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ARTICLE INFO ABSTRACT

Keywords: Over the past decades, research on novel vanadate phosphors has gained increasing attention. The widely
Vaﬂﬁdate accepted mechanism that explains their broad absorption in the ultraviolet and their broad luminescence in the
Lt}llmmescencfe visible spectrum is based on energy levels derived from the molecular orbitals of isolated VO, tetrahedra, in which
gof:ientrans e the excitation is described as a charge transfer excitation. In this work, we critically examine both this mechanism

of luminescence in vanadates and two mechanisms that are often used to explain their luminescent efficiency. By
correlating published optical properties (e.g. excitation energies, Stokes shifts, and emission bandwidths) with
structural properties (e.g. bond lengths and bond angles) on 77 different vanadate phosphors, we find that there
is no strong evidence in favour of the proposed mechanisms used to describe luminescence as well as quenching
thereof. Instead, we suggest a mechanism in which the luminescent charge transfer state is not directly formed
upon photoexcitation but rather formed after initial electron trapping following bandgap excitation. The resulting

Self-trapped exciton

luminescent state is, therefore, likely to be more appropriately termed a self-trapped exciton.

1. Introduction

From the 1970s, George Blasse pioneered the research field of phos-
phors based on closed-shell transition metal ions. One such ion of signif-
icant interest is V>*, which in oxide structures almost exclusively forms
VO, tetrahedra that ought to be responsible for both broadband absorp-
tion of ultraviolet light and the emission of broadband visible light. At
that time, research was mainly focused on gaining fundamental knowl-
edge: the mechanism of luminescence and the structure-property rela-
tions [1]. Despite theoretical advancements, shortly before he retired at
the end of the twentieth century, Blasse noted that, based on the latest
EPR studies from the research group of Van der Waals, a detailed mech-
anism of luminescence in vanadates remained unknown: ‘The excited
state cannot even approximately be described in terms of molecular
orbitals of the tetrahedral ion.” [2,3]. Nevertheless, this mechanism of
luminescence in vanadates kept on being used and research shifted fo-
cus ever since from deepening theoretical knowledge to exploration of
a large number of novel compositions for practical applications.

As a notable exception that has gained a lot of attention in the field,
Nakajima et al. published a paper in 2010 in which they proposed to
have found a novel relationship between structural properties and in-
ternal quantum efficiency (IQE) in vanadates [4]. They proposed two
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criteria to obtain a high IQE: a small separation between vanadium
atoms and a large separation between vanadium and other cations. This
is different from the hypothesis made earlier by Blasse in 1977 [5]. He
suggested that a high rigidity of the VO, tetrahedron is required for
a high IQE, namely those with structures in which ions with a small
polarisability lie in the extension of the V-O bonds. It is Nakajima’s pro-
posed structure-property relationship that has been cited often in the
last decade to explain differences in IQE between different compounds.

In order to efficiently explore the immense space of possible vana-
date compositions to find novel and highly efficient phosphors, theoreti-
cal knowledge on the mechanisms of both luminescence and quenching
is paramount. However, these mechanisms for this class of phosphors
have not been a strong topic of debate in the last few decades. Therefore,
the main focus of this study is to discuss the current mechanisms pro-
posed for luminescence and quenching thereof in vanadate phosphors.

In aid of this, we have collected a large amount of data on the lu-
minescent and structural properties of 77 vanadate compositions from
the literature. This data allows us to test the proposed optical and struc-
tural correlations mentioned earlier. The discussion will be done in two
parts. Firstly, we discuss how the data can provide new insights into
the mechanism of luminescence and how they stand in contrast to the
widely accepted mechanism. Secondly, we show that the data do not
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Fig. 1. Molecular orbital diagram of the tetrahedral vanadate ion [VO,]°~. The
molecular orbital with symmetry label 1t, is the highest occupied molecular
orbital, whereas that with 2e is the lowest unoccupied molecular orbital. Repro-
duced from Fotiev et al. [7].

support the structure-efficiency relations put forth by both Blasse and
Nakajima. Before starting our discussion, we provide a brief description
of the mechanism of luminescence in vanadates that has been widely ac-
cepted. This mechanism was first proposed in 1958 by Ballhausen and
Liehr on the basis of the Van Vleck molecular orbital theory [6].

