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Abstract

In recent developments in the field of multi-material additive manufacturing, differences in material proper-
ties are exploited to create printed shape memory structures, which are referred to as 4D-printed structures.
New printing techniques allow for the introduction of prestresses in the specimen during manufacturing, such
that the need for programming is omitted. This thesis focuses on bi-polymer 4D-printed structures, where the
transformation process is based on a heat-induced glass transition in one of the materials, which is simulated
by introducing a temperature-dependent stiffness in the material properties. The initial prestress is modeled
into the other material. Upon the decrease in stiffness, the prestress is released, causing a bending behaviour.
A methodology to find the design of 4D-printed structures is developed using a commercial software package,
where a finite element model is combined with a density-based topology optimization method to describe the
material layout. The objective of the optimization is to minimize the difference between a target displacement
and the actual displacement. The linear elastic model coupled with geometrical nonlinearity is discretized by
quadratic finite elements. This modeling approach is verified by a convergence analysis and validated by com-
paring its numerical results to analytical results of a bimorph beam model, published results, and experimental
results.

The use of topology optimization to design 4D-printed structures is explored by applying the methodology to a
variety of design problems. The approach can be expanded such that it matches the displacements of multiple
points in the material domain to multiple target displacements. Another variation is to match an entire surface
to a target function. Two-way transformation can be simulated using the modeling approach, by introducing
a second prestress in the glassy polymer. Besides bending transformation, a twisting transformation can be
obtained by changing the target displacement settings in the optimization. The number of layers can be ex-
panded, such that the range of target displacements becomes larger. This way, more complex target shapes can
be obtained, such as expanding lattices.

The prestress introduced by the printing process is dependent on many factors, which makes it difficult to
predict. Bi-layer designs are printed and tests are performed, with the goal to find the prestress value and
to further validate the modeling approach. Hereafter, the new prestress is used to generate, print and test
topology optimized designs. Numerical and experimental results are compared to evaluate the performance of
the modeling and topology optimization approach.
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Chapter 1

Thesis Introduction

1.1 Introduction

Additive manufacturing or 3D-printing is a manufacturing technique where a material is deposited layer-wise to
create three dimensional structures. The structures can be printed directly from computer-generated three di-
mensional model data. The main advantage of using 3D-printing is the ability to create very complex structures,
which would be very difficult or even impossible to create using traditional manufacturing techniques. Using
3D-printing, customized parts can be created time- and cost-efficiently with minimized material losses. Since its
invention in the 1980s, 3D-printing has evolved into a versatile and widely used method. It is used in application
fields such as bio-mechanics, prototyping, and construction (Ngo et al., 2018). With the development of new
3D-printing methods, materials, and equipment over the past few decades, new possible applications arise. One
of those newer applications is to use 3D-printing to create smart, responsive structures. This type of 3D-printing
is referred to as ‘4D-printing’: a term initiated by the research group of Skylar Tibbits in 2014 (Tibbits, 2014).
In this term, time is referred to as the fourth dimension. The initially printed structure evolves into a different
configuration over time under the influence of a certain stimulus, such as heat, water, pH or electricity. This
technique has some interesting application fields. Using 4D-printing, self-(dis)assembling, smart-behaving and
self-repairing structures can be created (Momeni et al., 2017).

By carefully engineering the topology of the initial structure, a desired deformed structure can be obtained after
4D-transformation. However, to intuitively design an initial structure such that it deforms in the desired way
is a non-trivial task. Therefore, combining 4D-printing with automated design approaches such as topology
optimization seems promising. Topology optimization is a mathematical method which can be used to find the
optimal material placement in a prescribed design domain, in order to obtain the best structural performance. It
can potentially be used as a ‘design tool’ to create 4D-printed structures. To be able to use topology optimization
in a 4D-printed structure, this structure should be modelled numerically, which is a challenge in itself. Some
progress has already been made in the field of modeling 4D-printed structures in combination with topology
optimization, and even a few experiments were done already. In the current state-of-the-art, material models
that are used to model 4D-printing polymer structures are often rather complex. In order to be able to combine
4D-printing with topology optimization, the need for a simpler material model arises to reduce computation
time and to allow for sensitivity analysis. To further reduce complexity, simpler topology optimization methods
could be worth looking into.

1.2 Research Goal

The aim of this research project can be described as:

“To explore the use of topology optimization to design 4D-printing structures”

This final research goal can be divided in several smaller tasks:

• Gathering context : Background information about topology optimization in 4D-printing must be obtained,
to get an insight in the state-of-the-art and research gaps to continue research.

• Developing and validating a 2D modeling approach: The development of the design tool should be done in
steps of increasing complexity and, consequently, computation time. Therefore, the first step in developing
is to create a model in 2D. An accurate, yet simple material model to describe the transforming behaviour
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of printed structures should be found. Convergence studies will be performed to find the ideal mesh
element size and order. After obtaining numerical results from simulations using the 2D-model, these
numerical results will be validated using data from literature and analytical results.

• Performing topology optimization in 2D : Once a the 2D-model is developed and validated, a topology
optimization method can be formulated to find the optimal initial printing structure for a given objective.

• Developing and validating a 3D modeling approach: Using the previously developed 2D-model, a more
complex 3D-model can be created. Switching from 2D to 3D will introduce challenges that lead to changes
in design choices of the model. The 3D-model will be validated using the same methods as for the 2D-
model.

• Performing topology optimization in 3D : In 3D, more complex geometries can be achieved. Topology
optimization will be performed on a variety of geometries, with different objective functions.

• Validating the optimized designs in 3D : Experimental validation can be used to validate the optimized
designs. An experiment setup must be made where printed samples can be tested to gather experimental
data.

• Drawing conclusions: Conclusions can be drawn from all the data gathered during this research. This
will lead to a discussion and recommendations for further research in this field.

Figure 1.1: Optimized design of a 4D-printed gripper (Geiss et al., 2019), (a) Numerical design, (b) Printed
design

1.3 Reader’s Guide

The structure of this thesis is aligned with the tasks outlined above. To get a better understanding of the
underlying principles of both 4D-printing and topology optimization, the fundamental ingredients of this re-
search, a broader introduction to these topics is given in Chapter 2: ‘Topic Analysis’. This chapter also gives
an overview of the current state-of-the-art. Following this, a more detailed and narrowed down research goal
can be introduced, which will be given in Section 2.5: ‘Research Scope’. The design choices made during the
development of the two-dimensional model are described in Chapter 3: ‘Development of the 2D-Model’. This
chapter includes verification and validation of the modeling approach as well. In the next chapter, Chapter 4:
‘Development of the 3D-Model’, the difficulties that are introduced by switching from 2D to 3D and the changes
that have been made to the preliminary model are discussed. The topology optimization method is introduced
in Chapter 5: ‘Topology Optimization Method’. Some variations and applications of the ‘standard’ 2D- and
3D-models are given in Chapter 6: ‘Variations and Applications’. To be able to validate the optimized 3D
designs, experimental data have to be obtained. The method to do so, along with the results will be presented
in Chapter 7: ‘Experiments’. Chapter 8: ‘Conclusion, Discussion and Future Work’ follows logically as the
final chapter in this report. For the interested reader, a detailed description of how to implement the 2D- and
3D-model in the software package that was used during the project is given in the Appendix.
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Chapter 2

Topic Analysis

2.1 4D-Printing

2.1.1 Definition of 4D-printing

4D-printing is described as 3D-printing a structure with a targeted evolution (Tibbits, 2014; Momeni et al.,
2017). Here, time is referred to as the fourth dimension. 4D-printed structures are sometimes referred to as
printed smart materials (Sossou et al., 2019), printed active structures (Maute et al., 2015; Wu et al., 2016) and
printed shape memory architectures (Ge et al., 2016). Their configuration changes upon exposure to a specific
stimulus. Many sorts of stimuli are used, depending on the properties of the printed structure. Stimuli that are
often used in practice are heat, water, electricity, magnetic field and pH.

Figure 2.1: An initially flat printed structure is transformed into a three-dimensional closed cube by
submerging it into water, causing active material in the hinges to swell (Tibbits, 2014).

2.1.2 Application fields

4D-printing is not presently used in existent products, but has many potential application fields. Four categories
of those applications are self-assembly, smart functionality, self-disassembly and self-repair (Momeni et al.,
2017). The reader should notice that the application fields in 4D-printing are overlapping those of traditional
shape memory structures, which are not necessarily made with additive manufacturing. Therefore, some of
the examples from the potential application fields originate from before the invention the term 4D-printing.
Producing shape memory structures with additive manufacturing can allow for more complexity and therefore
a wider range of applications.

• Self-assembling structures bring the advantage that the volume for storage and transport can be decreased.
Once the structure has arrived at the desired location, it can be activated by the stimulus to achieve its
final configuration. Some examples from the field are self-locking clamps (Inverardi et al., 2020), self-
folding origami structures (Tolley et al., 2014), and self-deploying solar panels for spaceflight usage (Chen
et al., 2019). Illustrations of these examples can be found in Figure 2.3 and Figure 2.4 respectively.

• 4D-printed structures are smart structures, meaning that they can act both as a sensor and an actuator
at once. This can lead to a decrease in the number of parts and electronic circuits, which take up volume
and can be prone to failure. According to Sydney Gladman et al. (2016), practical examples can especially
be found in the biomedical field, such as drug delivery systems (Fernandes and Gracias, 2012; Melocchi
et al., 2019) and 4D-printed medical stents (Bodaghi et al., 2016). In both of these examples, the change
from room- to body temperature initiates the 4D-transformation.
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Figure 2.2: Self-locking of a clamp (Inverardi et al., 2020)

Figure 2.3: Self-assembling of a three-dimensional icosahedron by folding (Tolley et al., 2014)

Figure 2.4: Self-assembling of a solar panel (Chen et al., 2019)

• Disassembly of products allows for separation of waste material and increases component reuse. 4D-printed
structures that self-disassemble when exposed to a stimulus could be beneficial to the environment. A
practical example is using snap-fit connections in shape memory polymers for self-disassembly (Willems
et al., 2007; Carrell et al., 2011). In a snap-fit connection, two flexible parts are joined by pushing the
interlocking components together. Here, one of the interlocking components deforms when exposed to
heat, causing the parts to disconnect. This process is illustrated in Figure 2.5.

Figure 2.5: Heat activated release of a snap-fit connection (Carrell et al., 2011)

• 4D-printing can potentially be used to create self-repairing structures, by exploiting the self-repairing
abilities of certain hydrogels. Some hydrogels create new molecular bonds when exposed to a stimulus such
as light, pH or electricity (Taylor and in het Panhuis, 2016). A potential application is self-healing artificial
tissue. Here, hydrogel scaffolds loaded with biological cells are 3D-printed to generate the artificial, self-
healing tissue (Miao et al., 2017).

2.1.3 Stimuli, mechanisms and materials

Many different underlying principles or mechanisms behind 4D-transformation are found in literature. The
mechanism must always be activated by a stimulus. Table 2.1 gives an overview of stimulus and mechanism
combinations that are found in literature publications, of which the first four are found to be the most popular.
Printed structures that transform due to glass transition or thermal expansion are often made out of polymers,
while structures that have absorption or osmotic pressure as a mechanism usually consist of hydrogels.
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Table 2.1: Stimuli and mechanisms found in literature

Stimulus Mechanism Literature example

Heat Glass transition Kwok et al. (2015); Bodaghi et al.
(2016); Maute et al. (2015); Ge
et al. (2016); Geiss et al. (2019)

Heat Thermal expansion Geiss and Maute (2018); Hamel
et al. (2019)

Water Absorption Sydney Gladman et al. (2016);
Tibbits (2014)

Electricity Osmotic pressure Zolfagharian et al. (2019)

Solvent Chemical reaction Ionov (2011)

Magnetic field Magnetostriction Sossou et al. (2019)

pH pH-sensitivity Ionov (2011)

Hydrogels are commonly used as a 4D-printing material. They consist of hydrophilic networks of polymer chains,
which swell due to water absorption (Ahmed, 2015). This absorption can be enhanced by applying electricity,
which increases the difference in the number of moving ions. As a result, the difference in osmotic pressure
increases and thus the water absorption is stimulated (Zolfagharian et al., 2019). Although widely used, there
are a few downsides to using hydrogels for creating 4D-printed structures. Firstly, a hydrogel structure is not
very stiff, which makes it suitable for a limited number of applications. Secondly, the response of the osmotic
pressure mechanism to the stimulus is slow compared to other mechanisms. And finally, the final transformed
state of the structure is not stable: once the stimulus is removed, the structure will return to its initial state
(Ding et al., 2017). In hydrogel 4D-printing, the working principle relies on anisotropy in the material. Usually,
anisotropy in 3D-printing is seen as a disadvantage, because it can cause unwanted irregularities in material
properties in certain directions (Liu et al., 2018). However, in 4D-printing it can be used as an advantage. For
example in the study by Sydney Gladman et al. (2016), where a hydrogel material with cellulose fibrils is used.
By aligning the fibrils in a certain way during printing, the hydrogel swells anisotropically. Another example of
hydrogel 4D-printing is the study by Zolfagharian et al. (2019), where swelling is enhanced further by applying
electricity to create a soft hydrogel actuator.

According to Shin et al. (2017), most literature examples use amorphous polymers as a printing material (Kwok
et al., 2015; Maute et al., 2015; Bodaghi et al., 2016; Ge et al., 2016; Geiss et al., 2019; Bodaghi et al., 2020).
One advantage of using polymers is that they are already commonly used in 3D-printing (Ngo et al., 2018).
Secondly, amorphous polymers are non-crystalline materials and thus have a glass transition temperature which
can be used as a transformation mechanism, activated by heat as seen in Table 2.1. Once an amorphous polymer
is heated above its glass transition temperature Tg, the material experiences a transition from a stiff, solid state
to a more flexible, rubbery state. In other words, the Young’s modulus of the material decreases strongly
with temperature (Shrivastava, 2018). Since this research is focused on structural applications of 4D-printing,
amorphous polymers are a good choice to use as a printing material. These polymers are very well suited for
creating relatively stiff, fast and stable 4D-printing structures.

