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Abstract

Greenhouses allow production of crops that would otherwise be impossible. Permitting more
local, fresher and nutrient richer crop production. E�orts are taken to minimize societal
harm due to energy and resource consumption by greenhouse production systems. One way
to control such systems is by using model predictive control. Optimal crop yield and resource
e�ciency can, in theory, be achieved by model predictive control. Unfortunately, one major
drawback of model predictive control is that it is not well equipped to deal with parametric
uncertainty. Significant prediction errors can occur when a mismatch between the model
and the real system exists, resulting in deteriorated performance of the system. Strategies
exist, such as robust MPC, that are designed to handle uncertainty, but those often result
in conservative control policies. This thesis proposes to use model predictive control as a
function approximator for RL in order to learn values for model and MPC parameters that
can deliver optimal performance in the case of model mismatch.

In this thesis, data-driven economic nonlinear model predictive control using Q-learning is
proposed as a method to alter the model parameters. The performance of the system af-
ter learning is compared to approaches using robust and nominal model predictive control.
Three di�erent goals are determined: maximizing economic profit, minimizing the constraint
violations and maximizing the economic performance while minimizing constraint violations.

In this work, an ENMPC scheme is used as a function approximator in a Q-learning envi-
ronment. The optimization solution from the ENMPC scheme is used as the input to the
system, while the Q-learning agent optimizes the parameter values of the ENMPC scheme
and model for the environment. The performance of the system after learning is compared to
approaches using robust and nominal model predictive control. The simulation results show
that the data-driven ENMPC using reinforcement learning is able to decrease constraint vi-
olations by up to 94%, but unable to increase economic performance compared to nominal
MPC, compared to robust MPC the EPI is increased by almost 10% while keeping constraint
violations at a similar level.
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Chapter 1

Introduction

The growing population and its accompanying increase in food demand [1], in combination
with, global warming and decreasing arable land, results in a rapidly increasing greenhouse
industry [2]. Greenhouses shelter crops, enable control over crop production, allow to boost
production, permit the control of quality, allow for production of crops that would otherwise
be impossible, and prolonging of the cultivation period [3]. Energy is needed for the climate
control of the greenhouse, and water and nutrients, including CO2 must be supplied from the
outside.

Societal demands for fresh, safe, and price-worthy foods [4], in combination with sustain-
ability concerns make it necessary to optimize greenhouse operations. A consequence of this
combination of demands is that one can’t simply increase inputs to grow better produce, this
would dramatically lower the number of crops grown per unit of energy or nutrient input.
One must exploit the outdoor environment, especially the sun, as much as possible. At the
same time, it is not enough to only control the climate, the crops must also be taken into
account [3].

Energy usually accounts for the second highest overhead cost in greenhouse crop production
[5]. In the Netherlands, the cultivation of fruits and vegetables in greenhouses requires an
enormous amount of energy. 77% of the total 100.5 PJ was due to heating and 23% due to
electricity for supplemental lighting [6]. The Dutch horticultural industry has agreed with
the Dutch government to decrease the total energy consumption [6].

A large discrepancy exists between the technologies used in commercial greenhouses and the
state of research [3]. Controllers in commercial greenhouses tend to replicate the rules used
by expert growers, while much of the research today is directed at the opportunities posed
by optimal control. Optimal control, and its derivative MPC, have grabbed the attention of
researchers for many years already [7]. Because this control method allows capturing system
knowledge and, therefore, o�ers an opportunity to capture plant dynamics to a higher degree
than growers themselves can [4].

A second opportunity for optimal control is o�ered by reinforcement learning. This ma-
chine learning approach can learn system dynamics by trial and error, also capturing system
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2 Introduction

uncertainties in the process. Being able to deal with system uncertainties is a welcome char-
acteristic of reinforcement learning that standard MPC approaches do not o�er. However,
reinforcement learning also comes with its shortcomings, for one learning from trial and error
dismisses any prior knowledge about the system and its dynamics.

Both approaches o�er advantages that neatly overcome the disadvantages of the other strat-
egy. Research towards combining the strengths of MPC and RL is rising and some promising
results are achieved [8] [9] [10]. Nonetheless, little research can be found on combining MPC
and RL in the field of greenhouse climate control up to this date.

1-1 Problem statement

The objective of this study is to improve the performance of greenhouse climate control
in uncertain conditions, by using MPC as a function approximator for RL. Since model
parameters can di�er greatly from greenhouse to greenhouse and might not be known with
great certainty, MPC can struggle with providing consistently good performance. This thesis
aims to overcome the problems that parametric uncertainty poses when MPC is used to control
the greenhouse climate, while maintaining the ability to incorporate system knowledge in the
controller. This is done by using MPC as a function approximator in a Q-learning approach.
Therefore, the main research question of this thesis is:

Can ENMPC using reinforcement learning be used in greenhouse climate control and
improve performance compared to robust sample-based MPC in the presence of parametric

uncertainty?

The performance will be assessed by computer simulations in a case study. In this case
study the performance will be assessed in accordance with the performance indicators that
are described in section 7-3. The e�ectiveness of multiple cost and reward functions will be
compared. These variations will be applied in a framework known for its similarity with the
real world.

To justify the main research question, the problem will be divided in multiple sub-questions:

• Can ENMPC using RL decrease constraint violations, starting from the nominal model
parameter values?

• Can ENMPC using RL increase economic performance, starting from perturbed initial
model parameter values?

• Can ENMPC using RL increase economic performance and decrease constraint viola-
tions at the same time, while starting from perturbed initial model parameter values.

These sub-questions address di�erent objectives to which the controller can adhere. An overall
well performing controller will also perform well on these sub-questions.
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1-2 Thesis contribution 3

1-2 Thesis contribution

Enhancing greenhouse production processes to be more resource e�cient, while at the same
time increasing production can help decrease food shortages. Due to the adaptive properties
of RL and the performance guarantees of MPC, combining the two in a data-driven ENMPC
using RL setting has presented itself as a suitable alternative for greenhouse climate control.
First, training examples for RL are scarce, since entire crop growth cycles are needed per
parameter update. Second, MPC struggles to deal with the model uncertainty present in
real greenhouse environments. This thesis aims to overcome these problems by combining
MPC and RL to aid in their respective shortcomings, increasing economic performance and
decreasing plant illness due to constraint violations.

With a growing population, decreasing resources and decreasing arable land, it will be nec-
essary to increase food production while decreasing its cost to the environment and society.
Therefore, this thesis is relevant for applying new theory to improve food production.

1-3 Thesis outline

The remainder of this thesis is structured as follows: chapter 2 discusses the necessary back-
ground on the modeling of greenhouses and the crops therein. In this chapter a greenhouse-
crop model will be introduced. In chapter 3, the greenhouse-crop model will be elaborated
on and the model used in this study is presented in detail. The uncertainty modeling used
in this thesis will be discussed and the optimization problem solved by the MPC controller
is presented. In chapter 4 and chapter 5 the reader is introduced to the concepts of MPC
and RL. The application of function approximation will be introduced. chapter 6 will further
delve into the specific method of function approximation that is relevant for this thesis. Here
the theory supporting using ENMPC as a function approximator will be presented. In chap-
ter 7 the first practical aspects of this thesis work are discussed. Most importantly, the model
parameters are selected and the performance indicators for the system will be presented.
chapter 8 will present the implementation of the control method on the system and discuss
several case studies. Finally, the conclusions of this thesis and future research directions are
presented and discussed in chapter 9. In Appendix C, a draft paper describing the findings
of this thesis is included.
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Chapter 2

Modeling and control of greenhouses
and crops

As in many other fields, in greenhouse climate control, decision-making processes should be
based on a clear and true picture of reality. Greenhouse modeling aims at mathematically
describing horticultural greenhouses and the relationships between the outdoor and indoor
climate, the e�ect of climate control equipment on the indoor climate, and the pivotal role
of the cultivated crop [11]. This chapter starts with some general background information on
greenhouses. Lastly, an overview of process-based greenhouse modeling is given and the van
Henten model, which will be used in this study, is discussed in depth.

2-1 General background on greenhouses

Commercial greenhouses are complex systems with many di�erent purposes, designs, and op-
tions for climate control equipment. A typical modern commercial greenhouse has a structure
of steel or aluminum and is covered by glass, insulating sheets of multi-layer polycarbonate
or foil [12]. [13] makes a distinction between four main types of greenhouses, namely: PE
greenhouses, Parrel greenhouses, Chinese Solar Greenhouses, and Venlo type greenhouses.
Examples of these greenhouses can be seen in 2-1a to 2-1d. The rest of this thesis work will
focus on the Venlo-style greenhouse, as this is the most common commercially used greenhouse
type in The Netherlands. The Venlo-type greenhouse is a tall, completely glass, greenhouse
originating from The Netherlands. Venlo greenhouses are generally the most advanced and
allow for various types of equipment to be used [13] [11].

2-2 Greenhouse modeling

The horticultural industry currently aims to improve yield and e�ciency [14]. E�ciency in
this case means the e�ective usage of resources, more yield is achieved with similar resource
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6 Modeling and control of greenhouses and crops

(a) Venlo Greenhouse (b) Parrel Greenhouse

(c) Gutter Connected Greenhouse (d) Chinese Solar Greenhouse

Figure 2-1: Various styles of greenhouses in di�erent parts of the world.

input. Models of greenhouses are set to play a pivotal role in addressing these problems.
Increasingly, horticultural companies make use of mathematical models [15] [16] [17] [18].
Recently, artificial intelligence has been used to design control methods and create models
[19] [20].

Generation of models

Generally, all models can be categorized into two categories. Models are either descriptive or
process-based. [21] argues that the distinction between the two types of models is not always
clear. Process-based models try to give a better understanding of the underlying principles in
the system being modeled. Equations based on mathematical or statistical grounds are used
by descriptive models to describe the underlying system, regardless of underlying principles
[11]. Process-based models are built from the ground up. Process-based models start with
the laws of physics and thermodynamics and often consist of two levels. The first level is
the observed phenomena and the second, higher, level describes properties rising due to these
phenomena [22]. Due to their origin in the physical principles behind the system, it is expected
that process-based models will perform better outside the data range on which they have been
validated than descriptive models would. [23] and [21] argue that process-based models can
help bring insights that are relevant outside the range of the system they were designed on,
predicting what would happen in unseen and possible scenarios.

In this work, a focus will be placed on process-based models. Descriptive models do not
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2-2 Greenhouse modeling 7

provide many new insights into the system and the dynamics of the system are much harder
to understand than when using process-based models. Within the class of process-based
models, there is a wide array of models available in di�erent model classes and complexity
levels.

Process-based greenhouse models

[11] recognizes three classes of process-based greenhouse models in. The first class threats
the greenhouse air as a perfectly stirred tank [24]. In this case, the air within the greenhouse
is treated as an entity where spatial variability is ignored. All air within the greenhouse is
uniform and is represented by a single value. This modeling approach often assumes the
greenhouse to be infinitely large [25], causing the assumption that the indoor climate is not
influenced by the outdoor air. The second class of models is built using energy simulation
programs [26]. The programs are often originally built to simulate the energy demand of
buildings and need many modifications to accurately apply them to greenhouses [27]. Lastly,
[11] identifies a class of models based on Computational Fluid Dynamics (CFD) models.
This class of models uses CFD to describe air movement within the greenhouse [28]. CFD
analysis is computationally quite complex and significantly more computationally intensive
than the perfectly stirred tank approach. The computational requirements of CFD limit their
applicability [11]. CFD allows for the studying of airflow and temperature distributions and
is usually done using either Ansys Fluent or COMSOL [26].
Even within these classes of greenhouse climate models a wide variety of complexity levels
exist. For process-based models, the range of complexity levels is accurately shown by the
models by van Henten and de Zwart [29] [30]. The complexity of the models is largely
dependent upon the number of processes and objects that are included in them. More complex
models include more processes and objects, and mechanistic descriptions of the processes
are used, involving multiple influencing variables or inputs. Simpler models neglect some
processes and/or objects and use more descriptive functions to summarize phenomena [11].
The van Henten model only includes two objects and four processes. Indoor and outdoor
air are the objects, the processes involved are solar radiation, heating pipes, convection, and
ventilation. The de Zwart model has 17 objects and multiple processes that were not involved
in the van Henten model.
Next to the number of objects and processes involved, process-based models also vary in
the way these objects and processes are described. The most commonly included processes
are: Solar radiation and energy from lamps and other equipment, ventilation, convection and
conduction, thermal radiation, energy losses to latent heat, transpiration, condensation, and
crop photosynthesis [11].
In general, greenhouse climate is modeled separately from the crop growth and then integrated
together. More details on crop growth modeling are provided in section 2-3.
The model objective provides some explanation for the vast range of models. Katzin et al.
write that the more complex models are all devoted to the exploratory modeling of the system,
while studies focusing on calibration and control tend to use simpler models. Especially, few
objects for convective and Far Infrared (FIR) exchanges were used [11]. Van Henten and
Bontsema also argue that it is still computationally favorable to keep the control model
simple [32].

