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Abstract

A framework for the modeling and simulation of transitions is presented. A transition, “substan-
tial change in the state of a socio-technical system”, typically unfolds over a long timespan. We
therefore suggest to use simulation to inform transition managers on the effect of their decisions.
Transition models preferably meet five functional requirements: to allow for the representation
of physical and social components, for material and immaterial interactions, to allow the system
structure to change, to compute transition indicators and to capture the effect of interventions.
Modeling the decarbonization of the power sector illustrates that an agent-based model allows
us to let both the content and the structure of a system to emerge in a simulation.
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1. Introduction

Change in or of large systems appears to be the connecting topic in the literature on transi-
tions [cf. 1] and transition management [cf. 2, 3]. The notion of management implies that change
can be directed or (partially) steered [4, 5, 6, 7]. However, transitions typically unfold over a long
time-span [8], concern large-scale systems [9, 10], and many interactions on different scales [11].
For transition management this begs the questions ’how to decide on actions when their effects
will only emerge possibly after years or decades and how to unravel the relations between causes
and effects?’ We conjecture these questions can be explored using modeling and simulation.

One particular class of large systems are energy infrastructures – “systems that satisfy needs
for energy” [12]. Exploiting a glut of newly discovered fossil resources, in the 19th and 20th
century these systems evolved to large networks that today include the mining and transport of
crude oil, refining into oil products, the mining, transport and conversion of coal, gas and waste to
heat and electric power, and finally the continental transport and regional distribution of natural
gas, heat and electricity. However, if we want to keep the functioning of our infrastructures,
these systems have to change because of the threat of climate change [cf. 13], the depletion of
fossil resources [14], and concern over security-of-supply. Decarbonizing our energy system is
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one of the main targets of ‘the energy transition’. Indeed, various European leaders have already
set ambitious CO2 reduction targets (compared to 1990 levels): -20% in 2020 and -50% in 2050,
while -80% in 2080 is the current UK-government target. Furthermore, in the EU, the emissions-
trading scheme (EU-ETS) is seen as the main instrument to let this transition materialize [15, 16].

This then leads to the question: can we simulate the development of our energy infrastruc-
tures towards 2020, 2050, 2080 using models that adequately represent energy infrastructure and
generate results with sufficient resolution to discern the effect of decisions on company strat-
egy, investment, innovation, on government policies, regulation or governance? If we thus can
let transitions appear ‘before our eyes’, generating them in-silico1, can we relate them to the
mechanisms underlying change and thus help transition managers?

To this end, we first introduce the socio-technical system paradigm adopted for energy infras-
tructures and we define what transitions are and how transition management seeks to facilitate
them. Second, we develop functional requirements for the modeling and simulation of transi-
tions. Third, we introduce and review a number of modeling paradigms and assess them against
these requirements. Fourth, we illustrate the process of model development and simulation by
addressing decarbonizing the electric power generation sector. Discussion, outlook and conclu-
sions complete the paper.

2. Framing systems, transition, and management

Today’s energy infrastructures and their transitions can be understood by framing them as
socio-technical systems [9, 18]. The energy sector not only comprises a large technical system,
but also an extensive social system – a network of players, such as miners, refiners, power compa-
nies, traders, transmission system operators, brokers, industrial consumers, retailers, consumers,
their associations, government, their agencies and NGO’s. The sector includes markets for the
trading of electric power, all kinds of contracts, and an extensive body of rules and regulation,
policies, strategies and visions. Through the interaction of the technical and the social, the en-
ergy infrastructure system evolves as complex [19, 20] and adaptive [21, 22, 23] systems. This
implies that from the present structure, content and states, it may evolve to the system of 2020,
2050 or 2080 via an infinite number of pathways – any decision, small or large, may cause the
system to develop in a substantially different direction.

On the basis of this argument and an extensive review of the literature on transitions2, we
have defined a system transition as “a substantial change in the state of a socio-technical system”
[27, 28].

