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Subjective Assessment of Individualized Gait Patterns
on Enjoyment, Comfort, and Naturalness in Robot-Assisted

Walking
Severin David Woernle

Cognitive Robotics Dept., Faculty of 3mE, Delft University of Technology

Abstract—Lower-limb exoskeletons often use trajectory-
tracking control to define the device’s motion and assistance
level. One challenge lies in ensuring a smooth and comfortable
interaction between the user and the robotic device by defining
a reference trajectory. While recent research has focused on
generating individualized gait patterns based on user-specific
body characteristics and walking speed, limited research has
explored the subjective perception of these patterns and their
impact on user experience and rehabilitation outcomes.

This study investigates user perceptions of individualized
versus standard and random gait patterns, focusing on enjoy-
ment, comfort, and naturalness. A predictive gait pattern model,
incorporating individual data and walking speed, was developed
and tested with human participants using a grounded robotic
lower limb device. Participants compared the three gait pattern
types and provided subjective feedback through a questionnaire.

Findings indicate no significant preference for any gait pattern
in terms of enjoyment, comfort, and naturalness, except for
physical strain where the predicted pattern caused significantly
more strain than the standard. The analysis also revealed that
longer engagement with the device led to increased comfort
and naturalness, suggesting an adaptation effect. A general
tendency towards preferring the standard pattern was noted,
though further research is necessary to determine whether a
larger sample size reveals significant differences. Additionally,
the perception of different gait patterns and their effect on the
rehabilitation outcome should be explored with stroke patients.

Index Terms—Robotic gait rehabilitation, Reference joint tra-
jectories, Gait generation, Human factor experiment, Comfort

I. INTRODUCTION

STROKE often leads to partial (paresis) or complete loss
(plegia) of motor function [1]. Rehabilitation aims to help

patients regain their motor function, with the primary focus
frequently being on restoring the ability to walk, depending
on the patient’s condition and impairment. While spontaneous
recovery can occur in post-stroke patients, rehabilitation ther-
apy is commonly essential for regaining lost motor function-
alities [2].

Lower-limb exoskeletons have emerged as valuable tools
in impaired gait rehabilitation [3]. They are attached to the
patient’s lower limbs to assist and simulate walking. These de-
vices facilitate task-specific training, enabling ample repetition
and intensive training, which are fundamental principles for
initiating neural plasticity changes [4]. Moreover, exoskeletons
enhance gait rehabilitation by minimizing the need for multiple
therapist involvement [5], reducing their physical strain [6],
[7], and providing consistent gait simulation, overcoming

variability in therapist experience and performance [6]. Ad-
ditionally, they allow for quantitative assessment of patient
performance by evaluating parameters such as walking speed,
range of motion, or amount of resisting forces [7], [8].
One drawback of exoskeletons is their complex mechanical
structure, limiting natural movement and potentially leading
to discomfort and increased energy expenditure [7].

A variety of robotic devices have been developed for gait
training, such as Lokomat [6], LOPES [9], G-EO-System [10],
ReWalk [11], AIDER [12], and TWIN exoskeleton [13]. One
challenge in these systems is ensuring a smooth and comfort-
able interaction between the user and the robotic device [14],
[15]. The most common control strategy employed in these
devices is trajectory-tracking control [16]. It involves the use
of reference trajectories to define the motion of the device or
the level of assistance. Other strategies include neuromuscular
control and compliant controllers [16]. Neuromuscular control
interprets the user’s intentions through biosignals, such as
electromyogram (EMG) readings, and adjusts the device’s
control accordingly. Compliant controllers, conversely, control
the device’s stiffness (impedance) or its responsiveness (ad-
mittance). When used in combination with trajectory-tracking
or neuromuscular control, compliant controllers enhance the
device’s movement flexibility. Particularly in the early phases
of rehabilitation training, the exoskeleton is often operated
in position control to provide strong support for severely
impaired subjects [17]. Thus, the design of these trajectories
can have an impact on the patient’s comfort and natural
movement [15].

Every person’s gait pattern is unique [18]. Gait patterns vary
due to individual-specific factors, such as age, gender, and
body measurements [19], [20]. Moreover, the influence of gait
speed on the shape of gait patterns is well-documented [21],
[22]. These findings suggest that individualized gait patterns
could be beneficial in robotic rehabilitation.

Recent research has focused on creating individualized gait
patterns for lower-limb exoskeletons by considering body
parameters and desired gait characteristics. Gait pattern gener-
ation methods can be categorized into mirroring, model-based,
and learning-based approaches. Mirroring methods replicate
the walking pattern from the unaffected to the affected leg but
are limited to hemiparetic and hemiplegic patients. Their ef-
fectiveness is questioned for stroke patients, as the unaffected
leg may no longer resemble a natural gait [23]. Model-based
methods create gait patterns using mathematical [24], [25] or
biomechanical models [26], [27], incorporating parameters like
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joint angles, muscle forces, and body dynamics. However, a
major drawback of these models is that they rely on assump-
tions about body dynamics and muscle activation that may not
fully capture the complexity of human gait. Learning-based
methods use machine learning to predict gait patterns from
data, without the need for complex kinematic and dynamic
human body models [28], [20], [12]. They are becoming
increasingly popular due to their versatility in handling a
wide range of body parameters and their proven effectiveness
in predicting individualized gait patterns at different walking
speeds [28], [12]. A drawback is that their success heavily
relies on the quantity and quality of the training data [29].

While numerous gait prediction methods have been devel-
oped, their accuracy has largely been evaluated using objective
quantitative metrics [28], [30], [31]. In contrast, assessments
incorporating participants’ subjective feedback are markedly
underrepresented. Notably, Wu et al. [19] observed that sub-
jects perceived individualized gait patterns as consistent with
their natural walking habits. However, the study lacked a thor-
ough exploration of the participants’ feedback nor did it pro-
vide a comparative analysis with other types of gait patterns,
such as standardized ones. There is insufficient evidence that
an individualized gait pattern is superior to a normalized one in
terms of rehabilitation outcomes [32]. Exploring participants’
subjective experiences, such as enjoyment, comfort, and the
naturalness of the gait, could provide deeper insights into how
different gait patterns affect rehabilitation.

These subjective factors are considered important for sev-
eral reasons, with their definitions relying on an individual’s
interpretation due to their subjective nature. Enjoyment of the
physical task can be an important motivator for individuals,
suggesting that a positive exercise experience may support
their ongoing commitment [33]. Furthermore, comfort is an
essential factor for user acceptance in human-robot interac-
tions [34]; conversely, discomfort can reduce the motivation
of patients to use a system [35]. Additionally, ensuring natural
movements is important as deviations from natural movements
can cause discomfort, thereby reducing patient motivation to
engage with such systems [35]. Research indicated that a
lack of motivation can hinder learning [36]. Another point
concerning the importance of natural movement relates to the
principle of task-specific training, which states that ”the best
way to learn an activity is to practice that activity” [37]. This
suggests that a natural execution of the activity might enhance
the rehabilitation of gait by making the training more specific
and, consequently, more effective.

The objective of this study is to investigate the perception
of walking with individualized gait patterns in comparison to
standard and randomly selected gait patterns. The standard
pattern reflects the average gait of a healthy population, while
the random pattern is chosen from the same group. This
comparison seeks to determine if tailoring gait patterns to
an individual’s body characteristics and walking speed is
perceived as favorable. The rationale for including a random
pattern as a point of comparison is based on previous studies
where a random pattern of a healthy person served as a
reference [38], [39].

For the experimental setup, a modified Lokomat® exoskele-

ton, adapted at ETH Zurich (Zurich, Switzerland) [40], was
employed. The modifications aimed to increase realistic walk-
ing simulation through improved control of the joint trajecto-
ries, particularly in hip abduction/adduction and lateral pelvis
movement. Besides that, this device supports the actuation of
hip and knee flexion/extension, common features in lower-limb
exoskeletons [11], [12], [13].

A key aspect of this study was to develop a new gait
prediction model. Previous models often did not predict gait
patterns across various speeds [41], [20] or fully account for
all the joint movements possible by the modified Lokomat®
– particularly, the lateral pelvis movement [28], [12], [42]. To
address these limitations, a new gait prediction model based on
the approach by Koopman et al. [28], using multiple regression
models, was developed.

The study’s main contributions are two-fold:

1) Development of a gait pattern prediction model that
predicts an individual’s gait patterns based on anthro-
pometric, demographic data and walking speed.

2) Subjective assessment of user perception, in terms of
enjoyment, comfort, and naturalness, when walking with
an individualized gait pattern as compared to a standard
or random pattern, using a lower-limb rehabilitation
device.

In addition, the interaction between the exoskeleton and the
user was evaluated by comparing the actuator position errors
and the force measured at the knee for different gait patterns.

Hypotheses
The main hypothesis guiding this study is that participants will
show a stronger preference for both standard and personalized
predicted gait patterns over random ones. Furthermore, the
degree of preference for the predicted gait pattern over the
standard one is expected to correlate with the gait prediction
model’s capability to accurately predict an individual’s gait.

Gait Prediction Model Hypothesis: The predicted gait pattern
is hypothesized to show a lower root mean square error
(RMSE) than the standard pattern, indicating a higher accuracy
in mirroring an individual’s gait.

Detailed Experiment Hypotheses: Based on the model’s ex-
pected performance, the following specific hypotheses are
proposed:

• User Experience: Enjoyment, comfort, and perceived nat-
uralness ratings are predicted to vary, with personalized
patterns rated highest, followed by standard and random
patterns, indicating a closer similarity to a person’s gait.

• Participant Passivity: No difference in passivity is ex-
pected across gait patterns, due to the exoskeleton’s stiff
position control mode that is expected to enable passive
participation with any gait pattern.

• Measurement Variations: Predicted gait patterns are ex-
pected to have the lowest actuator position errors and
knee forces due to their expected closer replication of
an individual’s gait, followed by standard, then random
patterns.
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II. METHODS

A. Exoskeleton Design
This study utilizes a modified Lokomat® exoskeleton devel-

oped by Hocoma, Switzerland, and further enhanced at ETH
Zurich, Switzerland. The Lokomat® is a grounded exoskeleton
that consists of robotic legs that attach to the patient’s legs
and simulate walking on a motor-driven treadmill. It has been
modified to enable actuation of hip abduction/adduction and
incorporates a compliant pelvis model with six degrees of
freedom (DOF): five passive and one active, specifically for
lateral pelvis movement [40]. This design utilizes a prismatic
actuator to enable the pelvis’s lateral movement, while the
other DOFs, supported by springs, remain passive to support
the user. The pelvis model secures the user’s pelvis through
two fixtures positioned on either side, as shown in Fig. 1.

Fig. 1: Modified Lokomat® with a user secured, featuring ankle and
thigh cuffs, a safety harness for fall prevention, and a pelvis module
(right) with two banana-shaped supports for pelvis stabilization.

The system also features two-DOF hip joint actuation for
ad-/abduction and flexion/extension, using four prismatic leg
actuators. The knee joint is designed with a single DOF for
flexion and extension, operated by a revolute actuator, which
is the original mechanism provided by Hocoma. Fig. 2 depicts
the kinematic model of the modified Lokomat®, showing all
the actuated joints.

B. Gait Prediction Model
A new gait prediction model is established that builds on the

methodology developed by Koopman [28]. The original model
by Koopman utilized multiple polynomial regression models
to predict gait patterns, based on a person’s height and walking
speed. Our study’s model extends this approach by incorpo-
rating additional anthropometric and demographic data, such
as body weight, age, and gender. These factors are considered
influential in determining a person’s gait pattern [19], [20].
Additionally, while Koopman’s model incorporated various
joint trajectories like hip ab-/adduction, hip flexion/extension,
and knee flexion/extension, it did not consider lateral pelvis
movement, which is included in our model.

Fig. 2: Kinematic model of the modified Lokomat® in Simulink for
gait pattern conversion. It includes four prismatic actuators for ad-
/abduction and flexion/extension: (a) right outer, (b) right inner, (c)
left inner, (d) left outer; one prismatic pelvis actuator (e) for lateral
pelvis movement; and two revolute knee actuators (f) right and (g)
left for knee flexion/extension.

1) Dataset: The dataset used for the gait prediction model
is from the public gait database provided by the Laboratory
of Biomechanics and Motor Control at the Federal University
of ABC, Brazil [43]. It includes data from 42 volunteers, split
into 24 young adults (21-37 years) and 18 older adults (50-
84 years), all free from lower-extremity injuries or conditions
affecting gait. Data from both the young and older groups are
aggregated for the prediction model. Table I summarizes their
anthropometric and demographic characteristics.