Based on molecular orbital (MO) theory, the origin of luminescence
from closed shell configuration transition metal ions coordinated by
four oxygen atoms (transition metals with no d-electrons, also described
as d0-tetroxo-ions), is thought to be the result of the transition of an
electron between a triply-degenerate non-bonding #; MO to a doubly
degenerate anti-bonding e* MO, which are respectively the highest oc-
cupied and lowest unoccupied MOs [1,7]. Fig. 1 shows the molecular
orbitals of the [V04]3‘ centre formed by the combination of atomic
orbitals from vanadium and oxygen [7]. As #; is only formed by lin-
ear combinations of oxygen 2p_ orbitals, and e¢* is mainly characterised
by 3d orbitals of vanadium [3,7], the transition is often described as a
charge transfer (CT) transition in which the oxygen atoms collectively
transfer electron density to their central vanadium ion. In T; symmetry,
the ground state with electron configuration t? is represented by the
Mulliken symbol A, while the excited-state configuration t? 2e gives
rise to the excited states of symmetry, in order of increasing energy, the
triplet states 3T, and 3T,, and the singlet states ! T and ! T,. Fig. 2 shows
an energy level diagram of the processes that occur between these states.
The energy difference between the singlet states was calculated to be on
the order of 1 eV, while it is only a few tens of meV between the triplet
states [5]. Only the transition between lAl and 'T2 is both spin and
electric-dipole allowed, whereas !A; — ' T, is electric-dipole forbidden,
'A, = 3T, is spin forbidden, and 'A; — 3T, is both electric-dipole and
spin forbidden. The excitations are then described as transitions from
the ground state to the singlet states, whereas luminescence occurs, af-
ter intersystem crossing, from the triplet states to the ground state. The
broad character of the excitation and emission spectra is explained by
significant lattice relaxations that accompany the transitions. The long
excited-state lifetime that is often measured, on the order of microsec-
onds, can then be explained by the forbidden character of the 3T, /3T,
— 1A, transitions. Within this theory, both excitation and emission pro-
cesses are described as transitions involving the whole [VO4]3‘ centre
and the four oxygens never lose their equivalence.
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Fig. 2. Energy level diagram illustrating electronic transitions in the tetrahedral
vanadate ion [VO,]°~ (T, symmetry). Blue arrows indicate transitions accompa-
nying absorption from the ground state ('A,) to the excited singlet states (' T,,
I'T,). Red arrows indicate transitions accompanying emission from the triplet
excited states (*T,, >T,) back to the ground state. The inset highlights the small
energetic difference between the triplet states.

2. Methods

Publications reporting the luminescent and structural properties of
vanadate phosphors were gathered using the search engines Scopus and
Google Scholar. Only data in which measurements were performed at
room temperature were used. Furthermore, compounds in which the
host lattices contained optically active ions (e.g. the commonly reported
Bi3* and Eu3t containing vanadates) or (partly) contained anions other
than oxygen (e.g. Sr,VO,Cl) were excluded. Due to the small ionic
radius of V3*, its coordination number is rarely greater than 4, with
only a few known exception cases with coordination number 5 (e.g.
V,05, Ca,V,0,, MV30g (M=K,Rb,Cs) [8-10]) and 6 (e.g. Ba,MVOg,
M=Bi,La,Y,Ln [11,12]). As the coordination number of V>* is expected
to strongly influence optical properties, and because of the lack of data
on vanadates with higher coordination numbers, only compounds with
tetrahedral coordinated vanadium atoms were included. Of the resulting
119 publications [4,7,13-129], the following properties were noted to
the extent that they were available: Internal quantum efficiency, highest
wavelength of the local maxima of the excitation spectrum, wavelength
of the maximum, and full width half maximum, of the emission spec-
trum, average excited-state lifetime, space group of the crystal struc-
ture, and structural arrangement type of the [VO4]3‘ centres (isolated
(ortho-), dimer (pyro-), chain (meta-), etc.). The highest quality Powder
Diffraction Files (PDFs) matching the composition and space group were
obtained from the ICDD database as Crystallographic Information Files
(CIFs). Through this approach, we obtained the optical properties of 77
different vanadate phosphors, including the crystalline characteristics of
55 of them (a valid CIF was not available for some compounds). Custom
Python programmes were written to read out the CIFs and analyse the
structure-property relations. Linear regression between tested parame-
ters was performed using an ordinary least squares model implemented
in the Python package statsmodels. The quality of the fit was evaluated
using the coefficient of determination (R?) and the p-value associated
with the slope parameter. Relationships with p < 0.01 were considered
statistically significant. Table 1 gives a list of selected properties of all
vanadates investigated in this study.
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Table 1
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Spectroscopic and structural properties of all studied vanadates (reported for room temperature). The quantum yield and excited-state lifetime are the highest reported
values, whereas the 1 excitation maximum, emission maximum and emission width are average values along with their standard deviation. *The lifetimes reported
in these publications appear to have been calculated incorrectly.

Index Compound Quantum Excitation Emission Emission Excited-state Powder [VO,] 3- Reference(s)
Yield (%) Maximum (eV) Maximum (eV) Width (eV) lifetime (us) Diffraction File Type

