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Over the past decades, research on novel vanadate phosphors has gained increasing attention. The widely 
accepted mechanism that explains their broad absorption in the ultraviolet and their broad luminescence in the 
visible spectrum is based on energy levels derived from the molecular orbitals of isolated VO4 tetrahedra, in which 
the excitation is described as a charge transfer excitation. In this work, we critically examine both this mechanism 
of luminescence in vanadates and two mechanisms that are often used to explain their luminescent efficiency. By 
correlating published optical properties (e.g. excitation energies, Stokes shifts, and emission bandwidths) with 
structural properties (e.g. bond lengths and bond angles) on 77 different vanadate phosphors, we find that there 
is no strong evidence in favour of the proposed mechanisms used to describe luminescence as well as quenching 
thereof. Instead, we suggest a mechanism in which the luminescent charge transfer state is not directly formed 
upon photoexcitation but rather formed after initial electron trapping following bandgap excitation. The resulting 
luminescent state is, therefore, likely to be more appropriately termed a self-trapped exciton.

1. Introduction

From the 1970s, George Blasse pioneered the research field of phos
phors based on closed-shell transition metal ions. One such ion of signif
icant interest is V5+, which in oxide structures almost exclusively forms 
VO4 tetrahedra that ought to be responsible for both broadband absorp
tion of ultraviolet light and the emission of broadband visible light. At 
that time, research was mainly focused on gaining fundamental knowl
edge: the mechanism of luminescence and the structure-property rela
tions [1]. Despite theoretical advancements, shortly before he retired at 
the end of the twentieth century, Blasse noted that, based on the latest 
EPR studies from the research group of Van der Waals, a detailed mech
anism of luminescence in vanadates remained unknown: ‘The excited 
state cannot even approximately be described in terms of molecular 
orbitals of the tetrahedral ion.’ [2,3]. Nevertheless, this mechanism of 
luminescence in vanadates kept on being used and research shifted fo
cus ever since from deepening theoretical knowledge to exploration of 
a large number of novel compositions for practical applications.

As a notable exception that has gained a lot of attention in the field, 
Nakajima et al. published a paper in 2010 in which they proposed to 
have found a novel relationship between structural properties and in
ternal quantum efficiency (IQE) in vanadates [4]. They proposed two 
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criteria to obtain a high IQE: a small separation between vanadium 
atoms and a large separation between vanadium and other cations. This 
is different from the hypothesis made earlier by Blasse in 1977 [5]. He 
suggested that a high rigidity of the VO4 tetrahedron is required for 
a high IQE, namely those with structures in which ions with a small 
polarisability lie in the extension of the V-O bonds. It is Nakajima’s pro
posed structure-property relationship that has been cited often in the 
last decade to explain differences in IQE between different compounds.

In order to efficiently explore the immense space of possible vana
date compositions to find novel and highly efficient phosphors, theoreti
cal knowledge on the mechanisms of both luminescence and quenching 
is paramount. However, these mechanisms for this class of phosphors 
have not been a strong topic of debate in the last few decades. Therefore, 
the main focus of this study is to discuss the current mechanisms pro
posed for luminescence and quenching thereof in vanadate phosphors.

In aid of this, we have collected a large amount of data on the lu
minescent and structural properties of 77 vanadate compositions from 
the literature. This data allows us to test the proposed optical and struc
tural correlations mentioned earlier. The discussion will be done in two 
parts. Firstly, we discuss how the data can provide new insights into 
the mechanism of luminescence and how they stand in contrast to the 
widely accepted mechanism. Secondly, we show that the data do not 
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Fig. 1. Molecular orbital diagram of the tetrahedral vanadate ion [VO4]3−. The 
molecular orbital with symmetry label 1t1 is the highest occupied molecular 
orbital, whereas that with 2e is the lowest unoccupied molecular orbital. Repro
duced from Fotiev et al. [7].

support the structure-e�iciency relations put forth by both Blasse and 
Nakajima. Before starting our discussion, we provide a brief description 
of the mechanism of luminescence in vanadates that has been widely ac
cepted. This mechanism was first proposed in 1958 by Ballhausen and 
Liehr on the basis of the Van Vleck molecular orbital theory [6].

Based on molecular orbital (MO) theory, the origin of luminescence 
from closed shell configuration transition metal ions coordinated by 
four oxygen atoms (transition metals with no d-electrons, also described 
as 𝑑0-tetroxo-ions), is thought to be the result of the transition of an 
electron between a triply-degenerate non-bonding 𝑡1 MO to a doubly 
degenerate anti-bonding 𝑒∗ MO, which are respectively the highest oc
cupied and lowest unoccupied MOs [1,7]. Fig. 1 shows the molecular 
orbitals of the [VO4]3− centre formed by the combination of atomic 
orbitals from vanadium and oxygen [7]. As 𝑡1 is only formed by lin
ear combinations of oxygen 2𝑝𝜋 orbitals, and 𝑒∗ is mainly characterised 
by 3𝑑 orbitals of vanadium [3,7], the transition is often described as a 
charge transfer (CT) transition in which the oxygen atoms collectively 
transfer electron density to their central vanadium ion. In T𝑑 symmetry, 
the ground state with electron configuration 𝑡61 is represented by the 
Mulliken symbol 1A1, while the excited-state configuration 𝑡512𝑒 gives 
rise to the excited states of symmetry, in order of increasing energy, the 
triplet states 3T1 and 3T2, and the singlet states 1T1 and 1T2. Fig. 2 shows 
an energy level diagram of the processes that occur between these states. 
The energy difference between the singlet states was calculated to be on 
the order of 1 eV, while it is only a few tens of meV between the triplet 
states [5]. Only the transition between 1A1 and 1T2 is both spin and 
electric-dipole allowed, whereas 1A1 →

1T1 is electric-dipole forbidden, 
1A1 → 3T2 is spin forbidden, and 1A1 → 3T1 is both electric-dipole and 
spin forbidden. The excitations are then described as transitions from 
the ground state to the singlet states, whereas luminescence occurs, af
ter intersystem crossing, from the triplet states to the ground state. The 
broad character of the excitation and emission spectra is explained by 
significant lattice relaxations that accompany the transitions. The long 
excited-state lifetime that is often measured, on the order of microsec
onds, can then be explained by the forbidden character of the 3T2/3T1
→ 1A1 transitions. Within this theory, both excitation and emission pro
cesses are described as transitions involving the whole [VO4]3− centre 
and the four oxygens never lose their equivalence.