TABLE I: Statistical overview of subjects’ anthropometric and de-
mographic data [43]

Parameter Mean Std. Min Max
Age (Years) 42.64 18.62 21 84
Height (cm) 167.12 11.01 147 192
Mass (kg) 67.76 11.24 44.9 95.4

Data collection for the database involved participants walk-
ing barefoot on a treadmill at eight different speed levels,
ranging from 40% to 145% of their comfortable, self-selected
walking speed. Each trial lasted for 90 seconds, with kinematic
and kinetic data being recorded during the final 30 seconds.

The dataset includes both raw data, such as marker co-
ordinates and external forces, and pre-processed data like
joint angle trajectories for each subject at each speed level.
The joint trajectories important for controlling the modified
Lokomat® system are specifically knee flexion/extension, hip
flexion/extension, hip abduction/adduction, and lateral pelvis
movement. While the former three are already provided as pre-
processed data, the dataset originally did not contain the lateral
pelvis movement. This gap was filled by deriving the lateral
pelvis movement from the raw marker data. The derivation
method is detailed in Appendix A. Furthermore, the average
gait cycle time for each participant’s trial was defined, which
is also documented in the appendix. All joint trajectories,
including the newly computed lateral pelvis movement, are
represented as time-normalized ensemble averages for each
participant at their respective gait speeds.

Due to the maximum speed limit of 3.2 kph on the
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commercially available Lokomat® system [44], only a subset
of the recorded speeds was selected for training the gait
prediction model, to avoid introducing unnecessary complexity
and irrelevant patterns. The selected speed levels include:
speed level 1 with a mean of 1.80 ± 0.231 kph, speed level
2 with a mean of 2.46 ± 0.336 kph, and speed level 3 with
a mean of 3.14 ± 0.410 kph. Details on all speed levels are
provided in Appendix B.

2) Gait Prediction Model Architecture:
a) Key events: The key events for joint trajectories

– hip abduction/adduction, hip flexion/extension, and knee
flexion/extension – were identified similarly to Koopman [28].
For each trajectory, six key events were selected to precisely
capture the shape of each waveform, mainly focusing on min-
imal and maximal position and velocity values. Additionally,
the heel strike at the beginning of a gait cycle is also con-
sidered a key event. For lateral pelvis movement, key events
were determined similarly, emphasizing extreme position and
velocity data. However, the heel strike was omitted due to
the sinusoidal nature of the waveform, making its inclusion
redundant.

These key events are depicted in Fig. 3. Notably, the
second key event in the hip flexion/extension trajectory –
angle maximum turning point during the stance phase – is
excluded from gait pattern reconstruction. This exclusion is
based on its relevance mainly to walking speeds exceeding
3.5 kph, as outlined by Koopman. [28], which exceeds the
maximum walking speed of the gait prediction model, set at
3.2 kph. The key events were described in terms of several
variables: the timing (t), expressed as a percentage of the gait
cycle, the angle or displacement (y), (angular) velocity (ẏ),
and acceleration (ÿ).

b) Regression Models: Regression models were formu-
lated to establish a relationship between predictor variables and
the parameters of the key events. The model predicts timing,
position, velocity, and acceleration for each key event, based
on a specific set of predictor variables. The regression formula
used is:

Y = β0 + β1v + β2v
2 + β3ℓ+ β4w + β5a+ β6g, (1)

where v represents walking speed, ℓ body height, w body
weight, a age, and g gender, encoded as a numerical value
where female is −1 and male is 1. The Y variable represents
the t, y, ẏ, or ÿ of a specific key event.

To derive common regression models for the joint trajecto-
ries of the left and right legs, the data from their respective
joint trajectories were combined. For obtaining the regression
coefficients for each parameter of each key event, two steps
were followed. First, stepwise regression was conducted to
evaluate the significance of the predictor variables. Variables
with significant effects (p < 0.01) were retained. Second,
robust regression with a ’bisquare’ weighting function was
employed to estimate the final regression coefficients (βx).

In total, regression models were established for all four
parameters of the key events, leading to 24 regression models
for hip abduction/adduction, hip flexion/extension, and knee
flexion/extension (each with 6 key events), and 16 models for
the lateral pelvis movement (4 key events). Additionally, a

regression model to derive the gait cycle time was also created,
using the same predictor variables.

c) Reconstruction of Waveforms: The obtained regres-
sion models enable the determination of key event parameters
(i.e. t, y, ẏ, or ÿ) for specified predictor variables. To recon-
struct continuous kinematic waveforms from these key events,
a 5th-order piece-wise quintic splines interpolation method,
as proposed by Koopman [28], was employed. This technique
effectively creates continuous trajectories.

3) Validation: The validation of the gait prediction method
focused on assessing its accuracy using the root mean square
error (RMSE) as the evaluation metric. This involved compar-
ing actual gait trajectories with those reconstructed using the
leave-one-out cross-validation method.

In this cross-validation approach, spline curves were gener-
ated using regression models that omitted data from one sub-
ject at a time. The RMSE for the actual versus reconstructed
gait trajectories of the excluded subject was then calculated.
This procedure was repeated for each of the 42 subjects, with
results averaged across all subjects and both left and right gait
trajectories.

The RMSE is defined as follows:

RMSE =

√∑N
t=1(yt − ŷt)2

N
. (2)

Here, N represents the number of data points in the gait cycle
(101 time-normalized points), yt corresponds to the actual
joint angle/displacement value at time t, and ŷt denotes the
corresponding predicted value.

Additionally, to compare the accuracy of the predicted
joint trajectories with the derived standard joint trajectories
(Section II-C2b), also the RMSE between the actual gait
trajectories of the subjects from the database and the standard
gait pattern was calculated.

C. Experiment

1) Participants: Ten subjects participated in the experi-
ment, equally divided into five females and five males. Their
ages ranged from 23 to 27 years, with a mean age of
25±1.32 years, average height of 1.76±0.089m, and weight
of 69.25 ± 12.79 kg. None had neurological or orthopedic
disorders. This research was approved by the Human Research
Ethics Committee of Delft University of Technology. Prior to
the experiment, all participants read and signed an informed
consent form. The detailed form can be found in Appendix H.

a) Gait Pattern Conversion: The unique control mecha-
nism for hip abduction/adduction and hip flexion/extension via
prismatic joints requires the determination of specific actuator
position trajectories. In contrast, knee flexion/extension and
lateral pelvis movement joint trajectories can be directly used
as positional inputs for their corresponding actuators. To derive
the position trajectories of the four prismatic leg actuators, a
kinematic model of the modified Lokomat® system in Matlab
Simulink 2021 with Simscape was employed.

Fig. 2 depicts the kinematic model and actuator movements.
The conversion process involved two main steps. Firstly, the
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Fig. 3: Key Events: The right leg trajectories of a subject are displayed at walking speed levels 1, 2, and 3, together by their extracted
key events. These key events are the same as in Koopman’s study [28], except for lateral pelvis movement (not present in their study), for
which extreme position and velocity values were chosen. The key events for the left and right joint trajectories were extracted separately.
By default, heel strike timing is set to zero (% of the gait cycle), as are the minimum and maximum values for joint position and velocity.
These constraints are detailed in the key event legend.

kinematic model was calibrated to match the joint configura-
tion of the real exoskeleton. This adjustment was based on
the user’s body dimensions, including the width of the pelvis,
the frontal position of the hip joint, thigh length, and shank
length. Secondly, using the accurately sized kinematic model,
the position trajectories of the actuators were determined based
on the movement patterns of hip abduction/adduction, hip
flexion/extension, and lateral pelvis movement.

b) Control: The exoskeleton is controlled through Mat-
lab Simulink 2013, set up for position tracking control with
a system frequency of 500 Hz. The goal of this position
control is to closely follow the induced gait patterns, enabling
participants to perceive variations in different patterns. The
prismatic actuators for the hip and pelvis are configured with
a stiff PD controller, using gains of Kp = 5A/mm and
Kd = 7.5A/(m/s), which were adopted from the actuator
settings and not manually tuned. Conversely, for the knee
actuator, the PD controller was manually tuned to achieve
high stiffness, with Kp = 1 and Kd = 0.1. The input to
the controller is the knee angle position error in degrees, and
the output is the force in Newtons sent to the knee actuator.

2) Experimental Conditions: In the study, participants un-
derwent three different test conditions using the modified
Lokomat® exoskeleton. This exoskeleton, operating in posi-
tion tracking control, guided the lower limbs of participants
in three unique gait patterns: (a) Predicted Gait Pattern, (b)
Standard Gait Pattern, and (c) Random Gait Pattern.

a) Predicted Gait Pattern: A gait pattern for each partic-
ipant is predicted based on individual factors such as gender,
age, height, weight, and desired walking speed. Details of this
gait prediction model are outlined in section II-B.

b) Standard Gait Pattern: The standard gait pattern
was developed using the same gait database referenced by

Fukuchi [43], which was also employed in training the gait
prediction model. Unlike the predicted pattern using key events
for derivation, this standard pattern was derived by averaging
the gait patterns of the three lowest walking speed levels.
To achieve symmetrical walking, the trajectories of both the
left and right legs were combined. The derived averaged gait
pattern can be seen in Appendix C.

Furthermore, to estimate the gait cycle time for the standard
gait pattern at various speeds, a regression model similar to the
gait prediction model was employed (see Section II-B2b). Re-
gression coefficients were calculated to predict an individual’s
cycle time for the standard gait pattern, specifically based on
gait speed and the person’s height. Besides gait speed, body
height is considered because longer leg length results in a
larger step length when the joint trajectories remain constant.

The employed regression formula is expressed as:

Y = β0 + β1v + β2v
2 + β3ℓ (3)

where v represents walking speed, ℓ body height, and Y
represents the gait cycle time.

c) Random Pattern: For each participant, a gait pattern
was randomly selected from the lowest walking speed level in
Fukuchi’s database [43] to closely align with the experiment’s
speed. However, the walking speed of the random patterns
varied around the target speed of 1.8 kph, with a standard
deviation of ± 0.231 kph. That is why, the replay time was
adjusted to ensure similar walking speed across all tested gait
pattern types. This adjustment was based on predicting the
gait cycle time for 1.8 kph using the regression formula that
was also applied for predicting the gait cycle time for the
standard gait pattern (Equation 3). Additionally, to ensure a
symmetrical gait, the left and right leg joint trajectories of the
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random pattern were averaged, and the lateral pelvis movement
was adjusted for symmetry.

Walking Speed of Experiments: For all conditions, the
walking speed was set to 1.8 kph, reflecting the average speed
of the lowest walking speed level in the database. However,
there might be minor deviations in the actual speed for each
gait pattern and subject. This variance arises because the speed
is dependent on the playback speed of the gait pattern, which
in turn is determined by a predicted gait cycle time specific to
each pattern. This prediction may not always align perfectly
with the targeted speed of 1.8 kph for every participant.
Therefore, to ensure consistency, the treadmill’s speed was
adjusted as needed to match the playback speed of the gait
pattern.

Randomization: Participants tried all the different gait
patterns. The gait pattern sequence was randomized across
participants. Each of the six possible condition sequences was
used once. Then, four more sequences were randomly selected
from these six.

3) Experimental Protocol: The experimental protocol con-
sisted of several steps, outlined in the following.

a) Initial Setup: After signing the informed consent, par-
ticipants were informed about the protocol. The exoskeleton
orthosis was then adjusted for the participant’s size to align
with their hip and knee joints. Furthermore, participants were
equipped with a safety harness for fall prevention, but no
weight support was provided. Their legs were secured to the
exoskeleton with cuffs, and a pelvis module stabilized their
pelvis. Fig. 1 shows the setup.

b) Familiarization Phase: During the experiment’s initial
phase, participants underwent a familiarization process by
walking with the exoskeleton in ’transparency mode’. In this
mode, the exoskeleton operates with minimal resistance and
support, to allow the participant to walk as freely as possible.
The participants walked at 1.8 kph, similarly to the speed
used in later trials. This phase helped participants get used
to walking with the exoskeleton and allowed for checking and
adjusting any misalignments between the participant’s and the
orthosis’s joints.

c) Trial Procedure: After the familiarization phase, par-
ticipants underwent three walking trials, each featuring a dif-
ferent gait pattern. During the trials, the exoskeleton operated
in stiff position control. The following procedure was repeated
for each trial. Participants started in a predefined start position
with the left foot in the air, the exoskeleton gradually increased
walking speed to 1.8 kph. As the exoskeleton did not support
ankle movement, participants were instructed to actively lift
their feet. Aside from this, they were instructed to remain
passive, letting the exoskeleton guide their movement without
enforcing their walking pattern.