1 AgCa,Zn,V;0,, - 3.71 2.18 0.62 158 00-050-0393 isolated [13]

2 Ba,V,0, 47.5 3.60 + 0.09 2.44 + 0.04 0.65 + 0.050 1.39 00-039-1432 dimer [7,14-19],

3 Ba,MgV,0,, - 3.78 2.47 - - 04-022-4896 dimer [20]

4 Ba;V,0q 7.3 3.61 + 0.02 2.50 + 0.05 0.62 + 0.024 16.9 00-029-0211 isolated [7,21-24]

5 Ba;YV,0q - 3.74 £ 0.13 2.67 + 0.15 0.62 + 0.005 - - isolated [22,25]

6 Ba,ZnV,0,, - 3.75 2.40 - - 04-022-4897 dimer [20]

7 BagLaV,0,, - 3.54 2.44 0.54 - - isolated [26]

8 Ca;zV,0q 0.7 3.85 2.30 + 0.07 0.82 - 04-011-1043 dimer [4,7]

9 Ca,LaV;0,4 31.5 3.49 2.34 0.54 1.89 04-027-0897 isolated [27]

10 CagMg;ZnV,0,, 58 3.58 2.43 0.57 - 04-009-9724 isolated [28]

11 CasMg,Ve0,, 41.6 3.55+0.08 2.32 +0.02 0.61 + 0.054 11.01 00-034-0014 isolated [29-32]

12 CagZn,VgO,, 21.9 3.45 + 0.04 2.28 + 0.02 0.54 + 0.049 7.34 00-053-1164 isolated [29,32,33]

13 CaglaV, 0y, - 3.54 2.53 0.55 - - isolated [26]

14 Cs,CaV,0, - 3.41 2.21 +0.01 0.65 + 0.050 46 04-017-2249 dimer [34,35]

15 Cs,ZnV,0,, - 3.77 2.30 0.61 - - chain [36]

16 Cs3VO, 90 3.32 2.40 0.69 - - - [371

17 Cs5V504, 85.2 3.34 +0.03 2.39 0.65 + 0.056 0.0245 - - [38-40]

18 CsBavo, - - 2.52 - 17 - isolated [71

19 CsCaVO, - - 2.55 - 20 - isolated [71

20 CsSrvo, - - 2.53 - 20 - isolated [7]

21 CsVO, 95.8 3.37 +£0.08 2.35+ 0.04 0.62 + 0.079 16.9 04-010-2780 chain [7,37,41-46]

22 Invo, - 3.89 +0.08 2.21 +0.10 0.60 + 0.068 69 00-048-0898 isolated [47-51]

23 K,CaVv,0, - 3.53 2.30 0.64 - 04-020-0187 dimer [35]

24 K,CsYV,0q - 3.38 2.46 0.63 - 04-001-9719 isolated [52]

25 K,MgV,0, - 3.52 2.33 + 0.02 0.61 + 0.020 22 04-009-0692 dimer [35,53]

26 K,ZnV,0, - - 2.46 0.70 53 04-023-1110 dimer [53]

27 K;LaV,0q 26 3.46 2.39 0.60 12.88 00-051-0094 isolated [54]

28 K;YV,04 47 3.67 2.39 0.59 18.12 04-019-7228 isolated [54]

29 KBavO, - - 2.49 - 17 04-016-3645 isolated [7]

30 KCa,Mg,V;0,, 78.9 3.67 +0.22 2.34 + 0.06 0.64 + 0.070 5.72 00-024-1044 isolated [55-59]

31 KCa,Zn,V;0,, 19.2 3.41 +£0.22 2.38 + 0.03 0.62 + 0.025 6.9 04-027-6626 isolated [60,61]

32 KCavoO, - - 2.52 - 8 00-056-0125 isolated [71

33 KLagV,0,5 - 3.68 2.67 0.16 - - isolated [621

34 KSrvo, - 3.50 2.42 + 0.09 0.76 7 04-027-7976 isolated [7,63]

35 KVO, 4 3.26 + 0.18 2.26 + 0.01 0.73 04-008-9439 chain [7,41,45]

36 Lavo, - 3.94 2.09 0.60 - 04-008-8070 isolated [64]

37 LiBaVO, - - 2.55 - 6 - isolated [71

38 LiCa,Mg,V;0,, 42.5 3.59 +0.11 2.42 + 0.02 0.57 + 0.009 73 04-015-3927 isolated [57,65,66]

39 LiCa,MgSrV;0;, 32.5 3.59 2.50 0.62 4.8 - isolated [67]

40 LiCa;MgV;0,, 69.3 3.80 + 0.07 2.55 + 0.06 0.70 + 0.066 17.52 01-086-5533 isolated [68-74]

41 LiCazZnV40,, 40.1 3.70 + 0.09 2.52 + 0.03 0.67 + 0.056 12.4 01-086-5532 isolated [74-81]

42 LiCavO, - - 2.54 - 4 - isolated [71

43 Lisrvo, - 3.72 2.42 + 0.04 0.60 6.86 - isolated [7,82]

44 LiZnVO, - 3.67 +0.24 2.35 + 0.04 0.56 + 0.048 105 04-016-8375 chain [83-85]

45 Luvo, - 4.17 + 0.06 2.77 + 0.08 0.54 + 0.205 17 00-017-0880 isolated [86-88]

46 Mg,BaV,0q4 - 3.90 2.31 0.69 1463* 01-072-2159 isolated [89]

47 Mg,V,0, - - 2.30 - - 04-008-6711 dimer [71

48 Mg;V,0q 15.8 3.73+0.12 2,19 +0.14 0.58 + 0.087 950* 01-073-0207 isolated [7,14,23,90]

49 Na,Mg,YV,0,, 22.4 3.61 +0.13 2.38 +0.05 0.60 +0.059 6.1 00-049-0412 isolated [56,91-95]

50 NaBaVvO, - - 2.53 - 6 04-008-3759 isolated [7]

51 NaCa,Mg,V30,, 36 3.73 £ 0.06 2.47 + 0.06 0.69 + 0.063 5.9 04-015-3927 isolated [57,59,96-99]

52 NaCa,Zn,V;0,, 11.4 3.6 2.52 0.58 9550* 04-014-2972 isolated [100]

53 NaCaVvVO, - - 2.51 - 3 04-009-4198 isolated [71

54 NaMg, V30, 26 3.33 2.39 0.69 - 04-015-9247 trimer [101]

55 NaMg,V;0,, 61 3.48 2.34 0.66 1.77 04-013-3807 isolated [102]

56 NaSr,Mg,V30,, 87.3 3.85 2.49 + 0.04 0.68 + 0.025 6.15 04-008-4894 isolated [56,59]

57 NaSrvo, - - 2.50 - 4 04-008-3758 isolated [71

58 NaVO, - - 2.11 + 0.01 - - 04-013-7268 chain [7,41]

59 Rb,CaV,0, - 3.65 + 0.04 2.23 +0.03 0.66 + 0.055 46 00-056-0367 dimer [34,35]

60 Rb,ZnV,0;, - 3.82 2.02 0.47 - - chain [36]

61 RbsLuV,0g 85 3.43 2.48 0.56 23.75 00-056-1429 isolated [103]

62 RbyYV,04 71 3.41 2.48 0.54 20.06 04-027-5719 isolated [103]

