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Particle filter–based data assimilation
in dynamic data-driven simulation:
sensitivity analysis of three critical
experimental conditions

Yilin Huang1 , Xu Xie2, Yubin Cho3 and Alexander Verbraeck1

Abstract
Data assimilation (DA) is a methodology widely used by different disciplines of science and engineering. It is typically
applied to continuous systems with numerical models. The application of DA to discrete-event and discrete-time sys-
tems including agent-based models is relatively new. Because of its non-linearity and non-Gaussianity, the particle filter
(PF) method is often a good option for stochastic simulation models of discrete systems. The probability distributions of
model runs, however, make it computationally intensive. The experimental conditions therein are understudied. This
paper studied three critical conditions of PF-based DA in a discrete event model: (1) the time interval between two con-
secutive DA iterations, (2) the number of particles, and (3) the actual level and perceived level of measurement errors
(or noises). The study conducted identical-twin experiments of an M/M/1 single server queuing system. The ground truth
is imitated in a stand-alone simulation model. The measurement errors are superimposed so that the effect of the three
conditions can be quantitatively evaluated in a controlled manner. The results show that the estimation accuracy of such
a system using PF is more constrained by the choice of time intervals than the number of particles. An under estimation
of measurement errors produces worse state estimates than an over estimation of errors. A correct perception of the
measurement errors does not guarantee better state estimates. Moreover, a slight over estimation of errors results in
better state estimates, and it is more responsive to abrupt system changes than an accurate perception of measurement
errors.
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1. Introduction

Data assimilation (DA) is a methodology that combines

observational data and the underlying dynamical principles

that govern a system to produce the best estimate (according

to some criteria) of the evolving state of that system.1–3 It is

widely used by different disciplines of science and engineer-

ing (e.g., hydrology, meteorology, geophysics, and petro-

leum engineering) for state estimation and optimal control.1

DA in its various forms has typically been applied to contin-

uous systems with numerical models.4–7 The application of

DA to discrete event systems (DESs) and discrete time sys-

tems (DTSs) including agent-based models (ABMs) is a

recent development.

For example, Lloyd et al.8 used an urban crime ABM

to generate ground truth data which was then assimilated

into a discretized partial differential equation (PDE)

model. The PDE was converted from the original ABM8

to overcome the computational demand of ABM. One of

the first publications that explains how to use ensemble

Kalman filter (EnKF) to calibrate simple ABM for social

simulation is by Ward et al.9 They aim to present the

1Faculty of Technology, Policy and Management, Delft University of

Technology, The Netherlands
2College of Systems Engineering, National University of Defense

Technology, China
3Samsung Electronics Benelux B.V., The Netherlands

Corresponding authors:

Yilin Huang, Faculty of Technology, Policy and Management, Delft

University of Technology, Jaffalaan 5, 2628 BX, Delft, The Netherlands.

Email: y.huang@tudelft.nl

Xu Xie, College of Systems Engineering, National University of Defense

Technology, Changsha, China.

Email: x.xie@hotmail.com

https://doi.org/10.1177/00375497221143988
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497221143988&domain=pdf&date_stamp=2022-12-26


method to ABM practitioners who are unfamiliar with

DA. They also illustrate to DA experts the value of using

DA (particularly sequential DA) in ABMs of complex

social systems, and the new challenges these types of

models present. Similarly, a DA framework for DES was

published by Hu and Wu10 who applied particle filters

(PFs) to a roadway modeled as a one-dimensional cellular

space.

Different DA methods have been reported extensively.

For example, Kalman filter (KF),11 extended KF (EKF),12

and EnKF13 are known for their efficiency. But they often

are not applicable to DES, DTS, and ABM because of the

requirement for linearity of model state and Gaussian

errors.14 In addition, DES and ABM of real-world applica-

tions are typically stochastic and high dimensional. For

these reasons, the PF method,11,15 which approximates the

posterior distribution by Monte Carlo samples (also called

particles), is a good alternative (in place of classical DA

methods) for non-linearity and non-Gaussianity. However,

the probability distributions of the runs (also called repli-

cations) of the DES and ABM models make the PF-based

sequential DA computationally highly expensive.8

1.1. Background

The performance of sequential DA is strongly influenced

by conditions such as the time interval between two con-

secutive iterations (hereafter simply time interval), sample

sizes, and measurement errors. Surprisingly, not many

publications studied and quantified the effect of such

important conditions so far.

In a survey of DA in surface water quality modeling,

Cho et al.16 stated that their domain utilized mainly three

DA methods: the variational DA, EKF, and EnKF. With

EKF-based DA for algal bloom prediction,17 longer update

time intervals resulted in lower accuracy. Contradictory

results also exist. For example, the frequency of EnKF-

based water content DA is investigated for soil hydraulic

models.18 The results show that DA with high update fre-

quencies does not provide better results than those

obtained using low frequencies. An EnKF-based DA pro-

cedure for water quality forecasting is developed by Kim

et al.19 The authors suggested that the time interval (they

called it window size) should be chosen carefully: if the

window size is too small, the procedure works largely as a

filter rather than a smoother, which reduces performance;

if the window size is too large, some of the observations

being assimilated may be too old and/or redundant to be

informative.