2.1.4 Reversibility of 4D-transformation processes

In many cases, the structure remains in the transformed configuration after 4D-transformation. This is referred
to as one-way 4D-printing: the structure cannot return to its initial configuration, unless it is reprogrammed.
However, for some applications it is desired to have a reversible transformation. This is referred to as two-
way 4D-printing. One-way and two-way shape memory effects are illustrated in Figure 2.6. Usually, the
transformed state is unstable for two-way 4D-printed objects: the structure returns to its original state when
the stimulus is removed. For those applications which need a two-way transformation, but also need the
transformed configuration to be stable (i.e. the structure remains in the transformed state after the stimulus
is removed), the reprogramming of the prestrain can be integrated in the transformation process. This can be
achieved when using two different stimuli. An example is combining a polymer structure with a hydrogel. The
polymer is stimulated by heat, while the hydrogel is activated by water. Swelling of the hydrogel programs the
prestress into the polymer structure. This allows the structure to switch between two stable configurations. A
downside to this method is that every transformation requires five steps: soaking, heating, cooling, drying and
heating again (Lee et al., 2017).
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Figure 2.6: One-way and two-way shape memory materials (Hager et al., 2015)

2.1.5 Bi-material 4D-printing with amorphous polymers

Many types of 4D-printing exist with many stimulus-mechanism combinations. As explained earlier, using the
glass transition mechanism of amorphous polymers is a popular choice in structural applications. This specific
type of 4D-printing will be discussed here. Single amorphous polymer 4D-printing methods exist (see Appendix
A.1), however they exhibit many uncertainties. When using two different materials, a bending deformation
can be achieved as shown in Figure 2.7. Bi-material 4D-printed polymer structures comprise an active and a
passive material. In most cases, one of the materials is pre-strained. The pre-strain is applied in a rubbery
polymer, which is printed on top of a glassy polymer, to create a bi-layered structure. The pre-strain can be
applied either indirectly (after printing) or directly (during printing). When the glassy polymer is heated above
its glass transition temperature, it allows for the rubbery polymer to release the pre-strain. This causes the
structure to bend from its initial configuration directly after printing (a) towards the transformed configuration
(b). Most literature sources refer to the pre-strained material as the active material, since this material initiates
the transformation. However, the reader should keep in mind that some other literature sources refer to the
pre-strained material as passive, since it does not undergo glass transition. The concept of using two polymers
can be expanded by using multiple glassy polymers with different glass transition temperatures. A multi-stage
4D-transformation can be achieved, which allows for more complicated 4D-printed structures and deployment
sequences.

Figure 2.7: Active pre-strained layer (blue) and passive glassy layer (red), in the initial configuration (a) and
the transformed configuration (b)

2.1.6 Applying the pre-strain

Methods of applying the pre-strain in the active layer of the multi-material structure can be divided into two
different types: the indirect and the direct 4D-printing method. In the indirect 4D-printing method, the
pre-stresses are applied by programming after printing. It could be argued that this makes the printed structure
nothing more than an ordinary one-way multi-material shape memory polymer. An example of a programming
scheme is given in Figure 2.8a. In the programming stage (i), the original structure is heated to a temperature
above the glass transition temperature of the glassy polymer. Both polymers are now in a rubbery state. A
load is applied to achieve a prescribed deformation. Then, the structure is cooled below the glass transition
temperature, while maintaining the deformed shape. The glassy polymer stiffens and thus after unloading,
the structure will only slightly deform compared to the previous step. A prestrain has now been applied in
the rubbery polymer in the programmed stage (ii) (Maute et al., 2015). The structure is ready to undergo its
4D-transformation by heating it again (not shown in figure).

In direct 4D-printing, no programming is required. Instead, the prestrain is directly applied in the structure
during printing. This method of 4D-printing requires a good understanding of how prestrains can be applied
during the printing process. A method to apply prestrains is to use photopolymerization by UV-light, which is
illustrated in step 1 of Figure 2.8b (Ding et al., 2017). The advantage is that the programming stage can be fully
omitted: the structure is ready for its 4D-transformation directly after printing. Heating (step 2) stimulates
the transformation. This is a one-way shape memory effect, so further heating and cooling (step 3) have no
significant effect on the structure.
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(a) Indirect 4D-printing (Maute et al., 2015) (b) Direct 4D-printing (Ding et al., 2017)

2.2 Overview of applications and demonstration devices of 4D-printing

4D-printing can be used in biomimetics, such as mimicking complex flower geometries (Sydney Gladman
et al., 2016). Figure 2.9 shows an orchid which is 4D-printed using a composite hydrogel material, containing
anisotropic fibrils. Once the originally flat structure is placed in a water bath, the geometry transforms due
to anisotropic swelling of the hydrogel. This demonstration shows how complex the geometry of a transformed
4D-printed structure can be.

Figure 2.9: 4D-printed Dendrobium Helix orchid. The scale bar indicates 5 mm (Sydney Gladman et al., 2016).

Another application of 4D-printing is a gripper, as designed by Ge et al. (2016). Figure 2.10 shows a time
lapse of a multi-material gripper grabbing an object. It is made out of multiple polymers. The polymer at
the tips of the gripper (pink) has a high stiffness to be able to safely grab an object. The joints (orange) are
made out of multiple polymers. An indirect 4D-printing method is used: the gripper is originally printed in a
closed configuration and after programming, it is in an opened configuration. During programming, a prestress
is introduced in one of the polymers. The gripper transforms towards the originally printed shape when heated
above the glass transition temperature Tg of one of the other polymers. This is an example of a one-way 4D-
transformation. To reuse the gripper, it has to be reprogrammed. A similar concept is used to create a release
system, which can potentially be used for the delivery of drugs inside the human body. The structure should
now be printed in the open configuration and be programmed into the closed configuration. By heating the
structure, an object or substance can be released.

Bodaghi et al. (2016) created a 4D-printed meta-material lattice which could potentially be used as a cardio-
vascular stent. However, there are also important stiffness and fatigue requirements for stents, and it is not
clear whether these can be reached by this design concept. The tubular lattice is composed of multiple identical
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Figure 2.10: Multi-material 4D-printed gripper grabbing an object (Ge et al., 2016)

actuators, which consist of three different types of printed polymers. The total width in x-direction of each
actuator will increase when the structure is heated above Tg, which is shown in Figures 2.11a and 2.11b. This
causes the diameter of the entire lattice to expand. Figure 2.11c shows the lattice in an expanded state. The
structure can be placed inside a catheter in its original, minimal diameter state. Once it is in the desired place,
it can be expanded. Ideally, Tg should be between room temperature and human body temperature, such that
the transformation is activated when the structure is placed inside the body.

(a) SMP actuator in minimum
deployment

(b) SMP actuator in
maximum deployment

(c) 4D-printed tubular meta-material lattice in maximum deployment
(Bodaghi et al., 2016)

Figure 2.11

Another gripping application is the smart hook by Wu et al. (2016). This hook can be used to both lift and
release a small container, as can be seen in Figure 2.13. It consists of two printed arms, each having two different
glassy polymer fibers and a polymer matrix. This allows for a multi-stage 4D-transformation. The material
configuration in one of the arms is shown in Figure 2.12. The glass transition temperature Tg of the low Tg
polymer fiber ranges from ∼20 to ∼55 ◦C. The high Tg polymer fiber has a Tg of ∼57 ◦C and the matrix polymer
has a Tg of 2 ◦C. Before deploying, both arms of the hook are heated above the glass transition temperature of
both of the polymer fibers (70◦C). The arms are straightened by an external load. The structure is then cooled
to 0 ◦C while holding the straight shape. All polymers are now below their Tg, which means the straight shape
will hold once the structure is released from the load. The structure is now programmed. Putting the hook in a
water bath of 30 ◦C causes the hook to bend, because the low Tg polymer is heated above its Tg. When putting
it in a water bath of 70 ◦C afterwards, the pre-stresses in both polymer fibers are released causing the arm to
straighten again.

2.3 Topology Optimization in 4D-Printing

2.3.1 Topology Optimization

In order to exploit the possibilities of 4D-printing, it is key to have a systematic design approach. Topology
optimization is a numerical design approach that finds the optimal lay-out of a structure within a specified
domain, as visualized in Figure 2.14 (Bendsoe and Sigmund, 2003). The optimization problem consists of an
objective function that should either be maximized or minimized and which is possibly subjected to constraints.
The method of topology optimization has already been used in a few recent 4D-printing and 4D-printing related
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Figure 2.12: Configuration of the three materials: high Tg polymer (magenta), low Tg polymer (green) and
polymer matrix (grey)

Figure 2.13: 4D-printed smart hook: (a-e) Bending deformation in a water bath of 30◦C (f-h) Releasing
deformation in a water bath of 70◦C (Wu et al., 2016)

studies. Three types of methods are frequently used in combination with 4D-printing: level-set methods, genetic
algorithm-based (GA) methods and density-based methods. Although GA-based methods have been used in
studies by Hamel et al. (2019) and Sossou et al. (2019), they are relatively computationally expensive (see also
Appendix A.2). Therefore, only level-set and density-based methods will be reviewed in this chapter.

Figure 2.14: Topology optimization (left: initial problem, right: optimal solution) (Bendsoe and Sigmund,
2003)

2.3.2 Level-Set methods

Figure 2.15: Multi-material
level-set method, a) Single

material, b) Multimaterial (Wang
et al., 2015)

Level-set methods define the interface of different materials with iso-
contours of a level-set function ϕ (Van Dijk et al., 2013). This level-set
function is updated in each optimization step. The simplest case of a
level-set method involves a material and a void space. The entire domain
is defined as D. Within that domain, a material domain is defined as Ω.
The interface between material and void is Γ:

ϕ(X) > c⇔X ∈ Ω (material),
ϕ(X) = c⇔X ∈ Γ (interface),
ϕ(X) < c⇔X ∈ D \ (Ω ∪ Γ) (void),

(2.1)

where c is a constant and X is a point in the design domain D. Figure
2.15 (a) gives a visual representation, where the material domain Ω is
indicated in blue and the void domain D \ (Ω ∪ Γ) is indicated in grey.
4D-printing is often done with more than one material. Therefore it is
useful to look at a multi-material adaptation of the description of the
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domains in Equation 2.1. The research by Wang et al. (2015) uses the
following domains for multi-material topology optimization:

φi(X) > c⇔X ∈ Ωi \ Γi (material),
φi(X) = c⇔X ∈ Γi (interface),
φi(X) < c⇔X ∈ Di \ (Ωi ∪ Γi) (void),

(2.2)

where i = 1, ...,m and m is the number of materials. A downside of the level-set method with multiple materials
is that the result is strongly dependent on the initial design, because the emergence of new material volume
inclusions within another material volume is not promoted. In the study by Maute et al. (2015), which uses a
bi-material level-set method for printing active structures, this problem is solved by using an initial design with
a high density of inclusions. This method might also work for more than two materials and a void.

2.3.3 Density-based methods

Figure 2.16: The effect of penalization
factor p in Equation 2.4

Density-based methods are widely used for topology optimiza-
tion. They use a density field to describe the material distri-
bution in the domain, and a penalization to steer the density
towards 0 (void) or 1 (solid material). Intermediate density val-
ues are unwanted and can be difficult to realize in practice. These
intermediate values are often referred to as grey areas. The rela-
tion between the penalized Young’s modulus E(θp) and penalized
material volume factor of the material θp, for problems with one
material and one void, is given by the law (Sigmund and Maute,
2013):

E(θp) = E0θp, (2.3)

where E0 is the Young’s modulus of the material. The definition
of θp depends on whether the Simplified Isotropic Material with
Penalization (SIMP) density method or the Rational Approxi-
mation of Material Properties (RAMP) density method is used.
In the SIMP method, which was introduced by Bendsøe (1989),
the penalized material volume is given by:

θp = θmin + (1− θmin)θp, (2.4)

where p ≥ 1 the penalization factor, which makes intermediate density values provide less stiffness compared to
what they cost in weight. Increasing p leads to a decrease of grey area in the topology. Usually, the penalization
factor is chosen as p = 3. A visualization of the effect of p can be found in Figure 2.16. The θmin term (where
θmin > 0) is introduced to make sure the penalized Young’s modulus E(θp) is never equal to zero. This is
done for numerical reasons. In the RAMP method, which was introduced by Stolpe and Svanberg (2001), the
penalized material volume is:

θp = θmin +
θ(1− θmin)

1 + q(1− θ)
, (2.5)

where q > 0 is a penalization parameter with an effect that is analogous to that of p in the SIMP method.
In the field of topology optimization in 4D-printing, no cases of RAMP topology optimization were found.
However, the SIMP topology optimization method is used for 4D-printing by Fuchi et al. (2015) to design
folding liquid crystal elastomers and by Zolfagharian et al. (2019) to design a soft hydrogel actuator. It has
also been combined with the level-set method in the research by Geiss and Maute (2018) and Geiss et al. (2019).

2.3.4 Filtering and projection

If there is no constraint on the design freedom, the optimization result could become very complex, with features
so small they cannot be resolved by the mesh. Therefore, a constraint should be imposed on the feature size. An
implicit constraint on the minimum length scale can be imposed using a Helmholz filter (Lazarov and Sigmund,
2011):

θf = R2
min∇2θf + θc, (2.6)

where θf is the filtered material volume factor, Rmin is the minimum length scale, and θc is a domain control
variable, where 0 ≤ θc ≤ 1. Usually, Rmin is set to the mesh edge size h. It is recommended to change Rmin
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to a fixed value, to get mesh-independent results (COMSOL, 2018). The effect of the filter is illustrated in
Figure 2.17, where Figure 2.17a shows the material volume factor without a filter θc and Figure 2.17b shows
the filtered material volume factor θf .

(a) θc (b) θf (c) θ

Figure 2.17: The effect of a filter and projection

Essentially, the filter blurs out the result, introducing more grey. To reduce the grey region, a smooth Heaviside
projection is used (Wang et al., 2011):

θ =
tanhβ(θf − θβ) + tanhβθβ
tanhβ(1− θβ) + tanhβθβ

, (2.7)

where β is the projection slope and θβ is the projection point. The effect of both of these parameters can be
observed in Figures 2.18a and 2.18b respectively. The effect of the projection can be observed in Figure 2.17c.
The resulting topology is a well-defined black and white design. The use of a projection can decrease grey area,
but it also slows the convergence of the optimizer down.

(a) Varying projection slopes β (b) Varying projection point θβ

Figure 2.18: Plot of the material volume factor θ after projection vs. the filtered material volume factor θf

2.3.5 Objective function

In 4D-printing, the geometry of the transformed structure is usually known. The initial geometry or material
layout to achieve this transformed geometry is what remains to be found by the use of topology optimization.
A suitable objective function should be formulated to do so. In literature, the target shape is approached by
matching a desired displacement to the actual displacement. This is sometimes referred to as displacement
matching (Geiss et al., 2019). The goal of the optimization is to minimize the difference between nodal dis-
placement and target displacement. In the works of Maute et al. (2015) and Geiss et al. (2019), this has lead
to the following contribution to the objective function:

Ftarget =

∫
Γtarget

(ui − utarget,i)2dA, (2.8)

where Γtarget is the target set, u is the nodal displacement and utarget is the target displacement. The studies
of Hamel et al. (2019) and Sossou et al. (2019), which both use GA for optimization, use a fitness function very
similar to Equation 2.8:

Ftarget =
1

N

N∑
i=1

√
(ui − utarget,i)2 (2.9)
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where N is the number of nodes. The study of Fuchi et al. (2015), which uses the SIMP method for optimization,
uses the following objective function:

Ftarget =
1

N
(u− utarget)

TW (u− utarget), (2.10)

where W is a matrix containing the degrees of freedom that are included in the optimization process.

