
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Online state migration in modern stream
processing engines

Author:
Theodoros VENETI

Supervisor:
Dr. Asterios KATSIFODIMOS

Daily Supervisor:
Georgios SIACHAMIS

Daily Co-Supervisor:
Kyriakos PSARAKIS

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

October 20, 2023

http://www.tudelft.nl
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

i

Declaration of Authorship
I, Theodoros VENETI, declare that this thesis titled, “Online state migration in mod-
ern stream processing engines” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date: 20/10/2023

ii

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Online state migration in modern stream processing engines

by Theodoros VENETI

Stream Processing Engines (SPEs) are called upon to help solve problems around big
and volatile data, while satisfying the needs for near real-time processing. In order
for such systems to be considered effective solutions to such problems at scale, effi-
cient elasticity and non dataflow-disturbing reconfiguration operations within are a
necessity. To that end, we visit the problem of online state migration, as the biggest
obstacle in achieving such a desired behaviour, in SPEs that support stateful func-
tions. We make an attempt to formally define the problem and associated sub-tasks,
compare existing solutions and identify key aspects, as well as design and imple-
ment our own solution. Our testing shows that the lazy-fetch online state migration
process proposed, outperforms a simple baseline state migration design by orders
of magnitude in end-to-end latency observed, scales much better under increased
workloads and relies on consistent design concepts to claim exactly-once semantics.

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

iii

Acknowledgements
This work has been compiled thanks to the invaluable help of my thesis supervi-
sor Dr. Asterios Katsifodimos, as well as daily supervisors Georgios Siachamis and
Kyriakos Psarakis who assisted and guided me through the entire process. Their
ideas, insights and extended knowledge on the topic were paramount to achieving
positive results in the present work.

Moreover, I would like to thank my friends and family, for their unconditional
support and love, throughout the duration of the thesis.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Background 4
2.1 Definitions and terms . 4
2.2 SPE Requirements . 6

2.2.1 Scalability and Elasticity . 6
2.2.2 Low Latency . 6
2.2.3 Processing Guarantees . 6
2.2.4 Fault Tolerance and Reliability 7
2.2.5 State Management . 7

2.3 State Migration Motivation . 7
2.4 Online State Migration . 8

2.4.1 Definition . 8
2.4.2 Truly "online" . 8
2.4.3 Challenges . 8

3 Related Work 10
3.1 Categorization . 10
3.2 Megaphone . 11

3.2.1 Design . 11
3.2.2 Advantages . 13
3.2.3 Disadvantages . 13
3.2.4 State Transfer Strategy . 14

3.3 Rhino . 15
3.3.1 Design . 15
3.3.2 Advantages . 17
3.3.3 Disadvantages . 18
3.3.4 Pre-emptive state transfers . 19

3.4 Meces . 19
3.4.1 Design . 19
3.4.2 Advantages . 22
3.4.3 Disadvantages . 22

4 Methodology 26
4.1 Novelty . 26
4.2 Fault Tolerance . 28
4.3 Potential Limitations . 28

v

4.4 System Implementation . 30

5 Evaluation 32
5.1 Baseline . 32
5.2 Experimental Setup . 33
5.3 Number of keys experiment . 33
5.4 State size experiment . 38
5.5 Record distribution experiment . 43
5.6 Discussion . 48

6 Conclusion 49

7 Future Work 50

Bibliography 51

vi

List of Figures

1.1 Peak latency comparison between baseline and the lazy approach, un-
der various state sizes. 2

3.1 Overview of Megaphone’s migration mechanism. Hoffmann et al., 2019 11
3.2 Example of state migration executed between two operators. Hoff-

mann et al., 2019 . 12
3.3 Comparison of end-to-end latency on a key-count example between

Flink and Megaphone. Reconfiguration at 600s. Gu et al., 2022 13
3.4 Offered load versus max latency for different migration strategies for

key-count. Hoffmann et al., 2019 . 15
3.5 Comparison of end-to-end latency on a key-count example between

Rhino and Flink. Reconfiguration at 600s. Del Monte et al., 2020 16
3.6 Observed event latency depending on migration order used. Gu et al.,

2022 . 19
3.7 Overview of state migration process in Meces. Gu et al., 2022 21
3.8 Meces gradual migration. Gu et al., 2022 21
3.9 Observed end-to-end latency. Reconfiguration triggered at 600s. Gu

et al., 2022 . 24
3.10 Latency comparison Meces vs Megaphone. Reconfiguration triggered

at 600s.Gu et al., 2022 . 25
3.11 Latency comparison Meces vs Rhino. Reconfiguration triggered at

600s.Gu et al., 2022 . 25

4.1 Overview of "Lazy-fetch" state migration process steps. 27
4.2 Experimental SPE system overview. 30

5.1 Cumulative 99th percentile of end-to-end latency, by second of execu-
tion. Reconfiguration triggered at the 4th second. 35

5.2 99th percentile of end-to-end latency, by second of execution. Recon-
figuration triggered at the 4th second. 36

5.3 50th percentile of end-to-end latency, by second of execution. Recon-
figuration triggered at the 4th second. 37

5.4 Cumulative 99th percentile of end-to-end latency, by second of execu-
tion. State size increased 500MB. Reconfiguration triggered at the 4th

second. 39
5.5 99th percentile of end-to-end latecy, by second of execution. State size

increased to 500MB. Reconfiguration triggered at the 4th second. 40
5.6 Cumulative 99th percentile of end-to-end latecy, by second of execu-

tion. State size increased to 5GB. Reconfiguration triggered at the 4th

second. 41
5.7 99th percentile of end-to-end latecy, by second of execution. State size

increased to 5GB.Reconfiguration triggered at the 4th second. 42

vii

5.8 50th percentile of end-to-end latecy using different record distribu-
tions, by second of execution. State size is increased to 5TB. Recon-
figuration triggered at the 4th second. 44

5.9 99th percentile of end-to-end latecy using different record distribu-
tions, by second of execution. State size is increased to 5TB. Recon-
figuration triggered at the 4th second. 45

5.10 99th percentile of end-to-end latecy using different record distribu-
tions, by second of execution. Original state size of 50MB. Reconfigu-
ration triggered at the 4th second. 46

5.11 99th percentile percentile of end-to-end latecy using different record
distributions, by second of execution. Original state size of 50MB.
Reconfiguration triggered at the 4th second. 47

viii

List of Tables

3.1 Duration of state migration during a recovery, broken down into stages
involved. Del Monte et al., 2020 . 18

ix

List of Abbreviations

SPE Stream Processing Eengine

1

1 Introduction

Nowadays, data processing has taken the place of what was formerly known as big
data processing. Pushing the need for systems available of executing long-running
jobs in a scalable and efficient manner, while the data itself are typically character-
ized by the 4 V’s, meaning they are varied, fast, big in size and accurate as stated by
Sakr, Liu, and Fayoumi, 2013. Towards satisfying all of the above, with relatively
low latency, processing engines that handle data either in batches or continuous
streams have been proposed and studied. In the first case, part of the data ingestion
is bundled together into a batch and processing happens on the batch as a whole as if
it was a single record, while on the latter the input is handled in a continuous man-
ner with processing taking place as data arrive. Such systems have evolved way
past the state of being solely academic endeavours are actually seeing production
deployment offering correct executions and handling failures across multiple nodes,
as the work by De Matteis and Mencagli, 2017 finds.

In an effort to simplify the representation of a big-data processing system, Zhang,
Soto, and Markl, 2022 suggest modelling in the form of a tree, where information
flows from the roots (input data) onto intermediate nodes (operators, meaning pro-
cessing units needed for the analysis at hand) and finally to the leaves (analysis
results). In this way, data "flows" through the system continuously starting from our
input and into the operators which create intermediate results before being (usu-
ally) processed by more operators, until all needed processing has taken place and
results are show on the output. In order for an implementation of such a design to
satisfy all the previously stated requirements, it has to provide certain consistency,
fault-tolerance, scalability and flexibility guarantees.

The impressive data-processing capabilities of such systems has lead to more
broad applications and the necessity for more programming flexibility and imple-
mentation support. To that end, an extension to the seemingly simple case of stateless
operators, where the output is only computed as a direct result of processing applied
on the input of the unit, is being used. Called stateful operators, they carry with them
the ability to store state, effectively giving them the ability of memory throughout
their processing lifecycle, which can be used for appropriate analysis tasks. These
include, but are not limited to, similarity joins, sorting or aggregation tasks such as
group, min, max or average. Although the presence of state allows for a slew of
additional implementation choices and features, they pose a great challenge in the
previously stated requirements of the systems that support them. With state being
any intermediate result necessarily stored in an operator for subsequent processing,
potential problems can occur:

• Consistency: Updates on the state need to be atomic and consistent with the
analysis being carried out.

• Fault-tolerance: State needs to be persistent in a way that guarantees correct
version restore in case of failures.

• Flexibility: State can take any form or structure needed for the computations
at hand.

Chapter 1. Introduction 2

• Scalability: State needs to be transferable between operators, workers or nodes
in an efficient manner.

This work focuses specifically on the very last point made concerning how state
can be transferred, called state migration, in a way that is fast, consistent and does
not affect the dataflow throughout the system. Not disturbing the dataflow is espe-
cially important in stream processing systems, which unlike batch processing ones,
provide a long-running (potentially never ending) processing job that continuously
consumes data and generates results. It is paramount then, that in order to achieve
high availability and low response times, the data flowing through the system are
not affected by internal management processes of the system, to the extent that such
is possible. This task has proven to be particularly challenging, with a blaring indi-
cation being the fact that the most widely adopted system in the industry for some
time now, Apache Flink by Katsifodimos and Schelter, 2016 chooses to not deal with
the problem, but rather performs a complete halt of the dataflow and restarts under
the new configuration structure.

FIGURE 1.1: Peak latency comparison between baseline and the lazy
approach, under various state sizes.

To that end, we aim to shed some light into the work being done on the matter,
the ins and outs of the problem at hand as well as design an approach that tries to
both satisfy the requirements of the underlying system and provide a non-blocking
solution. An overview on the findings on the latter, can be observed in Figure 1.1,
where an impressive performance improvement is evident. Most importantly, the
performance benefits persist and even increase under progressively bigger loads.

Over the next chapters, we will analyze the background of the problem at hand,
accompanied by the definitions and challenges it brings to the table, followed by
presenting and commenting on existing solutions and academic endeavours sug-
gesting different approaches. Furthermore, we will present an overview of our own

Chapter 1. Introduction 3

approach, explain the reasoning behind the different design choices, as well as an
implementation of this architecture on an existing system. Finally, we will present
the findings of experimentation on this test system, highlight the importance and
insights drawn from the results and discuss what this all means for future work and
possible next steps.

Overall, the work presented aims to answer the following research questions:

RQ 1 : How is state migration defined as a process?

RQ 2 : What challenges come with designing a non-blocking solution?

RQ 3 : Can a lazy fetch approach offer a solution to the problem?

4

2 Background

In this chapter, we will try to define and outline all the different points involved
in designing and analyzing solutions, on the topic of non-block state migration in
stream processing engines. This will help the readers get closer to the technical as-
pects of the issue at hand, without requiring extensive background knowledge.

2.1 Definitions and terms

Stream Processing Engines/Systems (commonly referred to as SPE), are "big" data
processing systems, designed to handle continuous processing of inputs character-
ized by velocity, variety, volume and veracity. The characterization of "big" (as op-
posed to "normal") data, carries with it the implied challenges of dealing with data
that fall out of the norm and require specialized solutions in order for the end sys-
tem to satisfy certain latency, cost and consistency restrictions. The streaming part
comes from the fact that such systems process data "as they arrive", continuously
producing results. Alongside streaming, batching enjoys a lot of the same advan-
tages and disadvantages, following a similar design paradigm, but with processing
taking place in batches (groups) of data. There, any guarantees offered by the system
are applied on a per-batch basis, rather than a per-record basis.

Operators are the rudimentary processing units of a SPE and they apply certain
transformations on user-defined functions on input data to produce intermediate re-
sults. As already mentioned in chapter 1, SPE dataflows can be modelled as a tree
or a DAG (Directed Acyclic Graph) where data flows from the input into different
operators, to potentially other operators connected to each other and passing inter-
mediate result data from one to the next, until processing has concluded and the final
analysis results are produced on the output. In essence, operators correspond to the
different steps involved in the desired analysis taking place and their discretization
into standalone processing units allows for system design flexibility.

Workers are the system-specific processes which are responsible for assigning
resources to the calculations taking place. Assignments of operators and their repli-
cas are made to available workers in a way specified by the system itself and create
a link between the analysis carried out and the available resources. Worker assign-
ments are important for efficient distributed execution and affect rescaling scenarios,
but their allocation is a separate problem on its own and is also usually omitted.