Building upon the work of Geels and others, notably Rotmans has stipulated that transitions
are not only a phenomenon observed in man-made systems, but that transitions of these systems
can be invoked and managed – transition management [2]. It is well-recognized that transition
arenas [29, 30] can facilitate or invoke the transition process, which then subsequently is shaped
by diverse actors over a prolonged period of time. Therein, actors may employ transition in-
struments for transition management. In management literature, a widely adopted definition of
management is “the organization and coordination of the activities of an enterprise in accordance
with certain policies and in the achievement of clearly defined objectives” [31]. Transition man-
agement’s ‘enterprise’ then is a social system beyond a single company, while this enterprise

1[17] coined the term in-silico which means via a computer simulation.
2The review included, but was not limited to [24, 1, 8, 25, 10, 2, 3]; for an extensive discussion see [26, chapter 2],
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may be seen to have both weakly defined objectives, such as sustainability, and very specific ob-
jectives such as the CO2 emission reduction targets. In the EU for example, the energy transition
involves many independent enterprises, each of which control only part of the energy infras-
tructure, and employ distinctly different (corporate) strategies to pursue their own objectives. It
clearly then is the role of the EU Member States and the Commission to govern (manage) this
transition by organizing and coordinating the actions of the relevant actors – citizens, companies
and not-for profit (non-governmental) organizations. The combination of these activities can
then be labeled as transition management. As of 2005, the EU’s main transition instrument is
the EU-ETS. It may thus be seen that EU climate policy invokes a transition of the EU energy
infrastructures, with the objective to reach stated CO2 reduction targets. Furthermore, the EU at
large can be seen as the transition manager, employing the policy instruments EU-ETS.

3. Requirements for modelling and simulation

3.1. Modelling and simulation

Modeling and simulation can help us explore and anticipate the effect of a transitions instru-
ment on a system – the effect of the EU-ETS on the energy infrastructure. This leads to a new
question – how can we model the system studied and represent it as a complex, adaptive evolving
socio-technical system? A model is an abstraction and necessarily a simplified representation of
a real-world system. Models are used for several purposes: to improve the understanding of
existing systems, to improve the performance of existing systems, to predict the future state of
existing systems, and to design new systems. Computerized models allow for simulation of the
real-world systems captured in a simulation model: Simulation is “the activity of carrying out
goal-directed experiments with a computer program” [32, p. 77]. Therefore, during simulation
“the system [. . . ] progresses through time” [33, p. 4].

It thus appears that simulation models are a suitable tool to generate and explore transition
and transition paths, as they allow us to play out multiple transition paths in-silico. The ensuing
set of simulation runs may then serve to assess the transition instrument and subsequently facili-
tate the development of recommendations. In such an assessment, one may look at the transition
paths wherein the structure, content, and performance of systems changes over time, while de-
pending on the end-time of the simulation, of course, some end-state is calculated. However,
this end of the simulation is not the end of the transition, as in these large-scale socio-technical
systems, change is endemic.

3.2. Socio-technical systems

The very complexity of many a large-scale socio-technical system may imply, however, that
we only have a certain chance of success to steer it towards some preferred state. Any action
invokes a reaction, and this is certainly true for changing or new policy and regulation – govern-
ment’s instruments co-evolve with the socio-technical system.

Complex adaptive systems theory teaches us that this may be feasible, as many a complex
system is characterized by a limited set of attractors – system states that the evolving, sometimes
even chaotic system, given sufficient time, tends towards under a wide range of system parame-
ters and initial settings [20, 23, 34]. What attractors may exist and under which assumptions and
conditions (that provide opportunity for steering) they may be reached is subject to simulation.
In order for a simulation model to be successfully developed, a set of requirements should be
developed. Such requirements may help us to 1) select the appropriate modeling paradigm, 2)
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to make modeling choices and, eventually, 3) to underpin an appropriate course of action for
transition managers.

The path of a transition is shaped by the set of components in the system and their relations,
by the changes of and within the set of individual components, and by external influences. The
way actors behave, respond and take decisions can be seen to be determined by various institu-
tions [35, 36].