Master of Science Thesis Seymour Lubbers



8 Modeling and control of greenhouses and crops

Figure 2-2: Figure taken from [11]. A scheme of the van Henten model [29] [31]. Solid
lines indicate the mass and energy flows, and information is indicated by the dashed lines (see
legend). Information flows indicate the influence of a control input or state on a flow rate. Valves
over solid lines indicate rate equations that influence the flow rate passing through them. E.g.,
photosynthesis is influenced by solar radiation, crop dry weight, indoor air temperature, and indoor
CO2 concentration. Photosynthesis, in turn, influences the flow rate of CO2 from the indoor air
to the crop. Arrows indicate which objects act as sources, sinks, or both. E.g., the outdoor air
may be both a sink or a source for CO2, but CO2 injection can only be a source.
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2-2 Greenhouse modeling 9

Indoor climate description

The indoor climate can be described by its temperature, humidity, light, and CO2 concen-
tration. Some models only contain one attribute, and some contain multiple, the model used
in this work contains the indoor temperature, humidity and CO2 concentration. Generally,
balances are considered to model these attributes. Incoming and outgoing balances are iden-
tified, for each of these balances. The net change for each of the attributes is then found
by the di�erence between the incoming and outgoing flows [11]. The equations that describe
these changes are Equation 2-1, Equation 2-2 and Equation 2-3.

dE

dt
= (QSun + QHeat + (QLamp ≠ QVent ≠ QCon ≠ QLatent ≠ QFIR ≠ QCool) (2-1)

dMW
dt

= (WTrans + WEvap + WHum ≠ WCond ≠ WVent ≠ WDehum) (2-2)

dMC
dt

= (CInj ≠ CPhot ≠ CVent) (2-3)

In Equation 2-1, dE
dt is the net change in energy in the greenhouse, with E representing the

energy, Jm≠2, and t a unit of time. The right-hand side of the equation represents the
incoming and outgoing flows, which may be positive (heating) or negative (cooling). In this
case, the sign indicates the typical direction of the flow. Heating by the sun is represented
by QSun, heating by heating equipment is QHeat and by lamps QLamp. Energy is generally
lost due to ventilation, QVent, convective and conductive exchanges with the outside climate,
QCon, conversion from sensible to latent heat, QLatent, thermal radiation, QFIR and heat
extracted by cooling equipment, QCool.
In Equation 2-2, dMW

dt is the net change in water vapor mass in the greenhouse. Incoming
flows are typically from crop transpiration, WTrans, water evaporation from surfaces such
as the soil, WEvap, humidification by control equipment, WHum. Outgoing flows typically
consist of Condensation on cold surfaces, WCond, water vapor lost due to ventilation, WVent,
humidification by control equipment, WDehum.
In Equation 2-3, dMC

dt is the net change in CO2 concentration in the greenhouse. The only
incoming flow results from CO2 injected by control equipment, CInj. Outgoing flows typically
consist of CO2 used due to photosynthesis by the crops, CPhot and losses due to ventilation
CVent.

Van Henten model

In this study the van Henten model is used, an example of a process-based model, based on
di�erential equations describing some of the energy balances in the system [29] [31]. The
model is composed of 4 states, all described by separate di�erential equations. Three of
these states correspond to energy balances of the indoor temperature, XT (¶C), indoor vapor
concentration, Xh (kg {water vapor} m≠2), and the indoor CO2 concentration, Xc (kg {CO2}
m≠2). The fourth state is concerned with the crop, this state is the crop dry-weight, Xd
(kg {dry weight} m≠2). A summary of the di�erential equations of the van Henten model
is shown in Equation 2-4. The first three lines in Equation 2-4 represent the balance of
energy, water vapor and CO2, respectively. dXT

dt gives the energy balance, resulting in a
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10 Modeling and control of greenhouses and crops

temperature change over time. Energy enters the system due to heat coming from the sun
and the heaters, it leaves the system due to ventilation and convection. dXh

dt is the water
vapor balance and consists of water vapor entering the system due to crop transpiration and
leaving due to ventilation. dXc

dt is the CO2 balance, consisting of CO2 being injected into the
system and leaving the system due to ventilation and crop photosynthesis. The functions
f(XT, Xc, Xd, Vrad), g(XT, Xc, Xd, Vrad) and h(XT, Xh, Xd) are described in [29] and [31], the
parameters ccap,q, ccap,q and ccap,q are also described there. The exact implementation used
in this research is discussed in chapter 3.

dXT
dt

= 1
ccap,q

(Qsun + Qheat ≠ Qvent ≠ Qcon), (¶Cs≠1)

dXh
dt

= 1
ccap,h

(Wtrans ≠ Wvent), (kgm≠2s≠1)

dXc
dt

= 1
ccap,c

(Cinj ≠ Cvent ≠ Cphot), (kgm≠2s≠1)

dXd
dt

= f(XT, Xc, Xd, Vrad), (kgm≠2s≠1)

CPhot = g(XT, Xc, Xd, Vrad), (kgm≠2s≠1)
WTrans = h(XT, Xh, Xd), (kgm≠2s≠1)

(2-4)

2-3 Crop growth modeling

In the previous section an emphasis was placed on greenhouse climate modeling. The Van
Henten model was provided, in which a crop growth model is integrated. The modeling of
the crop is done through Xd. In this section the crop growth modeling will be further delved
into.

Crop growth modeling is an important aspect of modeling a greenhouse production system.
The crop is the final product, and the entity the greenhouse is controlled for. Crop modeling
tries to model crop growth as a function of irradiation, temperature and crop characteristics
[33]. In this work a focus will be placed on the modeling and simulation of lettuce growth.
Many di�erent lettuce growth simulation modeling e�orts have been undertaken over the
years. The first structural and storage pool was defined in [34], following the approach by de
Wit, is was later also described in [35]. Two state variables were considered, the structural
and non-structural dry matter. Prior to this, dry mass production was considered as the
di�erence between photosynthesis and respiration in [36]. In [37], a simple model for lettuce
growth in an environment with elevated carbon dioxide concentrations was described. In [38],
the work from [37] and [34] was combined. Later, [34] was adapted for greenhouse conditions
in [39] and [29]. In [33], the Simple and Universal Crop Growth Simulator (SUCROS87) was
developed. The model formulation of SUCROS87 was also used in [29]. Both [40] and [41]
used SUCROS87 to develop greenhouse models. Based on the work in [29], [34], and [42], the
Nitrate Control in Lettuce (NiCoLet) model was developed in [43] and improved upon in [44],
[45], [46], and [47], respectively. In this work the lettuce growth model that is integrated in
the Van Henten model will be further discussed.

The Van Henten model describes crop growth by a single state variable, namely the crop dry
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2-3 Crop growth modeling 11

weight [29]. The model follows the SUCROS-87 formulation of crop growth, in which the
basis for calculating dry matter production is the canopy net carbon dioxide assimilation rate
[33]. Dry matter production in the crop can then be described by:

dXd
dt

= c—
!
c–„phot ≠ „resp

"
, kg m≠2 s≠1 (2-5)

in which „phot is the gross carbon dioxide uptake due to canopy photosynthesis, and „resp is
the maintenance respiration rate, both in terms of the amount of carbohydrates consumed.
c– and c— are parameters that convert assimilated carbon dioxide into sugar equivalents and
the yield factor that accounts for the respiratory and synthesis losses during the conversion
of carbohydrates to structural material, respectively. c— has a value between zero and one.

The gross canopy photosynthesis is described by:

„phot = „phot,max
1
1 ≠ e≠ckclar,d(1≠c· )Xd

2
, kg m≠2 s≠1 (2-6)

an empirical relation in which „phot,max is the gross carbon dioxide assimilation rate of the
canopy having an e�ective canopy surface of 1 m2 per square meter of soil at complete soil
covering [29]. 1 ≠ e≠ckclar,d(1≠c· )Xd accounts for the geometrical and optical properties of the
canopy. All environmental e�ects are captured in the value of „phot,max, which is described
by:

„phot,max = ‘cparcrad,rfV1‡CO2(XC ≠ �)
‘cparcpar,rfV1 + ‡CO2(XC ≠ �) (2-7)

in which ‘, in Kg J≠1, is the light use e�ciency. cpar is the ratio of photosynthetically
active radiation to total solar radiation, crad,rf is the transmission ratio of the roof for solar
radiation, V1, in W m-2, is the solar radiation outside the greenhouse, ‡CO2 , in m s-1, is the
canopy conductance for carbon dioxide transport into the leaves, XC, in kg m-3, is the carbon
dioxide concentration, and �, in kg m-3, is the carbon dioxide compensation point which
accounts for photorespiration at high light levels, which is also a�ected by the temperature,
Xt, in ¶C. From this it can be seen that the temperature and carbon dioxide concentration,
as well as the radiation, inside a greenhouse directly a�ect the growth of the crop.

The maintenance respiration rate of the crop is given by:

„resp =
!
cresp,s(1 ≠ c· ) + cresp,rc·

"
Xd cQ10,resp

!
Xt≠25

"
/10, kg m≠2 s≠1 (2-8)

where cresp,s and cresp,r are the maintenance respiration rates for the shoots and roots at
25¶C, respectively, expressed in mass of glucose consumed. cQ10,resp is the Q10-factor for the
maintenance respiration [29].
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Chapter 3

Greenhouse and lettuce model

In this chapter, the greenhouse and lettuce model will be presented. In section 3-1 the model
will be presented, section 3-2 discusses the type of uncertainty that will be taken into account
in this work. section 3-3 further discusses the state propagation and measurement functions
of the model. Finally, section 3-4 discusses the optimization problem that needs to be solved.

3-1 The model

The model that is used in this work is the nonlinear model first presented in [29] and discretized
using the fourth-order Runge Kutta method. This results in

x(k + 1) = f(x(k), u(k), d(k), p), (3-1)
y(k) = g(x(k), p) (3-2)

with discrete time k œ Z0+, state x(k) œ R4, input u(k) œ R3, disturbance d(k) œ R4and
f(·), g(·) nonlinear functions. Further details on the state propagation and measurement
functions can be found in section 3-3. The state, input and disturbance signals are further
defined as:
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14 Greenhouse and lettuce model

x(k) =
1
W (k) CCO2,a(k) Ta(k) CH2O,a(k)

2T
(3-3)

=
1
x1(k) x2(k) x3(k) x4(k)

2T
(3-4)

u(k) =
1
uCO2,o(k) uv(k) uq(k)

2T
(3-5)

=
1
u1(k) u2(k) u3(k)

2T
(3-6)

d(k) =
1
I(k) CCO2,o(k) To CH2O,o(k)

2T
(3-7)

=
1
d1(k) d2(k) d3(k) d4(k)

2T
(3-8)

The state x(k) contains the dry matter content of the lettuce, W , in kg · m≠2, which is the
lettuce’s weight per square meter, after all its water has been removed. The crop dry matter
is often used because it shows less seasonal variation than fresh weight. Furthermore, the
state contains the indoor carbon dioxide concentration, CCO2,a, in kg · m≠3, air temperature,
Ta, in ¶C, and humidity, CH2O,a, in kg · m≠3.

The control input u(k) contains the rate of carbon dioxide supply, uCO2 , in mg · m≠2 · s≠1,
ventilation rate through the window vents, uv, in mm · s≠1, and energy supply by the heaters,
uq, in W · m≠2.

The weather disturbance, d(k), contains the radiation from the sun, Io, in W · m≠2, the
outside carbon dioxide concentration, CCO2,o, in kg · m≠3, outdoor temperature To, in ¶C,
and humidity, CH2O,o, in kg · m≠3.

The measurements, y(k) œ R4, contain the dry weight matter, W , in g · m≠2, the indoor
carbon dioxide concentration, CCO2,a, in ppm, the indoor air temperature, Ta, in ¶C, and
relative humidity, CH2O,a, in %. It should be clear that y(k) contains equivalent states as
x(k), but with di�erent units for the dry weight, indoor carbon dioxide concentration and
humidity.

