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Abstract

Uncovering the formation history of dusty star-forming galaxies in the early universe requires wide-

band spectroscopic instruments capable of detecting redshifted emission lines in the millimeter and

submillimeter regime. The on-chip spectrometer DESHIMA 2.0 addresses this by integrating filterbanks

and kinetic inductance detectors (KIDs) onto a single chip, enabling wide frequency coverage in a

compact footprint. However, performance is currently limited by losses in the dielectric layer of its

microstrip lines, which reduce transmission efficiency and sensitivity. Minimizing these losses is crucial

not only to enhance signal throughput but also to enable the use of parallel-plate capacitors (PPCs),

which significantly reduce resonator size, increase detector count, and thus improve spectral resolution.

Achieving low-loss dielectric films is therefore essential for the next generation of high-resolution

spectrometers such as TIFUUN.

To support this development, this thesis focuses on optimizing the deposition of hydrogenated amor-

phous silicon (a-Si:H) films using Inductively Coupled Plasma Enhanced Chemical Vapor Deposition

(ICP-CVD). These films function as dielectric layers in both microstrip lines forming the filterbank

(90–360 GHz) and in PPCs (1–10 GHz).

Since direct measurement of dielectric losses was beyond the scope of this project, optimization was

based on properties known to correlate with loss mechanisms—namely two-level systems (TLSs) and

absorption in the vibrational tail. TLSs are expected to dominate at PPC operating frequencies, while

vibrational absorption is more relevant in the filterbank. The optimized properties include residual

stress, thickness non-uniformity, optical and infrared refractive index, band gap, void-volume fraction,

hydrogen content, and microstructure parameter.

A Taguchi L18 orthogonal array was used to systematically vary seven deposition parameters: table

temperature, silane flow rate, ICP power, table RF power, gas ratio (silane/argon), pressure, and native

oxide removal method (argon milling vs HF dip). Film properties were evaluated using ellipsometry,

FTIR spectroscopy, and a stressmeter.

ANOVA revealed table RF power as the dominant factor, with the highest contribution to five of the

eight properties: thickness uniformity, refractive index, hydrogen content, microstructure, and residual

stress. In the latter, increasing power shifted the film from tensile to strongly compressive regimes.

Other parameters had more moderate effects: chamber pressure had strongest influence on void-volume

fraction and infrared index, while silane flow rate and wafer preparation affected the band gap most

significantly. Despite some models exhibiting high residuals, indicating unmodeled interactions between

the parameters, the overall analysis successfully identified key relationships between the deposition

parameters and the material properties.

Two optimized recipes were selected using Grey Relational Analysis, with equal weighting assigned

to hydrogen content and void-related properties. Recipe 19 achieved minimal hydrogen content (4.3

at.%) and low residual stress, making it a strong candidate for minimizing dielectric losses in the

filterbank. However, it also showed high void fraction and surface inhomogeneity. Recipe 20, aimed at

maximizing hydrogen content, reached 16.3 at.% but showed only average performance and suffered

from high compressive stress (–745 MPa). As a more robust alternative, Recipe 9 offered low void

content, moderate hydrogen level, favorable stress (+125 MPa), and good uniformity—making it the

most practical candidate for integration into both filterbank and PPC structures.

Future work should focus on direct measurement of dielectric loss tangent and TLS density under

cryogenic conditions to validate the predicted performance in superconducting spectrometers.
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1
Introduction

1.1. Wideband spectroscopy at millimeter wavelengths to uncover
galaxy evolution in the early universe

More than half of all the stars that are born through the history of the universe were formed in dusty

star-forming galaxies (DSFGs) [1]. Therefore, constructing a map that contains the distribution of

these galaxies in the early universe is an important part of the puzzle how the early universe evolved.

However, because these galaxies are heavily obscured by dust, they appear faint or are invisible at

optical wavelengths [1]. Luckily, the cool interstellar gas within DSFGs, from which stars are born,

does emit radiation at specific frequencies known as emission lines. Lines such as [CII] have emission

frequencies above 1.0 THz, but due to the high redshifts of DSFGs, they are observed in the millimeter-

to-submillimeter range (0.1–1 THz). These emission lines provide crucial information about a galaxy’s

kinematics, star-forming activity, and are essential for determining its redshift [1].

Especially, measuring the redshift is important for generating a map of the early universe. As the

Universe is expanding, it stretches the wavelength of the light that travels from the galaxy to the

telescope. This shift in observed frequency, caused by the galaxy’s distance and the expansion of space,

is known as redshift. Measuring these redshifts allows us to determine how far back in time we are

observing, and is crucial for building a three-dimensional view of galaxy formation across the history of

the universe.

While large surveys in the submillimeter range have found many dusty star-forming galaxies, identifying

their redshifts remains challenging. Traditional optical and near-infrared methods often fail because the

dust blocks much of the light at those wavelengths. Submillimeter spectrometers, on the other hand,

typically observe only a narrow range of frequencies at a time. As a result, finding the redshift of a

galaxy often requires many separate observations, which makes the process slow and inefficient [2]. To

overcome this, we need an instrument that can observe a wide range of frequencies simultaneously,

with enough sensitivity and resolution to detect the emission lines from these galaxies directly [1].

To enable fast and efficient redshift measurements, the DESHIMA project (DEep Spectroscopic HIgh-

redshift MApper) was initiated to develop a compact, chip-based spectrometer. It is designed to detect

faint emission lines from dusty galaxies with high sensitivity and spectral resolution. The current

version, DESHIMA 2.0, operates over a wide frequency range of 220–400 GHz, enabling the observation

of galaxies at redshifts between 3.7 and 7.6 based on the [C II] 1.90 THz line [3]. With 347 spectral

channels and a resolving power of 𝑅 =
𝑓

𝑑𝑓 ~500 (where 𝑓 is the measured frequency and 𝑑𝑓 the smallest

distinguishable frequency difference) DESHIMA 2.0 can capture a broad spectral range in a single

observation. This allows for simultaneous identification of redshifts and detection of multiple lines,

even when operated on a single-dish telescope such as ASTE [3]. The heart of the instrument is an

integrated superconducting chip, described in more detail below.
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1.2. DESHIMA: On-chip filterbank spectrometer 2

Figure 1.1: Design of the DESHIMA 2.0, a filterbank spectrometer chip. This figure features the antenna, sky signal line, filterbank,

MKIDs and the readout line. The sky signal including both astronomical and atmospheric emission is coupled by an antenna and

is guided to the filterbank over a transmission line. Each filter connects with an MKID, and the change in the resonance frequency

by incoming photons is measured through a single readout signal. Figure is adapted from [3]

1.2. DESHIMA: On-chip filterbank spectrometer
The terahertz on-chip filterbank spectrometer is implemented on a single superconducting chip, shown

in Figure 1.1. The chip consists of an antenna coupled to a transmission-line filterbank, with a microwave

kinetic inductance detector (MKID) placed behind each filter. All detectors are read out simultaneously

using frequency division multiplexing, at the microwave frequency range (4-6 GHz) [2].

The operation of the spectrometer works as follows: incoming radiation is absorbed by the antenna

and guided via a coplanar waveguide (CPW) to the filterbank. This guiding structure, often referred to

as the sky signal line, transports the astronomical signal across the chip. At the start of the filterbank

section, the CPW transitions into a microstrip line that forms the basis of the filter structure. This

microstrip consists of three layers: a superconducting NbTiN ground plane, a narrower NbTiN signal

line, and a thin film of either amorphous silicon (a-Si:H) or amorphous silicon carbide (a-SiC:H), which

functions as the dielectric between them. This dielectric layer is of particular importance in this thesis

and will be discussed in detail later.

The filterbank separates the wideband signal into multiple sub-bands, each corresponding to a narrow

band-pass filter. These filters are coupled to the signal line on one side and to the MKID on the other.

At its resonant frequency, each filter transmits maximum power to its associated MKID. Each MKID, a

CPW microwave resonator for the depicted design, absorbs the incoming radiation, causing a shift in its

resonant frequency. This shift is measured as a phase change in the transmitted readout tone, with all

MKIDs connected to a common readout line [2].

1.2.1. Current limitations of DESHIMA 2.0 due to dielectric losses
The filters and (part of) the sky signal line in DESHIMA 2.0 are constructed using superconducting

microstrip structures, where two NbTiN layers are separated by a thin dielectric layer, see Figure 1.2.

While the use of crystalline silicon (c-Si) as a low-loss dielectric is possible through a flip-bonding

technique [4], deposited dielectrics are preferred because they allow more flexible chip designs and

fabrication processes [5]. However, deposited dielectrics exhibit higher dielectric losses compared to

crystalline materials. As a result, part of the millimeter and sub-millimeter wave signal is absorbed

within the dielectric before reaching the detector. This dielectric loss is an intrinsic material property,

characterized by the loss tangent, tan𝛿, which describes the ratio of energy dissipated compared to the

energy stored [5].

The term dielectric loss captures two mechanisms of energy absorption within the dielectric material.

The first arises from the excitation of vibrational modes associated with chemical bonds in the film.

These bonds can be excited to specific energies. When a photon with matching energy propagates
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Figure 1.2: Scanning electron micrograph of a DESHIMA 2.0 filter, showing the a-Si:H dielectric layer in purple and the NbTiN

superconducting layers in dark yellow. The schematic on the right shows a cross-section of the microstrip line, with layer

dimensions taken from [6], [7]. Figure adapted from [5].

through the dielectric, it can excite a bond, causing it to vibrate and absorb energy from the signal [8].

The second mechanism is attributed to two-level system (TLS) losses, which are assumed to originate

from microscopic defects in amorphous dielectric materials. In a disordered lattice, atoms can tunnel

between two energetically similar states. TLSs couple to the electric field of the signal through their

dipole moment, modifying the dielectric constant and thereby inducing absorption [9].

Both the frequency bandwidth and the resolving power 𝑅 of the instrument are limited by dielectric

losses, as increasing either typically requires a longer signal path through the dielectric. In a high-loss

dielectric, it is not possible to achieve wide bandwidth and high resolving power at the same time. For

example, achieving a wide bandwidth with low transmission loss is only possible when 𝑅 is low, since

this reduces the number of required channels and shortens the length of the sky signal line [5].

The deposition of dielectric films with a low-loss at millimeter to submillimeter wavelengths is also

important for the TIFUUN instrument, which will use the technology of the DESHIMA 2.0 to construct

multiple spectrometer pixels.

1.3. TIFUUN
A key challenge in millimeter and sub-millimeter astronomy is mapping large cosmic volumes with

sufficient spectral resolution to study the evolution of matter across cosmological timescales [10]. The

TIFUUN imaging spectrometer is being developed as an instrument that can be adapted to a broad

range of science cases, including but not limited to line intensity mapping (LIM) of redshifted emission

lines. By targeting key tracers of star formation and the interstellar medium, such as emission lines [C

II] and [O III], TIFUUN aims to measure the dust-obscured star formation in the early universe [11].

TIFUUN stands for Terahertz Integral Field Unit with Universal Nanotechnology. An Integral Field Unit

(IFU) is used in astronomy to observe a large area of the sky simultaneously, using a technique known as

integral field spectroscopy. In this method, the signal from each spatial pixel is directed to a dedicated

spectrometer, producing a spectrum for every pixel. Since each pixel observes a slightly different region

of the sky, the combination of all spectra forms a 2D spatial image with a third spectral dimension [12].

A schematic of TIFUUN is shown in Figure 1.3. The incoming mm/submm radiation is collected by

a wideband leaky-lens antenna array. Each antenna is connected to a unit spaxel on the IFU wafer,

which contains a filterbank coupled to kinetic inductance detectors (KIDs). The bandpass filters

separate the broadband signal into spectral channels, and the KIDs convert each filtered signal into a

frequency-multiplexed readout tone. The IFU wafer contains a densely packed array of pixels, which

allows for spectral mapping. The design of TIFUUN is adaptable and can be optimized for specific

science goals.
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Figure 1.3: Schematic of the TIFUUN imaging spectrograph, which uses the technology of DESHIMA 2.0. Incoming radiation is

collected by an array of leaky-lens antennas, with one antenna per spaxel. Each spaxel consists of its own filterbank that spectrally

separates the signal, followed by kinetic inductance detectors (KIDs) that convert the filtered signals into readout tones.

1.3.1. Current limitations of TIFUUN due to dielectric losses

Figure 1.4: Compari-

son between a the size

of the DESHIMA-style

CPW-MKID (left) and the

proposed PPC-KID design

(right). Image adapted from

[13].

The current design of TIFUUN faces two limitations that could be improved by

reducing losses in the deposited dielectric. The first is identical to the limitation

observed in the DESHIMA design; dielectric losses within the microstrip

structures of the filterbank. Since the signal from each pixel propagates

through this filterbank, similar dielectric losses occur. By lowering the loss

tangent, a greater fraction of the signal reaches the detector, enabling an

increase in both the frequency bandwidth and the resolving power 𝑅 [5], [11].

The second limitation lies in the packing density of TIFUUN. Since the entire

architecture must fit onto a 4-inch wafer, the available design space is strictly

limited. This sets a limit on the number of KIDs that can be integrated. Ideally,

the number of KIDs should be maximized to increase the number of spectral

channels per spaxel. To fit more KIDs within the same area, their size must be

reduced. One effective approach is to replace the current coplanar waveguide

(CPW) resonators (based on a planar structure) with parallel-plate capacitor

(PPC) resonators, which are drastically smaller in size [9]. However, the

deposited dielectric required for fabricating a PPC is expected to increase

dielectric losses in the resonator, as discussed in more detail in the next section.

1.4. Parallel-plate capacitors: Applications and
limitations
1.4.1. Application in TIFUUN
As described above, current resonator designs are based on planar structures

such as coplanar waveguides (CPWs). These provide low capacitance per unit

area because the electric fields extend into the surrounding air and substrate.

Additionally, the gap between the center conductor and ground planes is

relatively large—around 50 µm [2]—which further limits the capacitance. In

contrast, PPCs confine nearly all electric field lines between two metal layers,

separated by a dielectric film a few hundred nanometres thick [9], as shown

in Figure 1.5. This configuration increases field confinement and significantly

raises the capacitance per unit area. As a result, PPCs reduce radiative losses

and allow for a more compact resonator footprint [9]. Figure 1.4 compares

CPW-KIDs with PPC-KIDs.
1

Replacing CPWs with PPCs could increase the

detector count from 5,000 to approximately five times that amount on the same

wafer [11], thereby increasing the number of spectral channels per spaxel.

1
Note that the PPC-KID layout is still under development. This schematic does not represent the final TIFUUN design. In

particular, the filter section (bottom) and the readout coupler (top) are outdated.
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Figure 1.5: Schematic illustrating the structural difference between a coplanar waveguide (a) and a parallel-plate capacitor (b).

Figure 1.6: Left: Sketch of a interdigitated capacitor-based LEKID. Right: Sketch of a parallel plate capacitor based LEKID. For

comparison, both use the same meander and are designed to resonate at the same frequency. At this frequency, a parallel-plate

capacitor LEKID using a 25 nm-thick Al2O3 dielectric allows to strongly reduce the size of pixels by a factor 26. Figure is adapted

from [15].

1.4.2. Application in optical KID arrays
On-chip spectrometers are also used in the optical frequency range, where an alternative detector design

is applied. Instead of CPW-KIDs, these designs use Interdigitated Capacitor–Lumped Element Kinetic

Inductance Detectors (IDC-LEKIDs). This approach is significantly different, as IDC-LEKIDs consist

of an inductive line and an interdigitated capacitor (IDC), shown on the left side of Figure 1.6. The

photon-sensitive element is the inductor, thus no antenna structures are needed to couple incoming

radiation into the resonator [14]. Additionally, a separate filterbank (like the one in Figure 1.1) is not

required. The optical photons carry sufficient energy to enable individual photon counting. In this

approach, the photon energy is extracted from the peak amplitude of the signal, meaning the ‘filtering’

is performed during data analysis. The resonance frequency of each KID is defined by the finger lengths

of the interdigitated capacitor (IDC), allowing to distinguish between the signals from different KIDs on

the frequency-multiplexed readout line.

Similar to the CPW-KID, absorption of radiation by the inductor causes a shift in the resonator’s

frequency, which is detected as a phase change in the readout tone. However, since the IDC is also a

planar structure (like CPW), it has a similar low capacitance per unit area. Replacing the IDC with a

parallel-plate capacitor (PPC) would significantly reduce the capacitor size, and thus the overall size of

the (PPC-LE)KID. A comparison between the IDC- and PPC-based designs is shown in Figure 1.6.

1.4.3. Current limitation of parallel-plate capacitor
Unfortunately, implementing PPCs with deposited dielectric films is likely to introduce higher dielectric

losses and increased frequency noise levels compared to planar structures like CPWs and IDCs.

TLSs can couple to the electric field of the resonator via their electric dipole moment, thereby modifying

the material’s dielectric constant. The real part of this contribution shifts the resonant frequency, while

the imaginary part increases microwave loss. Moreover, TLSs can randomly switch between states,

resulting in time fluctuations in the dielectric constant. These fluctuations cause the resonant frequency

to fluctuate over time, contributing to frequency noise [9].
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1.5. State of the art
1.5.1. Fabrication technique: Plasma Enhanced Chemical Vapor Deposition
For the fabrication of a PPC, a commonly used technique to deposit the dielectric material is Plasma-

Enhanced Chemical Vapor Deposition (PECVD). This thin-film deposition method uses plasma to

enhance surface chemical reactions, allowing material growth on a substrate. The process takes place in

a vacuum chamber, where the substrate is placed on a heated electrode. A gas mixture of precursors is

introduced, and a radio-frequency (RF) electric field is applied between electrodes to generate a plasma.

This plasma breaks the gas molecules into reactive components that interact with the substrate, forming

a thin film [16].

The plasma enhances the chemical reactions, allowing for deposition at significantly lower temperatures

compared to traditional CVD processes. The PECVD process also enables control over various

parameters, such as gas flow rates, chamber pressure, RF power, and temperature, allowing for

fine-tuning of the properties of the deposited film [16].

An advanced version of this technique is Inductively Coupled Plasma-Enhanced Chemical Vapor

Deposition (ICP-CVD). The key difference lies in the method of plasma generation: while conventional

PECVD excites the plasma capacitively by applying an RF voltage across two electrodes inside the

chamber, ICP-CVD uses RF coils placed around the chamber to inductively generate plasma. This

inductive coupling results in higher plasma densities, reduced ion bombardment on the film surface,

and improved homogeneity of the deposited layer compared to PECVD [17].

1.5.2. State of the art dielectric losses
The research group where is thesis is part of, the Terahertz Sensing Group, has investigated potential

low-loss deposited dielectric materials and identified hydrogenated amorphous silicon carbide (a-SiC:H)

as a promising candidate. These films were fabricated using a PECVD system located at the Else Kooi

Laboratory at TU Delft. As of their 2022 publication [18], these films demonstrated the lowest reported

low-power sub-kelvin dielectric losses for microstrip resonators at both millimeter–submillimeter

frequencies (tan 𝛿 of 1.2 × 10
−4

at 350 GHz) and microwave frequencies (tan 𝛿 of 3 × 10
−5

at 7 GHz), as

shown in Figure 1.7. With these losses, the IDC-based resonator design in [19] can be replaced by an

a-SiC:H PPC, reducing the KID footprint by a factor of 10—though at the cost of approximately 20 dB

increased frequency noise [9].

During his PhD, Bruno Buĳtendorp investigated the origin of dielectric loss in a-SiC:H [5]. He

demonstrated that the absorption tail of vibrational modes located above 10 THz can account for the

measured infrared loss data in the 270–455 GHz range. At cryogenic temperatures and frequencies

below 200 GHz, the dominant loss mechanism is expected to transition to be dominated by TLSs.

He further noted that similar vibrational features in the 10–30 THz range are also present in a-Si:H,

suggesting it contains a comparable crossover in loss mechanism.

Roughly a year after these findings, a study was published reporting a dielectric material with even

lower microwave losses than previously found in the literature: a loss tangent of 7 × 10
−6

at 7 GHz

[20]. In this study, several recipes for depositing a-Si:H, rather than a-SiC:H, were tested across various

deposition systems. The recipe that achieved the lowest dielectric losses within a PPC structure was

fabricated using the ICP-CVD technique.

1.6. Research goals
Although the authors of [20] demonstrated a further reduction in microwave losses within their dielectric

material, they do not report how the conditions within the deposition chamber influence the resulting

film properties. Consequently, they emphasize the need for future research into the dependence of

dielectric losses onto the deposition parameters [20].

At the Else Kooi Laboratory, an ICP-CVD machine is available, which I have used to address this future

research. In this project, I have systematically investigated how the deposition conditions affect the

properties of the dielectric film. The goal was to gain a deeper understanding of the relationship

between deposition parameters and material properties, in order to develop new films with specific

characteristics.
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Figure 1.7: The loss tangent tan 𝛿 as a function of frequency for a-SiC:H is shown. The solid grey curve represents the tan

𝛿 obtained by fitting a Maxwell–Helmholtz–Drude (MHD) dispersion model to the vibrational modes and infrared loss data.

The intersection between the solid grey curve and the horizontal dashed line indicates the crossover point between low-power

cryogenic TLS loss and the loss associated with vibrational modes. Figure adapted from the dissertation of Bruno Buĳtendorp [5].

Improving these dielectric properties is particularly relevant for on-chip spectrometers such as DESHIMA

and TIFUUN. First, reducing losses in the microstrip filterbank would improve signal transmission to the

KIDs. Second, replacing the current CPW-KIDs with PPCs that are an order of magnitude smaller could

significantly increase packing density. Similarly, optical KID arrays could also benefit from compact

PPC geometries, allowing for smaller designs while minimizing the increase in microwave losses [20].

This led to the following research goal:

Optimize the material properties of a-Si:H films for usage within on-chip spectrometers by adjusting
the recipe of the ICP-CVD machine.

This goal can be subdivided into the following objectives:

• Relate film properties to expected dielectric loss performance.
• Establish the relations between various deposition parameters and the film’s properties.
• Assign and test the recipe with the best expected cryogenic performance.

Directly measuring the dielectric losses of the film would require constructing a complex cryogenic

setup, which is beyond the scope of this project. However, literature has proposed correlations between

several material properties and dielectric losses. Chapter 4 presents these material properties and

describes the methods used to compute them.

To relate the film properties of the a-Si:H dielectric to the deposition parameters of the ICP-CVD, I ran

multiple deposition recipes. In total, seven deposition parameters were varied: Table Temperature,

Silane Flow Rate, Gas Ratio between Silane and Argon, ICP Power, Table RF Power, Pressure, and Wafer

Preparation. For the Wafer Preparation, I compared an HF dip with Argon milling. For the other six

parameters, I selected at least three levels to identify possible optimal regions. Testing all combinations

would require 2 · 36 = 1458 experiments, which is clearly impractical. Therefore, I implemented a Design

of Experiments (DoE) approach, called the Taguchi method.

The orthogonal structure of the Taguchi design enables the generation of Main Effect Plots, which show

how each individual parameter influences the material properties. Additionally, I performed Analysis

of Variance (ANOVA), a statistical method to compute the percentage contribution of each parameter,

allowing identification of the most influential deposition parameters.
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Since the goal is to optimize multiple material properties simultaneously, I applied Grey Relational

Analysis (GRA), which captures the performance of all properties into a single Grey Relational Grade.

Performing ANOVA and generating Main Effect Plots on this combined variable allows me to identify

the most influential parameters for all loss-related properties combined. The corresponding Main Effect

Plot indicates which recipe has the best overall performance.



2
Theory

2.1. Operations of the ICP-CVD
Inductively Coupled Plasma Chemical Vapor Deposition (ICP-CVD) is a widely used technique for

fabricating high-quality thin films. In Chemical Vapor Deposition (CVD), reactive precursor gases are

mixed into a vacuum chamber, where they undergo chemical reactions on the substrate surface to form

a solid film. In ICP-CVD, a plasma is generated by inductively coupling RF (radio-frequency) power

into a coil placed around the top of the chamber. A key feature of the ICP-CVD system is the separation

between plasma generation and substrate bias, allowing independent tuning of ion density and ion

energy. This enables better control over film properties such as thickness non-uniformity and residual

stress.

The ICP-CVD system used in this work, the Oxford Instruments PlasmaPro 100 ICPCVD (see Figure

C.1), is equipped with a load lock to prevent contamination of the main chamber. After the wafer is

loaded into the load lock, the pressure is lowered to closely match the vacuum level of the process

chamber. The wafer is then transferred and placed on the substrate electrode. A schematic of the

ICPCVD system is shown in Figure 2.1. The precursor gases are introduced, with adjustable flow rates,

either through the top inlet or via gas rings positioned above substrate electrode. The RF coil creates

an oscillating magnetic field, which induces electric fields that ionizes the precursor gasses, forming

a plasma. A second RF source connected to the substrate electrode sets an independent bias on the

substrate, controlling the ion bombardment energy during film growth.

Key Components of the ICP-CVD System: [21]

• ICP RF Power System: An RF generator operating at 13.56 MHz supplies power to the inductively

coupled plasma coil, which is located at the top of the deposition chamber. The generator produces

a high-frequency current that flows through the coil, generating a time-varying magnetic field.

This magnetic field induces an electric field in the gases within the chamber, energizing electrons

and creating a high-density plasma.

• Substrate Electrode: The lower electrode, on which the wafer is placed, is connected to a second

13.56 MHz RF generator that applies an independent bias to the substrate. This bias controls the

energy of ions bombarding the wafer surface during deposition. The electrode is also temperature

controlled and can be heated up to 400°C, allowing to control the temperature of the wafer

throughout the process.

• Auto Matching Unit (AMU): The impedance of the RF generators is fixed, whereas the impedance

of a plasma varies according to conditions of the chamber. If uncorrected, the impedance mismatch

would cause poor energy transfer between the generator and the plasma. Each RF generator

therefore uses an AMU to continuously minimize the reflected power. This results in improved

plasma stability and consistent process performance.

9
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Figure 2.1: Schematic of the ICP-CVD machine, adapted from [22]. A picture of the deposition system used in this work is shown

in Figure C.1. Precursor gases can enter the deposition chamber either from the top inlet or from a gas ring positioned just above

the wafer stage, with adjustable flow rates. Inductively coupled RF power is applied via a coil around the top of the chamber,

ionizing the gases to form a plasma. The wafer is placed below the gas ring on top of an electrode, which is connected to a second

RF power source to control the ion bombardment energy. In addition, the electrode is temperature controlled.

2.2. Stressmeter
During chemical vapor deposition, stresses can build up during film growth. Such stresses are generally

undesirable, as they can compromise the mechanical stability of the film. The residual stress can

either be tensile or compressive. Tensile stress is considered positive and tends to pull the film apart,

potentially leading to cracking or delamination. Compressive stress is considered negative and pushes

inward, which may cause buckling. For a-Si films deposited using a PECVD tool on a c-Si wafer with a

200 nm silicon oxide layer, Johlin et al. [23] estimated that buckling and delamination failures occur at

approximately -1200 MPa and +450 MPa, respectively. Since avoiding these failure modes is critical for

my deposited films, these values provide a benchmark to assess whether the measured stress levels

approach failure thresholds.

The type of stress present in a thin film depends on its microstructure, see Figure 2.2. If, during growth,

the atoms are packed more closely than their equilibrium spacing, they exert outward forces on each

other, resulting in compressive stress. On the other hand, if isolated islands form with missing atoms in

between, attractive forces develop in the material, leading to tensile stress [24].

The total stress, 𝜎𝑡𝑜𝑡 , present in a thin film is the combination of three components [25], [26]. First,

external stress, 𝜎𝑒𝑥𝑡 , which is due to external loading. Second, thermal stress, 𝜎𝑡ℎ , generated by

differences in the thermal expansion coefficients between the film and the substrate during temperature

changes. Third, intrinsic stress, 𝜎𝑖 , which is related to the film’s structure. This intrinsic stress is linked

to factors such as the type of bonding between the film and substrate, the impact of bombardment

during deposition, and the growing process itself [26].

𝜎 = 𝜎𝑒𝑥𝑡 + 𝜎𝑡ℎ + 𝜎𝑖 (2.1)

The thermal component can be estimated by [25], [26]:

𝜎th = 𝐸 𝑓 (𝛼 𝑓 − 𝛼𝑠)(𝑇𝑑 − 𝑇𝑚) (2.2)
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Figure 2.2: Schematic of the origin of tensile and compressive stress in thin films. Adapted from [24].

where 𝑇𝑑 is the temperature during deposition, 𝑇𝑚 is the temperature at which the stresses are measured,

𝐸 𝑓 is the film Young’s modulus, while 𝛼 𝑓 and 𝛼𝑠 represent the thermal expansion coefficients of the

film and substrate, respectively.