Before each trial started, it was checked if there was
sufficient foot clearance between the participant’s feet and the
treadmill. By increasing the height of the entire exoskeleton,
foot clearance could be improved. Additionally, it was checked
if there was any slippage, i.e. discrepancies in speed between
the feet and the treadmill, and the treadmill’s speed was
altered accordingly. Each trial lasted two minutes, followed
by participants completing a questionnaire on their walking

perception (see section II-C5a). To maintain consistency in the
fit of the exoskeleton, participants remained in the exoskeleton
throughout all conditions. However, adjustments to cuffs,
especially ankle cuffs, were made for optimal fit and comfort.

d) Safety Measures: To ensure safety, participants wore a
harness. Additionally, an emergency stop button was provided
to the participant, and the experimenter had a separate one to
halt the experiment if needed.

4) Data Acquisition: The positions of the different actu-
ators within the exoskeleton were recorded, capturing both
the desired (induced) and the actual (measured) actuator
movements at a frequency of 100 Hz. In addition, the forces
exerted on the knee joints were also recorded.

5) Outcome Metrics:
a) Questionnaires: A questionnaire was developed to

evaluate participants’ perceptions when walking with the three
different gait patterns. The complete questionnaire is available
in Appendix I. It comprised the following categories, with
responses recorded on a 7-point Likert scale, except for open-
ended questions:

• Interest/Enjoyment: Four questions from the Inter-
est/Enjoyment subcategory of the Intrinsic Motivation
Inventory (IMI) [45] were used to assess how appealing
and enjoyable participants found the activity. The scores
of these four questions were averaged according to the
IMI guidelines [45].

• Passiveness: This category included four self-designed
questions to determine if participants remained passive
while using the exoskeleton. Assessing passiveness is
important to ensure that the exoskeleton’s guidance was
predominant, and not overridden by the participant’s natu-
ral gait. The scores of these four questions were averaged
because these questions aim to assess overall participant
passiveness through differently phrased questions.

• Comfort: Seven self-designed questions evaluating the
comfort level experienced by participants while using the
exoskeleton. Each question was analyzed individually to
capture distinct aspects.

• Naturalness: Four self-designed questions evaluating how
natural the participants found the movements of the
exoskeleton. Each question was analyzed individually to
capture distinct aspects.

• Open-ended questions: Providing space for additional
insights and comments.

Participants also ranked the three gait patterns in terms of
overall experience, comfort, and naturalness, and rated their
confidence in these rankings.

b) Objective Data Analysis: Besides the subjective feed-
back, objective data from the exoskeleton was analyzed:

• Actuator Trajectory Error: Mean absolute position error
between reference and actual actuator trajectories was
determined to evaluate the accuracy of the actuators.

• Knee Joint Forces: The mean forces exerted at the knee
joints were compared across different gait patterns. Ap-
pendix D depicts the force direction.

6) Statistical Analysis: The objective of the statistical anal-
ysis was to investigate the effects of different gait patterns
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and trial sequences on participants’ perceptions and objective
interactions with the exoskeleton. The analysis was performed
in R. Statistical significance was set at p < 0.05.

a) Questionnaire: To evaluate the effect of gait pattern
and trial sequence on participant perceptions across four areas
– Enjoyment/Interest, Passiveness, Comfort, and Naturalness
– a regression analysis was conducted. This analysis was
performed using the lmer function from the lme4 package
in R. The model was defined as:

Questionnairei = Pattern+Trial+(1|Participant). (4)

Here, Questionnairei represents the dependent variable,
representing questionnaire scores on a 7-point Likert scale.
These scores were treated as continuous data for ease of
calculation. The independent variables Pattern and Trial
were categorical with three levels each. Pattern refers to three
gait patterns (Standard, Predicted, and Random), and Trial
refers to the experiment sequence (first trial, second trial,
and third trial). The model accounted for variability among
participants by including Participant as a random factor.

Additionally, ranking outcomes were analyzed using a
Friedman test, which is standard to use for ranked measures.
The analysis was performed using the friedman.test
function in R. After identifying significant differences with
the Friedman test, a post-hoc Nemenyi Test was conducted
to explore pairwise comparisons between groups. This analy-
sis was performed using the frdAllPairsNemenyiTest
function from the PMCMRplus package in R.

b) Objective Data: To evaluate the effect of gait pat-
tern and trial sequence on exoskeleton performance – Mean
absolute position error of actuators and Measured mean knee
force – a regression analysis was conducted. This analysis was
performed using the lmer function from the lme4 package
in R. The model was defined as follows:

Interactioni = Pattern+ Trial + (1|Participant). (5)

Here, Interactioni denotes the dependent variables, which
include the mean absolute position error for each actuator
and the mean knee force. Specifically, position errors were
assessed for the pelvis prismatic actuator, Body Weight Sup-
port (BWS) prismatic actuator, right and left leg prismatic
outer actuators, right and left leg prismatic inner actuators, and
both right and left knee revolute actuators. The knee force was
evaluated separately for the left and right knee.

Similarly to the questionnaire analysis, the independent
variables Pattern and Trial included three gait patterns and
three trial sequences, respectively. Participant variability was
accounted for by including Participant as a random factor.

III. RESULTS

A. Regression Models

1) Gait Prediction Model: The regression equations derived
for the different joint trajectories and their corresponding key
events are presented in Appendix E. Additionally, Table II
shows the number of times each predictor is used across all
22 key events to determine the key-event parameters (timing
t, position y, velocity ẏ, and acceleration ÿ).

TABLE II: Number of predictors used for each parameter (timing,
angle/displacement, velocity, acceleration) of the 22 key events in
total.

Parameter Predictors
Speed

(β1, β2)
Height
(β3)

Weight
(β4)

Age
(β5)

Gender
(β6)

Timing (t) 8 4 2 5 4
Angle/ Disp. (y) 7 5 7 10 8
Velocity (ẏ) 8 5 6 5 5
Acceleration (ÿ) 9 5 5 5 8

In terms of timing (t), speed was the primary factor,
significantly influencing 8 out of 22 events (p < 0.01),
followed by age (5 events), and height and gender (4 events
each), while weight impacted 2 events. Regarding position
(y), age was most influential, affecting 10 events, followed by
gender (8 events), and speed and weight (7 events each), with
height impacting 5 events. Additionally, the table details how
predictors vary in their influence on velocity and acceleration.

Furthermore, the derived regression equation for predicting
the gait cycle time is shown in equation 6, showing that gait
cycle time (Y ) is dependent on speed (v) and age (a), with
other factors being non-significant (p < 0.01).

Y = 2.7662− 0.7458v + 0.0903v2 + 0ℓ+ 0w

− 0.0037a+ 0g.
(6)

2) Standard/Random Gait Pattern: For both the standard
and random gait patterns, one regression equation was derived
to estimate the gait cycle time, as presented in equation 3.
It shows that gait cycle time (Y ) is dependent linearly and
quadratically on speed (v), as well as on height (ℓ).

Y = 1.8993− 0.6909v + 0.0789v2 + 0.3928ℓ. (7)

3) Leave-One-Out Cross-Validation: The accuracy of the
reconstructed gait pattern was assessed through the Root Mean
Square Error (RMSE), with results averaged across subjects
and walking speeds presented in Table III.

TABLE III: RMSE for the reconstructed and the standard trajectories

Joint RMSEa

Act-Rec
RMSE Traina

Act-Rec
RMSEa

Act-Standard
Hip abd/add (deg) 2.906 2.552 2.772
Hip flex/ext (deg) 7.573 6.709 6.953
Knee flex/ext (deg) 5.809 5.449 6.385
Pelvis lateral (mm) 6.321 5.473 6.779

a Only the three lowest speed levels were considered for regression model
and standard pattern determination.

To evaluate the risk of overfitting, RMSE was calculated
for the training sets (RMSE Train Act-Rec) and compared
with the RMSE for the reconstructed trajectories (RMSE Act-
Rec). The RMSE values for the training sets are lower than
those for the reconstructions, indicating a modest decrease in
performance on new, unseen data.

Additionally, RMSE comparisons between standard and ac-
tual measured gait patterns of subjects were made to determine
which pattern – predicted or standard – more accurately re-
flects the actual gait. Results show that for hip movements, the
standard pattern’s RMSE values are slightly lower. Conversely,
for knee and pelvis movements, the reconstructed trajectories
had slightly lower RMSE.
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B. Experimental Results
The final treadmill speeds for each trial varied between 1.8

and 2.0 kph. A detailed overview of the speeds for each trial
is provided in Appendix F-A.

1) Statistical analysis: A detailed overview of the ques-
tionnaire responses and actuator data collected from various
participants is provided in Appendix F-B. It showcases the
results from questionnaires and actuator recordings through
boxplots, organized by gait pattern and experimental position.
Furthermore, it displays the distribution of participants’ rank-
ings for each gait pattern and experimental position.

a) Questionnaire: The results of the questionnaire analy-
sis are summarized in the following tables: Interest/Enjoyment
(IMI) and Passiveness in Table IV, Comfort in Table V,
and Naturalness in Table VI. The analysis for both the
Interest/Enjoyment (IMI) and Passiveness metrics revealed no
significant differences, neither in terms of gait pattern nor
experimental position.

In contrast, the analysis of Comfort revealed some signif-
icant differences. Each question was evaluated individually,
due to the distinct aspects. Findings showed a significant
preference for the third trial over the first in terms of overall
movement comfort (β = 1.43, t = 2.94, p = 0.01). No
significant differences were found regarding the comfort of
movement in specific areas of the body such as hips, knees,
ankles/feet, and cuffs. Notably, a significant difference was
observed in the perception of physical strain; participants
reported more strain under the predicted gait pattern than the
standard pattern (β = 1.07, t = 2.86, p = 0.011). The sense
of security with the device showed no significant differences.

The Naturalness category also presented significant find-
ings, particularly regarding trial order. The third trial was
significantly perceived as more natural compared to the first
trial (β = 1.35, t = 2.79, p = 0.013), and as more similar
to the participants’ own way of walking (β = 1.85, t =
3.59, p = 0.002). Questions related to the smoothness of
movements and whether the limbs were pushed beyond their
natural range did not show significant differences.

Table VII presents the outcomes of the Friedman test
conducted for the ranking analysis. The analysis did not reveal
any significant differences in rankings among the gait patterns
in terms of overall preference, comfort, and naturalness. How-
ever, significance was found for comfort and naturalness across
experimental positions. The third trial was perceived as more
comfortable (p = 0.037) and more natural (p = 0.037) com-
pared to the first trial. Additionally, participants demonstrated
high confidence in their rankings, scoring 8.2±0.92 regarding
overall preference, 8.3± 1.06 regarding the most comfortable
gait pattern, and 7.6 ± 1.51 regarding the most natural gait
pattern, on a scale from 1 (not confident at all) to 10 (very
confident).

b) Objective Data: The analysis of the exoskeleton’s data
recordings is summarized in two tables: the Mean Absolute
Error (MAE) of actuator positions in Table VIII and the Mean
Absolute Force at the knee actuators in Table IX.

The MAE of actuator positions revealed a significant dif-
ference in the pelvis actuator error between predicted and
standard gaits (β = 1.46, t = 3.78, p = 8.67e − 4),

with the standard showing a smaller error. Similarly, the
Body Weight Support (BWS) actuator showed a significant
difference between random and standard gaits (β = 0.71, t =
3.24, p = 0.005), where the standard had again a smaller
error.

Further analysis identified significant differences for both
outer prismatic leg actuators, which followed the reference
trajectory more accurately under the predicted gait compared
to the standard gait (β = −0.53, t = −3.85, p = 0.001 right;
β = −0.52, t = −3.84, p = 0.001 left). Additionally, the
position error for these actuators was significantly smaller in
random gaits compared to standard gaits (β = −1.13, t =
−8.17, p = 4.20e − 7 right; β = −1.08, t = −7.95, p =
6.04e− 7 left).

The right inner prismatic leg actuator showed a significantly
lower MAE for the predicted compared to the standard pattern
(β = −0.98, t = −2.45, p = 0.022), whereas the left actuator
slightly missed the significance threshold for these two gaits
(p = 0.053). In addition, both inner prismatic leg actuators and
knee actuators showed significant reductions in position error
from the first to the second trial, exemplified by the right inner
actuator (β = −0.92, t = −2.30, p = 0.030). Detailed results
for the other actuators are given in the table. A significant
difference between the first and third trials, however, was
only observed for the right knee actuator, with the third trial
showing a smaller MAE (β = −0.48, t = −2.99, p = 0.009).

