesis identified three sub-challenges.
Bellow, key contributions to each of them are listed.

What techniques can be used to overcome the challenges associated with programmable
hardware when designing and deploying network algorithms?

Chapter 2 investigated the limits imposed by programmable switches through devel-
oping an application to detect heavy hitters. We demonstrated that, although program-
ming languages such as P4 decouple the forwarding program from the hardware, the
choice of the hardware platform still significantly impacts the design of the program and
its feasibility. Accordingly, the programmer must stay aware of the hardware and tailor
its program around its limitations (e.g., limited memory, a limited number of memory
accesses).

For example, by introducing the counter reuse through modulo sketching, we demon-
strated a way to reduce the heavy hitters program’s memory footprint while maintain-
ing high detection accuracy. Consequently, the switch could house more network func-

125

8

126 8. CONCLUSION

tions and/or more complex network functions (e.g., sequential window with more sub-
intervals). Similarly, by introducing the Zeroing window, we demonstrated a way to over-
come the stringent memory access limitations through ping-ponging the memories and
“slowly” (i.e., one counter each N/width packets) resetting the counting sketches. There-
fore, by altering our program to fit the way the switch processes packets, we could de-
velop programs that would be infeasible at first glance.

Further, we noticed difficulties in syncing between the control and data plane in our
hardware experiments, primarily when the size of the interval (or sub-interval in case of
the Sequential Window) was reduced. The main reason for this was the speed difference
between the control and data plane. Currently available programmable switches already
have data planes that can process packets at speeds reaching Tbps. As a consequence,
the control plane program that resets all analyzed interval-based sketches (and the sub-
sketches in the Sequential Window) can quickly become the bottleneck. Ultimately, we
avoided the control plane’s intervention by combining all the introduced techniques and
introduced the Sequential Zeroing Window sketch, a heavy-hitter detection solution with
high accuracy that provides per-packet granularity at line-rate performance.

How can we allocate network resources to different applications in real-time by taking
into account their individual requirements?

Chapter 3 and Chapter 4 focused on the ways resources can be assigned to appli-
cations/services. Chapter 3 illustrated that applications, such as remote teleoperation,
have varying dynamics and that, consequently, their network requirements often stay
far below their highest value. Therefore, a resource reservation solution that supports
elasticity, i.e., the ability to automatically adjust the applications’ (services’) network re-
sources based on their current needs, could achieve a high network utilization while
ensuring a high QoS for all the applications’ (services’) flows.

However, as these chapters demonstrate, a purely control plane solution (with a “dumb”
data plane) cannot satisfy the requirements of low latency applications due to: (1) the
speed difference between the control and the data plane, and (2) the delays between the
controller and the individual switches. Moreover, the observed degradation of the QoS
was the highest in situations when the applications required very low latency and very
high bandwidth (e.g., switching from a very static to a highly dynamic environment),
which could be potentially critical for applications such as remote surgery.

To address the identified issues, in Chapter 3 we designed a resource scaling solu-
tion that split the tasks between the data plane and the control plane. With its global
overview of the network, the control plane guides the switches by calculating and pre-
configuring (in advance) the rules corresponding to different application dynamics. The
calculated rules consider both the requested bandwidth and latency and ensured that
the traffic corresponding to more dynamic environments (requiring lower latency and
higher bandwidth) is routed over lower-latency paths and assigned more bandwidth.
Based on these rules, the data plane executes bandwidth scaling and rerouting tasks,
ensuring almost instantaneous elasticity and ensuring the users’ experience is not de-
graded.

Chapter 4 built on top of the solution introduced in Chapter 3 and introduced a more
comprehensive scaling solution that, in addition to being able to scale a single network
path (e.g., by assigning more resources to it), also supports (1) stateful network func-

8.1. RESEARCH QUESTIONS & CONTRIBUTIONS

8

127

tions, (2) horizontal scaling (e.g., splitting the traffic flows from one service over multiple
paths) and (3) does not depend on the end-applications to determine the current service
resource requirements. To achieve that, two additional tasks were offloaded to the data
plane: (1) load monitoring to detect the optimal scaling moments in the data plane; and
(2) state management to maintain a consistent network state for stateful network func-
tions.

To conclude, Chapters 3 and 4 demonstrated that offloading time-sensitive tasks
to the data plane can enable almost instantaneous scaling of applications’ network re-
sources based on current traffic volumes and/or flow requirements while maintaining
state consistency. Moreover, they showed that, due to the faster reaction speed of the
data plane, such solutions could satisfy the QoS needed by the low latency applications.

How can we provide a fair resource distribution between different flows belonging to
the same service, thus guaranteeing the same performance for all service users?

Chapter 5 investigated the interactions between different flows and their coexistence,
specifically flows that use transport protocols such as TCP and QUIC. Congestion con-
trol algorithms used by these protocols use various metrics (e.g., lost packets, increase
in the measured RTT) to determine if the network is congested and/or more bandwidth
is available. Hence, in Chapter 5 congestion control algorithms were first divided de-
pending on these metrics into loss-based, delay-based, and hybrid congestion control
algorithms.

Next, through head-to-head comparisons of the representatives of these algorithms,
Chapter 5 showed that resources are rarely distributed fairly between flows. Moreover, it
showed that the fairness index was lowest when flows sharing a link had different round-
trip times or used congestion control algorithms that belonged to different groups. In
contrast, it demonstrated that flows using similar metrics had mostly high fairness.

Based on these observations, we used programmable switches in Chapter 6 to en-
force fairness from within the network itself. Our solution P4air continuously moni-
tored the properties of all flows passing through a switch and grouped them based on
the behavior of the congestion control algorithms used. Hence, it relied on the good
intra-fairness properties most congestion control algorithms were developed with and
tried to avoid the competition for resources between flows belonging to different groups.
Therefore, it showed that the resource distribution can be improved if more properties
of the flows are taken into account and if flows present on a switch (or in a slice) are not
treated equally.

Finally, in Chapter 7, we investigated how programmable switches can be used to
provide a high QoS when the network (or slice) is shared between multiple types of flows:
(1) very low latency and (2) best effort. To do so, we developed a data-plane program
that can detect congestion and, instantaneously, reroute congested low-latency flows
to alternative routes. In contrast to the solution presented in Chapter 6, it did not rely
on the end-hosts’ congestion detection algorithms (a process that can introduce a delay
of multiple RTTs), nor did it expect the end-hosts to reduce their rate upon detecting
congestion (a feature not supported by all protocols). In fact, this rerouting was done
at the expense of other best-effort flows. Therefore, such a solution can be ideal for an
application that should not reduce/adapt their rate due to their criticality (e.g., remote
surgery), but share network resources with other less critical applications.

8

128 8. CONCLUSION

8.1.1. MAIN RESEARCH QUESTION

The following research question was proposed in the introduction of this thesis:

What mechanisms need to be developed and deployed in a programmable network to
support low-latency applications?

To support different application domains simultaneously, a network slicing mecha-
nism allocating to each application domain a part of the network tailored to its require-
ments will isolate the various domains and, consequently, prevent the competition for
the underlying network resources from their respective users. Moreover, an additional
in-slice mechanism preventing flows of the same slice from overpowering each other will
ensure that different application/service users would achieve the same QoS. In addition
to this, low-latency applications have very stringent latency requirements that must be
taken into account when designing these mechanisms. Hence, as demonstrated in this
thesis, these mechanisms need to be able to react on shorter time scales to prevent QoS
degradation of the low-latency flows.

Accordingly, this thesis explored ways to combine programmable switches with the
concept of software-defined networking (SDN) to implement the above-mentioned mech-
anisms. By combining these two, the central SDN controller can still use its global overview
of the network and all the current flows and their requirements to assign the resources
to different applications and configure the switches. However, at the same time, the net-
work switches can react to short-term changes in the networking traffic by acting inde-
pendently (or with limited input from the controller) as required for low-latency services.

Therefore, as part of the first sub-question, we explored the challenges of deploying
algorithms to the programmable switches and demonstrated ways to overcome these
challenges. Next, as part of the second sub-question, we explored ways to implement
the first identified (network slicing) by identifying the latency-sensitive tasks (e.g., mon-
itoring, rerouting), and offloading them to the data plane. Moreover, through a thor-
ough evaluation, we demonstrated the benefits of doing so for the low-latency applica-
tions. Finally, to ensure fairness between multiple flows of the same service (third sub-
question), we investigated the fairness properties of TCP/QUIC flows. After demonstrat-
ing that flows generally overpower each other when they employ different congestion
control algorithms and/or have different RTTs, we proposed a data plane solution that
ensures fairness.

8.2. FUTURE WORK
In this section, we offer some ideas for future work for the topics covered in this the-
sis. While we tackled some of key challenges for the deployment of low-latency services,
there still exist many open challenges. We list some of them bellow.

Interactions between other transport and/or application protocols. Chapters 5 and 6
examined the interaction of common TCP/QUIC congestion control algorithms. While
these protocols constitute most of the traffic today, they might not be suitable for many
real-time applications. Hence, many research papers introduced new transport and
application-specific protocols. For example, for Tactile Internet applications, many other

8.2. FUTURE WORK

8

129

protocols, such as the Interactive Real-Time Protocol (IRTP), Supermedia TRansport for
teleoperations over Overlay Networks (STRON), Haptics over Internet Protocol (HoIP)),
Interoperable Telesurgical Protocol (ITP), can be used. Consequently, more research into
the interactions and coexistence of these protocols is needed.