When no external load is applied, the residual stress in the film can be considered the sum of the 𝜎𝑡ℎ
and 𝜎𝑖 [25], [26]:

𝜎𝑟 = 𝜎𝑡ℎ + 𝜎𝑖 (2.3)

To compute the residual stress on the wafer, I have used the Stoney equation adapted from [25], [26],

𝜎𝑟 =
𝐸𝑠

6(1 − 𝜈𝑠)
· 𝑡

2

𝑠

𝑡 𝑓

(
1

𝑅 𝑓
− 1

𝑅0

)
(2.4)

where 𝐸𝑠 is the Young’s modulus, 𝑣𝑠 the Poisson’s ratio, 𝑡𝑠 the thickness of the substrate, 𝑡 𝑓 the thickness

of the film, 𝑅0 and 𝑅 𝑓 the curvature radii of the substrate before and after the deposition.

2.3. Ellipsometry
Ellipsometry is a technique used to characterize thin films by measuring the change in polarization

of light due to reflection from a sample surface. A schematic of this principle is shown in Figure 2.3,

where linearly polarized light is reflected off a sample and becomes elliptically polarized (hence the

name ’ellipsometry’). The incoming beam is composed of two orthogonal components: p-polarized

light (parallel to the plane of incidence) and s-polarized light (perpendicular to the plane of incidence).

When this polarized light reflects off a sample surface, the relative amplitude and phase of these two

components change depending on the optical properties and thickness of the sample layers. This change

is described by the complex reflectance ratio [27]:

𝑟𝑝

𝑟𝑠
= tan(Ψ), 𝑒 𝑖Δ (2.5)

where 𝑟𝑝 and 𝑟𝑠 are the complex Fresnel reflection coefficients for the p- and s-polarized components of

light, respectively. The parameters Ψ and Δ are defined as [5]:

𝜓 ≡ tan
−1

(���� 𝑟𝑝𝑟𝑠
����) , Δ ≡ phase

(
−
𝑟𝑝

𝑟𝑠

)
(2.6)

where Ψ represents the amplitude ratio between the p- and s-polarized components after reflection,

while Δ represents the phase shift difference between these components.
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Figure 2.3: Schematic of an ellipsometry measurement, adapted from [27]. Incoming light is polarized and reflected off a sample

at an angle 𝜙. The polarization state of the light changes due to interactions with the sample’s optical properties.

These two parameters Ψ and Δ make up the data of a ellipsometry measurement and are functions of

wavelength and angle of incidence. This is why variable angle spectroscopic ellipsometry (VASE) is

commonly used, where the angle of incidence and the wavelength are varied to obtain more detailed

information about the sample.

In Figure 2.4, typical Φ and Δ spectra from a semi-absorbing film are shown. These spectra exhibit

interference features in the transparent region. Since a-Si:H is also a semi-transparent material, the

measured data display similar interference patterns.

Figure 2.4: Φ and Δ spectra of a semi-absorbing film, showing interference features in the transparent region of the spectrum.

Adapted from [27].

The Ellipsometer directs a beam of known polarization onto the sample at a known angle of incidence 𝜙
and then measures the polarization state of the reflected light. From the measured values of Ψ and Δ

over a range of wavelengths, one can compute the sample’s optical constants, such as refractive index 𝑛,

extinction coefficient 𝑘 and layer thicknesses.
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To achieve this, a model of the sample is fitted to the data [27]. First, the user creates a model of the

sample’s structure, which includes the substrate and the thin films stacked on top. Next, the theoretical

Ψ and Δ values of this model are calculated using the Fresnel equations. Finally, the model parameters,

such as layer thicknesses and optical constants, are adjusted to minimize the mean squared error (MSE)

between the measured and simulated data.

2.3.1. General oscillators: Cauchy, B-spline, Tauc-Lorentz and Cody-Lorentz
Cauchy:
The wavelength dependence of the refractive index for transparent films can be described using the

Cauchy dispersion relation [28]:

𝑛(𝜆) = 𝐴 + 𝐵

𝜆2

+ 𝐶

𝜆4

(2.7)

This empirical model applies to materials with negligible absorption in the visible to near-infrared range.

The parameter A sets the approximate refractive index level, while B and C define the curvature of the

dispersion. The model captures the typical increase in refractive index toward shorter wavelengths

observed in transparent dielectrics.

B-spline:
The B-spline model is a non-physical, but highly flexible technique to describe the complex refractive

index across the full spectral range, including both transparent and absorbing regions. It consists of a

series of connected splines defined at fixed wavelength intervals (knots) and fits the measured data

without assuming any specific physical model. It enforces Kramers-Kronig consistency (explained in

Section 2.4.2) and includes a roughness penalty to avoid overfitting. The B-spline model is particularly

useful for guiding the construction of physical models, like the Tauc- or Cody-Lorentz.

Tauc-Lorentz:
The Tauc-Lorentz model, introduced by Jellison and Modine[29], provides a dispersion relation that

only absorbs light above the material’s band gap. It is a typically used to model amorphous materials

like a-Si:H [30]. The absorption from the Tauc-Lorentz is separated into two regions[30]:

𝜀2(𝐸) =
𝐴𝐸0𝐶(𝐸 − 𝐸𝑔)2

(𝐸2 − 𝐸2

0
)2 + 𝐶2𝐸2

· 1

𝐸
𝐸 > 𝐸𝑔 (2.8)

𝜀2(𝐸) = 0 𝐸 ≤ 𝐸𝑔 (2.9)

where A is the amplitude, 𝐸0 is the peak energy, 𝐶 is the broadening term, 𝐸𝑔 is the band gap and 𝐸 is

the photon energy. As the model is Kramer-Kronig consistent, the real part of the dielectric function

𝜀1(𝐸) can be computed from 𝜀2(𝐸). The Tauc-Lorentz model contains five fitting parameters in total,

which is an important consideration for assessing the risk of overfitting.

Cody-Lorentz:
The Cody-Lorentz model, developed by Ferlauto et al. [31], is designed to describe amorphous materials,

similar as the Tauc-Lorentz model. It too includes a Lorentzian absorption with parameters 𝐴, 𝐸0, and 𝐶,

and band gap energy 𝐸𝑔 . The main difference is in how the absorption starts just above 𝐸𝑔 . Additionally,

it can contain an Urbach tail to describe weak absorption below the band gap. The absorption from the

Cody-Lorentz is separated into two regions[30]:

𝜀2(𝐸) =
𝐸1

𝐸
exp

(
𝐸 − 𝐸𝑡

𝐸𝑢

)
for 0 < 𝐸 ≤ 𝐸𝑡 (2.10)

𝜀2(𝐸) = 𝐺(𝐸)𝐿(𝐸) =
[

(𝐸 − 𝐸𝑔)2

(𝐸 − 𝐸𝑔)2 + 𝐸2

𝑝

] [
𝐴𝐸0𝐶𝐸

(𝐸2 − 𝐸2

0
)2 + 𝐶2𝐸2

]
for 𝐸 > 𝐸𝑡 (2.11)

where 𝐸1 = 𝐸𝑡𝐺(𝐸𝑡)𝐿(𝐸𝑡), 𝐸𝑡 is the offset from the band gap energy, 𝐸𝑝 defines energy where the function

transitions from Cody-type to Lorentzian absorption, and 𝐸𝑢 defines the exponential rate of decay of

the Urbach tail.
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The Cody-Lorentz model is also Kramers-Kronig consistent and contains either 6 or 8 fitting parameters,

depending on whether the Urbach tail is included [30]. As a result, fitting this model to the data is more

complex than for the Tauc-Lorentz model, particularly when the Urbach tail is considered.

2.3.2. Effective Medium Approximation: Bruggeman Model
The Bruggeman Effective Medium Approximation (EMA) is used to model the optical properties of

materials that consist of a mixture of two or more components [32]. Instead of treating each component

separately, the EMA assumes that the mixture behaves as a single, homogeneous medium with effective

optical properties.

For a two-component system, typically a solid material and void, the model assigns volume fractions

𝑓 (void) and 1 − 𝑓 (material), which together make up the total medium. The effective dielectric

function is calculated by combining the contributions of each component, assuming that both are mixed

evenly throughout the material. This method is commonly used in ellipsometry to account for surface

roughness or porosity, where the structure is approximated as a mixture of a dense material and air.

2.4. Fourier Transform Infrared Spectroscopy
Fourier Transform Infrared (FTIR) spectroscopy is a technique used to characterize the optical and

vibrational properties of materials. It measures the wavelength-dependent transmission of infrared

light, which contains information about the material’s chemical bonds.

A schematic of a typical FTIR setup is shown in Figure 2.5. Light from a infrared source is directed

toward a beam splitter, which divides the beam into two paths. One part reflects off a fixed mirror,

the other off a moving mirror. The two beams recombine at the beam splitter, creating an interference

pattern that depends on the path length difference. This interference signal, known as an interferogram,

is recorded as the moving mirror scans.

The recombined beam then passes through the sample. Specific wavelengths are absorbed by the

material if they match the energy of vibrational modes, such as bond stretching or bending. These

features are used to identify material composition and its chemical bonds. The remaining light reaches

the detector. A Fourier transform is applied to the interferogram to reconstruct the transmitted spectrum

as a function of wavelength. From the measured transmission spectra, the complex infrared refractive

Figure 2.5: Schematic of an the setup of a Fourier Transform Infrared Spectrometer (FTIR), adapted from [5]. Light from a

broadband source is split into two beams by a beam splitter. These beams reflect off a fixed mirror and a moving mirror, then

recombine and pass through the sample.

index 𝑛̂ of the a-Si:H can be computed[5]:

𝑛̂ = 𝑛 + 𝑖𝑘 (2.12)
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where the real part 𝑛 is the refractive index and the imaginary part 𝑘 is the extinction coefficient. From

the extinction coefficient 𝑘, the absorption coefficient 𝛼 can be computed:

𝛼 =
4𝜋𝑘
𝜆

(2.13)

where 𝜆 is the wavelength. Both 𝑛 and 𝛼 are wavelength dependent, which allows for identifying

vibrational modes present in the film.

2.4.1. Transfer-Matrix Method
In FTIR analysis of thin films, interference from internal reflections must be taken into account. The

Transfer Matrix Method (TMM) is a widely used technique to model the optical response of a sample

consisting of multiple layers.

Each layer is defined by a complex refractive index 𝑛̂ = 𝑛 + 𝑖𝑘 and thickness d. For normal incidence,

the optical behavior of a layer is described by a characteristic matrix that captures both propagation

through the layer and boundary conditions at the interfaces. By multiplying the matrices of all layers,

the total response of the stack is obtained.

Figure 2.6 shows a TMM model representing the measured samples, with forward (𝑎 𝑓 ,𝑖) and backward

(𝑎𝑏,𝑖) wave amplitudes defined at each interface. The incident wave in layer 0 has amplitude 𝑎 𝑓 ,0 = 1,

while the reflected and transmitted waves are 𝑎𝑏,0 = 𝑟 and 𝑎 𝑓 ,3 = 𝑡, respectively. The light which is

transmitted through the sample is not reflected back, so 𝑎𝑏,3 = 0. From the total matrix, the reflectance

Figure 2.6: Schematic of the TMM model used to compute the infrared refractive index and absorption coefficient of the a-Si:H,

adapted from [5]. Layers 0 and 3 are represent air in the chamber, and are assumed semi-infinite in the model. Layer 1 and 2

represent a-Si:H and c-Si, respectively. The light is incident on layer 0.

and transmittance spectra can be calculated. This method is applied to model FTIR transmission through

a-Si:H films on c-Si substrates. By fitting the simulated transmission to the measured spectrum, the

complex refractive index of the a-Si:H layer is extracted as a function of wavelength.

2.4.2. Kramers-Kronig relations
The real and imaginary parts of a material’s complex refractive index 𝑛̂ are correlated through the

Kramers-Kronig relations [5]. For the complex susceptibility 𝜒̂, this relation is written as:

𝜒̂(𝜔) ≡ 𝜒′(𝜔) + 𝑖𝜒′′(𝜔) (2.14)

The real part 𝜒′
describes dispersion, while the imaginary part 𝜒′′

corresponds to absorption. These

components are related through a Hilbert transform:
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𝜒′(𝜔) = 1

𝜋
p.v.

∫ ∞

−∞

𝜒′′(𝜔′)
𝜔′ − 𝜔

𝑑𝜔′
(2.15)

𝜒′′(𝜔) = − 1

𝜋
p.v.

∫ ∞

−∞

𝜒′(𝜔′)
𝜔′ − 𝜔

𝑑𝜔′
(2.16)

The 𝑛 and 𝑘 are correlated to the 𝜒̂ from the relations: 𝜒̂ = 𝜖̂𝑟 − 1 and 𝜖̂𝑟 = (𝑛 + 𝑖𝑘)2.

2.5. Origin of the dielectric losses
In the 10–100 THz frequency range, dielectric losses are typically dominated by infrared absorption

caused by the excitation of vibrational modes [5], [33]. These vibrational modes are directly linked to

the composition and microstructure of the dielectric film [5].

At microwave frequencies (1–10 GHz) and under sub-Kelvin temperatures, dielectric losses are primarily

caused by the absorption of energy by two-level systems (TLSs) [5], [34].

In the mm–submm frequency range (0.1–1 THz), a-Si:H shows higher losses compared to the microwave

regime [35], [36]. According to Buĳtendorp [5], a-SiC:H exhibits a transition in loss mechanisms within

this frequency range. Losses between 270–455 GHz are explained by the absorption tail of vibrational

modes from frequencies above 10 THz. Therefore, the suggestion is made that above approximately 200

GHz, losses are dominated by vibrational modes, while below 200 GHz and at cryogenic temperatures

and low power the TLSs are the dominant loss mechanism.

Furthermore, [5] notes that strong vibrational modes in the 10–30 THz range are not only present in

a-SiC:H, but are also reported in other deposited dielectrics such as a-Si:H [8], [37]. Additionally, the

reported TLS loss tangent (tan 𝛿𝑇𝐿𝑆) for a-Si:H at microwave frequencies at cryogenic temperatures and

low electric field strengths (˜10
−5

) [35], [36], [38], supports the authors idea that a similar transition in

dominant loss mechanism from TLSs to vibrational modes also occurs in a-Si:H as frequency increases

within the mm–submm range.

2.5.1. Origin of Two-Level Systems
According to Gao et al. [39], TLSs can couple to the electric field of the resonator through their electric

dipole moment, thereby modifying the material’s dielectric constant, giving a TLS contributing to it 𝜖𝑇𝐿𝑆.

The real part of 𝜖𝑇𝐿𝑆 causes a shift in the resonant frequency, while the imaginary part leads to increased

microwave loss. Additionally, the TLSs can switch states randomly, resulting in time fluctuations in

the dielectric constant. This, in turn, causes the resonator’s resonant frequency to fluctuate over time,

contributing to frequency noise [9].

According to Buĳtendorp [5], although the microscopic origin of TLSs is not fully understood [40],

their behavior is well described by the standard tunneling model (STM) [34]. Additionally, multiple

correlations between TLSs and material properties have been reported in literature.

A correlation between TLS density and atomic silicon density in electron-beam evaporated a-Si has

been reported [41]. Additionally, nanovoids have been identified as the structural defects responsible

for reduced atomic density in this material [42], further suggesting that TLSs may be linked to voids in

the deposited dielectric. Remarkably, another study on electron-beam evaporated a-Si [43] report that

instead of dielectric losses, mechanical losses are correlated with atomic density. These mechanical

losses, attributed to internal friction caused by TLSs and are associated with nanovoids. The study

proposes that TLSs responsible for dielectric losses may be linked to the density of dangling bonds, 𝜌𝐷𝐵,

which are a natural source of electric dipole moments. While the connection to tunneling states remains

unclear, they suggest that dangling bonds could influence nearby atomic arrangements, inducing

fluctuating dipoles moments as atoms tunnel between energy minima.

It is argued that at microwave frequencies, where TLS loss dominates, hydrogen reduces the TLS density

by passivating dangling bonds. Therefore, it remains unclear whether hydrogenated films are beneficial

or detrimental for mm–submm losses [5].
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2.6. The Taguchi Method
In this section, I will explain the working principle of the Taguchi Method. The step-by-step procedure

is[44]–[46]:

• Define the quality characteristic to be optimized

• Define the control parameters and their levels

• Design the orthogonal array

• Conduct the experiments

• Construct Main Effect Plots to find optimal recipe

• Prediction of the optimal recipe

• Run a confirmatory test

Define the quality characteristic to be optimized: The first step in the Taguchi method is to define

the quality characteristic that needs to be optimized. This characteristic is the variable that determines

the product quality. For this work, these are the material properties of the a-Si:H film, described in

Section 4.1.

Define the control parameters and their levels: The second step is to identify the control parameters

that are believed to have a significant effect on the quality characteristic. These control parameters

must be independent of one another; otherwise, the resulting array will not be orthogonal. The control

parameters used in this thesis work are shown in Section 3.2.

Design the orthogonal array: The next step is to design the orthogonal array (OA). This requires

defining the number of levels for each control parameter, along with their specific values. An OA is a

table that spans the experimental space, where each row corresponds to an experiment. To maintain

orthogonality, each column (i.e., each control parameter) contains each level an equal number of times.

This ensures that all levels are tested uniformly across the full set of experiments. As a result, the

influence of each control parameter can still be statistically determined, even when multiple parameters

are varied simultaneously.

Although is it possible to study the interaction effects between the control parameters with an OA, most

OAs are designed to only study the main effects of the control parameters. This is because studying

interaction effects would require an substantial increase in the number of the experiments to conduct.

In commonly used OAs the number of levels is equal for all parameters. However, OAs with a mixed

number of level is also possible, this thesis work which such an OA, see Table 3.2.

The short notation of an orthogonal array is 𝐿𝑁 (𝐿𝑃), where 𝐿𝑁 is the name of the array, 𝑁 the number of

experiments in the array, 𝐿 is the number of levels for each parameter and 𝑃 is the number of parameters

[47].

To show how an orthogonal array is constructed, one example is shown in Table 2.1. This OA

corresponds to an experimental setup with 4 control parameters, each with 3 levels. The measured

quality characteristic is listed in the results column for each repetition, along with the calculated

signal-to-noise ratio (SNR). Parameter levels are coded as numbers: low (1), medium (2), and high (3).

By using this OA, the experimenter only needs to perform 9 experiments instead of all possible 3
4 = 81

combinations.

Conduct the experiments: Once the Taguchi array is defined, the next step is to conduct the experiments

and record the results. It is recommended to perform as many repetitions per experiment as time and

budget allow. From these repetitions, the signal-to-noise ratio (SNR) is calculated, as explained in the

next step. The SNR provides a measure of how robust the process is against variability.

Construct Main Effect Plots to find optimal recipe: The Main Effects Plot (MEP) is the key visualization

tool in the Taguchi method. It shows how each control parameter influences the output across its levels.

By analyzing these trends, one can identify which level of each parameter contributes most effectively to

the desired outcome. In the Taguchi approach, MEPs are typically generated using the SNR instead of

the average of the results.
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Experiment 𝑃1 𝑃2 𝑃3 𝑃4 Results SNR

1 1 1 1 1 𝑅1,1 , .., 𝑅1,𝑁 𝑆𝑁𝑅1

2 1 2 2 2 𝑅2,1 , .., 𝑅2,𝑁 𝑆𝑁𝑅2

3 1 3 3 3 𝑅3,1 , .., 𝑅3,𝑁 𝑆𝑁𝑅3

4 2 1 2 3 𝑅4,1 , .., 𝑅4,𝑁 𝑆𝑁𝑅4

5 2 2 3 1 𝑅5,1 , .., 𝑅5,𝑁 𝑆𝑁𝑅5

6 2 3 1 2 𝑅6,1 , .., 𝑅6,𝑁 𝑆𝑁𝑅6

7 3 1 3 2 𝑅7,1 , .., 𝑅7,𝑁 𝑆𝑁𝑅7

8 3 2 1 3 𝑅8,1 , .., 𝑅8,𝑁 𝑆𝑁𝑅8

9 3 3 2 1 𝑅9,1 , .., 𝑅9,𝑁 𝑆𝑁𝑅9

Table 2.1: The 𝐿9(34) orthogonal array as an example, adapted from [46]. It contains the parameter level, the results for each of

the repetitions and the SNR.

Using the SNR offers several advantages [44]. First, it provides a method to select the optimal level

based on the smallest variation around the target. Second, it enables objective comparison between

different sets of experiments with respect to variability. Third, because the SNR uses a logarithmic

transformation, nonlinear behavior in the system is linearized. This supports the assumption of linearity

when predicting the performance of the optimal combination of control parameters, which we refer to

as optimal recipe.

There are three standard SNR formulas, depending on the objective of the quality characteristic:

larger-the-better, smaller-the-better, or target-is-best [44], [46]

𝑆𝑁𝑅𝑙𝑎𝑟𝑔𝑒𝑟−𝑖𝑠−𝑏𝑒𝑡𝑡𝑒𝑟(𝑖) = −10 log
10

[
1

𝑁

𝑁∑
𝑛=1

1

𝑅2

𝑖 ,𝑛

]
(2.17)

𝑆𝑁𝑅𝑠𝑚𝑎𝑙𝑙𝑒𝑟−𝑖𝑠−𝑏𝑒𝑡𝑡𝑒𝑟(𝑖) = −10 log
10

[
1

𝑁

𝑁∑
𝑛=1

𝑅2

𝑖 ,𝑛

]
(2.18)

𝑆𝑁𝑅𝑡𝑎𝑟𝑔𝑒𝑡−𝑖𝑠−𝑏𝑒𝑠𝑡(𝑖) = −10 log
10

[
1

𝑁

𝑁∑
𝑛=1

(𝑅𝑖 ,𝑛 − 𝑇)2
]

(2.19)

where 𝑖 is the experiment number, 𝑁 is the number of repetitions of the same experiment (so 𝑛 = 1,2,...,

𝑁), 𝑅𝑖 ,𝑛 is the measured quality characteristic of the 𝑖th experiment at the 𝑛th repetition and 𝑇 is the

desired target value of the quality characteristic.

When multiple repetitions of the same experiment are performed, the SNR separates fluctuations caused

by noise in the experimental setup from those caused by varying the control parameter levels. The same

SNR formulas can also be applied when only one measurement per experiment is available. In that

case, the SNR serves as a loss function that quantifies the deviation from the target value [48]. The

logarithmic term in the equation amplifies differences near the target, effectively rewarding responses

that are closer to the desired outcome. This use of the SNR as a loss function for single measurements

has also been demonstrated in [49].

As the Main Effect Plots show how the SNR changes with different factor levels, the first step is to

compute the average SNR for each level of each parameter. This can be done using the following formula

[46]:

SNR 𝑓 ,𝑙 =
1

𝑄

𝑄∑
𝑞=1

SNR 𝑓 ,𝑙 (2.20)

where 𝑓 refers to the control parameter, 𝑙 to the level, and 𝑄 is the number of times level 𝑙 appears in

the orthogonal array. These average values are used to construct the Main Effect Plots (MEPs), which

show how the SNR varies across the different levels of each parameter.

An example of Main Effect Plots is shown in Figure 2.7, which is based on the orthogonal array in

Table 2.1. For each control parameter, a plot is generated showing the average SNR at each level. In
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this example, each point in the plots represents the average of three measurements. By observing the

trends, we see that for parameter 4, the SNR increases with decreasing level. For parameter 3, the SNR

is identical at levels 1 and 2, but increases at level 3.

In these MEPs, the level with the highest SNR corresponds to the quality characteristic closest to the

desired target. Hence, to determine the optimal recipe, the parameter levels with the highest SNR

should be selected. For this example, the optimal levels are: 𝑃1 — level 2, 𝑃2 — level 1, 𝑃3 — level 3, and

𝑃4 — level 1.

Figure 2.7: Example of main effect plots based on the orthogonal array shown in Table 2.1, adapted from [46].

Prediction of the optimal recipe: When the optimal recipe is chosen based on the Main Effect Plots, we

can predict the SNR of the quality characteristic with the following formula [44], [46], [50]:

SNRoptimal = SNR +
𝐹∑
𝑓=1

 1

𝑄

𝑄∑
𝑞=1

(SNR 𝑓 ,𝑙𝑜𝑝𝑡𝑖𝑚𝑎𝑙
− SNR)

 (2.21)

where SNR is the average SNR of all experiments, SNR 𝑓 ,𝑙𝑜𝑝𝑡𝑖𝑚𝑎𝑙
is the SNR for the experiments where the

control parameter is at the optimal level.

With this SNRoptimal you get an indication how significant the optimal recipe improves relative to the

conducted experiments. However, SNR is not what we will directly measure when conducting an

experiment. Therefore, we can calculate back the predicted ’raw measurement data’ from the SNRoptimal,

using the following formula [46]:

𝑅optimal = 10
SNR

optimal
/20. (2.22)

This procedure of predicting the value at a certain recipe is general, so can be used to predict the

outcome of every combination of levels.

Run a confirmatory test: The final step of the Taguchi method is to run the predicted optimal recipe.

This step is important to verify whether the prediction based on the Taguchi analysis is accurate. The

Main Effect Plots used to determine the optimal recipe only take into account the main effects of the

control parameters, without considering possible interaction effects between the parameters. Therefore,

testing the predicted recipe provides insight into how well the system can be described by main effects

alone.
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2.7. Analysis of Variance: ANOVA
To assess how strongly each control parameter influences the quality characteristic, it is common to

implement an Analysis of Variance (ANOVA) within the Taguchi method, as explained in detail in [44].

ANOVA separates the total variation in the measured results across all experiments into contributions

from each control parameter. For each parameter, the percentage contribution is calculated, indicating

which parameters have the greatest influence on the outcome. This helps identify the most important

parameters for optimization.

Additionally, ANOVA also provides statistical confidence by testing the significance of the observed

effects. This is done using the F-value, which compares the variance caused by changing a specific

parameter to the variance caused by random error. A higher F-value indicates a stronger and statistically

significant effect on the response. The corresponding p-value is used to evaluate the significance level.

A low p-value suggests that the observed effect is unlikely to be caused by random variation.

2.7.1. Regression model
To perform the ANOVA using a Python script, I have fitted the measured results using a regression

model, following the approach described in [49]. In this model, all numeric control parameters are

included as both linear and squared terms to capture potential curvature effects. The categorical

parameter, Wafer Preparation, is included using dummy variables. Therefore, the regression model

implemented in this thesis, has the following form:

𝑅 = 𝛽0 +
∑
𝑖

𝛽1,𝑖𝑋𝑖 +
∑
𝑖

𝛽2,𝑖𝑋
2

𝑖 +
∑
𝑗

𝛾𝑗 · 𝐷𝑗 + 𝜀, (2.23)

where 𝑅 is the quality characteristic, 𝑋𝑖 the numeric control parameters, 𝑋2

𝑖
: the their squared terms (to

capture curvature), 𝐷𝑗 the dummy variables representing the categorical parameter, 𝛽 and 𝛾 regression

coefficients, and 𝜀 the residual error.

The model is fitted using the Ordinary Least Squares (OLS) method from the statsmodels python

package. The resulting regression model serves as the basis for the ANOVA, where the total variation is

divided into contributions from the linear terms, the curvature terms, the categorical parameter, and

the residual error. The residual error captures the unexplained variation in the model and gives an

indication of how well the selected variables account for the measured results. It is important to note

that the regression model used in this thesis does not include interaction effects, as the orthogonal array

used is designed for main effects only.

Contour plots:
Another application of the regression model is to predict the values of the quality characteristic for

every possible combination of control parameter levels within the entire parameter space, instead

of only at the discrete levels defined in the Taguchi design. This is possible because the regression

model has quantified how the quality characteristic changes with respect to variations in the control

parameters. Using this approach, contour plots can be generated that visualize how the predicted

quality characteristic varies across the entire spanned parameter space.

However, it is important to note that the accuracy of these predictions depends on the variation in the

measured film properties and how well the regression model is fitted to this variation. Predictions

based on a model with a large residual error may be unreliable, as the unexplained variation could lead

to deviations between the predicted and actual values.

2.8. Grey Relational Analysis
So far, the optimization methods have focused on experiments with only one quality characteristic.

However, in this thesis the goal is to optimize the deposition recipe for multiple material properties. To

convert this multi-objective optimization problem into a single-objective one, Grey Relational Analysis

(GRA) is applied [48]–[51].