It may be seen that in such a complex system, it is the web of interactions that leads to and
determines change. Transition management could, therefore, be seen as influencing this web, to
divert the system’s change towards a certain desired state, “to achieve clearly defined objectives”
[31]. Acknowledging the complexity of socio-technical systems, such as energy infrastructures,
then leads us to questions such as ‘what is the likelihood of achieving a particular change?’, ‘what
circumstances make it probable?’, ‘for whom it is a desired future and for whom is it not?’, ‘what
transition paths are probable?’, etc.

3.3. Developing functional requirements

This implies that the simulation models we develop must allow 1) the representation of a
complex adaptive socio-technical system, 2) the capture of the web of interactions and 3) the
incorporation of instruments that may divert system change. If our models meet these require-
ments, running the simulations will provide insights on transition management.

How does this translate to requirements for a simulation model, or to be precise, to require-
ments for the modeling paradigm to be used? To answer this question, we have adopted the
established method of functional requirements analysis [37, 38, 39]. This focuses on what the
model and modeling paradigm should offer, not how it should be implemented.

Physical and social components. We have argued that our energy infrastructures are true socio-
technical systems. When we then want to study or observe transitions in-silico through mod-
eling and simulation, it follows that our models must capture the essential physical and social
components of an energy system. A set of physical entities together constitutes an energy sys-
tem: power plants, consumer appliances, industrial facilities, physical pipelines and powerline
infrastructures. Together, this set’s content and linkage defines the energy system, the interac-
tion between components and its performance; during a transition, the energy system content
and linkage may change. In a model these must be represented, therefore, to let transition be
an observable phenomenon. The social entities comprise the actors and their behavior. Im-
portant actors are electric power producers, transmission system operators, consumers, market
facilitators and government. Institutions are the formal and informal rules that determine actor’s
behavior. The essential characteristics of actors must be represented, because it is these actors
who decide on system content, linkage and use! Social entities have linkage. Their interaction
and actions effect technical system change and thus drive transition. It follows that their model
representation is pivotal to make transition observable.

Interaction. In energy infrastructures the physical and social components interact. Interaction
between physical components includes material, energy and information exchange. Interaction
between social components encompasses negotiation and information exchange. Socio-technical
interaction includes the control, ownership, and operation of physical components. In modeling,
all these types of interaction must be considered, because the aggregate of the interaction deter-
mines the state and evolution of the system.
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Table 1: Properties of modeling paradigms, partly based on [40, 41]

Aspect Abstraction Building block Mathematical formulation Dynamics

Scenarios Static relations Scenario None or static None
Econometrics Correlations Parameters Stochastics None
CGE Economic relations Equation Optimization Lurching
ABM Disaggregated decisions Agent Mainly logic Emergent
SD Dynamic relations Feedback loop Differential equations Feedback
DS Physical relations Equation Differential equations Feedback
DES Event system Event DEVS Events

Changing system structure. It is of crucial importance how the essential system components and
their interaction are represented. We define the structure of the system as the configuration of the
social and physical components in the system and the linkage between those components. Core to
the concept of transition is ’substantial change of the system state (content, linkage, structure)’,
which leads to altered system performance. The root causes of system-state change are the set
of system components and system structure. Both are the result of interactions – physical link-
age, and actor decisions concerning physical components, linkage and use. Therefore, models
preferably allow for the system structure to change and evolve in a simulation.

Transition indicators. Elsewhere we have argued there is a need for indicators for transition: We
argued that in transition management literature performance indicators are lacking or ill-defined
which creates ambiguity regarding what is a transition and what not, and whether a transition
started, is underway or completed [27]. This translates into the requirement that models must
reveal and show relevant indicators during simulation. These then cover system performance,
content, structure and change thereof. Ideally, the set of indicators provides a clear fingerprint of
the system during simulation and helps to assess whether a transition occurs.