63 Rb;V,0,, - 3.44 2.42 0.59 - - - [401

64 RbBavO, - - 2.52 - 21 00-055-0516 isolated [71

65 RbCaLaV,0g 10 3.43 - - - - - [104]

66 RbCaVvO, - - 2.52 - 16 - isolated [71

67 RbSrvo, - - 2.52 - 25 - isolated [71

68 RbVO, 79 3.40 £ 0.12 2.34 + 0.04 0.65 + 0.105 - 04-008-9440 chain [7,41,45,105,106]

69 Scvo, 55.1 3.75 + 0.02 2.54 + 0.08 0.72 + 0.008 8.5 01-079-7028 isolated [50,107-109]

70 Sr,V,0, 14 3.56 + 0.05 2.31 +0.07 0.71 - 04-011-5542 dimer [7,14,15]

(continued on next page)
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Table 1 (continued)
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Index Compound Quantum Excitation Emission Emission Excited-state Powder [VO,1*~ Reference(s)
Yield (%) Maximum (eV) Maximum (eV) Width (eV) lifetime (us) Diffraction File Type

71 SryLav;0;, 32.7 3.53 2.39 0.62 4.24 - - [110]

72 Sr3V,0g 82 3.61 + 0.04 2.36 + 0.05 0.63 + 0.074 29.2 01-079-5615 isolated [4,7,23,111,112]

73 SrgV,04, 40 3.31 2.28 0.48 3.130 - [113]

74 SrgLaV,0,, - 3.54 2.44 0.54 - - - [26]

75 YVO, 3.90 + 0.09 2.76 + 0.12 0.67 + 0.097 38 00-017-0341 isolated [88,114-119]

76 Zn,V,0, - 3.71 + 0.06 2.34 + 0.01 0.45 + 0.025 - 01-070-9441 dimer [120,121]

77 Zn,V,0q 60 3.51 + 0.06 2.22 + 0.07 0.62 + 0.065 741.3* 04-019-7360 isolated [14,37,90,122-129]
3. Results & discussion 4.0

036
3.1. Discussion on localised excitation 3.9 1 015 075,
o8 @56
We will start our discussion on the description of the excitation in % 3.8 - o

vanadate phosphors as a (localised) charge-transfer transition within the ; 05 46
vanadate group. We will discuss how the excitation spectra differ both in g 3.7 4 P
shape and position from what would be expected based on MO-theory, S o ol 030
as well as how the energy of excitation and emission appear uncorre- < 36 - o f——""'——;;?_—i;
lated. % ——/____,__——”' ‘7:)] .’]i"
3.1.1. Sh itati G 35 L otar

.1.1. Shape and extent of excitation spectra X - * oss

Discrepancies can be found between the shape of the measured ex- Y 061 e

citation spectra and that theoretically predicted. As excitations in vana- § 344, o ek o
dates are considered localised transitions, the excitation spectrum is :Z
expected to consist of two peaks that belong to the 'A; — !T,/!IT, 3.3
transitions. For some reported excitation spectra, they indeed appear R2=0.04, p=0.18 foas
to consist of two peaks [18,32,39,54,99]. However, most of the exci- 3.2 - : 11.72

tation spectra reported are noticeably different, appearing to consist of
only one peak [16,47,65,98,113] or more than two [34,40,42,60,104].
More concerning is that the variation in the excitation spectra is also
large among different studies on the same compound. For example, for
the compound Cs,CaV,0,, one study reports a relatively simple and
narrow excitation spectrum, consisting of a relatively narrow band [35],
while a different study reports a complex and broad excitation spectrum,
consisting of multiple peaks, that continues to have considerable inten-
sity even beyond 10 eV [34]. One study measured similarly complex
excitation spectra for all ten vanadates studied [130], demonstrating
that efficient high-energy excitation is a general property rather than an
exception. These few studies reporting efficient excitation for high en-
ergies stand in contrast to the vast majority of the studies, which report
a strong drop in the intensity of the excitation spectra towards vacuum
UV. This discrepancy can probably be explained by the fact that most
studies do not correct (well) for the wavelength-dependent excitation
intensity, as commonly used light sources do not have strong emission
in the vacuum UV. It could be argued that the very broad excitation
spectra that extend into the vacuum UV can be explained by many dif-
ferent localised transitions based on higher-energy MOs within the VO,
tetrahedra, as suggested by Shul’gin et al. [130]. An alternative explana-
tion for the excitation spectra could be that the excitations correspond
to conventional bandgap excitations, whereby their complex and broad
shapes are dictated by the optical joint density of states.