Regarding the Mean Absolute Force at both knee actuators,
the force was significantly higher for random gaits compared
to standard gaits (β = 68.7, t = 3.6, p = 0.002 right; β =
84.5, t = 4.1, p = 0.001 left).

2) Qualitative Data: The responses to the open-ended
questions are listed in Appendix F-C. Participants repeatedly
cited discomfort at ankle cuffs, describing them as “uncomfort-
able” (P2, P8). Others specified feeling “discomfort at ankles”
(P5) and “discomfort in my ankles” (P9). Hip movements
emerged as another significant source of discomfort, with
participants experiencing hips “swaying outside the range”
(P3), “over-exaggerated” hip movement (P4), “a lot of lateral
hip movement” (P8), and hips moving “too much towards the
outside” (P6), all of which were described as uncomfortable
across various gait patterns. Unnatural joint movements, par-
ticularly regarding the ankles, were a common theme. Partic-
ipants reported an “unnatural” trajectory of knees and ankles
(P10, predicted) and high discomfort due to “unnatural motion
for my legs to walk with” (P9, predicted). Complaints included
“unnatural movement at the heel strike” (P9, standard) and not
walking “in a straight line” (P6, standard), indicating issues
across different patterns. Additionally, the random pattern was
reported to cause legs to move “more to the outside when
extending the leg” (P7, random) and make ankles feel “pushed
inwards” (P10, random), contributing to the sense of unnatural
movement.

Positive remarks were also given, with the standard gait
pattern being described as “straighter, which made it more
similar to my gait” (P10, standard), and the random pattern
being stated as “much better compared to the first two gait
patterns” (P6, random). Foot placement also varied among
participants, with one reporting their “feet were too close to
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TABLE IV: Linear mixed model results for the questionnaire metric Enjoyment/Interest (IMI) and Passiveness

Variable Enjoyment/Interest (IMI)1 Passiveness1

Estimate (β) Std. Error t value p-value Estimate (β) Std. Error t value p-value

(Intercept) 5.01 0.3 16.58 5.28E-10*** 5.68 0.36 15.60 2.37E-14***
Predicted pattern 0.2 0.15 1.34 0.199 -0.30 0.36 -0.84 0.413
Random pattern 0.13 0.15 0.85 0.409 -0.29 0.36 -0.81 0.429
2nd Trial 0.01 0.15 0.08 0.933 0.10 0.36 0.27 0.792
3rd Trial 0.02 0.15 0.12 0.907 0.10 0.36 0.28 0.781

1 7-point Likert Scale: (1) Not true at all - (4) Somewhat true - (7) Very true
*(p < 0.05), **(p < 0.01), ***(p < 0.001)

TABLE V: Linear mixed model results for the questions regarding Comfort

Variable Overall Comfort of Movements1 Comfort of Movements at Cuffs1

Estimate (β) Std. Error t value p-value Estimate (β) Std. Error t value p-value

(Intercept) 3.29 0.52 6.31 1.35E-06*** 3.81 0.49 7.82 2.88E-07***
Predicted pattern -0.75 0.49 -1.53 0.145 0.40 0.35 1.17 0.260
Random pattern -0.4 0.49 -0.83 0.419 0.41 0.35 1.20 0.249
2nd Trial 0.96 0.49 1.97 0.067 0.14 0.35 0.41 0.688
3rd Trial 1.43 0.49 2.94 0.01** 0.10 0.35 0.29 0.774

Variable Comfort of Movements at Hips1 Comfort of Movements at Knees1

Estimate (β) Std. Error t value p-value Estimate (β) Std. Error t value p-value

(Intercept) 4.39 0.63 7.02 2.42E-07*** 5.16 0.57 9.00 2.72E-09***
Predicted pattern -0.26 0.58 -0.45 0.655 -0.15 0.53 -0.29 0.779
Random pattern -0.04 0.58 -0.07 0.945 -0.55 0.53 -1.03 0.320
2nd Trial 0.60 0.58 1.03 0.317 -0.45 0.53 -0.86 0.405
3rd Trial 0.22 0.58 0.38 0.705 0.06 0.53 0.11 0.911

Variable Comfort of Movements at Ankle/Feet1 Physical Strain2

Estimate (β) Std. Error t value p-value Estimate (β) Std. Error t value p-value

(Intercept) 4.05 0.53 7.64 6.37E-08*** 2.10 0.43 4.86 6.14E-05***
Predicted pattern -0.44 0.47 -0.94 0.362 1.07 0.37 2.86 0.011*
Random pattern -0.28 0.47 -0.60 0.559 0.44 0.37 1.19 0.252
2nd Trial 0.17 0.47 0.36 0.722 0.44 0.37 1.19 0.252
3rd Trial 0.62 0.47 1.30 0.212 -0.26 0.37 -0.70 0.492

Variable Sense of Security in Device2

Estimate (β) Std. Error t value p-value

(Intercept) 5.15 0.45 11.44 8.22E-10***
Predicted pattern -0.13 0.32 -0.41 0.687
Random pattern 0.22 0.32 0.69 0.497
2nd Trial 0.22 0.32 0.69 0.497
3rd Trial 0.54 0.32 1.67 0.114

1 7-point Likert Scale: (1) Very uncomfortable - (4) Neutral - (7) Very comfortable
2 7-point Likert Scale: (1) Not true at all - (4) Somewhat true - (7) Very true
*(p < 0.05), **(p < 0.01), ***(p < 0.001)

each other” (P1) and another finding discomfort in their “feet
being too distant from each other” (P6), across all gait patterns.

IV. DISCUSSION

A. Gait Pattern Generation

The small decline in the RMSE for the training sets com-
pared to the test sets implies good model generalization with
limited overfitting. Furthermore, contrary to the hypothesis,
the developed gait prediction model did not outperform the
standard gait pattern in terms of accuracy regarding root mean
square error (RMSE). The analysis revealed that the standard
pattern had slightly lower RMSE for hip movements, whereas
the model’s reconstructed patterns showed lower RMSE for
knee and pelvis movements, suggesting comparable accuracy

in approximating gait for both predicted and standard patterns
using RMSE.

A comparison with Koopman’s [28] findings (see Table X)
reveals lower RMSEs in their study, likely due to the use
of a less diverse gait database limited to fifteen middle-aged
individuals. A comparative analysis between databases in Ap-
pendix G revealed that different databases can have different
kinematic variability. It further indicates that databases with a
broader population range show increased kinematic variability.
Thus prediction models evaluated on more diverse databases
likely show reduced accuracy due to the challenge of capturing
greater kinematic variability.

Furthermore, Semwal [46] used the same database to de-
velop and validate their gait prediction model, employing
a deep learning framework that integrates Long Short-Term
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TABLE VI: Linear mixed model results for the questions regarding Naturalness

Variable Naturalness of Movements1 Similarity to Own Way of Walking1

Estimate (β) Std. Error t value p-value Estimate (β) Std. Error t value p-value

(Intercept) 2.68 0.52 5.20 2.25E-05*** 2.56 0.51 4.98 4.01E-05***
Predicted pattern -0.71 0.49 -1.45 0.165 -0.76 0.51 -1.50 0.154
Random pattern -0.17 0.49 -0.35 0.728 -0.58 0.51 -1.14 0.272
2nd Trial 1.28 0.49 2.64 0.018 1.24 0.51 2.45 0.026
3rd Trial 1.35 0.49 2.79 0.013** 1.82 0.51 3.59 0.002**

Variable Smoothness of Movements1 Limbs Pushed Beyond Natural Range2

Estimate (β) Std. Error t value p-value Estimate (β) Std. Error t value p-value

(Intercept) 4.61 0.40 11.42 2.09E-10*** 2.00 0.40 5.04 5.21E-05***
Predicted pattern 0.16 0.31 0.52 0.614 -0.09 0.32 -0.29 0.777
Random pattern 0.11 0.31 0.35 0.728 -0.42 0.32 -1.35 0.197
2nd Trial 0.11 0.31 0.35 0.728 -0.24 0.32 -0.77 0.453
3rd Trial 0.49 0.31 1.58 0.134 -0.33 0.32 -1.06 0.306

1 7-point Likert Scale: (1) Very unnatural/ dissimilar/ abrupt - (4) Neutral - (7) Very natural/ similar/ smooth
2 7-point Likert Scale: (1) Not true at all - (4) Somewhat true - (7) Very true
*(p < 0.05), **(p < 0.01), ***(p < 0.001)

TABLE VII: Friedman test results for participant rankings, including p-values from post-hoc pairwise comparisons for significant findings.
The analysis compares rankings across patterns – standard (S), predicted (P), and random (R) – and evaluates rankings across experimental
trials – 1st: T1, 2nd: T2, 3rd: T3.

Comparison Groups Ranking Friedman test Post-hoc pairwise comparisons

χ2 df p-value
1S vs. P/
2T1 vs. T2

1S vs. R/
2T2 vs. T3

1P vs. R/
2T1 vs. T3

Conditions1

(Patterns)

Overall preferred pattern 4.1 2 0.122 - - -
Most comfortable pattern 3.2 2 0.202 - - -
Most natural pattern 2.6 2 0.272 - - -

Trial order2

(Experimental positions)

Overall preferred pattern 5.6 2 0.061 - - -
Most comfortable pattern 6.2 2 0.045* 0.261 0.644 0.037*
Most natural pattern 6.2 2 0.045* 0.261 0.644 0.037*

*(p < 0.05), **(p < 0.01), ***(p < 0.001)

Memory (LSTM) and Convolutional Neural Network (CNN)
techniques. Their approach achieved lower RMSE values than
our regression model, with 2.41◦ for hip and 3.49◦ for knee
flexion/extension. However, they split the training and test data
in such a way that both datasets include gait patterns from
the same individuals but at different walking speeds, possibly
limiting extrapolation to subjects outside of this dataset.

B. Experimental Findings

1) Questionnaire: Contrary to the hypothesis, the perceived
Interest/Enjoyment (IMI), Comfort, and Naturalness of the
predicted, standard, and random gait patterns showed no
significant differences, except for physical strain, where the
predicted pattern resulted in significantly higher strain than
the standard. This increased physical strain could be due
to the way the prediction model works, predicting trajec-
tories of the different joints separately, which may lead to
a gait pattern where the movements of different joints are
not well-coordinated. Conversely, the standard pattern, derived
from averaging multiple healthy gait datasets, might provide
smoother joint trajectories, resulting in less strain. Although
no significant preferences (aside from physical strain) among
gait patterns were found, a tendency favoring the standard
pattern was observed. This preference might be attributed to its
potentially smoother and more harmonious joint coordination.

Interestingly trial order appeared to influence participants
perception. Participants rated the questions related to the
overall comfort, naturalness, and smoothness of the exoskele-
ton’s movements significantly better in the third trial than in
the first, suggesting an adaptation to the system over time,
leading to an enhanced walking experience. Similarly, the
results of the Friedman test regarding the rankings revealed
a significant effect of trial order, supporting the observation
of users becoming used to the system. However, it is crucial
to note that the observed order effect introduces an interaction
between the trial sequence and condition preference (pattern),
diminishing the validity of the Friedman test results. Thus, the
lack of significant differences in the ranking of the patterns
could be due to this ordering effect, which may mask real
preferences.

Furthermore, as hypothesized, gait patterns did not influence
participants’ ability to remain passive, with high passivity
scores across all patterns. This shows that participants did not
actively interfere with the intended gait patterns.