Support for slices with different requirements. Chapters 3 and 4 introduced solutions
that assign network resources to flows (or group of flows) whenever necessary (e.g., when
a flow requests it, a slice is fully utilized). While this improves the QoS of critical flows and
ensures that critical procedures such as remote surgery can be conducted, it is unneces-
sary for many other applications with less stringent requirements (e.g., video streaming).
However, similar approaches as proposed in this thesis can be used for these services to
ensure high slice utilization and avoid overprovisioning. For example, by adjusting the
load detection module and the scaling decision process in the central controller and
choosing different “inter-slice” mechanisms, slices with different requirements can be
supported. More research is needed to determine the impact of the arrangements of
each of the presented modules on different application domains. Moreover, such analy-
sis could result in a generalized plug-and-play solution that would have a different “tem-
plate” for each application domain.

On the fly reconfigurable programmable switches. To reconfigure and/or reshape a
network slice on the fly, programs running on programmable switches must be replace-
able without any downtime and/or interruption to the flows processed by the switch.
This way, the network operator can add/remove a network function (NF) to/from the
switch, adding/removing custom functionality to/from it. Moreover, while doing that,
the switch would still process the other (potentially stateful) network functions (poten-
tially belonging to other slices and processing traffic belonging to other tenants).

However, currently available programmable hardware does not support this func-
tionality. Hence, the only way to reconfigure a switch is to recompile the program and
deploy the new firmware to the switch. However, this not only introduces downtime
(sometimes in the order of minutes), but also erases all the internal states needed for the
correct functioning of many network functions. One way to avoid this problem would
be to have all the network functions already implemented in the switch with a register
array to indicate which ones are used at the moment (an approach used in Chapter 4).
While such a solution has zero downtime, it can only support a limited number of net-
work functions, and it does not allow for the addition of novel network functions on the
fly. Several approaches were proposed to address this problem, usually by creating an
additional virtualization layer (e.g., a P4 program that can emulate all other P4 programs
by changing runtime table rules). However, while such approaches have zero downtime,
they also have a considerable overhead, even for elementary P4 programs, and usually
do not support stateful network functions. Consequently, additional research is needed
to enable this crucial functionality.

REFERENCES

[1] Sandvine., The mobile internet phenomena report, Tech report (2019).

[2] Sandvine., The global internet phenomena report, Tech report (2019).

[3] I. Grigorik, High Performance Browser Networking: What every web developer
should know about networking and web performance (" O’Reilly Media, Inc.",
2013).

[4] D. Van Den Berg, R. Glans, D. De Koning, F. A. Kuipers, J. Lugtenburg, K. Polachan,
P. T. Venkata, C. Singh, B. Turkovic, and B. Van Wijk, Challenges in haptic commu-
nications over the tactile internet, IEEE Access 5, 23502 (2017).

[5] G. P. Fettweis, The tactile internet: Applications and challenges, IEEE Vehicular
Technology Magazine 9, 64 (2014).

[6] T. Driscoll, S. Farhoud, S. Nowling, et al., Enabling mobile augmented and virtual
reality with 5G networks, Tech. Rep. (Tech. rep. Tech. Rep, 2017).

[7] G. Intelligence, Understanding 5g: Perspectives on future technological advance-
ments in mobile, White paper , 1 (2014).

[8] 5G Applications Market Potential & Readiness Matrix., 5G Applications Mar-
ket Potential & Readiness Matrix. https://www-file.huawei.com/-/
media/corporate/pdf/x-lab/5g-applications-market-potential_
readiness-matrix.pdf?la=nl-nl, [Online; accessed 21-October-2020].

[9] Data center interconnection fabric for edge cloud., Data center inter-
connection fabric for edge cloud. https://pf.content.nokia.com/
t004h1-webscale-data-center-networking/dci-fabric-white-paper?
lx=5Gr64m, [Online; accessed 21-October-2020].

[10] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, 5g-enabled tactile inter-
net, IEEE Journal on Selected Areas in Communications 34, 460 (2016).

[11] M. Maier, M. Chowdhury, B. P. Rimal, and D. P. Van, The tactile internet: vision,
recent progress, and open challenges, IEEE Communications Magazine 54, 138
(2016).

[12] A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, Realizing the
tactile internet: Haptic communications over next generation 5g cellular networks,
IEEE Wireless Communications 24, 82 (2016).

131

https://www-file.huawei.com/-/media/corporate/pdf/x-lab/5g-applications-market-potential_readiness-matrix.pdf?la=nl-nl
https://www-file.huawei.com/-/media/corporate/pdf/x-lab/5g-applications-market-potential_readiness-matrix.pdf?la=nl-nl
https://www-file.huawei.com/-/media/corporate/pdf/x-lab/5g-applications-market-potential_readiness-matrix.pdf?la=nl-nl
https://pf.content.nokia.com/t004h1-webscale-data-center-networking/dci-fabric-white-paper?lx=5Gr64m
https://pf.content.nokia.com/t004h1-webscale-data-center-networking/dci-fabric-white-paper?lx=5Gr64m
https://pf.content.nokia.com/t004h1-webscale-data-center-networking/dci-fabric-white-paper?lx=5Gr64m

8

132

[13] K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, Toward hap-
tic communications over the 5g tactile internet, IEEE Communications Surveys &
Tutorials 20, 3034 (2018).

[14] G. Fettweis, H. Boche, T. Wiegand, E. Zielinski, H. Schotten, P. Merz, S. Hirche,
A. Festag, W. Häffner, M. Meyer, et al., The tactile internet-itu-t technology watch
report, Int. Telecom. Union (ITU), Geneva (2014).

[15] J. Leigh, T. A. DeFanti, A. Johnson, M. Brown, and D. Sandin, Global tele-
immersion: Better than being there, in Proceedings of ICAT, Vol. 97 (1997) pp. 3–5.

[16] J. J. LaViola Jr, A discussion of cybersickness in virtual environments, ACM Sigchi
Bulletin 32, 47 (2000).

[17] H. Farhangi, The path of the smart grid, IEEE Power and Energy Magazine 8, 18
(2010).

[18] J. Deshpande, A. Locke, and M. Madden, Smart choices for the smart grid: Using
wireless broadband for power grid network transformation, Alcatel-Lucent, tech-
nology white paper 19, 20 (2010).

[19] M. Elgenedy, A. Massoud, and S. Ahmed, Smart grid self-healing: Functions, appli-
cations, and developments, in 2015 First Workshop on Smart Grid and Renewable
Energy (SGRE) (IEEE, 2015) pp. 1–6.

[20] 5G Network Slicing Enabling the Smart Grid., 5G Network Slicing Enabling the
Smart Grid. http://www-file.huawei.com/-/media/CORPORATE/PDF/News/
5g-network-slicing-enabling-the-smart-grid.pdf, [Online; accessed 22-
October-2020].

[21] USE CASES FOR THE ADOPTION OF 5G TELECOMMUNICATIONS WITHIN
THE OPERATIONS OF ELECTRIC UTILITIES., USE CASES FOR THE ADOP-
TION OF 5G TELECOMMUNICATIONS WITHIN THE OPERATIONS OF ELEC-
TRIC UTILITIES. https://eutc.org/wp-content/uploads/2019/04/
EUTC-5G-USE-CASES-31102017.pdf, [Online; accessed 22-October-2020].

[22] Game on! How broadband providers can monetize ultra-low latency ser-
vices for gamers., Game on! How broadband providers can monetize
ultra-low latency services for gamers. https://www.nokia.com/blog/
game-on-how-broadband-providers-can-monetize-ultra-low-latency-services-for-gamers/,
[Online; accessed 22-October-2020].

[23] Why gaming is a promising 5G market., Why gaming is a
promising 5G market. https://www.lightreading.com/5g/
why-gaming-is-a-promising-5g-market/a/d-id/756465/, [Online; ac-
cessed 22-October-2020].

[24] Google Stadia - Welkom bij Stadia - Klik en speel meteen., Google Stadia - Welkom
bij Stadia - Klik en speel meteen. [Online; accessed 24-October-2020].

http://dx.doi.org/10.1109/MPE.2009.934876
http://dx.doi.org/10.1109/MPE.2009.934876
http://www-file.huawei.com/-/media/CORPORATE/PDF/News/5g-network-slicing-enabling-the-smart-grid.pdf
http://www-file.huawei.com/-/media/CORPORATE/PDF/News/5g-network-slicing-enabling-the-smart-grid.pdf
https://eutc.org/wp-content/uploads/2019/04/EUTC-5G-USE-CASES-31102017.pdf
https://eutc.org/wp-content/uploads/2019/04/EUTC-5G-USE-CASES-31102017.pdf
https://www.nokia.com/blog/game-on-how-broadband-providers-can-monetize-ultra-low-latency-services-for-gamers/
https://www.nokia.com/blog/game-on-how-broadband-providers-can-monetize-ultra-low-latency-services-for-gamers/
https://www.lightreading.com/5g/why-gaming-is-a-promising-5g-market/a/d-id/756465/
https://www.lightreading.com/5g/why-gaming-is-a-promising-5g-market/a/d-id/756465/

8

133

[25] Find out the 5 things you need to know about 5G if you’re a gamer., Find out the 5
things you need to know about 5G if you’re a gamer. https://www.ericsson.com/
en/5g/what-is-5g/5-things-to-know-about-5g-if-you-are-a-gamer,
[Online; accessed 22-October-2020].