2.4 State-of-the-Art in topology optimization for 4D-printing

In this section, some examples from research field of topology optimization in 4D-printing are shown. Different
stimuli, mechanisms and topology optimization methods will be discussed. Most examples consist of numerical
simulations only, however some also show experimental data. These experiments merely show a qualitative com-
parison between the numerically determined design and the activated printed structure. Not many quantitative
results were yet found in literature.

2.4.1 Parabolic target shape simulation

In the research by Hamel et al. (2019), a topology optimization is performed on the domain area of a beam to
achieve a parabolic target shape as seen in Figure 2.19a. A genetic algorithm is used to match the displacement
to a parabola shape. The optimizer is able to choose between two different materials. One of these materials is
referred to as the active material, by which is meant that this material will respond to a certain stimulus. The
stimulus here is heat, however the mechanism behind the transforming behaviour of the active material is not
stated in the paper. The reader should notice that this nomenclature of active and passive is different from what
was explained in Section 2.1.5: ‘Multi-material 4D-printing’, where the material responding to the stimulus is
referred to as passive. Figure 2.19b shows that the optimizer was able to find a topology that approaches the
target deformation very well.

(a) Parabolic deformation of the optimized beam (b) Topology optimization performance

Figure 2.19: Results of the parabolic bending simulation

2.4.2 Adaptive wing simulation

A similar approach as described in the previous section is used in the paper by Sossou et al. (2019). Here, a
genetic algorithm-based topology optimization is used to design an active shape-changing wing. The wing should
to be able to deform into a twisted formation, to optimize the lift on the plane. No voids can be introduced
by the optimization and three different materials are used: a silicone (blue) and two magnetostrictive materials
(red and orange). Magnetostrictive materials expand or shrink when exposed to a magnetic field, depending on
the nature of the magnetic field. In a multi-layer orientation, this material property can be exploited to achieve
bending. The silicon functions merely as a matrix and does not respond to the magnetic field. A multi-material
genetic algorithm method is used to find the optimal topology for a displacement matching objective function.
This objective function is formulated such that the target twisting angle of the wing is 15◦. An image of the wing
in maximum deformation can be found in Figure 2.20. The twisting angle that is achieved in this simulation
is 12◦, which is less than the desired twisting angle. In the paper, it is suggested that the performance of the
optimization can be improved by for example optimizing the magnetic field or allowing voids in the design
domain.

2.4.3 Active propeller simulation

The study of Geiss and Maute (2018) shows the optimized design of a 4D-printed active propeller. The topology
optimization method is a combination of the level-set and the SIMP method. The optimization is done with

11



a void phase and two material phases: an active and a passive material. The active material expands when
heated, causing the structure to deform. The objective of the topology optimization is to match the twisting of
the tips of the propeller arms to a desired amount. A visualisation of the optimized propeller topology is shown
in Figure 2.21. A braided pattern of active material (blue) can be identified on the passive material (red). This
pattern causes the twisting deformation. The target twisting angle of 45◦could not be fully achieved, however
it was quite close. A side note from the authors is that the twisting angle is probably overestimated in the
simulation, since a linear elastic material model is used. They recommend a nonlinear elastic material model
to obtain more realistic simulations.

Figure 2.20: Topology optimized design of an adaptive wing
(Sossou et al., 2019)

Figure 2.21: Topology optimized design of
an active propeller (Geiss and Maute, 2018)

2.4.4 Self-folding origami simulation and experiment

Topology optimization is applied to self-folding applications in the paper by Fuchi et al. (2015). Although the
structure is not created using additive manufacturing, there are still similarities with our topic of research. The
folding deformation is induced by hinges made of an active material that bends when heated. The mechanism
behind this bending behaviour is not stated in the paper. A SIMP topology optimization is used to find the
optimal placement of the active material, to achieve the sharpest folding edge possible. The objective function
is formulated as such that the shape is matched with that of a perfect hinge. This way, an optimized hinge is
created, as can be seen in Figure 2.22. The design of this hinge was adapted to create a multi-hinge self-folding
origami box as shown in Figure 2.23. At a temperature of 100 ◦C the box is fully closed, in a shape very close to
the target shape. However, the structure is multi-stable and easily deformed into another mode shape different
from a closed box. Since the energy levels of the mode shapes lie close to each other, small errors in fabricating
or applying of the stimulus could cause the structure to transform into the wrong mode shape. In the paper, it
is suggested to incorporate the multi-stability effects in the model, to improve the simulation.

Figure 2.22: Designs of a folding hinge (a)
intuitive design, (b) topology optimized

design (Fuchi et al., 2015)

Figure 2.23: Experimental results of a topology optimized
self-folding origami box (Fuchi et al., 2015)

2.4.5 Soft actuator experiment

In the research by Zolfagharian et al. (2019), a SIMP topology optimization method is used to find the optimal
topology of a soft hydrogel actuator. The transformation is activated by an electrical stimulus, which increases
the osmotic pressure in the hydrogel. This causes the hydrogel to swell. Figure 2.24a compares a uniform
lattice structure (I) to the topology optimized actuator (II). Figure 2.24b shows the test setup that was used
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for experiments with the optimized actuator. Here, the deflection with respect to a reference (red dotted line)
is shown (blue dotted line). Although no numerical results are given in the paper, it is clear that the optimized
actuator outperforms the uniform lattice actuator.

(a) I) Uniform lattice structure, II)
Topology optimized structure

(b) Experimental result of the topology optimized actuator
(blue dotted line: deflection)

Figure 2.24: Soft hydrogel actuator (Zolfagharian et al., 2019)

2.4.6 Shape shifting lattice

Multi-material 4D-printing is used to create shape shifting lattices in the study by Boley et al. (2019). All four
materials used in the printing process consist of an elastomer matrix, which is filled with different amounts of
glass fibers and silica to tune the material properties. The main working principle of this shape shifting is the
difference in thermal expansion between the materials, which leads to a bending transformation when heated.
Besides that, the material swells when immersed into a solvent. This property is exploited to achieve multiple
stable configurations. The printed lattice consists of ribs connecting a grid of nodes, of which the cross section
exhibits four material domains to control both in-plane and out-of-plane curvature. Figure 2.25 shows that
various degrees of in-plane curvature can be achieved by configuring the materials in the four domains. Another
design variable is the initial curvature of the ribs. The material distribution and the initial curvature are chosen
to match a target shape. Target shapes of a hemispherical patch antenna and a face are used to demonstrate
the performance of the printed lattice.

(a) Shape shifting lattice (b) Various degrees of in-plane curvature

Figure 2.25: Material configurations in a 4D-printed shape shifting lattice

2.4.7 Composite beam experiment

The study of Maute et al. (2015) shows several experiments using a simple composite beam. Experiments with
different target displacements were done, such as parabolic bending. They can be found in Table 2.2, along
with their target displacement functions. Figure 2.26 shows the result of level-set topology optimization for a
parabolic shape. The gray area shows the layout of the active material, which is a printed active composite, while
the passive material is transparent. Both designs are printed and tested. The maximum measured deflection is
approximately 18% larger than in the numerically determined deflection, which is a rather large difference. The
results of other target shapes have an even larger difference. This difference can be attributed to errors in the
model and errors in the experimental method, of which the latter will not be discussed here because the paper
does not provide details. The model that is used assumes infinitesimal strains and a linear material behaviour.
It is expected that, in order to get more accurate results, a model should be used that accounts for large strains
and large displacements.

2.4.8 Complex composite structure experiments

In the study by Geiss et al. (2019), several experiments with composite designs of a higher level of complexity
are shown. Here, the difference with the numerically determined design, which is generated using the level-set
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Figure 2.26: a) Printed composite beam structure before transformation b) Printed composite beam structure
after transformation Maute et al. (2015)

Table 2.2: Composite beam experiments with results

Target shape Target displacement function* Difference with theoretical design**

Parabolic bending utarget = −A( 2x1

L )2 18%

Cosine wave utarget = −A(1− cos πx1

L ) 75%

Twisted parabolic bending utarget = −2A(x1

L )2 sin πx2

L 30%

* 0 ≤ x ≤ L
**Difference between the maximum displacement of the experiment and the theoretical design

method, is only evaluated visually. To achieve more complex shapes, target displacements are imposed on
points of a target set. A hyperelastic material model is used in the simulations. The target sets and target
displacements can be found in Table 2.3. One example is a twisted figure-eight, which is initially printed in
the shape of a flat, symmetric cross as shown in Figure 2.27a. The symmetry is exploited, such that only a
quarter of the design domain has to be analyzed. Two target points X1 and X2 are located on the tips of
two of the arms. The target displacements utarget1 and utarget2 are chosen as such that the structure becomes
a figure-eight after transformation. The numerically determined design (Figure 2.27b) shows a slight overlap
of the arms after transformation. This is because the model does not take self-penetration into account. In
the printed design (Figure 2.27c), this issue is avoided by slightly changing the X3 target. Besides that, the
4D-printed structure looks very similar to the numerically determined design. The other designs, shown in
Figures 2.28, 2.29 and 2.30, show results of similar quality.

Table 2.3: Complex composite structure experiments

Target shape Target set (mm) Target displacement functions (mm)

Twisted figure-eight X1 = [80.0, 0.0, 0.0] utarget1 = [−80.0, 0.0, 50.0]

X2 = [0.0, 80.0, 0.0] utarget2 = [0.0,−80.0,−50.0]

Cylindrical gripper X1 = [0.0 ≤ X1 ≤ 30.0, 75.0 ≤ X2 ≤ 80.0,−0.5] utarget1,z = utarget2,z = −45.0

X1 = [0.75 ≤ X1 ≤ 80.0, 0.0 ≤ X2 ≤ 30.0,−0.5] Cylinder aligned with X3, Rtarget = 50.0

Four-legged gripper X1 = [0.0, 80.0, 0.0] utarget1 = [−80.0, 0.0,−50.0]

X2 = [80.0, 0.0, 0.0] utarget2 = [0.0,−80.0,−50.0]

Self-elevating plane X1 = [105.0 ≤ X1 ≤ 120, 0.0 ≤ X2 ≤ 5.0, 0.0] utarget1,z = 0.0

X2 = [0.0 ≤ X1 ≤ 5.0, 105.0 ≤ X2 ≤ 120, 0.0] utarget2,z = 0.0

X3 = [0.0 ≤ X1 ≤ 15.0, 0.0 ≤ X2 ≤ 15, 0.0] utarget3 = [0.0, 0.0, 40.0]

2.5 Research Scope

Now that a context on the topics of this research project is provided, a more detailed and narrowed down version
of the research goal from Section 1.2: ‘Research Goal’ will be given. A variety of methods for both 4D-printing
and topology optimization was discussed. This section will explain which of these methods will be the in scope
of this research.

• The two most common 4D-printing materials are hydrogels and polymers, of which polymers are very
well suited for structural applications, while hydrogels are less so due to their low stiffness.

• Most polymer 4D-printing studies focus on the use of multiple materials (Momeni et al., 2017). Even
though single polymer 4D-printing is possible, it is not often mentioned in literature. Both of these
methods have many uncertainties and are therefore less reliable compared to multi-material methods.
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Figure 2.27: Twisted figure-eight, a) Numerical model before transformation, b) Numerical model after
transformation, c) Printed structure after transformation

Figure 2.28: a) Numerically determined design of the cylindrical gripper b) 4D-printed cylindrical gripper
after transformation

• A convenient stimulus for activating polymer 4D-structures is heat. Heat can easily be applied, for
example by putting the structure into a hot water bath.

• Glass transition is chosen as a transforming mechanism, to achieve a one-way (non-reversible) 4D-
transformation process as explained in Section 2.1.4: ‘Reversibility of 4D-transformation processes’. This
means the transformed state of the structure is stable. Depending on the application, this might be
an advantage. The product of this research project will potentially be suitable for self-assembling and
disassembling applications.

• The numerical model that is going to be used to do the finite element analysis is going to be created
using COMSOL Multiphysics software. As the name indicates, this software program is capable of
combining multiple physics fields. This may be convenient, since both structural mechanics and heat are
involved in the research problem. Furthermore, COMSOL Multiphysics has a built-in topology optimiza-
tion module. And lastly, this particular software program is chosen because of the author’s familiarity
with the program and the possibility to follow a course to learn to work with it.

• Density-based topology optimization methods as discussed in Section 2.3.3: ‘Density-based methods’ are
widely used. The SIMP method is the simplest of the three topology optimization methods that were
discussed. It can easily be adapted to a multi-material method as well. Since the goal of this research
project is to create a design tool that is as simple as possible, using the SIMP topology optimization
method is an appropriate choice. Another advantage is that the SIMP method is already integrated in
the finite element software package that is going to be used during the project.

• Similar to what is seen literature, as described in Section 2.8: ‘Objective function’, an objective function
that uses displacement matching is going to be used as a basis for the topology optimization. It might
be necessary to later add other terms to the objective function.

• The study by Geiss et al. (2019) is close to what will be researched during this project: it also uses
topology optimization in amorphous polymer 4D-printed structures that have glass transition as a mech-
anism. It is also the most advanced literature source in terms of numerical and experimental data results
existing close to our research scope. These results will be taken as the starting point of this thesis and
from there, the goal is to create even more complex 4D-printed structures.

15



Figure 2.29: a) Numerically determined design of the four-legged gripper b) 4D-printed four-legged gripper
after transformation

Figure 2.30: a) Numerically determined design of the self-elevating plane b) 4D-printed self-elevating plane
after transformation

Summarizing, already quite some research has been done on the specific kind of 4D-printing described here.
However, there is still enough challenge in this area of research. More complex structures can be investigated,
such as structures with a double active layer and structures with multiple glass transitions. More complex
objectives can be assigned to the topology optimization, such as the objective to achieve twisted bending. Dif-
ferent approaches in achieving a desired target configuration can be tried, for example to match the transformed
configuration to a shape function instead of only matching a set of target points. Experiments will be performed
to validate the designs and to collect numerical data. The transformation process as a function of temperature
can be further examined, instead of only looking at the final results.

16



Chapter 3

Development of the 2D-Model

This section will explain the methodology of developing a 2D modeling approach that describes deformation of
4D-printed structures. The modeled structures consist of an active, prestrained polymer and a passive, glassy
polymer. The Young’s modulus of the glassy polymer decreases when material is heated to a temperature above
the glass transition temperature Tg. Because of the decrease in stiffness, the prestress in the active layer causes
a bending deformation. The model is used to analyze a given geometry that is heated step-wise from an initial
temperature Ti to a final temperature Tf , causing the deformation. Throughout the report, this model will be
referred to as the ‘default’ 2D model. In later chapters, variations of the parameters in this default model will
be discussed as well.

3.1 Model definition

When researching topology optimization in 4D-printing, it is interesting to study many different geometries to
explore the possibilities. To begin with, the simplest version of a 4D-printed structure will be considered: a
bi-layered beam with an active, prestrained top layer and a passive bottom layer. The dimensions of this default
geometry can be found in Table 3.1. The symmetry of the geometry can be exploited such that only half of
it has to be modeled. This will speed up the computation time, because there are less degrees of freedom in
the simulation. The symmetry axis is located at x = 0.04 m. A visualisation of half of the domain is given in
Figure 3.2. The x, y-coordinate convention in this figure will be used throughout this chapter.