Adaptive DA methods are also reported. For example,

a (frequency) adaptive EnKF-based method is developed

for hydrodynamic simulation20 which reduced computa-

tion and increased error reduction. Besides works that used

KF and its variations, PF is also coupled with a hydro-

biogeochemical model using high-frequency data.21

However, how the change of the intervals and the number

of particles can affect the results are not studied.21

In general, the literature on sensitivity analysis of DA

conditions is not as rich as the literature on various DA

methods and their applications. When such results are

reported, as those mentioned above, they are often in the

context of continuous systems (and numerical models). It

is unknown whether such results are also applicable to PF-

based DA for discrete systems.

1.2. DA for discrete systems

The sequential simulation of a DES, DTS or ABM can be

denoted as a discrete time process, given by:

sk = fk(sk�1)+ nk�1, k = 1, 2, . . .

where fk is a (possibly non-linear) function of the state

vector sk�1, and nk�1 represents a system noise process.

This equation is referred to as a system model or simula-

tion model which describes the state evolution of a system

under interest. The state predicted by the system model is

related to the measurement data by a measurement model,

given by:

mk = gk(sk)+ ek , k = 1, 2, . . .

where gk is a (possibly non-linear) function that maps the

state sk to the measurement mk , and ek represents a mea-

surement noise process. Both the system model and mea-

surement model are discrete time models that assume a

stepwise mode of execution, and the length of a time inter-

val (DT ) is largely determined by how often the sensor

data are collected.

The objective of sequential DA is to estimate the condi-

tional distribution of all states up to time k given all avail-

able measurements up to k. That is, p (s0:k jm1:k), where
s0:k = fsi, i= 0, 1, 2, . . . , kg and m1:k = fmj, j= 1, 2,
. . . , kg. PF approximates the posterior distribution

p (s0:k jm1:k) by a set of particles fsi
0:kg

N
i= 1 and their associ-

ated weights fwi
kg

N
i= 1. If the number of particles (N ) is

sufficiently large, the posterior can be approximated to an

arbitrary accuracy.11,15,22

For DES, sensitivity analysis of PF-based DA condi-

tions and related issues are particularly important since

applying PF to DES can be very beneficial but also compu-

tationally intensive. More research is needed to understand

better how to use PF for applications such as social simula-

tion and socio-technical systems simulation. For example,

people’s location estimation in smart buildings,23,24 house-

hold energy consumption behavior,25,26 vehicle trajectory

reconstruction,27 and traffic density estimation.28

Those simulation models often provide detailed infor-

mation about system states. But they are not typically data

driven in the sense that the models are generally developed

and calibrated (by human modelers) using historical data
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before simulation.9,29 The data availability of such systems

had been poor but is becoming greater with the advance of

cheaper sensing technologies and pervasive use of smart

devices such as smart meters and smartphones. This gave

rise to the so-called dynamic data-driven simulation in

DES, DTS, and ABM communities. The more available

data offer new opportunities to complement and empower

traditional simulation modeling approaches which have

limitations in situational awareness and adaptation in a

highly evolving socio-technical environment.9,10,30,31

In this context, dynamic data-driven simulation can be

explored in several directions, e.g., to automatically gener-

ate model structure aggregating predefined model compo-

nents;32,33 to discover simulation models and their

generative behaviors in an automated or semi automated

way;34 to assimilate real-time data into (online) simulation

to support real-time decision-making.10,35 There is a rich

body of knowledge with which experts from different

domains using diverse simulation modeling paradigms and

methods can collaborate and learn from one another.

However, reported cases and synergies are rare in the

literature.9

Some examples can be found with regard to the use of

PF for discrete systems.9,10,36,37 The effect of conditions in

PF such as modeling errors, measurement errors, and num-

ber of particles are studied with DES transportation mod-

els.27,38 The results show that the estimation accuracy of

PF is robust to error assumptions of both the model and

measurement data in the application. The accuracy

increases as the error magnitude decreases, but it is far

from being proportional. The estimation accuracy also

improves as the number of particles increases due to

increased state-space coverage. Similar findings are

reported in a few other studies.24,28,35

In this paper, we aim to further study the experimental

conditions of PF applied to DES. The focus is on three

common and critical conditions: the time interval, the

number of particles, and the measurement errors. We study

their influences on estimation accuracy with respect to

computational demand. Sensitivity analysis of the time

interval and number of particles in the PF method com-

monly used a one-factor-at-a-time approach.27,38 With this

approach as a starting point, we explore the mutual influ-

ence of the two conditions. In addition, we experiment

with the actual level and perceived level of measurement

errors. The actual level of measurement errors refers to the

level of noises added to the ‘‘ground truth’’ in order to imi-

tate noisy measurement data. Because the actual measure-

ment noises are often unknown in real-world situations,

we distinguish the concept of perceived level of measure-

ment errors in our experiments. It is the (assumed) level of

measurement noises used for posterior computation in the

DA sampling step.