Fig. 2. Energy level diagram illustrating electronic transitions in the tetrahedral 
vanadate ion [VO4]3− (T𝑑 symmetry). Blue arrows indicate transitions accompa
nying absorption from the ground state (1A1) to the excited singlet states (1T1, 
1T2). Red arrows indicate transitions accompanying emission from the triplet 
excited states (3T1, 3T2) back to the ground state. The inset highlights the small 
energetic difference between the triplet states.

2. Methods

Publications reporting the luminescent and structural properties of 
vanadate phosphors were gathered using the search engines Scopus and 
Google Scholar. Only data in which measurements were performed at 
room temperature were used. Furthermore, compounds in which the 
host lattices contained optically active ions (e.g. the commonly reported 
Bi3+ and Eu3+ containing vanadates) or (partly) contained anions other 
than oxygen (e.g. Sr2VO4Cl) were excluded. Due to the small ionic 
radius of V5+, its coordination number is rarely greater than 4, with 
only a few known exception cases with coordination number 5 (e.g. 
V2O5, Ca2V2O7, MV3O8 (M=K,Rb,Cs) [8--10]) and 6 (e.g. Ba2MVO6, 
M=Bi,La,Y,Ln [11,12]). As the coordination number of V5+ is expected 
to strongly influence optical properties, and because of the lack of data 
on vanadates with higher coordination numbers, only compounds with 
tetrahedral coordinated vanadium atoms were included. Of the resulting 
119 publications [4,7,13--129], the following properties were noted to 
the extent that they were available: Internal quantum efficiency, highest 
wavelength of the local maxima of the excitation spectrum, wavelength 
of the maximum, and full width half maximum, of the emission spec
trum, average excited-state lifetime, space group of the crystal struc
ture, and structural arrangement type of the [VO4]3− centres (isolated 
(ortho-), dimer (pyro-), chain (meta-), etc.). The highest quality Powder 
Diffraction Files (PDFs) matching the composition and space group were 
obtained from the ICDD database as Crystallographic Information Files 
(CIFs). Through this approach, we obtained the optical properties of 77 
different vanadate phosphors, including the crystalline characteristics of 
55 of them (a valid CIF was not available for some compounds). Custom 
Python programmes were written to read out the CIFs and analyse the 
structure-property relations. Linear regression between tested parame
ters was performed using an ordinary least squares model implemented 
in the Python package statsmodels. The quality of the fit was evaluated 
using the coefficient of determination (𝑅2) and the p-value associated 
with the slope parameter. Relationships with 𝑝 < 0.01 were considered 
statistically significant. Table 1 gives a list of selected properties of all 
vanadates investigated in this study.
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Table 1
Spectroscopic and structural properties of all studied vanadates (reported for room temperature). The quantum yield and excited-state lifetime are the highest reported 
values, whereas the 1𝑠𝑡 excitation maximum, emission maximum and emission width are average values along with their standard deviation. *The lifetimes reported 
in these publications appear to have been calculated incorrectly.

Index Compound Quantum Excitation Emission Emission Excited-state Powder [VO4]
3− Reference(s) 