[26] R.-S. Schmoll, S. Pandi, P. J. Braun, and F. H. Fitzek, Demonstration of vr/ar of-
floading to mobile edge cloud for low latency 5g gaming application, in 2018 15th
IEEE Annual Consumer Communications & Networking Conference (CCNC) (IEEE,
2018) pp. 1–3.

[27] B. Turkovic, F. Kuipers, N. van Adrichem, and K. Langendoen, Fast network con-
gestion detection and avoidance using p4, in Proceedings of the 2018 Workshop on
Networking for Emerging Applications and Technologies (2018) pp. 45–51.

[28] V. Jacobson, Congestion avoidance and control, ACM SIGCOMM computer com-
munication review 18, 314 (1988).

[29] J. Postel, Transmission control protocol specification, RFC 793 (1981).

[30] M. Allman, V. Paxson, and E. Blanton, TCP Congestion Control, RFC 5681 (Draft
Standard) (2009).

[31] A. Narayan, F. Cangialosi, P. Goyal, S. Narayana, M. Alizadeh, and H. Balakrishnan,
The case for moving congestion control out of the datapath, in Proceedings of the
16th ACM Workshop on Hot Topics in Networks (ACM, 2017) pp. 101–107.

[32] M. Hock, F. Neumeister, M. Zitterbart, and R. Bless, TCP LoLa: Congestion Control
for Low Latencies and High Throughput, in 2017 IEEE 42nd Conference on Local
Computer Networks (LCN) (2017) pp. 215–218.

[33] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, and D. Zats, TIMELY: RTT-based Congestion Control for the
Datacenter, (2015).

[34] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, Bbr: Congestion-
based congestion control, Queue 14, 20 (2016).

[35] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng, A. Jain, S. Hao,
E. Katz-Bassett, and R. Govindan, Reducing web latency: the virtue of gentle aggres-
sion, in ACM SIGCOMM Computer Communication Review, Vol. 43 (ACM, 2013)
pp. 159–170.

[36] S. Floyd, HighSpeed TCP for large congestion windows, Tech. Rep. (2003).

[37] D. Leith and R. Shorten, H-TCP: TCP for high-speed and long-distance networks, in
Proceedings of PFLDnet, Vol. 2004 (2004).

[38] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker, Recursively cautious congestion
control, in 11th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 14) (2014) pp. 373–385.

https://www.ericsson.com/en/5g/what-is-5g/5-things-to-know-about-5g-if-you-are-a-gamer
https://www.ericsson.com/en/5g/what-is-5g/5-things-to-know-about-5g-if-you-are-a-gamer
http://www.ietf.org/rfc/rfc5681.txt

8

134

[39] C. Raiciu, M. Handley, and D. Wischik, Coupled congestion control for multipath
transport protocols, Tech. Rep. (IETF RFC 6356, Oct, 2011).

[40] R. Khalili, N. Gast, M. Popovic, and J. yves Le Boudec, Opportunistic linked-
increases congestion control algorithm for mptcp, (2013).

[41] A. Walid, Q. Peng, J. Hwang, and S. Low, Balanced linked adaptation congestion
control algorithm for mptcp, Working Draft, IETF Secretariat, Internet-Draft draft-
walid-mptcp-congestion-control-04 (2016).

[42] T. Kelly, Scalable TCP: Improving performance in highspeed wide area networks,
ACM SIGCOMM computer communication Review 33, 83 (2003).

[43] M. Xu, Y. Cao, and E. Dong, Delay-based congestion control for mptcp, IETF, work
in progress, Internet-draft draft-xu-mptcpcongestion-control-01 (2015).

[44] D. Kliazovich, F. Granelli, and D. Miorandi, Logarithmic window increase for TCP
Westwood+ for improvement in high speed, long distance networks, Computer Net-
works 52, 2395 (2008).

[45] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, {PCC}: Re-architecting
congestion control for consistent high performance, in 12th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 15) (2015) pp. 395–408.

[46] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and M. Schapira,
{PCC} vivace: Online-learning congestion control, in 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18) (2018) pp. 343–356.

[47] K. Winstein and H. Balakrishnan, Tcp ex machina: Computer-generated congestion
control, ACM SIGCOMM Computer Communication Review 43, 123 (2013).

[48] S. Ha, I. Rhee, and L. Xu, CUBIC: a new TCP-friendly high-speed TCP variant,
SIGOPS Oper. Syst. Rev. 42, 64 (2008).

[49] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, TCP westwood:
Bandwidth estimation for enhanced transport over wireless links, in Proceedings
of the 7th annual international conference on Mobile computing and networking
(ACM, 2001) pp. 287–297.

[50] L. A. Grieco and S. Mascolo, Performance evaluation and comparison of West-
wood+, New Reno, and Vegas TCP congestion control, ACM SIGCOMM Computer
Communication Review 34, 25 (2004).

[51] K. Yamada, R. Wang, M. Y. Sanadidi, and M. Gerla, TCP westwood with agile prob-
ing: dealing with dynamic, large, leaky pipes, in 2004 IEEE International Confer-
ence on Communications (IEEE Cat. No.04CH37577), Vol. 2 (2004) pp. 1070–1074
Vol.2.

[52] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan, An experimental study
of the learnability of congestion control, ACM SIGCOMM Computer Communica-
tion Review 44, 479 (2014).

http://dx.doi.org/ 10.1109/ICC.2004.1312665
http://dx.doi.org/ 10.1109/ICC.2004.1312665

8

135

[53] K. Winstein, A. Sivaraman, and H. Balakrishnan, Stochastic forecasts achieve high
throughput and low delay over cellular networks, in Presented as part of the 10th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
13) (2013) pp. 459–471.

[54] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and D. Wentzlaff,
Enabling programmable transport protocols in high-speed nics, in 17th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 20) (2020)
pp. 93–109.

[55] M. T. Arashloo, M. Ghobadi, J. Rexford, and D. Walker, Hotcocoa: Hardware conges-
tion control abstractions, in Proceedings of the 16th ACM Workshop on Hot Topics
in Networks (2017) pp. 108–114.

[56] L. Xu, K. Harfoush, and I. Rhee, Binary increase congestion control (BIC) for fast
long-distance networks, in INFOCOM 2004. Twenty-third AnnualJoint Conference
of the IEEE Computer and Communications Societies, Vol. 4 (IEEE, 2004) pp. 2514–
2524.

[57] C. Caini and R. Firrincieli, TCP Hybla: a TCP enhancement for heterogeneous net-
works, International journal of satellite communications and networking 22, 547
(2004).

[58] J. Jiang and Y. Zhang, An accurate congestion control mechanism in programmable
network, in 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC) (IEEE, 2019) pp. 0673–0677.

[59] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov,
I. Swett, J. Iyengar, et al., The quic transport protocol: Design and internet-scale
deployment, in Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (2017) pp. 183–196.

[60] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson, A. Legay,
O. Pereira, and O. Bonaventure, Pluginizing quic, in Proceedings of the ACM Special
Interest Group on Data Communication, SIGCOMM ’19 (Association for Comput-
ing Machinery, New York, NY, USA, 2019) p. 59–74.

[61] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz, Multipath
quic: A deployable multipath transport protocol, in 2018 IEEE International Con-
ference on Communications (ICC) (2018) pp. 1–7.

[62] S. Floyd and V. Jacobson, Random early detection gateways for congestion avoid-
ance, IEEE/ACM Transactions on networking , 397 (1993).

[63] S. Floyd, R. Gummadi, S. Shenker, et al., Adaptive red: An algorithm for increasing
the robustness of red’s active queue management, (2001).

[64] T. J. Ott, T. Lakshman, and L. H. Wong, Sred: stabilized red, in IEEE INFOCOM’99.
Conference on Computer Communications. Proceedings. Eighteenth Annual Joint

http://dx.doi.org/10.1145/3341302.3342078
http://dx.doi.org/10.1145/3341302.3342078

8

136

Conference of the IEEE Computer and Communications Societies. The Future is
Now (Cat. No. 99CH36320), Vol. 3 (IEEE, 1999) pp. 1346–1355.

[65] D. Lin and R. Morris, Dynamics of random early detection, SIGCOMM Comput.
Commun. Rev. 27, 127–137 (1997).

[66] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, Rem: Active queue management, IEEE
network 15, 48 (2001).

[67] R. Pan, B. Prabhakar, and K. Psounis, Choke-a stateless active queue manage-
ment scheme for approximating fair bandwidth allocation, in Proceedings IEEE
INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies (Cat. No.
00CH37064), Vol. 2 (IEEE, 2000) pp. 942–951.

[68] S. S. Kunniyur and R. Srikant, An adaptive virtual queue (avq) algorithm for active
queue management, IEEE/ACM Transactions on Networking (ToN) 12, 286 (2004).

[69] J. Sun and M. Zukerman, An adaptive neuron aqm for a stable internet, in Interna-
tional conference on research in networking (Springer, 2007) pp. 844–854.

[70] F. Ren, C. Lin, and B. Wei, A robust active queue management algorithm in large
delay networks, Computer communications 28, 485 (2005).

[71] K. Nichols and V. Jacobson, Controlling queue delay, Queue 10, 20 (2012).

[72] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker, and B. Ver-
Steeg, Pie: A lightweight control scheme to address the bufferbloat problem, in 2013
IEEE 14th International Conference on High Performance Switching and Routing
(HPSR) (IEEE, 2013) pp. 148–155.