Tracing specific interventions. To allow analysis of causes for transition, notably the effects
interventions, it must be possible to trace these effects. Therefore, a model should be set up to
let the simulation render sufficient resolution to discern the implications of single interventions,
such as the implementation of a specific transition instrument. It follows that this would allow
representation of a set of public policies, whereby simulations could be run to determine under
what conditions such policies or interventions may lead to transition.

4. Modeling paradigms for simulating energy transitions

In this section, an overview is given of paradigms relevant for modeling transitions in energy
systems. Where policy support is quantitative, simulations appear at the scene. Roughly speak-
ing, (quasi-)static models comprise econometric models, scenario analyses and an abundance of
Computable General Equilibrium (CGE) models. Modeling paradigms that capture dynamics are
System Dynamics (SD). Discrete Event Simulation (DES) and Agent-Based Modeling (ABM).
The main properties of these six paradigms are summarized in table 1.

4.1. Econometrics and scenario analysis
Econometric models use statistical techniques to elucidate correlations. Thus, significant

relations may be singled out and used to find key parameters that may be affected through public
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policy. Scenario analysis [cf. 42] fulfils a similar purpose. Scenarios are used to explicate a range
of what-if cases. A number of internally consistent possible futures are defined. The effect of
each policy intervention for each future in the set is then analyzed. A variety of scenario methods
exists ranging from qualitative narratives to quantitative (‘spreadsheet’) calculations. Examples
of quantitative scenario analysis of energy transitions are the Energy Transition Model3 [43] and
the Roadmap 20504 [44].

The Roadmap is the result of a large consortium of companies, institutions, and academia. It
shows four ‘possible’ scenarios for achieving 80% reduction of CO2 levels compared to 1990.
In their analysis they show, for example, that in order to achieve European reduction targets the
power sector needs to be decarbonized 90-100%. This is a valuable result, because it shows on
what aspects public policy makers should focus.

4.2. Computable General Equilibrium

An important class of simulation models used for public policy is Computable General Equi-
librium (CGE) models5 [46, 47]. CGE models are data-rich, well understood and run relatively
fast. Typically, they are models of the economy, with parameters referring to macro-economic no-
tions, such as labor, market prices, and demands for goods. CGE models are fundamentally based
on balancing linear macroeconomic equations [48]. They capture multiple-sector systems with
aggregate top-down macroeconomic equations [49, p. 172]. CGEs use a technology-matrix [50]
or a database [51], which generally contains the characteristics of technologies for the production
of goods [52, 53]. In essence, the variables in the equations of CGE models are aggregates [51]
and CGE models are continuous. For instance, the consumption by households of a certain good
is aggregated into a single continuous parameter, heterogeneity of households is neglected and
strict assumptions are made for the decision making of these households. Furthermore, to be able
to solve CGE models and find an equilibrium many aggregate variables – defining technology,
consumer tastes, and government instruments (such as tax rates) – are exogenous.

In CGE models it is assumed that between the simulated time steps the economy is able to
stabilize in an equilibrium: a stable state of all parameters of the economy. The consequence is
that “CGE models are not dynamic” [54, p. 71], though they try to deal with trajectories over
time. Despite the fact that they are often classified as dynamic, such models are actually lurching
– an equilibrium is found for each modelled time step [54].

Many important institutes for policy research and analysis use CGE models because of their
focus on economic parameters. A classic example of a CGE model is one used to study the effect
of subsidies on trade [55]. Another reason to engage in CGE modeling is that the modeling
process is streamlined so that new results can be generated quickly. Amongst them are the World
Bank, the International Energy Agency (IEA) and, in the Netherlands, the Netherlands Bureau for
Economic Policy Analysis (CPB) and the Energy Research Center (ECN). This shows that CGE
has developed into the de facto standard for supporting policy decisions throughout the world.
As in general, the use of quantitative methods has increased with developments in computing,

3http://www.energytransitionmodel.com
4http://www.roadmap2050.eu
5The notions of Computable General Equilibrium (CGE) and Applied General Equilibrium (AGE) models are fuzzy.