Persistent data or states are called so when their discovery is disconnected from
any runtime exceptions or general system failures. Essentially, it entails saving in
a disk or other persistent medium and persistent information is deemed "safe". In
fast-paced systems where throughput and latency are important aspects, processing
happens almost entirely in-memory in favour of faster data access and transferring
speeds. Literature, such as the work by Del Monte et al., 2020, often refers to the term
"persistent" to highlight points in the design or process being presented, where a less
volatile medium needs to be used, without going too deep into the technical details
of how that happens. The latter is of course accepted to come with a potentially
heavy latency/cost penalty.

Chapter 2. Background 5

State support on operators is extremely important, as it unlocks a slew of possi-
bilities for operator tasks, beyond the simple map or add operation. Even an opera-
tion as simple as an average of a series of numbers requires the (temporary) saving
of the sum and count of previously seen data records and (potentially) their respec-
tive keys. Together with the added capabilities however, stateful operators pose a
number of challenges on the important requirements of the underlying SPEs as state
needs to be considered on any consistency and fault-tolerance claims as well as spe-
cially treated during reconfiguration scenarios.

Partitioning happens on any data flowing through the system, usually in a key-
based manner and ensures a deterministic path for each data record and aids in any
consistency guarantees and fault-tolerance processes. Moreover, key usage statistics
can be exploited to load-balance the system and offer overall greater throughput.
The way key-worker allocations are made is the topic of research on its own and of-
fers a lot of optimization ground, as previous work has shown that the way keys are
allocated before and after rescaling happens, which affects the size of the collective
state that needs to be transferred between workers, greatly affect the process of state
migration itself. In their work, Gu et al., 2022 showed that going from a usual uni-
form repartition strategy to a simple consistent hashing one, yielded a reduction of
over 85% on keys and states needed to move which translated into a subsequent 70%
reduction in the rescaling duration and 90% reduction in the max latency observed
over their benchmark. Even without looking into the specifics of the migration pro-
cess itself, it is glaringly obvious that simply having less to transfer to achieve the
same result, is faster and therefore preferred.

Consistency is a very sought-after property of data processing systems and whose
concrete definition has been the topic of many a discussion and research. Early
database systems defined the concept of ACID (Atomicity, Consistency, Isolation,
Durability) to assert and guarantee data validity throughout the different opera-
tions being applied and transactions they are usually grouped into. In modern SPE
literature, consistency guarantees are equaled with exactly once semantics, which ac-
cording to Silvestre et al., 2021 means that "an incoming record will apply its effects to
the computation state of the system exactly once, even in the event of failures.". The basis
of such claims stems from the fact that distributed systems’ execution is inherently
hard to analyze and detail, partly due to their distributed nature and partly due to
their fail-over capabilities. The only way to guarantee such restrictive properties is
to try and show equality between the execution scheme of the distributed system
and that of simple sequenced procedure that applies the same analysis operations
one after the other.

Fault Tolerance is an integral part of SPE solutions, as systems that operate in a
distributed manner require the ability to recover from partial failure on the under-
ground infrastructure, whether that means that processes within machines or ma-
chines themselves stop working. Although at first glance the issue of fault-tolerance
might seem independent to that of state migration, solutions such as Rhino pre-
sented by Del Monte et al., 2020 provided a holistic solution that handled both.

Reconfiguration provide an external functionality of the system, where resources,
operators and workers can be re-allocated to match the load, satisfy new execution
requirements or simply updates to the analysis process taking place. One reason
why reconfigurations might happen, are for rescaling purposes, which means to in-
troduce more resources to the system for improved performance or cut down on
existing resources to mitigate costs. Scaling however is not always the goal and re-
configurations can also take place because the execution scheme has been updated
or load balancing is needed to alleviate imbalances in the data assigning strategies

Chapter 2. Background 6

throughout the system. The latter will, for the scope of this work, be referred to as
reshuffling, in order to distinguish from the rescaling scenarios. Whether the case is
reshuffling or rescaling however, stateful operators pose a challenge in consistency
and overall system performance when reconfiguring, as taking care of this extra data
leads to the problem at hand, known as state migration.

State Migration refers to the process of moving state among workers as a di-
rect result of changing a number of operator instance - key mappings in the system,
while being able to resume normal execution. To achieve such a task, there is a num-
ber of important sub-tasks that need to be orchestrated, executed and verified before
normal execution can resume. Moreover, maintaining any consistency guarantees
throughout the process, is especially tricky and the main reason why early solutions
resorted to offline approaches where execution altogether is halted, the current state
of the overall system is saved, new configuration submitted and state restored, be-
fore execution can be re-started. Such processes are of course slow and attribute a
particularly high cost to any reconfiguration calls, effectively prohibiting frequent
usage of the feature.

2.2 SPE Requirements

Designing and proposing a Stream Processing Engine architecture, carries with it
a number of limitations, in the form of requirements that such systems typically
need to satisfy. Stream processing engines serve as the backbone of real-time data
processing applications, enabling the efficient processing of continuous data streams
and as such any appropriate solution needs to account for and satisfy the following
requirements.

2.2.1 Scalability and Elasticity

A robust stream processing engine should offer horizontal scalability, allowing it to
handle increasing data volumes and processing demands. The engine should also
support elasticity, which involves automatically adjusting resources based on work-
load fluctuations to maintain optimal performance. An equally important point is
that such abilities be masked from the end user, effectively painting the picture of a
system capable of any given workload.

2.2.2 Low Latency

Stream processing engines are primarily used to process data in real-time. Therefore,
low latency is essential to ensure that data is processed and analyzed as quickly
as possible, enabling timely insights and actions. Similarly to before, any internal
actions taken by the system to adjust to changes, failures or scaling, should happen
in a transparent way that does not affect performance, as much as possible.

2.2.3 Processing Guarantees

Stream processing engines should support various processing guarantees, such as
at-least-once, exactly-once, or at-most-once processing semantics. These guarantees
determine how data is processed and ensure data integrity in the face of failures.
Effectively gauging the ability of a given system to provide processing guarantees is
the topic of discussion and research, within the distributed systems community.

Chapter 2. Background 7

2.2.4 Fault Tolerance and Reliability

Given the distributed nature of stream processing systems, they should be resilient
to hardware failures, network issues, and other potential disruptions. The engine
should provide mechanisms for data recovery and fault tolerance to prevent data
loss and maintain system reliability.

2.2.5 State Management

Many stream processing applications require maintaining state information over
time, such as aggregations or session windows. The engine should provide efficient
and scalable mechanisms for managing and updating this state while minimizing
the impact on processing speed.

2.3 State Migration Motivation

Before any other important aspects of the issue can be explored, it is important to
ask why it is really needed in the first place. As already mentioned in Chapter 1, the
existence of state within the worker nodes, allows for more code flexibility and be-
stows upon the end system the ability for further and more complex calculations. As
such, the need for a foolproof way of managing this state is apparent. Furthermore,
the ability to transfer this state between worker nodes, known as state migration,
further aids the whole system by enabling a series of features.

Fault Tolerance and Reliability: In distributed systems, hardware failures, net-
work issues, and other disruptions are inevitable. State migration allows stream pro-
cessing applications to recover from such failures without data loss. By transferring
the application state to healthy nodes, the system can resume processing without
interruption, maintaining data reliability and application continuity.

Load Balancing: Distributed stream processing applications often experience
varying workloads across processing nodes. State migration enables load balanc-
ing by redistributing state across nodes based on their processing capacities. This
prevents resource bottlenecks and ensures optimal utilization of system resources.

Scalability: As data volumes and processing demands increase, stream process-
ing systems need to scale horizontally. State migration facilitates the adaptability of
the system by allowing new processing nodes to join the cluster and receive the re-
quired state, or old ones to hand over their own state before leaving. This scalability
ensures that the application can handle growing workloads effectively ,or conversly
scale down in case of reduced workload to keep costs low.

Dynamic Resource Allocation: Stream processing engines often operate in dy-
namic and elastic environments, where the number of processing nodes may change
frequently. State migration supports dynamic resource allocation by allowing nodes
to be added or removed while ensuring that the necessary state is transferred to
maintain processing continuity.

Seamless Code Updates: When stream processing applications are updated or
upgraded, the state migration mechanism assists in transitioning to the new version
without data loss. The migration process ensures that the state is compatible with
the updated application logic, allowing for a smooth transition.

All of the above highlight the importance of state migration in enabling Stream
Processing Engines to cover a plethora of crucial features, as well as ensuring oth-
ers operate as intended. Performing the task in a seamless, cost-efficient and fast
manner is equally important, driving research over the past years on a solution

Chapter 2. Background 8

that achieves online state migration, without affecting execution or disrupting the
dataflow throughout the system.

2.4 Online State Migration

Performing reconfigurations without affecting normal execution of the system, is
an attractive feature that further facilitates system elasticity, performance and trans-
parency but does not come without a slew of new problems and limitations.

2.4.1 Definition

To better understand the problem, a common basis of what constitutes a complete
online state migration, must be established. A single reconfiguration, can result in
multiple state migrations. For each of these migrations, a change of ownership for
a set of record keys takes place where the previous (origin) worker hands over re-
sponsibility for the set of keys to a new (target) worker. The process as a whole, can
be divided into the route update and state transfer steps or sub-tasks. With most
systems, completing all necessary state migrations following a reconfiguration com-
mand typically consists of first updating all affected routing tables and then actually
transferring the state between workers to facilitate normal operation afterwards.

With the route update step, any routing table entries responsible for routing
records within the execution graph of the system are updated, to reflect changes
resulting from the reconfiguration command. This means that affected records will
now be routed to the target worker, instead of the origin worker.

Once routing has been sorted, the state transfer step can be performed. The state
of the keys being migrated must be transferred, so the target worker can continue
processing input for the keys being migrated seamlessly.

2.4.2 Truly "online"

Throughout this work, the term online will be used to refer to solutions seeking to
perform the necessary steps towards system reconfiguration, without halting exe-
cution or generally disrupting the dataflow. However, it should be noted that as
the necessary steps require some rudimentary processes of their own, currently pro-
posed solutions are not truly "online", but rather provide an improvement over sim-
ple and completely blocking solutions. The discrepancy between the state migration
completion time and the records arriving in the meantime, is handled by buffer-
ing mechanisms, which each system employs differently to attempt to mitigate the
latency introduced to the system as a result. Perhaps a completely non-buffering
solution would be called truly online, but falls out of the scope of our research and
possibly the field at the moment.

2.4.3 Challenges

The previous clear distinction between the route update and state transfer steps, in-
volved in an online state migration process, helps identify the key points and chal-
lenges of the task at hand.

Routing updates throughout the system, entail updating entries in routing tables
contained in all nodes of the graph, which in turn help decide where each record
should be routed to next, depending on its corresponding key. Because of the acyclic
connected graph-like natures of SPE systems, one way such a task can be performed,

Chapter 2. Background 9

without the need for any intermediate buffering of in-flight records, is by special
"control message" records that traverse through the graph and update routing tables
on-the-go. This in turn means that routing table updates happen asynchronously
throughout the system, meaning that determining that records flowing through the
system at the same time will encounter "old" or "updated" routing tables is impos-
sible. Therefore, a better way of handling routing updates while records still flow
through the system is required.

State transfers suffer from a similar limitation. Moving sets of data, especially
of unknown size or structure, inherently carries with it a delay penalty. During that
delay, records whose processing requires the very state being transferred can ar-
rive, leading to latency being observed in the system. Regardless of whether micro-
managing can occur to ensure not all affected states needs to be transferred before
the in-flight records are process, an optimised way that ensures the required state
for any arriving record can be used in a timely manner, is highly important.

Finally, synchronizing the two steps and executing them in tandem presents with
a challenge of its own. A simple approach to attempt and preserve consistency
throughout the process, would find a system execute all routing updates for all keys
affected, before moving on to state transfers between origin and target workers. The
main idea behind this decision, being that consistency can only be claimed when
only one worker at a time holds and updates the state for a given key.

10

3 Related Work

Online state migration is a much sought-after feature on modern Stream Process-
ing Engines and its importance has been highlighted already throughout this work.
A number of different published works have attempted to deal with the problem,
employing different techniques and architectures. The ideas behind these works, as
well as their findings and insights on the matter, will be presented next.

3.1 Categorization

Earlier approaches on state migration mechanisms have previously been categorized
by relevant literature (Hoffmann et al., 2019 Gu et al., 2022) into the following dis-
tinct categories.