Table 3.1: Dimensions of the 2D geometry

Parameter Symbol Value (mm)

Height of passive layer h1 0.5

Height of active layer h2 0.5

Length L 80
Figure 3.1: 2D mesh (zoomed in)

Figure 3.2: 2D geometry with active layer (blue) and passive layer (red)

The geometry that is described here is actually a 2D representation of the cross-section of a 3D structure, with
a depth of d = 10 mm in z-direction (perpendicular to the x, y-plane). That means an assumption needs to
be made about the out-of-plane deformation of the cross-section. In a plane stress assumption, the structure
can expand or shrink in the out-of-plane direction. This is a suitable assumption for slender structures that
have a very small depth compared to their length. In a plane strain assumption, there is no deformation in
the out-of-plane direction. This assumption is suited for structures with a larger depth, such as the geometry
that is described here. Therefore, the plane strain assumption will be used. All edges of the geometry are free
except for the rightmost edge, which is also the symmetry axis (indicated in green in Figure 3.2). One point
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on that edge has a fixed boundary condition, which is shown in Figure 3.3a. The rest of this edge has a roller
boundary that restrains movement in the x-direction, which is visualized in Figure 3.3b. A mapped mesh with
quadrangular elements with quadratic shape functions will be used. The element size is equal to the layer height
h1 = h2. An image of the mesh can be found in Figure 3.1.

(a) Fixed boundary condition (b) Roller boundary condition

Figure 3.3: Boundary Conditions

Two different materials are going to be used during printing. Tango+ is used for the active parts of the structure
and VeroClear is used for the passive parts of the structure. The relevant material properties of these materials
can be found in Table 3.2. The Young’s modulus E of VeroClear is highly dependent on temperature. In the
work of Akbari et al. (2018), sample tests were done to find the relation between E and T . Results of these
tests can be found in Figure 3.5.

Table 3.2: Material properties of Tango+ and VeroClear

Property Tango+ VeroClear

Young’s modulus 0.6 MPa see Figure 3.5

Poisson’s ratio 0.4 0.4

Mass density 1.14-1.15 g/cm3 1.18-1.19 g/cm3

Glass transition temperature -10 ◦C 58 ◦C

3.2 Physical modeling

The mechanism behind the deformation of the bi-layered structure can be simulated in different ways. Two
different methods will be discussed here: the thermal expansion model and the glass transition model. The
effect of using glass transition to achieve bending of a partly prestressed beam is very similar to the effect that
is seen in thermally actuated bimorph actuators. In this type of actuator, the difference in thermal expansion
of two materials is exploited to create a difference in thermal strain, causing the structure to bend. The field
of bimorph actuators is well-established and the thermal expansion effect is very easy to model in the software.
Since the effect of a prestress in the active material combined with glass transition in the passive material is
very similar, it might be convenient to use a thermal expansion model to simulate the effect. This method was
already seen in literature, for example in the papers of Hamel et al. (2019) and Geiss et al. (2019). In the paper
by Geiss et al. (2019), a coefficient of thermal expansion (CTE) of 0.05 1/K is used for the Tango+ material
and a CTE of 0.00 1/K is used for the VeroClear material.

Figure 3.4: Graph of standardized E-T relation
(Mahieux and Reifsnider, 2001)

Another way to simulate the deforming effect is to stay
closer to what is truly happening during the transfor-
mation. In this method, the glass transition curve of the
VeroClear material should be approximated. The active
Tango+ layer will be given an initial strain of ε = 0.03
in x-direction, just as it would have after printing (Ding
et al., 2017). An advantage of using this method, is
that the intermediate deformation results as a function
of temperature are more accurate. Therefore, this type
of simulation does not only give an insight in the final
deformation of the structure: it is also able to give an
insight in intermediate deformations of the transforma-
tion process.

In a paper by Mahieux and Reifsnider (2001), a standardized equation for approximating the Young’s modulus-
temperature curve of amorphous polymers is introduced. This equation is plotted in Figure 3.4. This figure
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shows three types of transitions: the beta transition (region 1), glass transition (region 2) and melting transition
(region 3). The beta transition and melting transition occur outside the range of temperatures that are of
interest. Therefore, a simplified version of the standardized equation can be used:

E(T ) = (Er − Eg) exp

(
−
(
T

T1

)m1
)

+ Eg exp

(
−
(
T

T2

)m2
)
, (3.1)

where Er represents the Young’s modulus at the beginning of the rubbery plateau and Eg is the Young’s
modulus at the beginning of the glassy plateau. T1 and T2 are the temperatures at the beginning of the glass
transition and melting transition. Note that these temperatures are not necessarily equal to the glass transition
temperature and the melting temperature, as those are usually the temperatures in the middle of the transition.
mi are the Weibull moduli, which correspond to the statistics of bond breakage. The parameters in the equation
cannot be found in literature, so they have to be found by fitting the equation to data provided in the publication
of Akbari et al. (2018). The fitted curve can be seen in Figure 3.5. The parameters that are used to create the
fitted curve can be found in Table 4.1.

Figure 3.5: Data from the paper by Akbari et al. (2018) fitted to
Equation 3.1

Table 3.3: Parameters used for fitting
Equation 3.1 to the test result data

Parameter Value

Er 16 GPa

Eg 8 MPa

T1 270 K

T2 1000 K

m1 10

m2 10

The transformation will be activated by heating the structure from initial temperature Ti to final tempera-
ture Tf . During experiments, the samples will be heated by putting them in a water tank and increasing the
temperature of the water. The goal is to realistically model this process and therefore, the possible testing
temperatures in the simulation are limited between the melting and boiling temperatures of water (273 and
373 K). For convenience, the initial temperature will be equal to room temperature (393 K). In Figure 3.5, it
can be observed that the Young’s modulus of the VeroClear material does not change for temperatures between
353 K and 373 K. This means the sample will not deform anymore when increasing the temperature above
353 K. In the experiments, temperatures close to the boiling temperature of the water should be avoided for
safety reasons. A final temperature of 353 K will be used in the experiments. However in the simulations, the
temperature is easily increased slightly further without safety risks. Therefore, the final temperature in the
simulations will be set to 373 K, to be able to identify possible further deformation due to side effects. The
temperature will be increased with steps of 1 K in the simulations.

Since large deformations occur in the simulations, it is necessary to include geometrical nonlinearities. This
means the strains in the material are represented by the Green-Lagrange strain tensor:

Eij =
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

+
∂Uk
∂Xj

∂Uk
∂Xi

)
=

1

2
(F TF − I) (3.2)

where U are the displacements andX are the coordinates in the material (Lagrangian) field. F is the deformation
gradient tensor and I is the identity tensor. The stresses are represented by the Second Piola-Kirchhoff tensor:

S = JF−1σF−T , (3.3)

where J is the determinant of the deformation gradient tensor F and σ is the Cauchy stress. Figures 3.6
demonstrates the difference between simulation results without and with geometrical nonlinearities included.
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Both figures show the fully transformed configuration at 373 K. Only half of the geometry is shown, because
of symmetry. The figures show substantial differences. It can be concluded that the displacement is slightly
overestimated when using a geometrically linear approximation. The transformed shapes are very different, be-
cause the displacement in x-direction is zero in the geometrically linear result. This becomes more problematic
as the curvature increases. Therefore, geometrical nonlinearities must be included in the model at all times.

Figure 3.6: Simulated deformation without geometrical nonlinearities included

In the research by Geiss et al. (2019), a hyperelastic Saint Venant-Kirchhoff material model is used. Since this
paper can be seen as the starting point of this research, it may seem logical to adopt this material model. The
hyperelastic model is especially suitable for large deformations and small strains, which applies to the type of
simulations that will be done in this research. However, in terms of computation time, it is more beneficial to
use a linear elastic material model. If the strains in the structure are sufficiently small, it is safe to use a linear
elastic material model. To find out which of the two material models should be used, a simulation should be
done with both of them. However, it should be noted that in the COMSOL software, it is not possible to define
an initial strain in a hyperelastic material. To still be able to compare the hyperelastic to the linear elastic
material model, an external strain of 0.03 is imposed on the active layers. A comparison of displacement and
curvature using both material models are shown in Figure 3.7. The linear elastic and hyperelastic data show
almost no difference. Therefore, it can be concluded that it is safe to use a linear elastic material model.

(a) Vertical tip displacement-temperature plot for a linear
and a hyperelastic material model

(b) Curvature-temperature plot for a linear and a
hyperelastic material model

Figure 3.7: Comparison of curvature and displacement of a linear elastic and a hyperelastic model

When using a linear material model, the stress tensor σ is related to the elastic strain tensor εel by Hooke’s
law:

σ = σad +C : εel, (3.4)

where σad represents extra added stresses, such as initial stress or visco-elastic stress. C is the elasticity tensor,
which is a fourth order tensor defined by the Young’s modulus and the Poisson’s ratio if the material is isotropic.
The elastic strain tensor can also be expressed as εel = ε−εinel. Since a geometrically nonlinear model is used,
it is convenient to express Equation 3.4 in terms of the Second Piola-Kirchhof tensor S and the Green-Lagrange
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strain tensor E:
S = Sad + JF−1

inel(C : E)F−T
inel, (3.5)

where Sad represents extra stresses and F inel = FF−1
el is the inelastic deformation gradient tensor (COMSOL,

2008).

When choosing a study type, a decision has to be made whether time-dependent effects in the transformation
can be neglected or not. Time-dependent effects can originate from inertial forces caused by fast changes in
the loading parameter, which is temperature in our case, and visco-elasticity. It is assumed that inertial forces
can be ignored, since the temperature rate can easily be controlled to be sufficiently low. If visco-elastic effects
cannot be neglected, a linear visco-elastic material model should be used, meaning that the stress-strain relation
becomes a function of time. When using a time-dependent study, computation times in the simulation will be
very high. Especially when moving forward to 3D, this could become problematic.

Figure 3.8: Temperature-curvature plot for
continuous and discrete heating of a composite

beam sample (Ding et al., 2017)

In the study of Ding et al. (2017), the time-dependent ef-
fect in 4D transformation of printed samples is researched
by doing experiments. Here, beam curvature data was
gathered using both continuous and discrete heating.
Figure 3.8 shows a curvature plot of two identical com-
posite beam sample transformations, both obtained in
different ways. For one of the samples, the water tem-
perature is gradually increased (continuous heating). For
the other sample, the water is heated in time steps of 20
seconds (discrete heating). At the end of each time step,
the curvature is measured. The results of both methods
are very similar, which implies that there is no need to
include time-dependent effects. Therefore, a stationary
study type is chosen to do the simulations.

3.3 Convergence analysis

Figure 3.9: Temperature-vertical displacement plot for
different element sizes

To check whether the mesh size is small enough to
generate accurate results, a mesh size convergence
analysis is done. The simulation will be repeated for
different mesh sizes, while the other parameters are
kept constant. In all cases, quadrangular elements
are used with bilinear shape functions. The default
geometry is used. Table 3.4 shows results of the mesh
size convergence analysis. In the bottom row, the
average relative deviations (RD) with respect to the
finest mesh (0.0125 x 0.0125 mm) results are shown.
Figure 3.9 shows a plot of the temperature and the
vertical displacement for different mesh sizes. From
these results can be concluded that having only one
element per layer in y-direction gives quite a large rel-
ative deviation. Halving the mesh size already leads
to a substantial improvement. It is safe to say that
the mesh size of 0.05 x 0.05 mm used in the initial
study is small enough, because the relative deviation
is only 0.66%.

A similar analysis can be done for the element order. In this analysis, the mesh size is 0.5 x 0.5 mm, which
is equal to the layer height h. Table 3.5 shows results of the element order convergence analysis. Figure 3.10
shows a plot of the temperature and the vertical displacement for different element orders. From elements of
order quadratic and up, no significant improvement is found because the relative deviation is already very small.
Therefore, changing from linear elements to quadratic elements is worth considering. The substantial decrease
of relative deviation that is introduced by increasing the element order can be explained. When using quadratic
elements, the displacement is represented by a quadratic function. Its derivative is a linear function and thus
the strain field in the element becomes linear. This is the case for pure bending problems, such as the problem
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Table 3.4: Vertical displacements (mm) of the element size convergence analysis

T (K) Element size

0.5 mm 0.25 mm 0.125 mm 0.0625 mm 0.05 mm 0.025 mm 0.0125 mm

293 -0.0917 -0.1538 -0.1844 -0.1940 -0.1953 -0.1970 -0.1975

303 -0.2245 -0.3716 -0.4436 -0.4662 -0.4691 -0.4731 -0.4741

313 -0.7264 -1.1881 -1.4119 -1.4816 -1.4905 -1.5025 -1.5056

323 -2.9712 -4.7052 -5.5062 -5.7507 -5.7815 -5.8231 -5.8336

333 -9.0024 -13.0120 -14.5780 -15.0660 -15.1270 -15.1970 -15.1020

343 -12.0140 -16.5250 -18.1730 -18.6250 -18.7000 -18.7750 -18.7930

353 -12.2500 -16.8110 -18.4740 -18.9350 -18.9920 -19.0680 -19.0870

363 -12.2580 -16.8190 -18.4820 -18.9470 -19.0000 -19.0790 -19.0990

373 -12.2580 -16.8190 -18.4820 -18.9430 -19.0000 -19.0760 -19.0950

RD 43.4% 16.2% 4.59% 1.11% 0.66% 0.07% -

that is solved here, where the deformation can be described by the arc of a circle. This means the analytical
solution can be found by using quadratic elements.

Figure 3.10: Temperature-vertical displacement
plot for different element orders

Table 3.5: Vertical displacements (mm) of the element type
convergence analysis

T (K) Element order

linear quadratic cubic quartic

293 -0.0917 -0.1963 -0.1973 -0.1973

303 -0.2245 -0.4731 -0.4741 -0.4741

313 -0.7264 -1.5052 -1.5063 -1.5063

323 -2.9712 -5.8355 -5.8369 -5.8368

333 -9.0024 -15.1360 -15.1390 -15.1380

343 -12.0140 -18.7900 -18.7910 -18.7910

353 -12.2500 -19.0920 -19.0930 -19.0930

363 -12.2580 -19.1040 -19.1050 -19.1050

373 -12.2580 -19.1000 -19.1010 -19.1010

RD 43.5% 0.09% 0.00% -

To further examine if these quadratic elements work for other transformation shapes than an arc of a circle, an
irregular structure is tested. The irregular geometry is shown in Figure 3.11. The displacement is measured in
two different points, which are indicated in green. The results of this analysis can be found in Tables 3.6 and
3.7. In this analysis, it is shown again that quadratic elements have a very small relative deviation compared
to linear elements, although in this case it is not exactly zero. It can be concluded that the optimal mesh for
this model has quadratic elements of 0.5 x 0.5 mm (or one element per layer in y-direction).