CGE models have first been formalized by Arrow [45]. Although often reported otherwise, the mathematics of current
CGE models are unrelated to that formalization. AGE models are based on foundations from micro-economics. Although
both have different origins, throughout the years, research merged parts of both streams of models into both AGE and
CGE models. In this paper we will only refer to CGE models.
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CGEs are increasingly used. With a modern desktop PC, running a reasonable CGE model is
done in a matter of minutes.

The IEA uses their World Energy Model to examine 20 years of future energy trends [56].
This model is data-intensive, compiled and updated by the IEA itself. The World Energy Model
covers all energy markets and has a holistic, mono-actor approach. It is an interlinked set of mod-
els, of which some parts are modelled in different modeling paradigms to improve the model as
a whole [57]. The IEA presents results in relation to a reference scenario, which is an extrap-
olation and functions as “a baseline picture of how global energy markets would evolve if the
underlying trends in energy demand and supply are not changed” [56, p. 52].

An example of the intensified use of CGE models can be found in the Netherlands, where the
Netherlands Bureau for Economic Policy Analysis (CPB) uses CGEs for policy support [58, 59].
Nowadays, The CPB evaluates the political plans of many of the parties in times of national
elections. The CPB predicts how their plans will affect economic growth and number of jobs and
other macro-economic parameters. CPB has become the main organization that supplies such
advice. For their long-term predictions, the CPB developed the WorldScan model [60], fed by
data from the Global Trade Analysis Project (GTAP) database [61]. Exogenous system drivers
include labor supply, employment growth, population growth, and age distribution. Equations
in the WorldScan model contain consumer goods markets, producer markets, capital markets,
and the labor market. ECN has developed a portfolio of CGE models for policy support [62], of
which a few focus on the medium to long term [e.g. 63, a model of the energy use in buildings].

CGE models typically have a large number of equations and variables, for which common
solvers (such as Excel or Matlab) are insufficient. The industry-standard software for CGE mod-
els is GAMS, which is only commercially available.

4.3. Agent-Based Modeling
Agent-Based Modeling (ABM) emerged from the fields of complexity, chaos, cybernetics,

cellular automata and computers [64]. A common definition for an agent-based model is “a
collection of heterogeneous, intelligent, and interacting agents, which operate and exist in an
environment, which for its part is made up of agents” [65, 66]. In other words, “the compo-
nents of an agent-based model are a collection of agents and their states, the rules governing the
interactions of the agents and the environment within which they live.” [67]. ABMs “empha-
sise modeling behavior at the lowest practical level, with an interest in studying the emergence
of [. . . ] agent interactions, as well as the evolution of strategies for agent interaction with the
environment and other agents. [. . . ] Agent-based models are well suited to model strategies of
different stakeholders, their interactions and the outcome of such interactions” [68].

In general, ABMs provide us with a laboratory for capturing evolving systems in models.
Therefore, an ABM is a playground for scientists, to explore emergent outcomes of the inter-
action of a set of autonomous agents. Traditionally, ABMs are applied in the social sciences
[e.g. 69, 70, 71]. Applications related to technology and markets have appeared as well, such as
models of electricity markets [72, 73, 74, 75, 76, 77, 78, 79].

In addition to general ABMs, a large body of literature has emerged on the subject of Agent-
Based Computational Economics (ACE), which are essentially ABMs containing agents with
rules from economic theory – a subclass of ABMs. ACE is “the computational study of economic
processes modelled as dynamic systems of interacting agents” [80, p. 3]. A relevant example of
ACE is the EURACE project6 in which a very large, policy-design oriented agent-based model

6http://www.eurace.org/
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of the European economy is being developed.
A large variety of software is available for developing ABMs. Common in the social sciences

are Netlogo, Repast, and MASON, all open source. Commercial tools, such as Anylogic are also
available.

According to a recent review of existing transition models [81], ABM has been used in a few
transition papers [i.e. 82, 83, 84, 26, 85].