1. Stop-and-Restart: A relatively "simple" approach, briefly mentioned in Section
1, sees the process begin with a complete halt of system executions. Next, the
system-wide state is saved, the new configuration loaded and state restored
before normal execution can be resumed. By relying on parts of the fault-
tolerance mechanism already necessary for the system, such as saving the sys-
tem’s state and then being able to restore it, such approaches are able to make
consistency guarantee claims. That is the main reason why widely-used sys-
tems, such as Spark Stream Kroß and Krcmar, 2016 or Apache Flink Katsifodi-
mos and Schelter, 2016, belong in this category. However, such mechanisms
do not come without their own shortcomings, as relying on persistent medi-
ums leads to penalties in migration duration, system availability and overall
latency.

2. Partial pause-and-resume: Reconfigurations often lead to changes in specific
parts of the computation graph representing the SPE. Hence, approaches of
this category seek to constrain any performance penalties only on the affected
sub-graph, while allowing the rest of the system to continue functioning nor-
mally. Implementations such as SEEP Castro Fernandez et al., 2013 and Chi
Mai et al., 2018 try to minimize the system availability penalty this way, but
the technique can easily degrade into a stop-and-restart case, depending on
the "importance" of the operators affected and the way they are connected to
the rest of the system as noted by Gu et al., 2022.

3. Dataflow Replication: An important category of approaches, sees the use of
replicas in the form of duplicate operators or sub-graphs, that can be simulta-
neously used to execute data processing tasks in both the new and old config-
urations, until the state migration process is concluded. While relevant system
implementations, including Gloss Rajadurai et al., 2018 and Chronostream Wu
and Tan, 2015, offer improved latency penalties during reconfigurations, they
call for increased resource usage and special de-duplication techniques to cope
with the replicated nature of the system consistently.

Chapter 3. Related Work 11

3.2 Megaphone

3.2.1 Design

Introduced by Hoffmann et al., 2019, Megaphone’s main idea "augments" stateful
operators with extra functionality that allows them to operate as both processing
units as well as controlling units for the migration process. Figure 3.1 shows an
overview of the novel operator design the approach presents, where (a) depicts a
normal operator and (b) shows the new "augmented" operator and the extra parts it
consists of. The design introduces two new operators denoted F and S to replace a
traditional stateful operator denoted L.

FIGURE 3.1: Overview of Megaphone’s migration mechanism. Hoff-
mann et al., 2019

F operates as a secondary router for data records, since after they are routed to
the enclosing- or L-operator, the mechanism requires the added ability to re-route
required information to an operator of choice. Interestingly enough, F does not only
bear the responsibility of further routing data records, but also migration control
messages as well as state. This means that F is essentially responsible for initiating
migration steps on connected peers, as well as providing the state and records that
a stateful operator needs to operate on.

S on the other hand, takes the place of the initial L-operator as it receives records
and processes them according to the stateful process it supports. However, the state
is not retained locally by S itself, but rather provided and handled by its upstream
F operator, while access is shared by both. In essence, S can be described as a bare
processing unit, responsible only for applying updates on the provided state using
the provided data, that does not in any way meddle with the migration process.

To handle the synchronization issue between routing updates and state trans-
fers in a consistent manner, as explained in subsection 2.4.3, Megaphone employs a
timestamp-based mechanism which assigns a time value to any data record or con-
trol message passing through the system’s dataflow. This timestamp, can then be
used to determine data records flowing through the system before and after a re-
configuration signal has been issued. Therefore, processing of post-configuration
records arriving before the reconfiguration has actually taken place, can be buffered

Chapter 3. Related Work 12

until said re-configuration is completed and any resulting updates from the data
records can take place. At any given time, the parallel operators maintain a "frontier"
in the form of the last known timestamp for which both data records and potential
reconfiguration control messages have been consumed, as well as those processed
and presented to output. Frontiers allow the operators to assert that no records con-
taining earlier timestamps will be introduced later on and any buffered records can
resume to flow or be processed. Local F and S operators can both "peek" into each
others’ frontier, to accordingly decide if they should progress or not.

Perhaps interestingly, the approach calls for a mesh communication design be-
tween operators, denoted by "X" in the figure, where operators can route data to
other operators, regardless of the underlying topology. Essentially allowing all op-
erators to "talk" to each other unobstructed, regardless of whether in fact they belong
to the same worker or even machine.

Given all of the above, the online state migration process with Megaphone be-
comes as easy as simply re-routing appropriate data records and required state from
the origin F operator to the target S operator and resuming normal operation. An
example scenario is presented in Figure 3.2, where three different steps are depicted
that involve a state migration taking place, involving operators 1 (F0, S0) and 2 (F1,
S1):

FIGURE 3.2: Example of state migration executed between two oper-
ators. Hoffmann et al., 2019

(a) All operators have progressed to timestamp 42 and are receiving records with
later timestamps normally. The internal routing tables that both F0 and F1 re-
tain locally are depicted, as well as the local states for the corresponding keys
and their current respective values (although the figure depicts that state as
local to S operators, we have already established that in fact access is shared
between the two and state is in fact local to the overall operator). We can see
F0 receiving a record for key a that should be routed to S0 and F1 receiving a
record for key c that should be routed to S1.

(b) After the records of the previous step are routed and processed normally, the
states are updated accordingly and a control message calling for a reconfigu-
ration arrives. This control message translates into "operator 2 will be responsible
for records of key b as of time 45". In order to stay true to the command, the sys-
tem needs to make sure that any records bearing key b and time 45 or greater,
should be routed to and processed by operator 2. Therefore, when the fron-
tier progresses past 45, F0 needs to move the required part of the state to S1,
while both F0 and F1 need to start routing all records with key b to S1. At the
same time, we can see a message arriving for time 45, containing the key b at
operator 2.

Chapter 3. Related Work 13

(c) Following a successful state migration and resuming normal operation, the
appropriate "snapshot" of the system is presented. State for key b is upgraded
and now residing within operator 2, as the frontiers have progressed past 45,
following the previous reconfiguration message. The synchronizing nature of
the timestamps and frontiers is also presented, as S operators have processed
inputs with max times of 53 and subsequently observed records with time 56
are buffered. Once any control messages queued for the intermediate times
arrive and local frontiers update past 56, the buffered record will be consumed.

3.2.2 Advantages

The obvious benefit of the architectural choices Megaphone makes, stems from the
fact that the process of state migration is incorporated within normal operation of the
system and does not require special handling or new processes to run. By "augment-
ing" ready-state processing on operators, the system enjoys reduced performance
hits during state migration phases.

Independent works also attest to the benefits, with Del Monte et al., 2020 only
noting Megaphone’s inability to handle bigger-than-memory states, which in their
own words could easily be solved by "the introduction of a data structure that supports
out-of-core storage, e.g., a key value store (KVS)". Furthermore, benchmarks performed
by Gu et al., 2022 on a simple key-count example, show how Megaphone improves
on the penalty introduced when going from a ready-state phase to a state migration
phase. Specifically, Figure 3.3 shows how Flink, a frequently used baseline, "jumps"
from 101 ms to 104 ms during reconfiguration, while Megaphone only goes from 102

ms to 103 ms.

(A) Native Flink (B) Megaphone on Flink

FIGURE 3.3: Comparison of end-to-end latency on a key-count exam-
ple between Flink and Megaphone. Reconfiguration at 600s. Gu et al.,

2022

3.2.3 Disadvantages

On the other hand, the design choices Megaphone makes, come with certain weak
points. The first and perhaps most important limitation can be identified in Figures
?? and ?? as the "ready-state" phase of the execution, when no migration costs drive
the latency up, seems to be significantly hindered in the case of Megaphone which
displays an average latency of almost 103 s., compared to Flink’s 10 s. The increased
latency comes as a direct result of the extra partition overhead that the inner rout-
ing and sub-operators’ operation incurs. Even though the presented numbers come
from a naive implementation of Megaphone on Flink, which allows for head-to-head

Chapter 3. Related Work 14

comparisons, the outcome is to be expected as Megaphone sets a number of require-
ments, which are not natively supported by mainstream SPEs. These include the
ability to extract state from upstream operators, as happens when splitting the orig-
inal L operator into F and S, as well as the extra synchronization needed due to the
timestamp-based dataflow frontiers. This essentially leads to increased latency on
the system, which "violates" one of the basic requirements set back in Section 2.2.2.

Another potential drawback of the system, roots back to the ability of F operators
to freely route data to all other S operators. In order to enable such communication,
a mesh network between operators and therefore workers and physical machines
needs to be established. As a result, a system implementing such a design does not
follow the shared-nothing architecture, typically aiding with elasticity in distributed
systems, as noted by Gulisano et al., 2012. The added cost of ensuring consistent
mesh data communication channels between all involved parties, is not taking into
account during evaluation, but simply noted as a prerequisite for setting up a similar
system.

Finally, being mainly a downside of the associated research paper rather than
the system design itself, Hoffmann et al., 2019 do not in any way facilitate or ana-
lyze the repercussions on fault tolerance. They merely note that Megaphone follows
the timely dataflow abstractions and thus simple snapshot-based approaches could
be built, failing to take a closer look into potential problems that the underlying
design could introduce. For instance, how misaligned routing tables between peer
F operators would be handled or partial failures during state migrations could be
dealt with efficiently.

3.2.4 State Transfer Strategy

A secondary contribution made by Hoffmann et al., 2019, takes a look into how
different state transfer strategies affect the behaviour of the system overall. After
deciding to move state associated with a preset number of keys, following a recon-
figuration, Megaphone’s team argues there are three notable ways in which the as-
sociated state could be moved, all offering different trade-offs on different metrics of
the system:

• all-at-once: where, as the name suggests, the entire state in question is marked
for transfer and normal execution on the new operator can only be resumed
after all of it has been successfully transferred.

• batched: splits the the keyed state in batches of keys and then moves the dif-
ferent groups one by one, until all of them are transferred.

• fluid: simply moves state on a per-key basis, effectively choosing one key at a
time to be transferred, until all are completed.

The paper finds that there is a peek latency over system throughput improve-
ment to be made when the latter two over the more "traditional" all-at-once strategy,
as can be seen in Figure 3.4.

Even though moving all the state at once means that after the process is done,
normal execution on all migrated keys can be continued uninterrupted, batched and
fluid strategies are found to offer reduced overhead and communication costs while
migration is under way. Additional experiments showed that the two "new" strate-
gies lead to reduced max latency for different key bin sizes, while also exhibiting
similar state migration duration as all-at-once.

Chapter 3. Related Work 15

FIGURE 3.4: Offered load versus max latency for different migration
strategies for key-count. Hoffmann et al., 2019

Perhaps most interestingly, this particular contribution sheds some light into the
the ability to adjust migration costs and performance dynamically, by selecting the
best bin size in the aforementioned state transfer strategies, to match the specific
execution case, such as state size, number of keys or similar.

3.3 Rhino

Rhino is a novel approach, presented by Del Monte et al., 2020 which seeks to solve
reconfiguration problems in the face of very large distributed state. Rhino employs
what is also called as a "checkpoint-assisted" solution from Volnes, Plagemann, and
Goebel, 2022, that utilizes snapshots for the migration process itself rather than just
employing them to deal with fault tolerance.

3.3.1 Design

Rhino essentially devises an optimized distributed incremental checkpointing struc-
ture, that in turn allows it to retain updated snapshots of state potentially needed in
the future, before the need arises. The idea behind such a structure is that if backups
are local and up-to-date before a worker or its operators ask for state contained in
them, then a fast local restore of that state could play the role of migration without
the need to bear communication costs and delays at the critical moment.

A great tool that rhino puts to use to somewhat minimize routing costs on check-
pointing, is consistent hashing on virtual nodes.

The system comprises of four distinct components, that deal with different im-
portant aspects of the system.

• Replication Manager that creates all the replica groups before assigning them
to workers.

• Handover Manager that deals with all the synchronization issues of handling
in-flight records while performing state migrations, as the problem was de-
scribed in sub-Section 2.4.3

Chapter 3. Related Work 16

• Distributed Runtime is the main runtime code that runs on all workers and
contains the necessary protocols for handovers and state-centric replications.

• Modifications in the form of stateful operator extensions necessary to imple-
ment the design. First, control events through the data channels are necessary
for delegating control requests to appropriate workers consistently. Next, the
state migration process itself requires buffering and inbound/outbound data
channel re-wiring capabilities. Finally, the ability to consume the checkpointed
state in the worker, is crucial to the overall success.

The way Rhino operates during a reconfiguration process, is presented on Fig-
ure 3.5, where an example scenario is shown. The steps shown, are described below
and start with the Handover Manager inserting special "handover markers" into the
dataflow, which traverse through the system, until they have passed from all opera-
tors :

Step 1 The markers are emitted from upstream (previous) operators to all connected
downstream operators, to signify a state migration process occurring.