In Figure 3-1, the greenhouse model with lettuce is graphically depicted. The interaction
between the states, control inputs, and disturbances is indicated by arrows. From this figure
it is clear that the control inputs and weather disturbances influence the greenhouse climate,
which in turn influences the lettuce. The only exception to this is the solar radiation, which
also has a direct influence on the crop. All three control inputs have a direct influence on the
greenhouse climate, while having an indirect influence on the lettuce’s dry weight. It is via
controlling the greenhouse climate that the lettuce growth is controlled.

3-2 Uncertainty modeling

In the model, various sources of uncertainty can be introduced. In this section some sources
of uncertainty will be discussed, and, finally, a conclusion will drawn which details the kind
of uncertainty taken into account in this work.

Seymour Lubbers Master of Science Thesis



3-2 Uncertainty modeling 15

Figure 3-1: Greenhouse with lettuce schematically represented. The interaction between the
greenhouse and lettuce model is indicated with the arrows. The influence of the control signal
u(k) and weather disturbance d(k) are also indicated by the arrows. The figure is taken from
[48].

In a real world application uncertainty exists in all aspects of the model. The weather
disturbances are not exactly known, the control inputs are not perfectly exact, the greenhouse
and lettuce model is not deterministic, the state measurements will not be perfect, and further
aspects influencing the cost function might also not be known exactly.

Model mismatch between the actual system and the model may cause considerable prediction
errors [49]. This mismatch is a results from the simplification that has been done to make
the process less computationally intensive, or simply because the the system is not perfectly
known. Discretizing a continuous system can introduce a discretization error. All factors
combined result in parametric uncertainty, which has been discussed in [49] and will be
investigated in this work.

Uncertainty in this work

One of the goals of this work is to compare the performance of a data-driven economic NMPC
using RL with the performance achieved by robust sample-based nonlinear MPC. In order
to be able to compare the di�erent controllers it is important to keep all conditions that
apply to the system the same. The kind of uncertainty that will be considered in this work
is parametric uncertainty, equal to the uncertainty considered in [49]. In this work, it is
assumed that the model parameters can be modeled as an uncertain parameter with known
probabilistic properties. It is assumed that:

p̂ ≥ U
1
µp̂, �p̂(k)

2
, (3-9)
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16 Greenhouse and lettuce model

with uniform distribution U(·) having a mean value of µp = p and co-variance matrix
�p̂ = E

#
(p̂ ≠ µp̂)(p̂ ≠ µp̂)T

$
. with expectation operator E. Furthermore, it is assumed that

�p̂ is a diagonal matrix, meaning that there is no cross-covariance. The justification for a
uniform distribution is two-folded. Firstly, certain parameters can not be negative or outside
certain ranges. Secondly, it is undesired to have an infinite support (such as a Gaussian
distribution). Due to the assumption of having an uncertain parameter in the measurement
model, the state and measurement estimation are also uncertain. The system model is then
depicted as:

x(k + 1) = f(x̂(k), u(k), d(k), p̂), (3-10)
y(k) = g(x̂(k), p̂) (3-11)

where p̂ indicates the uncertain parameters.

In the case studies, in some cases, it can become useful to force a large parameter o�set
from the nominal parameter values. This can be forced with an equal flat o�set on all model
parameter values, e.g. all parameters can be increased by 10%. Although this deviation in
parameter value is not as true to reality, it is helpful in creating meaningful case studies.

3-3 State propagation and measurement functions

In this section, the nonlinear functions g(·) and f(·), from Equation 3-1, are presented. The
function f(·), represents the state propagation model, and is defined as follows:

x1(k + 1) = x1(k) + h
1
c1,1„phot,c(k) ≠ c1,2x1(k)2x3(k)/10≠5/2

2
(3-12)

x2(k + 1) = x2(k) + h

c2,1

1
≠„phot,c(k) + c2,2x1(k)2x3(k)/10≠5/2 + u1(k)10≠6 ≠ „vent,c(k)

2

(3-13)

x3(k + 1) = x3(k) + h

c3,1

1
u3(k) ≠ (c3,2u2(k)10≠3 + c3,3)(x3(k) ≠ d3(k)) + c3,4d1(k)

2
(3-14)

x4(k + 1) = x4(k) + h

c4,1

1
„transp,h(k) ≠ „vent,h(k)

2
(3-15)

with

„phot,c(k) =
1
1 ≠ exp

!
≠c1,3x1(k)

"21
c1,4d1(k)

!
≠c1,5x3(k)2 + c1,6x3(k) ≠ c1,7

"!
x2(k) ≠ c1,8

"2
/Ï(k),

(3-16)
Ï(k) = c1,4d1(k) +

!
≠c1,5x3(k)2 + c1,6x3(k) ≠ c1,7

"!
x2(k) ≠ c1,8

"
, (3-17)

„vent,c(k) =
!
u2(k)10≠3 + c2,3

"!
x2(k) ≠ d2(k)

"
, (3-18)

„vent,h(k) =
!
u2(k)10≠3 + c2,3

"!
x4(k) ≠ d4(k)

"
, (3-19)

„transp,h(k) = c4,2
1
1 ≠ exp

!
≠c1,3x1(k)

"21 c4,3
c4,4(x3(k) + c4,5

exp
1 c4,6x3(k)

x3(k) + c4,7

2
≠ x4(k)

2

(3-20)
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3-4 Optimization problem 17

parameter value parameter value parameter value parameter value
c1,1 0.544 c2,1 4.1 c3,1 3 · 104 c4,1 4.1
c1,2 2.65 · 10≠7 c2,2 4.87 · 10≠7 c3,2 1290 c4,2 0.0036
c1,3 53 c2,3 7.5 · 10≠6 c3,3 6.1 c4,3 9348
c1,4 3.55 · 10≠9 c2,4 75560 c3,4 0.2 c4,4 8314
c1,5 5.11 · 10≠6 c2,5 273.15 c4,5 273.15
c1,6 2.3 · 10≠4 c2,6 101325 c4,6 17.4
c1,7 6.29 · 10≠4 c2,7 0.044 c4,7 239
c1,8 5.2 · 10≠5 c4,8 17.269

c4,9 238.3

Table 3-1: Nominal values of the model parameters taken from [29].

with h the sample time. „phot,c(k), „vent,c(k), „transp,h(k), and „vent,h(k) are the gross canopy
photosynthesis rate, mass exchange of CO2 through the vents, canopy transpiration and mass
exchange of H2O through the vents, respectively.

The initial state and control signals are x(0) = (0.0035 0.001 15 0.008)T , u(0) = (0 0 0)T .

The measurement equation, g(·), is defined as:

y1(k) = 103x1(k), g · m≠2, (3-21)

y2(k) =
c2,4

!
x3(k)+c2,5

"

c2,6c2,7
· x2(k), ppm · 103, (3-22)

y3(k) = x3(k), ¶C, (3-23)

y4(k) =
c2,4

!
x3(k) + c2,5

"

exp
1

c4,8x3(k)
x3(k)+c4,9

2 · x4(k), %, (3-24)

The model parameters are chosen as in [29], and given in Table 3-1.

3-4 Optimization problem

The goal is to achieve maximum dry matter production, with the least amount of energy
input as possible. It is assumed that at each time instant, the state x(k) can be measured.
Then, the following optimization problem is solved at each time step:

min
u(k)

Nsÿ

i=1

k0+NPÿ

k=k0

V
!
u(k), ŷi(k)

"
,

s.t. Equation 3 ≠ 1, x̂(k0) = x̂0,

umin Æ u(k) Æ umax,

|u(k) ≠ u(k ≠ 1)| Æ ”u,

ŷmin(k) Æ ŷi(k) Æ ŷmax(k), for i = 1, . . . , Ns,

and for k = k0, . . . , k0 + NP ,

(3-25)
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18 Greenhouse and lettuce model

with NP œ R the prediction horizon. The value Ns œ R represents the number of
realisations taken from Equation 3-9. In this work the number of realisations taken from the
distribution will be 1. The comparison work utilizes sample-based robust control and takes
multiple realisations.

The constraints in Equation 3-25 are defined:

umin =
!
0 0 0

"T
, (3-26)

umax =
!
1.2 7.5 150

"T
, (3-27)

”u = 1
10umax, (3-28)

ŷmin =
!
0 0 fŷ3,min(k) 0

"T
, (3-29)

ŷmax =
!
inf 1.6 fŷ3,max(k) 70

"T
, (3-30)

with lower and upper bound on the control signal defined by umin and umax œ R3, and the
bound on the change of the control signal defined by ”u œ R3. These bounds correspond to
current horticultural practice. The lower and upper bound on the output are ŷ3,min(k) and
ŷ3,min(k) œ R4. In these bounds, only the third element is time-varying and defined as:

fŷ3,min(k) =
I

15, if d1(k0) < 10
20, otherwise.

,

fŷ3,max(k) =
I

20, if d1(k0) Ø 10
25, otherwise.

(3-31)

The time varying constraints are on the indoor temperature are set such that it is colder
during the night than during the day. A consequence is that during the night, when the
outside temperature is colder, the controller is not working as hard to keep the temperature
at a high level. Since, if there is any, the sun is heating up the greenhouse during the day,
less additional heating is necessary during this period to achieve relatively high temperatures
in the greenhouse hence energy can be saved [48].
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Chapter 4

Model predictive control

The current state of greenhouse climate control in industry is relies mostly on the expert
knowledge of the growers themselves, these systems do not contain much knowledge about
the system or the growth of the crops. Most systems in the field today still try to mimic
the knowledge of the growers and consist mostly of a set of rules on what to do in what
situation. The state of academic research on the topic of greenhouse climate control is much
more advanced, it makes more use of models and knowledge of the system itself.

In this chapter, a short general introduction to MPC will be given. Then, the consequences
of parametric uncertainty are delved into.

4-1 Introduction to MPC

For over 30 years already, research has seen an opportunity in optimal control of greenhouse
climates [7]. Optimal control tries to satisfy as many goals, set by the grower, as possible.
The goals that are set by the grower are usually the set points for the greenhouse climate in
this case, e.g. temperature, humidity, etc. Given a system with an initial state x(t0) = x0
and auxiliary output variables

z(t) = h(x(t), u(t), d(t)) (4-1)

in which z(t) represents the auxiliary variables, x(t) denotes the states, u(t) denotes the inputs,
d(t) denotes the disturbances, and h(t) denotes a potentially nonlinear function. Then find
the control input

u(t), t0 Æ t Æ tf (4-2)

such that the objective function, J , is minimized. In the objective function, defined as below,
� represents the terminal cost, and L() represents the stage cost.

J(u(t), t0, tf ) = �(x(tf ), tf ) +
⁄ ·=tf

·=t0
L(z(·))d· (4-3)
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20 Model predictive control

Finally, additional inequality constraints must be met:

c
1
x(t), u(t), d(t)

2
Æ 0, t0 Æ t Æ tf (4-4)

The constraint conditions, in the case of greenhouse climate control, may refer to input
constraints, imposed by the operating range of the equipment, state constraints, such as
the maximum allowable temperature range, and output constraints, such as the maximum
allowable vapor concentration [3]. It should be noted however, that in the case of complete
models, correctly capturing all crop phenomena, output, and state constraints would not be
necessary. If for instance a too high crop temperature is detrimental to the crop, and this
is accurately captured in the model, the controller would steer the system away from these
temperatures. Currently, such knowledge is often still captured by the system constraints
alone. On the other hand, input constraints that have to do with equipment limitations are
always needed.

Optimal control is often implemented in the form of model predictive control (MPC). The
basic concept of MPC is to use a dynamic model of a system in order to predict system
behavior, and optimize the forecast to produce the best decision possible, e.g. to compute
the best input [50]. A model of the system is used by MPC to predict the future output
of the system, given a series of inputs. Feedback is provided, as the state prediction starts
from the current state. After optimization, the first calculated input is applied, and the cycle
repeats. MPC provides solutions that are optimal from the control point of view [3]. The
MPC controller, also called a receding horizon controller, can work with multiple control
objectives and keep constraints on input, state and output into account. The optimization
problem that MPC solves in greenhouse climate control setting is:

min
u

V (uk, yk), (4-5)

s.t. xk+1 = f(x̂k, uk, dk, p̂), (4-6)
yk = g(x̂k, p̂), (4-7)
yk,min Æ yk Æ yk,max, (4-8)
|uk ≠ uk≠1| Æ ”u, (4-9)
umin Æ uk Æ umax, (4-10)
x̂0 = x0, (4-11)

The MPC controller aims to minimize the cost associated to the problem, given by Equation 4-
5. The controller does this by changing the input, uk. The problem is subject to model
dynamics Equation 4-6 and Equation 4-7, dependent on the state, xk, input, uk, disturbances,
dk, and parameters, p. The parameters and state are uncertain, noted by the ·̂ symbol. The
problem is subject to constraints Equation 4-8, Equation 4-9, Equation 4-10 and Equation 4-
11.