4.4. System Dynamics

System Dynamics (SD) is “the study of information-feedback characteristics of industrial
activity to show how organizational structure, amplification (in policies), and time delays (in
decisions and actions) interact to influence the success of the enterprise” [86]. Typically, SD
models are used to “understand the long term behavior of states in a system for which there is
a deterministic way for how a state evolves” [87, p. 1]. The stream of models called Dynamic
Systems (DS) [88] refers to system dynamic models applied to physical systems, but system
dynamics is broader than that and includes non-physical system elements.

An SD model is defined by a set of differential equations. Each equation represents a process
which is conceptualized as flows between stocks of, for instance, materials, energy, knowledge,
people, or money. Additional parameters determine the values of the flows [89]. SD models
are inherently continuous. SD models were originally coded in DYNAMO, a commercial soft-
ware, now unavailable. Although there are less common open source and/or freely available
alternatives, common modern software for system dynamicsm such as PowerSim, Vensim, and
iThink/Stella, is commercial. Much of the software is well developed in terms of GUIs, graphs,
and built-in solvers. Modern software allows for some relaxation of the restrictions of the con-
tinuous domain such as step functions.

Typically, SD modelers intend to look at feedback loops and delay structures. SD does not
model individual events, for instance the decisions of a person to become an adopter. Events are
rather aggregated to flows. Therefore, in system dynamics a flow of people can refer to people
changing their state, in this case the number of adopters of a certain technology [90].

System dynamics is used throughout many fields of research, such as studies related to pop-
ulations and ecological and economic systems. In addition, SD is relevant for policy analysis:
“Because dynamic behavior of social systems is not understood, government programmes often
cause exactly the reverse of desired results. The field of system dynamics now can explain how
such contrary results happen” [91]. The most important example is the model behind the limits
to growth [14] that Forrester [92] further refined into the World3 model. Other SD studies have
modelled the electricity market [93].

A recent review of existing transition models [81] notes several transition models based on
SD methodology or differential equations [94, 82, 95, 96].

4.5. Discrete Event Simulation

In Discrete Event Simulation (DES) the operation of a system is represented as a chronologi-
cal sequence of events [97]. Events occur in a system with a fixed structure. Such events change
the state of the system, including the state of the entities in the system and these changes trigger
new events.

Underlying DESs, is the discrete event system specification (DEVS), developed by [98, 99].
This specification allows for various discrete-event formalisms that can be adopted for devel-
oping DESs. DEVS represent events by defining how the system state changes based on a set
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of input and output events. Although it is only one possible formalism [100, 101], a typical
DES application is represented as entities that “travel through the blocks of the flowchart where
they stay in queues, are delayed, processed, seize and release resources, split, combined, etc.”
[102, p. 27]. The simplest form of a DES is a queue system that holds the entities. “Simulation
progresses by repeatedly dequeuing events, computing their consequences, and reporting the
consequences either by updating the global state of the simulated system or enqueuing notices
of additional future events. Any number of events may be scheduled as a consequence of one
event. Some events only change the global simulation state, while others schedule large numbers
of new events.” [103, p. 301].

A variety of software tools is available for DES, such as Arena. DESs are mainly used to
analyze and improve the design of handling systems. Examples of DESs are container handling
in ports [104], global supply chains [105, 106] and dynamics in electricity markets [107].

5. Analysis of modeling paradigms

We have argued that transition management would benefit from appropriate modelling that
represent the system and its interactions, allow for transitions to occur and be observed, and
allow to explore the impact of ’management’.

5.1. The extent to which requirements are typically met
The requirements and modeling paradigms can now be combined to arrive at an indication

how typical use of the modelling paradigms matches with the requirements for simulating for
transition management. This is summarized in table 2. In typical uses7, the paradigms differ
widely. There are not many definite no’s, which implies that all of the paradigms can play a
meaningful role for transition management. However, for all of the paradigms, some require-
ments are met implicitly; the consequence is that it may be unconventional, counter-intuitive or
more difficult to develop useful simulations for transition management. Figure 1 shows theses
differences in more detail. For each of the paradigms, the core reasons to select them and their
main disadvantages are listed below.