3.1.2. Onset of excitation spectra

Discrepancies can also be found between the position of onset of the
measured excitation spectra and that theoretically predicted. Ronde and
Snijder reported a negative linear dependence between the average V-O
bond distance and the position of the excitation spectrum [131]. This
linear dependence was in agreement with the results of ab initio calcula-
tions on free [VO4]3’ ions with different V-O bond distances. Therefore,
they hypothesised that excitations in vanadate compounds can indeed
be considered as localised transitions in the vanadate group and that
the influence of the host lattice on the excitation spectrum would in
first order be described by a variation of the average V-O bond distance.
However, their experimental data were limited to only 7 compounds, 4

T T T T
1.55 1.60 1.65 1.70 1.75 1.80
Average V-0 Bond Distance (A)

Fig. 3. Energy of the 1* local maximum in the excitation spectrum against the
mean distance between oxygen and vanadium in the vanadate group. The red
line in the top left show the average uncertainty in the energy. The dashed line
shows a linear fit with R? = 0.04, p = 0.18, indicating no statistically significant
correlation. The numbers adjacent to the datapoints refer to compounds with
the same index in Table 1.
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Fig. 4. Energy of the 1* local maximum in the excitation spectrum against the
mean (weighed) oxidation state of the cations, other than vanadium, in the
phosphor. The green dashed line shows a linear fit with R* =0.37, p < 0.001,
indicating a statistically significant correlation.
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Fig. 5. Energy of the maximum in the emission spectrum against the energy of
the 1*" local maximum in the excitation spectrum. The red cross in the top left
shows the average uncertainties in the energy. The red dashed line shows a linear
fit with R? =0.03, p = 0.18, indicating no statistically significant correlation.

of which had the same average V-O bond distance of 1.71 A, but showed
a significant variation in the position of the excitation spectrum.

From our gathered data, we have performed a similar analysis, the
results of which paint a different picture. Fig. 3 shows the (lowest) peak
excitation energy compared to the average V-O bond distance. Most
compounds have an average V-O bond distance of ~ 1.72 A, indicated
in the figure as a vertical grey line, for which the variation in the peak
excitation energy is large. There appears to be no linear dependence be-
tween the average V-O bond distance and the peak excitation energy. In
contrast, the presence of other cations (other than vanadium) appears
to have a large influence on the peak excitation energy. In general, the
higher the average oxidation state, the higher the peak excitation en-
ergy, see Fig. 4. The vanadates with the lowest peak excitation energy
are those containing monovalent cations, such as NaVO;, KVO3, and
CsVOj3, while those with the highest peak excitation energy are those
containing trivalent cations, such as ScVO,, YVO,, and InVO,.

3.1.3. Stoke-shift of emission

For local transitions of the type 4 f-5d, as in Ce3*, 3d-3d, as in Cr3*,
and conventional charge transfer excitations, as in Yb** doped com-
pounds with their 2+/3+4 charge transfer level below the conduction
band, the emission peak wavelength is correlated with the excitation
peak wavelength. Given that excitation and luminescence in vanadates
are described as transitions localised in the VO, centre, it is reasonable
to expect the same correlation. In Fig. 5, the energy of the (lowest) peak
excitation energy is plotted against the peak emission energy. With few
exceptions, all vanadates have the first peak in their excitation spec-
trum within ~ 3.3 to 4.0 eV and their emission peak within ~ 2.2 to 2.6
eV, showing a notably larger variation in the excitation energy. Surpris-
ingly, there appears to be no significant correlation (p = 0.21) between
the peak excitation and the peak emission energy. The absence of a cor-
relation between excitation and emission peaks can also be found in
early work, where the V°* concentration was lowered by doping with
P5+; the wavelength of the onset of the excitation spectrum changes
significantly, while the peak wavelength of the emission spectrum stays
roughly constant [132].

Thus, it can be concluded that there is no significant correlation be-
tween the energy of the absorbing and emitting states. Therefore, we
believe that it is unlikely that both excitation and emission take place
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in isolated VO, centres. The absence of a correlation between excitation
and emission energy in turn means that there is a correlation between
the Stokes shift and excitation energy, as shown in Fig. 6. Note that the
term “Stokes shift” is used rather freely for vanadates since the electronic
transitions for excitation and emission are not the same (according to the
aforementioned mechanism); here it is only defined as the energy differ-
ence between the peaks of the excitation and emission spectra, similar
to previous research [132].

3.2. Proposal of alternative mechanism

Given a clear absence of the two excitation bands in many excita-
tion spectra expected for the !A; — 'T,/!T, transitions, the possibility
of high energy excitation demonstrated with high-UV excited lumines-
cence, the absence of a clear correlation between the structure of the
VO, tetrahedra and the excitation peak energy, the strong influence of
the composition on the onset of the excitation spectrum, and lastly, the
absence of a correlation between the onset of the excitation spectrum
and the emission energy, we hypothesize that the excitation process can-
not be described as a localised transition within a VO, centre, but can be
described by typical interband excitation. We further hypothesise that
after photoexcitation across the bandgap, the free electron and hole can
then localise on a VO, centre, effectively forming a self-trapped exci-
ton (STE), which can recombine radiatively. Fig. 7 illustrates the earlier
mentioned discrepancy between excitation spectra of Cs,CaV,0,, as
well as its emission spectrum, alongside a schematic depicting this lu-
minescent mechanism.