3.4 Validation

To get a preliminary insight in the validity of the model, the order of magnitude of the curvatures that are
found using the model can be checked with simulation and experiment results from literature. The simulation
results shown in Figure 3.8 from the paper by Geiss et al. (2019) are well suited for this purpose. Similar to
our case study, the structure studied here consists of an active layer (blue) and a passive layer (red). The
active layer has an initial strain of ε = 0.05. One half domain will be considered, such that a simple bi-layered
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Figure 3.11: Irregular geometry

Table 3.6: Vertical displacements (mm) of the element
type convergence analysis with an irregular structure

of point 1

T (K) Element type

linear quadratic cubic quartic

293.15 -0.0150 -0.0239 -0.0248 -0.0249

303.15 -0.0249 -0.0428 -0.0438 -0.0439

313.15 -0.0634 -0.1207 -0.1220 -0.1222

323.15 -0.2482 -0.4739 -0.4771 -0.4772

333.15 -0.6433 -0.9276 -0.9353 -0.9366

343.15 -0.7886 -1.0831 -1.0918 -1.0936

353.15 -0.8027 -1.0976 -1.1064 -1.1083

363.15 -0.8054 -1.1004 -1.1093 -1.1111

373.15 -0.8078 -1.1029 -1.1117 -1.1136

Avg. error 35.7% 1.47% 0.18% -

Table 3.7: Vertical displacements (mm) of the element
type convergence analysis with an irregular structure

of point 2

T (K) Element type

linear quadratic cubic quartic

293.15 0.0049 0.0095 0.0095 0.0095

303.15 0.0122 0.0239 0.0239 0.0240

313.15 0.0410 0.0864 0.0865 0.0866

323.15 0.1943 0.3645 0.3655 0.3653

333.15 0.5422 0.6477 0.6503 0.6507

343.15 0.6758 0.7488 0.7515 0.7520

353.15 0.6894 0.7592 0.7618 0.7623

363.15 0.6921 0.7612 0.7639 0.7644

373.15 0.6944 0.7630 0.7657 0.7662

Avg. error 28.0% 0.33% 0.09% -

beam is obtained with a geometry similar to the basic geometry. The curvature around the X2-axis for different
volume fractions of Tango+ can be found in Table 3.9. The simulations are re-done using the COMSOL model
described in this chapter, with an initial strain in the active layer of ε = 0.05. The resulting curvatures can be
found in Table 3.9. The beam deforms into a half-circle just as in the published result, although the curvature
is overestimated by 14-33 % by the COMSOL model. This difference can be explained by the fact that a linear
elastic material model is used in the simulation, and the strains in this problem may not be small enough for
this material model to give an accurate result. The hyperelastic material model used in the publication is more
likely to simulate this problem with a higher accuracy.

Table 3.8: Deformation simulation results for different
volume fractions of Tango+ (Geiss et al., 2019)

Table 3.9: Comparison of published and COMSOL
curvature results

Volume
fraction of
Tango+

r−1
literature

(1/mm)
r−1
comsol

(1/mm)
RD

0.3 0.015 0.020 33%

0.5 0.042 0.049 17%

0.6 0.054 0.063 17%

0.7 0.062 0.072 16%

0.8 0.064 0.073 14%

To find out whether the bending behaviour of the 2D model can be validated by an analytical model, a bi-
morph equation is used. The curvature of a bimorph actuator is given by the following equation (Shettar and
Sheeparamatti, 2013):

1

r
=

6L1L2E1E2h1h2(h1 + h2)(α1 − α2)∆T

(L1E1h2
1)2 + (L2E2h2

2)2 + 2L1L2E1E2h1h2(2h2
1 + 3h1h2 + 2h2

2)
, (3.6)

where Li is the length, Ei is the Young’s modulus, hi is the individual layer height, αi is the coefficient of
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Table 3.10: Comparison of bimorph and COMSOL curvature results

t (mm) ε L (mm) r−1
bimorph (1/mm) r−1

comsol (1/mm) RD

0.5 0.03 80 0.0263 0.0262 0.38%

1 0.03 80 0.0131 0.0130 0.76%

2 0.03 80 0.00660 0.00645 2.3%

0.5 0.06 80 0.0525 0.0508 3.2%

1 0.06 80 0.0263 0.0252 4.2 %

2 0.06 80 0.0131 0.0125 4.6 %

thermal expansion and ∆T is the difference in temperature. Since both layers of the geometry have the same
length and height (L1 = L2 = w, h1 = h2 = h), the equation can be further simplified to:

1

r
=

12E1E2(α1 − α2)∆T

h(E2
1 + E2

2 + 14E1E2)
. (3.7)

Figure 3.12: Curvature-temperature plot for
COMSOL results and analytical results

(t = 0.5 mm, ε = 0.03)

This formula is depth-independent. The arc angle is given by:

θ = L/r, (3.8)

where L is the length of the beam and the final vertical displace-
ment is:

v = r − r cos θ. (3.9)

The parameters of the default geometry are used: h1 = h2 = h =
0.5 mm, L = 80 mm and Etango = E1 = 0.6 MPa. The strain
in the active layer is specified as (α1 − α2)∆T = ε = 0.03. The
values of Evero = E2 are found by using the fitted Equation 3.1.
The curvature results for the default parameters are plotted in
Figure 3.12. They can be found in Table 3.10, along with some
variations of the parameters. From the results can be concluded
that the COMSOL model approximates the bimorph equation
very well, because all relative deviations in final curvature are
below 5%. The best performance is obtained for smaller strains.
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Chapter 4

Development of the 3D-Model

To switch from 2D to 3D, some changes have to be made in the model. Those changes will be described in
this chapter. Some modeling aspects are exactly the same as for the 2D model and therefore they will not be
discussed here again. Thus, for more information on the material properties, simulating the glass transition
effect, the temperature range, the geometrical model, the material model and the study type that is used, the
reader is redirected to the previous chapter.

4.1 Model definition

The parameters of the default geometry in 3D can be found in Table 4.1. The geometry described here is a
3D version of the geometry described in the previous chapter. Again, the symmetry axis at x = 0.04 m can be
used, such that only half of the geometry has to be modeled. Half of the geometry, intersected at the plane of
symmetry indicated as y, z-plane A, is shown in Figure 4.1. All boundaries of the geometry are free, with the
exeption of the symmetry plane. One point on this plane is fixed, while another point has a roller boundary
condition with restricted movement in x and z-direction. Furthermore, the movement in the x-direction of the
rest of the plane is restricted to zero. Instead of the mapped mesh that was used in the 2D modeling approach,
a mesh consisting of tetrahedral elements will be used as shown in Figure 4.2.

Figure 4.1: 3D geometry with active layer (blue) and passive layer (red), with boundary conditions indicated
in cross-section A
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Table 4.1: Dimensions of the 3D geometry

Parameter Symbol Value

Height of passive layer h1 0.5 mm

Height of active layer h2 0.5 mm

Length L 80 mm

Depth d 10 mm

Figure 4.2: Mesh in 3D (zoomed in)

4.2 Convergence analysis

To find an appropriate mesh size for the 3D model, an element size convergence analysis is done. In 3D, the
number of degrees of freedom is substantially larger than in 2D. This causes the computation time to become
a limiting factor. When choosing the mesh size, a trade-off between minimizing the computation time and
minimizing the relative deviation has to be made. Table 4.2 and Figure 4.3 show the results for a convergence
analysis with tetrahedral elements with trilinear shape functions, with mesh sizes ranging from 0.5 mm to 0.0625
mm. The table also includes the computation times of all analyses. From the results can be concluded that
using small elements leads to very high computation times, while the deviation relative to the finest mesh result
is only slightly decreased. Ideally, analyses should be done with even smaller element sizes, until the relative
deviation is approaching zero. However, there is a limitation of computational power, and running these even
finer mesh analyses would cost an impractical amount of time.

Table 4.2: Vertical displacements (mm) of the element size
convergence analysis

T (K) Element size

0.5 mm 0.25 mm 0.125 mm 0.0625 mm

293 -0.0604 -0.4396 -0.0923 -0.20151

303 -0.1824 -0.6528 -0.1767 -0.48985

313 -0.6494 -1.4469 -1.1896 -1.5596

323 -2.5844 -4.8422 -5.4355 -5.8732

333 -7.8724 -12.2770 -14.1430 -14.890

343 -10.5060 -15.4850 -17.2780 -18.141

353 -10.6300 -15.7800 -17.5200 -18.389

363 -10.6360 -15.7410 -17.5260 -18.396

373 -10.6360 -15.7410 -17.5260 -18.396

RD 51.4% 27.9% 19.3% -

Comp-
utation

time

0:01:00 hr 0:14:02 hr 3:38:22 hr 33:02:57 hr1 Figure 4.3: Temperature-vertical
displacement plot for different element

types

The use of trilinear shape functions makes the elements appear stiffer than they should be. When using linear
elements, the displacement is represented by a linear function. These elements are unable to capture the
kinematics of the deformation, which introduces a shear stress in the element. This additional shear stress
changes the equilibrium equation, which leads to smaller deformations. This phenomenon is referred to as
‘shear locking’ (Briassoulis, 1989). A way to decrease the shear locking effect is to use elements of a higher
order. To find out whether the solution can be approximated more accurately when using higher element orders,
an element order convergence analysis is done. In Figure 4.4 and Table 4.3, results of this analysis with element
orders ranging from linear to quartic can be found. In all cases, a mesh size of 0.5 mm is used. The results for
the convergence analysis are similar to those that were found using the 2D modeling approach. Changing from

1This analysis was ran on a different computer, and its computation time can therefore not be compared to the other computation
times.
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linear to quartic discretization significantly decreases the relative deviation, while the computation time is still
reasonably low. Further increasing the element order is not recommended, because it brings the disadvantage of
high computation times while only slightly improving the relative deviation. Quadratic elements lead to more
accurate displacements, because they allow for a better representation of a curved boundary. It is expected that
quadratic elements lead to less accurate results for problems that do not involve pure bending only. For the 2D
modeling approach, an analysis is done to examine such a problem. There, the relative deviation is only slightly
larger than for the pure bending problem. For a detailed description of this analysis, the reader is redirected to
Section 3.3.

Table 4.3: Vertical displacements (mm) of the element order
convergence analysis

T (K) Element order

linear quadratic cubic quartic

293 -0.0589 -0.2053 -0.2058 -0.2061

303 -0.1806 -0.4991 -0.5003 -0.5036

313 -0.6469 -1.5900 -1.5938 -1.5970

323 -2.5934 -6.0570 -6.0693 -6.0762

333 -7.8492 -14.9750 -15.0110 -15.0121

343 -10.4130 -18.2820 -18.2990 -18.2424

353 -10.6440 -18.5390 -18.5550 -18.5562

363 -10.6420 -18.5390 -18.5560 -18.5633

373 -10.6420 -18.5390 -18.5560 -18.5633

RD 52.35% 0.27% 0.10% -

Comp-
utation

time

0:01:09 hr 0:13:38 hr 1:06:10 hr 2:57:32 hr1 Figure 4.4: Temperature-vertical
displacement plot for different element

types

4.3 Validation

As a preliminary validation, the data obtained using the 3D modeling approach can be compared to that of the
2D modeling approach as described in Chapter 3. Figure 4.5 shows a comparison of the curvature results. The
results of the 3D model match well with those of the 2D model. The average relative deviation is 4.0%.

Figure 4.5: Curvature-temperature plot comparing
2D and 3D model results

Figure 4.6: Curvature-temperature plot for COMSOL
results and analytical results (t = 0.5 mm, ε = 0.03)

The 3D modeling approach can be validated with literature in the same way as the 2D modeling approach. A
comparison of the curvature results from the experiments of Geiss et al. (2019) and the curvature results from
the 3D COMSOL model can be found in Table 4.4. The relative deviation values in the curvatures of the 3D
model designed in COMSOL range from 2.6-12%. This means the 3D model approaches the published results
better than the 2D model, where relative deviations in the range of 14-33% were found. As explained earlier,
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the deviation is probably caused by the fact that another material model is used in the publication.

Table 4.4: Comparison of published and COMSOL curvature results (3D)

Volume fraction of Tango+ r−1
literature (1/mm) r−1

comsol (1/mm) RD

0.3 0.015 0.014 4.7%

0.5 0.042 0.041 2.6%

0.6 0.054 0.058 6.5%

0.7 0.062 0.070 12%

0.8 0.064 0.070 8.6%

Equation 3.7, the bimorph equation that was used to validate the 2D modeling approach, can be used in the 3D
case as well. Table 4.5 shows the curvature results obtained by using the bimorph equation and the COMSOL
model. In Figure 4.6, the curvature results are plotted. The relative deviations compared to the bimorph
equation curvature results range from 3.8 to 11.4%. This makes the average relative deviation of the 3D model
slightly larger than the average relative deviation of the 2D model. This result was expected, since the bimorph
equation is based on the same plane strain assumption as the 2D model.

Table 4.5: Comparison of bimorph and COMSOL curvature results (3D)

t (mm) ε L (mm) r−1
bimorph (1/mm) r−1

comsol (1/mm) RD

0.5 0.03 80 0.0263 0.0249 5.3%

1 0.03 80 0.0131 0.0126 3.8%

2 0.03 80 0.00660 0.00632 4.2%

0.5 0.06 80 0.0525 0.0465 11%

1 0.06 80 0.0263 0.0242 8.0%

2 0.06 80 0.0131 0.0122 6.9%
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Chapter 5

Topology optimization method

The topology optimization is aimed at achieving a particular deformation at the final temperature Tf . It
uses the solution of the first study, as described in Chapter 3: ‘Development of the 2D model’ and Chapter
4: ‘Development of the 3D model’, as an initial solution. The SIMP method will be used to do the topology
optimization. The topology optimization will only be performed on the active material layer.

5.1 Penalized Variables

The Young’s modulus of the material layer that is optimized, is penalized such that less stiffness is provided
for intermediate density values. The penalized Young’s modulus E(θp) is obtained by multiplying the Young’s
modulus E0 of the optimized material with the penalized material factor θp:

E(θp) = E0θp = E0(θmin + (1− θmin)θp), (5.1)

where the minimum penalized material volume factor θmin is chosen as 10−9 and the penalization factor is
p = 3. The stress in the top layer, which is induced by printing, is modeled as an initial stress in the top layer
material. To avoid stress being assigned to intermediate density values, the stress will be penalized as well.
This makes sure only solid areas have an initial stress. The stress σ0 is penalized by multiplying it with the
penalized material volume factor θp:

σ(θp) = σ0θp = σ0(θmin + (1− θmin)θp), (5.2)

where the ‘default’ initial stress σ0 is equal to 18 kPa.