Yield (%) Maximum (eV) Maximum (eV) Width (eV) lifetime (μs) Diffraction File Type 
1 AgCa2Zn2V3O12 - 3.71 2.18 0.62 158 00-050-0393 isolated [13] 
2 Ba2V2O7 47.5 3.60 ± 0.09 2.44 ± 0.04 0.65 ± 0.050 1.39 00-039-1432 dimer [7,14--19], 
3 Ba3MgV4O14 - 3.78 2.47 - - 04-022-4896 dimer [20] 
4 Ba3V2O8 7.3 3.61 ± 0.02 2.50 ± 0.05 0.62 ± 0.024 16.9 00-029-0211 isolated [7,21--24] 
5 Ba3YV2O8 - 3.74 ± 0.13 2.67 ± 0.15 0.62 ± 0.005 - - isolated [22,25] 
6 Ba3ZnV4O14 - 3.75 2.40 - - 04-022-4897 dimer [20] 
7 Ba9LaV7O24 - 3.54 2.44 0.54 - - isolated [26] 
8 Ca3V2O8 0.7 3.85 2.30 ± 0.07 0.82 - 04-011-1043 dimer [4,7] 
9 Ca4LaV3O13 31.5 3.49 2.34 0.54 1.89 04-027-0897 isolated [27] 
10 Ca5Mg3ZnV6O24 58 3.58 2.43 0.57 - 04-009-9724 isolated [28] 
11 Ca5Mg4V6O24 41.6 3.55 ± 0.08 2.32 ± 0.02 0.61 ± 0.054 11.01 00-034-0014 isolated [29--32] 
12 Ca5Zn4V6O24 21.9 3.45 ± 0.04 2.28 ± 0.02 0.54 ± 0.049 7.34 00-053-1164 isolated [29,32,33] 
13 Ca9LaV7O24 - 3.54 2.53 0.55 - - isolated [26] 
14 Cs2CaV2O7 - 3.41 2.21 ± 0.01 0.65 ± 0.050 46 04-017-2249 dimer [34,35] 
15 Cs2ZnV4O12 - 3.77 2.30 0.61 - - chain [36] 
16 Cs3VO4 90 3.32 2.40 0.69 - - - [37] 
17 Cs5V3O10 85.2 3.34 ± 0.03 2.39 0.65 ± 0.056 0.0245 - - [38--40] 
18 CsBaVO4 - - 2.52 - 17 - isolated [7] 
19 CsCaVO4 - - 2.55 - 20 - isolated [7] 
20 CsSrVO4 - - 2.53 - 20 - isolated [7] 
21 CsVO3 95.8 3.37 ± 0.08 2.35 ± 0.04 0.62 ± 0.079 16.9 04-010-2780 chain [7,37,41--46] 
22 InVO4 - 3.89 ± 0.08 2.21 ± 0.10 0.60 ± 0.068 69 00-048-0898 isolated [47--51] 
23 K2CaV2O7 - 3.53 2.30 0.64 - 04-020-0187 dimer [35] 
24 K2CsYV2O8 - 3.38 2.46 0.63 - 04-001-9719 isolated [52] 
25 K2MgV2O7 - 3.52 2.33 ± 0.02 0.61 ± 0.020 22 04-009-0692 dimer [35,53] 
26 K2ZnV2O7 - - 2.46 0.70 53 04-023-1110 dimer [53] 
27 K3LaV2O8 26 3.46 2.39 0.60 12.88 00-051-0094 isolated [54] 
28 K3YV2O8 47 3.67 2.39 0.59 18.12 04-019-7228 isolated [54] 
29 KBaVO4 - - 2.49 - 17 04-016-3645 isolated [7] 
30 KCa2Mg2V3O12 78.9 3.67 ± 0.22 2.34 ± 0.06 0.64 ± 0.070 5.72 00-024-1044 isolated [55--59] 
31 KCa2Zn2V3O12 19.2 3.41 ± 0.22 2.38 ± 0.03 0.62 ± 0.025 6.9 04-027-6626 isolated [60,61] 
32 KCaVO4 - - 2.52 - 8 00-056-0125 isolated [7] 
33 KLa5V2O13 - 3.68 2.67 0.16 - - isolated [62] 
34 KSrVO4 - 3.50 2.42 ± 0.09 0.76 7 04-027-7976 isolated [7,63] 
35 KVO3 4 3.26 ± 0.18 2.26 ± 0.01 0.73 - 04-008-9439 chain [7,41,45] 
36 LaVO4 - 3.94 2.09 0.60 - 04-008-8070 isolated [64] 
37 LiBaVO4 - - 2.55 - 6 - isolated [7] 
38 LiCa2Mg2V3O12 42.5 3.59 ± 0.11 2.42 ± 0.02 0.57 ± 0.009 73 04-015-3927 isolated [57,65,66] 
39 LiCa2MgSrV3O12 32.5 3.59 2.50 0.62 4.8 - isolated [67] 
40 LiCa3MgV3O12 69.3 3.80 ± 0.07 2.55 ± 0.06 0.70 ± 0.066 17.52 01-086-5533 isolated [68--74] 
41 LiCa3ZnV3O12 40.1 3.70 ± 0.09 2.52 ± 0.03 0.67 ± 0.056 12.4 01-086-5532 isolated [74--81] 
42 LiCaVO4 - - 2.54 - 4 - isolated [7] 
43 LiSrVO4 - 3.72 2.42 ± 0.04 0.60 6.86 - isolated [7,82] 
44 LiZnVO4 - 3.67 ± 0.24 2.35 ± 0.04 0.56 ± 0.048 105 04-016-8375 chain [83--85] 
45 LuVO4 - 4.17 ± 0.06 2.77 ± 0.08 0.54 ± 0.205 17 00-017-0880 isolated [86--88] 
46 Mg2BaV2O8 - 3.90 2.31 0.69 1463* 01-072-2159 isolated [89] 
47 Mg2V2O7 - - 2.30 - - 04-008-6711 dimer [7] 
48 Mg3V2O8 15.8 3.73 ± 0.12 2.19 ± 0.14 0.58 ± 0.087 950* 01-073-0207 isolated [7,14,23,90] 
49 Na2Mg2YV3O12 22.4 3.61 ± 0.13 2.38 ± 0.05 0.60 ± 0.059 6.1 00-049-0412 isolated [56,91--95] 
50 NaBaVO4 - - 2.53 - 6 04-008-3759 isolated [7] 
51 NaCa2Mg2V3O12 36 3.73 ± 0.06 2.47 ± 0.06 0.69 ± 0.063 5.9 04-015-3927 isolated [57,59,96--99] 
52 NaCa2Zn2V3O12 11.4 3.6 2.52 0.58 9550* 04-014-2972 isolated [100] 
53 NaCaVO4 - - 2.51 - 3 04-009-4198 isolated [7] 
54 NaMg2V3O10 26 3.33 2.39 0.69 - 04-015-9247 trimer [101] 
55 NaMg4V3O12 61 3.48 2.34 0.66 1.77 04-013-3807 isolated [102] 
56 NaSr2Mg2V3O12 87.3 3.85 2.49 ± 0.04 0.68 ± 0.025 6.15 04-008-4894 isolated [56,59] 
57 NaSrVO4 - - 2.50 - 4 04-008-3758 isolated [7] 
58 NaVO3 - - 2.11 ± 0.01 - - 04-013-7268 chain [7,41] 
59 Rb2CaV2O7 - 3.65 ± 0.04 2.23 ± 0.03 0.66 ± 0.055 46 00-056-0367 dimer [34,35] 
60 Rb2ZnV4O12 - 3.82 2.02 0.47 - - chain [36] 
61 Rb3LuV2O8 85 3.43 2.48 0.56 23.75 00-056-1429 isolated [103] 
62 Rb3YV2O8 71 3.41 2.48 0.54 20.06 04-027-5719 isolated [103] 
63 Rb5V3O10 - 3.44 2.42 0.59 - - - [40] 
64 RbBaVO4 - - 2.52 - 21 00-055-0516 isolated [7] 
65 RbCaLaV2O8 10 3.43 - - - - - [104] 
66 RbCaVO4 - - 2.52 - 16 - isolated [7] 
67 RbSrVO4 - - 2.52 - 25 - isolated [7] 
68 RbVO3 79 3.40 ± 0.12 2.34 ± 0.04 0.65 ± 0.105 - 04-008-9440 chain [7,41,45,105,106] 
69 ScVO4 55.1 3.75 ± 0.02 2.54 ± 0.08 0.72 ± 0.008 8.5 01-079-7028 isolated [50,107--109] 
70 Sr2V2O7 14 3.56 ± 0.05 2.31 ± 0.07 0.71 - 04-011-5542 dimer [7,14,15] 