In Grey Relational Analysis, the measured results for each quality characteristic are first normalized

between zero and one. From this normalized data, the Grey Relational Coefficient is computed, which
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expresses how closely each measured value matches the desired target. The Grey Relational Grade

(GRG) is then calculated by taking a weighted average of the Grey Relational Coefficients across all

quality characteristics. In this way, multiple material properties can be evaluated simultaneously by

optimizing the Grey Relational Grade. The optimal recipe has the highest Grey Relational Grade.

Step 1: Grey Relational Normalization

The first step is to normalize the measured results to values between zero and one, where the

measurement closest to the desired value is assigned a one, and the measurement farthest from

the desired value a value of zero. Depending on the optimization goal, there are three options for

normalization: larger-the-better, smaller-the-better, and target-the-best. The corresponding formulas

are [48]–[51]:

𝑥𝑖(𝑘) =
𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)

max 𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)
(2.24)

𝑥𝑖(𝑘) =
max 𝑦𝑖(𝑘) − 𝑦𝑖(𝑘)

max 𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)
(2.25)

𝑥𝑖(𝑘) = 1 − |𝑦𝑖(𝑘) − 𝑇|
max

(
max 𝑦𝑖(𝑘) − 𝑇, 𝑇 − min 𝑦𝑖(𝑘)

) , (2.26)

where 𝑥𝑖(𝑘) is the normalized value for recipe 𝑖, 𝑦𝑖(𝑘) the quality characteristic for recipe 𝑖, min 𝑦𝑖(𝑘) is

the smallest value of 𝑦𝑖(𝑘) for the 𝑘th response , and max 𝑦𝑖(𝑘) is the largest value of 𝑦𝑖(𝑘) for the 𝑘th

response. For the target-the-best normalization, 𝑇 represents the desired target value of the quality

characteristic.

Step 2: Grey Relational Coefficient [48]–[51]:

The second step is to compute the Grey Relational Coefficients, which expresses the relationship between

the desired and the actual normalized experimental results. The Grey Relational Coefficient 𝜉𝑖(𝑘) can

be calculated as:

𝜉𝑖(𝑘) =
Δmin + 𝜁Δmax

Δ0𝑖(𝑘) + 𝜁Δmax

, 0 < 𝜉𝑖(𝑘) ≤ 1 (2.27)

whereΔ0𝑖(𝑘) = |𝑥0(𝑘) − 𝑥𝑖(𝑘)| is the deviation sequence of reference sequence 𝑥0(𝑘) and the comparability

sequence 𝑥𝑖(𝑘). The terms Δmin and Δmax are the minimum and maximum values of all deviation

sequences across all recipes and quality characteristics:

Δmin = min

𝑗∈𝑖
min

𝑘



𝑥0(𝑘) − 𝑥 𝑗(𝑘)


 ,Δmax = max

𝑗∈𝑖
max

𝑘



𝑥0(𝑘) − 𝑥 𝑗(𝑘)


 . (2.28)

The distinguishing coefficient 𝜁 controls the resolution of the Grey Relational Coefficient and typically

ranges between 0 and 1. In this work, 𝜁 is set to 0.5, as commonly applied in literature [48], [49].

Step 3: Grey Relational Grade

The Grey Relational Grade shows how well each recipe performs when considering multiple quality

characteristics, which in this work means multiple material properties. It is calculated by taking a

weighted average over all quality characteristics of interest:

𝛾𝑖 =

∑𝑛
𝑘=1

𝑤𝑘 , 𝜉𝑖(𝑘)∑𝑛
𝑘=1

𝑤𝑘

, (2.29)

where 𝛾𝑖 is the Grey Relational Grade for the 𝑖th recipe, 𝜉𝑖(𝑘) is the Grey Relational Coefficient for

the 𝑘th quality characteristic, 𝑤𝑘 is the weighting factor for that characteristic, and 𝑛 is the number of

characteristics being optimized. A higher Grey Relational Grade correspond to a recipe which is better

to optimize all quality characteristics simultaneously.

Now that the Grey Relational Grade is calculated for each experiment, the same analysis tools from the

Taguchi method can be applied to identify the optimal recipe. The Main Effect Plots can be constructed

without using the SNR, as the relation between the desired value and the actual measurement is an

intrinsic property of the Grey Relational Analysis. Similarly, the predicted optimal Grey Relational

Grade can be calculated using the same approach as in Equation 2.21, by replacing the SNR with the

Grey Relational Grade. With this prediction, the final step is to conduct the predicted recipe, to verify if

the analysis has successfully find an improvement on the experiments.
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Methodology: Film deposition

3.1. Investigation of the parameter space of the ICP-CVD
For the deposition of a-Si:H thin films in this project, I used the Oxford Instruments PlasmaPro 100

ICPCVD, whose operating principle is explained in Section 2.1. The goal of this project is to optimize the

film properties by adjusting the deposition recipe of the ICP-CVD machine. To systematically investigate

this, I first examined all possible parameters available in the PlasmaPro system. From this extensive list,

I selected six parameters that are expected to have the most significant influence (as explained in the

next section) on the deposition process: substrate table temperature, silane (SiH4) flow rate, gas ratio

between silane and argon, ICP power, table RF power, and chamber pressure.

In addition to these six process parameters, which will determine the conditions within the deposition

chamber, I will add a substrate-related parameter: the method of oxide-layer removal prior to deposition.

As previous studies have shown that TLSs affecting resonator performance mainly originate from oxide

layers at interfaces [9], [20].

3.1.1. Relevance of the selected deposition parameters
Below I describe how each of the selected parameters affects the deposition process and material

properties that effect the dielectric losses. The relevance of these material properties is further discussed

in Section 4.1.

• Table Temperature: As shown in [5], [8], who varied the table temperature for three depositions

using a similar PECVD technique, the table temperature strongly influences the structural

properties of the films. Increasing the temperature resulted in films with lower hydrogen content,

reduced void fraction, a smaller microstructure parameter, and a higher refractive index—an

indicator of increased film density. Additionally, it is observed that for ICP-CVD processes, film

density increases with deposition temperature [52].

• Flow rate of Silane: The authors of [20] varied the silane gas flow while testing many different

recipes for a-Si:H, indicating its importance as a control parameter. An increase in silane flow rate

is correlated with a decrease in the refractive index, and thus a reduction in the density of the

deposited a-Si:H films [53].

• Gas ratio between Silane and Argon: This ratio is interesting because argon helps stabilize the

plasma by enhancing ionization efficiency. It also affects the ion bombardment of the substrate,

which influences material properties like residual stress.

• ICP Power: ICP power is the main parameter controlling the ion density of the plasma, as shown

by [54]. The same paper also shows that ICP power influences the DC bias within the deposition

chamber (if the Table RF power is non-zero). This bias controls the energy of ions bombarding the

substrate, which affects material properties like film density and stress [54]. Another study also

found a strong correlation between ICP power and the refractive index of the film [55].
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• Table RF Power: Together with the ICP power, the table RF power controls the DC bias in the

deposition chamber. This bias affects the ion flux and energy reaching the substrate [54], which in

turn influences the intrinsic stress of the film due to changes in its microstructure..

• Pressure: The pressure inside the deposition chamber influences the stress in the a-Si:H film, as

shown by [55], and is also linked to the refractive index of the deposited film [54].

• Method for oxide-layer removal: Previous studies have shown that TLS affecting resonator

performance mainly originate from oxide layers at interfaces [9], [20]. Therefore, it is important to

remove any native oxide before deposition. In literature mainly two methods are used for this

removal; performing a short dip into diluted HF or argon milling. During a HF dip, the native

oxide layer is etched away. Argon milling is done within the ICP-CVD chamber, where the top

layer of the wafer gets etched away by bombarding it with argon ions. By alternating between

these two surface preparation methods, I hope to assess their influence on the material properties.

3.2. Parameter levels
The seven parameters listed above are used to define the parameter space, which will determine the

different ICP-CVD recipes executed during this project. Keeping in mind that I want to optimize the

properties of the a-Si:H, I have selected the recipe reported to yield the lowest a-Si:H dielectric losses in

literature [20] as the central point of this parameter space. It should be noted that [20] used a slightly

different ICP-CVD system—the Oxford Plasmalab System 100 ICP 380—whereas the system used in

this work is the Oxford PlasmaPro 100 ICPCVD. Therefore, I do not expect identical material properties

when using their recipe directly. Nonetheless, I believe their process provides a well-motivated starting

point for my study.

I decided to keep three levels for each of the six ICP-CVD parameters, as this allows me to identify

whether there is an optimal value between the low and high levels. Wherever possible, the middle level

corresponds to the recipe from [20]. This is the case for the table temperature (350°C), silane flow rate

(30 sccm), and chamber pressure (10 mTorr). For the gas ratio, [20] used 100% silane, so I have chosen

this as the maximum level for that parameter.

For the ICP power, I initially intended to use the 300 W value from [20] as the middle level. However,

during preliminary testing—when I evaluated whether the ICP-CVD system could sustain stable plasma

across all parameter combinations—I found that it failed to ignite plasma at powers below 300 W for

certain conditions. Therefore, I selected 300 W as the lowest level for this parameter.

During the same testing, I found that a table RF power of 50 W produced a sufficiently high DC bias in

the chamber. Concerned that increasing the table RF power beyond this level might lead to extreme ion

energies, causing heavy bombardment and increased intrinsic stress, I set 50 W as the maximum level

for this parameter.

The next step was to select specific values for the parameter levels. For the table temperature, I chose to

test the upper end of the possible range, as [5] has indicated that higher table temperatures improve

material properties. Therefore, I set the upper level just below the ICP-CVD system’s limit, at 390°C

instead of the 400°C maximum, to avoid potential overheating shutdowns.

For the gas ratio between silane and argon, literature shows considerable variation, ranging from 29% in

[17] to 100% in [20] and [56]. I am interested to see how the presence of argon affects the deposition

process, so I selected a broad range from 50% to 100%.

For the remaining parameters, I followed a similar approach. The difference between low and the high

level are substantial, which is set on purpose. I expect that this wide range will be sufficient to reveal the

influence of each parameter on the material properties. An overview of the chosen parameter values is

given in Table 3.1.

3.3. Recipe optimization by Design of Experiments
In total, I want to optimize for seven parameters: six with three levels and one with two levels. Testing

every possible combination would require 2 x 3
6

= 1458 experiments, which is clearly impractical. To

address this, I applied a Design of Experiments (DoE) approach, which enables an enormous reduction
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Numerical parameters: Level
Low Medium High

Table Temperature 300°C 350°C 390°C

Gas ratio (SiH4/SiH4+Ar) 50% 75% 100%

Flow rate SiH4 15 sccm 30 sccm 45 sccm

ICP power 300 W 500 W 700 W

Table RF 0 W 25 W 50 W

Pressure 5 mTorr 10 mTorr 15 mTorr

Categorical parameter: Levels
Wafer Preparation HF Dip / Argon Milling

Table 3.1: Parameters that define the parameter space, with values per level.

in the number of experiments while preserving the ability to analyze trends in the data effectively.

The DoE is a structured approach to plan, perform and analyze experiments. It allows the investigation

of how multiple parameters influence a process by selecting a limited number of strategically chosen

experiments, instead of testing all possible combinations. This reduces time and resource, while still

given important information. DoE is particularly useful for complex systems with many variables,

because it helps identify the most influential parameters, possible interactions, and optimal process

conditions in an efficient way.

3.3.1. Comparison between DoE Techniques
Several methods exist within DoE, each based on a different strategy for planning experiments. In the

following, I compare these methods to justify the selection of the most appropriate approach for this

project.

Response Surface Methodology (RSM) is particularly useful for studying nonlinear interactions between

parameters. It fits polynomial models to the experimental data, which can then be used to predict

optimal parameter settings. RSM includes methods such as Central Composite Design (CCD) and

Box-Behnken. CCD places experiments around a central point and includes additional “star points” to

explore the edges of the design space. In contrast, Box-Behnken avoids extreme values and concentrates

more experiments near the center of the design space [57]. I-optimal and D-optimal designs are also

part of RSM and aim to further reduce the number of experiments by optimizing the experiment layout.

I-optimal designs minimize prediction error and are better suited for identifying optimal operating

conditions, whereas D-optimal designs reduce statistical uncertainty and are more useful for estimating

the effects of control parameters on the measured material properties [57].

Another method used in DoE is the Fractional Factorial Design (FFD). It estimates the effect of control

parameters by testing only a fraction of all possible combinations, based on the assumption that

higher-order interactions are negligible. The fraction of the design space used is expressed as
1

2
𝑘 , where

𝑘 indicates the degree of reduction. FFD designs are categorized by their resolution, which indicates

the level of aliases between effects. A higher resolution results in better separation between main effects

and interactions. This makes FFD a very efficient method for reducing the number of experiments, at

the trade-off of possible aliases especially in lower resolution designs [57].

The last method that was considered is the Taguchi method. It is based on an orthogonal array, which

makes sure that each parameter is varied independently. This allows the effect of each factor to be

evaluated individually. A key feature of the Taguchi method is the use of the Signal-to-Noise Ratio

(SNR), instead of just the raw measurement data. The SNR is particularly useful for processes where

results can vary significantly for the exact same parameters, as it quantifies the robustness of the process.

This makes the method useful for improving process reliability. Another advantage is its straightforward

approach for selecting the optimal parameter levels [44]. However, similar to FFD, the Taguchi method

is less effective when strong interaction effects are present, since its orthogonal arrays are primarily

designed to isolate main effects efficiently.

To make a choice between each of these methods, it is important to compare the number of experiments
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required for each method. To do this, I used JMP software, which can generate experimental designs

based on the different DoE methods. In JMP, only continuous parameters can be included in RSM

designs, which all of the parameters are except for the wafer preparation method, which is named a

categorical parameter. For the RSM method, using Central Composite Design (CCD) with six continuous

parameters, the most efficient design required 46 experiments. The D-optimal and I-optimal methods

could include all seven parameters and generated designs with 40 experiments each. The Fractional

Factorial Design and the Taguchi method require only 16 and 18 experiments, respectively, but are

limited to estimating main effects.

Based on the available information, I have selected the most suitable DoE method for this project. Both

the Fractional Factorial Design (FFD) and the Taguchi method require a similar number of experiments.

In principle, FFD has the advantage of estimating interaction effects between parameters. However,

with only 16 experiments, the degree of reduction is so large that possibly the design can no longer

estimate these interaction effects. Therefore, the more robust design of the Taguchi method is preferred

over FFD.

When comparing the Taguchi method to the RSM methods, the number of experiments plays an

important role. Although RSM methods offer advantages in modeling interaction effects and predicting

optimal conditions across the full parameter space, I chose the Taguchi method for practical reasons.

Running more than twice the number of experiments would be challenging within the limited time for

the project, especially since each recipe must be deposited on two different wafers; one for ellipsometry

and one for FTIR measurements (see Section 4 for more details).

Despite this trade-off, the Taguchi method still provided valuable insights. It allowed me to evaluate the

individual effect of each parameter on the material properties, and to compare the relative importance

of the parameters. Furthermore, I was able to predict the optimal parameter settings and the expected

outcome at that setting. However, it is important to note that the Taguchi design does not capture

interaction effects, which are therefore not studied in this work. The working principle of the Taguchi

method is explained in detail in Section 2.6.

3.3.2. Orthogonal array used in this thesis
For the design of the orthogonal array, I have used the JMP software. Based on the seven control

parameters, the software generated an orthogonal array consisting of 18 experiments, as shown in

Table 3.2.

The orthogonality of the array is only preserved when all planned experiments can be successfully

executed, which in this project means sustaining a stable plasma during deposition. Therefore, before

performing any actual measurements, I tested each recipe to ensure plasma ignition and stability. After

confirming that all 18 recipes resulted in stable plasma conditions, I verified that the orthogonal array

was suitable for this project.

3.4. Procedure running deposition recipe
3.4.1. Number of depositions
The optimal wafer type differs for the Ellipsometer and the Fourier Transform Infrared Spectrometer

(FTIR). For ellipsometry, a Single Side Polished (SSP) wafer with a thermal oxide layer is preferred, as

it increases the reflected signal from the a-Si:H film. However, this wafer type is unsuitable for FTIR

measurements, since the Transfer-Matrix Method (TMM) model used to analyze FTIR data does not

support a thermal oxide layer. Instead, a Double Side Polished (DSP) wafer is required to maximize

transmission. Consequently, each deposition recipe was performed twice, once on each wafer type.

Additional details on the wafers used for ellipsometry and FTIR are provided in Sections 4.3 and 4.4,

respectively.

In the Taguchi method, it is recommended to run each recipe multiple times if time allows. Repeating

the same recipe helps distinguish the noise effects from the parameter effect, testing the robustness of

the recipe. However, it is not necessary to repeat recipes to gain useful insights. Due to time limitations,

and the need to deposit each recipe on two different wafers, I have measured each material property

once for every experiment.
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Rec. nr. Table T
(°C)

Flow rate
SiH4 (sccm)

ICP
Power (W)

Table
RF (W) Pressure (mTorr)

Gas ratio
SiH4/(SiH4+Ar) Wafer Preparation

1 300 15 700 50 10 75 HF Dip

2 300 30 300 0 15 100 HF Dip

3 300 45 500 25 5 50 HF Dip

4 350 15 500 50 5 100 HF Dip

5 350 30 700 0 10 50 HF Dip

6 350 45 300 25 15 75 HF Dip

7 390 15 700 25 15 50 HF Dip

8 390 30 300 50 5 75 HF Dip

9 390 45 500 0 10 100 HF Dip

10 300 15 300 0 5 50 Argon Milling

11 300 30 500 25 10 75 Argon Milling

12 300 45 700 50 15 100 Argon Milling

13 350 15 300 25 10 100 Argon Milling

14 350 30 500 50 15 50 Argon Milling

15 350 45 700 0 5 75 Argon Milling

16 390 15 500 0 15 75 Argon Milling

17 390 30 700 25 5 100 Argon Milling

18 390 45 300 50 10 50 Argon Milling

Table 3.2: Orthogonal array used for the thesis, containing the levels of the factors for each recipe. Generated with the JMP

software.

3.4.2. Wafer preparation
In this section I explain how I have applied the two methods of native oxide removal; HF dip and Argon

milling.

HF dip
To perform the oxide removal, a HF Marangoni bath located at the Else Kooi Laboratory was used. A

photo of this setup is included in the Appendix (Figure C.7). The system consist of of a bath filled with

a 0.55% HF solution, an IPA vapor release system just above the liquid level and a wafer holder that

holds 6 wafers simultaneously. The wafers are immersed into the solution of 4 minutes, followed by

a 5-minute rinse with DI water. While the wafers are lifted, they are passed through the IPA vapor,

which enabled Marangoni drying and passivates the wafers for 72 hours. Without this drying step, the

passivation typically lasts only 20 minutes. I processed six wafers at a time, and made sure that the

depositions were performed on the same day. For the details about the operation of the Marangoni

Bath, see the flowchart at the end of this thesis.

Argon milling
The Argon milling technique was performed in-situ using the same ICP-CVD machine used for the

depositions. Unlike the HF dip, Argon milling does not passivate the wafer surface, hence re-oxidation

can occur if not performed immediately before the deposition. Argon milling works by inserting pure

argon gas into the deposition chamber, which is then ionized by the RF power of the ICP coil. The

generated plasma ions are accelerated toward the wafer due to the DC bias that is controlled by the
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second RF source connected to the substrate electrode. The surface layer of the wafer is etched away by

this ion bombardment.

At the beginning of the project, no argon milling recipe was available from the cleanroom staff. Using

the argon milling recipe in [58] as a starting point, I developed a working recipe that could sustain a

stable plasma. This recipe is shown in Table 3.3.

To determine the etch rate of thermal oxide, I performed ellipsometry measurements on a SSP wafer

with a thermal oxide layer, see Section 5.1 for the etching uniformity over the wafer. A 3-minute etch

removed approximately 5.0–5.5 nm of thermal oxide, as shown in Figure 5.1. Since the native oxide

layer is typically 1–2 nm thick, I set 3 minutes as the standard etch time. The small overetch is to ensure

complete removal of the native oxide. For all experiments containing Argon milling, this recipe was

executed right before the deposition within the same run.

Parameter Pump Heat-up Gas stab Strike Argon milling Flush Purge Pump
Time 1m 2m 20s 10s 2m 50s 30s 30s 30s

Pressure 0 mTorr 10 mTorr Unchanged Unchanged Unchanged Unchanged 0 mTorr Unchanged

Table RF Off Unchanged Unchanged 50 W Unchanged Off Unchanged Unchanged

Table AMU Off Unchanged C1: 42.0%, C2: 47.5% Auto Park Unchanged Off Unchanged Unchanged

ICP RF Off Unchanged Unchanged 300 W Unchanged Off Unchanged Unchanged

ICP AMU Unchanged Unchanged C1: 47.0%, C2: 66.0% Auto Park Unchanged Off Unchanged Unchanged

Ar (Gasring) Off Unchanged Unchanged Unchanged Unchanged 25 sccm Off Unchanged

Ar Off 20 sccm Unchanged Unchanged Unchanged 50 sccm Unchanged Off

SiH4 (Gasring) Off Off Off Off Off Off Off Off

Table Heater 300°C Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged

Chamber Heater 60°C Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged

Table 3.3: Argon milling recipe used to remove surface oxide in-situ with 300 W ICP and 50 W RF power. Auto Park setting

enables automatic changing C1 & C2, to minimize reflected power. Chamber heater is set to avoid condensation.

3.4.3. Running deposition recipes
Before running the first deposition recipe of the day, I preconditioned the chamber using a dedicated

precondition recipe. This step coats the chamber walls with a thin layer of a-Si:H, which improves

consistency between depositions by stabilizing surface conditions inside the chamber.

Each deposition recipe consists of the same sequence of phases. As an example, the precondition recipe

is shown in Table 3.4. During the first phase a high vacuum is created in the chamber. Next, the process

gases are introduced into the chamber, which allows the wafer to match with the temperature of the

table. In the following gas stabilization phase, the gas flowrates are adjusted to match the recipe values.

Plasma ignition occurs during the strike phase by turning on the ICP power, which is executed with fixed

settings for all recipes: 500 W ICP power, 10 mTorr pressure, and 0 W Table RF. These conditions are

chosen to ensure reliable and stable plasma ignition. In the deposition phase that follows, all parameter

levels are set to their recipe-specific value to deposit the a-Si:H film. The final three phases involve

flushing the chamber with argon and pumping down to high vacuum.

As the deposition rates for the recipes were unknown beforehand, the suitable deposition time could not

be computed. I aimed for a film thickness between 300 nm and 500 nm, which is ideal for ellipsometry

measurements and the application thickness in parallel-plate capacitors [9]. Predicting the correct

deposition time was an iterative process, making educated-guesses from the deposition rate observed

from earlier runs. This resulted in a thickness range of 202 to 927 nm for the SSP wafers. For the DSP

wafers, the deposition rate from the SSP runs could be used to set a more accurate deposition time,

resulting in values closer to the target level of 500 nm.
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Parameter Pump Heat-up Gas stab Strike a-Si dep Flush Purge Pump
Time 1m 1m 20s 10s 3m 50s 30s 30s 30s

Pressure 0 mTorr 30 mTorr 10 mTorr 10 mTorr 15 mTorr Unchanged 0 mTorr Unchanged

Table RF Off Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged

Table AMU Off Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged

ICP RF Off Unchanged Unchanged 500 W 700 W Unchanged Unchanged Unchanged

ICP AMU Unchanged Unchanged C1: 48%, C2: 44% Auto Park Unchanged Off Unchanged Unchanged

Ar (Gasring) Off Off Off Unchanged Unchanged 25 sccm Off Unchanged

Ar Off Unchanged Unchanged Unchanged Unchanged 50 sccm Unchanged Off

SiH4 (Gasring) Off 40 sccm 30 sccm Unchanged Unchanged Unchanged Unchanged Off

Table Heater 300°C Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged

Chamber Heater 60.0°C Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged

GasRing Heater 60.0°C Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged

Table 3.4: Deposition recipe parameters for the precondition step, used the cover the chamber wall with an initial thin a-Si:H

layer. Each column represents a recipe phase with corresponding settings for pressure, gas flows, RF powers, initial AMU

configuration and heater temperatures. The chamber heater and Gasring heater are both set to 60°C to prevent condensation.
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Methodology: Characterizing a-Si:H

thin film properties

4.1. Material properties of interest
This chapter explains which material properties I have measured and why these are relevant in the

context of dielectric losses. Additionally, I will describe how each property was measured, including

the tools used and the corresponding data analysis.

Directly measuring the cryogenic, mm-submm dielectric losses of the deposited films is beyond the

scope of this project. However, as described in Section 2.5, literature proposes several correlations

between dielectric losses and material properties. In the mm–submm frequency range (0.1–1 THz), two

main loss mechanisms are identified: the absorption tail of vibrational modes originating from infrared

absorption above 10 THz, and absorption due to two-level systems (TLSs). These TLSs have been linked

to both nanovoids in the dielectric as well as the density of dangling bonds.

During this project, I was not able to directly measure the amount of nanovoids or the dangling bond

density in the deposited films. However, based on literature research, I evaluated proposed correlations

between these microscopic features and measurable material properties. By optimizing the material

properties according to these correlations, it may be possible to predict which deposition recipe results

in the lowest dielectric losses.

The material properties measured in this project are: thickness non-uniformity, void volume fraction ( 𝑓𝑣),

hydrogen content (𝐶𝐻), microstructure parameter (𝑅∗
), optical refractive index (𝑛), infrared refractive

index (𝑛𝑖𝑟), band gap, and residual stress.

What makes these material properties interesting?

• Thickness non-uniformity: Uniform layer thickness is crucial in parallel-plate capacitors, particu-

larly for large-area arrays such as those fabricated with TIFUUN. Thickness variations across the

wafer can lead to significant frequency scatter between different PPCKIDs, since their resonance

frequency is thickness-dependent [9].

• Void-volume fraction ( 𝑓𝑣): A correlation between increasing TLS density and increasing void

density in the dielectric has been proposed [41]. Therefore, measuring 𝑓𝑣 serves as an indirect

indicator of TLS-related dielectric loss.

• Hydrogen content (𝐶𝐻): The 𝐶𝐻 is directly calculated from the absorption dip around 640 cm
−1

in the FTIR spectrum, which is a vibrational model of the SiH bond. A reduction in the strength of

this dip is expected to reduce the corresponding infrared vibrational absorption tail extending into

the mm-submm range [5]. On the other hand, hydrogen atoms are known to passivate dangling

bonds, which are associated with TLSs [43]. Therefore, an increasing 𝐶𝐻 could potentially reduce

the TLS-related loss.
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• Microstructure parameter (𝑅∗): The 𝑅∗
represents the ratio between 𝑆𝑖𝐻 and 𝑆𝑖𝐻2 bonds and

reflects the microstructure of the film. This is an indication for the amount of voids in the film

because 𝑆𝑖𝐻2 bonds are occurring mostly on the surface of voids [33], [59], making 𝑅∗
a useful

indicator of void-related TLS density.

• Optical refractive index (𝑛): The 𝑛 is correlated with the defect density of a deposited a-Si:H film

[60], where an increasing refractive index corresponds to a lower defect density. Therefore, 𝑛 is

related to other material properties like, 𝑓𝑣 and 𝑅∗
[5]. Measuring the 𝑛 is suggested as an iterative

optimization of the dielectric material properties, as is is relatively straightforward to measure [5].

• Infrared refractive index (𝑛𝑖𝑟): The 𝑛𝑖𝑟 refers to the refractive index measured using FTIR, at a

region free of absorption modes (2800 cm
−1

). Like the optical refractive index, the 𝑛𝑖𝑟 is correlated

with the defect density of the film and therefore also linked to 𝑓𝑣 and 𝑅∗
[5].

• Band gap: The band gap of a-Si:H has been correlated with both refractive index and void fraction

[53]. A lower band gap corresponds to a higher refractive index and lower void content, suggesting

that the band gap is indirectly linked to dielectric loss.

• Residual stress: While not directly correlated with dielectric loss, the residual stress affects the

mechanical stability of the film. High stress levels can lead to buckling or delamination, which is

undesirable [23].

Residual stress was measured using a stressmeter. The hydrogen content, infrared refractive index,

and microstructure parameter were obtained via Fourier Transform Infrared Spectroscopy (FTIR). The

optical refractive index, band gap, void volume fraction, and thickness non-uniformity were measured

using ellipsometry.