Step 2 At this stage, some markers from upstream peers have reached the intended
operators, but some are still in transit. As soon as any operator starts receiving
markers, a buffering on that channel is initiated, until all markers are received
and a decision on whether migration also involves the operator in question can
be made. For example, operator I will not actually play a role in the impending
migration, but as long as both S1 and S2 have not confirmed so, no decision to
continue normal operation can be made safely (since each is responsible for
different subset of keys).

Step 3 All markers have reached their intended operators and a migration from O(rigin)
to T(arget) is necessary. I turns out to not be involved and its input data chan-
nels can once again be consumed normally. T can use the local replica of the
migrated state to gain the state associated with the affected keys, while O needs
to re-wire its output in order to send all in-flight records on affected keys (that
reached O during buffering) to T.

Step 4 After the state has been "transferred" to the target operator, the temporary data
channel can be removed, input data channels resumed and handover markers
passed downstream. Upon receiving all the markers, downstream operators
together with O and T, can notify the Handover Manager of completion of the
state migration process.

FIGURE 3.5: Comparison of end-to-end latency on a key-count exam-
ple between Rhino and Flink. Reconfiguration at 600s. Del Monte et

al., 2020

Chapter 3. Related Work 17

Once again, we are presented with a novel way to circumvent the routing update
challenges described in sub-Section 2.4.3. We can see how the handover markers are
used to assert the consistency and completion of the routing updates, while the inter-
nal re-wiring of the origin worker’s output channels deals with the synchronization
issue. This way, the routing updates are guaranteed to complete while in the mean-
time any data records routed inconsistently by peers due to the asynchronous nature
of the updates, can be re-routed after the fact.

Another important aspect of Rhino, as evident from the look on the migration ex-
ample, is its checkpointing solution that doubles as a state transfer solution among
workers. The produced snapshots are then used as direct replicas of peer state. In or-
der to make a checkpoint-assisted approach feasible, Rhino presents and evaluates a
pre-emptive, distributed, incremental and replicated checkpointing structure. This
means that the snapshots taken by the system, take place in a distributed manner
where the checkpointed state is broadcasted to a group of selected peer workers and
replicated among them. The checkpointing process itself is incremental, meaning
only the changes on the data since the last checkpoint are stored, effectively mini-
mizing new objects’ size to save and communicate to peers. As the characterization
"checkpoint-assisted" has already hinted about the solution, Rhino makes use of the
aforementioned local replicas stored pre-emptively in the worker, to gain direct ac-
cess to a copy of peer state. Snapshots typically reside within persistent storage
and relying on persistent mediums for performance-oriented processes might prove
cumbersome as they are notorious for being orders of magnitude slower than phys-
ical memory. To assist with this issue, Rhino changes the typical block-centric ap-
proach on snapshot replication to a state-centric one, so that it can ensure complete
states reside within workers and do not need to be pieced-together from multiple
peers. The last point, Del Monte et al., 2020 stresses is a major consideration, as their
independent testing on Flink1 and Megaphone showed that during recovery, most of
the time is spent in state materialization from a previous checkpoint. As recovery in
the case of Rhino is also used for state migration, it offers significant improvement.

3.3.2 Advantages

Rhino carries a completely different system design and as such offers grounds for
discussion on pros and cons in almost every important aspect of a modern SPE.
Starting off with the positive points, the proactive checkpointing strategy that sits
in the center of the design, allows for "simpler" fault tolerance. By having restore
points readily available on workers at any given time, Rhino allows for full restores
in case of failures, without the need for extra fault tolerance services and handling.
Backups with own state are local, up-to-date and can be directly used as restore
points. Moreover, the state-centric approach aids in the restore process having to
fetch data from less source and thus significantly speeds up the state materialization
task. The benefits are presented in Table 3.1, where an example scenario of recovery
following a vm failure is used to compare Flink, Megaphone, Rhino and RhinoDFS.
The last is a variant of Rhino employing a DFS instead of Rhino’s elaborate consistent
hashing structure and highlights block-centric vs state-centric replication.

Perhaps the main strong suit of Rhino, is its focus on "big" state. By relying
on persistent mediums for state transfers and the ability to fetch state from them,

1Apache Flink: https://flink.apache.org/

https://flink.apache.org/

Chapter 3. Related Work 18

State Size System Scheduling State Fetching State Loading

250 GB

Flink 2.2 ± 0.1 68.2 ± 5.7 1.3 ± 0.2
Rhino 2.8 ± 0.2 0.2 ± 0.1 1.3 ± 0.3

RhinoDFS 2.9 ± 0.2 10.7 ± 3.1 1.3 ± 0.3
Megaphone 46.3 ± 2.8

500 GB

Flink 2.5 ± 0.2 116.6 ± 4.9 1.8 ± 0.3
Rhino 3.1 ± 0.3 0.2 ± 0.1 1.3 ± 0.3

RhinoDFS 3.0 ± 0.3 18.9 ± 3.7 1.3 ± 0.5
Megaphone 74.8 ± 3.0

750 GB

Flink 2.6 ± 0.3 205.3 ± 5.2 1.3 ± 0.1
Rhino 3.0 ± 0.2 0.2 ± 0.1 1.5 ± 0.1

RhinoDFS 2.6 ± 0.1 36.1 ± 2.3 1.5 ± 0.2
Megaphone Out-of-Memory

1000 GB

Flink 2.4 ± 0.3 252.9 ± 5.9 1.5 ± 0.2
Rhino 3.0 ± 0.2 0.2 ± 0.1 1.5 ± 0.2

RhinoDFS 2.9 ± 0.3 62.7 ± 0.9 1.5 ± 0.1
Megaphone Out-of-Memory

TABLE 3.1: Duration of state migration during a recovery, broken
down into stages involved. Del Monte et al., 2020

it can support terrabyte-sized state. In fact, in solutions like Megaphone that use
networking to facilitate inter-operator communications in parallel instances of dif-
ferent workers, the cost associated with packing, un-packing and transferring such
big state could be equal or even worse than using elaborate persistent medium so-
lutions. That means that in the realm of "big" states, the approach Rhino takes might
be optimal in terms of performance as well.

3.3.3 Disadvantages

In order for Rhino to ensure as much as possible up-to-date replicas of state on peer
workers, a high cost in the form of network bandwidth must be paid. Del Monte et
al., 2020 themselves report a 30% usage during a replication, regardless of any other
tasks being perform by the system at the time. In fact, Gu et al., 2022 confirmed this
number, but expanded by selecting different replication intervals. Going from the
default 10-minute interval to a 3-minute one saw an increased bandwidth usage of
46%, while the same number grew to 56% when selecting a 1-minute replication in-
terval. Perhaps most importantly, this overhead is associated with a non-rescaling or
steady-state processing case, meaning that Rhino increases cost throughout normal
operation to account for special use-cases such as reconfigurations and fault recov-
ery.

The design choices Rhino makes, have a negative impact on reconfigurations
and specifically the case of scaling out by adding more workers to the system. Since
no local checkpoints exist in these new workers, a global state migration must take
place, where the entire checkpointed state is transfered, rather than smaller incre-
mental parts. This incremental transfer of state is crucial to the system’s perfor-
mance, otherwise the system’s state migration performance can degrade to a partial-
pause approach, exhibiting latency spikes.

In use-cases such as the queries found in the frequently-used NexMark bench-
mark by Tucker et al., 2008, recurring read-modify-write operations are present.
Coupled with the trade-off in selecting replication intervals, these operations can

Chapter 3. Related Work 19

create a long tail of changes between checkpoints, further hindering the performance
of transfering-what the system considers to be-small batches of changes between
workers.

3.3.4 Pre-emptive state transfers

The novel design approach Rhino makes, aiming to improve performance of both
state migration and fault tolerance in one fell swoop, introduces an interesting idea,
regarding the admittedly costly task of transfering information between workers.
By pre-emptively moving state between workers, it effectively disconnects the cost
associated from the command that would otherwise initiate a transfer, such as state
migration or fault tolerance. This way, a more spread-out resource usage is observed,
especially when compared to performing the task as a direct result of the associated
commands. The differentiated view on cause and effect around the tasks involved
with state migration, was a major inspiration for the work presented in Section 4.

3.4 Meces

Gu et al., 2022 introduce an innovative system design called Meces, in an effort to
improve upon all the previous takes on online state migration. By focusing on what
they call "order-aware" migration, they hope to better serve in-flight records during
migration and improve overall performance, without any extra steady-state costs
incurred.

3.4.1 Design

The idea of dealing with the order keyed states are migrated consists the driving
force behind Meces’ design and the motivation behind it is illustrated in Figure 3.6.

FIGURE 3.6: Observed event latency depending on migration order
used. Gu et al., 2022

There, we can see a simple scenario depicted where states for 3 keys are being
migrated, while records for the same keys arrive for processing by the system in

Chapter 3. Related Work 20

question. The order the records arrive is fixed, but the order the states needed arrive
on the target worker, is examined as:

(a) "In Order": The keyed states arrive in a random order, different to that of they
keys of the records.

(b) "Worst": The keyed states arrive in the exact opposite order as the keys of the
records.

(c) "Prioritized": The keyed states arrive in the same order as the keys of the
records.

Even though at first the whole approach might seem unnecessary at first, the
results suggest otherwise. Not only does the observed latency-the time the record
spend in the system after being presented in the input and before arriving at output-
in the prioritized case peak two orders of magnitute (from 10sec to 100ms) lower
compared to both the other approaches, but that increase in latency lasts for sig-
nificantly less time (from 300ms to 110ms). This essentially means that the system,
incorporating order into state migration, can perform migrations faster, while attain-
ing better performance on the processing of records arriving during the migration
process.

To implement such an architecture and orchestrate migrations efficiently and
consistently, Meces uses a global controller to initiate the migration process. The
controller injects special control messages into the source operators and every opera-
tor I receiving the control message in any of its input channels, follows the following
steps:

1. I sends the control message to all of its downstream operators.

2. If any of I’s downstream operators will migrate states, I needs to update its
routing table.

3. If I needs to migrate its state, it goes into its aligning phase and will later go
into its aligned phase.

4. It notifies the global controller, who in turns awaits notification from all oper-
ators before the migration process can be deemed completed.

As mentioned, there are two noteworthy phases for operators in the process,
namely aligning and aligned. An operator enters into the aligning phase once it has
received at least one control message from its upstream operators, but still not all of
them. After all upstream have successfully sent their control messages, the operator
enters the aligned phase. The reason why this distinction is important, is because in
the first case, some routing tables necessary have been updated but not all of them.
As a direct result, records with keys whose state is in the process of being migrated
from a source to a target operator, can still end up in either or both operators. Only
after reaching the aligned phase, can an operator be certain that all keys will be routed
correctly and it will receive only those it is responsible for.

Previous works, such as Rhino by Del Monte et al., 2020, have not observed
this in-between phase and would only handle the period after routing updates have
started and until they have concluded, by buffering arriving records. Meces in con-
trast, introduces its "order-aware" novelty at this point and allows operators in the
aligning phase, when met with records whose state is not local, to fetch the asso-
ciated state from the operator that actually holds it. Thus, records arriving in the

Chapter 3. Related Work 21

meantime can rely on this fetch-on-demand feature to avoid having to wait for the
entire process to conclude before they can be processed.

Following all of the above and after the operator has successfully entered its
aligned phase, states can safely be moved to their intended target operators. For both
the fetch-on-demand and the subsequent state transfers at the end of the state migra-
tion stage, Meces employs an external KVS (Key-Value Store). Specifically, Redis2 is
used to allow state transfers between parallel operators that otherwise share no di-
rect communication channels, without mesh communication networks such as those
necessary in Megaphone by Hoffmann et al., 2019.

FIGURE 3.7: Overview of state migration process in Meces. Gu et al.,
2022

An illustration of the process described above, is available in Figure 3.7. There,
we can see the global controller injecting control messages to start the state migra-
tion process in (a) and records for key "6", which is being migrated from operator
A (source) to B (target), being routed to A before the control messages and the sub-
sequent routing table updates and to B after them. The newly exploited phase can
be seen in (b), where although S1 routes "6" to A and S2 routes it to B, the fetch-on-
demand feature allows normal processing regardless of who holds the state at any
given time, even if that potentially creates a "ping-pong" case where the state keeps
bouncing back and forth between two operators, before all upstreams are updated.
Finally, after the operators are aligned in (c), a state transfer can be initiated to move
the corresponding states to their intended targets.

Dwelving deeper into the granularity of the key-groups contained within state
migration instructions, Meces borrows a page out of Megaphone’s book and exam-
ines the case of "gradual" state migration. In essence, instead of initiating a migra-
tion on the initial request set of key-groups, Meces does migrations in subsets of the
original set, until all the initial keys are moved. Figure 3.8 shows how that is done in
Meces, in a simple scaling scenario from 2 workers to 3, where the keys are evenly
re-distributed.