(continued on next page)
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Table 1 (continued)

Index Compound Quantum Excitation Emission Emission Excited-state Powder [VO4]
3− Reference(s) 

Yield (%) Maximum (eV) Maximum (eV) Width (eV) lifetime (μs) Diffraction File Type 
71 Sr3LaV3O12 32.7 3.53 2.39 0.62 4.24 - - [110] 
72 Sr3V2O8 82 3.61 ± 0.04 2.36 ± 0.05 0.63 ± 0.074 29.2 01-079-5615 isolated [4,7,23,111,112] 
73 Sr6V2O11 40 3.31 2.28 0.48 3.130 - - [113] 
74 Sr9LaV7O24 - 3.54 2.44 0.54 - - - [26] 
75 YVO4 - 3.90 ± 0.09 2.76 ± 0.12 0.67 ± 0.097 38 00-017-0341 isolated [88,114--119] 
76 Zn2V2O7 - 3.71 ± 0.06 2.34 ± 0.01 0.45 ± 0.025 - 01-070-9441 dimer [120,121] 
77 Zn3V2O8 60 3.51 ± 0.06 2.22 ± 0.07 0.62 ± 0.065 741.3* 04-019-7360 isolated [14,37,90,122--129] 

3. Results & discussion

3.1. Discussion on localised excitation

We will start our discussion on the description of the excitation in 
vanadate phosphors as a (localised) charge-transfer transition within the 
vanadate group. We will discuss how the excitation spectra differ both in 
shape and position from what would be expected based on MO-theory, 
as well as how the energy of excitation and emission appear uncorre
lated.

3.1.1. Shape and extent of excitation spectra

Discrepancies can be found between the shape of the measured ex
citation spectra and that theoretically predicted. As excitations in vana
dates are considered localised transitions, the excitation spectrum is 
expected to consist of two peaks that belong to the 1A1 → 1T2/1T1
transitions. For some reported excitation spectra, they indeed appear 
to consist of two peaks [18,32,39,54,99]. However, most of the exci
tation spectra reported are noticeably different, appearing to consist of 
only one peak [16,47,65,98,113] or more than two [34,40,42,60,104]. 
More concerning is that the variation in the excitation spectra is also 
large among different studies on the same compound. For example, for 
the compound Cs2CaV2O7, one study reports a relatively simple and 
narrow excitation spectrum, consisting of a relatively narrow band [35], 
while a different study reports a complex and broad excitation spectrum, 
consisting of multiple peaks, that continues to have considerable inten
sity even beyond 10 eV [34]. One study measured similarly complex 
excitation spectra for all ten vanadates studied [130], demonstrating 
that efficient high-energy excitation is a general property rather than an 
exception. These few studies reporting efficient excitation for high en
ergies stand in contrast to the vast majority of the studies, which report 
a strong drop in the intensity of the excitation spectra towards vacuum 
UV. This discrepancy can probably be explained by the fact that most 
studies do not correct (well) for the wavelength-dependent excitation 
intensity, as commonly used light sources do not have strong emission 
in the vacuum UV. It could be argued that the very broad excitation 
spectra that extend into the vacuum UV can be explained by many dif
ferent localised transitions based on higher-energy MOs within the VO4
tetrahedra, as suggested by Shul’gin et al. [130]. An alternative explana
tion for the excitation spectra could be that the excitations correspond 
to conventional bandgap excitations, whereby their complex and broad 
shapes are dictated by the optical joint density of states.

3.1.2. Onset of excitation spectra

Discrepancies can also be found between the position of onset of the 
measured excitation spectra and that theoretically predicted. Ronde and 
Snijder reported a negative linear dependence between the average V-O 
bond distance and the position of the excitation spectrum [131]. This 
linear dependence was in agreement with the results of ab initio calcula
tions on free [VO4]3− ions with different V-O bond distances. Therefore, 
they hypothesised that excitations in vanadate compounds can indeed 
be considered as localised transitions in the vanadate group and that 
the influence of the host lattice on the excitation spectrum would in 
first order be described by a variation of the average V-O bond distance. 
However, their experimental data were limited to only 7 compounds, 4 

Fig. 3. Energy of the 1𝑠𝑡 local maximum in the excitation spectrum against the 
mean distance between oxygen and vanadium in the vanadate group. The red 
line in the top left show the average uncertainty in the energy. The dashed line 
shows a linear fit with 𝑅2 = 0.04, 𝑝= 0.18, indicating no statistically significant 
correlation. The numbers adjacent to the datapoints refer to compounds with 
the same index in Table 1.