The questionnaire results indicate that the comfort and
naturalness of the gait pattern could be improved. However,
the discomfort during movements may not only be due to
the gait pattern itself, but also to the overall discomfort
of the device, as indicated by the participants’ responses
regarding discomfort at the cuffs, particularly the ankle cuff.
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TABLE VIII: Linear mixed model results for position error: Mean Absolute Error (MAE) of the different actuators

Variable Pelvis Prismatic Actuator: MAE - Position (mm) BWS Prismatic Actuator: MAE - Position (mm)

Estimate (β) Std. Error t value p-value Estimate (β) Std. Error t value p-value

(Intercept) 4.05 0.36 11.29 2.61E-11*** 2.54 0.21 11.96 1.48E-11***
Predicted pattern 1.46 0.39 3.78 8.67E-04** 0.44 0.22 2.02 0.060
Random pattern 0.58 0.39 1.50 0.147 0.71 0.22 3.24 0.005**
2nd Trial 0.53 0.39 1.37 0.181 0.23 0.22 1.03 0.317
3rd Trial 0.14 0.39 0.37 0.713 0.05 0.22 0.22 0.827

Variable Right Outer Prismatic Actuator: MAE - Position (mm) Right Inner Prismatic Actuator: MAE - Position (mm)

Estimate (β) Std. Error t value p-value Estimate (β) Std. Error t value p-value

(Intercept) 8.35 0.15 56.41 8.77E-28*** 5.96 0.37 15.99 1.23E-14***
Predicted pattern -0.53 0.14 -3.85 0.001** -0.98 0.40 -2.45 0.022*
Random pattern -1.13 0.14 -8.17 4.20E-07*** -0.12 0.40 -0.30 0.770
2nd Trial -0.20 0.14 -1.48 0.157 -0.92 0.40 -2.30 0.030*
3rd Trial -0.18 0.14 -1.32 0.205 -0.32 0.40 -0.81 0.425

Variable Left Outer Prismatic Actuator: MAE - Position (mm) Left Inner Prismatic Actuator: MAE - Position (mm)

Estimate (β) Std. Error t value p-value Estimate (β) Std. Error t value p-value

(Intercept) 8.48 0.15 58.43 3.26E-28*** 5.95 0.38 15.83 1.53E-14***
Predicted pattern -0.52 0.14 -3.84 0.001** -0.82 0.40 -2.04 0.053
Random pattern -1.08 0.14 -7.95 6.04E-07*** -0.13 0.40 -0.32 0.753
2nd Trial -0.19 0.14 -1.36 0.193 -0.94 0.40 -2.33 0.028*
3rd Trial -0.19 0.14 -1.38 0.186 -0.35 0.40 -0.87 0.394

Variable Right Knee Revolute Actuator: MAE - Position (deg) Left Knee Revolute Actuator: MAE - Position (deg)

Estimate (β) Std. Error t value p-value Estimate (β) Std. Error t value p-value

(Intercept) 2.87 0.20 14.15 2.95E-12*** 3.06 0.27 11.46 4.91E-09***
Predicted pattern -0.14 0.16 -0.84 0.411 -0.02 0.17 -0.14 0.888
Random pattern 0.26 0.16 1.65 0.118 0.27 0.17 1.60 0.128
2nd Trial -0.47 0.16 -2.96 0.009** -0.49 0.17 -2.94 0.010*
3rd Trial -0.48 0.16 -2.99 0.009** -0.25 0.17 -1.48 0.157

*(p < 0.05), **(p < 0.01), ***(p < 0.001)

TABLE IX: Linear mixed model results for mean absolute force at knee actuators

Variable Right Knee: Mean Absolute Force (N) Left Knee: Mean Absolute Force (N)

Estimate (β) Std. Error t value p-value Estimate (β) Std. Error t value p-value

(Intercept) 153.4 20.5 7.5 8.22E-08*** 140.0 24.1 5.8 5.78E-06***
Predicted pattern 22.2 18.9 1.2 0.257 42.1 20.9 2.0 0.061
Random pattern 68.7 18.9 3.6 0.002** 84.5 20.9 4.1 0.001**
2nd Trial -19.7 18.9 -1.0 0.313 -17.7 20.9 -0.8 0.409
3rd Trial -25.6 18.9 -1.4 0.193 -19.2 20.9 -0.9 0.372

*(p < 0.05), **(p < 0.01), ***(p < 0.001)

TABLE X: Comparsion of RMSE to benchmark study

Joint RMSE
This study

RMSE
Koopman [28]

Hip abd/add (deg) 2.91 1.46
Hip flex/ext (deg) 7.57 2.42
Knee flex/ext (deg) 5.81 3.49
Pelvis lateral (mm) 6.32 -

This discomfort could be due to improperly timed toe-off and
heel strike, which are particularly noticeable at the ankle cuff.
Moreover, participants commonly mentioned excessive lateral
pelvis movement, causing the body to move uncomfortably
and unnaturally sideways. Several factors contribute to this,
such as the pelvis actuator’s slight overshoot (Appendix F-D)
and the compliant pelvis module potentially causing addi-
tional lateral movements due to its spring system (Fig. 1).
Instructing participants to remain passive may have led to them
allowing the exoskeleton to flop their upper body from side

to side, possibly adding to the sensation of excessive lateral
movement. Another factor resulting in potential discomfort
is the lack of an ankle support mechanism to facilitate toe-
off might have contributed to discomfort at the ankle. A
participant also remarked that the slow walking speed of the
exoskeleton felt unnatural, indicating that slow speeds may
feel generally unnatural. Furthermore, joint misalignments
between the participant and the exoskeleton during dynamic
movements, inherent to the system due to the relative motion
of the human body within the exoskeleton, likely resulted in
increased discomfort from additional interaction forces [47].

2) Objective Data: The actuators successfully replicated
the reference gait pattern with relatively low errors, enabling
a comparison of different gait patterns. The predicted gait
pattern, other than hypothesized, did not significantly reduce
actuator position errors and knee forces, nor was the random
pattern consistently worse than the standard or predicted
patterns. Some actuators showed significantly lower position
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errors with the predicted pattern compared to the standard
pattern, while others showed no significant difference or per-
formed better with the standard pattern. Similarly, knee forces
were significantly higher for the random pattern compared to
the standard pattern, but actuator position errors varied with
the random pattern – being significantly higher, significantly
lower, or showing no significant difference, depending on the
actuator. The observed differences in actuator position errors
and knee forces among the gait pattern conditions might be due
to unique peculiarities in their trajectories. These peculiarities
might stem from the methodologies used to derive the different
gait patterns: averaging for the standard pattern, quintic spline
fitting for the predicted, and directly using a pre-recorded gait
for the random pattern.

The results also revealed an effect of trial order. Participants
may have gotten used to the system, creating fewer interaction
forces, although this trend was primarily observed in the
second trial rather than in the third. The discrepancy between
the second and third trials indicates that the adaptation trend
is not consistent, or that the different results for the second
and third trials might be due to the small sample size.

C. Limitations
This study’s gait prediction model has several limitations.

The reconstruction of gait patterns relied on selecting six
key events per joint (except lateral pelvis movement) based
on the researchers’ expertise in the study by Koopman [28].
However, there was no optimization process for determining
the ideal number of key events to improve fit. An alternative
selection of key events could potentially enhance the predic-
tion accuracy. Additionally, the dataset utilized in this study,
provided by Fukuchi [43], primarily comprises data from the
Brazilian population. This poses questions about the model’s
efficiency across different demographic profiles, for example,
considering the average height differences between Dutch and
Brazilian males and females [48]. Moreover, the database only
includes data from young and elderly participants, omitting
middle-aged individuals, which further limits the model’s
generalizability.

There are also certain limitations regarding the experiment
and its findings. The study included only healthy participants,
which limits the applicability of the results to individuals
with gait impairments, such as those experienced by stroke
survivors. There were also uncontrolled factors in this ex-
periment, e.g., personal footwear, that were controlled in the
reference data [43], which may have influenced performance.
In addition, the lack of defined terms in the questionnaire could
lead to subjective interpretations, affecting the consistency of
the responses among participants.

The small sample size and the treatment of ordinal data from
a 7-point Likert scale as continuous data may affect the validity
of the statistical analysis. Moreover, the presence of an order
effect diminishes the reliability of the Friedman test results.
Regarding the actuator position analysis, improvements could
be made by converting actuator trajectories back into joint
angle trajectories. This would provide a clearer understanding
of the magnitude of the position errors in terms of actual joint
trajectories.

D. Future research

Future research should explore other gait prediction models
to examine their effects on users’ perceptions of individualized
gait patterns. Enhancing the accuracy of these models is crucial
for accurately predicting an individual’s gait pattern, which
may involve exploring a wider and more varied set of input
variables. Moreover, expanding the gait database to cover a
more diverse population and further walking speeds is essential
for improving the performance of these prediction models.
Exploring how stroke patients perceive different gait patterns
and the effect of these perceptions on their rehabilitation
training and outcomes is another important area for future
research. Additionally, studies with larger sample sizes are
needed for conclusive statistically significant results. Further-
more, feedback in this study highlighted that many individuals
find the current reference gait patterns to be unnatural and
uncomfortable. Future work should not only aim to accurately
predict individual gait patterns but also to refine these patterns
based on patient feedback to better meet specific needs.
Adjusting spatial or temporal aspects of gait, such as step
length and width, provides more flexibility in generating gait
patterns. Such adjustments could make gait patterns feel more
comfortable and natural to patients. Engaging directly with
stroke patients to gather and analyze their feedback on gait
adjustments should be a central focus in future research.

V. CONCLUSION

This study explored user perceptions of individualized ver-
sus standard and random gait patterns, focusing on enjoyment,
comfort, and naturalness. A predictive gait model was de-
veloped incorporating individual anthropometric, demographic
data, and walking speed. Analysis of prediction accuracy
using root mean square error indicated that both predicted
and standard gait patterns approximate an individual’s gait
similarly well.

In an experiment, participants walked with a robotic lower
limb device across these gait patterns and provided feedback
through a questionnaire. The findings revealed no significant
differences in gait pattern perceptions, except for physical
strain, where the predicted pattern resulted in significantly
more strain than the standard. Further analysis indicated that
trial order influenced perception, suggesting that longer use of
the system leads to an improved walking experience in terms
of comfort and naturalness.

Although no significant differences were observed except
in terms of physical strain, a tendency towards the standard
pattern was observed. This preference exists despite RMSE
results suggesting similar accuracy between the standard and
predicted gait patterns. This highlights the importance of
experiments involving humans in evaluating physical human-
robot interactions.
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Supplementary Material
Subjective Assessment of Individualized Gait Patterns on Enjoyment, Comfort, and Naturalness

in Robot-Assisted Walking

APPENDIX A
CALCULATION OF THE LATERAL PELVIS MOVEMENTS FROM THE GAIT DATABASE

The modified Lokomat® employed in this study can enable lateral pelvis movements. However, these movements are not
originally included in the post-processed data of the used gait database by Fukushi et al. [1]. Therefore, the lateral pelvic
movements were determined using the raw data of marker positions. This appendix details the methodology for calculating
lateral pelvis movements for the different recorded walking trials.

A. Marker Positions

Fig. 4: Illustration of marker placements on the pelvis [1].

Fig. 4 illustrates the placement of markers on the participants’ body. To determine lateral pelvis movement, the markers
placed on the participants’ pelvis were used. These included the left and right Anterior Superior Iliac Spine (ASIS) - marked
as 1-R.ASIS and 2-L.ASIS, the left and right Posterior Superior Iliac Spine (PSIS) - marked as 3-R.PSIS and 4-L.PSIS, and
the left and right iliac crest - marked as 5-R.Iliac.Crest and 6-L.Iliac.Crest. The markers were used in calculating the average
lateral displacement (in the z-direction) during the walking trials.

B. Determination of Lateral Pelvis Movement

The gait database comprises raw marker data in the XYZ directions and ground reaction force (GRF) data for each 30-second
walking trial, which consists of multiple gait cycles. The approach to determining lateral pelvis movement involves analyzing
individual marker signals and subsequently computing the ensemble average across the six considered markers. The following
sections describe the employed procedure in more detail.

1) Identifying Heel Strike: First, heel strikes are identified using the GRF data to determine the start of gait cycles. This
step is important to align the lateral pelvis movement with the already existing joint angle trajectories of the database [1]. The
determination of heel strike, which is based on the methodology of Fukuchi et al. [2], involves filtering the GRF signal with
a fourth-order low-pass Butterworth filter (cut-off frequency: 10 Hz) and detecting heel strike when the vertical GRF exceeds
a threshold value of 20 N (Fig. 5). These heel strike points are then used to calculate the step frequency, essential for further
noise reduction in pelvis marker data, and average gait cycle time.
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(a) Low-pass filtering step (b) Identifying heel strike locations

Fig. 5: Pre-Processing of GRF Data: Example of data subject 1 at walking speed level 1. (a) Low-pass filtering of raw GRF data to eliminate
high-frequency noise. (b) Determination of heel strike when the vertical GRF exceeds a threshold value of 20 N.