FIGURE 3.8: Meces gradual migration. Gu et al., 2022

2Redis Sentinel: https://redis.io/docs/management/sentinel/

https://redis.io/docs/management/sentinel/

Chapter 3. Related Work 22

The authors state that a gradual migration technique is employed to avoid la-
tency peaks and achieve an overall smoother state migration process. In our un-
derstanding, the benefits of a gradual migration stem mainly from having smaller
batches of transfers at the end of the aligned phase, as well as overall having more
aligning phases, enjoying increased benefits from the fetch-on-demand functionality.

3.4.2 Advantages

The potential benefits of this "order-aware" approach have already been peeked at
in Figure 3.6, but more extensive testing factoring in the design presented in Section
3.4.1, shows impressive performance improvements versus both Flink and a simple
block-based "order-unaware" solution. Figure 3.9 presents the results of running a
number of different tasks and then prompting a reconfiguration at 600 seconds. In
all cases Meces outperforms, not exhibiting the immense latency spikes of 3 to 4
orders of magnitude higher than normal operation that Flink and sometimes Order-
Unaware does. Moreover any observed disturbance to the system’s processing per-
formance is both minimal and short-lived, allowing the system to operate almost
uninterruptibly and with high throughput, during the task at hand.

Being the most recent out of the approaches presented so far in this work, Meces
aims to not only present a completely new way of operation for SPEs, but also im-
prove upon the weak points that approaches like Megaphone and Rhino exhibited.
Namely, a need is formulated by the authors to bring improvements by avoiding to
introduce extra steady-state costs, as well as no extra resource overhead. In fact, the
paper by Gu et al., 2022 performs direct comparisons to both systems, implemented
on top of Flink based on their papers, in a similar case as before. An example pro-
cessing task is handed and then a reconfiguration is triggered at the 600TH second
of execution. The findings are shown below.

In the case of Figure 3.10, Meces can be seen operating on low latency an exhibit-
ing minimal spikes during reconfiguration for a duration of 10-20 seconds. Mega-
phone on the other hand, incurs added partition overhead as discussed in Section
3.2.3, leading to a steady-state latency 10 times higher. The spikes during reconfig-
uration are proportionally similar to Meces, but since the steady-state latency was
already much higher, they are also much higher than the ones Meces showcased.

In Figure 3.11, a comparison with Rhino is presented. Since the sample task con-
tains a scale-out case of reconfiguration, Rhino’s relevant shortcoming discussed in
Section 3.3.3 comes into play, causing it to show a high latency spike during reconfig-
uration. Since a global checkpoint transfer is required to take place, the performance
observed is comparable and almost similar, to that of the Order-Unaware solution
presented before. At the same time, Rhino incurs a high network bandwidth cost to
operate, unlike Meces.

On the consistency front, Meces claims to not present any new threats and as for
the novel fetch-on-demand feature, since only a single operator is responsible for the
state of one key at any given time, updates are consistent and so should results be.

3.4.3 Disadvantages

Meces’ novelty essentially finetunes migration steps to the order records arrive,
making sure any necessary state is present at the correct place at the correct time.
The fetch-on-demand capability helps achieve that during the somewhat unstable
aligning phase, but not without a caveat. The "ping-pong" case briefly mentioned
in Section 3.4.1, is actually noted as well by the authors themselves, although they

Chapter 3. Related Work 23

dismiss it as seemingly meaningless, based on the fact that the aligning phase is rel-
atively short-lived. However, this claim carries with it a potential limitation on the
benefits the system enjoys as a direct result of the "order-aware" approach, making
for a key observation that led to the design presented in Section 4. The gradual
migration trick somewhat mitigates the issue, but does not directly address it.

On the fault tolerance front, Meces makes no contributions, relying on existing
fault-tolerance through checkpoints. However, the extra handling in the aligning
phase Meces performs, requires special care and as such the authors advise pausing
checkpointing for the duration of the state migration process. Such a limitation is not
very welcomed, as fault tolerance plays a crucial role in solidifying SPEs as stable
and complete processing solutions. Even if a case could be made about the fact that
migrations are relatively short-lived, a potential solution such as that presented by
Rhino where incremental checkpoints are employed to significantly speed-up the
process of creating restore points, a halt on the process would significantly increase
the list of changes and the incremental checkpoint’s size.

Chapter 3. Related Work 24

(A) NEXMark Q1

(B) NEXMark Q7

(C) NEXMark Q8

(D) key-count

FIGURE 3.9: Observed end-to-end latency. Reconfiguration triggered
at 600s. Gu et al., 2022

Chapter 3. Related Work 25

FIGURE 3.10: Latency comparison Meces vs Megaphone. Reconfigu-
ration triggered at 600s.Gu et al., 2022

FIGURE 3.11: Latency comparison Meces vs Rhino. Reconfiguration
triggered at 600s.Gu et al., 2022

26

4 Methodology

The research presented so far in the present work, has proven that designing an effi-
cient online state migration solution that abides by requirements and good practices,
is extremely hard. Consistency, fault tolerance, efficiency and processing latency
seem to be almost mutually exclusive, with most approaches having to sacrifice one
to benefit another. Below, we present and go over the details of a "lazy" approach on
online state migration, in the form of an architectural decision, before we analyze the
repercussions that such a design choice has on important aspects of modern SPEs.

4.1 Novelty

The root of the idea behind the lazy fetch approach, is inspired by all of the work
presented throughout Section 3. The first important point being the interesting view
Rhino presents on the cause and effect relationship between signaling a migration
and initiating the costly work to support the operation. The other important inspi-
ration being the fetch-on-demand approach by Meces and the entire analysis on the
benefits of "order-aware" or simply put timely availability of state in operators.

To that end, we can observe a pattern where all approaches follow a somewhat
similar strict paradigm on the phases of a state migration process:

1. Signaling: Through either markers, special control messages or external con-
trollers, operators are instructed to start preparing for a state migration.

2. Syncing: Some updates, usually on routing tables, have taken place but not all
are complete. Therefore the system is in an intermediate phase which is not
truly stable in terms of processing consistency yet.

3. Transfer: The updates have taken place, new records will be routed according to
new configuration and any state not moved yet, can now be safely transferred
to their intended destination.

Especially the latter two, Syncing and Transfer, contain performance traps as buffer-
ing is usually employed to deal with moments where state is not available as new
records arrive. Either due to network communication latency or simply too much
data to move, records are left waiting for the state to become available and process-
ing to continue taking place. Inevitably, the discussion about this new approach
turned into a question about what would it take to completely remove these two
phases. Since a fetch-on-demand implementation can ensure state is present on an
operator when needed, even in the "dangerous" Syncing phase and the cost associ-
ated with moving all state after the phase is completed is quite high, why not just
skip them and stop trying to handle them in a special way.

An online state migration paradigm that follows such an efficient "lazy" fetch-
on-demand-based approach is presented in Figure 4.1. In it, we can see an example
case of state migration taking place between operators, following a reconfiguration
command:

Chapter 4. Methodology 27

S1

B
S2

C

A
6:2
1:2

3:5
2:1

4:0
5:9

6:2
S1

B
S2

C

A
6:4
1:2

3:5
2:1

4:0
5:9

(A) Step 1

6:1

S1

B
S2

C

A
6:2
1:2

3:5
2:1

4:0
5:9

6:1

S1

B
S2

C

A
6:4
1:2

3:5
2:1

4:0
5:9

Fetch 6

6:3

4:2

(B) Step 2

S1

B
S2

C

A
1:2

3:5
2:1

4:2
5:9
6:4

S1

B
S2

C

A
1:2

3:5
2:1

4:0
5:9
6:8

Send 6

5:1

6:3

6:1

S2

C

B

A
S1

S2
B

C

S2

A

B

C

S2

S1
Sum

operator

State

Record

Buffered
record

(C) Step 3

FIGURE 4.1: Overview of "Lazy-fetch" state migration process steps.

Step 1 shows normal operation of the system, with data records flowing through and
being processed. Sum operators have access to specific key,value pairs while
new keyed records that arrive update the existing values using the new ones.

Step 2 follows a reconfiguration command and we can see a record with key 6 now
being routed to operator C, rather than A where it would be routed to before
the reconfiguration. As the state is not currently present in operator C, the
record is buffered while the fetch command is issued to the operator A that
holds the associated state. The dataflow is not disturbed and as such new
records for the same or other keys can arrive.

Step 3 depicts a number of events taking place simultaneously. First, the record for
key 4 that arrived while the fetch operation was ongoing has been processed
normally and the corresponding state updated. Second, while the fetch op-
eration was still taking place, an additional record for key 6 arrived on the
same operator and was also buffered until the state becomes available. Next
to that, operator A uninstalled state for key 6 and sent it over to operator C
who installed it locally. Finally, the necessary state is available and processing
of buffered or future records for the same key, can resume.

In terms of the two important aspects mentioned back in Section 2.4.1:

• Route updates: A fetch-on-demand approach can allow processing while the
routing updates take place, regardless of whether they have concluded or not.
The way the updates take place is of little importance as the proposed solu-
tion would not be waiting on it to conclude before continuing with normal
operation in any way.

• State transfers: Would only take place on a request basis, as arriving records
could ask for non-local state, which would trigger a lightweight migration.

Chapter 4. Methodology 28

Other than that, costs associated with moving state regarding keys that are not
actually being used, would not have to be paid.

Regarding actually "completing" the migration, meaning in fact having the state
in the intended worker at some point, this is where the approach differs. State would
not be guaranteed to be located in a target worker following a signal for reconfigu-
ration, unless a relevant record requiring that state reaches the target worker. In our
view, this is highly beneficial since:

- If a relevant record arrives, then migration costs are paid in a lightweight fash-
ion once and the state subsequently resides with the target operator, requiring
no further transfers in the future. Subsequent records for the same key in this
operator will utilize the now local state, operating in a steady-state manner.

- If a relevant record does not arrive, then transfer costs will not be paid at all.
The state will not be moved from the source operator, until when and if in
the future another record arrives requesting it, at which point the migration
can in fact take place. This would lead to a more evenly spread-out cost over
time, avoiding local spikes following the migration command and in turn only
having minor extra latency added at later times.

Consistency guarantees will effectively be borrowed by Meces, as the mecha-
nism is similar and only one operator holds the state, making updates at any given
time. The lazy approach can be argued to improve in almost all areas where the
previous approaches exhibited shortcomings. It requires no additional steady-state
resource usage, no mesh communication networks and removes all costs associated
with transferring the states in bulk after syncing is completed on all operators and
before concluding the migration.

4.2 Fault Tolerance

The intricate relationship between state migration and fault tolerance has already
been briefly mentioned back in Section 2, but we do believe that in simple terms
a solution about one cannot be viewed without examining the impact it has on the
other. As far as our lazy approach is concerned, fault tolerance is in fact improved by
dropping the limitation Meces imposed of pausing checkpoints. Now, checkpoints
can be triggered at any given point, as long as a special routing log table introduced
is also stored (mentioned below in Section 4.3) and any local fetch potentially taking
place is awaited. The supporting idea behind this freedom, describes that as long
as any operator presented with a record whose state is not local, can find the peer
actually holding that state to employ fetch-on-demand, the restore point in relation
to the migration process plays no role in consistency. The system can restore from
any given checkpoint and continue normal operation.

4.3 Potential Limitations

Naturally, with a radical design choice such as the one where following a state mi-
gration command, no migration necessarily takes place, questions for a number of
potential limitations arise. These contain use-cases where potentially special care or
limitations have to be imposed, as with similar systems presented before, to ensure
system stability and availability.

Chapter 4. Methodology 29

The system’s design at its core, shifts the cost-associated factor from the number
of keys for which state needs to be migrated, to the number of keys that will actually
arrive following a migration command. Regardless of whether the system is migrat-
ing few or many keys, the latency as a result of migration is now dependent on the
records arriving afterwards. A natural first enquiry would be about the case where
all migrated keys are used right after migration. Even then, we expect the system
to exhibit better performance than blocked-based migration because of the order the
states become available, as found by Meces and portrayed in Figure 3.6. However,
an average case will see the use of only a number of keys, which themselves are pre-
sented in varying frequencies (some used more frequently than others) and some not
even being used for a while. As a result, gives the lazy approach the best chances in
performance since the latency for fetching states for these rare records, would not be
detected until a later time or not even at all.