Fig. 4. Energy of the 1𝑠𝑡 local maximum in the excitation spectrum against the 
mean (weighed) oxidation state of the cations, other than vanadium, in the 
phosphor. The green dashed line shows a linear fit with 𝑅2 = 0.37, 𝑝 < 0.001, 
indicating a statistically significant correlation.
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Fig. 5. Energy of the maximum in the emission spectrum against the energy of 
the 1𝑠𝑡 local maximum in the excitation spectrum. The red cross in the top left 
shows the average uncertainties in the energy. The red dashed line shows a linear 
fit with 𝑅2 = 0.03, 𝑝= 0.18, indicating no statistically significant correlation.

of which had the same average V-O bond distance of 1.71 Å, but showed 
a significant variation in the position of the excitation spectrum.

From our gathered data, we have performed a similar analysis, the 
results of which paint a different picture. Fig. 3 shows the (lowest) peak 
excitation energy compared to the average V-O bond distance. Most 
compounds have an average V-O bond distance of ∼ 1.72 Å, indicated 
in the figure as a vertical grey line, for which the variation in the peak 
excitation energy is large. There appears to be no linear dependence be
tween the average V-O bond distance and the peak excitation energy. In 
contrast, the presence of other cations (other than vanadium) appears 
to have a large influence on the peak excitation energy. In general, the 
higher the average oxidation state, the higher the peak excitation en
ergy, see Fig. 4. The vanadates with the lowest peak excitation energy 
are those containing monovalent cations, such as NaVO3, KVO3, and 
CsVO3, while those with the highest peak excitation energy are those 
containing trivalent cations, such as ScVO4, YVO4, and InVO4.

3.1.3. Stoke-shift of emission

For local transitions of the type 4𝑓 -5𝑑, as in Ce3+, 3𝑑-3𝑑, as in Cr3+, 
and conventional charge transfer excitations, as in Yb3+ doped com
pounds with their 2+/3+ charge transfer level below the conduction 
band, the emission peak wavelength is correlated with the excitation 
peak wavelength. Given that excitation and luminescence in vanadates 
are described as transitions localised in the VO4 centre, it is reasonable 
to expect the same correlation. In Fig. 5, the energy of the (lowest) peak 
excitation energy is plotted against the peak emission energy. With few 
exceptions, all vanadates have the first peak in their excitation spec
trum within ∼ 3.3 to 4.0 eV and their emission peak within ∼ 2.2 to 2.6
eV, showing a notably larger variation in the excitation energy. Surpris
ingly, there appears to be no significant correlation (𝑝 = 0.21) between 
the peak excitation and the peak emission energy. The absence of a cor
relation between excitation and emission peaks can also be found in 
early work, where the V5+ concentration was lowered by doping with 
P5+; the wavelength of the onset of the excitation spectrum changes 
significantly, while the peak wavelength of the emission spectrum stays 
roughly constant [132].

Thus, it can be concluded that there is no significant correlation be
tween the energy of the absorbing and emitting states. Therefore, we 
believe that it is unlikely that both excitation and emission take place 

Fig. 6. Stokes shift against the energy of the 1𝑠𝑡 local maximum in the excitation 
spectrum. The green dashed line shows a linear fit with 𝑅2 = 0.55, 𝑝 < 0.001, 
indicating a statistically significant correlation. For reference, the grey dashed 
line shows the best fit with a slope of one.

in isolated VO4 centres. The absence of a correlation between excitation 
and emission energy in turn means that there is a correlation between 
the Stokes shift and excitation energy, as shown in Fig. 6. Note that the 
term ``Stokes shift'' is used rather freely for vanadates since the electronic 
transitions for excitation and emission are not the same (according to the 
aforementioned mechanism); here it is only defined as the energy differ
ence between the peaks of the excitation and emission spectra, similar 
to previous research [132].

3.2. Proposal of alternative mechanism

Given a clear absence of the two excitation bands in many excita
tion spectra expected for the 1A1 → 1T2/1T1 transitions, the possibility 
of high energy excitation demonstrated with high-UV excited lumines
cence, the absence of a clear correlation between the structure of the 
VO4 tetrahedra and the excitation peak energy, the strong influence of 
the composition on the onset of the excitation spectrum, and lastly, the 
absence of a correlation between the onset of the excitation spectrum 
and the emission energy, we hypothesize that the excitation process can
not be described as a localised transition within a VO4 centre, but can be 
described by typical interband excitation. We further hypothesise that 
after photoexcitation across the bandgap, the free electron and hole can 
then localise on a VO4 centre, effectively forming a self-trapped exci
ton (STE), which can recombine radiatively. Fig. 7 illustrates the earlier 
mentioned discrepancy between excitation spectra of Cs2CaV2O7, as 
well as its emission spectrum, alongside a schematic depicting this lu
minescent mechanism.

Note that the term self-trapped exciton has occasionally been used 
previously to describe the excited state in vanadate phosphors [133, 
134]. Confusingly, at the same time, these authors continue to de
scribe the excitation process as a localised charge-transfer excitation. 
The essential difference between these two descriptions lies in the ini
tial state formed after photoexcitation: self-trapped excitons do not form 
immediately upon excitation. Instead, photoexcitation initially gener
ates free charge carriers or free excitons, which subsequently become 
self-trapped. This is in contrast to the charge-transfer excitation model, 
where localisation occurs immediately upon excitation. We will now dis
cuss how this mechanism of bandgap excitation, followed by localised 
emission, is in line with previous experimental and theoretical research.
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Fig. 7. Normalised excitation spectrum of Cs2CaV2O7 measured at room temperature reported by Zubkov et al. and Slobodin et al. [34,35], respectively coloured 
blue and purple. The relatively narrow excitation spectrum (coloured purple) represents the often reported excitation spectrum of vanadate phosphors in literature, 
which is a consequence of inadequate correction for the intensity of the excitation light during measurement. Normalised emission spectrum of Cs2CaV2O7 measured 
at room temperature reported by Zubkov et al. [34], coloured red. The inset schematic figure illustrates the sequential processes we suggest to be integral to 
photoluminescence of vanadates: interband excitation, hot carrier relaxation, electron polaron formation, self-trapped exciton formation, and radiative relaxation.