5.2 Objective Function

The following objective function is used:

f = w

(
v − vtarget
vtarget

)2

+ (1− w)V, (5.3)

where v is the vertical tip displacement and vtarget is the targeted vertical tip displacement. V is the average

material volume fraction, which is the normalized volume. The first term, (
v−vtarget

vtarget
)2, is what can be referred

to as a ‘displacement matching’ function, because the difference between the displacement and the targeted
displacement is minimized. The second term, V , minimizes the volume. Minimizing the volume helps in de-
creasing grey areas in the optimization. The weight factor 0 ≤ w ≤ 1 is introduced to be able to change the
importance of the difference terms in the function.

Figure 5.1 shows 2D topology optimization results for different weights w. Voids are indicated in white, while
solid active material is indicated in black. The passive layer is shown in red. To visually demonstrate the effect
of w, the individual layer height of the initial geometry is increased to h1 = h2 = h = 4 mm. The targeted
vertical tip displacement in each simulation is set to vtarget = −2 mm. Table 5.1 shows the number of iterations,
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Figure 5.1: Topology optimization results for different weight factors w (blue: active material, red: passive
material)

the vertical tip displacement and the material volume fraction for different values of w. From these results,
it can be concluded that including the volume term leads to a much more defined topology. However, if too
much emphasis is put on this volume term, the difference between the vertical displacement and the targeted
displacement becomes to large. A weight factor of w = 0.9 leads to both a well-defined topology and a sufficient
displacement match. Unfortunately, a high number of iterations is needed for this value.

Table 5.1: Topology optimization results for different weights w

w #iterations v (mm) deviation from vtarget V

0.6 15 -1.6106 19% 0.47085

0.7 55 -1.7275 14% 0.50418

0.8 42 -1.8155 9.2% 0.53449

0.9 152 -1.9168 4.2% 0.57131

1 9 -2.0038 0.19% 0.90659

5.3 Topology optimization results

In the initial study, the final tip displacement using the default parameters is -19 mm. The targeted vertical
tip displacement must be chosen smaller than this value, otherwise the objective is unattainable. Figures 5.2
and Table 5.2 show topology optimization results for different target displacements. In all cases, the vertical
tip displacements are close to the targeted vertical tip displacements. The target displacement is approached
by the optimizer by creating gaps in the active layer, starting in what seems an arbitrary position in the beam.
The introduction of gaps neutralizes the stress, which results in a smaller deflection.

Table 5.2: Topology optimization results for different target displacements vtarget

vtarget (mm) #iterations v (mm) deviation from vtarget V

0 14 0.0 0.0% 1.00

-5 413 -4.9517 1.0% 0.21

-10 7 -9.6720 3.3% 0.73

-15 52 -14.373 4.2% 0.49
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Figure 5.2: Topology optimization results for different target displacements vtarget (blue: active material, red:
passive material)
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Chapter 6

Variations and Applications

This chapter demonstrates the capabilities of the modeling and topology optimization approach that is described
earlier in this report, by showing variations and its potential applications. Variations of the original approach
include an optimization study to find the layer thickness ratio for which the largest curvature is obtained. The
resulting layer ratio is validated by comparing it to the optimal layer ratio that is found using an analytical
approach. Also, a numerical two-way transformation is demonstrated by applying the initial stress in both of
the layers instead of only in the active layer. This allows the structure to transform from the initial configuration
to a deformed configuration, and to return again to the initial deformation under further heating. Additionally,
different ways to achieve a target shape are explored, by adding more probe points and by matching an edge of
the material domain to a target function that describes the desired shape. The possibilities that are introduced
by adding a second active layer are studied. Lastly, an example of a potential application in expanding lattices
is shown.

6.1 Optimal layer ratio geometry

In the default geometry, both layers have the same height. It is possible to change the layer heights to achieve a
larger curvature. This section shows an optimization of the ratio between the two layers, such that the largest
possible curvature can be achieved. To find the optimal layer height ratio, the simulation is done for multiple
layer heights where the total layer height is always equal to one. Results of these simulations can be found in
Table 6.1, and are plotted in Figure 6.1. From the results, it can be concluded that for the considered material
combination and geometry, the maximum curvature is achieved when the thickness of the active material layer
is 0.75 mm and the thickness of the passive material layer is 0.25 mm. This layer ratio of 75% active material
can be used as an initial geometry for the topology optimization study, to get maximized tip displacements for
a relatively low initial stress in the active layer. The simulation results can be compared to analytical results
generated using Equation 3.6, which are plotted in Figure 6.1 as well. The analytical approach leads to the
same optimal thickness ratio, which validates the optimization study.

6.2 Two-way transformation

A simple method to achieve a two-way transformation is to introduce a compressive prestress in the glassy
polymer layer as well as in the rubbery polymer, such that both layers become active. For simplicity, the
same prestress value of 18 kPa is used in both of the material layers. This two-way 4D-transformation can
potentially be used in grip- and release systems. Two (fictive) polymers with equal Young’s moduli above a
certain temperature Tf are used in this simulation. The structure is gradually heated from room temperature
Ti to the glass transition temperature of Tg = 370 K. At a temperature of approximately 340 K, the bottom
layer has softened enough to bend downwards due to the prestress that is being released from the top layer.
A maximum displacement is reached at Tg. The structure remains in this configuration when the temperature
is decreased. It can be brought back to the initial configuration by increasing the temperature to Tf . As the
temperature is increased further, the Young’s modulus of the top layer approaches that of the bottom layer. In
this temperature region, the structure is transforming back to the original configuration because of the prestress
in the top layer. Heating above Tf = 400 K has no further effect on the structure, because the Young’s modulus
remains constant. After the second transformation, no prestresses are left in the material. Therefore, when the
sample is cooled down and the stiffness of the passive layer increases, it remains in the original configuration.
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Table 6.1: Curvature results for different layer thickness ratios

Passive
layer

thickness
(mm)

Active
layer

thickness
(mm)

Curvature,
simulation

(1/mm)

Curvature,
analytic
(1/mm)

0.55 0.45 0.0203 0.0213

0.50 0.50 0.0252 0.0263

0.45 0.55 0.0302 0.0313

0.40 0.60 0.0350 0.0361

0.35 0.65 0.0391 0.0401

0.30 0.70 0.0421 0.0431

0.25 0.75 0.0439 0.0447

0.20 0.80 0.0444 0.0449

0.15 0.85 0.0436 0.0438

0.10 0.90 0.0412 0.0411
Figure 6.1: Active layer thickness vs

curvature

(a) Glass transition curves of the polymers (b) Displacement response

Figure 6.2: Two-way transformation properties

6.3 Multiple probe points

When including more probe points in the optimization, the objective function as stated in Equation 5.3 has to
be slightly reformulated:

f = w

(
N∑
i=1

(
vi − vi,target
vi,target

)2
)

+ (1− w)V, (6.1)

where vi is the vertical displacement in point i and vi,target is the targeted vertical displacement in point i. In
the case that vi,target is zero, it is replaced in the denominator by the normalizing term vnorm = 1 mm, such
that numerical errors due to division by zero are avoided. N is the number of probe points that is going to
be examined. V is the average material volume fraction, which is a normalized volume of which the maximum
value is equal to 1. The weight factor is chosen as w = 0.9. In the previous analyses, a target displacement
was described for a probe point at the tip of the geometry only. Adding more probe points could lead to more
complex topology results. However, when choosing target displacement values for the probe points, it should
be taken into account that not all displacements can be realised. In the case of an unachievable target displace-
ment, the optimizer will find a design that that is as close to the objective as possible. The earlier obtained
maximum displacements indicate the range of target displacements that are feasible.
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(a) Ti = 293 K (b) Tg = 370 K (c) Tf = 400 K

Figure 6.3: Deformation at various temperatures (green: low Tg polymer, magenta: high Tg polymer)

In the example shown in Figure 6.4a, two probe points are used. The x, y-coordinates of point 1 are (0,0.5) mm
and those of point 2 are (20,0.5) mm. The target displacements of point 1 and point 2 are respectively set to
v1,target = −5 mm and v2,target = 0 mm. The value of v1,target is approximately the displacement the fully solid
geometry would have, if the width was twice as small. The optimizer is therefore expected to produce a topology
where the left half of the active material domain is solid and the right half is a void. The final displacements
are v1 = −4.995 mm and v2 = −0.002 mm, which are both very close to the target displacements. The material
distribution looks as expected. The average volume fraction is 0.52, which indicates that approximately half of
the active material domain is solid. In a second example, shown in Figure 6.4b, the optimizer will be triggered
to initiate a void elsewhere by choosing the target displacements as v1,target = −10 mm and v2,target = −5 mm.
Here, the final displacements are v1 = −10.706 mm and v2 = −4.299 mm.

(a) v1,target = −5 mm and v2,target = 0 mm

(b) v1,target = −10 mm and v2,target = −5 mm

Figure 6.4: Multiple probe topology optimization results (blue: active material, red: passive material)

6.4 Shape matching

Instead of matching points in the geometry to targeted displacements, the edge (or plane in 3D) intersecting
the active and passive layer can be matched to a target function that describes the desired shape. This method
is similar to the methods used in the publications of Hamel et al. (2019) and Maute et al. (2015), discussed in
Sections 2.4.1 and 2.4.7 respectively. The deformed shape will be matched to a function of the form:

y = −A
(

2(x− L)

L

)n
. (6.2)

This shape describing function is modeled as a boundary in the model. It is implemented in the objective
function using a point-to-point map, which is called an ‘extrusion operator’ in the COMSOL software (Kindo,
2015). The type of extrusion operator that is used here is the general extrusion component coupling (Frei, 2017).
It is specifically designed to find the point on a boundary for which the distance with another pre-defined point
is smallest. Using mapping, variables from one component are mapped to another. In the problem described
here, mapping involves two geometric entities: the target shape and the transforming structure. To find the
distance between these two, the components of the transforming structure boundary should be mapped onto the
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target shape boundary. The distance between the target shape and the transforming structure can be defined
as:

d =
√

(xtarget − x)2 + (ytarget − y)2, (6.3)

where xtarget and ytarget are the coordinates of the target shape boundary, and x and y are the coordinates of
the transforming structure boundary mapped onto the target shape boundary. Distance function d is integrated
over the boundary to get a scalar variable. This variable is replaced for the displacement matching term in the
original objective function shown in Equation 5.3. Results for different values of A and n can be found in Table
6.2. Note that the target shape is given in green, and in all cases the generated structure is able to match it
closely.

Table 6.2: Shape matching topology optimization results (green: target function, blue: active material
domain, red: passive material domain)

A = 2 mm, n = 2

A = −2 mm, n = 3

A = 0.5 mm, n = 4

A = −0.1 mm, n = 5

6.5 Multiple active layers

In this section, a geometry with two active layers will be analyzed. The geometry is shown in Figure 6.5. It
is slightly longer than the default geometry and a second Tango+ active layer is added at the bottom. The
prestress in both active layers is equal and has a value of σ0 = 18 kPa. Two probe points are used, located at
the tip and at half of the beam. The addition of a second active layer increases the design freedom, since it
introduces the possibility to bend both upwards and downwards.

Figure 6.5: Geometry with two active layers (blue) and one passive layer (red) with probe point 1 (orange)
and probe point 2 (green)

Since multiple probe points are considered in the optimization, the objective function described in Equation
6.5 can be used. Having two active layers introduces the need for some adaptations to the standard topology
optimization approach as described earlier. In topology optimization processes with one active and one pas-
sive layer, the results from the initial study were used as an initial expression for the topology optimization.
However with two active layers, no bending occurs in the initial study. Therefore, using the results of the
initial study does not improve the topology optimization convergence. Instead, the prestress loading parameter
is increased step-wise from zero to the actual initial stress σ0 during each optimization step. The goal is to
achieve a sine-like deformation, and therefore the target displacements are chosen as v1,target = 10 mm and
v2,target = −10 mm. The result of the topology optimization can be found in Figure 6.6a. Material and void
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areas are well-defined and the displacements in the target points are found as v1 = 10.746 mm and v2 = −10.683
mm, which are close to the targeted displacements. A similar simulation is performed in 3D with the same
dimensions and a depth of d = 5 mm. Target displacements of v1,target = 10 mm and v2,target = −10 mm
are imposed to probe edges instead of probe points, located at positions equivalent to the probe points in the
2D simulation. For this simulation, the displacement results are v1 = 10.369 and v2 = −8.9173. The slight
difference in topology compared to the 2D result can be explained by the fact that the optimizer has an ad-
ditional design freedom in the in-plane direction. Besides that, a different element shape is used in the 3D mesh.

(a) 2D

(b) 3D

Figure 6.6: Topology optimized three-layer beam

Instead of using probe points to define the topology optimization’s objective, a target function can be used,
as introduced in the previous section. Having two active layers allows for more complex target shapes. A
three-layer beam as shown in Figure 6.5 is matched to the following third order target function:

y = Ax(x−B)(x− C), (6.4)

where A = −100, B = 0.1 and C = 0.095. Figure 6.7 shows the optimization result for matching the initial
geometry in Figure 6.5 to the target shape described by Equation 6.4.

Figure 6.7: Topology optimized three-layer beam in 2D, matched to Equation 6.4

6.6 Topology optimization in active and passive layer (2D)

In the previous topology optimization studies, topology optimization was only performed in the active material
domain. But in addition, it could be applied to the passive material domain. It can be studied whether the
target displacements are approached better when topology optimization is used in both of the material layers.
For this purpose, the optimization described in Section 6.5 is re-done with topology optimization in the active
and passive material domain. The topology optimization method is identical for both materials. The objective
function has to be changed slightly to

f = w

(
N∑
i=1

(
vi − vi,target
vi,target

)2
)

+ (1− w)
Vactive + Vpassive

2
, (6.5)

where Vactive is the volume fraction of the active material and Vpassive is the volume fraction of the passive
material. The weight factor is equal to w = 0.9. The topology resulting from optimization with this objective
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(a) ppassive = 3

(b) ppassive = 5

Figure 6.8: Topology optimization results with two active layers and topology optimization in all layers

can be found in Figure 6.8a. With this topology, deflections of v1 = 11.241 mm and v2 = −8.8561 mm are
found, which show a substantial deviation with respect to the the targeted displacements. In beam segments
where all of the three layers are solid, no bending occurs. This behaviour occurs because the prestresses in the
top and bottom layer are equal. However, segment A in the figure shows unexpected deformation behaviour. In
this segment, the material volume fraction of the passive layer is equal to zero, but bending still occurs. When
zooming in on this section, it can be seen that a very thin layer of passive material is present directly below the
top active layer. Besides that, the topology has many intermediate density values. To avoid these problems,
the penalization factor in the passive material is increased to ppassive = 5. The result in Figure 6.8b shows a
design with less intermediate density areas compared to the previous design and the displacements are slightly
closer to the targets: v1 = 11.098 mm and v2 = −10.479 mm.