Note that the term self-trapped exciton has occasionally been used
previously to describe the excited state in vanadate phosphors [133,
134]. Confusingly, at the same time, these authors continue to de-
scribe the excitation process as a localised charge-transfer excitation.
The essential difference between these two descriptions lies in the ini-
tial state formed after photoexcitation: self-trapped excitons do not form
immediately upon excitation. Instead, photoexcitation initially gener-
ates free charge carriers or free excitons, which subsequently become
self-trapped. This is in contrast to the charge-transfer excitation model,
where localisation occurs immediately upon excitation. We will now dis-
cuss how this mechanism of bandgap excitation, followed by localised
emission, is in line with previous experimental and theoretical research.
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Fig. 7. Normalised excitation spectrum of Cs,CaV,0, measured at room temperature reported by Zubkov et al. and Slobodin et al. [34,35], respectively coloured
blue and purple. The relatively narrow excitation spectrum (coloured purple) represents the often reported excitation spectrum of vanadate phosphors in literature,
which is a consequence of inadequate correction for the intensity of the excitation light during measurement. Normalised emission spectrum of Cs,CaV,0, measured
at room temperature reported by Zubkov et al. [34], coloured red. The inset schematic figure illustrates the sequential processes we suggest to be integral to
photoluminescence of vanadates: interband excitation, hot carrier relaxation, electron polaron formation, self-trapped exciton formation, and radiative relaxation.

3.2.1. Electron polaron formation

Yang. et al. measured the time-dependent formation of V** in BiVO,
after photoexcitation with transient absorption spectroscopy by measur-
ing the formation of the d-d absorbing band [135]. Most importantly,
they measured the formation of V4* to take significantly longer than the
instrument response function, suggesting that V** is not formed instan-
taneously when BiVO, is photoexcited. They proposed the following
mechanism of luminescence in BiVO,. First, free electrons and holes
would be formed. Then within a picosecond, the electron would localise
in V3* and is described as a small electron polaron, forming V4*. The
hole remains delocalised significantly longer but is eventually also cap-
tured, on a nanosecond timescale, by the electron polaron to form a
self-trapped exciton. The VO, centre on which the STE is located was
calculated to be significantly distorted by expansion of the V-O bond
lengths.

This mechanism is similar to that described for YVO, by Feng et al.,
in which 3 excited-state configurations of the STE were calculated using
density functional theory, in which an electron is localised on V>* and
the hole is localised on 4, 2 or 1 oxygen atoms [136]. It was calculated
that as the number of oxygen atoms accommodating the hole decreases,
the energy of the STE decreases, the symmetry of the tetrahedron de-
creases (from D,,; to C,, to C;), and the expansion of V-O bond lengths
accommodating the hole increases. Note that for the most stable STE
configuration, the bond length of V-O accommodating the hole was cal-
culated to increase by ~ 0.20A (~ 12%). This increase in the length of
the V-O bond is similar to that calculated by Blasse (0.15 1°\) based on
experiments in SiOZ:V5+ [5]. The authors then assign the blue emission
from YVO, to the electron-hole recombination from this STE.

The spontaneous lowering of the symmetry of the vanadate group
upon excitation can be expected based on the Jahn-Teller theorem,
which states that any nonlinear geometry with a spatially degenerate
electronic state will lower its energy by undergoing a geometric distor-
tion that removes that degeneracy [137]. As all excited states of the
VO, centre with T; symmetry described by MO theory are triply degen-
erate, the centre is expected to undergo a static Jahn-Teller distortion,
at which point the group symmetry can no longer be T, and the or-
bital degeneracy of the triplet states must be lifted [3]. Through electro
paramagnetic resonance (EPR) studies on the lowest spin triplet state,
such a static Jahn-Teller distortion has indeed been shown to occur in

the dO-tetroxo-ions [VO,]3~ [3,138-140] and [CrO,4]>~ [139,141]. Pho-
toexcitation was hypothesised to lower the symmetry of the VO, centre
from T, to C;,, in which the length of a V-O bond is significantly ex-
tended, whereas the others remain similar. The observation of excited
states with even lower symmetry, such as C; in YVO,, could then be ex-
plained by the reduction of the symmetry of a VO, centre that already
has a ground state of low symmetry [3].

3.2.2. Hole localisation

It is interesting to check whether evidence of localisation of the hole
on a single oxygen atom can be found within the emission spectra. We
expect that the localisation of the hole on one or more oxygen atoms
leads to expansion of their concomitant V-O bond to minimise the en-
ergy of the system. Then, when the VO, centres already have a lower
symmetry than T, in the ground state (as is often the case), we expect
that the hole would be localised on the oxygen atom with the largest
V-O bond length. It has also been suggested that the length of the V-O
bond and the emission energy are negatively correlated [142]. There-
fore, if the localisation of the hole on the longest V-O bond is generally
the case, then a correlation between the maximum V-O bond length and
emission energy would be expected.

At first sight, our results give some indication of this. The corre-
lation between the maximum length of the V-O bond and the emission
energy appears significant (p =0.002) while the correlation between the
average length of the V-O bond and the peak emission energy is not sig-
nificant (p = 0.11), respectively, shown in Figs. 8A and 8B. However,
it is noticeable that the vanadates with the highest maximum V-O bond
length are also those in which the VO, centres form dimers, trimers or
chains (coloured blue in Fig. 8) instead of being isolated (coloured red).
Therefore, it could also be the case that the connectivity between the
VO, centres plays a role, rather than the maximum V-O bond length.
Together with the low coefficient of determination, no conclusive re-
marks about the localisation of hole based on the emission spectra can
be made.