A second potentially limiting use-case, would be scaling-in. Migrating to less
workers, contradicts the paradigm of lazy fetch, as there state still resides in source
workers until actually needed from target ones. However, since in the case of remov-
ing workers from the system these workers will at some point become unavailable,
all the states need to be moves even if relevant records do not actually arrive. Penal-
izing as such an operation might be, there is a silver lining in the fact that scaling-in
usually comes as a direct result of reduced workload and less strict latency require-
ments. Even though higher latency would be observed in this special case, it would
be in an otherwise relatively low utilization period. The reason why in contrast,
Rhino’s corresponding limitation on scale-out scenarios, was viewed as a disadvan-
tage back in Section 3.3.3, is that these typically occur under heavy load. Typically,
some form of back-pressure sensing infrastructure will trigger a scale-out reconfig-
uration to cope with increased loads. Doing so in an inefficient manner means that
towering record-processing requests and latency requirements might not be met.

Another point, made when presenting Meces in Section 3.4, is a special case of
"ping-pong" that can potentially occur on a fetch-on-demand-based approach. When
using distributed routing tables, the intermediate stage immediately following a re-
configuration when they are not all synced, can cause some records to follow the
"old" configuration in parts of the dataflow graph and others to follow the "new"
one. In the example presented in Figure 4.1, that would mean that after Step 3 has
occured, a record with key 6 is still routed to operator A (perhaps because S1, un-
like S2, is not updated), calling for the state to be transferred back to its original
owner. This case could potentially incur unnecessary state transfer costs, as future
records in this example would potentially dictate the transfer of the same state back
to operator C. The possibility of the issue presenting itself, is directly related to the
amount of time distributed routing tables require to sync together and is mentioned
as potential future work in Section 7. However, we do not consider it as a major lim-
itation as at worst it would introduce a potentially minimal extra latency in affected
topologies while at best it could be dealt with by ensuring routing tables are synced
before actual states are moved and the reconfiguration in fact takes place.

Finally, an important aspect in making the lazy fetch approach work, is the abil-
ity for any target worker to identify the source worker without causing disruptions
or exhaustive queries to all peers. An already existing solution is that employed
by Meces, in the form of an external KVS, which admittedly requires unnecessar-
ily many messages between operators to complete. Another potential solution, de-
pending on the underlying infrastructure and topology, would be a routing log table,
where previous routings of records are logged and can later be used to identify the
previous route that a similarly keyed record followed. This way, direct requests can

Chapter 4. Methodology 30

be made between parallel operators to retrieve the state. The state transfer protocol
itself can be any type of distributed storage, external KVS or direct TCP connection
between workers, again depending on the underlying infrastructure and topology.

4.4 System Implementation

Moving on from a theoretical design approach, to a more practical explanation of
the "lazy" approach, we implement the online state migration feature on an existing
system. As system topology, capabilities and overall infrastructure highly affect any
experimentation necessary, a description of the underlying system follows.

In Figure 4.2, a graphical representation of the architecture of the SPE used can
be observed.

Kafka

Worker 1

Partition 4

op 1

op 2

op 3

Egress

Coordinator

Partition 3

Partition 5

Partition 1

Partition 6

State
op 5

op 4

Worker 2

op 1

op 2

op 3

State op 5

op 4

Worker 3

op 1

op 2

op 3

State op 5

op 4

Partition 2

FIGURE 4.2: Experimental SPE system overview.

The most important parts of the system are:

• Ingress: Data are introduced to the system through a Kafka installation a client
can communicate with, which also connects to the workers available by the
system. Kafka partitions are used to increase bandwidth in the ingress-worker
communication channel, but also serve parallel instances of the same operators
within the same worker and boost performance. Routing takes place at this
level, with any reconfiguration commands affecting local routing tables that
as a results change how specific keys are routed to partitions and therefore
workers and their operators.

• Workers: Every worker holds a local replica of the dataflow graph specified
by the client. Parallelization of operators either inter-worker or intra-worker is
possible, with the latter enjoying shared access to the local state. That means
that looking back to Figure 4.2, op3 in worker 1 can actually have two copies
in the same worker, one reading from partition 1 while the other reads from
partition 2, effectively allowing them to work in parallel.

• Inter-worker communication: Perhaps most importantly, the system employs
worker-to-worker TCP connections for direct command message exchange.

Chapter 4. Methodology 31

These channels are supported by long-running connections and any message
exchange subsequently goes through a serialization/de-serialization process.

• Coordinator: A central service is used to coordinate system-wide actions such
as submitting the client’s dataflow graph, commencing fault-tolerance pro-
cesses in the face of failures and identifying system state at any given time.

• Egress: Processing results are written back to Kafka, using dedicated parti-
tions, not affecting the data processing latency of the system.

For our "lazy" approach implementation, we retain a routing log table before
assigning Kafka partitions to records, so as to detect at any given point where the
key was last routed to-and subsequently who holds the state for that key-. As a
result, an operator trying to process a record whose key is not local to the worker,
can identify the source worker and begin a state migration process as described in
Figure 4.1. For asking and delivering the state, the inter-worker connection is used,
so as to query the source worker directly and not disturb the dataflow by injecting
special markers. State migrations in the system occur in a key-level granularity, so
as to reduce the volume being transferred through the inter-worker channels and
limit the "ping-pong" event, as described back in Section 4.3. For buffered in-flight
records during the fetch operation, Python’s asyncio events are used to both buffer
and then signal normal processing, once the state is available.

32

5 Evaluation

Next, we perform an evaluation on our implementation of the "lazy" approach,
through a series of experiments looking into different important aspects that can
affect performance. We try to quantify the solution’s efficiency when dealing with
various demanding scenarios, in order to pinpoint its’ strong points or potential
drawbacks in practice.

In these scenarios, we start with normal processing under varying conditions
and after 3 seconds of operation we manually trigger a re-shuffling of a specified
amount of keys, among the existing workers. In practice, we re-assign a number of
keys from a source worker to any of the others, now called target workers. This test-
ing process reflects a potential load-balancing or code update use-case in a relevant
system. There is no reason to believe that a scale-out test would behave differently in
any way, since the same logic would hold, probably with even better post-migration
performance since new resources would be introduced to the system. For scaling in,
special care would be needed to deal with the fact that state cannot be left behind in
a worker going offline, as noted already in Section 4.3.

For measurements, we look at end-to-end latency measured with a timestamp
first set when the record sent by the client first enters Kafka (ingress) and compare
that with a second timestamp set when the output of the same record is written to
Kafka as output (egress). The difference between the two, provides a per-record
latency result, which we group under time of execution to provide an overview of
the system’s performance over time. To that end, every scenario runs for 10 seconds
and the results are grouped under the second of execution at which the record was
generated. To report the result of the group, we use the 50th and 99th percentiles of
the values recorded to represent average and worst-case performance of the solution
at test. Since when migrating for instance, the records of keys being migrated might
exhibit worse performance that those not taking place in the migration, looking into
the average performance is not enough and the worst-performing part of the system
needs to be highlighted.

5.1 Baseline

To provide us with a point of reference, since the underlying system’s performance
cannot be directly compared to Flink for example, we designed a baseline online
state migration solution. The baseline solution in essence follows the partial-pause-
and-resume design paradigm and following the reconfiguration command, performs
the following steps:

1. The coordinator (seen in Figure 4.2), notifies all target workers of incoming
states.

2. All workers notified of receiving state from peers, start buffering arriving records,
until all source workers have successfully sent the corresponding states.

Chapter 5. Evaluation 33

3. After a worker has received all states that it was notified to expect, it can stop
buffering and start processing buffered or any new arriving records.

Since the first step in this process can take some time and relevant records for
keys being migrated can arrive at that point, we give the baseline solution an ad-
vantage by "blocking" ingress until the coordinator has notified all workers. This is
done to ensure correct processing and essentially gives the baseline an edge since
in the meantime no "start" timestamps are logged for the records and no latency is
recorded. After the notifications are sent, the workers can start buffering if necessary,
transferring states between them and ingress continues normal operation.

For transferring the states between workers, the direct communication channels
used by the system are employed, whereas buffering again is handled through asyn-
cio events. Whereas in the case of the lazy-fetch approach, no additional steps need
to be taken other than updating the routing tables and passing through the routing
log information, in the baseline case, we make an extra call on the client side to signal
the coordinator, which commences the migration process.

5.2 Experimental Setup

To actually execute the experiments that follow, the machine used consists of an
AMD Ryzen 37000x CPU with 8 cores/16 threads and 32GB of DDR4 RAM @ 3600MHz.
The environment used is a Linux Ubuntu 22.04 distro, running Python 3.10. The de-
ployment of the Kafka, coordinator and 4x worker services were achieved through
docker containers using 1 CPU core and 1GB of memory each.

For the client side, we run a script on a dedicated thread with an input rate of
4,000 records/sec for 10 seconds total. The operator at hand is a cut-down version
of YCSB by Barata, Bernardino, and Furtado, 2014. In it, we first create entries for
1,000,000 keys by setting a starting value and then we use the client to generate
an appropriate number of random keys every second, upon which we call simple
update functions that just read the corresponding value and increase it by 1. This
way, we can keep track of the keys generated and check the output for consistency
and completion.

For the operator used, we selected 8 partitions, which are automatically assigned
by the system in a round-robin fashion. That means that each worker ends up with
2 partitions of the same operator, running in parallel for different keys. The selection
of operator partitions and workers’ number was such as to be bearable by the test
machine and not present external delays due to insufficient resources.

As mentioned already, for measuring the end-to-end latency, we create unique
identifiers and assign records a timestamp once they are submitted to ingress and
again in egress. Since the same host machine runs for all workers, the timestamps
can be considered consistent and latency measured as the difference between the
two. The measurements are presented as per second of execution, referring to the
second of execution at which they were first presented to ingress, rather than the one
they were produced to egress. That means, that a record generated at the 3rd second,
but due to increased latency took 2 seconds to be produced to egress, will still be
presented at the 3rd second, albeit with the observed latency of 2 seconds.

5.3 Number of keys experiment

For the first experiment, we look into the effect the amount of state, based on number
of keys, has on end-to-end latency when migrating. To achieve this, we select a

Chapter 5. Evaluation 34

specified amount of random keys to be migrated, for which we alter the worker
assignment. The steps of the test are as follows:

1. Assign 1,000,000 keys to workers evenly and initialize their values.

2. For seconds 1 to 3, generate random keys and request update functions on
corresponding workers.

3. At the 4th second, for the pre-selected number of random keys, change worker
assignment to any other. The moment is marked in the figures as a vertical
dotted red line.

4. Continue generating keys and making requests to the system.

5. Measure and report performance.

For the amount of keys tested, given the fact that our system was initialized with
1 million keys, we look into migrating 25%, 50%, 75% and 100% of the keys. To
provide a direct overview of observed performance, we present a cumulative 99th

percentile graph of the end-to-end latency per second of execution in Figure 5.1. The
99th percentile provides a closer look into the peak values, bound to be associated
with keys that are being migrated, or buffered and suffer increased latency as a re-
sult. Being a cumulative graph, an ideal solution should exhibit not distinguishable
"jumps" in latency and an overall linearly increasing line, as end-to-end latency re-
mains constant.

We can clearly see how the baseline solution fails to do so, suffering a clear in-
crease in latency at the critical point of the reconfiguration and as a result finishing
off with poor performance overall. Moreover, the latency increase seems to worsen
as the number of keys being migrated itself increases. On the other hand, the lazy
approach seems to be relatively unphased by the reconfiguration call, whereas the
performance gap with the baseline solution increases, as more keys are being mi-
grated. The accumulated value at the end (10th second of execution) tells the story
of a big performance improvement at system-level, when using the lazy approach
over the baseline.

To dive deeper into the performance numbers, we also look into the actual 99th

percentile latency in Figure 5.2. The results show how bad the worst performing
keys really did, telling a similar story to before. The baseline solution exhibits big
increases in latency following the reconfiguration, further worsening as the number
of keys -and therefore the amount of state- marked for migration increases. Nor-
mal (or ready-state) system performance seems to hover around the 20ms point,
while the "jump" ranges from 50ms all the way up to 1,200ms, an increase of 2 or-
der of magnitude compared to ready-state performance. Interestingly enough, the
latency increase in cases (C) and (D), effectively "spills" into the next second of exe-
cution, causing increases there as well. This phenomenon can be easily explained as
the lengthy buffering in this extreme case, apart from the halt in system execution,
resembles a massive increase in input rate as buffered records keep accumulating,
leaving the system to cope with processing all these records at once, following the
transfer. Normally, our input rate of 4,000 records/second is much below the sys-
tem’s throughput threshold, but the buffering necessary starts stressing the system
limits. Adversely, the lazy approach is confirmed to not exhibit any negative changes
in performance and in fact retains a much stable performance throughout. In some
cases we can see the baseline performing slightly better post-migration, explained
by the fact that the lazy approach is in fact performing minor migrations at that

Chapter 5. Evaluation 35

2 4 6 8 1040
60
80

100

200

400
600
800

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(A) 250,000 keys

Baseline
Lazy

2 4 6 8 100

50
100

500
1000

5000

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(B) 500,000 keys

2 4 6 8 100
50

100

500
1000

5000

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(C) 750,000 keys

2 4 6 8 100

50
100

500
1000

5000

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(D) 1,000,000 keys

FIGURE 5.1: Cumulative 99th percentile of end-to-end latency, by sec-
ond of execution. Reconfiguration triggered at the 4th second.

point, however it still succeeds in staying within a very acceptable 10ms difference
to ready-state performance.