4.2. Residual stress
During this work, the FLX-2320-S stressmeter was used to determine the residual stress in the deposited

films, by measuring the wafer curvature before and after deposition. A picture of the stressmeter, taken

in the cleanroom, is shown in Appendix C. To perform a measurement, the wafer is placed at the center

of the stage, resting on three support pins to minimize contact. A positioning ring with 24 notches is

used to set the wafer’s orientation, allowing scans at multiple angles. A laser scans along the diameter

of the wafer, and a detector measures the deflection of the reflected beam. From this deflection, the

system calculates the wafer bow. By comparing the bow before and after deposition, and using the film

thickness measured by ellipsometry, the residual stress is computed using the Stoney equation 2.4), as

explained in Section 2.2.

Stress measurements were performed along two orientations of the wafer, as depicted in Figure 4.1. The

total stress of the recipe was set as the average value of these two measurement, as their difference was

minimal.

Figure 4.1: Stress measurement orientations.
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4.3. Ellipsometry
For the ellipsometry measurements, I used the Woollam Spectroscopic Ellipsometer system, shown in

Appendix C. This is a variable-angle spectroscopic ellipsometer (VASE) with a wavelength range of 210

to 1690 nm and a spectral resolution of 2 nm. The working principle of ellipsometry is explained in

Section 2.3. Ellipsometry is used to measure both thickness and optical constants of stacked thin-film

sample.

For the ellipsometry measurements, the a-Si:H films were deposited on 525 𝜇m thick n-type (phosphor)

single-side polished (SSP) c-Si wafers with a resistivity of 𝜌 1-20 kΩ cm and (100) orientation. To increase

the reflected signal through the a-Si:H layer, a thermal oxide layer of ~123 nm was grown on the wafers

prior to deposition.

I performed measurements with angles close to the Brewster angle of a-Si:H (~74
◦
), as it maximizes the

sensitivity to changes in the optical properties of the sample [61]. Therefore, for each point of the wafer

I have measured with 3 angles; 65
◦
, 70

◦
and 75

◦
.

4.3.1. Building an optical model
The measured change in polarization was fitted to an optical model consisting of the c-Si substrate,

thermal oxide layer, a-Si:H film, and native oxide layer. The data from all three measurement angles

were fitted simultaneously using the CompleteEASE software developed by J.A. Woollam Co. [28].

Thermal oxide measurement
This software contains predefined models for the c-Si substrate, thermal oxide, and native oxide, where

only the their layer thicknesses are used as fitting parameters. Since the number of fitting parameters

should be minimized to increase accuracy, I measured the thickness of the thermal oxide layer prior

to the a-Si:H deposition. This allowed me to fix its value in the model, thereby removing it as a free

parameter. For each wafer, I measured the thermal oxide thickness at 29 points, see Figure 4.3, and used

the average thickness in the optical model.

From Cauchy to Tauc-Lorentz
For the a-Si:H layer, as its composition is dependent on the deposition recipe, no suitable predefined

layer is available. Therefore, I have constructed the optical model in multiple steps, as recommended in

[28].

The first step is fitting only the transparent region of the spectrum, where absorption is negligible. In

this region, a Cauchy dispersion model was used, as it provides a good approximation of the refractive

index and layer thickness. See Section 2.3.1 for more details on the Cauchy model.

Next, the Cauchy layer was replaced with a B-spline model by fitting it to the Cauchy layer. The B-spline

offers greater flexibility to describe both the real and imaginary parts of the refractive index across

the full spectral range. At this stage, the spectral fitting range was extended to include the absorbing

region, which cannot be accurately described using the Cauchy model. For more details on the B-spline

approach, see Section 2.3.1.

Finally, the B-spline was replaced with a Tauc-Lorentz oscillator model by fitting it to the B-spline. The

Tauc-Lorentz provides a more physically meaningful description of the optical properties of amorphous

materials such as a-Si:H. This model captures both the absorption near the band gap and the broader

absorption at higher energies [30]. For details about the Tauc-Lorentz model, see Section 2.3.1.

This step-by-step procedure makes sure the fit is stable and physically meaningful, as the Tauc-Lorentz

has five fitting parameters which are more likely to fit into a local minimum without making use of the

Cauchy and B-Spline.

4.3.2. Fitting Tauc-Lorentz to obtain thickness, refractive index and band gap
Now that the optical model of the sample is complete, the Tauc-Lorentz model and the layer thicknesses

of both the a-Si:H and native oxide are fitted to the measured ellipsometry data. As a final step to

improve the Mean Squared Error (MSE) of the fit, two fitting parameters available in the CompleteEASE

software are introduced: surface roughness and thickness non-uniformity. These parameters are

commonly used to see if the fitting can slightly be improved.
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The Tauc–Lorentz model, which is Kramers–Kronig consistent [30], allows the refractive index and

absorption coefficient to be constructed over the fitted wavelength range using the Kramers–Kronig

relations, as described in Section 2.4.2. To make an easy comparison between the optical refractive index

of the different recipes, I have compared the refractive indexes at a fixed wavelength of 1200 nm, which

follows the approach of Buĳtendorp et al. [18]. Additionally, the band gap is extracted directly from the

model, as it is one of the Tauc-Lorentz fitting parameters.

An example of the fitted optical model is shown in Figure 4.2. In the long-wavelength region (above

~600nm), the film is transparent and interference fringes are presents that are due to internal reflections.

Towards shorter wavelengths, absorption becomes significant, which suppresses the interference features.

In general, the number of visible fringes correlates with the film thickness. Due to the shape of the

Tauc-Lorentz it describes both the absorbing and transparent region.

Figure 4.2: The optical model fitted to the data from SSP wafer 8 is shown as an example. The data contains measurements of Δ

(green curve) and Ψ (red curve) at three different angles. The dashed black line represents the reconstructed data based on the

model’s calculation.

4.3.3. Thickness non-uniformity:
To measured the thickness non-uniformity of the deposited film, I measured 29 points distributed

across each wafer, as shown in Figure 4.3. This distribution is chosen to effectively capture the radial

non-uniformity. A 7mm border was chosen at the edge, as this area is not used to develop chips. Each

of the 29 points was measured at three angles (65
◦
, 70

◦
, and 75

◦
), resulting in a total of 87 measurements

per wafer.

Figure 4.3: Ellipsometer measurement path showing 29 points distributed in a spiral pattern across the wafer. The blue dot marks

the starting point. Each point is measured at three angles.

At each of the 29 measurement points, the a-Si:H thickness is computed, from which two types of

non-uniformity plots were generated, shown in Appendix A. The first plot, similar to Figure 4.3, shows
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the thickness distribution across the front-side of the wafer. The second, shown in Figure A.2, presents

the thickness as a function of the radial distance from the wafer center. Since the measurement points

are arranged in rings, this plot shows the average thickness for points at equal radial distances.

The measured thickness values were normalized to the radial average across all points, defined as

the average of thickness values grouped by radial distance from the center. To express the thickness

non-uniformity as a single number, I used the following definition:

non-uniformity (%) =
Max − Min

𝜇
· 100%, (4.1)

where Max and Min are the highest and lowest average thickness values among the radial rings,

respectively, and 𝜇 is the radial average thickness.

4.3.4. Void-volume fraction
To compute the void-volume fraction of the film, I used the optical model described in the previous

section as the starting point. All fitting parameters were fixed at the values obtained from the Tauc-

Lorentz fit. Next, I followed the procedure described by [8], in which the Tauc-Lorentz layer is replaced

by a Bruggeman Effective Medium Approximation (BEMA) model. This model approximates the

a-Si:H film as a composite material consisting of amorphous silicon and spherical voids, as explained in

more detail in Section 2.3.2. The host material was set to the predefined ‘a-Si parameterized’ layer in

CompleteEASE, which is described by a Cody-Lorentz oscillator and does not include an Urbach tail.

To minimize the risk of overfitting, the void fraction was the only free parameter in the BEMA model

and was fitted, for wavelengths above 850 nm. To ensure the validity of this approach, only data from

the wafer center were used. This choice was driven by the decision to keep all other parameters fixed,

including the layer thickness. Due to the non-uniform thickness across the wafer, adding additional

measurement points would have required fitting the thickness as well, something I avoided to maintain

a single-parameter fit. As a result, the void-volume fraction 𝑓𝑣 was determined from the center point of

the wafer.

4.3.5. Thickness indication double-side polished sample
To obtain a first-order approximation of the a-Si:H film thickness—required for the FTIR data analysis

described in the next section—measurements were also performed on double-side polished (DSP)

wafers. These measurements were not intended to validate the SSP data, as the signal quality from DSP

wafers is lower due to the absence of the thermal oxide layer, which enhances reflectance.

To obtain a first-order approximation of the aSiH film thickness, which is required for the FTIR data

analysis described in the next section, we also measured double-side polished (DSP) wafers using the

FTIR. The data from the DSP wafers was not used to validate the SSP measurements, as the signal

quality is lower due to the absence of the thermal oxide layer, which increases the reflected signal.

Additionally, the polished backside of the wafer causes reflections that interfere with the signal through

a-Si:H, thereby reducing the measurement quality.

To model these DSP wafers in the CompleteEASE software, I started from the optical model fitted to

the corresponding SSP wafer deposited with the same recipe. In this model, I removed the thermal

oxide layer, and added a fitting parameter that accounts for the number of backside reflections caused

by the polished backside. By using the SSP-based model, I expected the most accurate estimate of the

thickness, this same procedure is applied in [62].

Additionally, as an extra independent estimation of the film thickness, scanning electron microscope

(SEM) images of the cross sections of selected films were taken, which are presented in Appendix D.

4.4. Fourier Transform Infrared Spectroscopy
I used the Thermo Fisher Nicolet FTIR system to perform the transmission measurements of the a-Si:H

samples in the wavenumber range 400–4000 cm
−1

, with a spectral resolution of 4 cm
−1

. A picture of the

setup is shown in Appendix C. The working principle of the FTIR system is explained in Section 2.4.

For these measurements, the a-Si:H films were deposited on 500 𝜇m thick p-type (boron) double-side
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polished (DSP) c-Si wafers with a resistivity of 𝜌 > 1 kΩ cm and (100) orientation. DSP high-resistivity

wafers were selected to maximize the transmission through the substrate, thereby improving the

signal quality. I have cleaved each wafer into quarter wafers to fit within the measurement slot of the

instrument.

All deposited samples were measured as well as a reference sample, which was a bare DSP wafer. The

measurement chamber was continuously purged with nitrogen for at least 15 minutes prior to and

during the measurements to remove absorption due to water vapor.

To interpret the transmission data, I followed the procedure described in [5], by modeling the spectra

using the Transfer-Matrix Method (TMM), which is explained in Section 2.4.1. The TMM model includes

the deposited a-Si:H layer and the c-Si substrate, surrounded by air on both sides, as shown in Figure 2.6.

From this model, the complex refractive index 𝑛̂ = 𝑛 + 𝑖𝑘 of the dielectric film was extracted, where the

real part 𝑛 is the refractive index and the imaginary part 𝑘 is the extinction coefficient.

4.4.1. Fitting Transfer-Matrix Method to transmission data
Complex refractive index substrate: Baseline correction
To separate the signal of the a-Si:H film from that of the substrate, the complex refractive index 𝑛̂ of the

c-Si substrate was first determined using the measurement of the bare c-Si wafer. This analysis was

performed using a Python script provided by the author of [5], which assumes a frequency-independent

refractive index of 𝑛 = 3.42 for c-Si [37].

A constant refractive index should result in a flat transmission baseline. However, as shown in Figure 4.4,

the measured transmission of the bare substrate decreased with increasing wavenumber. This deviation

could not be explained by the TMM model. Therefore, a baseline adjustment was applied by fitting a

linear slope to the measured data within the range indicated by the vertical dashed lines. The resulting

correction factor was then applied to all sample measurements containing a-Si:H. Additionally, for

wavenumbers above 2800cm
−1

, the measured data starts to deviate from the TMM model. The origin of

this artifact is not clear, but fortunately the a-Si:H absorption dips of interest lie outside this region.

To compute the extinction coefficient 𝑘 of the c-Si substrate as function of wavenumber, the TMM model

was point-by-point fitted to the baseline-corrected spectra. For more details about the baseline correction

procedure, I refer to [5].

Figure 4.4: Baseline correction on c-Si transmission spectrum. It accounts for the optical effects not included in the TMM model

(calculation). The transmission data was shifted by a linear slope fitted within the vertical dashed lines.

Kramers-Kronig consistent: Iterative fitting
Now that the 𝑛̂ of the substrate is known, I modeled the data of the samples including the dielectric film.

Therefore, it needs to be taken into account that the 𝑛 and 𝑘 of a material is correlated to each other.

They are linked through the Kramers-Kronig relations, as explained in Section 2.4.2. These relations
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describe that the refractive index is frequency-dependent, in contrast to the constant 𝑛 assumed for

the c-Si substrate. However, as argued by [5], this assumption is valid for c-Si, because its extinction

coefficient is much smaller than that of a-Si:H.

The Kramers-Kronig consistency between the 𝑛 and 𝑘 was enforced using an iterative fitting approach,

in which the thickness, 𝑛 and 𝑘 were fitted. The initial guess for the thickness was from the ellipsometry

measurement described in Section 4.3.5. The first step was assuming a constant refractive index 𝑛0, after

which the extinction coefficient 𝑘0(𝜔) was obtained through point-by-point fitting of a TMM model

to the measured FTIR transmission. From 𝑘0(𝜔), a frequency-dependent refractive index 𝑛1(𝜔) was

calculated using the Kramers-Kronig relations. A new fit was then performed to extract 𝑘1(𝜔), and this

process was repeated until convergence of both 𝑛(𝜔) and 𝑘(𝜔) was achieved.

Unfortunately, for some wafers the resulting model did not fit the data well. Figure 4.5 shows the fit for

recipe 17, where a noticeable deviation between the data and the model occurs around 1700 cm
−1

. This

mismatch leads to a rising baseline in the extracted 𝑘(𝜔), as shown in Figure 4.6. This is problematic

because the absorption features are expected to follow Gaussian-like profiles, and the artificial baseline

interferes with accurate modeling. A possible explanation for the deviation is surface roughness of the

deposited film; as demonstrated in [63], increased surface roughness reduces transmittance at higher

wavenumbers. This behavior aligns with the deviation observed in Figure 4.5. However, since the main

objective of this project was to analyze the dip height, investigating the origin of this deviation falls

outside the project scope. Therefore, a spline-fit baseline correction was applied to the affected spectral

region prior to modeling, as described in the next section.

Figure 4.5: Enforcing Kramers-Kronig (KK) consistency between 𝑛 and 𝑘 by iterative fitting. The KK-consistent model deviates

from the baseline-corrected data of recipe 17, for wavenumbers higher than 1700 cm
−1

. This is problematic because this results in

a plateau for the fitted 𝑘(𝜔), as shown in Figure 4.6

Spline correction: Remove deviation between data and TMM model
As mentioned in the previous section, for some samples the fit and the measured data did not overlap

properly at higher wavenumbers. To correct this, a vertical translation of the baseline-corrected data

was performed to match the TMM calculation. This corrected dataset was then used as the input for the

Kramers-Kronig iterative fitting procedure described in the previous Section.

The first step was to fit the TMM model to the spectral region that does not exhibit baseline deviations

or absorption features. For the sample deposited with recipe 17, this corresponded to the range
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Figure 4.6: The Kramers-Kronig consistent 𝑘(𝜔) and 𝑛(𝜔) of recipe 17. The plateau the rises from 1700 cm
−1

prevents an accurate

gaussian fit of the absorption dip.

between 1000 and 1800 cm
−1

, as shown in Figure 4.7. Within this range, both the film thickness and a

frequency-independent refractive index 𝑛 were fitted. The next step is to extract the baseline from the

Figure 4.7: The TMM fitted to the transmission data of sample 17, where film thickness and frequency-independent 𝑛 are fitted.

previously baseline-adjusted measurement. A spline was fitted to the data within the fitting ranges

indicated by the dashed black lines in Figure 4.8. The difference between this spline baseline and the

TMM model obtained in the previous step was then computed. This difference was added to the data to

construct the ’Spline-corrected Data’. The correction was only applied for wavenumbers greater than

the left boundary of the fitting region (1550 cm
−1

for the example shown in Figure 4.8), since only in this

region the transmission data deviated from the TMM model.

4.4.2. Infrared refractive index and absorption modes
When the Kramers-Kronig consistent TMM model is fitted to the ’Spline-corrected Data’, the agreement

between the model and the measurement is significantly improved, as shown in Figure 4.9. The

corresponding extinction coefficient 𝑘(𝜔) and refractive index 𝑛(𝜔) are presented in Figure 4.10, where

no rising plateau is observed in the 𝑘(𝜔) spectrum.
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Figure 4.8: Baseline correction to let the baseline of the data of recipe 17 (green) match with that of the TMM calculation (blue).

A spline is fitted that represents the baseline of the measurement, The baseline of the measurement is fitted with a spline and

shifted to match the TMM calculation.

Figure 4.9: Enforcing Kramers-Kronig (KK) consistency between 𝑛 and 𝑘, for the Spline-corrected data of recipe 17.
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Figure 4.10: The Kramers-Kronig consistent 𝑘(𝜔) and 𝑛(𝜔) of recipe 17, for the Spline-corrected data.

Infrared refractive index
In Figure 4.10, the result of the iterative fitting procedure for 𝑛(𝜔) is shown. It can clearly be seen

that the infrared refractive index is influenced by the extinction coefficient 𝑘(𝜔), as expected from the

Kramers-Kronig relation. In order to compare the infrared refractive index between the different recipes,

I have extracted the value of 𝑛 at a fixed wavenumber of 2800 cm
−1

. This wavenumber was chosen

because the 𝑛(𝜔) spectrum is relatively flat in this region.

Absorption modes
From the 𝑘(𝜔) data shown in Figure 4.10, I have computed the absorption coefficient using 𝛼(𝜔) =
4𝜋𝑘(𝜔)/𝜆, where 𝜆 is the wavelength. The resulting absorption spectrum is presented in Figure 4.11,

together with Gaussian fits to the absorption features. The spectrum reveals several vibrational modes:

a Si-H𝑥 wagging mode near 640 cm
−1

[33], [37], [59], [64], two Si-H2 bending modes around 850 and

890cm
−1

[33], [37], [64], a Si-H stretching mode near 2000cm
−1

[33], [37], [59], [64], and a Si-H2 stretching

mode around 2100cm
−1

[33], [37], [59], [64]. From these absorption modes, the hydrogen content 𝐶𝐻

and the microstructure parameter 𝑅∗
can be computed. To do this, the integrated absorption 𝐼𝑥 of each

relevant mode is numerically calculated [5], [37]:

𝐼𝑥 =

∫
𝛼𝑥(𝜔)
𝜔

𝑑𝜔, (4.2)

where 𝛼 is the absorption coefficient, 𝜔 is the wavenumber in cm
−2

and 𝑥 represents the center

wavenumber of the Gaussian absorption peak.

4.4.3. Hydrogen content
Every hydrogen atom bonded to a silicon atom contributes to the wagging mode near 640 cm

−1
[59].

Therefore, this vibrational mode can be used to compute the hydrogen content in a-Si:H films [33], [37],

[59].

The hydrogen atom density 𝑁𝐻 , can be computed by the relation; 𝑁𝐻 = 𝐴640𝐼640 [33], [37], [59], where

𝐼640 is the integrated absorption of the 640 cm
−1

wagging mode and 𝐴640 = 2.1 · 10
19

cm
−3

is the

proportionality constant [37].

To compute the hydrogen content in percentages we can rewrite the equation to the following [5]:

𝐶𝐻 =
𝐴640𝐼640

𝐴640𝐼640 + 𝑁Si

· 100%, (4.3)

where 𝑁𝑆𝑖 , the atomic density of silicon, is 5 · 10
22

cm
−3

[37].
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Figure 4.11: The absorption coefficient 𝛼(𝜔) calculated from the 𝑘(𝜔)-graph of Figure 4.10, together with the Gaussian fits of the

absorption modes.

4.4.4. Microstructure parameter
The microstructure parameter 𝑅∗

is defined as [33]:

𝑅∗ ≡ 𝐼2100

𝐼2100 + 𝐼2000

. (4.4)

where 𝐼2000 and 𝐼2100 are the integrated absorptions of the 2000 and 2100 cm
−1

stretching modes,

respectively.



5
Results

This chapter presents the results of the Argon milling recipe developed during the project. It then

discusses the identified relationships between the deposition parameters and the resulting material

properties, supported by Main Effect Plots of the raw data as introduced in Section 2.6. The influence of

each parameter is further quantified through ANOVA, described in Section 2.7. Optimal recipes for

individual material properties are determined using S/N ratio-based Main Effect Plots. Subsequently,

the results of the Grey Relational Analysis (GRA), outlined in Section 2.8, are presented to identify the

recipe that simultaneously optimizes all material properties. The chapter concludes with the results of

the verification experiment for the optimal recipes.

5.1. Non-uniformity of argon milling recipe
As described in Section 3.4.2, I established an ICP-CVD recipe during the project that performs argon

milling on the wafer surface. Figure 5.1 shows the non-uniformity results of the argon milling process

for two separate tests. These results were obtained by measuring the thickness of the thermal oxide

layer using ellipsometry at 47 points, both before and after the milling step. In both tests, the etched

thickness was approximately 5–5.5 nm, with a maximum variation within a wafer of less than 1 nm.

Since the native oxide layer typically has a thickness of 1–2 nm, an etching duration of 3 minutes was

chosen as the standard. This results in a slight overetch of 3–4 nm, ensuring complete removal of the

native oxide.

(a) First test of the non-uniformity of the argon milling recipe

with a duration of 3 minutes. Maximum difference is 0.6 nm.

(b) Second test of the non-uniformity of the argon milling recipe

with a duration of 3 minutes. Maximum difference is 0.75 nm.

Figure 5.1: Comparison of etch non-uniformity of argon milling recipe by running the same recipe twice.

40
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5.1.1. Argon milling recipe recorded by ICP-CVD
Figure 5.2 shows the recorded process parameters during a test of the argon milling recipe with the

ICP-CVD. Prior to plasma ignition at 200 seconds, the system stabilizes the chamber pressure and argon

flow. At the moment of ignition, both the ICP RF and Table RF sources are turned on.

The reflected powers for both RF sources are minimized by the system’s automatic matching unit

(AMU), as visible in the sharp decrease after ignition. Simultaneously, a DC bias is established on the

substrate, initially spiking when the reflected power of the Table RF is minimized, and then gradually

decreases and stabilizes over time. Because the DC Bias induces an accelerating force on the argon ions,

the incoming kinetic energies of the ions will have a similar shape.

This same DC bias behavior is consistently observed during every deposition recipe that includes a prior

argon milling step. The recorded data of each argon milling phase show similar behavior across all runs,

including the DC bias. This indicates that the recipe yields stable and repeatable chamber conditions.

Figure 5.2: Chamber condition recorded during a 5-minute test of the argon milling recipe in the ICP-CVD system. Plasma

ignition occurs at 200 seconds, after which the ICP RF and Table RF powers are applied. The corresponding reflected powers are

shown, along with pressure, argon flow rate, and the resulting DC bias voltage on the substrate.

5.2. Establish relation between deposition conditions and material
properties

In this section, I will discuss the observed relationships between the deposition parameters and the

material properties. For each property, the Main Effect Plots (MEPs) of the raw data are presented to

show the experimental trends. Next, the fitted regression model is introduced, which serves as the basis

for the ANOVA analysis, which is explained in Section 2.7.1. From this model, the relative influence of

each deposition parameter is quantified using the percentage contributions derived from the ANOVA.

Finally, a comparison between the measured data and the predicted values from the regression model

is presented. This comparison also includes recipes 19 and 20, which were conducted after the Grey

Relational Analysis and are further discussed in Section 5.5.

5.2.1. Deposition rate
The deposition rate of the recipe is not a material property and therefore not a parameter which I have

tried to optimize during the project. However, can tell very much about the conditions in the deposition

chamber and therefore I have still investigated the influence of the deposition parameters onto the

deposition rate.

The Main Effect Plots of the deposition rate, shown in Figure5.3, reveal several clear trends. Increasing
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the SiH4 flow rate lead to a significant rise in deposition rate, consistent with observations reported in

[53]. A similar increasing trend is observed for ICP power, and the table RF power. In contrast, the

deposition rate shows minimal dependence on substrate temperature and pressure, with only slight

variations across their levels. The gas ratio exhibits a decreasing trend. Wafer preparation also has a

effect, with Argon milling leading to higher deposition rates compared to HF dip.

Additionally, a regression model is fitted to the recipes, which is shown below:

𝑦̂depo-rate = − 61.535 − 2.660 · 𝐷HF + 0.355 · 𝑇 − 0.001 · 𝑇2 + 0.866 · 𝐹 − 0.004 · 𝐹2 + 0.086 · 𝐼
− 0.000 · 𝐼2 + 0.157 · 𝑅 − 0.002 · 𝑅2 − 0.241 · 𝑃 + 0.003 · 𝑃2 − 0.350 · 𝐺 + 0.001 · 𝐺2

where 𝑇 is the table temperature (°C), 𝐹 is the SiH4 flow rate (sccm), 𝐼 is the ICP power (W), 𝑅 is the

table RF power (W), 𝑃 is the pressure (mTorr), and 𝐺 is the gas ratio (%) The variable 𝐷𝐻𝐹 is a binary

dummy variable that equals 1 if HF dip wafer preparation was used, and 0 if Argon milling was used.

From this regression model the ANOVA is performed, shown in Figure 5.4. It reveals that the ICP power

is the most influential parameter overall, contributing a combined 29.0% (23.3% linear + 5.7% squared)

to the total variance. This is followed by the SiH4 flowrate, with a total contribution of 22.2%, and wafer

preparation, which accounts for 15.9% as a categorical factor.

The table RF power also plays a noticeable role, contributing 9.7%, while the gas ratio contributes 5.4%.

Table temperature has a smaller overall effect at 4.4%. In contrast, pressure contributes negligibly to the

model, with a combined influence of just 0.2%.

The measured versus predicted deposition rates are shown in Figure 5.5. The regression model accurately

captures the overall trends in deposition rate across the 18 Taguchi recipes, which corresponds with

a modest residual error of 13.2%, indicating a good model fit. The measured deposition rate varied

between 11.6 and 47.7 nm/min.

Figure 5.3: Main Effect Plots of the deposition rate across all levels of the seven deposition parameters. Each black point represents

the average deposition rate measured at a given parameter level, while the blue-shaded region indicates the ±1 standard deviation

range. The dashed horizontal line denotes the overall main deposition rate across all experiments.
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Figure 5.4: Percentage contribution of each deposition parameter to the deposition rate, based on the regression model. Each

numerical factor is represented by a linear term and a squared term to account for potential non-linear effects. The bar lengths

indicate the relative importance of each term in explaining the variance in the data.

Figure 5.5: Comparison between measured and regression model–predicted deposition rate values across all experimental

runs. The alignment indicates the model’s ability to capture the variation in the data, while larger deviations correspond to

higher residual variance as observed in the ANOVA. Recipes 19 and 20 were conducted after the Grey Relational Analysis (see

Section 5.5).

5.2.2. Residual stress
In this section, I present the results of the residual stress measurements for both single-side polished

(SSP) and double-side polished (DSP) wafers.

From the Main Effect Plots shown in Figure 5.6, it is clear that both SSP and DSP wafers exhibit very

similar trends across all deposition parameters. This indicates that the substrate type (thermal oxide vs.

bare silicon) has minimal influence on the stress in the deposited film.

Among all deposition parameters, the Table RF power has by far the strongest effect on the stress. A

Table RF power of 0 W results in an average tensile stress of approximately 80 MPa, while activating

the Table RF at 25 or 50 W induces a strong compressive stress, with the highest compressive value

observed at 25 W.
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This trend is consistent with the interpretation from [23], which suggests that intrinsic stress in a-

Si:H arises from a balance between two competing mechanisms: tensile stress from the collapse of

nanovoids during film growth, and compressive stress due to lattice expansion from ion implantation

into previously deposited layers. A schematic of these two mechanisms is shown in Figure 2.2. With

non-zero Table RF power, the increased ion momentum leads to a higher rate of ion implantation,

resulting in a strong compressive stress in the film.

Furthermore, the standard deviation in stress values for the Table RF parameter is significantly smaller

than for other parameters. The large difference in average stress values between RF levels, combined

with this low standard deviation, indicates that Table RF is the dominant factor controlling film stress.

The regression models and the corresponding ANOVA results shown in Figure 5.7 support this

conclusion, where the linear and squared terms of the Table RF contribute 97.4% and 97.9% to the

observed stress variation for SSP and DSP wafers, respectively.