6.7 Expanding lattice

The optimization approach can be used to create a lattice that expands in the y-direction. Such a lattice could
find its use in self-assembling applications. The initial geometry of one component in the lattice is shown in Fig-
ure 6.9a. This geometry consists of two connected three-layer beams as described in Section 6.5. The boundary
conditions are shown in Figures 6.9b and 6.9c. In the topology optimization, the objective is to achieve target
displacements of v1,target = 10 mm for point 1 and v2,target = −10 mm for point 2 to get a total expansion of
20 mm. The symmetry of the geometry in y-direction is exploited to shorten the computation time. The result
of the topology optimization is shown in Figure 6.10. The geometry obtained in the topology optimization is
slightly modified to fit in a lattice structure. The total expansion in y-direction at T = 373 K is four times the
initial height at T = 293 K.

A downside of the expanding lattice discussed previously, is that the width in x-direction of the structure
decreases as it expands in the y-direction. For some applications, expansion in both the x and y-direction
is necessary. Thus, the structure should have a negative Poisson’s ratio in the rubbery state. Structures
that exhibit such behaviour are referred to as auxetic structures (Liu and Hu, 2010). An example of an
auxetic structure can be found in Figure 6.11a and b. This structure is intuitively designed and exhibits an
expansion of 9.4% during the 4D-transformation. A second auxetic structure is designed with the help of
topology optimization, as shown in Figure 6.11c and d. The structure expands with 9.8% compared to the
original size.
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(a) Initial geometry for the expanding lattice component topology optimization with probe point 1 (green) and probe
point two (orange)

(b) Fixed boundary condition (c) Roller boundary condition

Figure 6.9: Initial geometry

Figure 6.10: Topology optimization result of an expanding lattice, (a) T = 293K, (b) T = 373K

(a) Lattice component (intuitive
design)

(b) Lattice (5 x 5)

(c) Lattice component (obtained
through topology optimization)

(d) Lattice (2 x 2)

Figure 6.11: Auxetic structures (black: T = 293 K, red/blue: T = 373 K)

6.8 Twisting deformation (3D)

In the following topology optimization, a square, three-dimensional geometry as shown in Figure 6.12a is used
as a base. This geometry is a modified version of the default geometry in the 3D modeling approach, where the
depth is changed to d = 40 mm and the layer height is changed to h1 = h2 = 1 mm. In the first example the
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following target displacements are set: v1,target = −5 mm and v2,target = −3 mm, aiming at a combination of
bending and twisting deformation. The results in Figure 6.12b show a distinctive diagonal pattern in the active
layer. The final displacements are v1,target = −4.964 mm and v2,target = −2.972 mm.

(a) Initial geometry with probe point 1 (orange) and probe
point 2 (green)

(b) Topology optimized geometry at T = 373 K

Figure 6.12: Twisting deformation problem

From this topology optimization result can be learned that diagonal strips of active material on top of the
passive material lead to a combined bending-twisting deformation. This mechanism can be further analyzed,
to find the angle of the diagonal strips for which the twisting deformation is maximized. A regularized version
of the geometry is created, where variable α is the angle between the active strips and the x-axis as shown
in Figure 6.13a. The simulation is repeated for different values of α, ranging from 0◦ to 90◦. The results in
Figure 6.13c show that the largest difference in displacement of the corner points (i.e. maximum twisting) is
obtained for an angle of 30◦ between the active strips and the x-axis. This corresponds to the angle that was
found in the topology optimization result in Figure 6.13b, where the objective was to maximize the difference
in displacement between the two free corners. This difference is smaller in the topology optimization result,
because the diagonal strip width is limited by the Helmholz filter. This filter constrains the minimum feature
size in the optimization, as discussed in Section 2.3.4.

(a) Regularized geometry, α = 30◦ (b) Topology optimized geometry

(c) Difference in vertical displacement
between probe point 1 and 2 for different

values of α

Figure 6.13: Comparison of regularized angle optimization and topology optimization
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Chapter 7

Experiments

7.1 Experiment goal

Doing experiments with the topology optimized structures is a way to validate the 2D and 3D modeling ap-
proaches that are created during this research project. To be able to do experiments, real samples have to be
printed and tested. Both are done at the University of Pavia, Italy. The control variable in the experiment is
the temperature, which is increased gradually to deform the printed sample. As described earlier, the principle
of the 4D-transformation relies on the prestress in one of the printed layers. However, it is not possible to
precisely tune the stress introduced by the printing process. For that reason, a first set of experiments is done
with bi-layered structures of different sizes. The data obtained during these experiments represent the relation
between material layer height and deformation. These data are used to calibrate the numerical model to find
the prestress. Once this prestress is found, topology optimized structures can be generated, printed and tested.

7.2 Sample specifications

The materials that are used in the modeling approach described in the previous chapters of this report are
unfortunately not available for printing. Instead, materials with similar properties are used. For the passive
layer, as a replacement of the VeroClear material, Acrylonitrile Butadiene Styrene (ABS) is used. The active
layer is printed with thermoplastic polyurethane (TPU) instead of Tango+. The material properties of these
materials are listed in Table 7.1 and Figure 7.1 (Selva-Priya et al., 2019).

Table 7.1: Material properties of TPU and ABS

Property TPU ABS

Young’s
modulus

12 MPa see Figure 7.1

Poisson’s ratio 0.48 0.3

Mass density 1.47 g/cm3 1.11 g/cm3

Glass transition
temperature

-35 ◦C 85 ◦C

Figure 7.1: E − T curve of TPU and ABS

Five different groups (labeled A-E) of uniform bi-layered samples with varying layer heights h1 and h2 are
printed for the purpose of initial stress calibration, as shown in Figure 7.2 and Table 7.2. A mounting part
is added to the bi-layer structure, to be able to easily clamp it while testing. Three samples are made for
each sample group, such that the experiments can be repeated. With new settings adapted to the printing
materials, two printing sample designs were created using topology optimization. Both are based on topology
optimizations considered earlier in this report. Sample F in Figure 7.3a is designed such that the free corners
have a difference in vertical displacement. Its design is very similar to the twisting deformation design shown
in Figure 6.12b of the previous chapter. Sample G, which is shown in Figure 7.3b, is designed to deform into a
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(a) Sample F (b) Sample G

Figure 7.3: Sample designs obtained with topology optimization (blue: ABS, white: TPU)

sinusoidal shape. It is based on the topology optimization of the three-layer beam in Figure 6.6b.

Figure 7.2: Sample dimensions (blue: ABS, white: TPU)

Table 7.2: Sample group dimensions

Sample
label

h1 (mm) h2 (mm)

A 0.48 0.48

B 0.24 0.24

C 0.96 0.98

D 0.96 0.48

E 0.48 0.96

7.3 Printing process

The samples are printed with an 3NTR A4V3 3D-printer. It has a high resolution, with a positioning precision
of 11 µm on the x, y-plane and 5 µm on the z-axis. The maximum dimensions of a printed sample are 300
x 200 x 200 mm. It uses a Fused Filament Fabrication (FFF) method, where layers of molten polymer are
deposited through a nozzle. The printer is equipped with a three extruders, which allows for printing with three
different materials at the same time. Besides TPU (NinjaFlex Snow White by NinjaTek) and ABS (Filoalfa),
High Impact PolyStyrene (HIPS) is used as a support material. The TPU layer is printed directly on top of
the HIPS base. HIPS is selected specifically for its chemical compatibility with TPU, which allows the two
materials to stick together during printing and to easily detach once the temperature has lowered, in order to
avoid damages during the removal of the sample from the HIPS base. To translate the computer aided design
into a set of instructions for the printer, a so-called slicer is used with a dedicated printing profile (Cura 4.7).
The main challenge in the development of the printing profile is to guarantee a good adhesion between ABS
and TPU, which is mainly affected by temperatures and velocities. The following slicer settings are used:

• The layer thickness is set to 0.24 mm, to ensure the highest dimensional accuracy according to the printer
motor units’ resolution;

• The extrusion width is set to 0.4 mm, which is the same value as the minimum feature size of the topology
optimization designs;

• The infill type is set to rectilinear, with extrusion lines parallel to the longest side of the beam;
• The number of perimeters is set to one.

In most publications from the state-of-the-art, the prestress is introduced by exposing the active material to
UV-light. This causes crosslinking reactions in the material that lead to a prestress. The prestress induction
mechanism in FFF is different: here, the working principle is based on the temperature gradient. The employed
polymers tend to expand when heated, while cooling causes them to shrink. Therefore, the prestress in the
material is highly dependent on the printing temperature. The printing process allows for controlling the
temperature at which the materials are deposited. The ABS, TPU and HIPS are printed at 240◦C, 230◦C
and 250◦C respectively. The prestress is also affected by the printing velocity. The printing velocity is set to
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20 mm/s for TPU and ABS, and to 40 mm/s for HIPS. Small variations in velocities are present for different
printing works (e.g. slightly lower for the first layer or perimeters). All printed samples are shown in Figure
7.4.

(a) Samples A-E (b) Sample F (c) Sample G

Figure 7.4: Printed samples

7.4 Method

This section describes the methodology of the experiments as executed at the 3D-printing laboratory of the
University of Pavia. To control the sample temperature, an open heating bath circulator is used (type Corio
C by Julabo). The heating bath with integrated thermometer is shown in Figure 7.5 and its specifications are
listed in Table 7.3. The water in the tank is constantly stirred and therefore the water temperature can be
assumed to be uniform. Thus, the water temperature can easily be controlled without the need to calibrate.
The sample is clamped inside the water tank as shown in Figure 7.6. The water is heated from an initial
temperature of 20◦C (room temperature) to a final temperature of 98◦ C. The heating process has a duration
of approximately five minutes. When the final temperature is reached, the samples can be removed from the
water to measure the displacement using a caliper. Three samples are tested for each group label A-E. After
immersion, the deflection of each of these beam-shaped samples is measured. For group labels F and G, one
sample was tested and measured.

Figure 7.5: Open heating
bath circulator

Figure 7.6: Clamping mechanism

Table 7.3: Corio C-BT9
specifications

Property Value

Heating capacity 2 kW

Working
temperature

range

20-100 ◦C

Filling volume 6-9 L

Dimensions 320 x 380
x 380 mm

7.5 Results

The data obtained from the first set of experiments contain the relation between layer heights h1 and h2, and
vertical tip displacement v. For each sample group, three samples are printed and tested. This means that
n = 3 data points are found for every sample group. The mean of these data points can be found as follows:

µ =
1

n

(
n∑
i=1

vi

)
=
v1 + v2 + v3

3
. (7.1)

Subsequently, the standard deviation can be calculated using the following equation:

S =

√√√√ 1

n− 1

n∑
i=1

|vi − µ|2. (7.2)

A complete overview of the experimental data, the mean displacement results for each sample group and the
standard deviations can be found in Table 7.4. A number of data points of n = 3 is rather small for calculating
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the standard deviation, although it yields an insight in the reliability of the measurements. Ideally, a larger
number of samples should be printed and tested to get a more precise image of the accuracy.

Table 7.4: Experimental results, means and standard deviations. All values in the table are in mm.

Size parameters Experimental results
Mean

Standard

deviationh1 h2 v1 v2 v3

0.48 0.48 7.40 8.71 8.57 8.23 0.72

0.24 0.24 24.52 22.24 22.20 22.99 1.33

0.96 0.96 3.28 3.70 3.70 3.56 0.24

0.48 0.96 2.10 2.10 2.00 2.07 0.06

0.96 0.48 7.20 7.50 8.90 7.87 0.91

The averaged displacement results of each sample group are shown in Table 7.6. The temperature range, the
material properties, and the sample dimensions are adapted in the numerical model to match the conditions of
the experiments. Numerical simulations are run for different prestress values, ranging from 230 kPa to 310 kPa.
This range of prestresses corresponds to compressive prestrains of around 0.02-0.03, which are common values
for prestrain introduced by a direct 4D-printing process (Ding et al., 2017). The absolute deviations (AD), or
the differences between the mean experimental displacement results and the numerical displacement results,
are calculated for each sample group. The average absolute deviation is calculated for each prestress value and
plotted in Figure 7.7a. Numerical data can be found in Table 7.5.

(a) Samples A-E (b) Samples A and C-E

Figure 7.7: Absolute deviation from experimental results for different prestress values

Table 7.5: Displacement (v) results and absolute deviations (AD) for different prestress values. All values are
given in mm.

Size

parameters

Experimental

results

Numerical results

230 kPa 250 kPa 270 kPa 290 kPa 310 kPa

h1 h2 v v AD v AD v AD v AD v AD

0.48 0.48 8.23 7.38 0.85 7.69 0.54 8.60 0.37 8.87 0.64 9.44 1.21

0.24 0.24 22.99 13.52 9.47 14.06 8.93 15.44 7.55 15.96 7.03 17.69 5.30

0.96 0.96 3.56 3.76 0.20 3.93 0.37 4.41 0.85 4.55 0.99 4.86 1.30

0.48 0.96 2.07 1.77 0.30 1.84 0.23 2.07 0.00 2.14 0.07 2.29 0.22

0.96 0.48 7.87 10.89 3.02 11.33 3.46 12.60 4.73 12.97 5.10 13.75 5.88

Average absolute deviation 2.77 2.71 2.70 2.76 2.78

The prestress for which the average absolute deviation is minimal, is chosen as the calibrated prestress. From the
numerical simulations can be concluded that this is the case for σ0 = 270 kPa. The numerical results obtained
using this calibrated prestress are shown in Table 7.6, along with their absolute and relative deviation with
respect to the experimental results. Figure 7.8a shows the experimental and numerical displacement results for
all sample groups. The error bars on the experimental results represent the standard deviation. The error bars
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on the computational data are based on the deviations from established data that were found when validating
the 2D and 3D modeling approach, as described in Sections 3.4 and 4.3.

Table 7.6: Experimental and numerical results of samples A-E (σ0 = 270 kPa)

Sample Experiment Numerical (2D) Numerical (3D)

label v (mm) v (mm) AD (mm) RD (%) v (mm) AD (mm) RD (%)

A 8.23 7.57 0.66 8.0 8.60 0.37 4.0

B 22.99 14.41 8.58 37 15.44 7.55 33

C 3.56 3.82 0.26 7.3 4.41 0.85 24

D 7.87 10.57 2.70 34 12.60 4.73 60

E 2.07 1.85 0.22 11 2.07 0.00 0.0

Overall, the numerical and experimental results show a good match. The average absolute relative deviation is
2.7 mm. However, the simulation did not perform well for sample group B and, to a lesser extent, for sample
group D. Note that sample group B features the smallest thickness of all samples. Although the exact reason
of the unexpected result for sample group B is unknown, there are several possible explanations. Firstly, the
prestress introduced during printing by a thermal expansion process could be larger because of the smaller layer
thickness. Secondly, the anisotropy in a thin layer could be higher. The more printing layers (e.g. the thicker
the layers) the more the anisotropy in a single layer is evened out, until at a certain point in-plane isotropy
can be assumed. The thinnest sample may not have enough layers to assume an in-plane isotropic material
model. Lastly, the diverging result can be caused by assumptions made in the modeling approach, such as the
linear elastic material model. If the result of sample B would be considered an outlier, it can be omitted, which
leads to an average absolute deviation of 1.49 mm for a prestress of 270 kPa. However, if one of the datapoints
is excluded, the calibrated prestress will change. Figure 7.7b shows the absolute deviation for the remaining
datapoints, which is minimized for the new calibrated prestress of 230 kPa. Results for this new prestress can
be found in Table 7.7 and Figure 7.8b. The average absolute deviation is brought back to 1.04 mm. This
means the modeling approach is capable of approximating the deformation of 4D-printed structures with layer
thicknesses between 0.5 mm and 1 mm within a reasonable error margin.