3.2.1. Electron polaron formation

Yang. et al. measured the time-dependent formation of V4+ in BiVO4
after photoexcitation with transient absorption spectroscopy by measur
ing the formation of the d-d absorbing band [135]. Most importantly, 
they measured the formation of V4+ to take significantly longer than the 
instrument response function, suggesting that V4+ is not formed instan
taneously when BiVO4 is photoexcited. They proposed the following 
mechanism of luminescence in BiVO4. First, free electrons and holes 
would be formed. Then within a picosecond, the electron would localise 
in V5+ and is described as a small electron polaron, forming V4+. The 
hole remains delocalised significantly longer but is eventually also cap
tured, on a nanosecond timescale, by the electron polaron to form a 
self-trapped exciton. The VO4 centre on which the STE is located was 
calculated to be significantly distorted by expansion of the V-O bond 
lengths.

This mechanism is similar to that described for YVO4 by Feng et al., 
in which 3 excited-state configurations of the STE were calculated using 
density functional theory, in which an electron is localised on V5+ and 
the hole is localised on 4, 2 or 1 oxygen atoms [136]. It was calculated 
that as the number of oxygen atoms accommodating the hole decreases, 
the energy of the STE decreases, the symmetry of the tetrahedron de
creases (from 𝐷2𝑑 to 𝐶2𝑣 to 𝐶𝑠), and the expansion of V-O bond lengths 
accommodating the hole increases. Note that for the most stable STE 
configuration, the bond length of V-O accommodating the hole was cal
culated to increase by ∼ 0.20Å (∼ 12%). This increase in the length of 
the V-O bond is similar to that calculated by Blasse (0.15 Å) based on 
experiments in SiO2:V5+ [5]. The authors then assign the blue emission 
from YVO4 to the electron-hole recombination from this STE.

The spontaneous lowering of the symmetry of the vanadate group 
upon excitation can be expected based on the Jahn-Teller theorem, 
which states that any nonlinear geometry with a spatially degenerate 
electronic state will lower its energy by undergoing a geometric distor
tion that removes that degeneracy [137]. As all excited states of the 
VO4 centre with T𝑑 symmetry described by MO theory are triply degen
erate, the centre is expected to undergo a static Jahn-Teller distortion, 
at which point the group symmetry can no longer be T𝑑 and the or
bital degeneracy of the triplet states must be lifted [3]. Through electro 
paramagnetic resonance (EPR) studies on the lowest spin triplet state, 
such a static Jahn-Teller distortion has indeed been shown to occur in 

the d0-tetroxo-ions [VO4]3− [3,138--140] and [CrO4]2− [139,141]. Pho
toexcitation was hypothesised to lower the symmetry of the VO4 centre 
from T𝑑 to 𝐶3𝑣, in which the length of a V-O bond is significantly ex
tended, whereas the others remain similar. The observation of excited 
states with even lower symmetry, such as 𝐶𝑠 in YVO4, could then be ex
plained by the reduction of the symmetry of a VO4 centre that already 
has a ground state of low symmetry [3].

3.2.2. Hole localisation

It is interesting to check whether evidence of localisation of the hole 
on a single oxygen atom can be found within the emission spectra. We 
expect that the localisation of the hole on one or more oxygen atoms 
leads to expansion of their concomitant V-O bond to minimise the en
ergy of the system. Then, when the VO4 centres already have a lower 
symmetry than T𝑑 in the ground state (as is often the case), we expect 
that the hole would be localised on the oxygen atom with the largest 
V-O bond length. It has also been suggested that the length of the V-O 
bond and the emission energy are negatively correlated [142]. There
fore, if the localisation of the hole on the longest V-O bond is generally 
the case, then a correlation between the maximum V-O bond length and 
emission energy would be expected.

At first sight, our results give some indication of this. The corre
lation between the maximum length of the V-O bond and the emission 
energy appears significant (p=0.002) while the correlation between the 
average length of the V-O bond and the peak emission energy is not sig
nificant (p = 0.11), respectively, shown in Figs. 8A and 8B. However, 
it is noticeable that the vanadates with the highest maximum V-O bond 
length are also those in which the VO4 centres form dimers, trimers or 
chains (coloured blue in Fig. 8) instead of being isolated (coloured red). 
Therefore, it could also be the case that the connectivity between the 
VO4 centres plays a role, rather than the maximum V-O bond length. 
Together with the low coefficient of determination, no conclusive re
marks about the localisation of hole based on the emission spectra can 
be made.

3.2.3. Free exciton emission

In some rare cases, at cryogenic temperatures, sharp exciton emis
sion can be observed in vanadate compounds in addition to their typical 
broad emission [143]. Previously, the broadband feature was attributed 
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Fig. 8. A) Energy of the maximum in the emission spectrum against the maximum distance between oxygen and vanadium in the vanadate group. The red datapoints 
are of orthovanadates, the blue datapoints are vanadates with higher connectivity; dimers, trimers or chains. The green dashed line shows a linear fit with 𝑅2 = 0.18, 
𝑝 = 0.002, indicating a statistically significant correlation. B) Energy of the maximum in the emission spectrum against the mean distance between oxygen and 
vanadium in the vanadate group. The red dashed line shows a linear fit with 𝑅2 = 0.05, 𝑝 = 0.11, indicating no statistically significant correlation.

to defect emission [143,144]. It should be noted that CsVO3, in which 
this exciton emission has been observed, has an IQY close to unity [43]. 
We find the attribution of defects to the broad luminescence band of 
CsVO3 improbable, as with few exceptions, defects often lead to quench
ing rather than efficient emission, and as the excitation and emission 
spectra, as well as the excited-state lifetime, are similar to those of other 
vanadates. Rather, we propose that free exciton emission in vanadates 
can now also be understood from the mechanism of luminescence ini
tiated with polaron formation; According to the Mott and Stoneham 
model, polaron formation can have an activation barrier [145,146], and 
due to this barrier, photogenerated delocalised carriers have a sufficient 
lifetime at low temperatures to result in observable free exciton emis
sion.