The fitted regression models for stress are given below:

𝑦̂SSP-stress = − 537.363 + 25.175 · 𝐷HF + 2.648 · 𝑇 − 0.003 · 𝑇2 − 5.549 · 𝐹 + 0.101 · 𝐹2 + 1.201 · 𝐼
− 0.001 · 𝐼2 − 49.452 · 𝑅 + 0.724 · 𝑅2 + 25.566 · 𝑃 − 1.021 · 𝑃2 − 8.301 · 𝐺 + 0.051 · 𝐺2

𝑦̂DSP-stress = 692.124 − 24.593 · 𝐷HF − 4.446 · 𝑇 + 0.007 · 𝑇2 + 8.124 · 𝐹 − 0.086 · 𝐹2 − 0.212 · 𝐼
+ 0.000 · 𝐼2 − 50.366 · 𝑅 + 0.714 · 𝑅2 + 12.852 · 𝑃 − 0.267 · 𝑃2 − 5.100 · 𝐺 + 0.031 · 𝐺2

where 𝑇 is the table temperature (°C), 𝐹 is the SiH4 flow rate (sccm), 𝐼 is the ICP power (W), 𝑅 is the

table RF power (W), 𝑃 is the pressure (mTorr), and 𝐺 is the gas ratio (%) The variable 𝐷𝐻𝐹 is a binary

dummy variable that equals 1 if HF dip wafer preparation was used, and 0 if Argon milling was used.

Although the orthogonal design allows us to inspect trends from the other parameters, their contribution

to the total variation is below 1%. These trends should therefore be interpreted with caution, as they are

susceptible to interaction effects or minor uncertainties in the Table RF power.

(a) SSP residual stress. Each black point represents the average residual stress at a given parameter level; the

blue-shaded region shows the ±1 standard deviation. The dashed line denotes the overall main.

(b) DSP residual stress with same format as (a).

Figure 5.6: Main effect plots of the raw residual stress measurements for both SSP and DSP films across all levels of the seven

deposition parameters.
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(a) SSP residual stress. Each bar represents the percentage contribution

of a parameter (linear and squared terms) to the total variance, based

on a regression model.

(b) DSP residual stress with same format as (a).

Figure 5.7: Percentage contribution of each deposition parameter to the SSP and DSP residual stress, as determined from

regression analysis. Each numerical parameter includes a linear and squared term to capture non-linear effects.

For both SSP and DSP stress values, the contribution of the residual error is approximately 1%, indicating

that the fitted regression model captures the variation in stress across all 18 recipes with high precision.

This is also visible in Figure 5.8, where the measured stress values are compared to those predicted

by the regression model for each corresponding recipe. The agreement between the measured and

predicted values is strong.

Furthermore, the same distinct plateaus observed in the Main Effect Plot (MEP) of the Table RF parameter

are clearly observed in the measured data points. While the high compressive stresses for non-zero

table RF power can pose a risk to mechanical stability—particularly by increasing the likelihood of

buckling—it remains well below the failure threshold of -1200 MPa reported by Johlin et al. [23]. As

described in Section 2.7, the regression model was also used to generate the contour plots shown in

Appendix B, which visualize the predicted residual stress across the entire parameter space for all

combinations of parameter levels.

(a) SSP residual stress. The model closely follows the measured values,

with only small deviations.

(b) DSP residual stress. Similar comparison between measured and

predicted values, showing the accuracy of the fitted model.

Figure 5.8: Comparison between measured and regression model–predicted residual stress values for both SSP and DSP films.

Recipes 19 and 20 were conducted after the Grey Relational Analysis (see Section 5.5).

5.2.3. Thickness non-uniformity
The Main Effect Plots of the thickness non-uniformity, as defined in Section 4.3.3, show that non-

uniformity increases with increasing levels of SiH4 flow rate and chamber pressure. In contrast,

higher levels of table temperature, ICP power, Table RF power, and the gas ratio generally reduce the

non-uniformity.
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Additionally, a regression model is fitted to the recipes, which is shown below:

𝑦̂non-uniform = 6.833 − 0.276 · 𝐷HF − 0.008 · 𝑇 + 0.000 · 𝑇2 + 0.068 · 𝐹 − 0.001 · 𝐹2 − 0.003 · 𝐼
+ 0.000 · 𝐼2 − 0.075 · 𝑅 + 0.001 · 𝑅2 − 0.050 · 𝑃 + 0.011 · 𝑃2 + 0.037 · 𝐺 − 0.000 · 𝐺2

where 𝑇 is the table temperature (°C), 𝐹 is the SiH4 flow rate (sccm), 𝐼 is the ICP power (W), 𝑅 is the

table RF power (W), 𝑃 is the pressure (mTorr), and 𝐺 is the gas ratio (%) The variable 𝐷𝐻𝐹 is a binary

dummy variable that equals 1 if HF dip wafer preparation was used, and 0 if Argon milling was used.

The ANOVA results, shown in Figure 5.10, indicate that Table RF power is the most dominant parameter,

contributing 69.9% to the observed variation. While still the leading factor, its contribution is notably

lower than its influence on residual stress, where it dominated with more than 97% contribution.

Other parameters contribute mildly to the variation in thickness non-uniformity, including Wafer

Preparation (4.7%), SiH4 flow rate (4.7%), and chamber pressure (4.1%). The residual contribution

is 11.2%, indicating that the fitted deposition parameters can explain the variation in thickness non-

uniformity across the experiments reasonably well. This is also observed in Figure 5.11, where the

predicted values from the regression model align closely with the measured data across all 18 recipes.

The measured thickness uniformity varied between 3.5% and 7.5% within a 4.3-cm radius. The

corresponding contour plots are presented in Appendix B.

Figure 5.9: Main Effect Plots of the thickness non-uniformity measurement across all levels of the seven deposition parameters.

Each black point represents the average thickness non-uniformity measured at a given parameter level, while the blue-shaded

region indicates the ±1 standard deviation range. The dashed horizontal line denotes the overall mean thickness non-uniformity

across all experiments.

Figure 5.10: Percentage contribution of each deposition parameter to the thickness non-uniformity, based on a regression model.

Each numerical factor is represented by a linear term and a squared term to account for potential non-linear effects. The bar

lengths indicate the relative importance of each term in explaining the variance in the data.
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Figure 5.11: Comparison between measured and regression model–predicted thickness non-uniformity values across all

experimental runs. The alignment indicates the model’s ability to capture the variation in the data, while larger deviations

correspond to higher residual variance as observed in the ANOVA. Recipes 19 and 20 were conducted after the Grey Relational

Analysis (see Section 5.5).

5.2.4. Refractive index: Optical and infrared
In this Section, the results for both the optical and infrared refractive indexes are discussed. The optical

refractive index was measured using the ellipsometer, while the infrared refractive index was obtained

from FTIR measurements, as described in Sections 4.3 and 4.4, respectively.

The Main Effect Plots for both refractive indexes, shown in Figure 5.12, exhibit similar trends across all

deposition parameters. This consistency between the two independently obtained datasets indicates

agreement between the ellipsometry and FTIR measurements. This is expected, as both analyses rely on

the same Transfer-Matrix Method, explained in Section 2.4.1.

For both refractive indexes, the trends for table temperature and pressure show a peak at the intermediate

level. Wafer preparation using argon milling results in a higher refractive index compared to HF dip.

For SiH4 flow rate and table RF power, the refractive index increases with increasing parameter level.

Conversely, for ICP Power and Gas Ratio, a decreasing trend is observed.

The observed peak at the intermediate table temperature agrees with the findings of [5], who report a

monotonic increase for a table temperature between 100
◦
C and 300

◦
C. The increasing trend with SiH4

flow rate contradicts [53], which reports a decrease.

Additionally, a regression model is fitted to the recipes, which is shown below:

𝑦̂opt.𝑛 = 0.567 − 0.020 · 𝐷HF + 0.017 · 𝑇 − 0.000 · 𝑇2 − 0.002 · 𝐹 + 0.000 · 𝐹2 − 0.001 · 𝐼
+ 0.000 · 𝐼2 + 0.006 · 𝑅 − 0.000 · 𝑅2 + 0.022 · 𝑃 − 0.001 · 𝑃2 − 0.001 · 𝐺 + 0.000 · 𝐺2

𝑦̂inf.𝑛 = 1.081 − 0.026 · 𝐷HF + 0.012 · 𝑇 − 0.000 · 𝑇2 − 0.005 · 𝐹 + 0.000 · 𝐹2 − 0.000 · 𝐼
+ 0.000 · 𝐼2 + 0.003 · 𝑅 − 0.000 · 𝑅2 + 0.028 · 𝑃 − 0.001 · 𝑃2 + 0.004 · 𝐺 − 0.000 · 𝐺2

where 𝑇 is the table temperature (°C), 𝐹 is the SiH4 flow rate (sccm), 𝐼 is the ICP power (W), 𝑅 is the

table RF power (W), 𝑃 is the pressure (mTorr), and 𝐺 is the gas ratio (%) The variable 𝐷𝐻𝐹 is a binary

dummy variable that equals 1 if HF dip wafer preparation was used, and 0 if Argon milling was used.

The ANOVA results shown in Figure 5.13 indicate residual contributions of 42.8% and 48.0% for the

optical and infrared refractive indexes, respectively. These relatively high residuals suggest that the

variation in refractive index cannot be fully explained by individual parameter effects alone. This points
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to the likely presence of interaction effects between deposition parameters. Among the main effects,

Table RF Power is the most influential for the optical refractive index, while APC Pressure is most

significant for the infrared refractive index. Table Temperature also contributes significantly to both

measurements.

(a) Optical refractive index at ( 1200 nm), measured by ellipsometry. Black points show the mean per parameter level;

the shaded region denotes ±1 standard deviation.

(b) Infrared refractive index at (2800 cm
−1

), measured with FTIR. Same format as (a).

Figure 5.12: Main effect plots of refractive index at two frequencies across all levels of the seven deposition parameters.

(a) Optical refractive index at (1200 nm), measured by ellipsometry.

Each bar shows the contribution of a parameter (linear and squared) to

the variance in a regression model.

(b) Infrared refractive index at (2800 cm
−1

), measured with FTIR. Same

format as (a).

Figure 5.13: Percentage contribution of each deposition parameter to the optical and infrared refractive index, based on regression

modeling. Non-linear effects are captured through squared terms.

The relatively high contribution of the residual indicates that the fitted parameters have limitations in

explaining the observed variation. This is further supported by Figure 5.14, which shows significant

deviations between the measured and predicted refractive index values. For the optical and infrared

refractive indexes, the measured values ranged between 3.02–3.40 and 3.14–3.35, respectively. The

corresponding contour plots, showing the predicted refractive index values across the full parameter

space, are provided in Appendix B.
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(a) Optical refractive index at (1200 nm), measured by ellipsometry.

Deviations between the measured and predicted values reflect residual

variance.

(b) Infrared refractive index at (2800 cm
−1

), measured with FTIR. Same

format as (a), illustrating model accuracy across experiments.

Figure 5.14: Comparison between measured and regression model–predicted refractive index values for optical and infrared

frequencies. Recipes 19 and 20 were conducted after the Grey Relational Analysis (see Section 5.5).

5.2.5. Band gap
The Main Effect Plots of the band gap show a decreasing trend with increasing parameter levels for

table temperature, silane flow rate, ICP power, Table RF power, and gas ratio, although the trends for

the latter two are less pronounced. The parameter that stands out most clearly is Wafer Preparation,

where performing an HF dip results in a significantly higher band gap.

The band gap was obtained from the fitted Tauc–Lorentz dispersion models to the ellipsometry data,

where it is included as a fitting parameter. An observed decrease in band gap with increasing SiH4 flow

rate contrasts with the findings of Singh et al. [53], who reported an increasing trend.

Additionally, a regression model is fitted to the recipes, which is shown below:

𝑦̂band gap = 1.384 + 0.051 · 𝐷HF + 0.004 · 𝑇 − 0.000 · 𝑇2 − 0.008 · 𝐹 + 0.000 · 𝐹2 + 0.000 · 𝐼
− 0.000 · 𝐼2 − 0.001 · 𝑅 + 0.000 · 𝑅2 − 0.000 · 𝑃 + 0.000 · 𝑃2 − 0.001 · 𝐺 + 0.000 · 𝐺2

where 𝑇 is the table temperature (°C), 𝐹 is the SiH4 flow rate (sccm), 𝐼 is the ICP power (W), 𝑅 is the

table RF power (W), 𝑃 is the pressure (mTorr), and 𝐺 is the gas ratio (%) The variable 𝐷𝐻𝐹 is a binary

dummy variable that equals 1 if HF dip wafer preparation was used, and 0 if Argon milling was used.

Despite a dominant residual contribution of 44.6%, the ANOVA results support the importance of Wafer

Preparation, which accounts for 26.8% of the total variation—making it the most significant main effect.

The second largest contribution comes from the silane flow rate, at 15.2%.

Figure 5.15: Main Effect Plots of the band gap measurement across all levels of the seven deposition parameters. Each black point

represents the average band gap measured at a given parameter level, while the blue-shaded region indicates the ±1 standard

deviation range. The dashed horizontal line denotes the overall mean band gap across all experiments.
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Figure 5.16: Percentage contribution of each deposition parameter to the band gap, based on a regression model. Each numerical

factor is represented by a linear term and a squared term to account for potential non-linear effects. The bar lengths indicate the

relative importance of each term in explaining the variance in the data.

The high residual contribution indicates limitations in the model’s ability to fully explain the observed

variation, which is also reflected in Figure 5.17, where notable deviations exist between the measured

and predicted values. The band gap measurements ranged from 1.59 to 1.90 eV, with recipe 17 appearing

as an outlier. The corresponding contour plots of the band gap are shown in Appendix B.

Figure 5.17: Comparison between measured and regression model–predicted band gap values across all experimental runs. The

alignment indicates the model’s ability to capture the variation in the data, while larger deviations correspond to higher residual

variance as observed in the ANOVA. Recipes 19 and 20 were conducted after the Grey Relational Analysis (see Section 5.5).

5.2.6. Void-volume fraction
The Main Effect Plots of the void-volume fraction, shown in Figure5.18, indicate that increasing the table

temperature, SiH4 flow rate, and Table RF power results in a lower void-volume fraction, suggesting

denser film growth under these conditions. In contrast, the void-volume fraction increases steadily with

rising ICP power. Wafer preparation appears to have no significant effect. For pressure and gas ratio, a

non-linear trend is observed, with the void fraction exhibiting a minimum and maximum at the middle

level, respectively.
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The decreasing void-volume fraction with increasing temperature is consistent with [5] and [52], which

reports that higher deposition temperatures in low-pressure ICP-CVD increase film density.

Additionally, a regression model is fitted to the recipes, which is shown below:

𝑦̂ 𝑓𝑣 = 59.382 − 0.149 · 𝐷HF − 0.248 · 𝑇 + 0.000 · 𝑇2 + 0.158 · 𝐹 − 0.006 · 𝐹2 + 0.016 · 𝐼
− 0.000 · 𝐼2 − 0.159 · 𝑅 + 0.002 · 𝑅2 − 1.930 · 𝑃 + 0.093 · 𝑃2 + 0.196 · 𝐺 − 0.001 · 𝐺2

where 𝑇 is the table temperature (°C), 𝐹 is the SiH4 flow rate (sccm), 𝐼 is the ICP power (W), 𝑅 is the

table RF power (W), 𝑃 is the pressure (mTorr), and 𝐺 is the gas ratio (%) The variable 𝐷𝐻𝐹 is a binary

dummy variable that equals 1 if HF dip wafer preparation was used, and 0 if Argon milling was used.

The ANOVA contribution plot in Figure5.19 shows that a large portion of the variation remains

unexplained, with a residual contribution of 60.5%, indicating substantial influence from unmodeled

effects. Among the fitted parameters, pressure has the largest contribution (20.3%), followed by Table

RF power (9.7%).

Figure 5.18: Main Effect Plots of the void-volume fraction measurement across all levels of the seven deposition parameters.

Each black point represents the average void-volume fraction measured at a given parameter level, while the blue-shaded region

indicates the ±1 standard deviation range. The dashed horizontal line denotes the overall mean void-volume fraction across all

experiments.

Figure 5.19: Percentage contribution of each deposition parameter to the void-volume fraction, based on a regression model. Each

numerical factor is represented by a linear term and a squared term to account for potential non-linear effects. The bar lengths

indicate the relative importance of each term in explaining the variance in the data.

That the regression model explains less than half of the observed variance is further supported by

Figure 5.20, which shows significant deviations between the measured and predicted values. Across all

experiments, the void-volume fraction ranged from 4.4% to 22.3%. Contour plots of the void-volume
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fraction, presented in Appendix B, provide further insight but should be interpreted with caution due

to the high residual.

Figure 5.20: Comparison between measured and regression model–predicted void-volume fraction values across all experimental

runs. The alignment indicates the model’s ability to capture the variation in the data, while larger deviations correspond to

higher residual variance as observed in the ANOVA. Recipes 19 and 20 were conducted after the Grey Relational Analysis (see

Section 5.5).

5.2.7. Hydrogen content
The Main Effect Plots of the hydrogen content, shown in Figure 5.21, indicate that the hydrogen content

decreases with increasing substrate temperature, ICP power, and gas ratio. Table RF power shows a

sharp increase from the low to mid-level, after which it stabilizes. Minor increasing trends are observed

for SiH4 flow rate, chamber pressure, and wafer preparation (HF dip). The decreasing hydrogen content

with increasing temperature is consistent with [5]

Additionally, a regression model is fitted to the recipes, which is shown below:

𝑦̂𝐶𝐻
= − 4.969 + 1.017 · 𝐷HF + 0.124 · 𝑇 − 0.000 · 𝑇2 − 0.264 · 𝐹 + 0.005 · 𝐹2 + 0.011 · 𝐼

− 0.000 · 𝐼2 + 0.238 · 𝑅 − 0.003 · 𝑅2 + 0.708 · 𝑃 − 0.025 · 𝑃2 + 0.012 · 𝐺 − 0.000 · 𝐺2

where 𝑇 is the table temperature (°C), 𝐹 is the SiH4 flow rate (sccm), 𝐼 is the ICP power (W), 𝑅 is the

table RF power (W), 𝑃 is the pressure (mTorr), and 𝐺 is the gas ratio (%) The variable 𝐷𝐻𝐹 is a binary

dummy variable that equals 1 if HF dip wafer preparation was used, and 0 if Argon milling was used.

The ANOVA contribution analysis confirms that Table RF power is the dominant factor, accounting for

47.3% of the explained variance. This aligns with the clear trend observed in the Main Effect Plot. The

residual contribution is 31.7%, indicating a moderate level of unexplained variation, but suggesting

that the regression model still captures the main influences reasonably well. Parameters with smaller

contributions include flow rate (8.4%), pressure (4.4%), and wafer preparation (4.3%).
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Figure 5.21: Main Effect Plots of the hydrogen content measurement across all levels of the seven deposition parameters. Each

black point represents the average hydrogen content measured at a given parameter level, while the blue-shaded region indicates

the ±1 standard deviation range. The dashed horizontal line denotes the overall mean hydrogen content across all experiments.

Figure 5.22: Percentage contribution of each deposition parameter to the hydrogen content, based on a regression model. Each

numerical factor is represented by a linear term and a squared term to account for potential non-linear effects. The bar lengths

indicate the relative importance of each term in explaining the variance in the data.

The relatively high residual contribution implies that the model has limitations in fully capturing the

variation in hydrogen content. This is supported by Figure 5.23, which shows clear deviations between

the measured and predicted values for several recipes. Across the experiments, the measured hydrogen

content ranged from 6.8% to 18.9%, reflecting substantial variability not entirely explained by the fitted

model. The corresponding contour plots are provided in Appendix B.
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Figure 5.23: Comparison between measured and regression model–predicted hydrogen content values across all experimental

runs. The alignment indicates the model’s ability to capture the variation in the data, while larger deviations correspond to

higher residual variance as observed in the ANOVA. Recipes 19 and 20 were conducted after the Grey Relational Analysis (see

Section 5.5).

5.2.8. Microstructure parameter
The Main Effect Plot for the microstructure parameter shows several clear trends across the deposition

parameters. Increasing the table temperature results in a consistent increase in the microstructure

parameter. Both Table RF power and ICP power exhibit non-linear trends, with the highest values

at the intermediate level. Chamber pressure shows a U-shaped trend, with the lowest value at the

middle level. Flow rate and gas ratio display mild upward and downward trends, respectively. Wafer

preparation using an HF dip corresponds to a lower average microstructure parameter.

The observed increase with SiH4 flow rate agrees with the results of Singh et al. [53]. The observed

increase in microstructure parameter with rising temperature contradicts the findings of Buĳtendorp [5].

The physical origin of this difference is unclear. It is possible that the trend is influenced by uncertainties

in the Taguchi analysis. Since the ANOVA contribution is negligible (Figure 5.25), the result may be

misleading due to unmodeled interaction effects. Buĳtendorp’s study, in contrast, varied only the

temperature and was therefore not effected by such interactions.

Additionally, a regression model is fitted to the recipes, which is shown below:

𝑦̂R* = 0.305 − 0.033 · 𝐷HF − 0.002 · 𝑇 + 0.000 · 𝑇2 + 0.001 · 𝐹 − 0.000 · 𝐹2 + 0.001 · 𝐼
− 0.000 · 𝐼2 + 0.008 · 𝑅 − 0.000 · 𝑅2 − 0.030 · 𝑃 + 0.002 · 𝑃2 + 0.003 · 𝐺 − 0.000 · 𝐺2

where 𝑇 is the table temperature (°C), 𝐹 is the SiH4 flow rate (sccm), 𝐼 is the ICP power (W), 𝑅 is the

table RF power (W), 𝑃 is the pressure (mTorr), and 𝐺 is the gas ratio (%) The variable 𝐷𝐻𝐹 is a binary

dummy variable that equals 1 if HF dip wafer preparation was used, and 0 if Argon milling was used.

The ANOVA results, shown in Figure5.25, indicate that Table RF power is the dominant factor,

contributing 49.0% when combining its linear and quadratic terms. This confirms the strong and

non-linear effect observed in the Main Effect Plot. ICP power follows with a total contribution of 19.4%,

while chamber pressure accounts for 9.6%. All remaining parameters contribute less than 5%. The

residual variance of 17.0% suggests that the model captures the dominant trends, though a portion of

the variation remains unexplained.
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Figure 5.24: Main Effect Plots of the microstructure parameter measurement across all levels of the seven deposition parameters.

Each black point represents the average microstructure parameter measured at a given parameter level, while the blue-shaded

region indicates the ±1 standard deviation range. The dashed horizontal line denotes the overall mean microstructure parameter

across all experiments.

Figure 5.25: Percentage contribution of each deposition parameter to the microstructure parameter, based on a regression model.

Each numerical factor is represented by a linear term and a squared term to account for potential non-linear effects. The bar

lengths indicate the relative importance of each term in explaining the variance in the data.

This is further supported by Figure Figure5.26, which compares the measured and predicted values

across all recipes. Across all experiments, the microstructure parameter ranged from 0.33 to 0.55. While

the model captures the overall behavior, several deviations are observed, in line with the 17.0% residual

contribution. The corresponding contour plots are provided in Appendix B.
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Figure 5.26: Comparison between measured and regression model–predicted microstructure parameter values across all

experimental runs. The alignment indicates the model’s ability to capture the variation in the data, while larger deviations

correspond to higher residual variance as observed in the ANOVA. Recipes 19 and 20 were conducted after the Grey Relational

Analysis (see Section 5.5).

5.3. Determine optimal recipe for individual material properties
In this section, the optimal recipes for each individual material property are discussed, based on the

Main Effect Plots of the S/N ratios. The motivation for using S/N ratios to determine the optimal recipe

is explained in Section 2.6. The analysis also considers the percentage contributions obtained from

ANOVA.

5.3.1. Residual stress
To determine the optimal recipe for residual stress, both the single-side polished (SSP) and double-side

polished (DSP) wafer results are considered. During this project, the aim was to achieve a residual stress

of 0 MPa in the film. Therefore, the target-is-best S/N ratio formula (Equation 2.19) was used, with a

target value of zero. The corresponding S/N ratio Main Effect Plots are shown in Figure 5.27.

For the parameters table temperature, ICP power, Table RF power, and wafer preparation, the optimal

parameter levels are consistent between SSP and DSP results. However, for the flow rate, pressure,

and gas ratio, the optimal levels differ slightly. These shifts result from slight changes in their trends,

amplified by the logarithmic loss function in the S/N formula, as described in Section 2.6. However,

the ANOVA results show that these parameters have insignificant contributions to the residual stress

compared to Table RF power. Therefore, the practical difference in stress between the two optimal

recipes is expected to be minimal.
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(a) SSP residual stress. Black points represent the average S/N ratio per parameter level; the blue-shaded area indicates

±1 standard deviation. Red markers indicate the optimal level, which correspond to the highest S/N ratio.

(b) DSP residual stress. Same format as (a), showing S/N ratio response across all deposition parameter levels.

Figure 5.27: S/N ratio main effect plots for SSP and DSP residual stress measurements across all deposition parameters.

5.3.2. Thickness non-uniformity
To determine the optimal recipe that minimizes thickness non-uniformity, the smaller-is-better S/N

ratio formula (Equation 2.18) is applied. The resulting S/N ratio Main Effect Plots are shown in Figure

5.28, with the optimal parameter levels—those with the highest S/N ratio—highlighted in red. Based

on this analysis, the optimal recipe is defined by: a table temperature of 350
◦
C, a SiH4 flow rate of 15

sccm, an ICP power of 700 W, a table RF power of 25 W, a chamber pressure of 10 mTorr, a gas ratio of

100%, and wafer preparation via HF dip.

The ANOVA results in Figure 5.10 support these findings. Table RF power is by far the most dominant

parameter, contributing nearly 70% to the observed variance. This strong statistical influence confirms

that selecting a table RF power of 25 W is critical to minimizing thickness non-uniformity. In contrast,

the contributions of flow rate (4.7%), wafer preparation (4.7%), and pressure (4.1%) are comparatively

minor, indicating their effects are secondary in this optimization. Table temperature shows negligible

contribution, confirming that the selected value of 350
◦
C has minimal impact on uniformity in this

context.
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Figure 5.28: S/N ratio Main Effect Plots for thickness non-uniformity across all levels of the seven deposition parameters. Black

points represent the average S/N ratio at each parameter level, with the blue-shaded area indicating the ±1 standard deviation.

The dashed horizontal line shows the overall mean S/N ratio. Red markers indicate the parameter level with the highest S/N

ratio.

5.3.3. Refractive index: Optical and infrared
An increasing refractive index is correlated with a lower void fraction, as explained in Section ??.

Therefore, the larger-is-better S/N ratio formula (Equation 2.17) is applied to compute the S/N ratios.

The corresponding S/N ratio Main Effect Plots are shown in Figure 5.29. For both the optical refractive

index at 1200 nm and the infrared refractive index at 2800 cm
−1

, the optimal recipe is largely consistent

and correspond to: a table temperature of 350
◦
C, a SiH4 flow rate of 45 sccm, an ICP power of 300 W, a

table RF power of 50 W, a pressure of 10 mTorr, and wafer preparation via HF dip. Only the gas ratio

shows an inconsistent optimal level; 50% for the optical index and 75% for the infrared.

The ANOVA results in Figure 5.13 support the optimal settings identified from the S/N analysis. For

both refractive indices, table temperature contributes significantly (14.8% for optical, 13.8% for infrared),

indicating the importance of operating at 350
◦
C. Table RF power and chamber pressure are the most

influential parameters for the optical and infrared refractive index, respectively, indicating the need to

optimize their levels. ICP power also plays a meaningful role in the optical index, contributing 12.8%.

In contrast, the contributions of SiH4 flow rate, gas ratio, and wafer preparation are minimal. The low

contribution of gas ratio explains the difference between its optimal levels across the two measurements.

Finally, the residual contributions of 42.8% for the optical and 48.0% for the infrared refractive index,

indicate that unmodeled effects are likely present.
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(a) S/N ratio Main Effect Plot for optical refractive index (1200 nm). Black points represent the average S/N ratio at

each parameter level, with the blue-shaded area indicating the ±1 standard deviation. The dashed horizontal line

shows the overall mean S/N ratio. Red markers indicate the optimal parameter level.

(b) S/N ratio Main Effect Plot for infrared refractive index (2800 cm
−1

). Plot elements follow the same convention as in

(a).