Looking into the 50th percentile numbers in Figure 5.3, tells a similar story to
before. This time we are presented with the average performance of the system, but
the overall image remains the same. The baseline solution performs much worse
following the reconfiguration, exhibiting a performance drop of over 2 orders of
magnitude, while the lazy remains very stable. We can see the average performance
drop of the system also transcending the second of execution and "spilling" into
the next ones on the last case, indicating that this is a system-wide phenomenon,
noticeable in its overall performance, rather than just contained to a number of keys
performing worse that others.

Chapter 5. Evaluation 36

2 4 6 8 100

100

200

300

second of execution

99
%

la
te

nc
y

(m
s)

(A) 250,000 keys

Baseline
Lazy

2 4 6 8 100

100

200

300

400

500

second of execution

99
%

la
te

nc
y

(m
s)

(B) 500,000 keys

2 4 6 8 100

200

400

600

800

1000

second of execution

99
%

la
te

nc
y

(m
s)

(C) 750,000 keys

2 4 6 8 100

500

1000

1500

second of execution

99
%

la
te

nc
y

(m
s)

(D) 1,000,000 keys

FIGURE 5.2: 99th percentile of end-to-end latency, by second of exe-
cution. Reconfiguration triggered at the 4th second.

Chapter 5. Evaluation 37

2 4 6 8 100

20

40

60

80

100

second of execution

50
%

la
te

nc
y

(m
s)

(A) 250,000 keys

Baseline
Lazy

2 4 6 8 100

100

200

300

400

500

second of execution

50
%

la
te

nc
y

(m
s)

(B) 500,000 keys

2 4 6 8 100

200

400

600

800

1000

second of execution

50
%

la
te

nc
y

(m
s)

(C) 750,000 keys

2 4 6 8 100

500

1000

1500

second of execution

50
%

la
te

nc
y

(m
s)

(D) 1,000,000 keys

FIGURE 5.3: 50th percentile of end-to-end latency, by second of exe-
cution. Reconfiguration triggered at the 4th second.

Chapter 5. Evaluation 38

5.4 State size experiment

The second experiment expands upon the first one, by also examining the effects of
state size in memory occupied, rather than just the number of keys being migrated.
Since the main source of delays in state migration is network transfers that require
serialization/de-serialization, synchronization and transfers themselves, looking into
cases where these partial processes are further hindered, can provide invaluable in-
sights into the two implementations’ performances.

The testing process is similar to before, although this time we gradually increase
the "packet size" associated with each key, effectively increasing the state size with-
out having to actually store more data. In essence, we are further penalizing the
state transfer operations, potentially favouring more efficient decision to migrate.

An overview of the measurement results, showed a similar behaviour for both
systems in 50th and 99th percentile numbers and in order to avoid redundancy, we
decided to focus on reporting and explaining the latter.

First, we increase the state size by 10 times from 50MB up to 500MB, looking into
the same amount of keys being transferred as before. The performance overview is
presented in Figure 5.4. The behaviour remains the same, with the baseline dealing
with the migration in a less efficient manner than the lazy approach and dealing
with scaling workloads even worse. Again, the lazy approach presents very stable
performance, a much sought-after characteristic of relevant systems in correspond-
ing operations. Overall, the accumulated latency at the end, is throughout an order
of magnitude better in favour of the lazy approach.

Looking into the system’s performance for each second of execution in Figure 5.5,
we can clearly spot the same "jump" in end-to-end latency at the moment when
the migration is triggered and once more at case (D), the next second of execution
is affected. Not only is the latency at the 5th second of execution increased, but it
almost reaches the same levels as the moment of migration itself, hinting at the fact
that were this situation to get any worse, another second would also be affected.
As expected, the two systems behave similarly before the migration is triggered,
while the lazy approach only shows very minor overhead at later times when further
migrations are taking place.

Next, we increase the state size even more, this time by 100 times from 50MB to
5GB, in an effort to further expose the weak or strong points of either systems. The
cumulative results in Figure 5.6 succeed in showing just that. This time, the state
size is simply too big for the baseline solution to efficiently move while dealing with
incoming records, leading to a substantial performance drop. The gap in perfor-
mance between the two solutions is further increased as the number of keys itself
increases, peaking at a staggering 3 orders of magnitude difference in accumulated
latency! At this point, the performance demonstrated by the baseline solution can be
characterized as problematic for the underlying system, as several requirements of a
modern SPE are not satisfied. In contrast, the lazy solution deals with the increased
workload with minimal, if any, overhead introduced to the system.

Focusing once more on the performance per second of the system, Figure 5.7
finds the latency "jumps" are even more exaggerated this time, showing delays in
the processing time of almost a minute long! In contrast, the lazy approach stays in
the tenths to low hundreds of milliseconds of latency in processing time, while the
migration trigger itself at the 4th second, does not cause any major disruption in the
performance observed. As predicted, the performance degradation in the case of the
baseline solution is such that it takes the system an increasing amount of time before
performance returns to pre-migration levels. In fact, it completely fails to do so in

Chapter 5. Evaluation 39

2 4 6 8 1040
60
80100

200

400
600
8001000

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(A) 250,000 keys

Baseline
Lazy

2 4 6 8 100
50

100

500
1000

5000

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(B) 500,000 keys

2 4 6 8 100
50

100

500
1000

5000

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(C) 750,000 keys

2 4 6 8 100
50

100

500
1000

5000

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(D) 1,000,000 keys

FIGURE 5.4: Cumulative 99th percentile of end-to-end latency, by sec-
ond of execution. State size increased 500MB. Reconfiguration trig-

gered at the 4th second.

the more extreme cases in graphs (C) and (D), in the provided 10 seconds of total
execution time.

The severe performance degradation exhibited by the baseline solution can be
explained by the fact that since all the specified keys and assorted values are trans-
ferred at once, the increase in size causes an already big object needed to be moved,
to become even bigger. This compound increase directly affects serialization and de-
serialization overhead in workers and network delays when transferring. This sit-
uation keeps getting worse, as the number of keys selected for migration increases,
until the object size is simply too big to perform the task at hand.On the other hand,
the lazy approach only requires state transfers on keys for records arriving on corre-
sponding workers, while the transfers themselves happen on a key-level granularity,
leading to much less transfer overhead.

Surprisingly enough, the baseline solution never succeeds dealing with state
sizes past the 5GB mark, triggering the underlying system’s fault tolerance mech-
anisms, as workers work too hard and for too long trying to cope with the difficult
task at hand. On the other hand, the stable performance profile displayed by the
lazy approach persists. In fact, by keeping the selection of keys to be migrated to
250,000, it’s not before we increase the state size all the way up to 5TB, before we see
a noticeable performance drop.

Chapter 5. Evaluation 40

2 4 6 8 100

50
100

500
1000

second of execution

99
%

la
te

nc
y

(m
s)

(A) 250,000 keys

Baseline
Lazy

2 4 6 8 100

50
100

500
1000

second of execution

99
%

la
te

nc
y

(m
s)

(B) 500,000 keys

2 4 6 8 100

50
100

500
1000

5000

second of execution

99
%

la
te

nc
y

(m
s)

(C) 750,000 keys

2 4 6 8 100

50
100

500
1000

5000

second of execution

99
%

la
te

nc
y

(m
s)

(D) 1,000,000 keys

FIGURE 5.5: 99th percentile of end-to-end latecy, by second of execu-
tion. State size increased to 500MB. Reconfiguration triggered at the

4th second.

Chapter 5. Evaluation 41

2 4 6 8 100

50
100

500
1000

5000

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(A) 250,000 keys

Baseline
Lazy

2 4 6 8 100
50

100

500
1000

5000
10000

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(B) 500,000 keys

2 4 6 8 100
50

100

500
1000

5000
10000

50000

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(C) 750,000 keys

2 4 6 8 100
50100

5001000
500010000

50000100000
500000

second of execution

cu
m

ul
.9

9%
la

te
nc

y
(m

s)

(D) 1,000,000 keys

FIGURE 5.6: Cumulative 99th percentile of end-to-end latecy, by sec-
ond of execution. State size increased to 5GB. Reconfiguration trig-

gered at the 4th second.

Chapter 5. Evaluation 42

2 4 6 8 100

50
100

500
1000

5000

second of execution

99
%

la
te

nc
y

(m
s)

(A) 250,000 keys

Baseline
Lazy

2 4 6 8 100

50
100

500
1000

5000

second of execution

99
%

la
te

nc
y

(m
s)

(B) 500,000 keys

2 4 6 8 100

50
100

500
1000

5000
10000

second of execution

99
%

la
te

nc
y

(m
s)

(C) 750,000 keys

2 4 6 8 100
50

100

500
1000

5000
10000

50000
100000

second of execution

99
%

la
te

nc
y

(m
s)

(D) 1,000,000 keys

FIGURE 5.7: 99th percentile of end-to-end latecy, by second of execu-
tion. State size increased to 5GB.Reconfiguration triggered at the 4th

second.

Chapter 5. Evaluation 43

5.5 Record distribution experiment

The main novelty that the lazy solution brings to the table, revolves around the
causality effect between state migrations and the records flowing through the sys-
tem, following a reconfiguration command. As such, any benefits displayed by the
system employing the lazy solution, stem from the fact that it does not need to "pay"
migration costs unless necessary. In fact, taking a closer look into the results avail-
able from the previous 2 experiments, reveals that the lazy approach only ever mi-
grates 2, 75% to 2, 8% of the keys selected for migration, at any given case. The
performance difference observed so far then, mainly comes down to the fact that the
lazy approach migrates over 30 times less state compared to baseline! Not only that,
but the transfers themselves are not performed at the exact moment of the migration,
but can be triggered at any point when the corresponding record first arrives.

To that end, we devise an appropriate experiment, examining this causality ef-
fect closer. So far, we generated keys for the records to be processed by the system,
using a uniform distribution. In order to test the causality effect, we employ a zip-
fian distribution, gradually increasing the factor and measuring the effect it has on
performance. Simply put, every successive increase on the zipfian factor, increases
the chances of generation for specific keys, meaning that at the end only a handful
of keys are generated and flow through the system, as opposed to all of them having
an equal chance.

We expect that such skewed workloads will further benefit the fetch mechanism
behind the lazy approach. Thus, we select the extreme case mentioned at Section 5.4
and operate with a state size of 5TB, while moving 250,000 keys in the reconfigu-
ration command. This way, we have a badly performing workload in our hands,
where the effects of the zipfian distribution can be more easily observed and possi-
bly even beneficial.

In Figure 5.8 we observe how the migrations following the command at the 4th

second of execution, have now a more profound effect and in case (A) where we still
have basically a uniform distribution, take the end-to-end latency of the system from
20ms to 300ms. Since now these transfers require a significant amount of processing
themselves, they are not as lightweight as before. However, increasing the factor
seems to have a beneficial effect on the system’s performance. Going from a uniform
distribution, to a slightly skewed one in case (B) drops the 50th percentile of end-to-
end latency at around 200ms, while further increasing the factor at (C) drops it to
an even better 100ms. The extreme case at (D), offers some interesting insight as the
end-to-end latency at the moment of the reconfiguration command is higher than
before, but drops even lower than the 100ms mark afterwards. In order to better
understand why this happens, we first need to also look into the 99th percentile and
analyze the latency on worst-performing keys, as now specific keys can be more
"important" than others.

Figure 5.9 offers a detailed view on this matter. The graphs show a progressive
improvement, with the factor selection at 0.6 exhibiting the best performance overall.
The reason behind the improvement can be easily explained when looking into the
logs. Using a zipfian distribution with a factor of 0.3 results in only 2% of the keys
being transferred, while increasing the factor to 0.6 brings the same number down
to just 1.5%. Less transfers mean less buffering and transfer costs associated, which
in turn translates to less latency overhead introduced to the system, when keeping
the amount of keys transferred stable.