In the case of greenhouse climate control, a trade-o� has to be made when selecting a model
for predicting future states. There will be a trade-o� between the accuracy and complexity of
the model. As discussed earlier, in an ideal scenario, the model should capture all phenomena
and optimization would then automatically steer the system to avoid harm to the crops.
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4-2 MPC in case of uncertainty 21

However, the complexity of models that capture more phenomena makes them less suited for
optimization. Using accurate, and thus complex, models requires large amounts of computing
power and time. Because greenhouse process models can become quite elaborate [11], the
optimization procedure can take longer than the fastest time scales within the model. For
control purposes, less complex and also less accurate models have been developed that still
capture the most important phenomena. An example is the model by van Henten [29],
discussed in chapter 2 and used in this study.

MPC comes in many varieties, not just in the form mentioned above. The first distinction can
be made between linear and non-linear MPC. MPC can be implemented in a way that assumes
the system to be deterministic, while other methods include robust MPC or stochastic MPC,
which incorporate uncertainty in the model. A detailed explanation of how these methods
work falls outside the scope of this paper, interested readers are referred to [50].

Optimal control is achieved with the use of MPC if all system dynamics are deterministic.
However, as discussed in chapter 3, at least some of the systems in a greenhouse are stochastic
and will need some way of handling, e.g. parametric uncertainty. In the next section, the
handling of uncertainty by MPC is discussed.

4-2 MPC in case of uncertainty

Taking the uncertainty in the system into account will always cause the system to be less
e�cient than if the system is deterministic. Boersma et al. explore the relation between
parametric uncertainty and performance in [49]. It was found that a relative parameter
uncertainty of 20% reduced crop yield by 11% and demands for CO2, ventilation, and heating
changed drastically.

Parametric uncertainty

[50] makes a distinction between three di�erent types of uncertainty. Models can have an
additive disturbance that is unknown, the state of the system might not be accurately known,
or the system model for control is inaccurate [50]. In this work the system model for control
is inaccurate, the parameters of the model are not known precisely.

A system that has parametric uncertainty can be modeled as

x+ = f(x, u, ◊) (4-12)

in which ◊ are the parameters of the system and are only known to belong to a compact set
�. An example that is often studied is

x+ = Ax + Bu (4-13)

in which ◊ = (A, B) may take any value in �. In greenhouse climate control, parametric
uncertainty is always present. Often, in literature, the state is assumed to be deterministic
to lessen the issue of parametric uncertainty.

Results are obtained in [49], a non-linear sample-based robust MPC is proposed for a green-
house with crops under parametric uncertainty. A comparison is made with a deterministic
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22 Model predictive control

case, and it is found that performance is increasingly lost with increasing uncertainty, where
the performance is measured as the crop dry weight production with respect to the energy
and CO2 input. Next to the significant decrease in the performance, a notable change in
system inputs is seen. Parametric uncertainty of 20% results in a performance loss of 11.2%.
CO2 injection is decreased by 79.7%, while ventilation and heating are increased by over 90%.
All these results increase with increasing parametric uncertainty.
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Chapter 5

Reinforcement learning

Reinforcement learning (RL) control methods are based on the interaction between an agent
and its environment. Complex decision-making problems have been solved using RL methods,
it is able to learn strategies that humans don’t easily comprehend. The greenhouse climate
control problem can be regarded as a decision-making problem, where at each time step an
action has to be performed. This action, in the form of the inputs to the system, has to be
decided upon such that the crop grows optimally with the least possible input cost. This
chapter will go over the possibilities of RL in greenhouse climate control. First, the concept
of RL will be briefly introduced. Then, function approximation will be introduced. The use of
function approximation is central to the research in this study and will be further elaborated
on in chapter 6.

5-1 Introduction to reinforcement learning

RL is a method of machine learning, which can interactively solve complex optimization and
control problems. In RL there is an agent and an environment. The environment is the space
in which the task is defined, and the agent is the decision maker [51]. The environment gives
the agent a reward that is based on the quality of the action that is taken, and the agent tries
to maximize this reward in time. By iterating many times over the possible states the agent
is eventually able to find the optimal control strategy [51]. RL falls between supervised and
unsupervised learning, as the correct action is not known, but a reward can be given based
on the output of that action. RL is inspired by human and animal learning, the rewards are
used as feedback on the taken actions.
In the RL framework, the environment is modeled as a Markov Decision Process (Markov
Decision Process (MDP)). An MDP is a tuple of the states, inputs, the state transition
function, and the reward function.

• X is the finite state space

• U is the finite action space
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24 Reinforcement learning

• f : X ◊ U ≠æ X is the state transition function

• fl : X ◊ U ≠æ R is the rewards function

The Markov property states that the future state only depends on the current state and the
action taken, future states are not dependent on previous states. The future is independent
of the past, given the present.

The agent, the controller, is a state feedback controller and learns the optimal mapping
from states to actions, from this it learns an optimal control law (fi). The learning goal of
any RL controller is to find the policy that maximizes the return. The return is defined as
a combination of the immediate and future rewards, and the agent can’t know the future
rewards yet, a value function, V , is introduced that defines the expected return of following
a certain policy, fi, for each state or state-action pair. The policy tells what action should be
taken in what state. In state s, the state-value function for an agent following a deterministic
policy fi is defined for discounted rewards as:

V fi(s) = Efi{Rk|sk = s} = Efi{
Nÿ

n=0
“nrn+k+1|sk = s} (5-1)

Where Efi denotes the expected value, given that the agent follows the policy fi [51]. Similarly,
the action-value function is given by:

Qfi(s, a) = Efi{Rk|sk = s, ak = a} = Efi{
Nÿ

n=0
“nrn+k+1|sk = s, ak = a} (5-2)

The policy that maximizes the value functions can now be noted as the optimal policy, fiú.
The optimal state-value and action-value functions, in state s, are denoted by V ú(s) and
Qú(s, a), respectively.

V ú(s) = max
fi

V fi(s) (5-3)

and
Qú(s, a) = max

fi
Qfi(s, a) (5-4)

In RL, either the state- or the action-value function is used to define the optimal policy, fiú.
Never are they used at the same time. If the value functions are known, it is the task of the
agent to learn a policy that maximizes the state- or action-value function [51].

The policy is a mapping from states to actions (sk æ ak). Two policy types can be distin-
guished, a deterministic policy, fik(s), and a stochastic policy, �k(s, a). Most often the policy
is deterministic, and most straightforwardly the policy is to assign the action to each state
that maximizes the action-value (Q-value). Only following the policy of taking the action
that maximizes the action-value is called a greedy policy, if this policy is always adhered to
an optimal policy will rarely be found. During learning, a non-greedy policy, called explo-
ration, can be followed. This allows the exploration of new parts of the environment where
potentially better solutions can be found [52]. The stochastic policy is a mapping from a
state-action pair to a probability that this action will be chosen. A result of a stochastic
policy is that in every iteration a di�erent action can be chosen, while the mapping is not
changed [51].
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5-2 Function approximation for reinforcement learning 25

Q-Learning

One of the most well-known control algorithms in RL is Q-learning, a variation of Q-learning
will be used in the remainder of this work. Q-learning is an o�-policy temporal di�erence
control algorithm that makes use of discrete MDP’s. In it’s simplest form it is defined as

Q(sk, ak) Ω Q(sk, ak) + –
!
rk+1 + “ max

a
Q(sk+1, a) ≠ Q(sk, ak)

"
(5-5)

To guarantee convergence, all state-action pairs need to be updated continually [51]. The
procedural form of the Q-learning algorithm is shown in Figure 5-1.

Initialize Q(s,a), ’s œ A(s), arbitrarily, and Q(terminal ≠ state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q
Take action A, observe R, SÕ

Q(sk, ak) Ω Q(sk, ak) + –
!
rk+1 + “ maxa Q(sk+1, a) ≠ Q(sk, ak)

"

S Ω SÕ:
until S is terminal

Figure 5-1: Q-learning: An o�-policy temporal di�erence control algorithm [52].

5-2 Function approximation for reinforcement learning

Simplification of a realistic environment can deteriorate the performance of the controller of
that environment. Searching a state space of large problems is infeasible because of data
storage limitations and the need to encounter each state and action within the state-action
space [52]. A method of dealing with the posed limitations on problems with large state-spaces
is to approximate the entire state-space from experience from a subset of that state-space. RL
algorithms can be extended to high dimensional problems by using function approximation.
In this section a short introduction to function approximation will be given. An extension on
this theory will be discussed in chapter 6.

MDP’s are subject to the curse of dimensionality, the number of action-values that has to be
stored in a table grows exponentially with the number of states and actions. This growth in
stored action-values translates in a growth in the necessary storage capacity and computing
power. Furthermore, when the state or action spaces include continuous variables or complex
sensations, most states encountered will never have been experienced before [52]. The only
way to learn anything on these tasks is to generalize from previously experienced states to
ones that have never been seen. The number of states and actions in greenhouse climate
control is large, function approximation can prove a viable method to mitigate the problems
encountered in the presence of large state-action spaces.

Approximation methods use a parameter vector w œ Rn. Th approximated value of the
state s given weight vector w can then be written v̂(s, w) ¥ vfi(s). The value v̂ might be
the function computed by an artificial neural network, with w the vector of the connection
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weights. By changing the weights, a wide range of di�erent functions v̂ can be implemented
by the network. A decision tree might also compute the function v̂, where w is the vector
defining all the split points and leaf values of the tree. The number of parameters n is usually
much less than the number of states. Changing one parameter within the vector changes the
estimated value of many states.

Many function approximation methods exist, these methods have been extensively researched
and written about. It is outside the scope of this work to discuss all existing methods.
Interested readers are referred to part 2 of [52] for further readings. In this work, in chapter 6,
the use of MPC as a function approximation method is discussed.
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Chapter 6

Reinforcement learning with economic
NMPC

A powerful tool to perform optimal control without depending on a model of the system is
reinforcement learning. RL methods are often based on learning the optimal control policy.
Unfortunately, RL can’t provide strong guarantees on the behavior of the resulting control
scheme. Model predictive control (MPC), on the other hand, is a standard tool for the closed-
loop control of systems with constraints and limitations. Furthermore, the theory behind
(N)MPC has been developed thoroughly. In [53], it is shown that an (E)NMPC scheme can
be tuned to deliver an optimal policy of the real system, even when using a wrong model.
The model and (N)MPC parameters can be changed with the help of RL strategies to achieve
better performance. This is seen as an opportunity in the case of greenhouse climate control
and will be further explained in this chapter.

RL is a tool for tackling Markov decision processes without depending on the model underlying
the state transitions. Most RL methods rely on observed state transitions and realisations of
the stage cost to increase the performance of the control policy. Indirect learning methods
learn an approximation of the optimal action-value function underlying the MDP. Generally,
the action-value function is unknown a priori, typically a generic function, such as a deep
neural network, is used to approximate it. Direct RL methods learn the optimal policy
directly. Most direct methods are based on policy gradient methods. Direct RL methods often
use DNN’s to approximate the optimal policy and the (action-) value function associated.
It can be di�cult to formally analyze the closed loop behavior of systems subject to an
approximate optimal policy supported by a DNN or a generic function approximation method
[53], furthermore DNN’s limit the amount of knowledge that can be included about the system
and its underlying constraints. (E)NMPC schemes can be used instead of DNN’s to support
the parametrization to approximate the (action-) value functions and the policy [53]. By
adapting the stage cost, terminal cost, and constraints the NMPC scheme can deliver the
optimal control policy, even if the underlying model is incorrect. Using (E)NMPC as a
parametrization for RL allows one to use the rich theory underlying (E)NMPC schemes in
the context of RL, system knowledge and constraints can be included by using (E)NMPC as a
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function approximator. Most of the theory in this chapter is based on [53] [54] [55] [56]. The
reader is referred to these papers for a more in depth explanation of the theory and proofs
thereof.