The main contribution of this paper can be summarized

as follows. First, we quantitatively analyze the effect of

time intervals and the number of particles in different

experimental settings of PF-based sequential DA for DES.

Second, the joint influence of the time interval and the

number of particles is experimented and analyzed. These

two conditions are often mutually restrictive because of

limited computational time between two consecutive DA

iterations. Third, the actual level of measurement errors is

imitated such that it allows an investigation of the differ-

ences between the actual and perceived measurement

errors. We analyze their effects on the estimation accu-

racy, discuss the implications, and give recommendations

on future research directions. This paper is an extended

version of Cho et al.39

2. Methodology

This study conducted identical-twin experiments of a dis-

crete event M=M=1 single server queuing system with

balking. The goal is to study three experimental conditions

of PF-based DA in a controlled manner: (1) the time inter-

val between two consecutive DA iterations, (2) the number

of particles, and (3) the actual level and perceived level of

measurement errors (or noises). The true state of a real

system is often uncertain for DA applications in practice

due to uncertain measurement errors. In the experiments, a

simulation model is used to imitate the real system so that

perfect ‘‘ground truth’’ and measurement data can be

obtained. Noises are then added to superimpose errors to

the measurements used for DA. The true state of ‘‘the real

system’’ is not revealed to the DA model. This way, we

can accurately quantify the difference between the true

system state, the noisy measurements, and the effect of

perceived errors thereof. We evaluate the three experimen-

tal conditions with respect to the estimation accuracy of

PF-based DA.

2.1. Scenario description

In the M=M=1 single server queuing system (Figure 1),

the job arrival obeys a Poisson process with mean arrival

rate l. When the server is busy, the jobs will wait in a

queue that has a limited size L for balking.40 This means

no new job is appended to the queue when the queue is

full; in such cases, the generated job is discarded and will

not enter the queue again at a later stage. The server can

process jobs with processing times following an exponen-

tial distribution which has the mean service rate m.

2.2. Modeling the scenario with Discrete Event
System Specification formalism

The scenario described is a typical DES, which can be

modeled using the Discrete Event System Specification

(DEVS).41 As shown in Figure 2, our DEVS model of the
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M=M=1 single server queuing system consists of three

atomic components: Generator, Queue, and Server. The

Generator model generates jobs, whose inter arrival times

are exponentially distributed with mean 1=l, where l is

the job arrival rate. The jobs may have to wait in the

queue to be processed by the server. The Queue model

(with capacity L) is in a passive state unless it receives job

requests from the Server model. Once the Queue received

a request, it enters a transient phase (with zero length of

lifetime) that sends the first job in the queue (if any) to the

Server model. The Server processes the jobs one by one

and transits between BUSY and IDLE phases. The life-

times of BUSY follow an exponential distribution with

mean 1=m, where m is the service rate. The IDLE phase

has an infinite lifetime, which is interrupted once a job

arrives. When finishing a job, the Server makes an internal

state transition from BUSY to IDLE and requests a next

job from the Queue.

To imitate the second-order dynamics30 in the queuing

system, at each time step during the simulation, the values

of l and m are sampled from two uniform distributions:

l;U(0, 20) and m;U(0, 20). These are the two stochastic

internal (non-observable) variables that the DA process

needs to estimate for the simulation model. The state of

the M=M=1 single Server queuing system at time step k is

defined as

Sk = lk ,mk , n
q
k

� �
, k = 0, 1, 2, . . . ð1Þ

where lk is the mean arrival rate of jobs, mk is the mean

service rate during the kth time step, and n
q
k 2 ½0, L� is the

queue length at time step k. The state evolution of the

M=M=1 single server queuing system (without particle fil-

tering) is described as a discrete time process, i.e.:

Sk + 1 =QueuingModel(Sk)+ nk , k = 0, 1, 2, . . . ð2Þ

where QueuingModel is the (discrete event) simulation

model of the M=M=1 single server queuing system, and

nk is the system noise.

The QueuingModel is used as the base model for the

simulation of ground truth, where nk is set to zero

(nk = 0). In the ground truth situation, the arrival rate lk

and service rate mk are randomly generated from two uni-

form distributions lk;U(0, 20) and mk;U(0, 20). They

are ‘‘non observables.’’ The ‘‘observables’’ are the number

of job arrivals na
k (after balking) and the number of job

departures nd
k during the kth time step. They are resulted

from lk and mk at time step k. Measurement noises are

added to na
k and nd

k (Equation (3)) which are received by

the DA process.

The QueuingModel is also used for DA (assimilating

the noisy na
k and nd

k data) that estimates the state of ground

truth, namely, the state variables lk , mk , and n
q
k . Since a

perfect model of the real system can hardly be obtained,

we choose to add a Gaussian noise to each state variable.