Figure 5.29: Comparison of S/N ratio Main Effect Plots for refractive index at 1200 nm and 2800 cm
−1

across all deposition

parameters.

5.3.4. Band gap
A decreasing band gap is associated with a lower void fraction, as explained in Section ??. Therefore, the

smaller-is-better S/N ratio formula (Equation 2.18) is used to compute the S/N ratios. The corresponding

S/N ratio Main Effect Plots are shown in Figure 5.30. The optimal parameter levels correspond to: a

table temperature of 390
◦
C, a SiH4 flow rate of 30 sccm, an ICP power of 700 W, a table RF power of 25

W, a pressure of 5 mTorr, a gas ratio of 100%, and wafer preparation via argon milling.

The ANOVA results in Figure 5.16 indicate that wafer preparation is the dominant factor, contributing

26.8% to the observed variance. This underlines the critical role of wafer surface condition in determining

the band gap. The SiH4 flow rate also shows a significant influence (15.2%), showing its relevance in the

optimization. All other parameters, including table RF power, ICP power, and temperature, contribute

only minimal, suggesting that they may support fine-tuning. The substantial residual contribution of

44.6% indicates that a large portion of the variation remains unexplained by the current model, likely

due to unmodeled interactions.
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Figure 5.30: S/N ratio Main Effect Plots for band gap across all levels of the seven deposition parameters. Black points represent

the average S/N ratio at each parameter level, with the blue-shaded area indicating the ±1 standard deviation. The dashed

horizontal line shows the overall mean S/N ratio. Red markers indicate the parameter level with the highest S/N ratio.

5.3.5. Void-volume fraction
To minimize the void-volume fraction, the smaller-is-better S/N ratio formula (Equation 2.18) is applied.

The resulting S/N ratio Main Effect Plots are shown in Figure 5.31. The optimal parameter levels,

indicated by the red markers, are: a table temperature of 390
◦
C, a SiH4 flow rate of 45 sccm, an ICP

power of 300 W, a table RF power of 50 W, a pressure of 10 mTorr, a gas ratio of 100%, and HF dip

oxidation removal.

The ANOVA results presented in Figure 5.19 confirm that the optimization is mainly driven by chamber

pressure. The pressure accounts for 20.3% of the total variation, making it the most influential parameter

for controlling the void-volume fraction. The table RF power follows with a contribution of 9.7%. Other

parameters such as SiH4 flow rate (4.0%) and gas ratio (2.3%) play minor roles in the optimization.

Additionally, the residual variance is high (60.5%), indicating that a substantial portion of the response

remains unexplained by the included parameters, which may be attributed to noise factors or interactions

not captured in the model. This, can probably limit the ability to accurately predict the optimal recipe.

Figure 5.31: S/N ratio Main Effect Plots for void-volume fraction across all levels of the seven deposition parameters. Black points

represent the average S/N ratio at each parameter level, with the blue-shaded area indicating the ±1 standard deviation. The

dashed horizontal line shows the overall mean S/N ratio. Red markers indicate the parameter level with the highest S/N ratio.

5.3.6. Hydrogen content
As explained in Section ??, the hydrogen content exhibits opposite correlations for the two dielectric loss

mechanisms. An increase in hydrogen content enhances infrared vibrational absorption, an important

loss mechanism in the mm–submm range, thereby increasing dielectric loss in the frequency band used

by the filterbanks in TIFUUN and DESHIMA (see Figure 1.7). Consequently, minimizing the hydrogen

content is desirable for the a-Si:H films used in the microstrip lines that construct the filterbanks.

Conversely, hydrogen atoms are known to passivate dangling bonds, which are associated with two-

level systems (TLSs). TLS losses dominate in the 1–10 GHz range, which is the operation range of the

parallel-plate capacitors. Due to these competing correlations, two optimal recipes are presented: one

for minimizing and one for maximizing the hydrogen content.
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To minimize hydrogen content in the films, the smaller-is-better S/N ratio formula (Equation 2.18) is

applied. The corresponding Main Effect Plots are shown in Figure 5.32a, where optimal parameter levels

are indicated in red. The S/N ratios indicate that hydrogen content is minimized with the following

settings: a table temperature of 390
◦
C, a SiH4 flow rate of 30 sccm, an ICP power of 700 W, a table

RF power of 0 W, a pressure of 5 mTorr, a gas ratio of 100%, and performing argon milling prior to

deposition.

To maximize hydrogen content, the larger-is-better S/N ratio formula (Equation 2.17) is used. The

corresponding Main Effect Plots are shown in Figure 5.32b, with optimal levels again marked in red.

The optimal settings for maximizing hydrogen content are: a table temperature of 300
◦
C, a SiH4 flow

rate of 45 sccm, an ICP power of 300 W, a table RF power of 50 W, a pressure of 15 mTorr, a gas ratio of

50%, and performing an HF dip prior to deposition.

The ANOVA results in Figure 5.22 confirm that table RF power is the dominant factor, contributing 47.3%

to the variance. This indicates its critical role in controlling hydrogen content. Moderate contributions

from SiH4 flow rate (8.4%), pressure (4.4%), and wafer preparation (4.3%) support their importance

in fine-tuning the hydrogen level. In contrast, table temperature and gas ratio show relatively minor

contributions, indicating that their selected levels are less critical in this optimization.

(a) S/N ratio Main Effect Plot for hydrogen content when minimization is desired. The black points represent the

average S/N ratio per parameter level, with the blue-shaded area indicating ±1 standard deviation. The dashed

horizontal line marks the overall mean. Red markers indicate the parameter level yielding the lowest expected

hydrogen content.

(b) S/N ratio Main Effect Plot for hydrogen content when maximization is desired. Plot elements follow the same

convention as in (a), with red markers now indicating the parameter level yielding the highest expected hydrogen

content.

Figure 5.32: Comparison of S/N ratio Main Effect Plots for hydrogen content under different optimization goals: (a) minimizing

and (b) maximizing hydrogen content.

5.3.7. Microstructure parameter
A decreasing microstructure parameter is correlated with a lower void fraction, as discussed in Section

??. Therefore, the smaller-is-better S/N ratio formula (Equation 2.18) is used to compute the S/N

ratios. Based on the Main Effect Plots shown in Figure 5.33, the optimal recipe for minimizing the

microstructure parameter corresponds to the following settings: a table temperature of 300
◦
C, a SiH4

flow rate of 15 sccm, an ICP power of 300 W, a table RF power of 0 W, a pressure of 10 mTorr, a gas ratio
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of 100%, and performing an HF dip.

The ANOVA results in Figure 5.25 confirm that table RF power is the most influential parameter,

contributing 49.0% to the total variance. This highlights the importance of selecting 0 W table RF power

for minimizing the microstructure parameter. ICP power also contributes significantly (19.4%), followed

by chamber pressure with a moderate influence of 9.6%. Other parameters—including temperature,

flow rate, and gas ratio—exhibit minor contributions, indicating that their selected levels play a limited

role in this specific optimization.

Figure 5.33: S/N ratio Main Effect Plots for microstructure parameter across all levels of the seven deposition parameters. Black

points represent the average S/N ratio at each parameter level, with the blue-shaded area indicating the ±1 standard deviation.

The dashed horizontal line shows the overall mean S/N ratio. Red markers indicate the parameter level with the highest S/N

ratio.

5.4. Grey Relational Analysis: Determine overall optimal recipe
In this section, the results of the Grey Relational Analysis (GRA), as introduced in Section 2.8,

are presented. This analysis identifies the optimal level settings of the deposition parameters that

simultaneously optimize all targeted material properties. Based on these results, I will present an optimal

deposition recipe designed for each of the two main applications of a-Si:H in on-chip spectrometers.

5.4.1. Relative importance properties: Weighted average
To perform the Grey Relational Analysis, it is first necessary to define which material properties are

relevant and assign their relative importance. This is done by selecting appropriate weights, which

determine each property’s contribution to the final Grey Relational Grade (GRG).

Only material properties directly or indirectly linked to dielectric losses are included in the GRA.

This includes all measured properties except for residual stress and deposition uniformity. Although

excluded from the GRG calculation, the values of these two properties for the resulting optimal recipe

will be evaluated.

As discussed in the Introduction, the a-Si:H film has two intended applications: as the dielectric in

parallel-plate capacitors (PPCs), operating in the 1–10 GHz range, and in microstrip lines, which form

the filterbank of on-chip spectrometers such as TIFUUN (operating at 90–360 GHz). The dominant

loss mechanism for PPCs is expected to be two-level systems (TLSs), while for the microstrip lines, the

infrared vibrational absorption tail also becomes significant.

As described in Section 2.5, the hydrogen content affects both loss mechanisms but in opposite ways.

A lower hydrogen content reduces the infrared absorption tail, which is important for microstrip line

applications. In contrast, a higher hydrogen content passivates dangling bonds, which are associated

with TLSs, making it beneficial for PPCs. Therefore, the hydrogen content will be minimized for the

microstrip application and maximized for the PPC application.

The GRA weighting was determined based on the dominant loss mechanisms for each application.

In the PPC application, both void-volume fraction and hydrogen content contribute to TLS losses, as

discussed in Section 2.5. For the microstrip application, total dielectric loss arises from TLS and from

infrared absorption, the latter being associated with hydrogen content. Therefore, the parameters linked
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to void formation, namely the optical and infrared refractive index, void-volume fraction, band gap,

and microstructure parameter, are considered to be equally important as the hydrogen content.

To reflect this, the hydrogen content is given a weight of 8, and the void-related parameters are assigned

equal shares summing to the same weight. This results in weights of 2 for the void-volume fraction,

band gap, and microstructure parameter, and 1 each for the optical and infrared refractive index. This

ensures that the total weight associated with void-related properties equals that of the hydrogen content.

In conclusion, the same weighting scheme is used for both applications, but the target direction for the

hydrogen content differs: minimization for microstrip applications and maximization for PPCs.

5.4.2. Overall score of each recipe: Grey Relational Grade
The resulting Grey Relational Grades (GRGs) for both applications are presented in Figure 5.34. In

both cases, the Grey Relational Analysis combines all quality indicators into a single score per recipe,

allowing for direct comparison.

When hydrogen content is minimized (Figure 5.34a), recipe 17 achieves the highest GRG, indicating it

offers the best overall performance across all considered material properties for the filterbank application.

Conversely, when hydrogen content is maximized (Figure5.34b), recipe 11 performs best, making it the

most suitable for PPC-based applications.

More importantly, the GRG distributions differ significantly between the two cases, highlighting that

the optimal recipes for these applications are significantly different. This observation aligns with the

differences in dominant loss mechanisms and is further discussed in the following section.

(a) Grey Relational Grade for each recipe when hydrogen content is minimized.

(b) Grey Relational Grade for each recipe when hydrogen content is maximized, using the same response

weights.

Figure 5.34: Grey Relational Grade (GRG) for each recipe under two optimization objectives: (a) minimizing and (b) maximizing

hydrogen content. The red marker indicates the recipe with the highest overall GRG in each case.
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5.4.3. Optimal recipes for the two applications: PPC and filterbank
The Main Effect Plots of the GRG for both design targets are shown in Figure 5.35. For the case

where hydrogen content is minimized (Figure 5.35a), the optimal parameter levels are: 390
◦
C table

temperature, 30 sccm SiH4 flow, 700 W ICP power, 0 W table RF, 5 mTorr pressure, 100% gas ratio, and

argon milling surface preparation.

The corresponding ANOVA results (Figure 5.36a) indicate that ICP power (20.3%) and SiH4 flow rate

(17.4%) are the most influential parameters. Wafer preparation also contributes significantly with

11.0%. Interestingly, table RF power, despite its importance in other properties, contributes only 4.0%

in this optimization. The high residual variance (42.2%) suggests that parameter interactions or other

unmodeled effects account for a substantial portion of the GRG variation.

In the case where hydrogen content is maximized (Figure 5.35b), the optimal settings shift to: 300
◦
C

table temperature, 45 sccm SiH4 flow, 300 W ICP power, 25 W table RF, 10 mTorr pressure, 75% gas ratio,

and HF dip preparation.

Here, the ANOVA results (Figure 5.36b) show that table RF power is the dominant parameter, accounting

for 62.2% of the total variance. The next highest contributor is pressure, with a relatively minor 11.5%.

This dominant role of table RF power aligns with its strong influence on hydrogen content, as discussed

earlier. The contour plots of the Grey Relational Grades of both optimal recipes are provided in Appendix

B.

It is important to note that the film deposited using the recipe optimized for the PPC application is

expected to exhibit a high compressive stress, due to the table RF setting of 25 W (see trend in Figure 5.6).

In contrast, the recipe optimized for the microstrip filterbank application (i.e., minimizing hydrogen

content) is expected to result in a slightly tensile or near-zero stress level.

(a) Main Effect Plots of the Grey Relational Grade for the case where hydrogen content is minimized. The optimal level

for each parameter is highlighted in red.

(b) Main Effect Plots of the Grey Relational Grade for the case where hydrogen content is maximized. The optimal

level for each parameter is again highlighted in red.

Figure 5.35: Main Effect Plots of the Grey Relational Grade for two design targets: (a) minimizing hydrogen content and (b)

maximizing hydrogen content. The plots indicate which level of each factor contributes most to improving overall multi-objective

performance.
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(a) The ANOVA results for the case where hydrogen content is minimized. Table RF power has limited influence, while

ICP power and SiH4 flow rate dominate.

(b) The ANOVA results for the case where hydrogen content is maximized. Table RF power is by far the dominant

factor.

Figure 5.36: The ANOVA results showing the parameter contributions to the Grey Relational Grade (GRG) for two optimization

cases.
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5.5. Verification of optimal experiments
Both recipes identified through the Grey Relational Analysis are not part of the conducted orthogonal

array (see Table 2.1). This indicates that the analysis selected new combinations of parameter levels that

are expected to outperform the originally tested recipes. As a final step, these predicted optimal recipes

will be executed and their material properties measured to verify the prediction.

5.5.1. Fabrication and transmission spectra
To test the the accuracy of the predicted optimal recipes, each recipe was processed on the same method

as done for each of the recipes in the Taguchi array. This means that we have deposited each of the

optimal recipes on both a SSP and DSP wafer, for ellipsometry and FTIR, respectively. This included a

running a precondition recipe to coat the chamber walls, and performing an Argon milling or HF dip

for the minimizing or maximizing recipe, respectively. The average thickness of the recipe minimizing

or maximizing the hydrogen content was 561nm and 537nm, measured using ellipsometry, respectively.

After depositing the films, I have measured all material properties, as explained in Section 4. The

transmission spectra of both film measured with the FTIR is shown in Figure 5.37. As explained in

Section 4.4.3, the hydrogen content 𝐶𝐻 is computed from the integrated area of the SiH wagging mode

near 640 cm
−1

. In Figure 5.37, it is clearly visible that the absorption dip of the recipe which minimizes

the hydrogen (blue) is significantly smaller than for the recipe that maximizes hydrogen (orange).

Additionally, the stretching modes around 2000 and 2100 cm−1, which are caused by the Si-H and Si-H2,

respectively, show the same decrease, which supports the observation that there is a strong difference in

the hydrogen content between the films. Although, this was predicted by the Grey Relational Analysis,

it is important to observe this difference, as hydrogen is contributing strongly in the optimization design.

The refractive index curves from ellipsometry, the extinction coefficient and the corresponding infrared

refractive index curves measured with the FTIR, and the thickness non-uniformity plots are shown in

Appendix A.

Figure 5.37: FTIR transmission spectra of the two optimal films, deposited using recipes designed to minimize (blue curve) and

maximize (orange curve) the hydrogen content. The transmission spectrum of the bare DSP silicon substrate is included as a

reference (black curve).

5.5.2. Optimal recipe: Minimizing hydrogen content
Prediction vs measurement
In this section, the performance of the optimal recipe which minimizes the hydrogen content will be

discussed. This will be done by comparing the measured material properties with the predictions

from both the method described in Section 2.6, which uses Equation 2.21, and the predictions from the

regression model. An overview of the measured and predicted values is shown in Table 5.1.
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The Grey Relation Grade (GRG) of this recipe is predicted to be 0.7475, calculated with Equation 2.21,

as described in Section 2.8. However, the actual GRG scored higher than this prediction with a 0.774,

thereby outperforming every other recipe based on the recalculated GRGs. This outperformance of the

prediction is mainly driven by a lower than expected measured hydrogen content.

Overall, the measured results align reasonably well with the predicted trends, though several properties

deviate significantly in magnitude. The measured deposition rate of 32.06 nm/min lies between the

two predictions: 30.38 nm/min from the S/N method and 33.59 nm/min from the regression model.

Residual stress values show larger discrepancies than expected, particularly given that stress had

the lowest residual contribution in the ANOVA results. The measured SSP stress of –121.6 MPa is

substantially more compressive than both predictions, with the strongest underestimation coming from

the regression model, which gave a value of only –7.41 MPa. Similarly, the measured DSP stress of –28.5

MPa falls between the S/N prediction (–69.2 MPa) and the regression result (140.0 MPa), indicating

weak predictive performance for stress-related outcomes.

The thickness non-uniformity was measured at 7.59%, exceeding both predictions, which were close

to 5%. This suggests that the model underestimated the non-uniformity in film growth under the

selected conditions. Optical and infrared refractive indices were well predicted by both methods, with

deviations within 0.07 absolute units, where the prediction of the infrared refractive index was slightly

more accurate. The band gap was slightly overestimated by both models, with measured and predicted

values differing by roughly 0.07 eV. Similarly, the void-volume fraction was predicted with moderate

accuracy, with a measured value of 14.9% versus predicted values of 15.7% and 16.6%.

The largest improvement over the predictions is observed in the hydrogen content, which was measured

at 4.33%, below the predicted values of 6.84% (S/N model) and 5.64% (regression model). This lower

hydrogen content strongly contributes to the higher than expected GRG. Finally, the microstructure

parameter was also significantly underestimated by both models, with a measured value of 0.61

compared to predicted values around 0.41. This higher than expected microstructure parameter is

visualized in Figure 5.37, where the area stretching mode of the Si–H2 is relatively strong.

In summary, while some properties were predicted with reasonable accuracy, others, particularly

thickness non-uniformity and the microstructure parameter, deviate significantly.

Property Actual Predicted via SNR Regression model

Grey Relational Grade (-) 0.7740 0.7475 0.7475

Deposition rate (nm/min) 32.06 30.38 33.59

SSP residual stress (MPa) -121.6 -33.1 -7.41

DSP residual stress (MPa) -28.5 -69.2 140.0

Thickness non-uniformity (%) 7.59 4.98 5.092

Optical refractive index (-) 3.239 3.171 3.171

Infrared refractive index (-) 3.143 3.160 3.160

Band gap (eV) 1.592 1.662 1.665

Void-volume fraction (%) 14.9 15.69 16.55

Hydrogen content (at.%) 4.33 6.84 5.64

Microstructure parameter (-) 0.613 0.405 0.412

Table 5.1: Comparison of actual material properties for the optimal recipe minimizing hydrogen content, with predictions

obtained using the S/N ratio-based formula (Equation 2.21) and the regression model.
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Performance optimal recipe relative to other recipes
The optimal recipe for minimizing hydrogen content is now evaluated against the other experimental

runs based on its measured material properties. This comparison is visualized in Section 5.2, where

Recipe 19 corresponds to the optimal recipe for minimizing hydrogen content.

The deposition rate of Recipe 19 is approximately 30 nm/min, placing it near the middle of the dataset.

While several recipes exhibit significantly higher rates exceeding 45 nm/min, others fall below 15

nm/min. Recipe 19 thus represents a moderate growth rate. The SSP residual stress measured for

Recipe 19 is -122 MPa, which is significantly less compressive than for most other recipes. The majority

of samples exhibit compressive stress values in the range of -600 MPa to -800 MPa, indicating higher

internal stress levels. However, when compared with other recipes with table RF power equal to zero,

it has the highest compressive stress, significantly lower than predicted. Its relatively low stress is

favorable, as it reduces the risk of delamination in the final application. With a measured DSP residual

stress of –29 MPa, Recipe 19 has a compressive stress that is close to zero. This is remarkable, since all

other recipes with the same table RF show compressive stress, as was predicted by the regression model.

However, this stress level has lower risk of delamination compared to the recipes with a non-zero table

RF.

The measured non-uniformity of 7.6% in Recipe 19 is the highest observed, significantly higher than the

predicted 5.1%. Most other recipes exhibit lower non-uniformity between 4% and 7%. This shows that

this recipe has the least uniform film. Recipe 19 exhibits an optical refractive index near 3.24, which is

around the middle of the dataset spread between 3.1 and 3.4. This indicates that the film is not among

the densest films. Similar to the optical index, the infrared refractive index for Recipe 19 is relatively low

( 3.14), placing it between the lowest measurements. This supports the observation that the density of

the film is among the lowest.

With a band gap of 1.59 eV, Recipe 19 is comparable to Recipe 17, which are both outliers as the other

recipes fall in the 1.72–1.90 eV range. This lower band gap corresponds to a lower void-volume fraction

and higher refractive index, which is not observed in these recipes. Additionally, both these wafers

have clouded surfaces and a deviating optical refractive index curve, presented in Appendix E and

A, respectively. Recipe 19 shows a void-volume fraction of 14.9%, which is around average. Most

measurements are between 7.5% and 17.5%. Although the recipe was partially designed to minimize

the void density of the film, the film does not outperform most of the films. One explanation could be

that the high importance of the hydrogen content in the Grey Relational Analysis resulted in a recipe

with a higher void density. This is supported by the relatively high predicted void-volume fraction of

Recipe 19.

Recipe 19 clearly outperforms all others with the lowest measured hydrogen content, around 4.3%.

The next best (Recipe 17) still exhibits >6.8%, while many others exceed 15%. This confirms Recipe 19

as the most successful in minimizing hydrogen content, which was the primary objective. Recipe 19

exhibits a microstructure parameter of approximately 0.61, the highest among all measured samples,

whereas most other recipes fall within the range of 0.35 to 0.55. This elevated value is consistent with

the observed low hydrogen content in the film. The low hydrogen content is in agreement with a

relatively shallow Si–H wagging mode near 640 cm
−1

and a suppressed Si–H stretching mode around

2000 cm
−1

in the FTIR spectrum. These observations correspond to the higher microstructure parameter.

However, the difference between the measured and predicted microstructure parameter for this recipe

is remarkable.

5.5.3. Optimal recipe: Maximizing hydrogen content
Prediction vs Measurement
In this section, the performance of the optimal recipe which maximizes the hydrogen content will be

discussed. This will be done by comparing the measured material properties with the predictions

from both the method described in Section 2.6, which uses Equation 2.21, and the predictions from the

regression model. An overview of the measured and predicted values is shown in Table 5.2.

The Grey Relation Grade (GRG) of this recipe is predicted to be 0.8345, calculated with Equation 2.21, as

described in Section 2.8. However, the actual GRG scored significantly lower than this prediction with a

0.6397, thereby underperforming with respect to 6 other recipes based on the recalculated GRGs. This
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underperformance is mainly driven by a lower than expected measured hydrogen content. Overall, the

measured results for this recipe show partial agreement with the predictions, although the hydrogen

content, which is the main target, falls significantly below expectations. The deposition rate of 29.85

nm/min matches both the S/N-based and regression prediction reasonably well, indicating consistent

growth performance.

Residual stress values are well captured by the regression model. The SSP stress was measured at

–744.9 MPa, aligning closely with the predicted –774.5 MPa. The DSP stress also shows reasonable

agreement, with a measured value of –639.3 MPa compared to predictions of –693.7 MPa (S/N) and

–753.3 MPa (regression). These results confirm that both models capture the stress behavior under these

deposition conditions. The thickness non-uniformity was measured at 5.61%, which aligns well with

both predicted values of approximately 5.9%. This agreement is remarkable given that, for the recipe

minimizing hydrogen content, the measured non-uniformity deviated significantly from the prediction.

The optical refractive index of the film (3.42) matches closely with the predicted values, differing by only

0.03. In contrast, the infrared refractive index shows a strong deviation, with a measured value of 3.19

compared to the predicted 3.36. The measured optical band gap of the film is 1.73 eV, approximately 0.1

eV lower than both predicted values. Similar to the recipe optimized for minimum hydrogen content,

the band gap is consistently underestimated by the model. Additionally, the void-volume fraction

was measured at 7.6%, consistent with predictions (7.8–8.0%), suggesting the porosity was correctly

estimated.

The largest deviation is found in the hydrogen content, where a measured value of 16.3 at.% is

substantially lower than both predictions (20.5–22.1 at.%). The physical origin of this difference is

unclear, though unmodeled interaction effects may partially account for it. As hydrogen content was

the primary optimization target, this underperformance directly explains the lower-than-expected GRG

score. Finally, the microstructure parameter was significantly underestimated by both models, with a

measured value of 0.51 compared to predicted values around 0.43. This higher-than-expected value is

consistent with the observed lower hydrogen content in the film. A reduced Si–H stretching absorption

near 2000 cm
−1

, associated with lower hydrogen, leads to a higher microstructure parameter.

In summary, while most structural and optical properties were predicted with reasonable accuracy, the

hydrogen content—central to this optimization—was substantially overestimated. This discrepancy

significantly reduced the GRG performance of the recipe, placing it below several other experimental

runs.

Property Actual Predicted via SNR Regression model

Grey Relational Grade (-) 0.6397 0.8345 0.8345

Deposition rate (nm/min) 29.85 26.56 28.41

SSP residual stress (MPa) -744.88 -570.56 -774.54

DSP residual stress (MPa) -639.32 -693.66 -753.29

Thickness non-uniformity (%) 5.61 5.94 5.88

Optical refractive index (-) 3.420 3.388 3.387

Infrared refractive index (-) 3.186 3.356 3.359

Band gap (eV) 1.730 1.840 1.837

Void-volume fraction (%) 7.6 7.967 7.849

Hydrogen content (at.%) 16.31 22.11 20.52

Microstructure parameter (-) 0.512 0.427 0.436

Table 5.2: Comparison of actual material properties for the optimal recipe maximizing hydrogen content, with predictions

obtained using the S/N ratio-based formula (Equation 2.21) and the regression model.
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Performance optimal recipe relative to other recipes
The optimal recipe for maximizing hydrogen content is now evaluated against the other experimental

runs based on its measured material properties. This comparison is visualized in Section 5.2, where

Recipe 20 corresponds to the optimal recipe for maximizing hydrogen content.

Recipe 20 showed a deposition rate of 29.85 nm/min, placing it in the mid-range of the dataset. The

highest deposition rates exceed 45 nm/min and the lowest drop below 15 nm/min. With a measured

SSP residual stress of -744.9 MPa, Recipe 20 ranks among the most compressively stressed films in the

dataset, only slightly less extreme than Recipes 8 and 13. While such high compressive stress can pose

a risk to mechanical stability—particularly by increasing the likelihood of buckling—it remains well

below the failure threshold of -1200 MPa reported by Johlin et al. [23]. Nonetheless, the elevated stress

should be considered carefully when evaluating the suitability of this recipe for practical applications.

The DSP residual stress of -639.3 MPa also ranks highly compressive, with most other recipes showing

similar stress levels between -600 MPa and -800 MPa. Recipe 20 does not stand out significantly for the

DSP measurement, but confirms the consistent presence of stress for recipes with a non-zero table RF.

Recipe 20 exhibited a thickness non-uniformity of 5.6%, which lies near the mean of the dataset. Most

other recipes fall within the range of 4% to 7%, indicating that the optimal hydrogen recipe does not

sacrifice thickness uniformity. The refractive index measured at 1200 cm
−1

is 3.42, the highest among all

recipes. Most other samples range between 3.2 and 3.35. This elevated refractive index indicates that

the film is dense, despite its high hydrogen content. The measured FTIR refractive index of Recipe 20 is

approximately 3.19, which is among the lowest values of the dataset, with a few recipes (e.g., 2, 16, 17,

19) that have lower values. Recipe 19, by comparison, has a slightly lower value of 3.14. The low value

for Recipe 20 does not agree with the relatively high refractive index of the optical refractive index.

Recipe 20’s band gap of 1.73 eV is among the lowest values, where the total range of the dataset is

between 1.58 eV and 1.90 eV. This lower band gap corresponds to a lower void-volume fraction and

higher refractive index, which is observed for this recipe when considering only the optical refractive

index. The void-volume fraction of 7.6% for Recipe 20 is among the lowest observed in the dataset.

While most other recipes yield values between 7.5% and 17.5%, the film from Recipe 20 stands out

as notably denser. This low porosity is consistent with the relatively low and high measured values

for the band gap and the optical refractive index, respectively. However, it does not align with the

lower-than-expected infrared refractive index and microstructure parameter.