6-1 Using ENMPC as a function approximator

A parametrized ENMPC scheme can be used to approximate the optimal policy and the value
functions fiı, Vı, and Qı, even if the underlying model of the ENMPC is not accurate. System
knowledge and constraints can be captured in the ENMPC scheme, while the RL algorithm
will help improve the performance of the system.

The true greenhouse model can be described by a discrete MDP having the state transition
dynamics:

P[s+|s, a] (6-1)

Which, in more typical control fashion, can also be written as:

s+ = f(s, a, ’) (6-2)

For this thesis it is assumed that the true model of the system is not known and an approx-
imate model is taken into account for the control purposes, having the following transition
dynamics:

P[ŝ+|s, a] (6-3)

This model does not necessarily match the real model (Equation 6-1), indicated by ŝ+. In
the approximate instance, f is replaced by f̂◊.

The ENMPC scheme will be based upon the imperfect model of the greenhouse system, f̂◊,
and seek the minimization of the associated stage cost L̂(s, a).

L̂(s, a) =
I

Qı(s, a) ≠ “V+
ı (s, a), if |V+

ı (s, a)| < Œ
Œ, otherwise.

(6-4)

Where V+(s, a) = E[Vı(ŝ+|s, a], and the expectation is taken over the approximate system
model. It should be noted that the conditional formulation of the stage cost is to create a
well-defined L̂. In [53], it is stated that, under some conditions, the optimal policy fiı that
minimizes the stage cost for the true dynamics is also generated by using the approximate
model with its associated stage cost L̂. Thus, making it possible to find the optimal policy
based on a wrong model. L̂ can be learned directly from the data.

L̂ is not known a priori and will have to be learned, as a result the parametrization of the
mixed constraints will also have to be learned through RL tools. The constraints can be used
in the ENMPC scheme to exclude the undesirable states and inputs. In the most generic form
the constraints will consist of pure input constraints, and mixed constraints which constrain
combinations of states and inputs:

g(a) Æ 0, h(s, a) Æ 0 (6-5)
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6-1 Using ENMPC as a function approximator 29

Since RL can’t handle infinite values easily the domain where L̂ is finite needs to be captured,
the pure input constraints can remain fixed, but the mixed constraints need to be modified.
A slack variable is added to relax the mixed constraints as follows:

h◊(xk, uk) Æ ‡k, hf
◊(xN) Æ ‡N. (6-6)

As a result, the parametrization of the value function Vı uses the following ENMPC scheme.
The value function ENMPC scheme is parametrized by ◊.

V◊(s) = min
u,x,‡

⁄(x0) + “N!
V f

◊ (xN ) + w€
f ‡N

"
+

N≠1ÿ

k=0
“k!

l◊(xk, uk) + w€‡k
"

s.t. xk+1 = f◊(xk, uk), x0 = s

g(uk) Æ 0,

h◊(xk, uk) Æ ‡k, hf
◊(xN) Æ ‡N.

(6-7)

The ENMPC scheme holds parametrizations of the model, f◊, the mixed constraints, h◊, the
initial cost, ⁄◊, the stage cost, l◊, and the terminal cost, V f

◊ .

RL is used to increase the closed-loop performance of the system, by modifying the parameter
values for the parametrization of the model, constraints and costs. The ENMPC scheme above
is a classic ENMPC formulation in the case the “ = 1 and ⁄◊ = 0 [50]. The mixed constraints
are relaxed using slack variables, ‡k. The l1 constraints relaxation is critical for the TD RL
approaches that will be used in this work. If this relaxation were absent, the value functions
might take on infinite values. Only finite values can be used for the TD learning, infinite values
would cause the learning to be meaningless/infinite. The weights placed on the slack variables
are denoted by w, wf . The initial cost, ⁄◊, is used to form nominal stability guarantees of the
ENMPC scheme.

The action that is taken by the system is defined as taking the first element of the input
sequence generated by solving the value function ENMPC scheme for a given state.

a = uı
0 (6-8)

Accordingly, the action-value function, Q◊ of the Q-Learning problem is given by:

Q◊(s) = min
u,x,‡

⁄(x0) + “N!
V f

◊ (xN) + w€
f ‡N

"
+

N≠1ÿ

k=0
“k!

l◊(xk, uk) + w€‡k
"

s.t. xk+1 = f◊(xk, uk), x0 = s

g(uk) Æ 0,

h◊(xk, uk) Æ ‡k, hf
◊ (xN) Æ ‡N.

u0 = a.

(6-9)

In which only the final equality constraint is added to the scheme of Equation 6-7. A further
di�erence between the two schemes, is that the cost function for the value function scheme
can be slightly perturbed in order to enhance exploration. This perturbation happens by the
addition of a value resulting from f(u0, q) := fl||(u0 ≠ q)||, or q

T
u0, where q is randomly

Master of Science Thesis Seymour Lubbers



30 Reinforcement learning with economic NMPC

chosen. This parametrization will automatically satisfy the fundamental equalities underlying
the Bellman equations:

fi◊(s) = arg min
a

Q◊(s, a) (6-10)

V◊(s) = min
a

Q◊(s, a) (6-11)

6-2 RL for ENMPC

In theory, it is possible to generate the optimal policy and value functions using an ENMPC
scheme based on an inaccurate model. In practice, a smart parametrization of the ENMPC
scheme should be relied upon. The goal is to adjust the parameters ◊ in such a way that the
policy resulting from the ENMPC scheme fits the optimal policy as closely as possible. The
adjustment of the parameters relies on RL algortithms. In this work, classical RL approaches
will be used, which are mostly gradient based. Hence, these methods require the gradient
of the value functions, which requires the sensitivities of the optimal values of Q◊ [57]. The
sensitivity analysis of optimization problems is detailed in [58] and delivers Ò◊Q◊, needed in
Equation 6-16. In order to evaluate the gradients of the functions Q◊, V◊ and fi◊ the Lagrange
function associated with the action-value function ENMPC problem has to be found. It is
observed that:

Ò◊Q◊ = Ò◊L◊(s, yı) (6-12)

Where yı holds the primal-dual variables associated to the ENMPC problem Equation 6-9.
The Lagrangian of the action-value function is as:

L(s, y) =⁄◊(x0) + “NV f
◊ (xN) + ‰€

0 (xo ≠ s) + µ€
Nhf

◊(xN)

+
N≠1ÿ

k=0
‰€

k+1(f◊(xk, uk) ≠ xk+1) + ‹€
k g◊(uk)

+ “kl◊(xk, uk) + µ€
k h◊(xk, uk) + ’€(u0 ≠ a)

(6-13)

Where ‰, µ, ‹, and ’ are the multipliers associated to the constraints of Equation 6-9. The
gradient of Q is then created by di�erentiating the Lagrangian with respect to the parameters
of interest.

6-3 Q-learning for ENMPC

Q-learning has been introduced in section 5-1. One approach to Q-learning is based on
parameter updates driven by the temporal di�erence [52]. The TD error is calculated as:

·k = L◊(sk, ak) + “V◊(sk+1) ≠ Q◊(sk, ak) (6-14)

with gamma as the discount rate. L◊ represents the rewards function:

L◊(sk, ak) = l◊(xk, ak) + w€max(0, h◊(xk, ak)) (6-15)

Where l◊ is based on the inputs and the states, and w€max(0, h◊(xk, ak)) is the importance
placed on the constraint violations.
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The parameter update is then given by

◊ Ω ◊ + –·kÒ◊Q◊(sk, ak) (6-16)

in which Ò◊Q◊(sk, ak) is found by di�erentiating the Lagrangian associated with the ENMPC
problem of the action-value function with respect to the parameters, as explained above.
The action, ak, is selected according to the ENMPC policy. The scalar – is the step size,
determining the speed at which ◊ is altered.

Batch updates can be used in the case of episodic tasks, such as the greenhouse climate
control problem. Now, learning is performed with an alternative ENMMPC scheme. The
policy is based on the original ENMPC scheme, of which the parameters can be replaced with
the learned parameters at convenience. Instead of updating the parameters every time-step,
the update happens at convenience. The information contained in all time-steps between
parameters can be combined and used for the next parameter update. In the case of episodic
tasks, the system behavior might change during an episode and system updates based on
partial information can deteriorate performance.

In the remainder of this thesis Q-learning for ENMPC will be referred to as Q-ENMPC.
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Chapter 7

Set-up

To test the performance of using Q-ENMPC, simulations will be performed in the environment
as described in chapter 3. Matlab will be used for the modeling and simulation of these
experiments . Before any simulations can be run of Q-ENMPC, the MPC structure needs to
be tested and verified. Secondly, parameters need to be selected which the system can alter
to improve performance. The MPC system will be verified in section 7-1 and the parameters
are selected in section 7-2. Lastly, performance indicators are presented in section 7-3.

7-1 Verification of the results with only the MPC controller

The goal of this study is to improve the performance on the problem laid out in chapter 3.
Previous results were obtained in [49]. The goal of this section is to verify that the results
in [49] are reproducible. In order to verify the results from [49], the MPC from the paper is
recreated and experiments are run. This is, in theory, easy to do and beneficial for later stages
of this research as the MPC controller itself forms the basis for the function approximator
that is used for the RL agent.

Results

The results of [49] can be seen in Table 7-1. From these results it is clear that increasing the
parameter uncertainty, �p̂, results in a decrease of crop dry weight at harvest time.

The results from replicating the experiments are shown in Table 7-2. It has been chosen not
to verify the results at every uncertainty interval. Running an experiment takes about a day
of computation time and these results are deemed su�cient to verify that the results of [49]
can be replicated. Although the results are not identical, they are assessed as being similar
enough.

The origin of the discrepancy between the verification results in Table 7-2 and the results
from [49] has been identified as the amount of samples taken. The amount of samples for the
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�p̂ ”W% ”rms(u1) % ”rms(u2) % ”rms(u3) %
0.05I ≠3.9 ≠14.8 36.7 16.8
0.1I ≠6.6 ≠30.9 63.1 37.6
0.15I ≠8.9 ≠49.8 85.8 66.9
0.2I ≠11.2 ≠79.7 96.2 90.4

Table 7-1: The performance of the MPC controller as described in [49]. From the results it is
clear that an increase in parameter results in a decrease in performance. Increasing uncertainty
results in lower crop dry weight at harvest time and increased energy inputs. In the paper, the
number of samples that is taken into account at each time-step, Ns, is 20.

�p̂ ”W% ”rms(u1) % ”rms(u2) % ”rms(u3) %
0.1I ≠5.4 ≠29 55 33
0.2I ≠9.6 ≠69 92 76

Table 7-2: The performance of the MPC controller during the verification experiments. From
the results it is clear that an increase in parameter results in a decrease in performance. Increasing
uncertainty results in lower crop dry weight at harvest time and increased energy inputs. For these
results Ns was taken to be 10.

verification of the results was taken to be 10, while [49] uses 20 samples at each time step.
The result of taking 20 samples can be seen in Table 7-3. The results in Table 7-3 are closer
to the results obtained in [49] than the results in Table 7-2. It is determined that the results
are similar and the newly created MPC scheme can be used for the remaining research.

�p̂ ”W% ”rms(u1) % ”rms(u2) % ”rms(u3) %
0.2I ≠10.9 ≠80.6 98.2 90.6

Table 7-3: The performance of the MPC controller during the verification experiments. From
the results it is clear that an increase in parameter results in a decrease in performance. Increasing
uncertainty results in lower crop dry weight at harvest time and increased energy inputs. For these
results Ns was taken to be 20.

7-2 Parameter selection

The model and the MPC problem are described by a number of parameters. Adjusting all the
parameters of the model and the various parameters for the MPC implementation is likely too
time intensive and not always necessary to achieve significantly improved performance. This
section will describe the process of finding the parameters that promise to have the greatest
influence on the performance of the controller.

Parameters that are the most sensitive are the most important to find the correct value for,
as they influence the performance of the controller the most. Insensitive parameters are of
less importance as they do not influence the performance of the controller as much.

Three sources of information are used for the parameter selection. Firstly, various published
sensitivity analyses are studied to find the most important parameters of the model describing
the dynamics of the system itself. Secondly, a new sensitivity analysis is done to verify the
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results found in the papers. Lastly, [54] is used to identify the most important parameters of
the Q-ENMPC scheme.

First, the model parameters that will be subject to change by the Q-ENMPC algorithm will
be selected in subsection 7-2-1. Then, the MPC control problem parameters will be selected
in subsection 7-2-2.