This acts as the system noise nk to imitate errors in the

model. Each Gaussian noise has a mean of zero and a var-

iance of 10% of the state value (see section 2.4). The initi-

alization conditions of both models are listed in Table 1.

In the experiments, the true state of the ground truth model

is unknown to the DA model.

Figure 1. M=M=1 single server queuing system with balking.

Figure 2. DEVS model of M=M=1 single server queuing system.
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2.3. Available data and measurement model

The ground truth QueuingModel is run for a certain length

during which the state evolution of the model is recorded

and regarded as the ground truth system state. In addition,

the number of job arrivals (after balking) na
k and the num-

ber of job departures nd
k during the kth time step are

recorded. The job arrival and departure data are then pro-

cessed to form the noisy measurement (mo
k) which is used

by the DA QueuingModel:

mo
k =

n
a, o
k

n
d, o
k

" #
=

na
k

nd
k

� �
+

ea
k

ed
k

� �
ð3Þ

where ea
k;N (0,s2

a) and ed
k ;N (0,s2

d) are the imitated

(actual) measurement errors (or noises). We used a bino-

mial distribution to approximate the normal distribution of

discrete values. The standard deviation sa (similarly, sd) is

designed to take one of the four values denoted by e � DT ,

where e 2 ½0, 3� represents the level of measurement errors

from zero (0) to low (1), medium (2) till high (3), and DT is

the time interval of assimilating measurement data. The unit

of e � DT should not be understood as in the time domain

but in the number domain, as DT 2 f1, 2, 3, 4, 5g is used

here as a proxy to indicate the magnitude of noises, which

we assume is proportional to the data update time. For

example, if DT = 5, then sa (similarly, sd) is set to be in

f0, 5, 10, 15g depending on the corresponding level of

errors. In addition, sa and sd are independent from each

other. As a result, their joint probability can be obtained by

the product of the two probabilities. The measurement

model can then be formalized as:

mo
k;p (mo

k jSk) ð4Þ

Note that in our experiments, the DA process uses the

perceived level of measurement errors, denoted as e0,
which is not necessarily equal to the actual level of mea-

surement errors, denoted as e. The latter is rarely known in

real-world situations. In previous works, e0 and e were

always deemed as the same.

2.4. DA process

In our experiments, PF (Algorithm 1) are employed to

assimilate the noisy measurements mo
k into the simulation

(of the DA model) to estimate the system state (Equation

(1)). The main steps of the DA procedure are as follows:

� Initialization: in the initialization step (lines 2–5 in

Algorithm 1), N particles are generated according

to the given distributions. The i th particle

Si
0 = fli

0,m
i
0, n

q, i
0 g is a guess (i.e., Monte Carlo

sample) of possible initial states of the

QueuingModel. The weights of all particles are set

to 1=N .
� Sampling: after initialization, N model replications

are run, each for one time step DT , to obtain N

new particles (line 8 in Algorithm 1). Once new

particles are generated, Gaussian noises are added

to the states (lines 9–10 in Algorithm 1). After that,

the weight of the i th particle is updated based on

the newly available measurements (line 11 in

Algorithm 1):

wi
k = p (mo

k jSi
k)3 wi

k�1

Note that the actual error level of the noisy measure-

ment mo
k = ½n

a, o
k n

d, o
k �

T
(Equation (3)) is e, while in the

weight computation of our experiments, the perceived

level of measurement errors e0 is used instead; i.e.:

p (mo
k jSi

k)=
1

2ps0as0d
� e
�

(n
a, o

k
�n

a, i
k

)
2

2�(s0a )2
�

(n
d, o
k
�n

d, i

k
)
2

2�(s0d )
2

where s0a =s0d = e0 � DT , and ½na, i
k n

d, i
k �

T
is the corre-

sponding value predicted by the i th particle.

� Resampling: to solve the degeneracy prob-

lem,11,15,22 we resample the particles using the

standard resampling scheme (line 15 in Algorithm

1), which samples particles in proportion to their

weights. Thereafter, all resampled particles are

equally weighted, i.e., wi
k = 1=N .

� Estimation: we estimate the system state at time

step k by the following average (line 20 in

Algorithm 1):

Ŝk =
XN

i= 1

Si
k � wi

k =
1

N

XN

i= 1

Si
k

2.5. Evaluation criteria

In the experiments discussed in the next section, three con-

ditions in DA were investigated to study their effects on

the estimation accuracy, i.e., the time interval DT , the

number of particles N , and the level of measurement errors

e (as well as the perceived level of measurement errors e0).
To compare the estimation accuracy of different

Table 1. QueuingModel initialization conditions.