3.2.3. Free exciton emission

In some rare cases, at cryogenic temperatures, sharp exciton emis-
sion can be observed in vanadate compounds in addition to their typical
broad emission [143]. Previously, the broadband feature was attributed
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p =0.002, indicating a statistically significant correlation. B) Energy of the maximum in the emission spectrum against the mean distance between oxygen and
vanadium in the vanadate group. The red dashed line shows a linear fit with R* =0.05, p = 0.11, indicating no statistically significant correlation.

to defect emission [143,144]. It should be noted that CsVOs, in which
this exciton emission has been observed, has an IQY close to unity [43].
We find the attribution of defects to the broad luminescence band of
CsVO; improbable, as with few exceptions, defects often lead to quench-
ing rather than efficient emission, and as the excitation and emission
spectra, as well as the excited-state lifetime, are similar to those of other
vanadates. Rather, we propose that free exciton emission in vanadates
can now also be understood from the mechanism of luminescence ini-
tiated with polaron formation; According to the Mott and Stoneham
model, polaron formation can have an activation barrier [145,146], and
due to this barrier, photogenerated delocalised carriers have a sufficient
lifetime at low temperatures to result in observable free exciton emis-
sion.

3.2.4. Overview hypothesis

In summary, we hypothesise that the description of the mechanism
of excitation and luminescence as localised CT transitions in the VO,
centre described by molecular orbital theory is incorrect. Rather, the
excitation has a delocalised nature. It is a bandgap excitation that re-
sults in the formation of free charge carriers. Then, the electrons rapidly
localise on V>*, forming electron polarons. Subsequently, the holes com-
bine with the electron polarons to form self-trapped excitons. Possibly,
in these self-trapped excitons, the hole wavefunction localises on the
oxygen atom most distant from the central vanadium atom. This trap-
ping is accompanied by a significant distortion of the centre in which the
V-0 bond with the hole becomes elongated. The emission then results
from the recombination of the self-trapped excitons.

Such a mechanism can explain the large variation in the energetic
position of the excitation spectra among compounds, its comparatively
weak dependence on the maximum emission wavelength, the observa-
tion of delayed V** formation, the strong localised character of the
excited state accompanied with deformations of the VO, tetrahedron
measured and predicted in EPR and ab initio studies, and the co-existence
of sharp free-exciton and broad emission.

3.3. The suggested structure-efficiency relations
For many applications of phosphors, the luminescence efficiency is

of utmost importance. The origin of quenching can be categorised into
two types: nonradiative decay within a luminescent centre, which we

will refer to as thermal quenching, and nonradiative decay induced by
neighbouring lattice defects, which we will refer to as defect quench-
ing. Note that the degree of defect quenching can also increase with
temperature due to the possibility of thermally assisted migration of the
excitation, as is the case for vanadates [134]. If the origin of quench-
ing is by defects, then the phosphor is not intrinsically limited to have a
low IQY and there is room for improvement by optimisation of the syn-
thesis conditions to lower the amount of defects, or by decreasing the
mobility of the excited state by lowering the amount of activators be-
tween which migration can occur. In contrast, if the origin is thermal
quenching, the IQY is intrinsically limited and cannot be improved with-
out changing the composition of the host lattice. The quenching models
proposed by Blasse and Nakajima, both forms of thermal quenching,
have commonly been used to explain quenching in vanadates. We will
describe these models and test their validity with data from literature.

3.3.1. Blasse’s hypothesis on internal quenching

Following the Mott-Seitz model of luminescence [147], the rate of
thermal quenching is exponentially dependent on the energy of a sin-
gle activation barrier to transition from the excited state to the ground
state through a crossover point. If the activation barrier is sufficiently
low, nonradiative relaxation via the crossover point becomes dominant
over radiative relaxation, resulting in a low IQE. As the activation bar-
rier for thermal quenching decreases with the decreasing position of
the absorption band edge, the temperature at which thermal quench-
ing becomes significant, the quenching temperature, should decrease
with decreasing position of the absorption band. Blasse noted that this
general relationship applies to d0-ions with 6-fold coordination, such
as WOt in [WOG]G‘, but fails for those with 4-fold coordination [148].
In agreement, we also found that there is no relationship between the
peak excitation energy and the IQY for the vanadates (see Figure S1). As
charge transfer transitions are accompanied by significant lattice relax-
ation, the change in configurational coordinate, also called the Frank-
Condon (FC) offset, is also large [1]. For some dO-tetroxo-ions, such as
[WO4]2_, the FC offset can be sufficiently large and the excitation en-
ergy sufficiently low, so that the energy of the crossover point is lower
than the excitation energy (the Dexter-Klick-Russell model) and, as a
consequence, quenching does not require phonons [149,150]. As the
FC offset and activation barrier for thermal quenching are negatively
correlated, Blasse suggested that vanadate groups would be able to lu-
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minescence efficiently if they were incorporated into a stiff lattice [2,5],
similar to what had been observed for many other luminescent centres
[151]. A stiff lattice would resist the relaxation of the lattice accompa-
nying the electronic transitions in the VO, centre, thereby decreasing
the FC offset of the luminescent state and increasing the activation bar-
rier, which in turn results in a higher IQE. Blasse defined stiff lattices
as those composed of ions with low polarisability, i.e. those with small
ionic radii and high oxidation states. Furthermore, since it was expected
that the relaxation of the lattice occurred predominantly by expansion
of the V-O bond, he suggested that crystal structures in which ions with
low polarisability lie on the produced part of the V-O bond, that is, an an-
gle of the V-O-M bond close to 180°, would prevent thermal quenching.
Examples of phosphors that meet these criteria are YVO, and SiO:V>*.