[73] W.-c. Feng, D. Kandlur, D. Saha, and K. Shin, BLUE: A new class of active queue
management algorithms, Tech. Rep. (Technical Report CSE-TR-387-99, University
of Michigan, 1999).

[74] M. Li and H. Wang, Study of active queue management algorithms—-towards sta-
bilize and high link utilization, .

[75] E. Dumazet, net_sched: sfq: Optional RED on top of SFQ, https://www.
spinics.net/lists/netdev/msg185147.html (2012), [Online; accessed 15-
August-2019].

[76] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet, The flow
queue codel packet scheduler and active queue management algorithm, RFC8290
[Online]. Available: https://tools. ietf. org/html/rfc8290 (2018).

[77] B. Turkovic and F. Kuipers, P4air: Increasing fairness among competing congestion
control algorithms, in 2020 IEEE 28th International Conference on Network Proto-
cols (ICNP) (IEEE, 2020) pp. 1–12.

http://dx.doi.org/10.1145/263109.263154
http://dx.doi.org/10.1145/263109.263154
https://www.spinics.net/lists/netdev/msg185147.html
https://www.spinics.net/lists/netdev/msg185147.html

8

137

[78] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, Openflow: Enabling innovation in campus networks,
SIGCOMM Comput. Commun. Rev. 38, 69 (2008).

[79] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,
M. Miller, and N. Rao, Are we ready for sdn? implementation challenges for
software-defined networks, IEEE Communications Magazine 51, 36 (2013).

[80] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, Openqos: An openflow
controller design for multimedia delivery with end-to-end quality of service over
software-defined networks, in Proceedings of The 2012 Asia Pacific Signal and In-
formation Processing Association Annual Summit and Conference (2012) pp. 1–8.

[81] J. W. Guck, A. V. Bemten, M. Reisslein, and W. Kellerer, Unicast qos routing algo-
rithms for sdn: A comprehensive survey and performance evaluation, IEEE Com-
munications Surveys Tutorials PP, 1 (2017).

[82] S. Civanlar, M. Parlakisik, A. M. Tekalp, B. Gorkemli, B. Kaytaz, and E. Onem, A qos-
enabled openflow environment for scalable video streaming, in 2010 IEEE Globe-
com Workshops (2010) pp. 351–356.

[83] D. Adami, L. Donatini, S. Giordano, and M. Pagano, A network control application
enabling software-defined quality of service, in 2015 IEEE International Conference
on Communications (ICC) (2015) pp. 6074–6079.

[84] D. Adami, G. Antichi, R. G. Garroppo, S. Giordano, and A. W. Moore, Towards an
sdn network control application for differentiated traffic routing, in 2015 IEEE In-
ternational Conference on Communications (ICC) (2015) pp. 5827–5832.

[85] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, Control of multiple packet
schedulers for improving qos on openflow/sdn networking, in 2013 Second Euro-
pean Workshop on Software Defined Networks (2013) pp. 81–86.

[86] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, Policycop: An autonomic
qos policy enforcement framework for software defined networks, in 2013 IEEE SDN
for Future Networks and Services (SDN4FNS) (2013) pp. 1–7.

[87] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, Opennetmon: Network mon-
itoring in openflow software-defined networks, in 2014 IEEE Network Operations
and Management Symposium (NOMS) (2014) pp. 1–8.

[88] Z. Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho, and C. Yang, Traffic engineering in
software-defined networking: Measurement and management, IEEE Access 4, 3246
(2016).

[89] Streaming telemetry, http://www.openconfig.net/projects/telemetry/
(2016), accessed: 20-02-2022.

http://dx.doi.org/ 10.1145/1355734.1355746
http://dx.doi.org/ 10.1109/COMST.2017.2749760
http://dx.doi.org/ 10.1109/COMST.2017.2749760
http://dx.doi.org/10.1109/GLOCOMW.2010.5700340
http://dx.doi.org/10.1109/GLOCOMW.2010.5700340
http://dx.doi.org/ 10.1109/ICC.2015.7249290
http://dx.doi.org/ 10.1109/ICC.2015.7249290
http://dx.doi.org/ 10.1109/ICC.2015.7249251
http://dx.doi.org/ 10.1109/ICC.2015.7249251
http://dx.doi.org/ 10.1109/EWSDN.2013.20
http://dx.doi.org/ 10.1109/EWSDN.2013.20
http://dx.doi.org/ 10.1109/SDN4FNS.2013.6702548
http://dx.doi.org/ 10.1109/SDN4FNS.2013.6702548
http://dx.doi.org/10.1109/NOMS.2014.6838228
http://dx.doi.org/10.1109/NOMS.2014.6838228
http://dx.doi.org/ 10.1109/ACCESS.2016.2582748
http://dx.doi.org/ 10.1109/ACCESS.2016.2582748
http://www.openconfig.net/projects/telemetry/

8

138

[90] S. Sharma, D. Staessens, D. Colle, D. Palma, J. Gonçalves, R. Figueiredo, D. Morris,
M. Pickavet, and P. Demeester, Implementing quality of service for the software
defined networking enabled future internet, in 2014 Third European Workshop on
Software Defined Networks (2014) pp. 49–54.

[91] H. Krishna, N. L. M. van Adrichem, and F. A. Kuipers, Providing bandwidth guar-
antees with openflow, in 2016 Symposium on Communications and Vehicular Tech-
nologies (SCVT) (2016) pp. 1–6.

[92] F. Li, J. Cao, X. Wang, Y. Sun, and Y. Sahni, Enabling software defined networking
with qos guarantee for cloud applications, in 2017 IEEE 10th International Confer-
ence on Cloud Computing (CLOUD) (2017) pp. 130–137.

[93] S. Tomovic, N. Prasad, and I. Radusinovic, Sdn control framework for qos provi-
sioning, in 2014 22nd Telecommunications Forum Telfor (TELFOR) (2014) pp. 111–
114.

[94] R. C. R. Wallner, An sdn approach: Quality of service using big switchs floodlight
open-source controller, Asia-Pacific Advanced Network (APAN), Proceedings of the
Asia-Pacific Advanced Network (2013).

[95] S. Dwarakanathan, L. Bass, and L. Zhu, Cloud application ha using sdn to en-
sure qos, in 2015 IEEE 8th International Conference on Cloud Computing (2015)
pp. 1003–1007.

[96] J. Guck, M. Reisslein, and W. Kellerer, Function split between delay-constrained
routing and resource allocation for centrally managed qos in industrial networks,
IEEE Transactions on Industrial Informatics, 12, 1 (2016).

[97] The Technology Book: The Technology trends KPN has on its radar.,
The Technology Book: The Technology trends KPN has on its radar.
https://www.kivi.nl/uploads/media/5a9539b06a1dc/1474897928_KPN_
Technology_Book_2016.pdf, [Online; accessed 21-October-2020].

[98] Intel® Tofino™: P4-programmable Ethernet switch ASIC that delivers better per-
formance at lower power, Intel® Tofino™, https://www.intel.com/content/
www/us/en/products/network-io/programmable-ethernet-switch/
tofino-series.html, [Online; accessed 03-November-2020].

[99] C. Kim, P. Bhide, E. Doe, H. Holbrook, A. Ghanwani, D. Daly, and B. Hira, Mukesh
amd Davie, In-band network telemetry (int), (2016), https://p4.org/assets/
INT-current-spec.pdf, Last accessed on 10-06-2020.

[100] B. Turkovic, J. Oostenbrink, F. Kuipers, I. Keslassy, and A. Orda, Sequential zeroing:
Online heavy-hitter detection on programmable hardware, in 2020 IFIP Network-
ing Conference (Networking) (IEEE, 2020) pp. 422–430.

[101] R. B. Basat, G. Einziger, I. Keslassy, A. Orda, S. Vargaftik, and E. Waisbard,
Memento: Making sliding windows efficient for heavy hitters, arXiv preprint
arXiv:1810.02899 (2018).

http://dx.doi.org/10.1109/EWSDN.2014.36
http://dx.doi.org/10.1109/EWSDN.2014.36
http://dx.doi.org/ 10.1109/SCVT.2016.7797664
http://dx.doi.org/ 10.1109/SCVT.2016.7797664
http://dx.doi.org/10.1109/CLOUD.2017.25
http://dx.doi.org/10.1109/CLOUD.2017.25
http://dx.doi.org/10.1109/TELFOR.2014.7034369
http://dx.doi.org/10.1109/CLOUD.2015.137
https://www.kivi.nl/uploads/media/5a9539b06a1dc/1474897928_KPN_Technology_Book_2016.pdf
https://www.kivi.nl/uploads/media/5a9539b06a1dc/1474897928_KPN_Technology_Book_2016.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://p4.org/assets/INT-current-spec.pdf
https://p4.org/assets/INT-current-spec.pdf

8

139

[102] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford,
Heavy-hitter detection entirely in the data plane, ACM SOSR , 164 (2017).

[103] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, Heavy hitters in streams
and sliding windows. in INFOCOM (2016) pp. 1–9.

[104] R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstreich, Efficient measurement on
programmable switches using probabilistic recirculation, in 2018 IEEE 26th Inter-
national Conference on Network Protocols (ICNP) (IEEE, 2018) pp. 313–323.

[105] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker, P4: Programming protocol-
independent packet processors, SIGCOMM Comput. Commun. Rev. 44, 87 (2014).

[106] B. Turkovic, F. Kuipers, N. van Adrichem, and K. Langendoen, Fast network con-
gestion detection and avoidance using p4, in CoNEXT , NEAT ’18 (ACM, New York,
NY, USA, 2018) pp. 45–51.