Table 7.7: Experimental and numerical results of samples A and C-E (σ0 = 230 kPa)

Sample Experiment Numerical (2D) Numerical (3D)

label v (mm) v (mm) AD (mm) RD (%) v (mm) AD (mm) RD (%)

A 8.23 6.61 1.62 20 7.11 1.12 14

C 3.56 3.31 0.25 7.0 3.61 0.05 1.4

D 7.87 8.97 1.10 14 10.49 0.37 33

E 2.07 1.62 0.45 22 1.70 2.62 18

(a) Samples A-E, σ0 = 270 kPa (b) Samples A and C-E, σ0 = 230 kPa

Figure 7.8: Comparison of experimental and numerical results

When the printing stress was found and the modeling approach was validated by the experimental results, a

44



second round of tests was performed with topology optimized samples F and G. These designs were generated
using the calibrated prestress of 270 kPa. The performance of the topology optimized designs is shown in Table
7.8. For sample F, probe point 1 is located in the middle of the beam and probe point 2 is located at the tip.
In this sample, bending occurs where the sample has only a single passive layer (indicated as section I in Figure
7.9a). Because of this unexpected behaviour, the experimental displacements are much larger than predicted by
the numerical model. This bending can be caused by the effect of environmental factors, such as gravity or drag
forces due to stirring of the water in the tank. Another possibility is that there is a gradient prestress in the
passive layer which causes the bending. The numerical model that was used to obtain the results in Table 7.8 was
slightly adapted, such that it accounts for gravitational effects. With these effects included the approximation
is improved, but the displacements are still underestimated in the simulation. Apart from the single material
section (section I), the experimental and numerical deformations appear similar. The deformation of sample G
is shown in Figure 7.10, where probe point 1 is the left free corner and probe point 2 is the right free corner.
The difference in displacement between these two points indicates the amount of twist, which is larger in the
printed sample. Accounting for gravitational forces improves the simulation results slightly. The difference in
amount of twist could be explained by the same unforeseen effects as for sample F. But in addition, the fact
that this sample is very irregular could affect the prestress distribution in the active material.

Table 7.8: Experimental and numerical results of samples F and G

Sample Experiment Numerical Absolute deviation Relative deviation

label v1,exp

(mm)
v2,exp

(mm)
v1,num

(mm)
v2,num

(mm)
v1

(mm)
v2

(mm)
avg.

(mm)
v1

(%)
v2

(%)
avg.
(%)

F -30 -53 -12.6 -18.6 17 34 26 57 64 60

G -15 -26 -15.8 -19.0 1 7 4 7 27 17

Figure 7.9: Sample F deformation, a) experimental, b) numerical (gravitational effects included)

Figure 7.10: Sample G deformation, a) experimental, b) numerical (gravitational effects included)
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Chapter 8

Conclusion and Outlook

8.1 Conclusion

This thesis is the result of an exploration of the possibilities for the use of topology optimization to design
4D-printed structures. Concluding from the background information that was gathered about 4D-printing,
printing with bi-layer amorphous polymers to exploit the glass transition principle is well suited for creating
stiff and stable structures that can potentially be used for structural applications. This specific type of 4D-
printed structures comprises a glassy and a rubbery polymer layer, of which the latter is prestressed. Upon the
increase of temperature, the stiffness of the glassy polymer drops, causing the structure to transform into an-
other configuration. After analyzing the current state-of-the-art, it was found out that, although some progress
in the area of research had already been made, there were still enough challenges left. Current modeling and
topology optimization approaches are highly complex, and thus one of the challenges is to find a simpler ap-
proach. Furthermore, a larger variety of objective functions and displacements can be targeted to demonstrate
the possibilities of this area of research.

A 2D modeling approach to simulate the transformation of bi-layered 4D-printed structures was developed using
commercial software. As opposed from state-of-the-art approaches, a linear elastic material model was adopted,
which makes the simulations less complex and less computationally intensive. From convergence studies, it
was learned that this problem should ideally be discretized by quadratic finite elements with a characteristic
length equal to the layer height of the structures. Here, the trade-off between precision and computation time
was taken into account. The approach was validated using published and analytical data. It can be concluded
that the numerical simulation results match well with these data, especially for low strain values. This can be
explained by the fact that a linear elastic material model is used, which is usually only valid for small strains.
After a proof of concept in 2D, the approach was extended to 3D. Convergence studies showed again that
quadratic elements provide a sufficiently high precision. Simulation data were compared to the same published
and analytical data as before, and again the deviations were small.

A density-based topology optimization method was adopted to describe the optimization problem in both 2D
and 3D. A multiobjective approach was introduced, balancing deformed shape accuracy with usage of the ac-
tive material. A weighted sum formulation was used to cast this into a single-objective problem, and it was
found that the material usage weight factor directly influenced the resulting design. Through numerical tests,
a suitable value was identified for which the density-based approach was able to produce well-defined solid-
void domains. The capabilities of this topology optimization approach were shown by several variations of the
original. It was expanded to e.g. design problems aimed at matching the displacements of multiple points in
the material domain to multiple target displacements. Another variation was to match an entire surface to a
target function. Two-way transformation was also simulated using the modeling approach, by introducing a
second prestress in the glassy polymer. It was demonstrated that, besides bending transformation, a twisting
transformation could be obtained by changing the target displacement settings in the optimization. The number
of layers was expanded, such that the range of target displacements became larger. This way, more complex
target shapes could be obtained, such as expanding lattices.

In addition to validating with published and analytical data, the 3D simulation results were validated with ex-
periments. The printing prestress was calibrated first, since it is highly dependent on many printing parameters
such as temperature and velocity. By minimizing the differences between experimental and numerical results,
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the calibrated prestress was found. It was concluded from this first round of experiments that the numerical
model performs best for layer sizes of 0.5 mm and 1 mm, and that smaller layer sizes show a high deviation.
Using the calibrated prestress, new topology optimized designs were generated, printed and tested. From these
tests was concluded that single layer sections behave differently from what was expected. It was found out
that gravity plays a role, but the deformation is further influenced by other factors such as additional forces,
disturbances and environmental factors during the experiments. Apart from the single layer sections, numerical
and experimental results appear similar. Although this experimental validation partly raises new questions, it
can be considered a confirmation of the appropriateness of the developed modeling and optimization method
for 4D printed structures. Moreover, by using this method to explore a range of design problems, the aim of
this thesis has been reached.

8.2 Future work

To further improve on the presented approach to use topology optimization for 4D-printed structures, many
opportunities for future work exist. These opportunities can be divided in three categories: modeling, topology
optimization and experiments.

• Modeling:

– It could be investigated if a hyperelastic material model obtains results that resemble the experimental
results better than a linear elastic material model.

– The role played by anisotropy in the printed materials can be looked into.

– Factors in the testing environment, such as drag forces caused by stirring of the water, gravity and
heat transfer might also play a role. These factors were all neglected in the current work.

– If enough computational power is available, more extreme deformations can be looked into by simu-
lating geometries with smaller layer heights.

• Topology optimization:

– The modeling and topology optimization approach can be taken to a next level by aiming for more
complex target displacements.

– To further increase the design freedom of the optimizer, a material optimization could be used
instead of using fixed material domains as a starting point for the topology optimization. By doing
this, structures of increased complexity can be generated.

– Structures can be optimized such that they aim to match different desired shapes at multiple pre-
defined temperatures instead of only at the final temperature, to obtain a multi-stage transformation.

• Experiments:

– Doing more experiments with a larger number of samples would help in getting a greater insight in
the accuracy of the measurements and the performance of the modeling approach.

– Although the numerical model is capable of predicting the transformations at intermediate temper-
ature values, intermediate deformations were not measured during the experiments. Filming the
transformation of the samples gains new data that can be used to further validate the modeling
approach.

– Experiments with two-way transforming structures may lead to new insights and possibilities.

– Unforeseen effects of the testing environment could be circumvented by changing the test setup. The
samples could be oriented such that gravity plays a smaller role and the need for a stirred water tank
could be avoided.

– In the prestress calibration method used in the current work, the minimum difference between the
experimental and numerical result is picked out manually. A more elegant solution is to use parameter
optimization to find the correct prestress.

– The dependence of prestress on layer thickness can be investigated to be able to accurately compare
the numerical and experimental results;

Besides this thesis, the research that was done during this graduation project has lead to another product: a pa-
per titled “Modeling, Topology Optimization and Experimental Validation of Glass-Transition-Based 4D-Printed
Polymeric Structures”, which was written in collaboration with Giulia Scalet, Stefania Marconi, Ferdinando
Auricchio and Matthijs Langelaar. Another future activity related to this work is to present this paper to the
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conference “11th Int. Conference on Couple Problems in Science and Engineering (COUPLED 2021)”. It will
be held in Chia Laguna, South Sardinia, Italy on 13-16 June, 2021. The paper can be found as published in
Appendix A.4.
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Appendix A

Appendix

A.1 Single material 4D-printing with amorphous polymers

The single material 4D-printing technique called dual-state mechanism (DSM) exploits the glass transition
temperature Tg of polymers, where ‘dual-state’ refers to the rubbery and glassy states of the material (Zhou
and Min, 2015; Lee et al., 2017). The printed structure is heated above Tg, such that it becomes rubbery, and
is deformed by applying a load to introduce a prestress. While maintaining the deformation, the temperature
is lowered below Tg. The material becomes glassy again and will largely remain in the deformed state. The
resulting product of this printing and programming process is a one-way shape memory polymer (SMP). The
SMP will not change its shape until it is heated above Tg, which will permanently transform the SMP into
the originally printed shape. Another single material 4D-printing method is the so-called partial-transition
mechanism (PTM) (Huang et al., 2012). Here, the structure is only partially heated. This causes some parts
of the structure have a rubbery behaviour and some parts to have a glassy behaviour. A prestress is stored in
the material in the same way as described for the DSM technique. The structure will deform once heated to a
temperature within the transition range.

A.2 Genetic algorithm topology optimization methods

Topology optimization in 4D-printing can be done with a heuristic approach, such as the use of a Genetic
Algorithm (GA). This type of algorithm is based on the principle of evolution. A population of µ candidate
solutions are created and their performance is tested with a fitness function F . A new generation is created
based on the best performing candidate functions from µ. The candidate functions that were not selected can
crossover and/or mutate, depending on the type of GA. This process is repeated until the fitness function value
F is below a certain threshold. Compared to the other methods, GA is somewhat computationally inefficient and
time-consuming. The GA method is used by Hamel et al. (2019) and Sossou et al. (2019) to perform topology
optimization. Both publications are limited to a low design resolution and two or three different materials and
no void. More information about these studies can be found in Section 2.4: ‘State-of-the-art’.

A.3 Solver settings

For the 2D model, a multifrontal massively parallel sparse direct solver (MUMPS) is used. This type of solver is
suitable for a wide range of problems (Amestoy et al., 2000), which is why it is the default solver in COMSOL. It
is a direct solver, which uses matrix factorization to directly solve systems of the form Ku = p. For geometrical
nonlinear problems, it is recommended to ramp up a loading parameter to its final value in sufficiently small
steps to solve the problem incrementally (COMSOL, 2008). By doing this, the solver will converge towards
the correct solution. In the problem that is modeled here, either the temperature or the prestress loading
parameters could be used for this purpose. The temperature loading parameter is already incremental and this
is sufficient to make the solver converge to the correct solution. Therefore, there is no need to ramp up another
loading parameter.

By default, COMSOL uses the ‘automatic’ Newton-Raphson nonlinear method. This method can find the roots
of a function vector of the form f(u) = p −K(u)u: it finds u such that f(u) = 0. To begin with, an initial
solution u0 should be found. In this study, the initial solution is chosen as zero. The following equation is used
to calculate the first iteration:
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u1 = u0 − Jf (u0)−1f(u0), (A.1)

where Jf (u0) is the Jacobian matrix, defined over the function vector f(u). The process is continued with more
iterations using the following equation:

un+1 = un − Jf (un)−1f(un), (A.2)

until the value of f(u) is below a certain threshold. It is desirable that for every iteration, the solution of f(u)
gets closer to zero, or in other words: |f(un+1)| < |f(un)|. However in some cases, an iteration can be steered
towards a region where there are no roots. This could cause the problem to not converge at all. Once it is
detected that the solution is diverging from the root (when |f(un+1)| > |f(un)|), COMSOL adds an extra step
to the algorithm. It finds udamped for |f(udamped)| < |f(un)|:

udamped = un + α(un+1 − un), (A.3)

where 0 < α ≤ 1 is a damping factor. If α = 1, there is no damping. The default method in COMSOL is
referred to as ‘automatic’, because it automatically finds a suitable damping factor for every iteration. Although
the introduction of this damping factor improves convergence, it decreases the computational speed because of
the extra computation steps per iteration. Therefore, problems with large deformations and/or many degrees
of freedom require a slightly different approach to speed up the computation process. The damping factor is
set to a constant value of 1, which means there is no damping at all. In COMSOL, this approach is called the
constant Newton method (Frei, 2013b).

The solver settings of the topology optimization study do are very similar to the initial study solver settings.
One difference is that the topology optimization uses the solution of the initial study as the initial solution. In
addition to that, the optimization module has its own solver where the method of moving asymptotes (MMA)
is used. MMA is an iterative method, meaning that the solution is approached in steps.

In the 2D model, the number of degrees of freedom is low enough to use a direct solver. However in the 3D
model, the number of degrees of freedom is much larger. With an iterative solver method, the solution is
approached in steps. The memory cost of this method is much smaller than that of a direct method. Therefore,
an iterative solver is preferred for large 3D models such as the model that is described in this chapter. A
downside of iterative solvers is that they are more sensitive and do not converge as easily as direct solvers (Frei,
2013a). The type of iterative solver that is used is the conjugate gradients method.

A.4 Research paper

The following six pages comprise a scientific paper titled “Modeling, Topology Optimization and Experimental
Validation of Glass-Transition-Based 4D-Printed Polymeric Structures”, which is a product of the research
presented in this thesis. The paper will be submitted to 11th Int. Conference on Couple Problems in Science
and Engineering (COUPLED 2021), which will take place in Chia Laguna, South Sardinia, Italy on 13-16 June,
2021. The website of this conference can be visited using the following url:

https://congress.cimne.com/Coupled2021/frontal/default.asp

Please note that the research paper is not included in the thesis version that is uploaded to the TU Delft
repository for copyright reasons.
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