3.2.4. Overview hypothesis

In summary, we hypothesise that the description of the mechanism 
of excitation and luminescence as localised CT transitions in the VO4
centre described by molecular orbital theory is incorrect. Rather, the 
excitation has a delocalised nature. It is a bandgap excitation that re
sults in the formation of free charge carriers. Then, the electrons rapidly 
localise on V5+, forming electron polarons. Subsequently, the holes com
bine with the electron polarons to form self-trapped excitons. Possibly, 
in these self-trapped excitons, the hole wavefunction localises on the 
oxygen atom most distant from the central vanadium atom. This trap
ping is accompanied by a significant distortion of the centre in which the 
V-O bond with the hole becomes elongated. The emission then results 
from the recombination of the self-trapped excitons.

Such a mechanism can explain the large variation in the energetic 
position of the excitation spectra among compounds, its comparatively 
weak dependence on the maximum emission wavelength, the observa
tion of delayed V4+ formation, the strong localised character of the 
excited state accompanied with deformations of the VO4 tetrahedron 
measured and predicted in EPR and ab initio studies, and the co-existence 
of sharp free-exciton and broad emission.

3.3. The suggested structure-e�iciency relations

For many applications of phosphors, the luminescence efficiency is 
of utmost importance. The origin of quenching can be categorised into 
two types: nonradiative decay within a luminescent centre, which we 

will refer to as thermal quenching, and nonradiative decay induced by 
neighbouring lattice defects, which we will refer to as defect quench
ing. Note that the degree of defect quenching can also increase with 
temperature due to the possibility of thermally assisted migration of the 
excitation, as is the case for vanadates [134]. If the origin of quench
ing is by defects, then the phosphor is not intrinsically limited to have a 
low IQY and there is room for improvement by optimisation of the syn
thesis conditions to lower the amount of defects, or by decreasing the 
mobility of the excited state by lowering the amount of activators be
tween which migration can occur. In contrast, if the origin is thermal 
quenching, the IQY is intrinsically limited and cannot be improved with
out changing the composition of the host lattice. The quenching models 
proposed by Blasse and Nakajima, both forms of thermal quenching, 
have commonly been used to explain quenching in vanadates. We will 
describe these models and test their validity with data from literature.

3.3.1. Blasse’s hypothesis on internal quenching

Following the Mott-Seitz model of luminescence [147], the rate of 
thermal quenching is exponentially dependent on the energy of a sin
gle activation barrier to transition from the excited state to the ground 
state through a crossover point. If the activation barrier is sufficiently 
low, nonradiative relaxation via the crossover point becomes dominant 
over radiative relaxation, resulting in a low IQE. As the activation bar
rier for thermal quenching decreases with the decreasing position of 
the absorption band edge, the temperature at which thermal quench
ing becomes significant, the quenching temperature, should decrease 
with decreasing position of the absorption band. Blasse noted that this 
general relationship applies to d0-ions with 6-fold coordination, such 
as W6+ in [WO6]6−, but fails for those with 4-fold coordination [148]. 
In agreement, we also found that there is no relationship between the 
peak excitation energy and the IQY for the vanadates (see Figure S1). As 
charge transfer transitions are accompanied by significant lattice relax
ation, the change in configurational coordinate, also called the Frank
Condon (FC) offset, is also large [1]. For some d0-tetroxo-ions, such as 
[WO4]2−, the FC offset can be sufficiently large and the excitation en
ergy sufficiently low, so that the energy of the crossover point is lower 
than the excitation energy (the Dexter-Klick-Russell model) and, as a 
consequence, quenching does not require phonons [149,150]. As the 
FC offset and activation barrier for thermal quenching are negatively 
correlated, Blasse suggested that vanadate groups would be able to lu
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Fig. 9. Internal quantum yield against the highest angle between the V-O bond 
and the O-M bond. The mean polarizability of the cations (excluding vanadium) 
was calculated and is indicated with the colours blue (low polarizability) to 
red (high polarizability). The red dashed line shows a linear fit with 𝑅2 = 0.06, 
𝑝 = 0.18, indicating no statistically significant correlation.

minescence efficiently if they were incorporated into a stiff lattice [2,5], 
similar to what had been observed for many other luminescent centres 
[151]. A stiff lattice would resist the relaxation of the lattice accompa
nying the electronic transitions in the VO4 centre, thereby decreasing 
the FC offset of the luminescent state and increasing the activation bar
rier, which in turn results in a higher IQE. Blasse defined stiff lattices 
as those composed of ions with low polarisability, i.e. those with small 
ionic radii and high oxidation states. Furthermore, since it was expected 
that the relaxation of the lattice occurred predominantly by expansion 
of the V-O bond, he suggested that crystal structures in which ions with 
low polarisability lie on the produced part of the V-O bond, that is, an an
gle of the V-O-M bond close to 180◦, would prevent thermal quenching. 
Examples of phosphors that meet these criteria are YVO4 and SiO2:V5+.