[107] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,
and M. Horowitz, Forwarding metamorphosis: Fast programmable match-action
processing in hardware for sdn, ACM SIGCOMM CCR 43, 99 (2013).

[108] R. Bifulco and G. Rétvári, A survey on the programmable data plane: Abstractions
architectures and open problems, in Proc. IEEE HPSR (2018) pp. 1–7.

[109] About Agilio SmartNICs, About Agilio SmartNICs, https://www.netronome.
com/products/smartnic/overview/, [Online; accessed 16-January-2020].

[110] A. Metwally, D. Agrawal, and A. El Abbadi, Efficient computation of frequent and
top-k elements in data streams, in International Conference on Database Theory
(Springer, 2005) pp. 398–412.

[111] G. Cormode and S. Muthukrishnan, An improved data stream summary: The
count-min sketch and its applications, J. Algorithms 55, 58 (2005).

[112] X. Wu and Y. Luo, Network Measurement with P4 and C on Netronome
Agilio, Available at https://www.slideshare.net/Open-NFP/
network-measurement-with-p4-and-c-on-netronome-agilio.

[113] S. Muthukrishnan et al., Data streams: Algorithms and applications, Foundations
and Trends® in Theoretical Computer Science 1, 117 (2005).

[114] Q. Rong, G. Zhang, G. Xie, and K. Salamatian, Mnemonic lossy counting: An effi-
cient and accurate heavy-hitters identification algorithm, in IEEE IPCCC (2010) pp.
255–262.

[115] The CAIDA UCSD Anonymized Internet Traces - 2016, 2018, The CAIDA UCSD
anonymized internet traces - 2016, 2018, Available at http://www.caida.org/
data/passive/passive_dataset.xml.

http://dx.doi.org/ 10.1145/2656877.2656890
http://dx.doi.org/10.1145/3229574.3229581
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
https://www.slideshare.net/Open-NFP/network-measurement-with-p4-and-c-on-netronome-agilio
https://www.slideshare.net/Open-NFP/network-measurement-with-p4-and-c-on-netronome-agilio
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml

8

140

[116] T. Benson, A. Akella, and D. A. Maltz, Network traffic characteristics of data centers
in the wild, in ACM IMC ’10 (2010) pp. 267–280.

[117] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li, Heavykeeper: An
accurate algorithm for finding top-k elephant flows, IEEE/ACM Transactions on
Networking 27, 1845 (2019).

[118] B. Claise, Cisco systems NetFlow services export version 9, Tech. Rep. 2070-1721 (In-
ternet Engineering Task Force, 2004).

[119] P. Phaal, S. Panchen, and N. McKee, InMon corporation’s sFlow: A method for mon-
itoring traffic in switched and routed networks, Tech. Rep. 2070-1721 (Internet En-
gineering Task Force, 2001).

[120] C. Estan and G. Varghese, New directions in traffic measurement and accounting,
SIGCOMM Comput. Commun. Rev. 32, 323 (2002).

[121] Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig, Cold filter: A meta-
framework for faster and more accurate stream processing, in ACM SIGMOD (2018)
pp. 741–756.

[122] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, One sketch to rule
them all: Rethinking network flow monitoring with univmon, in Proceedings of the
2016 ACM SIGCOMM Conference (ACM, 2016) pp. 101–114.

[123] M. Charikar, K. Chen, and M. Farach-Colton, Finding frequent items in data
streams, in International Colloquium on Automata, Languages, and Programming
(Springer, 2002) pp. 693–703.

[124] X. Dimitropoulos, P. Hurley, and A. Kind, Probabilistic lossy counting: an effi-
cient algorithm for finding heavy hitters, SIGCOMM Comput. Commun. Rev. 38,
5 (2008).

[125] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang, Countmax: A lightweight and cooper-
ative sketch measurement for software-defined networks, IEEE/ACM Transactions
on Networking (2018).

[126] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and S. Uhlig,
Elastic sketch: Adaptive and fast network-wide measurements, in ACM SIGCOMM
(2018) pp. 561–575.

[127] G. Einziger and R. Friedman, Counting with tinytable: Every bit counts! in ICDCN
(2016).

[128] E. Assaf, R. Ben-Basat, G. Einziger, and R. Friedman, Pay for a sliding bloom filter
and get counting, distinct elements, and entropy for free, CoRR abs/1712.01779
(2017), arXiv:1712.01779 .

[129] R. B. Basat, G. Einziger, R. Friedman, and Y. Kassner, Poster abstract: A sliding
counting bloom filter, in INFOCOM WKSHPS (2017) pp. 1012–1013.

http://dx.doi.org/ 10.1145/964725.633056
http://arxiv.org/abs/1712.01779
http://arxiv.org/abs/1712.01779
http://arxiv.org/abs/1712.01779
http://dx.doi.org/10.1109/INFCOMW.2017.8116536

8

141

[130] K. Polachan, B. Turkovic, T. Prabhakar, C. Singh, and F. A. Kuipers, Dynamic net-
work slicing for the tactile internet, in 2020 ACM/IEEE 11th International Confer-
ence on Cyber-Physical Systems (ICCPS) (IEEE, 2020) pp. 129–140.

[131] A. Seam, A. Poll, R. Wright, J. Mueller, and F. Hoodbhoy, Enabling mobile aug-
mented and virtual reality with 5g networks, (2017).

[132] G. Fettweis and S. Alamouti, 5g: Personal mobile internet beyond what cellular did
to telephony, IEEE Communications Magazine 52, 140 (2014).

[133] Y. Gao, S. S. Vedula, C. E. Reiley, N. Ahmidi, B. Varadarajan, H. C. Lin, L. Tao, L. Zap-
pella, B. Bejar, D. D. Yuh, C. C. G. Chen, R. Vidal, S. Khudanpur, and G. D. Hager,
Jhu isi gesture and skill assessment working set (jigsaws) a surgical activity dataset
for human motion modeling, Modeling and Monitoring of Computer Assisted In-
terventions (M2CAI) – MICCAI Workshop , 1 (2014).

[134] ITU, The tactile internet, (2014).

[135] J. J. LaViola, Jr., A Discussion of Cybersickness in Virtual Environments, SIGCHI
Bull. 32, 47 (2000).

[136] K. Polachan, T. V. Prabhakar, C. Singh, and D. Panchapakesan, Quality of control
assessment for tactile cyber-physical systems, in 2019 IEEE International Conference
on Sensing, Communication and Networking (IEEE SECON) (2019).

[137] J. Marescaux, J. Leroy, F. Rubino, M. Smith, M. Vix, M. Simone, and D. Mutter,
Transcontinental robot-assisted remote telesurgery: feasibility and potential appli-
cations, Annals of surgery 235, 487 (2002).

[138] L. B. Valdez, R. R. Datta, B. Babic, D. T. Müller, C. J. Bruns, and H. F. Fuchs, 5g
mobile communication applications for surgery: An overview of the latest literature,
Artificial Intelligence in Gastrointestinal Endoscopy 2, 1 (2021).

[139] G. P. Fettweis, The tactile internet: Applications and challenges, IEEE Vehicular
Technology Magazine 9, 64 (2014).

[140] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker, P4: Programming protocol-
independent packet processors, SIGCOMM Comput. Commun. Rev. 44, 87 (2014).

[141] P4 behavioral model, https://github.com/p4lang/behavioral-model, ac-
cessed: 19-03-2018.

[142] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uh-
lig, Software-defined networking: A comprehensive survey, Proceedings of the IEEE
103, 14 (2015).

[143] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. Leung, Network slicing
based 5g and future mobile networks: mobility, resource management, and chal-
lenges, IEEE Communications Magazine 55, 138 (2017).

https://www.itu.int/en/ITU-T/techwatch/Pages/tactile-internet.aspx
http://dx.doi.org/10.1145/333329.333344
http://dx.doi.org/10.1145/333329.333344
http://dx.doi.org/ 10.1109/MVT.2013.2295069
http://dx.doi.org/ 10.1109/MVT.2013.2295069
https://github.com/p4lang/behavioral-model

8

142

[144] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, Network slicing in 5g:
Survey and challenges, IEEE Communications Magazine 55, 94 (2017).

[145] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi, L. Shi,
L. Liu, M. Debbah, and G. S. Paschos, The algorithmic aspects of network slicing,
IEEE Communications Magazine 55, 112 (2017).

[146] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and
G. Parulkar, Flowvisor: A network virtualization layer, OpenFlow Switch Consor-
tium, Tech. Rep 1, 132 (2009).

[147] D. Drutskoy, E. Keller, and J. Rexford, Scalable network virtualization in software-
defined networks, IEEE Internet Computing 17, 20 (2012).

[148] T. Mizrahi and Y. Moses, Time4: Time for sdn, IEEE Transactions on Network and
Service Management 13, 433 (2016).

[149] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancalepore, N. Sastry,
O. Holland, S. Tayade, B. Han, D. Bega, D. Aziz, and H. Bakker, Network slicing
to enable scalability and flexibility in 5g mobile networks, IEEE Communications
Magazine 55, 72 (2017).

[150] M. Dohler, T. Mahmoodi, M. A. Lema, M. Condoluci, F. Sardis, K. Antonakoglou,
and H. Aghvami, Internet of skills, where robotics meets ai, 5g and the tactile in-
ternet, in 2017 European Conference on Networks and Communications (EuCNC)
(2017) pp. 1–5.