Ground truth
QueuingModel

Data assimilation
QueuingModel

Queue capacity L 100 100
Queue length n

q
0

50 Sampled
Arrival rate λ0 4 Sampled
Service rate μ0 4 Sampled

Huang et al. 5



experimental settings, the distance correlation dCor42,43 is

used to measure the association between the ground truth

state S and the estimated state Ŝ:

dCor(S, Ŝ)=
dCov(S, Ŝ)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dVar(S) � dVar(Ŝ)

q 2 ½0, 1�

where S is the state vector recorded for all DA steps dur-

ing the simulation of the ground truth QueuingModel, and

Ŝ is the estimated state vector by the DA QueuingModel

for all DA steps. dCor is measured for each state variable

(i.e., we calculate dCor for three state variables: l, m, and

nq). The overall distance correlation of the estimation is

the mean of individual distance correlations.

3. Scenarios, sensitivity analysis, and
discussions

The M=M=1 single server queue is a simple DES. When

the simulation replications are run in parallel, the total exe-

cution time including (re)sampling, model initialization,

estimation, and data logging can be completed faster than

real-time, but the minimal execution time rounded up (for

an iteration) is 0.5 s. The time interval (DT ) of DA thus

started from 0.5 s, and varied to 1, 1.5 s, ...to explore the

response (Note that DT in principle can be at an arbitrary

length if it is not shorter than the execution time.). The

number of particles (N ) ranged from 10 to 2000, and the

levels of measurement errors, i.e., e and e0, from zero to

low till high. To imitate the second-order dynamics30 in

the system, we created two events of sudden stochastic

changes of l and m in the ground truth queuing system.

They happened at the time steps of 15 and 30 s. The DA

experiments each lasted 50 s.

In the following, the results regarding DT and N are

first presented as they produce related effects on computa-

tional cost and estimation accuracy. Since computational

resource is often limited in practice, experiments are also

made to show the trade-off between the two. The second

part of this section compares the effect of actual measure-

ment errors (e) with perceived measurement errors (e0) and
their differences.

3.1. Time interval and number of particles

In this set of experiments, the time interval DT of assimi-

lating measurement data varied from 1 to 5 s, while the

other conditions remained constant at N = 1000 and

e= e0= 1. The interval started from 1 s which is rounded

up from the minimum model execution time. The interval

of 5 s is where the estimation accuracy is still over 0.5;

above 5 s, the accuracy becomes lower than 0.5. Figure 3

shows the outcomes with boxplots of the estimation accu-

racy dCor (y-axis) ordered along different DT (x-axis) in a

0.5-s interval. Note that dCor is calculated using the state

vectors recorded at all DA steps. This is also the case for

Figures 4–8.

The three horizontal bars (from bottom to top) of each

box represent the first, second and third quartiles of a data

set (The second bar indicates the median.). The dot indi-

cates the mean. The whiskers (i.e., the two vertical lines

outside the box) extend to 1.5 times the inter quartile range

(IQR). The upper whisker stops at the largest value smaller

than 1.5 IQR above the third quartile; the lower whisker at

the smallest value greater than 1.5 IQR below the first

quartile. The data points beyond the whiskers are consid-

ered outliers and are plotted as individual circles (This

applies to all boxplots in this paper.).

Figure 3 shows a convex decreasing trend between DT

and dCor; the slope of the curve decreases. Note that we

also performed runs with DT . 5, the curve extends further

and dCor shows medium and weak correlation (\ 0:5)
with this experimental setup. It is expected that when DA

is more frequent (i.e., DT is small), the estimation accuracy

dCor increases significantly with narrower IQR. The accu-

racy spread is heavily skewed, which is not surprising

because PF use Monte Carlo samples. The samples with

Algorithm 1. The data assimilation procedure based on
particle filters.

1 % initialization of particles at k= 0
2 for i= 1 : N do

3 generate the i th particle Si
0 = fλi

0,μi
0,n

q,i
0 g, where

λi
0 ∼U(0,20),μi

0 ∼U(0,20),n
q,i
0 ∼U(0,L)

4 set weight wi
0 = 1

N
5 end
6 % the sampling step for any time k ø 1
7 for i= 1 : N do
8 generate the i th particle Si

k at time step k, by running
the M=M=1 single server queuing simulation for one
time step (i.e., DT) with initial state Si

k�1
9 add system noises to the newly generated state

Si
k = fλi

k,μi
k,n

q,i
k g:

λi
k =λi

k + νλ,νλ ∼N (0,λi
k=10)

μi
k =μi

k + νμ,νμ ∼N (0,μi
k=10)

n
q,i
k = n

q,i
k + νn,νn ∼N (0,n

q,i
k =10)

11 compute weight: wi
k = p (mo

kjSi
k)×wi

k�1
12 end

13 normalize the weights, and denote them as fSi
k,wi

kg
N
i= 1

14 % the resampling step

15 resample fSi
k,wi

kg
N
i= 1 using the standard resampling method,

which samples particles in proportion to their weights, and

the resampled results are again denoted as fSi
k,wi

kg
N
i= 1

16 for i= 1 : N do
17 wi

k = 1
N

18 end
19 % the estimation step
20 estimate the system state at time step k:

Ŝk = PN
i= 1 Si

k ·wi
k = 1

N

PN
i= 1 Si

k
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negligible weights (i.e., low probabilities) would be

replaced by resampling.