The main differences are between four categories (see):

Designing. The first category is where the modeller designs future desired system states. Sce-
narios provide a way to think outside current conventions and can provide vision and discussion.
They are, however, less fit for elaborating the impact that management has on the developments
towards that scenario.

Fitting. The second category is where a structure is fit to the collected real-world data. Econo-
metrics is data rich and gives insight in the current system. It is however, unconventional to
model radical changes.

Optimizing. The third category is where the system is optimized, typically to the objective if
minimizing societal costs. CGE is strong in the representation of our economy. This can be
highly detailed and provide insights of interventions that change the structure of our economy.
However, it is less appropriate for systems that are in flux, for which the basic assumptions (e.g.
regarding rationality) are problematic.

7The ‘scores’ on the requirements do not refer to fundamental differences between the modelling paradigms persé,
but rather on how they typically are used, what is intuitive or what is commonly accepted
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Table 2: Requirements fulfilled in typical use per modeling paradigm.
Legend: Yes: requirement for explicit representation is typically met. No: requirement is typically not met. Implicit:
modelling paradigm meets the requirement, but typically not in an explicit fashion.

Requirement Scenarios Econometrics CGE ABM SD DES

Physical components implicit implicit implicit implicit yes yes
Social components implicit implicit implicit yes implicit yes
Interactions implicit implicit implicit yes implicit yes
Changing system structure implicit implicit yes yes implicit no
Transition indicators yes yes yes yes yes yes
Tracing specific interventions no yes yes yes yes yes

Designing

Fitting

Optimizing

Simulating

Stocks, indicators
Flows, 

feedback loops
Altered stocks, 

indicators
Exogenous 

change

Agent states
Emergent system 

properties

Actions, 
interactions

Altered agent 
states, emergent 
system properties

Agent action,
exogenous change

System elements, 
properties

Events
Altered system 

elements, 
properties

Changed 
design

Optimal system 
state

Exogenous 
changes

Altered optimal 
system state

Exogenous 
change

Current system 
properties

Envisioned 
paths

Envisioned system 
(scenario)

Exogenous 
changes

Altered fitted 
statistical relations

Exogenous 
change

Scenarios

Econometrics

CGE

ABM

SD

DES

Change over time Future system state(s)System stateIntervention

Fitted statistical 
relations

Figure 1: The way in which modelling paradigms represent and capture interventions, the system state and changes over
time.
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Simulating. The last category enables exploration and discussion of the dynamics of the systems
under observation.

• SD is quick to develop because of the high level of aggregation used, it is quick enough
for vast explorations and it is intuitive. However, a good system representation (or aggre-
gation) should be known or need to be found and the the structure of the system is fixed
by the equations selected. The validity of the model depends strongly on the aggregation
used.

• ABM can represent decisions and heterogeneity of actors intuitively. An advantage is that
the system structure is fluid: it is the emergent property of the decisions of and interactions
between the actors. However, ABM so far is applied fewer to include physical/technical
systems. The validity of the model depends largely on the selection of actors and the model
of the decisions they make.

• DES is very strong in capturing a large number of events, triggered by a given system
structure and by each other. A strong point is that the interaction of events leads to emer-
gent patterns. The main disadvantage is the firm and fixed way the system is represented.

5.2. Application: agent-based modelling of decarbonization of the power sector

We illustrate this with an agent-based model for the case of decarbonization of electric power
generation in the Netherlands8.

Agent-based modelling. Because of the fact that for decarbonization of the power sector, the
heterogeneous and independent electricity producers are crucial actors, we selected agent-based
modelling as a core paradigm. The model reflects the real-world situation of six of those pro-
ducers who have different generation portfolios and who make different decisions regarding the
operation of their generators, investment, and decommissioning. The agents in the model have
operational behavior – power producers need to negotiate contracts for feedstock, the sales of
electricity and, in the case of emissions trading, emission rights. They also exhibit strategic
behavior – in the long-term the agents need to choose the moment of investment, the amount
of capacity, and the type of power generation technology. Agents interact through negotiated
contracts and organized exchanges and are subject to the physical flows, their characteristics and
constraints.