[151] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, 5g-enabled tactile inter-
net, IEEE Journal on Selected Areas in Communications 34, 460 (2016).

[152] Z. Hou, C. She, Y. Li, T. Q. S. Quek, and B. Vucetic, Burstiness-aware bandwidth
reservation for ultra-reliable and low-latency communications in tactile internet,
IEEE Journal on Selected Areas in Communications 36, 2401 (2018).

[153] M. Condoluci, T. Mahmoodi, E. Steinbach, and M. Dohler, Soft resource reser-
vation for low-delayed teleoperation over mobile networks, IEEE Access 5, 10445
(2017).

[154] F. Zhou, F. D. l. Torre, and J. K. Hodgins, Hierarchical aligned cluster analysis for
temporal clustering of human motion, IEEE Transactions on Pattern Analysis and
Machine Intelligence 35, 582 (2013).

[155] L. Li and B. A. Prakash, Time series clustering: Complex is simpler! in Proceedings
of the 28th International Conference on Machine Learning (ICML-11) (2011) pp.
185–192.

[156] S. Li, K. Li, and Y. Fu, Temporal subspace clustering for human motion segmen-
tation, in Proceedings of the IEEE International Conference on Computer Vision
(2015) pp. 4453–4461.

http://dx.doi.org/10.1109/MCOM.2017.1600920
http://dx.doi.org/10.1109/MCOM.2017.1600920
http://dx.doi.org/10.1109/EuCNC.2017.7980645
http://dx.doi.org/ 10.1109/JSAC.2016.2525398
http://dx.doi.org/ 10.1109/JSAC.2018.2874113
http://dx.doi.org/10.1109/ACCESS.2017.2707319
http://dx.doi.org/10.1109/ACCESS.2017.2707319
http://dx.doi.org/10.1109/TPAMI.2012.137
http://dx.doi.org/10.1109/TPAMI.2012.137

8

143

[157] D. Baumann, F. Mager, R. Jacob, L. Thiele, M. Zimmerling, and S. Trimpe, Fast
feedback control over multi-hop wireless networks with mode changes and stability
guarantees, (2019), arXiv:1909.10873 [eess.SY] .

[158] B. Turkovic, S. Nijhuis, and F. Kuipers, Elastic slicing in programmable networks,
in NetSoft 2021-IEEE International Conference on Network Softwarization (IEEE,
2021).

[159] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, Toward software-defined mid-
dlebox networking, in Proceedings of the 11th ACM Workshop on Hot Topics in Net-
works (2012) pp. 7–12.

[160] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca, and
J. Folgueira, Network slicing for 5g with sdn/nfv: Concepts, architectures, and chal-
lenges, IEEE Communications Magazine 55, 80 (2017).

[161] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and A. Akella, Paving
the way for {NFV}: Simplifying middlebox modifications using statealyzr, in 13th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
16) (2016) pp. 239–253.

[162] S. Luo, H. Yu, and L. Vanbever, Swing state: Consistent updates for stateful and
programmable data planes, (2017).

[163] C. Zhang, J. Bi, Y. Zhou, and J. Wu, Hypervdp: High-performance virtualization of
the programmable data plane, IEEE Journal on Selected Areas in Communications
37, 556 (2019).

[164] D. Hancock and J. Van der Merwe, Hyper4: Using p4 to virtualize the pro-
grammable data plane, in Proceedings of the 12th International on Conference on
emerging Networking EXperiments and Technologies (ACM, 2016) pp. 35–49.

[165] M. Saquetti, G. Bueno, W. Cordeiro, and J. R. Azambuja, Virtp4: An architecture for
p4 virtualization, in 2019 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW) (IEEE, 2019) pp. 75–78.

[166] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and S. Shenker,
E2: a framework for nfv applications, in Proceedings of the 25th Symposium on
Operating Systems Principles (2015) pp. 121–136.

[167] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, Flowtags: Enforcing network-
wide policies in the presence of dynamic middlebox actions, in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined networking
(2013).

[168] A. Gember, S. S. J. Anand Krishnamurthy, R. Grandl, X. Gao, A. Anand, T. Benson,
A. Akella, and V. Sekar, Stratos: A network-aware orchestration layer for middle-
boxes in the cloud. corr (2013), (2013).

http://arxiv.org/abs/1909.10873

8

144

[169] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, Simple-fying mid-
dlebox policy enforcement using sdn, in Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM (2013) pp. 27–38.

[170] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, Design and implementation
of a consolidated middlebox architecture, in Presented as part of the 9th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 12) (2012)
pp. 323–336.

[171] M. Kablan, A. Alsudais, E. Keller, and F. Le, Stateless network functions: Breaking
the tight coupling of state and processing, in 14th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 17) (2017) pp. 97–112.

[172] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das, and
A. Akella, Opennf: Enabling innovation in network function control, ACM SIG-
COMM Computer Communication Review 44, 163 (2014).

[173] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, Split/merge: System
support for elastic execution in virtual middleboxes, in Presented as part of the 10th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
13) (2013) pp. 227–240.

[174] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker, Elastic scaling
of stateful network functions, in 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18) (2018) pp. 299–312.

[175] M. He, A. Basta, A. Blenk, N. Deric, and W. Kellerer, P4nfv: An nfv architecture
with flexible data plane reconfiguration, in 2018 14th International Conference on
Network and Service Management (CNSM) (IEEE, 2018) pp. 90–98.

[176] G. Sviridov, M. Bonola, A. Tulumello, P. Giaccone, A. Bianco, and G. Bianchi, Lodge:
Local decisions on global states in progrananaable data planes, in 2018 4th IEEE
Conference on Network Softwarization and Workshops (NetSoft) (IEEE, 2018) pp.
257–261.

[177] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker, Snap: Stateful
network-wide abstractions for packet processing, in Proceedings of the 2016 ACM
SIGCOMM Conference (2016) pp. 29–43.

[178] L. Liu, H. Xu, Z. Niu, P. Wang, and D. Han, U-haul: Efficient state migration in nfv,
in Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems (2016) pp.
1–8.

[179] B. Turkovic, F. A. Kuipers, and S. Uhlig, Interactions between congestion control
algorithms, in 2019 Network Traffic Measurement and Analysis Conference (TMA)
(IEEE, 2019) pp. 161–168.

[180] B. Turkovic, F. A. Kuipers, and S. Uhlig, Fifty shades of congestion control: A perfor-
mance and interactions evaluation, arXiv preprint arXiv:1903.03852 (2019).

8

145

[181] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, BBR:
Congestion-Based Congestion Control, Queue 14, 20 (2016).

[182] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and G. Carle, Towards
a Deeper Understanding of TCP BBR Congestion Control, in IFIP Networking 2018
(Zurich, Switzerland, 2018).

[183] B. Turkovic, F. A. Kuipers, and S. Uhlig, Fifty Shades of Congestion Control: A Per-
formance and Interactions Evaluation, ArXiv (2019).

[184] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, Host-to-host congestion control
for TCP, IEEE Communications surveys & tutorials 12, 304 (2010).

[185] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, TCP Vegas: New techniques for
congestion detection and avoidance, Vol. 24 (ACM, 1994).

[186] G. Hasegawa, K. Kurata, and M. Murata, Analysis and improvement of fairness be-
tween TCP Reno and Vegas for deployment of TCP Vegas to the Internet, in Proceed-
ings 2000 International Conference on Network Protocols (2000) pp. 177–186.

[187] K. Srijith, L. Jacob, and A. L. Ananda, Tcp vegas-a: Improving the performance of
tcp vegas, Computer communications 28, 429 (2005).

[188] C. Jin, D. Wei, S. H. Low, J. Bunn, H. D. Choe, J. C. Doylle, H. Newman, S. Ravot,
S. Singh, F. Paganini, G. Buhrmaster, L. Cottrell, O. Martin, and W. chun Feng,
FAST TCP: from theory to experiments, IEEE Network 19, 4 (2005).

[189] S. Belhaj and M. Tagina, VFAST TCP: An improvement of FAST TCP, in Computer
Modeling and Simulation, 2008. UKSIM 2008. Tenth International Conference on
(IEEE, 2008) pp. 88–93.

[190] J. Sing and B. Soh, TCP New Vegas: improving the performance of TCP Vegas over
high latency links, in Network Computing and Applications, Fourth IEEE Interna-
tional Symposium on (IEEE, 2005) pp. 73–82.

[191] A. Kuzmanovic and E. W. Knightly, Tcp-lp: low-priority service via end-point con-
gestion control, IEEE/ACM Transactions on Networking 14, 739 (2006).

[192] A. Kuzmanovic and E. W. Knightly, Tcp-lp: A distributed algorithm for low prior-
ity data transfer, in IEEE INFOCOM 2003. Twenty-second Annual Joint Conference
of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428),
Vol. 3 (IEEE, 2003) pp. 1691–1701.

[193] S. Shalunov, G. Hazel, J. Iyengar, M. Kuehlewind, et al., Low extra delay background
transport (ledbat), IETF draft (2012).

[194] C. P. Fu and S. C. Liew, TCP Veno: TCP enhancement for transmission over wireless
access networks, IEEE Journal on selected areas in communications 21, 216 (2003).

http://dx.doi.org/10.1109/ICNP.2000.896302
http://dx.doi.org/10.1109/ICNP.2000.896302
http://dx.doi.org/10.1109/MNET.2005.1383434

8

146

[195] R. King, R. Baraniuk, and R. Riedi, TCP-Africa: An adaptive and fair rapid increase
rule for scalable TCP, in INFOCOM 2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings IEEE, Vol. 3 (IEEE, 2005) pp.
1838–1848.