2) Pre-Processing of Marker Data: To analyze the lateral pelvis displacement (Z-axis) of the pelvis marker, a fourth-order,
high-pass Butterworth filter (cut-off frequency: half the step frequency) is employed to reduce low-frequency noise. This
specific frequency effectively filters out low-frequency noises, as determined by visual inspection (Fig. 6a, 6b). The use of the
filter is crucial for accurate data processing, as subjects naturally shift laterally while walking on a treadmill. These shifts can
introduce noise into the data, potentially obscuring the true pelvis movement patterns when walking in a straight line. The
high-pass filter effectively minimizes these variations, ensuring a clearer analysis of the pelvis’s lateral movements. Following
the filtering process, the raw pelvis marker data are segmented into individual gait cycles (Fig. 6c), based on the heel strike
points determined with the GRF data. These cycles are normalized to the mean cycle duration and subsequently averaged to
represent the lateral pelvis movement of a marker (Fig. 6d).

(a) Raw R.ASISZ signal (b) High-pass filtering step

(c) Split gait cycles (d) Normalize gait cycle

Fig. 6: Pre-Processing of Marker Data (Part 1): Example of data subject 1 at walking speed level 1. (a) Raw displacement data of the
R.ASISZ marker in the lateral direction. (b) High-pass filtering of raw marker data to eliminate low-frequency noise. (c) Segmentation of
the marker data into single gait cycles based on identified heel strike locations. (d) Normalization of split gait cycle segments to average
cycle time, followed by the computation of an average pattern from these normalized patterns.

3) Ensemble Average Lateral Pelvis Movement: To determine the average lateral movement of the pelvis during a walking
trial, the individual averaged trajectories of the six pelvis markers are time-normalized and subsequently averaged (Fig. 7).
This method produces the ensemble average of the subject’s lateral pelvis movement. This movement is then stored as a
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time-normalized gait pattern, similar to the already calculated joint angle trajectories in the gait database.

(a) Normalized and averaged pattern of all markers (b) Total average pattern

Fig. 7: Pre-Processing of Marker Data (Part 2): Example of data subject 1 at walking speed level 1. (a) Similar to the marker R.ASISZ in
Fig. 6, the average lateral movements are calculated for all six pelvis markers. (b) A combined average gait pattern is derived from these
six markers.

APPENDIX B
OVERVIEW OF WALKING SPEED DATA IN FUKUCHI’S DATABASE

Table XI provides the mean speeds and standard deviations for the different speed levels of the database by Fukuchj [43].
Specifically, data from the three lowest speed levels were selected for training the prediction model.

TABLE XI: Overview of the mean and standard deviation of speeds at various speed levels from the database by Fukuchi [43]. A speed
level contains the speeds of participants related to walking with a certain percentage of their comfortable, self-selected walking speed. Speed
levels included for the gait prediction model are highlighted in bold.

Speed Levels
(% of Self-Selected Speed)

Mean
(kph)

Std.
(kph)

Level 1 (40%) 1.80 0.231
Level 2 (55%) 2.46 0.336
Level 3 (70%) 3.14 0.410
Level 4 (85%) 3.81 0.493
Level 5 (100%) 4.48 0.582
Level 6 (115%) 5.15 0.670
Level 7 (130%) 5.83 0.765
Level 8 (145%) 6.45 0.812
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APPENDIX C
STANDARD GAIT PATTERN

The standard gait pattern used in this study is depicted in Fig. 8 and was derived by averaging the gait patterns of the three
lowest walking speed levels from the database by Fukuchi [1]. Including only these lower speeds, all below the exoskeleton’s
maximum speed of 3.2 kph [3], ensures that the pattern is representative of the exoskeleton’s operational capabilities.

Fig. 8: Standard Gait Pattern: Calculated by averaging the gait patterns of all test subjects of the three lowest speed levels, the light red line
represents the left leg and the light blue line the right leg.
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APPENDIX D
REVOLUTE KNEE JOINT MECHANICS

Fig. 9 depicts the inside of the knee actuator in the Lokomat® system. The force measured at the knee joint reflects the
longitudinal force produced along the main axis of the spindle drive, indicating the magnitude of force exerted on the knee
actuator.

Fig. 9: Image of the inside of the knee actuator in the Lokomat® system. Source: HRI Wiki, TU Delft [4]
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APPENDIX E
REGRESSION EQUATIONS OF JOINT TRAJECTORIES

The regression coefficients derived for the different joint trajectories and their corresponding key events are listed as follows:
hip abduction/adduction in Table XII, hip flexion/extension in Table XIII, knee flexion/extension in Table XIV, and lateral
pelvis movement in Table XV.

TABLE XII: Regression equations for the parameter values of the key events of hip abduction/adduction.

Hip abduction/adduction

Key event Parameter β0

(Intercept)
β1

(Speed)
β2

(Speed2)
β3

(Height)
β4

(Weight)
β5

(Age)
β6

(Gender)

Heel contact

Timing (t) 0 - - - - - -
Angle (y) 0.0400 - - - - - -
Vel. (ẏ) 0.0222 - 0.0075 - - - −0.0343
Acc. (ÿ) 0.0390 - 0.0042 - - - −0.0182

Max. stance

Timing (t) 35.8245 - - −10.0179 - - 0.7653
Angle (y) 15.0676 - - −8.2105 0.0568 - −1.3062
Vel. (ẏ) 0 - - - - - -
Acc. (ÿ) −0.0914 - - - - 0.0006 0.0108

Max. ẏ stance

Timing (t) 41.0000 - - - - - -
Angle (y) 17.5024 - - −12.0096 0.0790 - −0.5726
Vel. (ẏ) −0.0130 - - - - - -
Acc. (ÿ) 0 - - - - - -

Min. ẏ swing

Timing (t) 58.3550 - - - - - -
Angle (y) −4.0730 - - - - 0.0479 -
Vel. (ẏ) −2.3595 - −0.0138 1.4393 −0.0105 0.0034 -
Acc. (ÿ) 0 - - - - - -

Min. swing

Timing (t) 74.1734 −1.7955 - - - - -
Angle (y) −19.8236 - - 8.9280 −0.0598 0.0725 -
Vel. (ẏ) 0 - - - - - -
Acc. (ÿ) 0.2778 - - −0.1289 0.0013 −0.0008 −0.0190

Max. ẏ swing

Timing (t) 69.8878 - - - 0.0891 0.0331 -
Angle (y) −5.2261 - - - - 0.0444 -
Vel. (ẏ) 0.4375 −0.0366 - - 0.0037 −0.0030 −0.0956
Acc. (ÿ) 0 - - - - - -

Note: ”-” indicates that a parameter has no significant impact on the regression model. The regression equations were generated using data from all 42 subjects.
By default, heel strike timing is set to zero (% of the gait cycle), as are the minimum and maximum values for joint angle and angular velocity.

TABLE XIII: Regression equations for the parameter values of the key events of hip flexion/extension.

Hip flexion/extension

Key Event Parameter β0

(Intercept)
β1

(Speed)
β2

(Speed2)
β3

(Height)
β4

(Weight)
β5

(Age)
β6

(Gender)

Heel contact

Timing (t) 0 - - - - - -
Angle (y) 24.4160 - - - - 0.0830 -
Vel. (ẏ) −0.8169 0.1166 - 0.1915 - - -
Acc. (ÿ) −0.3435 0.0775 - - - - 0.0147

Max. stancea

Timing (t) 15.6875 - - −5.6864 - - -
Angle (y) 30.1610 - - - - - -
Vel. (ẏ) 0 - - - - - -
Acc. (ÿ) −1.0905 - - 0.7260 −0.0043 - -

t=50% Stance

Timing (t) 31.4315 −2.3754 0.3413 - - - -
Angle (y) 5.4895 - - - - 0.0868 -
Vel. (ẏ) −1.2312 −0.1953 - 0.6511 - - -
Acc. (ÿ) 0.0601 - −0.0017 - - −0.0005 -

Min.

Timing (t) 63.4402 −4.7863 0.6803 - - - -
Angle (y) −4.5359 - - - - - 1.9210
Vel. (ẏ) 0 - - - - - -
Acc. (ÿ) 0.1171 0.0117 - - - - -

Max. ẏ swing

Timing (t) 75.3750 −9.3496 1.6596 - 0.0719 - −1.2761
Angle (y) 8.4660 - - - - - -
Vel. (ẏ) 3.2209 0.0980 - −1.2215 0.0081 −0.0033 −0.0829
Acc. (ÿ) 0 - - - - - -

Max. swing

Timing (t) 90.6226 −1.0169 - - - 0.0474 -
Angle (y) 61.8406 2.0764 - −21.7837 - - 1.4937
Vel. (ẏ) 0 - - - - - -
Acc. (ÿ) −0.1080 - - - - - -

a This key event is excluded from the spline fitting procedure due to its relevance only for walking speeds exceeding 3.5 kph [5], whereas the developed
regression model focuses on speeds up to 3.2 kph.
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TABLE XIV: Regression equations for the parameter values of the key events of knee flexion/extension.

Knee flexion/extension

Key Event Parameter β0

(Intercept)
β1

(Speed)
β2

(Speed2)
β3

(Height)
β4

(Weight)
β5

(Age)
β6

(Gender)

Heel contact

Timing (t) 0 - - - - - -
Angle (y) −18.4403 - −0.3887 10.1799 - 0.1908 -
Vel. (ẏ) −0.8710 0.7016 −0.0875 - - - 0.0664
Acc. (ÿ) −0.5245 0.2494 - - - - 0.0490

Max. stance

Timing (t) 11.643 - - - - - -
Angle (y) −2.2525 - 0.4534 - - 0.2254 2.1273
Vel. (ẏ) 0 - - - - - -
Acc. (ÿ) −0.3389 - - 0.3752 −0.0074 −0.0017 0.0743

Min. stance

Timing (t) 32.4633 - - - - 0.1521 1.9152
Angle (y) 16.7077 - - - −0.2192 - 3.2653
Vel. (ẏ) 0 - - - - - -
Acc. (ÿ) 0.1067 0.0202 - −0.0980 0.0012 - -

Max. ẏ swing

Timing (t) 77.1875 −7.9539 1.1427 - - - −0.4295
Angle (y) 37.1826 1.4471 - - −0.0980 - -
Vel. (ẏ) 3.2140 - - - 0.0061 - −0.1909
Acc. (ÿ) 0 - - - - - -

Max. swing

Timing (t) 81.719 −5.0453 0.8888 - - - -
Angle (y) 52.1027 4.7823 - - −0.1198 - -
Vel. (ẏ) 0 - - - - - -
Acc. (ÿ) −0.9725 0.0768 - 0.1608 - 0.0014 0.0297

Min. ẏ swing

Timing (t) 88.3116 - 0.1551 - - - -
Angle (y) 17.7490 - - - - 0.1429 -
Vel. (ẏ) −3.9013 −0.4602 - - 0.0143 0.0098 -
Acc. (ÿ) 0 - - - - - -

TABLE XV: Regression equations for the parameter values of the key events of lateral pelvis movement.

Lateral pelvis movement

Key Event Parameter β0

(Intercept)
β1

(Speed)
β2

(Speed2)
β3

(Height)
β4

(Weight)
β5

(Age)
β6

(Gender)

Max. ẏ

Timing (t) 12.7882 - - - - −0.0266 -
Angle (y) 6.9961 - - - - −0.0735 −1.7287
Vel. (ẏ) 7.1648 −0.7182 - −2.0033 0.0210 −0.0142 -
Acc. (ÿ) 0 - - - - - -

Max.

Timing (t) 26.1353 - - 5.6096 - - -
Angle (y) 60.1065 -9.2432 - - - - -
Vel. (ẏ) 0 - - - - - -
Acc. (ÿ) −0.1353 - 0.0031 - - - -

Min. ẏ

Timing (t) 62.9191 - - - - −0.0243 -
Angle (y) 4.2084 - - - −0.1631 0.0582 3.1179
Vel. (ẏ) −4.7921 0.7730 - - - - -
Acc. (ÿ) 0 - - - - - -

Min.

Timing (t) 75.8100 - - 5.6217 - - -
Angle (y) −60.1309 9.2839 - - - - -
Vel. (ẏ) 0 - - - - - -
Acc. (ÿ) 0.0387 - −0.0018 - 0.0014 - -0.0212
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APPENDIX F
EXPERIMENTAL RESULTS

A. Treadmill Speed Settings of Trials

The final treadmill speeds for each trial of the participants are summarized in Table XVI. The data indicates that, for the
majority of participants, no adjustment to the treadmill speed was necessary, indicating that the predicted gait cycle time for
the gait patterns matched the desired speed of 1.8 kph. However, some participants gave feedback suggesting an increase in
treadmill speed to minimize discrepancies between treadmill speed and foot movements.

TABLE XVI: Overview of adjusted treadmill walking speeds for each participant and trial condition (predicted, standard, and random).