However, as shown in Fig. 9, there appears to be no correlation be
tween the quantum efficiency and the max. V-O-M bond angle. Although 
it is difficult to capture the polarisability of the atoms surrounding the 
VO4 centres in a single number, the mean polarisability of the cations 
(excluding vanadium) was calculated and is indicated with the colours 
blue (low polarisability) to red (high polarisability) in Fig. 9. In con
trast to Blasse’s prediction, vanadate phosphors with the highest IQY are 
those with highly polarisable ions such as Rb+ and Cs+. In fact, in the 
series of alkali vanadates MVO3, no luminescence is often reported for 
LiVO3, the ``stiffest'' of these lattices, and it increases sharply across the 
series from NaVO3 to CsVO3 [4,7]. Note that the crystal structure does 
not change significantly in these series [152]. Similar trends have been 
observed in other series of alkali vanadates [7], see Fig. 10. Given the 
absence of a correlation between the V-O-M bond angle and the internal 
quantum yield, as well as the observation that luminescence efficiency is 
generally higher for compounds containing highly polarizable ions, we 
conclude that high lattice stiffness is not a reliable criterion for efficient 
luminescence in vanadates.

Blasse also predicted that the stiffness of the lattice would influence 
the width and emission of the emission spectrum. As the stiffness of the 
lattices increases, the FC offset of the luminescent state is expected to 
decrease, and should therefore generally be accompanied by a decreas
ing width and increasing peak emission energy of the emission spectrum. 
Note that normally the Stokes shift should decrease, but as the electronic 
states for excitation and emission are expected to be different, the use 
of the peak emission energy is more appropriate. Although we did find 

Fig. 10. Internal quantum yield of alkali vanadate phosphors as function of the 
alkali metal in the composition, relative to that of the Cs containing phosphor 
[7].

Fig. 11. Internal quantum yield against the smallest distance between two vana
dium atoms. The red dashed line shows a linear fit with 𝑅2 = 0.06, 𝑝 = 0.20, 
indicating no statistically significant correlation.

a statistically significant relation between the max. V-O-M bond angle 
and the peak emission energy (see Figure S2), we did not for the max. V
O-M bond angle and emission width (see Figure S3). It is noticeable that 
lattices with a high max. V-O-M angles, namely K3LaV2O8, Rb3YV2O8, 
Rb3LuV2O8, and Zn2V2O7, with respectively La3+, Y3+, Lu3+ and Zn2+

on the produced part of the V-O bonds, have below average width, in line 
with Blasse’s prediction. However, many lattices that consist of highly 
polarisable atoms and have a relatively low max. V-O-M bond angles 
also show relatively high energy and low width of emission. In light of 
these observations, we tentatively conclude that Blasse’s description of 
the stiffness of the vanadate group is not a reliable predictor of the FC 
offset, the energy of the emitting state, and the degree of quenching.
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Fig. 12. Internal quantum yield against the smallest distance between a vana
dium atom and another cation. The red dashed line shows a linear fit with 
𝑅2 = 0.05, 𝑝 = 0.24, indicating no statistically significant correlation.

3.3.2. Nakajima’s hypothesis on internal quenching

Nakajima et al. measured the quantum yield of vanadate oxides, 
M+VO3, M2+

2 V2O7 and M2+
3 V2O8 (M+=Li, Na, K, Rb, and Cs; M2+=Mg, 

Ca, Sr, Ba, and Zn) and analysed their crystalline properties [4]. They 
suggested that IQY increases with decreasing separation between vana
dium atoms and with increasing separation between the vanadium 
atoms and other cations. They explained their results by hypothesising 
that ``strong V-V interactions'' and ``weak M-V interactions'' are required 
to obtain a high IQY. To support their hypothesis, they suggested a 
mechanism in which ``strong V-V interactions'' and ``weak M-V interac
tions'' lead to enhanced exciton diffusion. They also hypothesized that 
such enhanced exciton diffusion leads to a longer lifetime of the sin
glet states, and that there is an activation barrier for the transition from 
the singlet states to the triplet states, which can be reduced by dynamic 
Jahn-Teller distortions. A long singlet lifetime can then facilitate inter
system crossing. As they propose nonradiative relaxation occurs from 
the singlet states, enhanced intersystem crossing, in turn, increases the 
IQY. This model was put forth by Nakajima and has often been used to 
explain differences among compounds and even synthesis conditions.

In Figs. 11 and 12, we show the IQY as a function of, respectively, 
the smallest V-V and M-V distance. From these figures, it is evident that 
there are no clear relationships between these properties and the IQY. 
Furthermore, if dynamic Jahn-Teller distortions, and thereby phonons, 
are required to facilitate intersystem crossing, then the luminescence 
of vanadates should be phonon-assisted. However, such a rise of the 
luminescence intensity with increasing temperature is rarely observed. 
Rather, the luminescence efficiency is often reported to decrease mono
tonically with increasing temperature [5].

4. Conclusions

By analysing past experimental research, we have demonstrated that 
excitations in vanadate phosphors are unlikely to be localised charge
transfer transitions, in contrast to the established luminescent mecha
nism. Rather, based on the broad character of the excitation spectra, 
the absence of a correlation between the excitation spectrum and VO4
structure, and the strong influence of the host composition on the excita
tion spectrum, we hypothesise that excitations are interband excitations. 
Furthermore, based on the observation of delayed V4+ formation and 
various EPR and ab initio studies, we hypothesise that free electrons are 
capable of forming small polarons localised on V5+ and subsequently 

form self-trapped excitons, which are responsible for broad and Stokes
shifted luminescence. By analysing luminescent characteristics against 
structural properties, we also demonstrated that there is no strong evi
dence for the two mechanisms proposed by Blasse and Nakajima, which 
are often used to explain quenching in vanadate phosphors.
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