[196] K. Tan, J. Song, Q. Zhang, and M. Sridharan, A Compound TCP Approach for High-
Speed and Long Distance Networks, in Proceedings IEEE INFOCOM 2006. 25TH
IEEE International Conference on Computer Communications (2006) pp. 1–12.

[197] A. Baiocchi, A. P. Castellani, and F. Vacirca, YeAH-TCP: yet another highspeed TCP,
in Proc. PFLDnet, Vol. 7 (2007) pp. 37–42.

[198] S. Liu, T. Başar, and R. Srikant, TCP-Illinois: A loss-and delay-based congestion
control algorithm for high-speed networks, Performance Evaluation 65, 417 (2008).

[199] H. Shimonishi and T. Murase, Improving efficiency-friendliness tradeoffs of TCP
congestion control algorithm, in Global Telecommunications Conference, 2005.
GLOBECOM’05. IEEE, Vol. 1 (IEEE, 2005) pp. 5–pp.

[200] K. Kaneko, T. Fujikawa, Z. Su, and J. Katto, TCP-Fusion: a hybrid congestion control
algorithm for high-speed networks, in Proc. PFLDnet, Vol. 7 (2007) pp. 31–36.

[201] H. Shimonishi, T. Hama, and T. Murase, TCP-adaptive reno for improving
efficiency-friendliness tradeoffs of TCP congestion control algorithm, in Proc. PFLD-
net (Citeseer, 2006) pp. 87–91.

[202] G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Sanadidi, and M. Roccetti, Tcp libra: Ex-
ploring rtt-fairness for tcp, in International Conference on Research in Networking
(Springer, 2007) pp. 1005–1013.

[203] M. Hock, R. Bless, and M. Zitterbart, Experimental evaluation of BBR congestion
control, in 2017 IEEE 25th International Conference on Network Protocols (ICNP)
(2017) pp. 1–10.

[204] S. Ma, J. Jiang, W. Wang, and B. Li, Towards RTT Fairness of Congestion-Based Con-
gestion Control, CoRR abs/1706.09115 (2017), arXiv:1706.09115 .

[205] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, A Quantitative Measure of Fairness
and Discrimination, Eastern Research Laboratory, Digital Equipment Corpora-
tion, Hudson, MA (1984).

[206] The chromium projects: Chromium, https://www.chromium.org/Home, ac-
cessed: 04-03-2019.

[207] M. Hock, R. Bless, and M. Zitterbart, Experimental evaluation of bbr congestion
control, in 2017 IEEE 25th International Conference on Network Protocols (ICNP)
(IEEE, 2017) pp. 1–10.

[208] T. Kozu, Y. Akiyama, and S. Yamaguchi, Improving rtt fairness on cubic tcp, in 2013
First International Symposium on Computing and Networking (2013) pp. 162–167.

http://dx.doi.org/10.1109/ICNP.2017.8117540
http://arxiv.org/abs/1706.09115
http://arxiv.org/abs/1706.09115
https://www.chromium.org/Home
http://dx.doi.org/10.1109/CANDAR.2013.30
http://dx.doi.org/10.1109/CANDAR.2013.30

8

147

[209] R. Al-Saadi, G. Armitage, J. But, and P. Branch, A survey of delay-based and hybrid
tcp congestion control algorithms, IEEE Communications Surveys & Tutorials 21,
3609 (2019).

[210] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and G. Carle, Towards a
deeper understanding of tcp bbr congestion control, in 2018 IFIP Networking Con-
ference (IFIP Networking) and Workshops (IEEE, 2018) pp. 1–9.

[211] N. Cardwell, Y. Cheng, S. H. Yeganeh, and V. Jacobson, BBR congestion con-
trol, Working Draft, IETF Secretariat, Internet-Draft draft-card-well-iccrg-bbr-
congestion-control-00 (2017).

[212] Y. Cao, A. Jain, K. Sharma, A. Balasubramanian, and A. Gandhi, When to use and
when not to use bbr: An empirical analysis and evaluation study, in Proceedings of
the Internet Measurement Conference (2019) pp. 130–136.

[213] S. Ma, J. Jiang, W. Wang, and B. Li, Towards rtt fairness of congestion-based conges-
tion control, CoRR (2017).

[214] G. Hasegawa, K. Kurata, and M. Murata, Analysis and improvement of fairness be-
tween tcp reno and vegas for deployment of tcp vegas to the internet, in Proceedings
2000 International Conference on Network Protocols (IEEE, 2000) pp. 177–186.

[215] J. Lin, L. Cui, Y. Zhang, F. P. Tso, and Q. Guan, Extensive evaluation on the per-
formance and behaviour of tcp congestion control protocols under varied network
scenarios, Computer Networks 163, 106872 (2019).

[216] G. White and D. Rice, Active queue management in docsis 3. x cable modems, Tech-
nical report, CableLabs (2014).

[217] I. Järvinen and M. Kojo, Evaluating codel, pie, and hred aqm techniques with load
transients, in 39th Annual IEEE Conference on Local Computer Networks (IEEE,
2014) pp. 159–167.

[218] N. Yamanaka, High-Performance Backbone Network Technology (CRC Press, 2004).

[219] F. Schwarzkopf, S. Veith, and M. Menth, Performance analysis of codel and pie for
saturated tcp sources, in 2016 28th International Teletraffic Congress (ITC 28), Vol. 1
(IEEE, 2016) pp. 175–183.

[220] T. B. community, Feature Rich Flow Monitoring with. P4,
Available at https://www.netronome.com/media/documents/
WBN-2017-11-1-Penn-Feature-Rich-Flow-Monitoring-OpenNFP_.pdf.

[221] J. Postel, L. Garlick, and R. Rom, Transmission control protocol specification,
DARPA Internet Request for Comments 793 (1981).

[222] S. Ha, I. Rhee, and L. Xu, Cubic: a new tcp-friendly high-speed tcp variant, ACM
SIGOPS operating systems review 42, 64 (2008).

http://dx.doi.org/10.1016/j.comnet.2019.106872
https://www.netronome.com/media/documents/WBN-2017-11-1-Penn-Feature-Rich-Flow-Monitoring-OpenNFP_.pdf
https://www.netronome.com/media/documents/WBN-2017-11-1-Penn-Feature-Rich-Flow-Monitoring-OpenNFP_.pdf

148

[223] G. Montenegro and D. Havey, Top 10 networking features in windows server
2019, https://techcommunity.microsoft.com/t5/networking-blog/
top-10-networking-features-in-windows-server-2019-8-a-faster/
ba-p/339749, accessed: 23-3-2020.

[224] S. Ma, J. Jiang, W. Wang, and B. Li, Fairness of congestion-based congestion control:
Experimental evaluation and analysis, arXiv preprint arXiv:1706.09115 (2017).

[225] B. Turkovic, F. A. Kuipers, and S. Uhlig, Interactions between congestion control
algorithms, in 2019 Network Traffic Measurement and Analysis Conference (TMA)
(IEEE, 2019) pp. 161–168.

[226] K. Dooley and I. Brown, Cisco IOS cookbook: Field-tested solutions to Cisco router
problems (" O’Reilly Media, Inc.", 2006).

[227] X. Chen, H. Kim, J. M. Aman, W. Chang, M. Lee, and J. Rexford, Measuring tcp
round-trip time in the data plane, in Proceedings of the Workshop on Secure Pro-
grammable Network Infrastructure (2020) pp. 35–41.

[228] V. Firoiu and M. Borden, A study of active queue management for congestion con-
trol, in Proceedings IEEE INFOCOM 2000. Conference on Computer Communica-
tions. Nineteenth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies (Cat. No. 00CH37064), Vol. 3 (IEEE, 2000) pp. 1435–1444.

[229] W.-C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, A self-configuring red gate-
way, in IEEE INFOCOM’99. Conference on Computer Communications. Proceed-
ings. Eighteenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. The Future is Now (Cat. No. 99CH36320), Vol. 3 (IEEE, 1999) pp.
1320–1328.

[230] S. H. Low, F. Paganini, and J. C. Doyle, Internet congestion control, IEEE control
systems magazine 22, 28 (2002).

[231] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown, I. Abraham,
and I. Keslassy, Virtualized congestion control, in Proceedings of the 2016 ACM SIG-
COMM Conference (2016) pp. 230–243.

[232] G. Fettweis, The tactile internet: Applications & challenges, IEEE Vehic. Tech. Mag.
9, 64 (2014).

[233] D. Maxim and Y.-Q. Song, Delay analysis of avb traffic in time-sensitive networks
(tsn), in Proceedings of the 25th International Conference on Real-Time Networks
and Systems (ACM, 2017) pp. 18–27.

[234] P4 14 language specification, https://p4.org/p4-spec/p4-14/v1.0.4/tex/
p4.pdf (), accessed: 19-03-2018.