However, the same extreme case at (D) paints a much different picture. The
latency "jump" at the moment of the migration is very high, at 1500ms and gets even

Chapter 5. Evaluation 44

2 4 6 8 100

100

200

300

400

500

second of execution

50
%

la
te

nc
y

(m
s)

(A) zipfian factor 0

2 4 6 8 100

100

200

300

400

500

second of execution

50
%

la
te

nc
y

(m
s)

(B) zipfian factor 0.3

2 4 6 8 100

100

200

300

400

500

second of execution

50
%

la
te

nc
y

(m
s)

(C) zipfian factor 0.6

2 4 6 8 100

100

200

300

400

500

second of execution

50
%

la
te

nc
y

(m
s)

(D) zipfian factor 0.9

FIGURE 5.8: 50th percentile of end-to-end latecy using different
record distributions, by second of execution. State size is increased

to 5TB. Reconfiguration triggered at the 4th second.

worse at time progresses. The fact that the same behaviour is not directly observable
at Figure 5.8, indicates that the issue is located at these high-frequency keys that
are now mainly flowing through the system. However, it still fails to explain the
previously observed "jump" in end-to-end latency.

To shed more light into the issue, we ran the same experiment on the initial state
size, to factor out the big state size. Figure 5.10 shows the system coping with the
migration without noticeable spikes, in all zipfian factor selections. However, Fig-
ure 5.11 fills the missing piece of the puzzle, showing that even though the first 3
cases are also stable, case (D) with the highest zipfian factor creates problems in
the system. In fact, the latency spikes occur even before any migration is triggered
and even get better following it. This behaviour supports the hypothesis that the
underlying system struggles under extremely skewed workloads. Even though the
same skeweness favours the causal migration decisions our lazy approach takes, it
directly affects effective sharding in the system, creating heavily imbalanced loads
that on their own create performance issues, unrelated to the state migration pro-
cess we are studying. As such, the negative impact highly skewed workloads have
on the system at test, depends more on the underlying system and less on the state
migration solution at test.

Chapter 5. Evaluation 45

2 4 6 8 100

200

400

600

second of execution

99
%

la
te

nc
y

(m
s)

(A) zipfian factor 0

2 4 6 8 100

100

200

300

400

500

second of execution

99
%

la
te

nc
y

(m
s)

(B) zipfian factor 0.3

2 4 6 8 100

100

200

300

400

500

second of execution

99
%

la
te

nc
y

(m
s)

(C) zipfian factor 0.6

2 4 6 8 100

1000

2000

3000

4000

second of execution

99
%

la
te

nc
y

(m
s)

(D) zipfian factor 0.9

FIGURE 5.9: 99th percentile of end-to-end latecy using different
record distributions, by second of execution. State size is increased

to 5TB. Reconfiguration triggered at the 4th second.

Chapter 5. Evaluation 46

2 4 6 8 100

50

100

150

200

second of execution

50
%

la
te

nc
y

(m
s)

(A) zipfian factor 0

2 4 6 8 100

50

100

150

200

second of execution

50
%

la
te

nc
y

(m
s)

(B) zipfian factor 0.3

2 4 6 8 100

50

100

150

200

second of execution

50
%

la
te

nc
y

(m
s)

(C) zipfian factor 0.6

2 4 6 8 100

50

100

150

200

second of execution

50
%

la
te

nc
y

(m
s)

(D) zipfian factor 0.9

FIGURE 5.10: 99th percentile of end-to-end latecy using different
record distributions, by second of execution. Original state size of

50MB. Reconfiguration triggered at the 4th second.

Chapter 5. Evaluation 47

2 4 6 8 100

100

200

300

400

500

second of execution

99
%

la
te

nc
y

(m
s)

(A) zipfian factor 0

2 4 6 8 100

100

200

300

400

500

second of execution

99
%

la
te

nc
y

(m
s)

(B) zipfian factor 0.3

2 4 6 8 100

100

200

300

400

500

second of execution

99
%

la
te

nc
y

(m
s)

(C) zipfian factor 0.6

2 4 6 8 100

100

200

300

400

500

second of execution

99
%

la
te

nc
y

(m
s)

(D) zipfian factor 0.9

FIGURE 5.11: 99th percentile percentile of end-to-end latecy using dif-
ferent record distributions, by second of execution. Original state size

of 50MB. Reconfiguration triggered at the 4th second.

Chapter 5. Evaluation 48

5.6 Discussion

The experiments presented in this section, focus on the state migration part of an
example workload, while examining the impact of the most important factors. Most
importantly, we try to assess the impact increasingly harder to process workloads
have on the performance of the two systems at test, while also looking into how
well their performance scales in relation to the problem’s complexity.

We find that the baseline solution, based on the existing SPE, performs poorly
under increasing workloads. In times, it introduces several orders of magnitude
higher latency to the system, much outside the acceptable range for such systems,
while others it even fails to complete executions altogether.

On the other hand, our proposed lazy-based implementation, fairs much better
across the board. It succeeds in remaining relatively unphased in the face of the same
workloads, while it displays stable performance when the critical reconfiguration
commands are issued. Most importantly, results across all experiments find the lazy
approach in the millisecond level for end-to-end latency, very close to ready-state
performance.

49

6 Conclusion

In this paper, we visited the problem of online state migration is modern SPE archi-
tectures and tried to:

1. Pinpoint the most important steps or aspects included in the process itself, in
order to assess solutions around the same basis.

2. Formally state the challenges, requirements and limitations of the problem.

3. Design, implement and evaluate an appropriate solution.

By looking into earlier attempts, we were able to detect design choices that lead
to common limitations in existing system, whereas focusing on novelties and impor-
tant ideas we succeeded in designing and implementing a completely new solution.
Focus on the high cost associated with state transfers, while stream processing hap-
pens uninterruptedly, lead as far away from trying to move all of the needed state
at the moments where reconfigurations are performed. Moreover, earlier studies on
the advantages of finer granularity on state transfers, lead us to conclusively use
key-level transfers. Finally, the benefits presented with record-first fetch strategies,
completed the picture of our novel design and resulted in a feasible solution.

Our solution, outperforms the baseline in all tests performed, while importantly
being based on the exact same SPE. The migration mechanism introduces no latency
penalties when used, while heavier workloads are dealt with effectively. The so-
lution improves upon the causality effect between records and state transfers and
offers more manageable and evenly spread-out costs. The system is therefore able
to respond to potential scale-out scenarios much more effectively, offering increased
availability at critical times.

Finally, our solution achieves greatly reduced migration costs, without affecting
ready-state behaviour. It introduces no extra overhead and no increased resource
usage. Fault tolerance is in theory also not affected, as the system makes no special
adjustments to existing processes, other than the need to store any routing log tables
available.

50

7 Future Work

As the lazy fetch approach brings a completely new design on state migration pro-
cesses, a number of associated aspects remain unvisited by our work. Next, we
present such ideas or areas of interest.

First, the important part of fault tolerance and the effect a lazy fetch-based solu-
tion has on it must be practically explored. Although our work covers fault tolerance
on a theoretical level, actual experimentation is necessary to conclusively prove the
relation. Inversely, an effectively state migration mechanism can prove invaluable
when designing fault-tolerance mechanisms. If state can be moved fast and effi-
ciently between nodes, then failing nodes can use the same mechanism to move
necessary information to healthy ones or fetch it back from them during recovery.
While consistency guarantees would need to be closely examined, the intricate re-
lationship between the two could lead to the improvement of one resulting to an
improvement of the other.

As presented and mentioned in the work by Hoffmann et al., 2019, the granu-
larity at which state transfers happen, can provide a useful trade-off between pro-
cessing latency and throughput. While in our evaluation’s system topology state
transfers did not affect the performance gravely, other topologies suffer from this
issue much more. In those cases, key groups or gradual migrations can provide
a middle ground between heavy migration costs and their effect on our proposed
solution must be further explored.

Back in Section 4.3, we mentioned the special case of scaling-in and how a whole-
state migration process would need to be employed, as the lazy fetch solution is not
an option. Expanding upon the idea, the lazy fetch solution can be coupled together
with secondary strategies, to benefit processing down the line. For instance, our
solution still leaves un-migrated state back in source nodes, even long after the initial
reconfiguration command, in case the associated records never passed through the
system. As this could potentially prove problematic when further reconfigurations
happen in the future, the migration of this "left-behind" state can be scheduled at
times of reduced workloads in the system by an appropriate mechanism. In essence,
the lazy fetch mechanism would be used to allows for fast scaling and little extra
costs in times of increased workloads and the subsequent scheduling would ensure
no left-over tasks affect performance in the future.

51

Bibliography

Barata, Melyssa, Jorge Bernardino, and Pedro Furtado (2014). “Ycsb and tpc-h: Big
data and decision support benchmarks”. In: 2014 IEEE International Congress on
Big Data. IEEE, pp. 800–801.

Castro Fernandez, Raul et al. (2013). “Integrating scale out and fault tolerance in
stream processing using operator state management”. In: Proceedings of the 2013
ACM SIGMOD international conference on Management of data, pp. 725–736.

De Matteis, Tiziano and Gabriele Mencagli (2017). “Parallel patterns for window-
based stateful operators on data streams: an algorithmic skeleton approach”. In:
International Journal of Parallel Programming 45.2, pp. 382–401.

Del Monte, Bonaventura et al. (2020). “Rhino: Efficient management of very large
distributed state for stream processing engines”. In: Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, pp. 2471–2486.

Gu, Rong et al. (2022). “Meces: Latency-efficient Rescaling via Prioritized State Mi-
gration for Stateful Distributed Stream Processing Systems”. In: 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pp. 539–556.

Gulisano, Vincenzo et al. (2012). “Streamcloud: An elastic and scalable data stream-
ing system”. In: IEEE Transactions on Parallel and Distributed Systems 23.12, pp. 2351–
2365.

Hoffmann, Moritz et al. (2019). “Megaphone: Latency-conscious state migration for
distributed streaming dataflows”. In: Proceedings of the VLDB Endowment 12.9,
pp. 1002–1015.

Katsifodimos, Asterios and Sebastian Schelter (2016). “Apache flink: Stream analyt-
ics at scale”. In: 2016 IEEE international conference on cloud engineering workshop
(IC2EW). IEEE, pp. 193–193.

Kroß, Johannes and Helmut Krcmar (2016). “Modeling and simulating Apache Spark
streaming applications”. In: Softwaretechnik-Trends Band 36, Heft 4.

Mai, Luo et al. (2018). “Chi: A scalable and programmable control plane for dis-
tributed stream processing systems”. In: Proceedings of the VLDB Endowment 11.10,
pp. 1303–1316.

Rajadurai, Sumanaruban et al. (2018). “Gloss: Seamless live reconfiguration and re-
optimization of stream programs”. In: Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pp. 98–112.

Sakr, Sherif, Anna Liu, and Ayman G Fayoumi (2013). “The family of mapreduce
and large-scale data processing systems”. In: ACM Computing Surveys (CSUR)
46.1, pp. 1–44.

Silvestre, Pedro F et al. (2021). “Clonos: Consistent causal recovery for highly-available
streaming dataflows”. In: Proceedings of the 2021 International Conference on Man-
agement of Data, pp. 1637–1650.

Tucker, Pete et al. (2008). “Nexmark–a benchmark for queries over data streams
(draft)”. In: Technical report.

Bibliography 52

Volnes, Espen, Thomas Plagemann, and Vera Goebel (2022). “To Migrate or not to
Migrate: An Analysis of Operator Migration in Distributed Stream Processing”.
In: arXiv preprint arXiv:2203.03501.

Wu, Yingjun and Kian-Lee Tan (2015). “ChronoStream: Elastic stateful stream com-
putation in the cloud”. In: 2015 IEEE 31st International Conference on Data Engi-
neering. IEEE, pp. 723–734.

Zhang, Shuhao, Juan Soto, and Volker Markl (2022). “A Survey on Transactional
Stream Processing”. In: arXiv preprint arXiv:2208.09827.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background
	Definitions and terms
	SPE Requirements
	Scalability and Elasticity
	Low Latency
	Processing Guarantees
	Fault Tolerance and Reliability
	State Management

	State Migration Motivation
	Online State Migration
	Definition
	Truly "online"
	Challenges

	Related Work
	Categorization
	Megaphone
	Design
	Advantages
	Disadvantages
	State Transfer Strategy

	Rhino
	Design
	Advantages
	Disadvantages
	Pre-emptive state transfers

	Meces
	Design
	Advantages
	Disadvantages

	Methodology
	Novelty
	Fault Tolerance
	Potential Limitations
	System Implementation

	Evaluation
	Baseline
	Experimental Setup
	Number of keys experiment
	State size experiment
	Record distribution experiment
	Discussion

	Conclusion
	Future Work
	Bibliography