Exogenous scenarios. The electricity demand is given; its profile consists of 10 steps per year
which reflect a typical load-duration curve. Demand and fuel prices are modelled as trends. CO2
rights, power and fuel markets are modelled as exchanges. The time step of the model is one
year and the simulations span a horizon of 50 years. The government agent implements policy
interventions – it collects taxes and induces penalties.

8In earlier work we reported the findings of our modeling research in terms of the effect on the power generation
sector of the two most prominent transition instruments – an emissions-trading scheme, as implemented in the EU, and a
carbon taxation scheme, implemented on a smaller scale in Norway. A more extensive and comprehensive description and
analysis of power sector decarbonization, modeling and other transition models can be found in [108, 109, 26, 85, 110].
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Transition policies. The two main policies are the EU emissions-trading scheme (EU ETS) and
an alternative, a taxation on CO2. The results are compared to a no intervention base case. The
main policy variable of the EU-ETS is the emissions cap, which in the model reflects the current
phase of the EU-ETS (phase 3, running 2013-2020): the CO2 cap starts at 50 Mton for the power
sector in the Netherlands and is reduced every five years by 3 Mton. A 50% reduction is achieved
in little more than 40 years. To allow a fair comparison between ETS and the carbon tax, the
tax level starts at 20 e/ton and is on average calibrated to the resulting CO2 prices in EU-ETS
simulations.

Simulation results and analysis. The main indicator for transition is CO2 emissions, but it can
only be considered in its context: the patterns in electricity and CO2 prices, the generation port-
folio of the electricity producers. We explored the simulation outcomes and used those to discuss
its relevance for current policy to improve transition management in this sector.

We analyzed that intervention, such as the EU-ETS or CO2 taxation is needed in order to curb
emissions. The pressure that carbon policies put on the power generation system is reflected in
the electricity prices, since power companies pass through their CO2 costs to consumers. When
kept in place, their long-term impact is significant and will bring about transition: the poli-
cies cause structural differences in the electricity prices, and therefore, the eventual transition in
terms of generation portfolio and CO2 emissions is profoundly different. These portfolio shifts
that emerge in the simulation are not perfect predictions, but they lead to the discovery of pat-
terns that occur in this sector, which were not prominent in economic theory. We found that a
reasonable carbon tax would a more effective and efficient instrument for decarbonization than
the current EU-ETS. At the end of the day, this result contributes to the discussion of how to
improve European carbon policy. The fact that a implementing a EU carbon tax may well be
infeasible for the power sector does not mean we cannot be inspired to develop and implement
related mechanisms, such as minimum and maximum prices on credit auctions or taxes in mem-
ber states.

6. Conclusion

The work reported in this paper aims to support the development and execution of simulation
models for transition management. Change in or of large systems appears to be the connecting
topic in the literature on transitions and transition management. Adopting the socio-technical,
complex adaptive system paradigm led us to the notion that these systems evolve and change
over time. Using these insights allowed us to develop functional requirements for simulating
energy transitions.

Using this perspective, five functional requirements for transition models were deduced.
These models preferably allow for the representation of (1) physical and social components, (2)
material and immaterial interactions, (3) a changing system structure, (4) transition indicators,
and (5) interventions. We discuss econometric modeling, scenario analysis, computable general
equilibrium models, system dynamics and discrete event simulation and Agent-Based Modeling
(ABM) regarding these requirements and provide an example application.

We hope the work presented in this paper inspires transition theorists and modelers alike.
More work is needed to flesh out the possibilities and limitations of transition management and
the predictive capabilities of simulation models. As in any system study and modeling activity,
both the depth and detail of the models and the breadth of the systems modeled can be expanded.
We encourage the use, expansion and modification of the framework, particularly because it is
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often the modeling process that provides insight, not the model result. Through model results,
insights and expert judgment, we can get better at realizing desired transitions – not by trusting
in precise predictions of our energy infrastructure systems, but by embracing their complexity.
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