[235] P4 16 language specification, https://p4.org/p4-spec/docs/P4-16-v1.0.
0-spec.html (), accessed: 19-03-2018.

https://techcommunity.microsoft.com/t5/networking-blog/top-10-networking-features-in-windows-server-2019-8-a-faster/ba-p/339749
https://techcommunity.microsoft.com/t5/networking-blog/top-10-networking-features-in-windows-server-2019-8-a-faster/ba-p/339749
https://techcommunity.microsoft.com/t5/networking-blog/top-10-networking-features-in-windows-server-2019-8-a-faster/ba-p/339749
https://techcommunity.microsoft.com/t5/networking-blog/top-10-networking-features-in-windows-server-2019-8-a-faster/ba-p/339749
https://techcommunity.microsoft.com/t5/networking-blog/top-10-networking-features-in-windows-server-2019-8-a-faster/ba-p/339749
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

ACKNOWLEDGEMENTS

I still remember the first time I read the vacancy for a Ph.D. position on the Tactile Inter-
net and thought: "How great would it be if such applications would exist in the future! It
would be awesome to contribute to this." Five years later, and looking back, it feels like
an eternity has passed, and I am always surprised at how much I have changed. However,
this journey would have never been possible without the support of many people.

My first and foremost gratitude goes to my promotors, Fernando and Koen. Fer-
nando, you were always calm and, in my opinion, a perfect counter to my constant
switching of discussion topics and ideas. Moreover, you have encouraged me to be-
come more focused over time and taught me how to be a good researcher, question
things, identify good problems and look at them from different perspectives. In addi-
tion, with your relaxed nature and pragmatic approaches to potential problems, I always
felt that no problem is too difficult and, indeed, we were always able to find a suitable so-
lution/approach. I would not be where I am without you. Thank you for recognizing the
potential in me, but also for all the great discussions over the years and your patience.
Likewise, Koen, precisely because your primary research focus was not networking, you
always gave me priceless feedback and made me question the things that I otherwise
would take for granted. I very much enjoyed all our monthly discussions, which helped
me frame problems better and present solutions more clearly. Moreover, thank you for
always being approachable and for the many fun off-topic conversation we had over the
years. Your unique sense of humor always managed to break the divide between stu-
dents and professors and, in my opinion, made it even more enjoyable to do a Ph.D. in
your group.

Next, I would like to thank my colleagues from the ENS group. Adrian, Antonia, Anup,
Amjad, Chenxing, Georgios, Fernando, Qing, Ioannis, James, Jasper, Jeroen, Jorik, Ke-
yarash, Kees, Koen, Miguel, Minaksie, Mitra, Nikos, Przmek, Renan, Rens, Sezen, Stef,
Talia, Vijay, Vineet, Vito, VP, Weizheng thank you all for making the ENS group a great
place to spend the last few years in. My special thanks go to my fellow office mates:
Jorik, Antonia, and Renan. Our office was always by far one of the loudest and best-
informed ones about things ranging from the big political issues to the best frikandel.
From the ENS group, I would also like to offer special thanks to my bouldering/gaming
group: Jorik, Kees, Nikos, Vito, Jasper, Renan and Eric. We had many great discussions
over the years: from critical and relevant Ph.D. discussions (e.g., tips and tricks on how
to squeeze your paper to fit the page limit) to teaching me how to correctly pronounce
"Hugo" and surprising discussions with the bar owners about their family history. Thank
you for always being an extremely enjoyable group to hang out with.

Throughout my Ph.D., I had the pleasure of collaborating with many great researchers
(Fernando, Isaac, Ariel, Jorik, Niels, Steve, Koen, Kurian, Antonia, Soovam, Abhishek, TV
Prabhakar, Chandramani Singh), and I would like to thank them all for their contribu-
tions to this thesis. I always appreciated our discussions and feel that this is what re-

149

150

search is really about: Challenging each other’s ideas and evolving them together to find
a suitable approach to a problem. Your contributions are visible throughout this thesis
and have improved the quality of my papers and helped me become a better researcher.

Next, I would like to thank Lolke Boonstra. Lolke, you not only provided me with a
testbed for my experiments but also offered continuous support. Thank you for always
finding the time, being interested in what I was trying to achieve, and always finding
innovative out-of-the-box solutions to circumvent limitations.

I would also like to thank my ’new’ colleagues, the Networks group at TNO. Work-
ing there during the past year made me realize that there will always be new, fun, and
interesting problems to tackle and new things to learn. Especially, I would like to thank
my managers, Annemieke and Dick. You always made sure I felt welcome and part of
the team, even during the challenging corona times, and over the last year, you always
encouraged me to finish my thesis.

Here, I would also like to mention my friends. Amra, Bojana, Dalila, Daniel, Ema,
Naida, I always felt I could rely on you in times of need, even though some of you lived
miles away. Medina, Merima and Elida, I appreciate all the moments we had in the
Netherlands, and I am looking forward to the many new ones. I am truly privileged to
have you all as friends.

My utmost gratitude goes to my family. Throughout my life, you always supported
me, made me believe in myself, and encouraged me to try new things. Although it re-
sulted in me moving far away across Europe, I believe our relationship stayed strong and
will only grow stronger in the future. Mom and dad, I wouldn’t be here without your con-
tinuous support and motivation. I would like to thank you for everything you have done
for me, from my early years to now. Nedim, you are a great friend, and although we are
opposites (although twins) in many ways, I believe we complement each other greatly.
Mirza, thank you for being there when I needed you, especially with your relaxed and
very often comic comments. With the two of you, I always feel that there is a solution to
every problem and that things are never as bleak as they seem. Irena and Irma, I would
like to thank you for all the moments we spent together and hope there will be many new
ones in the future.

Finally, I would like to thank Vito for all his love, care, and support. Words can never
be enough to express all my gratitude to you. You always found time for my problems
(however minor) and made me feel heard and seen. I cannot imagine a more sincere,
supporting, and loving person than you. I hope our love stays as strong as it is today in
many years to come.

CURRICULUM VITÆ

Belma TURKOVIĆ

Belma Turkovic was born in Zenica, Bosnia and Herze-
govina on 27th December 1991. After finishing high
school, she started her Bachelor at the Faculty of Electri-
cal Engineering, University of Sarajevo. There she devel-
oped an interest in communication networks and decided
to pursue this direction further during her studies. During
her Master’s studies, she applied for an internship at Eric-
sson, where she gained further knowledge in network pro-
tocols and their design. She graduated her Master’s and
Bachelor as the best student in her year. Upon receiving
her Master’s degree at the Faculty of Electrical Engineer-
ing, University of Sarajevo, in September 2015, she worked
in the telecom sector for a year. However, as a person al-
ways looking for a new challenge, she decided to pursue
a Ph.D. in the area of networking at the Embedded and Networked Systems Group at
the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), TU
Delft.

Throughout her Ph.D., she was a member of TU Delft’s Lab on Internet Science (LOIS).
Her research mainly focused on developing mechanisms for programmable networks to
enable support for low-latency application domains, which resulted in his thesis. After-
ward, she joined TNO, Netherlands Organisation for Applied Scientific Research, where
she is continuing her research in programmable networks, 5G, and cloud computing.

151

LIST OF PUBLICATIONS

10. B. Turkovic, S. Nijhus, F.A. Kuipers, Elastic Network Slicing, NetSoft 2021-IEEE International
Conference on Network Softwarization(2021).

9. B. Turkovic, S. Biswal, A. Vijay, A. Hüfner F.A. Kuipers, P4QoS: QoS-based Packet Processing
with P4, NetSoft 2021-IEEE International Conference on Network Softwarization (2021).

8. B. Turkovic, F.A. Kuipers, P4air: Increasing Fairness among Competing Congestion Control
Algorithms, 28th IEEE International Conference on Network Protocols (ICNP), (2020).

7. B. Turkovic, J. Oostenbrink, F.A. Kuipers, I. Keslassy, A. Orda, Sequential Zeroing: Online
Heavy-Hitter Detection on Programmable Hardware, 2020 IFIP Networking Conference (Net-
working), 422-430, (2020).

6. K. Polachan, B. Turkovic, T.V. Prabhakar, C. Singh, F.A. Kuipers, Dynamic Network Slicing
for the Tactile Internet, 2020 ACM/IEEE 11th International Conference on Cyber-Physical
Systems (ICCPS), 129-140, (2020).

5. B. Turkovic, F.A. Kuipers, S. Uhlig, Interactions between Congestion Control Algorithms, 2019
Network Traffic Measurement and Analysis Conference (TMA), 161-168 (2019).

4. B. Turkovic, F.A. Kuipers, S. Uhlig, Fifty shades of congestion control: A performance and
interactions evaluation, arXiv preprint arXiv:1903.03852, (2019).

3. B Turkovic, J. Oostenbrink, F.A. Kuipers, Detecting heavy hitters in the data-plane, arXiv
preprint arXiv:1902.06993, (2019).

2. B. Turkovic, F.A. Kuipers, N. van Adrichem, K. Langendoen, F̈ast network congestion detec-
tion and avoidance using P4, Proceedings of the 2018 Workshop on Networking for Emerg-
ing Applications and Technologies, 45-51 (2018).

1. D. van den Berg, R. Glans, D. de Koning, F.A. Kuipers, J. Lugtenburg, K. Polachan, T.V. Prab-
hakar, C. Singh, B. Turkovic, B. van Wijk, Challenges in haptic communications over the
tactile internet, IEEE Access Vol. 5, 23502-23518, (2017).

153

	Summary
	Samenvatting
	Introduction
	Online heavy-hitter detection on programmable hardware
	Dynamic network resource scaling
	Elastic Network Slicing
	Interactions between Congestion Control Algorithms
	P4air: Increasing fairness among congestion control algorithms
	In-network fast congestion detection and avoidance
	Conclusion
	References
	Acknowledgements
	Curriculum Vitæ
	List of Publications