However, as shown in Fig. 9, there appears to be no correlation be-
tween the quantum efficiency and the max. V-O-M bond angle. Although
it is difficult to capture the polarisability of the atoms surrounding the
VO, centres in a single number, the mean polarisability of the cations
(excluding vanadium) was calculated and is indicated with the colours
blue (low polarisability) to red (high polarisability) in Fig. 9. In con-
trast to Blasse’s prediction, vanadate phosphors with the highest IQY are
those with highly polarisable ions such as Rb*™ and Cs*. In fact, in the
series of alkali vanadates MVO3, no luminescence is often reported for
LiVOs, the “stiffest” of these lattices, and it increases sharply across the
series from NaVO5; to CsVO5 [4,7]. Note that the crystal structure does
not change significantly in these series [152]. Similar trends have been
observed in other series of alkali vanadates [7], see Fig. 10. Given the
absence of a correlation between the V-O-M bond angle and the internal
quantum yield, as well as the observation that luminescence efficiency is
generally higher for compounds containing highly polarizable ions, we
conclude that high lattice stiffness is not a reliable criterion for efficient
luminescence in vanadates.

Blasse also predicted that the stiffness of the lattice would influence
the width and emission of the emission spectrum. As the stiffness of the
lattices increases, the FC offset of the luminescent state is expected to
decrease, and should therefore generally be accompanied by a decreas-
ing width and increasing peak emission energy of the emission spectrum.
Note that normally the Stokes shift should decrease, but as the electronic
states for excitation and emission are expected to be different, the use
of the peak emission energy is more appropriate. Although we did find
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a statistically significant relation between the max. V-O-M bond angle
and the peak emission energy (see Figure S2), we did not for the max. V-
O-M bond angle and emission width (see Figure S3). It is noticeable that
lattices with a high max. V-O-M angles, namely K;LaV,0g, Rb3YV,Og,
Rb;LuV,0g, and Zn,V,0,, with respectively La**, Y3*, Lu’* and Zn?*
on the produced part of the V-O bonds, have below average width, in line
with Blasse’s prediction. However, many lattices that consist of highly
polarisable atoms and have a relatively low max. V-O-M bond angles
also show relatively high energy and low width of emission. In light of
these observations, we tentatively conclude that Blasse’s description of
the stiffness of the vanadate group is not a reliable predictor of the FC
offset, the energy of the emitting state, and the degree of quenching.
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3.3.2. Nakajima’s hypothesis on internal quenching

Nakajima et al. measured the quantum yield of vanadate oxides,
M*VOs3, M7*V,0, and M3*V,0g (M* =Li, Na, K, Rb, and Cs; M?* = Mg,
Ca, Sr, Ba, and Zn) and analysed their crystalline properties [4]. They
suggested that IQY increases with decreasing separation between vana-
dium atoms and with increasing separation between the vanadium
atoms and other cations. They explained their results by hypothesising
that “strong V-V interactions” and “weak M-V interactions” are required
to obtain a high IQY. To support their hypothesis, they suggested a
mechanism in which “strong V-V interactions” and “weak M-V interac-
tions” lead to enhanced exciton diffusion. They also hypothesized that
such enhanced exciton diffusion leads to a longer lifetime of the sin-
glet states, and that there is an activation barrier for the transition from
the singlet states to the triplet states, which can be reduced by dynamic
Jahn-Teller distortions. A long singlet lifetime can then facilitate inter-
system crossing. As they propose nonradiative relaxation occurs from
the singlet states, enhanced intersystem crossing, in turn, increases the
IQY. This model was put forth by Nakajima and has often been used to
explain differences among compounds and even synthesis conditions.

In Figs. 11 and 12, we show the IQY as a function of, respectively,
the smallest V-V and M-V distance. From these figures, it is evident that
there are no clear relationships between these properties and the IQY.
Furthermore, if dynamic Jahn-Teller distortions, and thereby phonons,
are required to facilitate intersystem crossing, then the luminescence
of vanadates should be phonon-assisted. However, such a rise of the
luminescence intensity with increasing temperature is rarely observed.
Rather, the luminescence efficiency is often reported to decrease mono-
tonically with increasing temperature [5].

4. Conclusions

By analysing past experimental research, we have demonstrated that
excitations in vanadate phosphors are unlikely to be localised charge-
transfer transitions, in contrast to the established luminescent mecha-
nism. Rather, based on the broad character of the excitation spectra,
the absence of a correlation between the excitation spectrum and VO,
structure, and the strong influence of the host composition on the excita-
tion spectrum, we hypothesise that excitations are interband excitations.
Furthermore, based on the observation of delayed V** formation and
various EPR and ab initio studies, we hypothesise that free electrons are
capable of forming small polarons localised on V3* and subsequently
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form self-trapped excitons, which are responsible for broad and Stokes-
shifted luminescence. By analysing luminescent characteristics against
structural properties, we also demonstrated that there is no strong evi-
dence for the two mechanisms proposed by Blasse and Nakajima, which
are often used to explain quenching in vanadate phosphors.
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