In the next set of experiments, the number of particles N

varied from 10 to 2000, while the other conditions were set

constant at DT = 1 and e= e0= 1. Figure 4(a) shows the

results of N 2 ½10, 100� with increment of 10, and

Figure 4(b) shows N 2 ½100, 2000� with increment of 100.

With more particles used in DA, the estimation accuracy

dCor (mean and median) forms a concave increasing trend.

This is also expected. When N exceeds around 50, the slope

of increase gradually decreases till the accuracy stagnates.

The Tukey test (confidence interval (CI) = 95%) was per-

formed to compare the difference of dCor with

N = 50, 100 and larger numbers of particles. The results

show that the increase of N above 400 in these experiments

is no longer effective in improving estimation accuracy.

To understand the relation between DT and N with respect

to dCor, additional experiments were performed where DT

and N varied simultaneously. Each experiment used (DT ,N )
that satisfies f(DT ,N)jDT 2 f0:5, 1, 1:5, . . . , 5gg and

N 2 f500, 1000, 1500, 2000gg. The results are plotted in

Figure 5, where each dot represents one DA experiment. The

x-axis shows the total number of simulation runs (R) in an

experiment; R= T=DT 3 N , where T is the length of each

run (which is 50 s). For example, when an experiment had

DT = 2 and N = 1000, then R= 50=23 1000= 25, 000.
Note that, in our experiments, when the number of

simulation runs (R) is higher, the computational cost is

proportionally higher. Figure 5(a) shows R on a linear

scale and Figure 5(b) on a log scale. The y-axis shows

dCor of each experiment. The size of a dot corresponds to

the number of particles N and the color of a dot (blue to

red) corresponds to the time interval DT .

In Figure 5(a), different shades of large blue dots span a

large horizontal area. Those are the experiments with short

intervals and high numbers of particles as these conditions

resulted in high numbers of runs. Consequently, they have

high dCor values. Since DT = 0:5 is the shortest interval,

low values of N (small dots) cannot reach the far end of the

Figure 3. The effect of time interval DT ∈ ½1,5� on estimation
accuracy dCor (N= 1000,ε= ε0= 1). The construction of a
boxplot: the three horizontal bars (from bottom to top) of each
box represent the 1st, 2nd, and 3rd quartiles (Q1, Q2, Q3). The
dot (in or right below the box) indicates the mean, and the Q2
bar is the median. The whiskers extend to 1.5× the inter
quartile range (IQR = Q3–Q1). The upper whisker stops at the
largest value smaller than 1.5 IQR above Q3; the lower whisker
stops at the smallest value greater than 1.5 IQR below Q1.
Beyond the whiskers, the data points are considered as outliers
and are plotted as individual circles.

Figure 4. The effect of number of particles N on estimation accuracy dCor (DT = 1,ε= ε0= 1): (a) N∈ ½10,100� and (b)
N∈ ½100,2000�.
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x-axis (R= 50, 000 when DT = 0:5 and N = 500). Small

dots are ‘‘cramped’’ in the narrow left portion of Figure 5(a).

To make the small dots more visible, Figure 5(b) shows

the x-axis on a log scale such that the part below

R= 50, 000 is stretched out. Given any vertical alignment

(e.g., R= 10, 000), small and large dots always have com-

plementary colors. Different sizes of dots never have the

same color along the same R value. More bluish smaller

dots are at the back; more reddish larger dots are at the

front. The dots located at the upper horizontal side of the

plot are the experiments with higher dCor. The experi-

ments with high numbers of particles can be better seen in

Figure 5(a) while the ones with low numbers of particles

can be better seen in Figure 5(b).

The results show that the estimation accuracy improves

(dCor! 1) when N increases (smaller to larger dots) and

DT decreases (reddish to bluish dots) because more simu-

lation runs are executed. The blue dots are closer to the top

edge than the red dots, meaning that shorter time intervals

do better than longer ones, which is expected. Also note

that there are many large red dots in Figure 5(b), where

R . 10, 000. These dots did not perform much better than

the smaller red dots at R \ 10, 000. In these experiments,

more particles did not bring better performance. This con-

firms the result shown in Figure 4. In addition, those large

red dots (R . 10, 000) also performed worse than many

smaller blue dots at R \ 10, 000. In these experiments,

shorter DT brought better dCor than more particles N even

when the computational cost was higher in the latter case.

This means that when DT is sufficiently short, good esti-

mation accuracy can be achieved even though not many

particles are used.

To summarize, while the number of particles is posi-

tively correlated and the time interval is negatively

correlated to the estimation accuracy in DA, the accuracy

is more constrained by the choice of time interval than by

the number of particles. This implies that given limited

computational resources in DA applications, once the

number of particles is sufficiently large, more computa-

tional resources can be allocated to shorten the time inter-

val to improve the estimation accuracy.