Participant Final walking speed (kph)
Predicted Standard Random

1 1.8 1.8 1.8
2 1.8 1.8 1.8
3 1.8 1.8 1.8
4 2.0 2.0 2.0
5 1.8 1.8 2.0
6 1.8 1.8 1.8
7 2.0 1.8 1.8
8 2.0 2.0 2.0
9 1.8 1.8 1.8
10 1.8 1.8 1.8

B. Questionnaire and Actuator Data Results

This section presents the results of questionnaires and recorded actuator data collected from various subjects, using boxplots
for illustration. The outcomes are displayed across different experimental conditions (standard, predicted, and random patterns),
and for the different trial stages (T1, T2, T3). Specifically, the questionnaire results are categorized and presented in the following
manner: Interest/Enjoyment (IMI) and Passiveness are depicted in figure 10, Comfort in figure 11, and Naturalness in figure 12.
Additionally, the distribution of participants’ rankings for each gait pattern and experimental position is displayed in figure 13.

The analysis of the actuator data is also visualized through boxplots, comparing outcomes across the same experimental
conditions and trial stages. The specific metrics investigated include: the Mean Absolute Error (MAE) of the actuators’ positions
in figure 14, and the Mean Absolute Force at the knee actuators in figure 15.
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Fig. 10: Boxplots displaying the questionnaire outcomes for Interest/Enjoyment (IMI) and user Passiveness during trials, evaluated on a
7-point Likert scale (see appendix I. Each category’s outcome is the average of several related questions. The data is organized into separate
boxplots to provide a detailed view: for each category, the left plot shows the results across different experimental conditions (standard,
predicted, and random pattern), and the right plot shows the outcomes at each trial stage (T1, T2, T3).
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Fig. 11: Boxplots displaying the questionnaire outcomes related to Comfort, with each question analyzed separately, evaluated on a 7-point
Likert scale (see appendix I. The data is organized into separate boxplots to provide a detailed view: for each category, the left plot shows
the results across different experimental conditions (standard, predicted, and random pattern), and the right plot shows the outcomes at each
trial stage (T1, T2, T3).
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Fig. 12: Boxplots displaying the questionnaire outcomes related to Naturalness, with each question analyzed separately, evaluated on a
7-point Likert scale (see appendix I. The data is organized into separate boxplots to provide a detailed view: for each category, the left plot
shows the results across different experimental conditions (standard, predicted, and random pattern), and the right plot shows the outcomes
at each trial stage (T1, T2, T3).

Fig. 13: Distribution of rankings for each gait pattern and experimental position across ranking categories: overall preferred gait pattern
(left), most comfortable gait pattern (middle), and most natural gait pattern (right). The top plots illustrate the distribution of rankings for
each gait pattern, while the bottom plots detail the distribution for each experimental position.
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Fig. 14: Boxplots displaying the Mean Absolute Error( MAE) in the actuators’ positions, i.e. the error between the reference and measured
pattern at each actuator. The data is organized into separate boxplots to provide a detailed view: for each actuator, the left plot shows the
MAE across different experimental conditions (standard, predicted, and random pattern), and the right plot shows the MAE at each trial
stage (T1, T2, T3).
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Fig. 15: Boxplots displaying the Mean Absolute Force at the left and right knee actuators. The data is organized into separate boxplots to
provide a detailed view: for each actuator, the left plot shows the Mean Absolute Force across different experimental conditions (standard,
predicted, and random pattern), and the right plot shows the Mean Absolute Force at each trial stage (T1, T2, T3).

C. Open-ended Question Results

The results of the open-ended questionnaire are organized into the tables below: Table XVII contains responses related to
discomfort and unusual sensations; Table XVIII contains responses related to aspects influencing comfort or discomfort; and
Table XIX includes additional thoughts or comments provided by participants.

TABLE XVII: Participant responses regarding the open-ended question about discomfort and unusual sensations, sorted by gait patterns
(standard, predicted, random).

Participant

Open-ended question:
Did you experience any discomfort in terms of physical strain or unusual sensations during the walking session with the Lokomat?
If so, please specify the level of discomfort as well as the areas of discomfort, e.g., on which cuffs, joints, or other body parts.

Standard Predicted Random
1 ”I felt like there was some weight on my

feet which made it difficult to remain pas-
sive. Discomfort level: 6/10.”

”I felt discomfort with how much weight
was applied on my feet. Because of this
it was hard to remain passive. Discomfort
level: 7/10.”

”I felt some discomfort at the hips (6/10).”

2 ”Cuffs at the ankles still uncomfortable
as [during the random pattern]. Much less
strain to keep foot position”

”Very similar to [standard pattern].” ”Yes, the machine was too low while walk-
ing and my feet did not have room to go
back. At the same time if the machine was
higher the ankle cuffs pressed too much
against my calf. Also having to keep my
feet as horizontal as possible was tiring.”

3 ”I still felt strain around the ankle cuffs
seemingly pushing my calf muscles up, al-
though it was less compared to the last trial.
I also felt some chafing around the hip bone
this time; minor but there”

”Ankle cuffs keep pushing the muscles of
my calves up (on and off). This creates a
kind of cramped feeling sometimes. Also by
nature of the device it feels a little as if the
space between my thighs is larger than it
normally would be (but this may be due to
the fittings there).”

”This pattern resulted in the least chafing for
me, if none, but the experiment progressed,
the excessive hip swaying began to hurt at
the hip bone. Also the ankles started to chafe
again as everything progressed.”

4 - - ”Yes, a slight discomfort in the knees.”
5 ”Yes, particularly uncomfortable on the

hips.”
”Slight discomfort at ankles (especially
left).”

”Light discomfort on calf cuff. Medium
discomfort at ankle and knee.”

6 - ”My muscles got a bit sour since you relax
your muscles except for the calves because
of the ankle movements.”

”No, this was much better compared to the
first two gait patterns. However, this could
also be because I got used to it.”

7 - - -
8 ”Ankle cuffs a bit uncomfortable.” ”Ankle cuffs uncomfortable.” ”Right ankle cuff was sometimes a bit un-

comfortable.”
9 ”I felt slight discomfort in my ankles when

walking with the exoskeleton. The joints
were moved in an unnatural position.”

”I experienced some discomfort in my legs
around the cuffs, because my legs were
pushed beyond natural range of motion.”

”No physical strain.”

10 - ”Mild discomfort on the outer part of my
feet when landing after every step.”

-
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TABLE XVIII: Participant responses regarding the open-ended question about aspects promoting comfort or discomfort, sorted by gait
patterns (standard, predicted, random).

Participant

Open-ended question:
Were there any specific aspects of the gait pattern that contributed to your comfort or discomfort?

If so, please specify. For example, consider aspects such as an unusual movement of a particular joint, a small/ large range of
motion, jerking of the trajectory, or unsymmetrical gait pattern between left and right leg.

Standard Predicted Random
1 ”My feet were moving too close to each

other which was unnatural for me.”
”Again I felt like my feet were too close to
each other during the trial.”

”I felt like my feet were a bit too close
to each other when walking, which was
unnatural for me.”

2 ”Acceleration still a bit abrupt.” (referred to
random pattern)

”I felt the accelerations were less abrupt
compared to the other two conditions.”

”I felt the forward acceleration phase was
unnaturally fast.”

3 ”My hips were still swaying quite far side-
ways. This time it was less problematic
because the movement was less so and my
body partially countered the weight distri-
butions during. This made it feel less like
my body was being thrown left to right by
the hips.”

”Too felt my hips were swaying outside
the range my legs (or really where my feet
are positioned on the ground), creating a
sensation as if I would fall [if] I [have] to
walk like this outside of the device.”

”There was once again excessive hip sway-
ing, the worst of the three conditions.”

4 - - ”Not sure about the source but my knees felt
rather stiff.”

5 ”The trajectory was moving my waist left
and right, making the hip movement less
pleasant and natural.”

”My left leg was pushed a bit towards the
right, making the left ankle acting a bit
shaky at the end of the motion.”

”Yes, my legs were positioned more forward
than their natural position, this implied bet-
ter movement for the hip but worse for the
knee. It was difficult to raise the tip of the
foot enough.”

6 ”The gait pattern was somewhat counterin-
tuitive since it felt like I wasn’t walking in
a straight line.”

”The lower limb movement was ok, but my
feet were towards the centre. Also, hips are
moved too much towards the outside →
uncomfortable!”

”Now, I know why it was uncomfortable;
feet are too distant from each other, so
you have to compensate with your hips →
uncomfortable.”

7 ”This time my legs seemed to move from
the outside to the inside when extending the
leg to the front. This felt more similar to my
usual gait.”

”I felt like the legs were sometimes moving
from the inside to the outside during leg
extension to the front. Depending on if I
was leaning more to the right or left it was
unsymmetrical.”

”The hips were moving less from side to
side in my opinion this made it more com-
fortable. But the legs were moving more
to the outside when extending the leg. This
was a bit unnatural.”

8 ”Also a lot of lateral hip movement.” ”Also lateral hip movement [uncomfort-
able].”

”Too much lateral movement of my hips felt
funny.”

9 ”The gait pattern moved my feet in an
unnatural movement at the heel strike.”

”My discomfort was high because there was
an unnatural motion for my legs to walk
with.”

”Comfort in my ankles was higher due to
smaller movement/ slower jerking motions
compared to 1st trial [standard pattern].”

10 ”I felt this time the steps were wider and
the trajectory the foot followed from start to
end of the step was straighter, which made
it more similar to my gait.”

”The trajectory of my knees/ankles felt un-
natural because it went in and out before
landing the step.”

”Ankles were pushed inwards, which made
it feel unnatural. Also, knee movement had
some overshoot and then retrieved a bit
before landing the feet.”
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TABLE XIX: Participant responses regarding the open-ended question on additional thoughts or comments, sorted by gait patterns (standard,
predicted, random).

Participant
Open-ended question:

Would you like to share any other thoughts or comments?
Standard Predicted Random

1 - - -
2 - - -
3 - - ”1) Despite the points above, the legs move-

ment & time felt the most natural for this
[trial]. The legs felt too spread & the hip
swaying felt like I would fall. The legs
movements overall felt quite natural some-
how.
2) Sometimes the machine movements felt
a little odd during this trial, as if it would
speed up very briefly, it did this maybe
twice so it might not be anything (just an
observation).”

4 ”The hip movement felt a bit unusual, per-
haps slightly exaggerated.”

”It wasn’t discomfort per se but the hip
movement felt over-exaggerated.”

-

5 - ”I felt that my weight was placed more on
the right leg, like a 60-40 subdivision of the
weight.”

-

6 - ”Because of the unnatural movements, I
really had to focus on what I was doing
instead of letting go and naturally walk.”

-

7 - - -
8 - - -
9 ”Rest of gait pattern as moved natural.” ”I think the unnatural movements were con-

tributing to the strain/discomfort around the
cuffs, but I am not sure.”

-

10 - - -

D. Overshoot of Pelvis Actuator

Figure 16 illustrates the pelvis actuator’s overshoot in one subject’s trial; however, this phenomenon was observed across
multiple subjects. The overshoot causes a slightly larger lateral pelvis movement.

Fig. 16: Recordings of a subject showing slight actuator overshoot in the lateral pelvis movement trajectory compared to the desired trajectory.
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APPENDIX G
COMPARSION OF OFFSET AND AMPLITUDE VARIABILITY BETWEEN DATABASES

This appendix presents a comparative analysis of the gait databases from Fukuchi et al. [1], which provided the basis for
the regression models in this study, and Theunissen et al. [6], another publicly available gait database. The aim is to explore
the origins of the observed variability within Fukuchi’s dataset, investigating whether the variability of Fukuchi’s database is
comparable to that of another database.

A. Overview of Datasets

Section II-B1 of the main paper provides detailed information about the gait database developed by Fukuchi [1]. Conversely,
the subsequent paragraph delves into the specifics of the Theunissen database [6].

In the Theunissen database [6], participants walked on the treadmill, similar to the protocol used by Fukuchi. However, one
notable difference in the experimental set-up was that the participants in Fukuchi’s study walked barefoot, while the participants
in Theunissen’s study wore standardized shoes designed to closely mimic the dynamics of barefoot walking. The database
includes pre-processed trajectories of joint angles for each subject at each speed level. The joint angle movements, including
knee flexion/extension, hip flexion/extension, and hip abduction/adduction, are presented as time-normalized ensemble averages
for each participant.