7-2-1 Model parameter selection

The selection of the most important model parameters is done with help from [31], [29] and
[59]. The model, as described in chapter 3, consists of 22 parameters. The question that will
be answered in this section is which parameters impact the performance of the model the
most in the face of uncertainty.

In [29] a sensitivity analysis is presented that emphasizes the time evolution of the model
sensitivity. A first order method is used, the sensitivity of the state trajectories to small
parameter deviations around a nominal value is evaluated by simultaneously solving the
sensitivity equations and the dynamic model. The model that is used in [29] is not identical to
the model that is used in the present study, a two-state variable model is used that separates
the structural and non-structural dry-weight. The present study uses a single state variable
that sums the total crop dry-weight.

The results of this analysis indicate that the most sensitive parameters are the maximum
growth rate, the yield factor, the light use e�ciency and the carboxylation constant with
respect to temperature. The leaf area index, the Q10-factor for growth, and the extinction
coe�cient also have a large e�ect.

In [59] the relative sensitivity of the model to changes in parameters was evaluated using the
sensitivity function

Si = ˆYdw(T )
ˆpi

pi
Ydw(T ) (7-1)

where Si is the value of the sensitivity function for a variation of parameter i, Ydw(T ) is
the simulated dry weight at harvest time T using the original parameters, pi is the original
parameter value, ˆpi is a small variation in parameter i while keeping the other parameters
constant and ˆYdw(T ) is the di�erence between the simulated dry weight at harvest time with
and without the parameter variation. If Si = 1, a given fractional change in the value of the
parameter i produces the same fractional change in the yield, Ydw(T ).

The results from [59] indicate that the yield factor and the light use e�ciency play a major role
in the determination of lettuce crop growth. The parameter determining the carboxylation
conductance, and the extinction coe�cient and the leaf area ratio a�ect to a smaller extend
the simulatied dry weight at harvest time.

This same equation can be applied to the model used in the present paper. Testing per
parameter what the influence on the model outcome is of a 10% increase in parameter value,
compared to a run with nominal parameter values. The found relative sensitivities are shown
in Table 7-4. Table 7-5 shows the relative sensitivity for a 10% decrease in parameter value
and Table 7-6 shows the relative sensitivity for a 5% increase in parameter value.
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Parameter Relative Sensitivity
ventilation leakage through the cover ≠0.0104

CO2 capacity of the greenhouse ≠0.0170
Vapor capacity of the greenhouse 0.0083

e�ective heat capacity of the greenhouse air ≠0.0101
heat capacity per volume of greenhouse air 0.0205

overall heat transfer through the cover 0.0027
heat load coe�cient due to solar radiation 0.0128

yield factor 0.4595

respiration rate ≠0.0187
respiration coe�cient 0.0001

e�ective canopy surface 0.4008

light use e�ciency 0.3782

temperature influence on photosynthesis ≠0.0698
temperature influence on photosynthesis 0.1379

temperature influence on photosynthesis ≠0.0287
carbon dioxide compensation point ≠0.0021

coe�cient of leaf-air vapor flow ≠0.0167

Table 7-4: The relative sensitivity of the model parameters of the model used in the present
paper for a 10% increase in parameter value. In bold the parameters with the largest influence
are shown.

The results presented in Table 7-4 indicate that three parameters play a major role in de-
termining the lettuce crop growth, namely the yield factor, the light use e�ciency, and the
e�ective canopy surface. To a lesser extend the temperature influence on photosynthesis a�ect
the crop weight at harvest time.
It can be concluded, both from the existing parameter sensitivity studies and from the param-
eter sensitivity study conducted in the present paper that the model parameters that have the
greatest influence on the yield of the system are the yield factor, light use e�ciency, e�ective
canopy surface, and to a lesser extend the temperature influence on the photosynthesis. The
relative sensitivities, at a parameter deviation of 5%, are 0.4786, 0.4185, 0.4011, and 0.1496,
respectively. In [31] it is concluded that the vapour pressures, perturbation constants on
the outside CO2 concentration, humidity and solar radiation, gas constant, and conversion
constant between Kelvin and Celsius also have a major influence. It is argued in the present
study that these parameters are well known and fixed.
The performance of the controller is not only dependent on the yield of the system, as will
be discussed in section 7-3, the total inputs to the system during a growth cycle also play a
major role to determine the performance. The parameters that should be changed to have
an influence on the control actions by the controller are not necessarily the same as those
that influence the yield of the system. For this study the results of the sensitivity study are
combined with the model equations. The model parameters that have the greatest influence
on the states of the system are determined to be the CO2 capacity of the greenhouse, heat
capacity of the greenhouse air and coe�cient of leaf-air vapor flow, for the CO2 concentration,
temperature and humidity, respectively.
It is thus decided that the parameters that will be subject to change by the RL agent are
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Parameter Relative Sensitivity
ventilation leakage through the cover ≠0.0003

CO2 capacity of the greenhouse ≠0.0136
Vapor capacity of the greenhouse ≠0.0119

e�ective heat capacity of the greenhouse air ≠0.0180
heat capacity per volume of greenhouse air 0.0425

overall heat transfer through the cover ≠0.0331
heat load coe�cient due to solar radiation 0.0001

yield factor 0.4983

respiration rate ≠0.0410
respiration coe�cient 0.0001

e�ective canopy surface 0.4375

light use e�ciency 0.4162

temperature influence on photosynthesis ≠0.0556
temperature influence on photosynthesis 0.2121

temperature influence on photosynthesis ≠0.0275
carbon dioxide compensation point ≠0.0021

coe�cient of leaf-air vapor flow ≠0.0167

Table 7-5: The relative sensitivity of the model parameters of the model used in the present
paper for a 10% decrease in parameter value. In bold the parameters with the largest influence
are shown.

Parameter Relative Sensitivity
ventilation leakage through the cover ≠0.0002

CO2 capacity of the greenhouse ≠0.0092
Vapor capacity of the greenhouse 0.0005

e�ective heat capacity of the greenhouse air ≠0.0101
heat capacity per volume of greenhouse air 0.0182

overall heat transfer through the cover ≠0.0032
heat load coe�cient due to solar radiation 0.0131

yield factor 0.4786

respiration rate ≠0.0187
respiration coe�cient 0.0001

e�ective canopy surface 0.4011

light use e�ciency 0.4185

temperature influence on photosynthesis ≠0.0807
temperature influence on photosynthesis 0.1496

temperature influence on photosynthesis ≠0.0285
carbon dioxide compensation point ≠0.0024

coe�cient of leaf-air vapor flow ≠0.0167

Table 7-6: The relative sensitivity of the model parameters of the model used in the present
paper for a 5% increase in parameter value. In bold the parameters with the largest influence are
shown.
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the yield factor, the CO2 capacity of the greenhouse, heat capacity of the greenhouse air and
coe�cient of leaf-air vapor flow.

7-2-2 MPC control problem parameter selection

In this section the MPC controller parameters that will be subject to change by the RL agent
will be identified. The main source of information to idententify the parameters is [54], which
is the main reference for the overall control method.

The important tuning parameters for the control problem are the control horizon, prediction
horizon, cost function with initial, stage and terminal costs, and constraints.

For this study it is desirable to keep the control problem as similar to the control problem
from [49] as possible. It is thus decided not to alter the horizons. Furthermore, [54] shows
that the Q-ENMPC scheme can deliver the optimal control policy, even if the underlying
model is incorrect, by adapting the stage cost, terminal cost, and constraints only. A simple
conclusion is thus to only include these as parameters in the RL scheme. The stage and
terminal costs are quite logical, while the constraints may not be. The constraints can be
used in the ENMPC scheme to explicitly exclude undesirable states and inputs. The pure
input constraints are arguably fixed, but the mixed constraints should be modified to capture
the domain where the cost is finite.

Adjustable parameters are added for the stage cost of the three inputs and the yield. Fur-
thermore, a parameter is added for the terminal yield and a single parameter is added as the
initial cost. Finally, an adjustable parameter is added for the weighting on the constraint
violations.

The total amount of parameters that can then be adjusted by the RL algorithm is 11. Of these,
7 parameters are newly added parameters to adjust the cost function, while four parameters
are existing model parameters.

7-3 Performance indicators

The first performance indicator used in this work was introduced in [60], an economic profit
indicator. The economic profit indicator calculates the profit that stems from a certain growth
cycle of lettuce, when the lettuce is harvested and sold at the end of that cycle. The function
is as follows:

EPI = „(y1(tf)) ≠
tfÿ

tb

(cquq(t) + cCO2uCO2(t))dt (7-2)

where „(y1(tf)) is the gross income from selling the harvested lettuce, which is obtained at
harvest time tf , in Hflm≠2. The operating cost of the airconditioning equipment is indicated
by cquq(t) + cCO2uCO2(t). The auction price of the lettuce is assumed to follow a linear ratio
„(y1(tf)) = cpri,1 + cpri,2y1(tf) between the auction price and harvest weight. cpri,1 in Hflm≠2

and cpri,2 in Hflkg≠1m≠2. It is assumed that the operating cost of the air conditioning
equipment are related to the amount of energy, uq in (Wm≠2), and the amount of carbon
dioxide introduced into the system, uCO2 in (kgm≠2s≠1, linearly. The operating costs are
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parameter value
cco2 42 ◊ 10≠2 Hflkg≠1

cq 6.35 ◊ 10≠9 HflJ≠1

cpri,1 1.8 Hflm≠2

cpri,2 16 Hflm≠1

Table 7-7: Parameters of the economic profit function.

parameterised by the price of energy, cq in (HflJ≠1), and the price of carbon dioxide, cCO2
in (Hflkg≠1). The values of these parameters can be found in Table 7-7.

The second performance indicator is the constraint violations during the growth cycle. The
constraint violations are calculated as the total amount of constraint violation summed over
the entire horizon. For example, the humidity constraint is always set at 70%. If, during three
time-steps the humidity is at 75%, the total constraint violation is 15. During those same
time-steps it could be that the temperature constraint is also violated by one degree, then
the total constraint violation is 15, for the humidity violation, plus 3, for the temperature
violation, for a total of 18. The total constraint violations over the growth cycle are divided
by 50 to reach a more intuitive number.
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Chapter 8

Case study: Q-learning for ENMPC

Simulations will be performed to compare the performance of the controller before and after
learning the parameters. Performance will also be compared with the performance achieved
with robust control and in the nominal case. The open-source software CasADI and solver
IPOPT are used in a Matlab environment to solve the optimization problems, following a
multiple-shooting approach with warm start.

The model that will be used in the simulations has been thoroughly discussed in chapter 3.
The main theory behind this work has been presented in chapter 6. The set-up, including
parameter selection, verification of the MPC controller and explanation of the performance
indicators has been discussed in chapter 7.

Three case studies will be conducted to compare performance between the Q-ENMPC, robust
MPC and nominal MPC. In the first case study, emphasis will be placed on the performance
based on the economic profit function, the second case study will focus on minimizing con-
straint violations, and the third case study will combine both.

The remainder of the chapter will first detail the practical implementation, including the
changes made to the ENMPC scheme with respect to [49] and the considerations for the RL
scheme. Secondly, the case studies will be explained and the results will be presented.

8-1 Practical implementation

8-1-1 The ENMPC scheme

The basis of the ENMPC scheme that is used in this work is the same as the one used in [49].
Some adjustments are made to the cost function and constraints, with respect to their work.
In this section the changes in the ENMPC scheme of this work with respect to [49] will be
pointed out.
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42 Case study: Q-learning for ENMPC

Cost function

The cost function for the action-value function is constructed by including a cost on all the
inputs of the system and rewarding the yield. The cost function is implemented as follows:

J(s) =⁄◊

+
N≠1ÿ

k=0

3ÿ

i=1
cu,i ú ui,k

+
N≠1ÿ

k=1
cy,1 ú (yk ≠ yk≠1)

+ cy,2 ú yN

+
Nÿ

k=1
w ú ‡k

(8-1)

The initial cost, ⁄◊, is initialised at 100. The inputs are penalised per time-step in the
prediction-horizon. The three di�erent inputs are weighted di�erently by cu,i. The yield is
weighted via cy,1 and cy,2. Lastly, the slack variables, which register constraint violations, are
weighted by w. The value of the weights cu,i, cy,i and w will be learned. Furthermore, to
reward an increase in yield, the yield related weighting is initialized negative. Via the third
term in Equation 8-1, part of the cost on the yield is placed on the terminal yield within
the time horizon, weight is also placed on the increase (or decrease) per time-step in the
prediction horizon, via the second term in Equation 8-1.