3.2. Actual level and perceived level of
measurement errors

The experiments presented in this section set the actual

level of measurement errors e from zero (0) to low (1),

medium (2) till high (3). The perceived level of measure-

ment errors e0 varied in a similar way and is explained in

the corresponding experiments.

The first set of experiments varied the actual level of

measurement errors e 2 ½0, 3�, while the perceived level of

measurement errors e0 remained constant (e0= 1), and the

other conditions were set at DT = 1 and N = 400.

Figure 6 shows that in this case, the estimation accuracy

dCor forms a concave downward decreasing trend with

slight wider IQR. When the actual level of measurement

errors is zero or low, the low perceived level of measure-

ment errors yields similar results, but the estimation accu-

racy decreases when the actual error level is worse than

the perceived level.

The second set of experiments changed the perceived

level of measurement errors e0 2 ½1, 5�, low (1), medium

(2), high (3), higher (4), highest (5), while the actual level

of the measurement errors remained constant (e= 1), and

the other conditions were again set at DT = 1 and

N = 400. Figure 7 shows the results with a slight concav-

ity but reveals no clear pattern of the estimation accuracy

Figure 5. The effect of time interval DT ∈ f0:5,1,1:5, . . . ,5g and number of particles N∈ f500,1000,1500,2000g on the estimation
accuracy dCor (ε= ε0= 1). A higher number of simulation runs (R) indicates higher computational cost: (a) number of simulation runs
R on a linear scale and (b) number of simulation runs R on a log scale.
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dCor in relation with the perceived level of measurement

errors. However, the dCor boxes of medium and high sug-

gest better accuracy. Note that the actual level of errors is

low in this case. Can this mean that the discrepancy

between the actual level and perceived level of measure-

ment errors matters for the estimation accuracy? We

investigated this in the next set of experiments.

The difference between e and e0 was experimented by

sweeping e 2 f0, 1, 2, 3g and e0 2 f1, 2, 3, 4, 5g, where the
other conditions remain constant at DT = 1 and N = 400.

This resulted in 20 combinations of experimental setup,

each of which used 400 particles. Figure 8 shows the

results that are grouped by the difference between the

perceived level (e0) and the actual level (e) of measurement

errors such that x= e0 � e 2 f�2, � 1, 0, 1, 2, 3, 4, 5g,
plotted along the x-axis. A negative value of x thus indi-

cates under estimation and a positive value of x indicates

over estimation of measurement errors. The results show

again a slight concave downward curve as in Figure 7.

The curve is at its highest point where x= 1. The slope

left to it is steeper than the one on the right. This suggests

that under estimation of measurement errors (x \ 0) leads

to lower estimation accuracy dCor than over estimation

(x . 0). Perfect knowledge about measurement errors

(x= 0) does not necessarily result in better estimation

accuracy while slight over estimation (x= 1) leads to

more accurate estimation results than that with perfect

knowledge. In the experiments where x . 1, the estimation

accuracy gradually decreases again, but it is no worse than

the same levels of under estimation. In addition, the esti-

mation accuracy dCor has a narrower IQR when over esti-

mating measurement errors than under estimating them,

which is often a desired feature in DA.

To further illustrate the effect caused by misalignment

of the perceived measurement errors with the actual level

of errors, we present and discuss another experiment that

compares two cases: (a) perfect knowledge about mea-

surement errors (x= 0) and (b) slight over estimation of

measurement errors (x= 1). In both cases, the actual

level of measurement errors is low (e= 1), the time inter-

val DT = 2, and the number of particles N = 1300. Case

(a) has a low perceived level (e0= 1) of measurement

errors, which is the same as the actual level, while case

(b) has a medium perceived level (e0= 2) of measurement

errors, which represents a slight over estimation of mea-

surement errors. As shown in Figure 9, these two cases

Figure 6. The effect of the actual level of measurement errors
ε∈ fzero,low,medium,highg on the estimation accuracy dCor
when the perceived level of errors ε0 is low (DT = 1,N= 400).

Figure 7. The effect of the perceived level of measurement
errors ε0 ∈ flow,medium,high,higher,highestg on estimation
accuracy dCor when the actual level of errors ε is low
(DT = 1,N= 400).

Figure 8. The effect of the difference between perceived level
ε0 ∈ flow,medium,high,higher,highestg and actual level of
measurement errors ε∈ fzero,low,medium,highg on the
estimation accuracy dCor (DT = 1,N= 400).
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performed distinctly in estimating the queue length nq in

the simulation after the sudden change of the arrival rate

l and the service rate m at time t = 15 in the ‘‘real sys-

tem.’’ In case (a), the simulation could not closely follow

the trajectory of the queue nq in the first 15 s. Once the

change occurred at t = 15, nq diverged more and could

catch up with the system state again after 10 DA itera-

tions. In case (b), the simulation can follow the change

more responsively.