The hydrogen content of 16.3 at.% is relatively high but below the highest recipes, including Recipe 3

and 11, which exceed 18 at.%. Hence, Recipe 20 does not achieve its design objective to produce the

most hydrogen-rich film. This deviation significantly impacted its Grey Relational Grade (GRG), which

is ranked 7th of all recipes. The microstructure parameter of 0.51 is above average but not the highest

(Recipe 19, 0.61). Compared to the rest of the dataset, Recipe 20’s microstructure indicates a slightly

higher than average void density. However, this observation does not align with the results of the

void-volume fraction, optical refractive index, and the band gap.

5.6. Summary of results
This section contains summary with the main takeaways of the established relations between the

deposition parameters and each of the material properties. Additionally, a summary of the performance

of the two optimal recipes identified in Section 5.4.3 is presented.

5.6.1. Summary of relations between deposition parameters and material prop-
erties

The deposition parameters show distinct influences on the material properties of the films, with varying

accuracy of the fitted model regression model, across different properties. For the residual stress, the

table RF power stands out as the dominant factor by far. Its influence is clearly evident: increasing

the table RF power from 0 W to 25 W shifts the average stress from a tensile value of +80 MPa to a

highly compressive stress around -750 MPa. Further increasing the power to 50 W slightly reduces

the compressive stress, averaging around -650 MPa. This trend is consistent across both SSP and DSP

wafers, with table RF power contributing over 97% of the total variation in both cases. The remaining

parameters play only a minimal role in stress evolution.
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In the case of thickness non-uniformity, the influence of table RF power is again strongest, though less

dominant than in the stress analysis. It contributes nearly 70% of the observed variation. A higher

table RF power reduces thickness non-uniformity, while other parameters such as SiH4 flow rate and

chamber pressure lead to increased non-uniformity at higher levels. The measured non-uniformity

ranges from 3.5% to 7.5%.

The trends for the refractive index — both optical and infrared — are generally consistent across the two

measurement methods. For the optical index, table RF power is the most influential parameter, while

for the infrared index, pressure plays the leading role. However, both models suffer from relatively

high residuals (42.8% and 48.0%, respectively), indicating that interaction effects or unmodeled factors

significantly contribute to the observed variance. The optical refractive index varies between 3.02 and

3.40, while the infrared index ranges from 3.14 to 3.35.

For the band gap, the most significant contribution comes from wafer preparation, where HF-dipped

wafers consistently show higher band gap values. Wafer preparation alone accounts for 26.8% of the

variation, followed by silane flow rate at 15.2%. Despite these contributions, the residual remains high

at 44.6%. The measured band gap spans a relatively wide range, from 1.59 eV to 1.90 eV, with recipe 17

as an outlier.

The void-volume fraction is influenced most strongly by chamber pressure (20.3%) and table RF power

(9.7%), although the overall model fit is poor, with a residual of 60.5%. The data shows that increasing

table temperature, SiH4 flow, and table RF generally lowers the void fraction, while increasing ICP

power raises it. The measured values vary significantly across the dataset, from as low as 4.9% to as

high as 21.9%, highlighting the large unexplained variation.

For hydrogen content, table RF power is again the primary driver, contributing 47.3% to the explained

variation, with measured values ranging from 6.8% to 18.9%. It introduces a sharp increase in hydrogen

content from the lowest to the mid-level RF power, after which the values plateau. Other parameters,

including flow rate, pressure, and wafer preparation, play minor roles. The residual of 31.7% indicates

that there are still significant effects excluded in the model.

Finally, the microstructure parameter is governed predominantly by table RF power, which contributes

nearly half of the total variation, with measured values between 0.33 to 0.55. This effect is non-linear,

with the highest microstructure parameter observed at mid-level RF power. ICP power and chamber

pressure also contribute (19.4% and 9.6%, respectively), while other factors play a secondary role.

5.6.2. Summary of optimal recipes
This section summarizes the performance of the two optimal recipes identified in Section 5.4.3. Both

were selected to minimize the void density, with Recipe 19 specifically designed to minimize hydrogen

content, and Recipe 20 to maximize it.

Minimizing hydrogen content: Recipe 19
Recipe 19 is the most successful recipe overall, achieving the highest measured Grey Relational Grade

(GRG) of 0.774. It effectively meets its design objective by yielding the lowest hydrogen content in the

dataset (4.3 at.%) significantly below all other recipes, which exhibit values above 6.8 at.%.

In terms of performance relative to the rest of the dataset, Recipe 19 has the highest measured

microstructure parameter (0.61), relatively low optical and infrared refractive indices (3.24 and 3.14),

and an above-average void-volume fraction ( 14.9%), all consistent with a lower-density film. However,

the relatively low band gap does not align with this trend and may be influenced by surface scattering

effects (see Appendix E). Additionally, the film shows the highest thickness non-uniformity ( 7.6%),

suggesting a trade-off between hydrogen minimization and thickness uniformity. The residual stress is

low at –29 MPa, which is favorable for film stability.

Overall, Recipe 19 clearly fulfills its optimization goal of minimizing hydrogen content. While it achieves

minimal success in reducing the void density, the data suggest that hydrogen content is more sensitive

to the process parameters than void formation in this case.

Maximizing hydrogen content: recipe 20
Recipe 20 was intended to maximize hydrogen content, but its measured GRG (0.6397) ranks only 7th
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among the 20 recipes. Although the measured hydrogen content of 16.3 at.% is relatively high, it falls

significantly short of the predicted values (>20 at.%) and is outperformed by several other recipes (e.g.,

recipes 11, 6 and 12) based on the recalculated GRGs.

Relative to the rest of the dataset, Recipe 20 exhibits high compressive stress in both SSP and DSP

measurements (–745 MPa and –639 MPa, respectively), the highest optical refractive index (3.42), and

one of the lowest void-volume fractions (7.6%) and band gap values (1.73 eV). These results indicate a

dense film. However, the infrared refractive index (3.19) and microstructure parameter (0.51) do not

fully support this interpretation.

Recipe 20 only partially meets its design objective. While it resulted in a hydrogen-rich film, it did not

outperform several other recipes and failed to reach the targeted hydrogen levels. However, all material

properties—except the band gap—indicate a lower void density compared to Recipe 19. This suggests

that Recipe 20 was more effective at minimizing void formation, despite the only difference was the

target optimization for hydrogen content.



6
Discussion

This Chapter evaluates the performance and limitations of the optimized recipes, assesses the effective-

ness of the Taguchi optimization approach, and reviews the predictive accuracy of the regression model.

It also considers measurement uncertainties and qualitative observations not fully represented in the

numerical data, such as surface cloudiness.

6.1. Performance of the optimized recipes
Two optimized recipes were identified using Grey Relational Analysis. In both cases, half of the total

weight was assigned to material properties associated with void density—the void-volume fraction,

optical and infrared refractive indices, band gap, and microstructure parameter—while the remaining

weight was assigned to hydrogen content. Recipe 19 was optimized for minimal hydrogen content, and

Recipe 20 for maximal hydrogen content.

Recipe 19 successfully achieved its objective, yielding the lowest hydrogen content in the dataset at 4.3

at.% and ranking first with a GRG of 0.774. However, the result came with several trade-offs. The film

showed the highest thickness non-uniformity (7.6%), a relatively high void-volume fraction (14.9%), and

a band gap significantly lower than predicted. Visually, the film surface appeared cloudy, with a high

density of fine surface features. A similar, though more pronounced, surface effect was observed for

Recipe 17, as shown in Appendix E. Both films also displayed outlying refractive index spectra and

band gaps, suggesting a shared structural deviation from the rest of the dataset. On the other hand, the

residual stress or Recipe 19 was modest (–29 MPa), indicating no immediate mechanical concerns.

Despite its successful hydrogen minimization, the combination of high void fraction and surface

cloudiness makes the practical application of Recipe 19 uncertain. When selecting a recipe without these

concerns, Recipe 9 presents itself as a promising alternative. Ranked third (GRG = 0.621), it exhibits no

visible surface defects and combines a tensile residual stress of 125 MPa with a hydrogen content of

11.97 at.%, which is among the lower values, but significantly higher than for recipe 17 and 19. However,

Recipe 9 offers the lowest void-volume fraction in the dataset and favorable scores for other void-density

related properties. Hence, this recipe is a strong candidate for applications in the filterbank section of

the on-chip spectrometer.

Recipe 20, optimized for maximum hydrogen content, reached 16.3 at.% but did not achieve the highest

value in the dataset. Its GRG (0.640) placed it seventh, indicating that other recipes outperformed it

under the chosen optimization criteria. Nevertheless, the film showed favorable density indicators, with

a low void-volume fraction (7.6%) and the highest optical refractive index (3.42). However, internal

consistency was limited: the IR refractive index (3.19) and a relatively high microstructure parameter

(0.51) did not align with dense, hydrogen-rich film. Additionally, the residual stress was high at

-745 MPa, raising potential concerns for mechanical stability, although this remains below the failure

threshold suggested in [23].

When the high compressive stress is considered acceptable, recipes 11 and 6—ranked first and second
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with GRGs of 0.765 and 0.749, present suitable alternatives. Both contain hydrogen contents exceeding

18 at.%, which is the key reason to their high rank. Between the two, Recipe 6 scored slightly better in

the material properties related to the void density. Their residual stresses are comparable to Recipe 20

(–770 MPa and –660 MPa).

If the high compressive stress is considered impractical for device integration, Recipe 9 offers a suitable

alternative. It is the highest-scoring recipe with a table RF power of 0 W, which results in a relatively low

tensile stress of 125 MPa. Although its GRG of 0.603 ranks it only tenth overall, primarily due to a below

average hydrogen content of 11.97 at.%, the film performs well across all void density related material

properties. It achieved the lowest void-volume fraction in the dataset and scored better than average for

the optical and infrared refractive indices, band gap, and microstructure parameter. These indicators

point to a dense film. In addition, no surface irregularities were observed. Therefore, despite its lower

GRG ranking, Recipe 9 is the most suitable candidate for application in the parallel-plate capacitor when

a high compressive stress is considered impractical.

In summary, the Grey Relational Analysis yielded optimal recipes for both targeted applications. For the

filterbank, the predicted optimal recipe (Recipe 19) also performed best experimentally, demonstrating

the capability of the design approach that it can make accurate predictions. For the parallel-plate

capacitor, however, the predicted recipe (Recipe 20) was outperformed, revealing limitations within

the optimization progress. In both cases, the best-scoring recipes presented practical concerns: Recipe

19 showed surface irregularities, while Recipe 20 exhibited high residual stress. Remarkably, Recipe 9

emerged as the best-performing alternative free of these limitations for both application designs, despite

the recipes (partially) being optimized for opposing goals; minimizing versus maximizing hydrogen

content.

To assess the potential performance of Recipe 9, its material properties can be compared to those of the

three a-Si:H films investigated by Bruno Buĳtendorp [5]. These films were deposited using a PECVD

process with fixed deposition parameters except for the substrate temperature, which was varied across

100
◦
C, 250

◦
C, and 350

◦
C. Although the room-temperature material properties of the films showed a

monotonic dependence on substrate temperature, no clear correlation was found with the cryogenic

microwave loss tangent. All three films exhibited a microwave tan 𝛿 below 10
−5

at 120 mK and 4–7 GHz

[8]. In addition, the film deposited at 250
◦
C showed a mm-submm loss tangent of 2.1× 10

−4
at 350 GHz

[35].

When compared to the 250
◦
C film, Recipe 9 shows improved material properties: a lower void-volume

fraction (4.38% vs. 5.5%), a lower microstructure parameter (0.36 vs. 0.48), a higher infrared refractive

index (3.289 vs. 3.20), and a lower hydrogen content (11.97% vs. 16.25%). Although Recipe 9 has a higher

residual stress (+125 MPa vs. +3 MPa), this value remains relatively modest and is not expected to cause

practical issues, especially considering the compressive residual stress of NbTiN, which can provide

partial compensation. Altogether, these material properties suggest a lower void density and reduced

hydrogen content—both correlated with reduced dielectric loss in the mm-submm range— indicating

that Recipe 9 exhibits lower dielectric losses in the filterbank of on-chip spectrometers compared to the

film measured in [35].

For the parallel-plate capacitor application, where dielectric losses are reduced by lowering void density

and increasing hydrogen content, the comparison is less conclusive. While the lower void density is

promising, the reduced hydrogen content may result in fewer passivated dangling bonds, potentially

increasing TLS-related losses. Moreover, as noted by Bruno Buĳtendorp, no clear correlation was

found between room-temperature material properties and cryogenic microwave loss [8], reinforcing the

uncertainty regarding the performance of Recipe 9 in PPCs operating in the microwave regime.

6.2. Effectiveness and limitations of the Taguchi optimization
The Taguchi method provided a structured and efficient route to explore a large parameter space with a

reduced number of experiments. The orthogonal array of 18 recipes enabled the estimation of main

effects across six process parameters with two wafer preparation methods. However, the method comes

with important limitations that affected the quality of the optimization.

Firstly, the Taguchi method assumes that the system response is determined by main effects, and
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possible interaction effects are not considered. If such interactions are present, they are not captured

by the model, which can lead to incorrect optimization outcomes. This is especially relevant when

using Main Effect Plots, as they average over all other parameters and therefore cannot reveal whether

interactions influence the observed trends.

Secondly, each material property was measured only once per recipe. While this was a practical decision

due to limited time during the project, it introduces uncertainty in the response data. Without repeated

measurements, the influence of noise cannot be separated from true process variation, and robustness of

the recipes cannot be evaluated. For properties such as the void-volume fraction and refractive indices,

this is particularly important, as they exhibited high residual contributions in the ANOVA analysis,

indicating substantial unexplained variation.

Moreover, the Taguchi method restricts optimization to the predefined levels of each parameter.

While this is useful for the first approximation, it limits the resolution of the parameter space. Both

optimized recipes are confined to the available discrete settings, with a possibility that better-performing

combination may exist between them.

6.3. Predictive power and limitations of the regression model
Regression models were fitted for each material property using a second-order polynomial including

linear and squared terms of each parameter, with wafer preparation treated as a categorical variable.

These models served two main purposes: to visualize trends across the parameter space and to make

predictions for the optimal recipes.

For several properties—such as SSP residual stress and deposition rate—the regression model provided

accurate predictions, with low residual contributions and small deviations from the measured values.

This supports the validity of the main-effect, second-order model in capturing the underlying trends for

these properties.

However, for properties such as void-volume fraction, IR refractive index, and microstructure parameter,

the residual contributions were substantial. This indicates that the fitted model fails to fully capture

the underlying variation, likely due to unmodeled interaction effects or noise. The model’s predictive

surface is inherently parabolic and cannot accommodate more complex dependencies. This limitation

became evident in the prediction of the hydrogen-rich film (Recipe 20), for which the model significantly

overestimated the hydrogen content.

6.4. Measurement uncertainties
Several sources of uncertainty influenced the material property measurements:

The void-volume fraction was determined from a single point at the center of each wafer. This approach

was chosen to avoid fitting both the film thickness and the void fraction simultaneously, which would

have increased the risk of overfitting. Because the film thickness varies across the wafer, incorporating

additional measurement points would have required thickness to be treated as a free parameter. Instead,

by fixing all parameters except the void fraction, a consistent one-parameter fit could be performed

across all samples. This approach ensured comparability but came at the cost of robustness: the use of a

single point makes the extracted void-volume fraction more sensitive to noise. Furthermore, the same

Cody–Lorentz shape was used for all films to maintain consistency, though the quality of the fits varied

from sample to sample. This introduces additional uncertainty, but avoids model flexibility that could

lead to inconsistent interpretations.

A spline baseline correction was applied to the FTIR spectra because the transmission spectra started to

deviate from the fitted Transfer Matrix Method (TMM) model, for higher wavenumbers. This deviation

limited the fitting range where the TMM could properly be fitted to the data, which increases the

uncertainty of the fitted film thickness. This fitted thickness is required to convert the extinction

coefficient k(𝜔) to the absorption coefficient 𝛼(𝜔), which is then used to determine the hydrogen content

and microstructure parameter. As a result, uncertainty in the fitted thickness introduces additional

uncertainty in these derived material properties.

The films deposited using Recipes 17 and 19 showed a cloudy surface appearance, as illustrated in
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Appendix E. While the physical origin of this effect remains unclear, microscopic inspection revealed

a high density of fine surface features. This cloudiness was most pronounced in Recipe 17, but also

visibly present in Recipe 19. This similarity is not unexpected, given that the only difference between

the two recipes is the reduction of table RF power from 25 W to 0 W. Both films also exhibited outlying

refractive index spectra and low band gap values compared to the rest of the dataset (Appendix A).

Although the surface appearance was not quantified, its presence may have contributed to deviations in

optical measurements such as transmission and ellipsometry through scattering effects.
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Conclusion

The objective of this research was to optimize the material properties of hydrogenated amorphous

silicon (a-Si:H) thin films for use in on-chip spectrometers by adjusting the deposition parameters of an

inductively coupled plasma-enhanced chemical vapor deposition (ICP-CVD) process. This goal was

addressed by formulating three sub-objectives: (1) relating film properties to their expected dielectric

loss performance, (2) establishing the influence of process parameters on those properties, and (3)

assigning and testing the recipe with best expected cryogenic performance.

Relate film properties to expected dielectric loss performance
A set of eight material properties was selected for characterization, due to their relevance to dielectric loss

mechanisms or their impact on practical film performance, found through literature research. These in-

clude residual stress, thickness non-uniformity, void-volume fraction, hydrogen content, microstructure

parameter, optical and infrared refractive index, and band gap. Six of these properties are closely linked

to dielectric loss mechanisms, particularly two-level systems (TLS) and vibrational absorption. The

void-volume fraction, optical and infrared refractive indices, band gap, and microstructure parameter

are all indicators of the film’s defect density, which are correlated to the TLS density. The hydrogen

content affects the vibrational absorption tail in the mm-submm regime and also plays a role in TLS

behavior by passivating dangling bonds.

The remaining two properties, residual stress and thickness non-uniformity, are not directly linked to

dielectric losses but are critical for assessing the mechanical stability of the films in device applications.

High stress may lead to buckling, while non-uniformity decreases the reproducibility of devices across

large wafer areas.

Establish the relations between various deposition parameters and the film’s properties
The conducted Taguchi orthogonal array, consisting of 18 recipes with orthogonal variations in seven

deposition parameters, revealed clear trends in how process conditions influence material properties.

Table RF power emerged as the most influential parameter overall, significantly affecting five out of the

eight properties. It was the dominant factor in residual stress (explaining >97% of the variation), where

higher power levels shifted the film from tensile to strongly compressive stresses. Table RF power also

had the highest contribution to the thickness uniformity, optical refractive index, hydrogen content and

the microstructure parameter.

Other parameters exerted more moderate effects. Chamber pressure had the strongest influence on

the void-volume fraction and infrared refractive index, while silane flow rate and wafer preparation

contributed strongest to variations in the band gap. Despite some models exhibiting high residuals,

indicating higher order individual effects and possible interactions between the parameters, the overall

analysis successfully mapped key relationships between the deposition parameters and the material

properties. The measurement ranges observed (e.g., hydrogen content from 6.8–18.9%, void fraction

from 4.9–22.3%) indicate the strong tunability of a-Si:H properties within the explored parameter space.

Assign and test the recipe with the best expected cryogenic performance
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Two optimized recipes were identified using Grey Relational Analysis, with equal weighting assigned to

hydrogen content and void-related properties. Recipe 19 was optimized for minimal hydrogen content,

while Recipe 20 targeted maximal hydrogen content. Recipe 19 achieved the highest Grey Relational

Grade (GRG = 0.774) and successfully minimized hydrogen content (4.3 at.%), outperforming all other

recipes. While it exhibited relatively high void volume fraction and thickness non-uniformity, its low

residual stress (–29 MPa) makes it mechanically stable and suitable for reducing dielectric losses due to

the vibrational absorption tail in the mm-submm wavelength range.

However, Recipe 19 displayed a cloudy surface, similar to outlier Recipe 17, indicating possible structural

inhomogeneity. These surface defects, along with the elevated void density, introduce uncertainty

regarding the film’s practical applicability in the on-chip spectrometers.

In contrast, Recipe 20 only partially fulfilled its optimization goal. Although it achieved a relatively

high hydrogen content (16.3 at.%), it did not outperform several other recipes and achieved a lower

GRG (0.640). Nevertheless, the film showed promising indicators of high density, such as the highest

optical refractive index (3.42) and a low void-volume fraction (7.6%). However, its high compressive

stress (-745 MPa) raises mechanical stability concerns.

Given these limitations, the practical application of both optimal recipes remains uncertain. As a more

robust alternative, Recipe 9 emerged as a safer candidate for both applications. It combines a relatively

low tensile stress (+125 MPa) with the lowest void-volume fraction in the dataset and performs well

across all void-density-related properties. With no visible surface inhomogeneities and lower than

average hydrogen content (11.97 at.%), it provides a balanced trade-off between all material properties.

Recipe 9 is thus the most viable option for integration in both filterbank and parallel-plate capacitor

applications when the practical limitations are to be avoided.

Evaluation of research goal
The research goal—to optimize the dielectric material properties of a-Si:H films by tuning ICP-CVD

process parameters—was largely achieved. The work established quantitative relationships between

process variables and material characteristics and demonstrated targeted material optimization. The

successful identification and validation of Recipe 19 marks a significant achievement, offering a recipe

which is expected to contain low dielectric losses in the mm-submm range.

However, Recipe 19 showed surface irregularities and an elevated void fraction, while Recipe 20 exhibited

high compressive stress, potentially limiting their suitability for integration into devices. As a more

robust alternative, Recipe 9 emerged as the most practically viable option, combining low void content,

below-average hydrogen incorporation, and favorable residual stress. When compared to the films

characterized by Bruno Buĳtendorp [8], Recipe 9 is expected to exhibit lower dielectric losses in the

mm–submm wavelength range (350 GHz) than previously reported (tan𝛿 = 2.1 × 10
−4

). For applications

in the microwave regime (1–10 GHz), however, the expected performance remains uncertain.

Nonetheless, the study also revealed certain limitations. Some models exhibited high residual errors,

suggesting the presence of unmodeled parameter interactions or significant noise contributions.

Additionally, while the characterization was performed at room temperature the dielectric loss tangent

and TLS density must ultimately be measured under cryogenic conditions to confirm the performance

in the low-temperature detector applications.

Despite these limitations, the experimental and analytical framework developed in this work offers a

suitable approach to thin-film process optimization. It not only enabled targeted tuning of material

properties but also provided insight into practical trade-offs between dielectric performance and

mechanical reliability.
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Recommendations for future work

While this thesis has addressed key aspects of the relationship between deposition parameters and

material properties of a-Si:H, several directions remain open for further investigation, particularly with

respect to the performance of these films in their intended applications.

The most logical next step is to characterize the dielectric loss of the optimized films, which falls

outside the scope of this project. It is recommended to measure the dielectric losses in both the

millimeter-submillimeter (mm–submm) regime and the low-power microwave regime, focusing on

the two optimal recipes identified in Section 5.4.3. These measurements will verify if the films indeed

exhibit low losses in the relevant frequency bands. At the same time, they can provide experimental

support for the hypothesized correlations between material properties and dielectric performance. A

follow-up master thesis project has been proposed, in which these loss measurements will be performed.

To further interpret the loss data, the measured mm–submm transmission can be fitted using the

Maxwell–Helmholtz–Drude (MHD) dispersion model, in combination with the FTIR spectra presented

in this thesis. This would construct a dispersion curve, which makes it possible to investigate whether

the crossover in the loss origin—suggested by Buĳtendorp [5] to occur between the microwave and

mm–submm range—is also present in these films.

If the dielectric loss of the current optimal recipes turns out to be too high for integration into the

on-chip spectrometer, several options exist to explore alternative recipes. One approach is to adjust

the weighting of material properties within the Grey Relational Grade Analysis (GRA). For example, if

the two-level systems responsible for dielectric loss are predominantly linked to hydrogen content, the

GRA could be redefined to focus solely on maximizing hydrogen content. This would directly target the

material characteristic most strongly associated with dielectric loss, potentially leading to a recipe better

suited for integration without requiring additional fabrication runs.

Another option is to repeat the orthogonal array presented in this work. Repeating the same Taguchi

design would enable separation of variation due to process noise from effects caused by deposition

parameter changes, improving the reliability of the estimated trends. By reducing the influence of

random variation, the accuracy of the model could be increased, potentially altering the observed

trends and, in turn, shifting the predicted optimal recipe. However, this approach would be relatively

inefficient given the time and resources required, and the improvement in results may be limited.

Alternatively, the parameter space can be explored more broadly by running a new Taguchi array with

different factor levels. This would allow evaluation of recipes further from the original design space.

Insights from the regression-based contour plots generated in this work can also be used to manually

select new parameter combinations that are predicted to perform well.

More targeted optimization is also possible by varying a single deposition parameter at a time. From the

ANOVA analysis, it was found that some parameters—such as table temperature and ICP power—have

dominant influence on certain material properties. Adjusting only these dominant parameters across
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several new recipes may allow fine-tuning of specific properties without re-running a full design of

experiments.

Finally, more advanced experimental designs could be considered. For instance, the Response Surface

Methodology (RSM) could be used in future work to reduce the number of required experiments. This

is especially relevant as some parameters, such as the gas ratio, showed only minor influence on most

material properties in the ANOVA analysis. Reducing the dimensionality of the optimization problem

may improve the efficiency of the search for optimal films.

Aside from recipe optimization, further attention could be given to the characterization process itself.

For example, the baseline deviation observed in the FTIR spectra remains unexplained and could

influence the accuracy of the TMM fitting. Understanding and correcting this deviation would increase

confidence in the extracted film thickness and thereby in the derived values for the hydrogen content

and microstructure parameter.

In summary, the optimization performed in this thesis forms a strong foundation, but additional

experimental work—ranging from dielectric loss measurements to refined process tuning—will be

required to fully qualify these films for use in ultra-low-loss on-chip spectrometers.
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A
Overview general results

This appendix contains the results of the non-uniformity measurements, including front-side thickness

variation and radial curvature. It also includes the complex refractive index curves obtained from

spectroscopic ellipsometry, and the transmission spectra measured by FTIR. Finally, the Kramers-Kronig

consistent 𝑘(𝜔) and 𝑛(𝜔) curves obtained with the FTIR are presented. These results provide additional

insight into the uniformity and optical properties of the deposited a-Si:H layers.

A.1. Deposition non-uniformity
From the front-side view shown in Figure A.1, the thickness non-uniformity is observed to be radially

symmetric, with the thickness decreasing from the center toward the edge of the wafer. This same trend

is visible in the radial thickness curves of all 18 recipes, shown in Figure A.2, where each curve exhibits

a downward slope from the center to the edge.

Figure A.1: Radially averaged, normalized thickness maps of the wafers with the lowest (left, recipe 4) and highest (right, recipe

2) non-uniformity among all tested recipes. Black dots indicate ellipsometry measurement locations.
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Figure A.2: Radial non-uniformity of film thickness for 18 deposition recipes, normalized to the radial average. Also included are

the two additional recipes conducted after the Grey Relational Analysis: Recipe 19 (optimized for minimum hydrogen content)

and Recipe 20 (optimized for maximum hydrogen content). Each curve shows the thickness as a function of distance from the

center, revealing a consistent decrease in thickness toward the wafer edge across all recipes.

Below are the front-side view of the non-uniformity plots of the recipes conducted after the Grey

Relational Analysis. The thickness non-uniformity is observed to be radially symmetric, with the

thickness decreasing from the center toward the edge of the wafer. This same trend is visible for all

recipes performed earlier.

Figure A.3: Radially averaged, normalized thickness maps of the wafers with minimizing the hydrogen content (left) and

maximizing the hydrogen content (right) non-uniformity. Black dots indicate ellipsometry measurement locations.
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A.2. Complex refractive index from ellipsometry
The figure below shows the refractive index 𝑛 (solid lines) and extinction coefficient 𝑘 (dashed lines) as

a function of wavelength for all 18 a-Si:H deposition recipes, and the two recipes conducted after the

Grey Relational analysis. These values were extracted by fitting a Tauc-Lorentz dispersion model to

the ellipsometry measurements. This plot illustrates the variation in optical constants between recipes

and shows recipe 17 and the recipe designed to minimize the hydrogen content, exhibits a significantly

different complex refractive index.

Figure A.4: Refractive index 𝑛 (solid lines) and extinction coefficient 𝑘 (dashed lines) as a function of wavelength for 18 different

a-Si:H deposition recipes, measured using spectroscopic ellipsometry. Additionally, the two recipes conducted after the Grey

Relational Analysis are shown.