Exploration of the system can be enhanced by using a perturbation in the cost function used
for approximating the value function:

V◊(s) = Q◊(s) + q
T

u0 (8-2)

Where q is a weight placed on the first input in the prediction horizon. This weight has a
uniform distribution with mean 0. With q the exploration is regulated. It has been concluded
that exploration is not beneficial for this research, as such q is set to zero. A short discussion
on why q is set to zero in this thesis work is included in Appendix A.

Constraints

The constraints follow the structure of the model discussed in chapter 3. It should be noted
that the inequality constraints are extended with slack variables and an extra constraint on
the action-value function that is shown in Equation 6-9. The first input of the action-value
function, Q◊, is fixed to the first input resulting from calculating the value-function, V◊.

The objective of the final optimization problem is given by Equation 8-1. The constraints are
given in Equation 3-25. Slack variables are added to the inequality constraints, similarly to
Equation 6-9. A final constraint is added with the addition of the final equality constraint of
Equation 6-9.
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Lagrangian

An important step in the Q-learning approach is evaluating the gradients of the functions V◊,
Q◊ and fi◊. This evaluation can be done with the help of the Lagrangian function associated
with the ENMPC scheme. The RL update and ENMPC scheme are explained in further
detail in chapter 6.
The Jacobian and the Hessian of the Lagrangian can easily be found using Matlab. The
Lagrangian is first constructed symbolically. The numerical values for the Lagrange multipli-
ers and constraints are a results of the optimization step, which can be substituted into the
symbolic Lagrangian. A numerical value for the Lagrangian and its derivatives is then found.

8-1-2 Changing parameters

For the various case studies, a couple of factors are of importance to make the system learn
correctly. In the following, these factors will be discussed briefly.

RL reward function

The reward function of the RL agent is the main di�erentiator in the learning process. It
dictates what is good progress and what is bad behavior of the system. The main parts that
will be present in the reward function are a rewards for the performance, and a penalty for
constraint violations.
c1 and c2 are the weights placed on the performance and the constraint violations, allowing
one to decide what is important in the learning process. Generally, the value of c1 will be
between zero and a negative integer, while the value of c2 will be between 0 and a positive
integer. The reward function is part of the TD error as described in section 6-3. Hence the
reward function is defined as:

L◊(sk, ak) = c1 ú l◊(x, a) + c2 ú
tfÿ

k=tb

(max{0, h◊(xk, ak)}) (8-3)

Where l◊(x, a) is taken as the EPI, explained in section 7-3, minus a fixed integer, 1.8. c2 úqtf
k=tb

(max{0, h◊(xk, ak)}) is the sum of the magnitude of the constraint violations at each
time-step, as discussed in section 7-3.

Exploration

Exploration is done through the addition of a perturbation to the value function in the
ENMPC scheme. This perturbation is explained in further detail in section 6-1. In this work,
no exploration will be included.

Learning rate

The learning rate determines the rate at which the parameter values are adjusted during
learning. High learning rates can cause the system to ’jump’ around the optimal values or
even cause instability, while too low of a learning rate causes slower learning than necessary.
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The learning rates are initiated to cause a 1% change in the values of the model and ENMPC
parameters. The learning rate for the value of weight on the slack variables is higher, at a
rate of 50%. The learning rates are decreased by 10% every episode during learning.

Slack variables

Slack variables are needed for Q-ENMPC to work, as described in chapter 6. The weights
placed on the slack variables are an important factor in determining how conservative the
system is and in decreasing the constraint violations. The initialization of the slack variables
is a factor in the initial constraint violations.
Since the learning rate is a percentage of the initial value of the parameters, the weight on the
slack variables should not be too low, as this could prohibit relevant learning of the parameter.
A value of 5000 is settled upon as good starting ground for learning, while not yet prohibiting
constraint violations so much that none are present at the start.

Parameter initialization

Multiple di�erent initializations for the values of the model parameters are used in the case
studies. First, the nominal values for the model parameters can be used, the values are given
in Table 3-1. When the values for the model parameters are initialized with their nominal
value, it will be referred to as nominal initialization.
Second, in some case studies the parameters are initialised within a band around the nominal
parameters of 20%, as explained in section 3-2. This means that the value for each parameter
deviates a maximum of 20% from the nominal value. The actual deviation is chosen at
random, such that a significant increase in constraint violations is present, compared to the
nominal parameters. When the values for the model parameters are initialized with this
random value, it will be referred to as randomized initialization.
The model parameters values with which the system is initialised in the case of randomized
initialization are presented in Table 8-1, replacing the nominal parameter values of Table 3-1.

parameter value parameter value parameter value parameter value
c1,1 0.37354 c2,1 3.459 c3,1 2.52 · 104 c4,1 4.799
c1,2 2.242 · 10≠7 c2,2 4.434 · 10≠7 c3,2 1070 c4,2 0.0032
c1,3 50.69 c2,3 7.5 · 10≠6 c3,3 6.03 c4,3 9348
c1,4 2.07 · 10≠9 c2,4 75560 c3,4 0.207 c4,4 8314
c1,5 4.52 · 10≠6 c2,5 273.15 c4,5 273.15
c1,6 3.65 · 10≠4 c2,6 101325 c4,6 17.4
c1,7 5.96 · 10≠4 c2,7 0.044 c4,7 239
c1,8 5.2 · 10≠5 c4,8 17.269

c4,9 238.3

Table 8-1: Initialisation values of the model parameters in case of randomized initialization.

Thirdly, an initialization is used in which the value of all model parameters is initialized at
1.1 times their nominal value. When the values for the model parameters are initialized in
this way, it will be referred to as initialization 1.1.
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Lastly, a more complicated initialization is used. Initialization 1.1 is used as a starting point.
This initialization is then used to learn for constraint violations, the reward function and
results are shown in case study 2. By learning for constraint violations, the EPI decreases
rapidly within a limited number of episodes. The parameters of the system in the third
episode are used for the this initialization. This initialization will only be used in case study
1, it will be referred to as initialization 3. The benefit of this initialization is that it is known
beforehand that within a limited amount of parameter updates a significantly increased EPI
can be achieved.

Five parameters are usually kept to their nominal value, this is done because they represent
well known physical constants (e.g. conversion factor from Kelvin to Celsius). In one cases,
while using a randomized initialization these values are also randomized, in that case the
initialization will be referred to as randomizedr.

The initial value of the learn-able parameters of the ENMPC scheme are presented in Table 8-
2. In the table, it can be seen that the inputs are penalised, while the yield is rewarded. The
initial value of the learn-able parameters of the ENMPC scheme is the same for all case
studies.

Parameter Initial value
Initial cost 100

cost on CO2 input 50
cost on ventilation 1

cost on heating input 1000
cost on yield increase -10
cost on terminal yield -100

Weight on slack variables 5000

Table 8-2: Initialisation parameters of the ENMPC scheme.

RL updates

During training the parameters selected in section 7-2 are updated by the RL agent. The
interval between updates is a hyperparatemer in the controller design. In this study the
parameters will be updated once per episode, with an episode being the length of one growth
cycle. It is chosen to only update once per episode because the gradient of the system changes
significantly during the episode. It would not be feasible to implement a changing learning
rate. Due to there only being one update per episode, it is the amount of episodes that
determines the amount of parameter updates.

The information contained in all time-steps is combined to form the TD error for the param-
eter update. As discussed in chapter 6, the TD error for each episode is given by

·k = L◊(sk, ak) + “V◊(sk+1) ≠ Q◊(sk, ak) (8-4)

with the rewards function defined in Equation 8-3. As explained in section 6-3, the parameter
update is then given by

◊ Ω ◊ + –·kÒ◊Q◊(sk, ak) (8-5)
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Initialization EPI Constraint violations
Nominal 2.54 209

Randomized 2.73 296
1.1 2.89 504

Robust MPC 2.1 23

Table 8-3: Di�erent initializations and their starting performance in terms of EPI and constraint
violations.

The reward function is calculated once per episode, and changes for each case study. The
gradient is averaged over the entire episode for each parameter. The average gradient is then
used in the update equation above.

8-2 Starting performance

Before starting the case studies it is necessary to know the performance of the system with
nominal parameters. Simulating with the nominal parameter values and a weight on the slack
variables of 5e3 results in an EPI of 2.54 (Hflm≠2), similar to the results of [49], and constraint
violations of 209. Simulation with the randomized parameter initialization, resulted in an EPI
of 2.73 (Hflm≠2), 7.5% higher than with nominal initialization, but the constraint violations
are at 296, 42% higher than with the nominal parameters. Initialization 1.1 results in an EPI
of 2.89 (Hflm≠2), 13.7% higher than in the nominal case. Constraint violations are at 504,
141% higher than in the nominal case.
One of the reasons for the constraint violations while having used the nominal parameters is
the implementation of slack variables. These allow for a trade-o� between performance and
constraint violations. The slack variables are needed for the learning algorithm.
The performance achieved with robust control is significantly di�erent than the performance
achieved with nominal MPC. When sample-based robust MPC is used with 10 samples and
an uncertainty band of 10% the EPI is 2.1 (Hflm≠2) and the constraint violations are 23. By
increasing the amount of samples and the uncertainty band the performance decreases, with
20 samples and 20% uncertainty the EPI is 1.25 (Hflm≠2) and the constraint violations are
42. In this thesis the results of using robust MPC with 10 samples and a uncertainty band
of 10% will be used for comparison.

8-3 Case study 1: Improvement of EPI from perturbed initial pa-
rameters

In this case study the performance of the Q-ENMPC will be compared to the MPC from
[49] in terms of the achieved EPI. The main objective is to learn parameters and adjust
them in such a way the EPI is increased, preferably such that the final performance that is
achieved is better than by the controller with nominal initialization. Emphasis will be placed
on the EPI in the RL reward function. The controllers will be initialized with the perturbed
model parameter values and compared to a MPC with nominal model parameter values, both
without exploration.
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Figure 8-1: The evolution of the EPI during learning for the economic performance. The model
parameters are initialized with the randomized initialization, in blue, randomizedr initialization, in
orange, initialization 3, in yellow, nominal initialization, in green, and nominal initialization with
robust MPC, in purple.

The RL reward function will focus only on the EPI in this case. The newly introduced RL
agent with MPC controller as a function approximator will be used. The agent will learn for
30 episodes.
The RL reward function is constructed with c1 being ≠200 in all instances. c2 is set to zero,
resulting in the following reward function:

RL reward = ≠200 ú
1
cpri,sy1(tf) ≠

tfÿ

k=tb

(cquq(t) + cCO2uCO2(s))dt
2

(8-6)

Thus, rewarding an increase of the EPI.
Three di�erent initializations are used to learn for the EPI. First, learning the EPI from the
randomized initialization. Second, the randomizedr initialization is used. Lastly, initialization
3 is used.
The simulations indicate that learning the EPI is a di�cult task for the controller to achieve.

8-3-1 Results

The evolution of the EPI for all three di�erent scenario’s is shown in Figure 8-1. From
these simulations, it is clear that learning for the EPI has not been done successfully, and a
decrease in EPI is shown in all three cases. The relative decrease in EPI is di�erent in all
three scenario’s.
Using the randomized initialization results in a decrease from 2.73 (Hflm≠2) to 2.72 (Hflm≠2),
a decrease of less than half a percent of the EPI.
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Figure 8-2: The evolution of the TD error during learning for the economic performance. Ran-
domized initialization is used. In blue the evolution of the TD error is shown during learning, in
yellow the evolution of the reward function is shown, and in orange the di�erence between the
value functions.

Figure 8-3: The evolution of the TD error during learning for the economic performance.
Randomizedr initialization is used. In blue the evolution of the TD error is shown during learning,
in yellow the evolution of the reward function is shown, and in orange the di�erence between the
value functions.
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Figure 8-4: The evolution of the TD error during learning for the economic performance. The
parameters are initialized as 1.1 times the nominal parameter value. In blue the evolution of the
TD error is shown during learning, in yellow the evolution of the reward function is shown, and
in orange the di�erence between the value functions.

Using the randomizedr initialization, the EPI decreases by 1%. Interestingly, the constraint
violations drop from 877 to 813, a decrease of 7.3%.

Initialization 3 shows no decrease in the EPI, but some significant spikes are present in the
second half of learning. It is again noticed that the constraint violations decrease during
learning, while this is not rewarded in the reward function.