The difference in response time in the two cases can be

explained by the spread of particles, which are depicted as

gray dots in Figure 9. Note that the vertical spread of parti-

cles in case (a) is narrower than that in case (b). In case

(a), only a few particles having a small deviation from the

measurement can ‘‘survive’’ throughout the experiment,

while the particles located apart are discarded.

Consequently, abrupt changes in the system are not

detected rapidly because of the restricted spread of parti-

cles. In case (b), as the particles spread wider, the aggre-

gated result can quickly converge to the true value after

sudden changes. Thus, more widespread particles are more

tolerant and show more a responsive estimation in detect-

ing capricious system changes.

Given these observations in the experiments, we con-

clude that a pessimistic view on measurement errors brings

advantages over an optimistic view on measurement errors

with respect to the accuracy of DA results. In addition, a

slight pessimistic view on measurement errors leads to bet-

ter estimation accuracy than an accurate view on

measurement errors in the experiments. This is rarely an

intuitive choice in DA experimental setups.

4. Conclusion and future work

The experiments presented in this paper quantitatively

studied the effect of three common and critical experimen-

tal conditions of PF-based sequential DA for DES: the

time interval of assimilating measurement data, the num-

ber of particles, and the level of measurement errors (or

noises). An identical-twin experimental scheme (of an

M=M=1 single server queuing model) was adopted to

model the ground truth and to predict the system states.

This way, the true state of the system, the measurement

errors, and the estimated system state can be quantified in

a controlled manner. We evaluated the estimation accu-

racy of the DES states. The results of the sensitivity analy-

sis can thus be interpreted in relative terms contrasting

different experimental setups of the DA process. The main

findings of our experiments are as follows.

The time interval of assimilating measurement data has

a negative correlation with the estimation accuracy of sys-

tem states. Although this is expected, it is not always true

as reported by some studies (see section 1). More frequent

assimilation of measurement data is effective to improve

the estimation accuracy and the responsiveness of the esti-

mation results. Although the number of particles has in

general a positive correlation with the estimation accuracy,

increasing the number of particles is ineffective in

Figure 9. The effect of the different perceived levels of measurement errors on the estimation accuracy (DT = 2,N= 1300): (a)
accurate estimation of measurement errors (ε= ε0= 1) and (b) over estimation of measurement errors (ε= 1,ε0= 2).
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improving accuracy beyond a certain level. Notably, good

estimation accuracy can be achieved even though not

many particles are used if the time interval is sufficiently

short. Since both decreasing the time interval and increas-

ing the number of particles require more computation, the

former can be more cost effective when the number of par-

ticles is sufficiently large. With regard to measurement

errors, in the experiments an over estimation of the level

of measurement errors leads to more accurate estimation

results than an under estimation. Under estimating the

errors always produces worse state estimates.

Interestingly, a correct perception of the measurement

errors does not guarantee better state estimates. A slight

over estimation of errors has better accuracy and more

responsive model adaptation to system states than an accu-

rate estimation of measurement errors. An exaggerated

over estimation of errors, however, deteriorates the accu-

racy of state estimates.

Our work used a simple single server queuing model to

explore conditions in PF-based DA applied to DES. The

choice of a simple target system and simple scenarios has

the advantage that thorough experiments can be performed

with a high number of iterations and particles. The states

of ‘‘real’’ and simulated systems can be easily compared.

The work, nonetheless, demonstrates the usefulness and

challenges of using PF-based DA for DES and points out

a few interesting future directions.

The sensitivity quantification of the PF conditions

investigated in this paper is specific to the target system

and scenario setup of our experimental choices. In that

regard, many uncertain (and/or stochastic) factors in DES

models can be interesting to further investigate in order to

understand better how to efficiently use PF for DES. For

example, the level of system noises, the number of esti-

mated state variables, and their relations to the level of

measurement noises. We conjecture that the ‘‘regular’’

stochasticity captured by probabilistic distributions in DES

models can be covered by the number of particles and

their disperse in PF. The ‘‘irregular’’ uncertainty that falls

out of the model descriptive power can be compensated by

the power of sequential DA. With that in mind, it is possi-

ble to smartly balance out the number of particles (or even

to calibrate the probabilistic distributions in DES models)

and the time intervals to produce acceptable DA results

for DES. Since the computational demand to apply PF-

based DA to discrete systems will remain a challenge (in

the foreseeable future), a better understanding of the inter-

play between the time interval and particles is key to pro-

moting wider use of DA in social and socio-technical

applications. Furthermore, an event-based DA method can

be a novel approach unique for DA applications in DES.

This means PF can be dynamically adjusted for, e.g., the

time intervals, number of particles, and perception of mea-

surement errors, according to certain event-triggers (which

is relatively simple for a DES model to implement)

tailored to the application in order to obtain more cost

effective state estimation performance.
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