A.3. Transmission spectra from FTIR
The figure below shows the FTIR transmission spectra of all 18 samples (film deposited on substrate) in

the Taguchi matrix, including the reference spectrum of the bare double-side polished c-Si substrate.

The absorption dips relevant for the analysis are observed near 640 cm
-1

and in the region of 2000–2200

cm
-1

. Interference fringes are visible across the spectrum and result from multiple internal reflections

within the a-Si:H layer. These fringes carry information about the film thickness. The Transfer Matrix

Method (TMM) was applied to these spectra to simultaneously extract the complex refractive index and

thickness of each film.
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Figure A.5: FTIR transmission spectra of all 18 a-Si:H samples, measured on double-side polished c-Si substrates. The black curve

shows the transmission of the bare substrate. Spectral features around 640 cm
-1

and 2000–2200 cm
-1

correspond to characteristic

absorption bands of a-Si:H.

A.4. Kramers-Kronig consistent 𝑘(𝜔) and 𝑛(𝜔) curves
Below the Kramers-Kronig consistent 𝑘(𝜔) and 𝑛(𝜔) curves of both recipes conducted after the Grey

Relational Analysis are shown.
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(a)

(b)

Figure A.6: Kramers-Kronig consistent 𝑘(𝜔) and 𝑛(𝜔) curves of both recipes conducted after the Grey Relational Grade for two

design targets: (a) minimizing hydrogen content and (b) maximizing hydrogen content.



B
Contour plots from regression model

This appendix presents the contour plots generated from the regression models described in Section 5.2.

For each material property, the predicted values are visualized in the parameter space surrounding

the optimal recipe identified in Section 5.3, offering insight beyond the discrete levels defined in the

Taguchi design. Similarly, contour plots are shown for the two optimal recipes identified through Grey

Relational Analysis in Section 5.4, which correspond to the two application targets: the parallel-plate

capacitors (PPCs) used in KIDs, and the microstrip lines constructing the filterbank.

These plots should be interpreted with caution. The regression models include only the main

effects—linear and quadratic terms—without interaction terms. As a result, the predicted surfaces

shown in the contour plots follow simplified parabolic shapes. While they provide qualitative insight

into the parameter space, the actual response surfaces may exhibit additional complexity not captured

by the model.
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Figure B.1: Contour plots of the deposition rate, with brighter colors indicating higher deposition rates. Deposition parameter

levels increase from left to right and from bottom to top.

Figure B.2: Contour plots of the SSP residual stress, with brighter colors indicating more positive stresses. Deposition parameter

levels increase from left to right and from bottom to top.
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Figure B.3: Contour plots of the DSP residual stress, with brighter colors indicating more positive stresses. Deposition parameter

levels increase from left to right and from bottom to top.

Figure B.4: Contour plots of the thickness non-uniformity, with brighter colors indicating higher non-uniformities. Deposition

parameter levels increase from left to right and from bottom to top.
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Figure B.5: Contour plots of the optical refractive index, with brighter colors indicating higher indices. Deposition parameter

levels increase from left to right and from bottom to top.

Figure B.6: Contour plots of the infrared refractive index, with brighter colors indicating higher indices. Deposition parameter

levels increase from left to right and from bottom to top.
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Figure B.7: Contour plots of band gap, with brighter colors indicating higher band gaps. Deposition parameter levels increase

from left to right and from bottom to top.

Figure B.8: Contour plots of the void-volume fraction, with brighter colors indicating higher void-volume fraction. Deposition

parameter levels increase from left to right and from bottom to top.
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Figure B.9: Contour plots of the hydrogen content, with brighter colors indicating higher hydrogen contents. Deposition

parameter levels increase from left to right and from bottom to top.

Figure B.10: Contour plots of the microstructure parameter, with brighter colors indicating higher microstructure parameters.

Deposition parameter levels increase from left to right and from bottom to top.
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Figure B.11: Contour plots of the Grey Relational Grade of the recipe that minimizes the hydrogen content, with greener colors

indicating higher Grey Relation Grades. Deposition parameter levels increase from left to right and from bottom to top.

Figure B.12: Contour plots of the Grey Relational Grade of the recipe that maximizes the hydrogen content, with greener colors

indicating higher Grey Relation Grades. Deposition parameter levels increase from left to right and from bottom to top.



C
Photo’s of used tools in cleanroom

Figure C.1: Picture of the Oxford Instuments PlasmaPro 100 ICPCVD, the ICP-CVD tool used for the thin film depositions. This

tool is located in the Else Kooi Laboratory. Next to the computer, which runs the operation software, is the loadlock. When a

wafer is loaded into this loadlock, the pressure is pumped down to closely match the high vacuum of the deposition chamber

before it is transferred inside. It includes two gas rings, as can be seen in Figure C.2.
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Figure C.2: Chamber of the Oxford Instruments PlasmaPro 100 ICPCVD system during maintenance, with the top section lifted

(see Figure C.3) to reveal the bottom half. At the center, the wafer lift is visible, which supports the wafer during processing. Two

gas inlet rings are mounted along the chamber wall, through one of which argon and SiH4 are introduced into the chamber.

Figure C.3: Top view of the Oxford Instruments PlasmaPro 100 ICPCVD chamber during maintenance. The gas inlet, used for

introducing argon in this application, is clearly visible. The ICP coil, responsible for ionizing the gases to generate plasma, is

located behind the chamber wall and not visible in this image.
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Figure C.4: Picture of the inside of the FLX-2320-S stressmeter system, located in the Else Kooi Laboratory. The wafer is placed at

the center of the platform, resting on three pins to minimize contact. The orientation of the measurement is determined by the

alignment ring surrounding the wafer. A laser scans along a straight line through the center of the wafer to measure its bow. By

comparing the wafer bow before and after deposition, and using the film thickness, the residual stress is calculated.

Figure C.5: Picture of the Woollam Spectroscopic Ellipsometer system, located in the Else Kooi Laboratory. In the center of the

image, the wafer stage is visible. The light source and detector are mounted on the left and right arms, respectively. Prior to

measurement, the wafer stage must be manually aligned to ensure that the reflected light is correctly detected.
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Figure C.6: Picture of the Thermo Fischer Nicolet Fourier Transform Infrared Spectroscopy (FTIR), located in the Else Kooi

Laboratory. In the center of the image, the window used to load the sample is visible. The machine has two slots: one for the

sample, and the other for the reference substrate or left empty. After opening the window, it is recommended to purge the

chamber with nitrogen for at least 15 minutes before starting a measurement. This step helps remove water vapor and ensures a

stable background signal.
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Figure C.7: Picture of the HF Marangoni Bath.The bluish color of the wafers is due to the thermal oxide layer present on the

Single Side Polished wafers. The wafers are lowered into the 0.55% HF solution for 4 minutes. Afterward, the bath is rinsed, and

the wafers are raised out of the solution through an IPA layer on top of the bath, which passivates the wafers for 72 hours. The

procedure is explained in more detail in the flowchart in Appendix F.
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Figure C.8: Picture of the stack-furnace used to apply wet oxidation to the Single Side Polished wafers. The thermal oxide

layer had an average thickness of 123 nm, measured using ellipsometry. The corresponding recipe is shown in the flowchart in

Appendix F.



D
Scanning Electron Microscope photo’s

of cross section wafers

This appendix presents scanning electron microscope (SEM) images of the cross sections of selected

films. To prepare the samples, the wafers were cleaved into 1 × 1 cm squares, which I measured edge-on

together with my daily supervisor Leon. These measurements provided an independent estimate of the

film thickness, used to verify the values obtained from fitting the FTIR transmission spectra.

Figure D.1 shows the SEM image of Recipe 3 deposited on a single-side polished wafer. The thermal

oxide layer is clearly visible as a horizontal band and served as a convenient reference, since its thickness

(116 nm) had already been measured by ellipsometry. At the upper part of the a-Si:H film, vertical

structures can be seen. Similar features appear in the SEM image of Recipe 3 deposited on a double-side

polished wafer (Figure D.2), suggesting that the microstructure is consistent across both substrate

types. However, much of Figure D.1 also shows horizontal streaks, which are likely artifacts introduced

during cleaving due to imperfections in the cross-sectional cut. An additional image of Recipe 5 on a

double-side polished wafer is shown in Figure D.3. Here, finer vertical features are visible, indicating a

distinct microstructure compared to Recipe 3.

Figure D.1: Cross-sectional SEM image of the film deposited using Recipe 3 on a single-side polished (SSP) wafer. The film

thickness is measured at 926 nm, and the underlying thermal oxide layer is clearly visible with a thickness of 116 nm, as verified

by ellipsometry. Horizontal features in the lower part of the a-Si:H film are attributed to cleaving artifacts, while vertical features

in the upper region may indicate aspects of the film’s microstructure.
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Figure D.2: Cross-sectional SEM image of the a-Si:H film deposited using Recipe 3 on a double-side polished (DSP) wafer, with a

measured thickness of 425 nm. The film exhibits pronounced vertical columnar features, consistent with the microstructure

observed in the corresponding single-side polished sample. These features may reflect the intrinsic growth behavior of this recipe.

Figure D.3: Cross-sectional SEM image of the a-Si:H film deposited using Recipe 5 on a double-side polished wafer. The measured

film thickness is 568 nm. The image reveals fine vertical features throughout the film. No visible cleaving artifacts are present,

indicating a clean cross-section.



E
Surface appearance recipe 17

This appendix presents the surface appearance of the film deposited with wafer 17. Both a phone

photograph and a microscope image of the wafer surface are included. The phone image (Figure E.1)

reveals an inhomogeneous surface, described here as cloudiness. The microscope image (Figure E.2)

shows a high density of small surface features. A similar, though less pronounced, surface texture was

observed in the recipe identified through Grey Relational Analysis for minimizing hydrogen content.

Figure E.1: Photo after deposition of recipe 17, showing cloudiness across the surface.
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Figure E.2: Microscopic image of after deposition of recipe 17, taken at 10× magnification. The wafer exhibits a high density of

fine surface features, indicative of significant surface roughness. The laser mark is also clearly visible.



F
Flowchart used at Else Kooi

Laboratory

107



 
 

 

Jurre Heeringa  
Optimization a-Si:H 

Oxford PlasmaPro 100 ICPCVD 

FLOWCHART 

VERSION 1  

 

 

 

BATCH INFORMATION 

NAME OF OWNER : Jurre Heeringa MASK SET : N.A. 

NAME OF MENTOR : Leon Olde Scholtenhuis MASK BOX : N.A. 

RUN NUMBER : P2025-03 DIE SIZE : N.A. 

WAFER AMOUNT : 22 + 20 = 42 START DATE : 29/01/2025 

SUBJECT TO PCC : No PCC APPROVED : N.A. 

 

 

 

 

 

 

 

 

 

 

DELFT UNIVERSITY OF TECHNOLOGY 

ELSE KOOI LABORATORY 

Adress : Feldmannweg 17, 2628 CT Delft, The Netherlands 

P.O. Box : 5053, 2600 GB Delft, The Netherlands 

Phone : +31 - (0)15 - 2783868 

Fax : +31 - (0)15 - 2622163 

Website : www.tudelft.nl/ewi/onderzoek/faciliteiten/else-kooi-lab 

 

© Copyright EKL - Delft University of Technology 



2 

 

 

Type: n / phosphorus 

Orientation: <100> 

 

Resistivity: 1-20 Ωcm 

 

Thickness: 525 ± 25 µm 

Diameter: 100 mm 

STARTING MATERIAL 
22 SINGLE SIDE polished LOW RESISTIVITY wafers, 

with the following specifications: 

 

 

 
20 DOUBLE SIDE polished HIGH RESISTIVITY wafers, 

with the following specifications: 

 

Type: p / boron 

Orientation: <100> 

 

Resistivity: >1000 Ωcm 

 

Thickness: 500 ± 15 µm 

Diameter: 100 mm 
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SSP wafers (all 22) 

SSP wafers (all 22) 

SSP wafers (all 22) 

SSP wafers (all 22) 

SSP wafers (all 22) 

1. MEASUREMENT: Native oxide thickness + model substrate Front side 

 

Use the Woollam Ellipsometer system for layer thickness measurements of the native oxide on the 

wafers. Try to fit a Woollam model to the optical model of these wafers. 

Follow the operating instructions from the manual when using this equipment. 

 

2. MEASUREMENT: Stress initial  Front side 

 

Use the Flexus 2320-S to measure the wafer-bow of the wafers before the thermal oxidation step.  

For any stress measurement, the thickness of the layer must be measured. If that is not applicable, we can still measure the wafer bow. 

 

MY DEFINITION OF ANGLE: 0 IS 6 OCLOCK (CLOSEST TO DOOR), EASIEST TO LOAD 

50 measurements is more than sufficient 

Store the measurement if the following format: Recipe_nr_prior_thermal_oxidation_ID 

Make sure the ID corresponds to the right wafer location in the wafer box. 

Do two measurements, orientation = 0 and 90 

 

3. CLEANING: HNO3 99% and 69.5% Both sides 

 

Clean 10 minutes in fuming nitric acid at ambient temperature. This will dissolve organic materials. 

Use wet bench "HNO3 99% (Si)" and the carrier with the white dot. 

Rinse Rinse in the Quick Dump Rinser with the standard program until the resistivity is 5 M. 

Clean 10 minutes in concentrated nitric acid at 110 °C. This will dissolve metal particles. 

Use wet bench "HNO3 69,5% 110C (Si)" and the carrier with the white dot. 

 

Rinse Rinse in the Quick Dump Rinser with the standard program until the resistivity is 5 M. 

 

Dry Use the "Avenger Ultra-Pure 6" rinser/dryer with the standard program, and the white carrier 

with a red dot. 
 

 

 

4. DRY OR WET OXIDATION: 110 nm thermal SiO2 on   Both sides 

 

Need to choose which process to run, depends on time schedule cleanroom-employee. 

THERE IS A NEW FURNACE STACK, MAX-TEMP IS 1050, HAVE RECALCULATED THE DURATIONS!  

 

Furnace tube: D1 Program name: DRY1100/WET1100  Total time: 203 min + oxidation time 

 

 

 
Oxidation time: 

Use an oxide growth calculator to calculate the oxidation time that is needed to reach the desired thickness. 

Check out cleanroom.byu.edu/OxideTimeCalc or www.lelandstanfordjunior.com/thermaloxide.html. 

Then input the calculated time at the variable command line of the WETOX recipe. 

 

 

5. MEASUREMENT: Ellipsometer Thermal oxide thickness + model Front side 

 

PROCESS TEMPERATURE 
(in °C) 

GASSES & FLOWS 
(in liter/min) 

TIME 
(in minutes) 

REMARKS 

boat in 600 nitrogen: 8.0 5 
 

stabilize 600 nitrogen: 6.0 10 
 

heat up +10 C/min nitrogen: 6.0 50 
 

stabilize 1050 nitrogen: 6.0 10 
 

purge 1050 
nitrogen: 2.0 
oxygen: 4.0 

1 
Wet oxidation only 

oxidation 1050 
hydrogen: 4.25 
oxygen: 2.50 

1 
Wet oxidation only 

oxidation 1050 
Wet: hydrogen: 8.50 
Wet: oxygen: 5.00 
Dry: oxygen 6 

Dry: 

1:59:29 

Wet: 
0:6:8 

DURATION 

FOR TEMP = 

1050  

purge 1050 oxygen: 9.0 1 
Wet oxidation only 

cool down -10 C/min nitrogen: 6.0 120 
wait for 

operator 

boat out 600 nitrogen: 6.0 5 
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SSP wafers 1-9 

SSP wafers (all 22) 

SSP wafers 19 – 22 

SSP wafers 19 – 22 

SSP wafers 19 – 22 

Use the Woollam Ellipsometer system for layer thickness measurements of the thermal oxide on the 

wafers. Try to fit a Woollam model to the optical model of these wafers, as this is important to properly 

characterize the a-Si:H onto this substrate. Follow the operating instructions from the manual when 

using this equipment. 

 

6. MEASUREMENT: Stress after Thermal oxidation    Front side 

 

Use the Flexus 2320-S to measure the wafer-bow of the wafers after the Thermal oxidation step. 

For any stress measurement, the thickness of the layer must be measured. If that is not applicable, we can still measure the wafer bow. 

 

MY DEFINITION OF ANGLE: 0 IS 6 OCLOCK (CLOSEST TO DOOR), EASIEST TO LOAD 

50 measurements is more than sufficient 

Store the measurement if the following format: Recipe_nr_after_thermal_oxidation_ID 

Make sure the ID corresponds to the right wafer location in the wafer box. 

Do two measurements, orientation = 0 and 90 

 

7. ICP-PECVD: ARGON MILLING TEST Front side 

 

Use the Oxford PlasmaPro 100 ICPCVD reactor. 

 

I may adjust the recipe-parameters to finetune the recipe. 

 

 

 

8. MEASUREMENT: Stress after Argon Milling test    Front side 

 

Use the Flexus 2320-S to measure the wafer-bow of the wafers after the Argon milling test. 

For any stress measurement, the thickness of the layer must be measured. If that is not applicable, we can still measure the wafer bow. 

 

MY DEFINITION OF ANGLE: 0 IS 6 OCLOCK (CLOSEST TO DOOR), EASIEST TO LOAD 

50 measurements is more than sufficient 

Store the measurement if the following format: Recipe_nr_after_ArgonMilling_ID 

Make sure the ID corresponds to the right wafer location in the wafer box. 

Do two measurements, orientation = 0 and 90 

 

9. MEASUREMENT: Ellipsometer Thermal oxide thickness + model Front side 

 

Use the Woollam Ellipsometer system for layer thickness measurements of the thermal oxide on the 

wafers. Try to fit a Woollam model to the optical model of these wafers. 

Follow the operating instructions from the manual when using this equipment. 

 

Calculate the etch rate of the Argon milling test. 

Use this rate to compute the duration of the Argon milling step prior to deposition. 

 

Francesco questioned if the surface of the wafer will be flat enough after the Ar milling to have a good 

fitting of the ellipsometer thickness. When the fitting fails, consider adding an extra ‘roughness-

parameter’.  

 

10. WET ETCHING: ‘Native oxide removal’ with Marangoni drying    Both sides 

 

Dip the wafers (with thermal oxide layer) in the HF Marangoni Si Bath. The goal of this Marangoni step is to ensure consistency with the DSP 

wafers for which the native oxide layer will be removed by this same procedure.  

Follow the standard procedure as indicated on the on the operation manual.  

The etch rate of thermal oxide is 2.2-3.3 nm/min, as seen in a catalogue located in the cleanroom. 

 

Etch Read the Marangoni manual and follow all the instructions. 

Argon milling ICPECVD 

 

Recipe Jurre 300C Argon milling 

Etch duration:  5 – 10 min  

Argon flow: 30 sccm 

SiH4 flow: N.A. 

Chamber Pressure: 15 sccm 

Chamber Heater: 60C 

Ring Heater: 60C 

Table Temperature: 300C 

ICP RF: 800W 

Table RF: 50W 
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SSP wafers 1 – 9 

SSP wafers 1 – 9 

SSP wafers 1 – 18 

SSP wafers 1 – 18 

Use the Marangoni wet etch & drying system for Si wafers. 

After rinsing the bath with DI water, fill it up with a "0.55% HF" solution (at room temperature), 

and lift up the wafer carrier. 

Time Place the wafers in the carrier slots and lower them into the solution for 4 minutes. 

Rinse Open the DI water valve to rinse the wafers for 5 minutes. 

Dry One minute before lifting up the wafers, open the IPA valve. 

Lift up the wafers and remove the dried wafers from the carrier slots. 

Close all valves and lower the empty wafer carrier into the DI water. 

Note: Deposition must be performed within 72 hours.  

 

Calculate what the expected thickness of the remaining oxide layer is. 

 

11. MEASUREMENT: Thermal oxide thickness + model substrate Front side 

 

Use the Woollam Ellipsometer system for layer thickness measurements of the thermal oxide on the 

wafers. Try to fit a Woollam model to the optical model of these wafers, as this is important to properly 

characterize the a-Si:H onto this substrate. Follow the operating instructions from the manual when 

using this equipment. 

 

12. MEASUREMENT: Stress after Marangoni Front side 

 

Use the Flexus 2320-S to measure the wafer-bow of the substrate before the deposition of the a-Si:H layer.  

For any stress measurement, the thickness of the layer must be measured. If that is not applicable, we can still measure the wafer bow. 

 

MY DEFINITION OF ANGLE: 0 IS 6 OCLOCK (CLOSEST TO DOOR), EASIEST TO LOAD 

50 measurements is more than sufficient 

Store the measurement if the following format: Recipe_nr_after_Marangoni_ID 

Make sure the ID corresponds to the right wafer location in the wafer box. 

Do two measurements, orientation = 0 and 90 

 

13. ICP-PECVD DEPOSITION: a-Si:H Front side 

 

Check if the Marangoni step was less than 72 hours ago. Otherwise this step has to be repeated before this deposition step. 

THIS MEANS THE THERMAL OXIDE THICKNESS CHANGES, MEASURE THE THICKNESS AGAIN! 

 

Use the Oxford PlasmaPro 100 ICPCVD reactor. 

 

 

 

 

After the 

deposition recipes, run the ‘Plasma Short Clean’! 
 

14. MEASUREMENT: Stress after the deposition Front side 

 

Use the Flexus 2320-S to measure the wafer-bow of the substrate + a-Si:H layer after the deposition.  

For any stress measurement, the thickness of the layer must be measured. If that is not applicable, we can still measure the wafer bow. 

 

MY DEFINITION OF ANGLE: 0 IS 6 OCLOCK (CLOSEST TO DOOR), EASIEST TO LOAD 

50 measurements is more than sufficient 

Store the measurement if the following format: Recipe_nr_after_Deposition_ID 

Make sure the ID corresponds to the right wafer location in the wafer box. 

Do two measurements, orientation = 0 and 90 

a-Si:H deposition ICPECVD Target Thickness = 400 nm  

1.  Argon milling See recipe table, if extra argon milling phase is required  

2.  

a-Si:H 

Deposition 

Recipe:  See recipe Table 

Deposition time:  See recipe Table 

Argon flow: See recipe Table 

SiH4 flow: See recipe Table 

Chamber Pressure: See recipe Table 

Chamber Heater: See recipe Table 

Ring Heater: See recipe Table 

Table Temperature: See recipe Table 

ICP RF: See recipe Table 

Table RF: See recipe Table 
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DSP wafers (all 20) 

DSP wafers (all 20) 

DSP wafers 1 – 18 

SSP wafers 1 – 18 

DSP wafers 1 - 9  

 

15. MEASUREMENT: Thickness + material properties of a-Si:H  Front side 

 

Use the Woollam Ellipsometer system for layer thickness measurements of the a-Si:H layer on the 

wafers. Try to fit a model to the optical model of these wafers. With this model we can deduce the 

material properties of the a-Si:H layer. 

Export the raw measurements via email/surfdrive, so I can analyze the data via the remote desktops of 

the Kavli cleanroom at home.  

When modeling, first make a copy of the raw data. Therefore the data will not be lost! 

----------------------------------------------------------------------------------------------------------------------------------------------- 
Next: Process the DSP wafers   Lasermark on FRONTside  
 

16. MEASUREMENT: Native oxide thickness + model substrate Front side 

 

Use the Woollam Ellipsometer system for layer thickness measurements of the native oxide on the DSP 

wafers. Try to fit a Woollam model to the optical model of these wafers. 

Follow the operating instructions from the manual when using this equipment. 

 

17. MEASUREMENT: Stress initial DSP Front side 

 

Use the Flexus 2320-S to measure the wafer-bow of the DSP wafers before the Marangoni bath. 

For any stress measurement, the thickness of the layer must be measured. If that is not applicable, we 

can still measure the wafer bow. 

 

MY DEFINITION OF ANGLE: 0 IS 6 OCLOCK (CLOSEST TO DOOR), EASIEST TO LOAD 

50 measurements is more than sufficient 

Store the measurement if the following format: DSP_Recipe_nr_initial_ID 

Make sure the ID corresponds to the right wafer location in the wafer box. 

Do two measurements, orientation = 0 and 90 

 

18. WET ETCHING: Native oxide removal with Marangoni drying    Both sides 

 

Dip the wafers in the HF Marangoni Si Bath. The goal of this Marangoni step is to remove the native oxide layer.  

Follow the standard procedure as indicated on the on the operation manual. 

 

Etch Read the Marangoni manual and follow all the instructions. 

Use the Marangoni wet etch & drying system for Si wafers. 

After rinsing the bath with DI water, fill it up with a "0.55% HF" solution (at room temperature), 

and lift up the wafer carrier. 

Time Place the wafers in the carrier slots and lower them into the solution for 4 minutes. 

Rinse Open the DI water valve to rinse the wafers for 5 minutes. 

Dry One minute before lifting up the wafers, open the IPA valve. 

Lift up the wafers and remove the dried wafers from the carrier slots. 

Close all valves and lower the empty wafer carrier into the DI water. 

Note: Deposition must be performed within 72 hours.  

  

19. ICP-PECVD DEPOSITION: a-Si:H Front side 

 

Check if the Marangoni step was less than 72 hours ago. Otherwise this step has to be repeated before this deposition step. 

Use the Oxford PlasmaPro 100 ICPCVD reactor. 

After the deposition recipes, run the ‘Plasma Short Clean’ 

 
a-Si:H deposition ICPECVD Target Thickness = 400 nm  

3.  Argon milling See recipe table, if extra argon milling phase is required  

4.  

a-Si:H 

Deposition 

Recipe:  See recipe Table 

Deposition time:  See recipe Table 

Argon flow: See recipe Table 

SiH4 flow: See recipe Table 

Chamber Pressure: See recipe Table 

Chamber Heater: See recipe Table 

Ring Heater: See recipe Table 

Table Temperature: See recipe Table 

ICP RF: See recipe Table 

Table RF: See recipe Table 
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SSP wafers 1 – 18 

SSP wafers 1 – 18 

SSP wafers 1 – 18 + 19 (ref. sample) 

SSP wafers 1 – 18 + 19 (ref. sample) 

20. MEASUREMENT: Stress after the deposition Front side 

 

Use the Flexus 2320-S to measure the wafer-bow of the substrate + a-Si:H layer after the deposition.  

For any stress measurement, the thickness of the layer must be measured. If that is not applicable, we can still measure the wafer bow. 

 

MY DEFINITION OF ANGLE: 0 IS 6 OCLOCK (CLOSEST TO DOOR), EASIEST TO LOAD 

50 measurements is more than sufficient 

Store the measurement if the following format: DSP_Recipe_nr_after_Deposition_ID 

Make sure the ID corresponds to the right wafer location in the wafer box. 

Do two measurements, orientation = 0 and 90 

 

21. MEASUREMENT: Thickness + material properties of a-Si:H  Front side 

 

Use the Woollam Ellipsometer system for layer thickness measurements of the a-Si:H layer on the 

wafers. Try to fit a model to the optical model of these wafers. With this model we can deduce the 

material properties of the a-Si:H layer. 

 

However, characterizing a-Si:H on top of a DSP c-Si wafer, WITH removal of the native oxide 

layer will be challenging. Keep that in mind for the interpretation of the results! 

 

Export the raw measurements via email/surfdrive, so I can analyze the data via the remote desktops of 

the Kavli cleanroom at home.  

When modeling, first make a copy of the raw data. Therefore the data will not be lost! 

 

 
22. CLEAVING/DICING: Divide each wafer in quarters  Front side 

 

ONLY DO THIS STEP IF THE DATA ANAYSIS OF THE ELLIPSOMETER IS SUCCESFUL! 

 

This step is necessary to make measurements with the FTIR, located at the CR10000. Whole wafers do not fit in the sample holder of the 

machine.  

 

Perform this step only at the allocated locations in the cleanroom. 

Store the quarter wafers in transparent boxes. This will require temporary use of 3 extra transparent boxes from EKL. 

 

23. MEASUREMENT: FTIR                 Front side 

 

Use the FTIR (Fourier Transform Infrared Spectroscopy), to measure the transmission through the substrate + a-Si:H layer. 

 

Use wafer 19 as a reference sample! 

 

FLUSH THE CHAMBER WITH NITROGEN, WAIT AT LEAST 15 MINUTES BEFORE START EXPERIMENT 

 

Export the data onto a USB-stick to do the data analysis with the python code written by Bruno Buijtendorp. 

For the full step-by-step procedure, check the Obsidian file named “Cleanroom experimental plan”. 
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