A comparative overview of the databases by Fukuchi and Theunissen is shown in Table XX, highlighting differences in
anthropometric and demographic data of the subjects, as well as the range of walking speeds included. These speeds are
expressed as percentages of the subject’s self-determined comfortable walking speed. Furthermore, for a more differentiated
comparison, a subset of the Fukuchi database focusing on younger participants is included. This subgroup was selected because
its demographic composition better matches that of the subjects in Theunissen’s database, allowing a more direct comparison
between the two data sets.

TABLE XX: Gait Database Characteristics Comparison

Parameter Fukuchi Fukuchi (Young Group) Theunissen
Subject number 42 (24 male/ 18 female) 24 (14 male/ 10 female) 18 (9 male/ 9 female)
Age (years) 42.64 ± 18.63 27.6 ± 4.4 24.8 ± 3.3
Height (m) 1.67 ± 0.11 1.711 ± 0.105 1.71 ± 0.081
Weight (kg) 67.72 ± 11.24 68.4 ± 12.2 65.9 ± 8.1
Speeds 40%, 55%, 70%, 85%, 100%, 115%,

130%, and 145% of the self-selected walk-
ing speeda

40%, 55%, 70%, 85%, 100%, 115%,
130%, and 145% of the self-selected walk-
ing speeda

60%, 80%, 100%, and 120% of the self-
selected walking speeda

aSelf-paced walking speed corresponds to the comfortable walking speed of a person.

To ensure a valid comparison of the offset and amplitude variability between the two databases, comparisons were conducted
among specific speed-level groups of the two datasets. Because the two databases contain different speed levels, closely aligned
speed levels were selected for the comparison. Table XXI presents an overview of the mean speeds and their corresponding
standard deviations for the various speed levels being compared.

TABLE XXI: Comparison of Mean Walking Speeds and Standard Deviations Across Studies

Speed levela Fukuchi Fukuchi (Young Group) Theunissen
Mean speed ±
Std. deviation
(kph)

100% 4.48 ± 0.582 4.48 ± 0.549 4.63 ± 0.539
85%b/80%c 3.81 ± 0.493 3.81 ± 0.467 3.76 ± 0.446
70%b/60%c 3.14 ± 0.410 3.14 ± 0.388 3.00 ± 0.395

aPercentage of self-paced walking speed. bSpeed level of Fukuchi database. cSpeed level of Theunissen database.

B. Metrics

The offset standard deviation σoffset, defined in equation 8, is used as a metric to quantify the variability of gait patterns in
the two databases in terms of offset. It provides a measure of the spread or dispersion of offset values around the mean offset.

σoffset =

√∑N
i=1(oi − ō)2

N
,

Where: σoffset is the offset standard deviation,

oi represents the offset of each subject’s trajectory,

(where oi is the mean value across the whole gait cycle),

ō is the mean (average) offset across all subjects’ trajectories, and

N is the total number of subjects in the dataset.

(8)
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The amplitude standard deviation σamplitude, defined in equation 9, is used as a metric to quantify the variability of gait
patterns in the two databases in terms of amplitude. It provides a measure of the spread or dispersion of amplitudes around
the mean amplitude.

σamplitude =

√∑N
i=1(ai − ā)2

N
,

Where: σamplitude is the amplitude standard deviation,

ai represents the amplitude of each subject’s trajectory,

ā is the mean (average) amplitude across all subjects’ trajectories, and

N is the total number of subjects in the dataset.

(9)

C. Results

Table XXII presents the results of offset standard deviation analyses for the different gait pattern databases: Fukuchi, Fukuchi
(Young Group), and Theunissen, across various walking speeds. These results show distinct differences among the database
groups. The full Fukuchi database, which includes all participants, reveals a higher offset standard deviation compared to
its subgroup of only young participants. Furthermore, when comparing the Fukuchi-Young group subset with the Theunissen
database, the offset standard deviations for hip abduction/adduction and knee flexion/extension show similar results. However, a
larger discrepancy is observed in hip flexion/extension, where the Fukuchi-Young group demonstrates a notably higher standard
deviation. Specifically, this group has a higher offset standard deviation of up to 2.92◦ higher at 100% comfortable walking
speed compared to the Theunissen database. For other walking speeds, the discrepancies are slightly smaller, namely 2.59◦ at
85%/80% and 2.64◦ at 70%/60% of comfortable walking speed.

TABLE XXII: Comparison of the Fukuchi, Fukuchi (Young Group), and Theunissen gait pattern databases in terms of offset standard
deviation across different walking speeds.

Walking speed Database Offset standard deviation
Hip abduction
(deg)

Hip flexion
(deg)

Knee flexion
(deg)

Lateral pelvis
movement (mm)

Fukuchi 2.50 7.33 4.08 0.05
Fukuchi (Young) 2.33 6.57 3.01 0.05100% comfortable

speed Theunissen 2.14 3.65 2.90 -
Fukuchi1 2.52 7.68 4.71 0.075
Fukuchi (Young)1 2.23 6.81 3.50 0.08385%1/ 80%2

comfortable speed Theunissen2 2.19 4.22 3.12 -
Fukuchi1 2.57 7.86 4.92 0.051
Fukuchi (Young)1 2.28 6.88 4.08 0.0970%1/ 60%2

comfortable speed Theunissen2 2.25 4.24 3.68 -

Table XXIII presents the results of amplitude standard deviation analyses for the different gait pattern databases: Fukuchi,
Fukuchi (Young Group), and Theunissen, across various walking speeds. Similarly to the offset variability, these results show
distinct differences among the database groups. The full Fukuchi database, which includes all participants, reveals a higher
amplitude standard deviation compared to its subgroup of only young participants. Again, when comparing the Fukuchi-
Young group subset with the Theunissen database, the amplitude standard deviations for hip abduction/adduction and knee
flexion/extension show more similar results. A larger discrepancy is observed in hip flexion/extension, but this time the Fukuchi-
Young group demonstrates a notably lower standard deviation. Specifically, this group has a lower amplitude standard deviation
of up to 1.82◦ lower at 100% comfortable walking speed compared to the Theunissen database. For other walking speeds, the
discrepancies are slightly smaller, namely 1.49◦ at 85%/80% and 1.38◦ at 70%/60% of comfortable walking speed.

TABLE XXIII: Comparison of the Fukuchi, Fukuchi (Young Group), and Theunissen gait pattern databases in terms of amplitude standard
deviation across different walking speeds.

Walking speed Database Amplitude standard deviation
Hip abduction
(deg)

Hip flexion
(deg)

Knee flexion
(deg)

Lateral pelvis
movement (mm)

Fukuchi 4.07 4.07 4.35 9.72
Fukuchi (Young) 3.63 2.54 3.79 8.86100% comfortable

speed Theunissen 3.81 4.36 3.77 -
Fukuchi1 3.74 3.90 4.78 10.82
Fukuchi (Young)1 3.35 2.43 4.24 8.5785%1/ 80%2

comfortable speed Theunissen2 3.77 3.92 4.33 -
Fukuchi1 3.53 4.32 5.74 13.56
Fukuchi (Young)1 3.24 2.85 4.88 11.5170%1/ 60%2

comfortable speed Theunissen2 3.90 4.23 5.64 -
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D. Discussion

The comparison of the Fukuchi and Theunissen databases shows distinct variations in offset and amplitude especially for
hip flexion/extension, with the Fukuchi database showing a higher offset standard deviation and the Theunissen database
showing a greater amplitude standard deviation. The differences in offset and amplitude for hip abduction/adduction and knee
flexion/extension are less pronounced between the two databases.

These discrepancies can be attributed to several factors, such as calibration differences in measurement devices, variations in
data collection protocols, and differences in data filtering and analysis algorithms. Moreover, the diversity in anthropometrics
and demographics within each study’s population influences the kinematic variations. It is observed that gait databases covering
a wider range of anthropometric and demographic profiles, such as the Fukuchi database when considering its full scope versus
a subset of young subjects, show increased variability in kinematic data.

These observations emphasize the challenge of comparing gait analysis results from different studies due to methodological
differences in data collection and population diversity.
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APPENDIX H
INFORMED CONSENT FORM

Informed Consent Form – Version 13-07-2023
Development and Validation of an Individualized Gait Pattern Generator for the Lokomat® Exoskeleton

Participant Information
You are being invited to participate in a research study titled ”Development and Validation of an Individualized Gait Pattern
Generator for the Lokomat® Exoskeleton”. This study is being performed at the Motor Learning and Neurorehabilitation
(MLN) Laboratory at the TU Delft, Cognitive Robotics Department.

Purpose
The purpose of this research study is to evaluate the perceived comfort, satisfaction, and naturalness of walking with different
types of gait patterns in a lower-limb exoskeleton, namely a modified version of the Lokomat® exoskeleton (Hocoma,
Switzerland). The study aims to gain better understanding of the necessity for individualized gait patterns during lower-limb
rehabilitation training with robotic devices. The study will take approximately 60 minutes to complete.

Procedure
In this experiment, you will wear a modified Lokomat® exoskeleton, a lower-limb robotic device of Hocoma, Switzerland,
which has been further modified at ETH Zurich (Zurich, Switzerland), to enhance hip and pelvis movements. Your task will be
to experience walking with the exoskeleton, whereby the exoskeleton will do the actual walking and guide your lower limbs
to mimic various gait patterns. You are expected to remain passive within the exoskeleton, letting it direct your movements.
Multiple trials will be conducted, with a rest period after each trial, and some questionnaires will also be completed. The
robot will be operated using an assistive controller to mimic a certain gait pattern. During the experiment, your legs will
be fastened to the orthosis through cuffs attached to thighs and shanks. In addition, you will also be wearing a bodyweight
support harness for extra safety to ensure you’re protected from falls to the front or side. An experimenter will always be
present, providing specific instructions before and during the experiment. You can withdraw at any time during the experiment.

Eligibility
The intended population of this research study are neurologically healthy participants who do not have orthopedic disorders.
If you have a neurologic condition or orthopedic disorder then unfortunately you are not eligible to participate. Furthermore,
the study is limited to participants between the ages of 18 and 60. These eligibility criteria have been established to ensure
the safety and well-being of all participants.

Collected Data
For this experiment, we will collect your age, gender, body height, and body weight. We will use such parameters to generate
an individualized gait pattern tailored to you. Additionally, we will record signals from the robot kinematic and force/torque
interaction sensors throughout the experiment. Also, during and after the experiment, you will be asked to complete some
questionnaires and share your feedback about the user experience with the robot. Your personal data and answers will remain
confidential. The collected data will be pseudo-anonymized immediately after collection and can only be identified via a
separately stored link. Before the study is published, this link will be destroyed to ensure data anonymization. The collected
data will be used to further develop the device, create reports, publications, presentations, and support teaching.

Risks
Because the device you will test is a prototype, it cannot be excluded that a failure or malfunction occurs, potentially resulting
in discomfort or minor injury. Additionally, the assistive controller involves haptic forces aligning your lower limbs with
the intended pattern, possibly resulting in mild discomfort. To ensure participant comfort and the natural execution of the
implemented gait pattern, a preliminary test will be conducted to assess limb mobility. During the experiment, you may
experience minor tiredness in your legs, mitigated by several pauses between trials. Besides that, no physical, emotional, or
reputational risks are expected. Risks of minor injury during the interaction with the robot have been mitigated by following
safety procedures following the TU Delft safety protocol. There is a risk of Covid-19 transmission through equipment surfaces
or face-to-face encounters, mitigated by disinfection of the robot.

Voluntary Participation
Participation in this study is entirely voluntary, and you can withdraw at any time during the experiment. You are free to omit
any questions. You have the right to request access to and/or deletion of your collected data until either the publication of the
study or a maximum period of one month after participation, whichever comes first.
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APPENDIX I
QUESTIONNAIRE

Development and Validation of an Individualized Gait Pattern
Generator for the Lokomat® Exoskeleton

Subject Information

Participant ID:
Gender (Male, Female, Other):
Age:
Height (in cm):
Weight (in kg):
Thigh length (in cm):
Shank length (in cm):
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Questionnaire – Test condition 1/2/3

Please make sure to read the questions carefully and answer them truthfully to the best of your ability. If any question is
unclear, feel free to ask the experimenter for clarification. Please note that the questions should be answered based on walking
at the final speed. The acceleration and deceleration phase should not be considered.

Category: Interest/ Enjoyment from the Intrinsic Motivation Inventory (IMI) [45]1

Category: Passiveness (Self-designed questions)1

1Text in cursive was not part of the original questionnaire.
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Questionnaire – Test condition 1/2/3

Category: Comfort (Self-designed questions)1
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Questionnaire – Test condition 1/2/3

Category: Naturalness (Self-designed questions)1

Open-ended questions:
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Final Questionnaire (After All Conditions)

Ranking:
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