In all three cases, the TD error, as shown in Figure 8-2, Figure 8-3, and Figure 8-4, does
not show convergence to zero. Taking the reward function apart, plots of the evolution of
yield and the sum of the heat inputs show that the yield is not increasing during learning and
the heat input is increasing. This is noteworthy, since the RL reward function should punish
increasing the heat input and reward the growth of the yield. Furthermore, it can be seen
that the variations in the TD error from episode to episode are dominated by the di�erence
in the value functions.

8-3-2 Conclusions

The simulations show that learning for the EPI with the RL reward function as shown in
Equation 8-6 is not successful. All simulated cases show a decrease in the EPI with respect to
the initial level. The behavior of the system during learning does not follow the pattern that
can be expected with this reward function. It is surprising that no increase in EPI is possible
whatsoever, therefor further research in the increase in one of its parts has been conducted.
Some research into increasing the yield has been conducted in Appendix B. It is shown that
solely learning for the yield is possible. The initialization of weight on the slack variables
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an important factor in the learning of the yield. The learned model parameters also play an
important role in learning the yield.

8-4 Case study 2: Decreasing constraint violations from perturbed
initial parameters

The aim of this case study is to decrease constraint violations over time. In this case, per-
formance based on EPI is not the main concern. The first interesting case is to initialize the
system with the nominal model parameter values and try to find parameter updates that will
decrease the constraint violations from there, ideally with only a minor decrease in EPI. The
second case is to decrease constraint violations from the parameters that result in maximum
EPI, these parameters cause quite significant constraint violations that could be harmful for
the health of the crop.

In this case study the parameters are initializes in multiple ways. First, the randomized
initialization is used. Secondly, initialization 1.1 is used. Lastly, simulations starting from
the nominal model parameter values have been done, unfortunately some optimization error
occurred that could not be solved within the time available.

The RL reward function is kept the same in both simulations:

RL reward = 0.04 ú
tfÿ

k=tb

(max{0, h◊(xk, ak)}) (8-7)

The factor for c2, 0.04, is kept small such that the contribution of the constraint violations to
the TD error is of the same order of magnitude as the di�erence between the value functions.

8-4-1 Results

In Figure 8-5 and Figure 8-6, the EPI and constraint violations of the system are shown while
learning for minimizing constraint violations starting from the randomized initialization. The
results indicate that a significant decrease in constraint violations is possible when starting
from these initial parameter values. The best results are achieved when using initialization
1.1. The initial constraint violations are at a level over 504, while the final level is around 30,
a decrease of 94% and well under the level achieved with the nominal parameter values.

Using the randomized initialization also results in a significant improvement of the constraint
violations, but the improvement is not as good as with initialization 1.1. The initial constraint
violation is at 297, and the final level is around 218, slightly above the level of constraint
violations with the nominal parameter values. This decrease is about 26.6%.

The simulations show that the EPI decreases during learning. The EPI decreases from 2.73
to around 2.71 when the randomized initialization is used. When initialization 1.1 is used,
the decrease is from 2.89, to around 2.3, a decrease of 20.5%.

The results achieved initialization 1.1 are notable because they are able to achieve constraint
violations close to that of robust MPC, while still having economic performance almost 10%
higher. The slack variables were expected to play the largest role in decreasing the constraint
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Figure 8-5: The evolution of the economic performance during learning for the constraint viola-
tions. In blue the evolution of the EPI is shown during learning, when the parameters are initialized
as in Table 8-1. In orange the economic performance is shown when the parameters are initialized
as 1.1 times the nominal value. In green the performance with nominal parameter values, and in
purple the performance with samble-based MPC with 10 samples and 10% uncertainty. It can be
seen that the economic performance stays close to its initial level in the first case, always being
higher than in both the nominal and the robust case. In the second case, the performance drops
significantly, but stays higher than in the robust case.

Figure 8-6: The evolution of the constraint violations during learning for the constraint violations.
In blue the evolution of the constraint violations is shown during learning, when the parameters
are initialized as in Table 8-1. In orange the evolution of constraint violations is shown when the
parameters are initialized as 1.1 times the nominal value. In green the constraint violations with
nominal parameter values, and in purple the constraint violations with samble-based MPC with
10 samples and 10% uncertainty. It can be seen that the constraint violations drop in both cases,
but much more significantly in the second case.
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Figure 8-7: The evolution of the TD error during learning for the constraint violations. The
parameters are initialized as in Table 8-1. In blue the evolution of the TD error is shown during
learning, in yellow the evolution of the reward function is shown, and in orange the di�erence
between the value functions. It can be seen that the reward function converges to around ≠185,
while the di�erence between the value functions stays around the same level.

Figure 8-8: The evolution of the TD error during learning for the constraint violations. The
parameters are initialized as 1.1 times the nominal parameter value. In blue the evolution of the
TD error is shown during learning, in yellow the evolution of the reward function is shown, and
in orange the di�erence between the value functions. It can be seen that the reward function
converges to around 5, while the di�erence between the value functions first drops and then creeps
up.
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violations, by increasing the weight on the slack variables it is more costly to violate con-
straints. It is interesting to see that the weight on the slack variables is increased more in
the case that the randomized initialization is used. In the randomized initialization case the
weight increases to 3e4, while in the initialization 1.1 case the weight is only increased to 2e4.

Both cases do not show convergence of the TD error. This lack of convergence can mainly be
attributed to the behavior of the value functions. The value of the TD error is dominated by
the value functions.

Starting from the nominal parameter values has presented some unexpected issues. Due to
unknown solver issues, the results stagnate after around 2000 time-steps and become unusable.
Multiple scenarios were investigated, but unfortunately the issue could not be resolved in time.

8-4-2 Conclusions

It is clear that significant improvements of constraint violations are possible with the help of
Q-ENMPC. It is shown that constraint violations can be decreased to a level below the level
achieved with nominal parameters. The downside of decreasing the constraint violations is
that the EPI also decreases. Comparing the results with those achieved with sample-based
robust MPC shows that, when using initialization 1.1, the Q-ENMPC is able to achieve better
economic performance while almost matching the constraint violations.

The fact that the EPI decreases when decreasing the constraint violations is expected. The
main contributors to the constraint violations are the temperature in the greenhouse, which is
often too low, and the humidity. The only way for the system to decrease both these factors is
by increasing the heat input to the greenhouse. The heat input is one of the important factors
that determine the EPI. Increasing the heat input will decrease the constraint violations, but
also increase the cost to run the facility.

8-5 Case study 3: Improving EPI while decreasing constraint vio-
lations from perturbed initial modle parameter values

The final case study will focus on improving the EPI, while simultaneously decreasing con-
straint violations. The system will be initialized from the perturbed model parameter values.
The goal of this case study is to continually improve the performance of the system, while not
deteriorating its constraint satisfaction. A result that indicates performance close to a system
operating with the nominal model parameter values and similar constraint satisfaction, while
having started from the perturbed initial model parameter values, would already be a great
achievement.

The values of c1 and c2 in the reward function, Equation 8-3, are decided to be ≠200 and 0.04
respectively. The learning rate is decreased at a rate of 10% per episode, allowing for learning
even while the system is already mostly converged. The resulting RL reward function is as
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Figure 8-9: The evolution of the economic performance during learning for both the economic
performance and the constraint violations. The parameters are initialized as in Table 8-1. In blue
the evolution of the EPI is shown during learning, in orange the initial performance, in green the
performance with nominal parameter values, and in purple the performance with samble-based
MPC with 10 samples and 10% uncertainty. It can be seen that the economic performance stays
close to its initial level, albeit slightly lower.

follows:

RL reward = ≠200 ú
1
cpri,sy1(tf) ≠

tfÿ

k=tb

(cquq(t) + cCO2uCO2(s))dt
2

+0.04 ú
tfÿ

k=tb

(max{0, h◊(xk, ak)})
(8-8)

8-5-1 Results

In Figure 8-9, Figure 8-10, and Figure 8-11 the EPI, constraint violations and TD error of
the system are shown, respectively, while learning for performance and minimizing constraint
violations using randomized initialization. The Q-ENMPC scheme is able to reduce the
constraint violations by 30%, while keeping the performance around the starting level. In
this case the starting level is already a performance 7.5% higher than the performance with
nominal parameters. After learning, the constraint violations are only 4.8% higher than in
the nominal case.

The TD error decreases from 297, to around 219, a decrease of 26.3% with respect to the
starting level. While this is better than the starting point, convergence by means of the TD
error is not shown. The remaining value of the TD error is a result of the di�erence between
the value functions, as can be seen in Figure 8-11. The convergence that is seen is mainly a
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Figure 8-10: The evolution of the constraint violations during learning for both the economic
performance and the constraint violations. The parameters are initialized as in Table 8-1. In blue
the evolution of the EPI is shown during learning, in orange the initial performance, in green the
performance with nominal parameter values, and in purple the performance with samble-based
MPC with 10 samples and 10% uncertainty. It can be seen that the constraint violations decrease
significantly during learning. The final performance is similar to that with nominal parameter
values, but much higher than in the case of robust MPC.
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Figure 8-11: The evolution of the TD error during learning for both the economic performance
and the constraint violations. The parameters are initialized as in Table 8-1. In blue the evolution
of the TD error is shown during learning, in yellow the evolution of the reward function is shown,
and in orange the di�erence between the value functions. It can be seen that the reward function
converges to around 250, while the di�erence between the value functions stays around the same
level.

result of the decrease of the learning rate. The value of the TD error is dominated by the
di�erence between the value functions.

Constraint violations are only seen in the temperature and humidity constraints. The temper-
ature bounds are slightly violated both on the high and low ends, this is deemed too little to
be of concern. The humidity is constantly being violated on the high end. It is quite logical
to violate this bound, as a high humidity helps with crop growth according to the model.
The bounds are in place to prevent crop disease, which is not explicitly accounted for in the
model. Literature reports higher chances of crop disease at elevated humidity levels, however,
studies are conducted at humidity levels of 80% or higher, which is significantly higher than
the average learned humidity level of 71%. It can also be seen that at the start of the learning
process the average humidity is at over 73%, which is significantly higher than the average
humidity at the end of learning.

8-5-2 Conclusions

In this case study the goal was to improve both the performance with respect to the EPI
and with respect to the constraint violations. Improving the performance with respect to
the constraint violations has been shown, but the EPI has decreased. When comparing the
results from this case study with those of the second case study, where only decreasing the
constraint violations was the goal, the results are very similar. In this case study the decrease
in constraint violations is slightly less, and the decrease in EPI is also slightly better, but the
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di�erence is barely noticeable.

8-6 Results and Conclusions

In this chapter simulations were performed with the Q-ENMPC approach for various case
studies. The case studies aimed at decreasing constraint violations, increasing performance
in terms of EPI and a combination of both.

From these case studies it is evident that it is possible to significantly decrease constraint
violations starting from the perturbed parameter values. Increasing the EPI has proven
di�cult in all cases.

In the first case study, it is shown that learning for the EPI with the RL reward function as
shown in Equation 8-6 is not successful. All simulated cases show a decrease in the EPI with
respect to the initial level. The behavior of the system during learning does not follow the
pattern that can be expected with this reward function. It is shown that solely learning for
the yield is possible. The initial weight placed on the slack variables is an important factor
in the learning of the yield.

In the second case study it is shown that significant improvements of constraint violations are
possible with the help of Q-ENMPC. It is shown that constraint violations can be decreased
to a level below the level achieved with nominal parameters and almost equal to the level
achieved with robust MPC in some cases. As expected, the downside of decreasing the
constraint violations is that the EPI also decreases.

Lastly, the goal was to improve both the performance with respect to the EPI and with
respect to the constraint violations. Improving the performance with respect to the constraint
violations has been shown, but the EPI has decreased. When comparing the results from this
case study with those of the second case study, where only decreasing the constraint violations
was the goal, the results are very similar. In this case study the decrease in constraint
violations is slightly less, and the decrease in EPI is also slightly better, but the di�erence is
barely noticeable.

With the tested reward functions, parameter value initializations, and updated parameters it
is seen that a decrease of the constraint violations is possible, while, with the tested reward
functions, an increase in the EPI was not possible. To increase the yield, which has been
possible on its own, it was beneficial to place no weight on the slack variables. The most
notable result from the case studies is that it is possible to achieve constraint violations on a
similar level as with robust MPC, while having a higher economic performance.
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Chapter 9

Conclusions and discussion

In this thesis, data driven ENMPC using Q-learning is proposed to increase the performance of
a greenhouse growing lettuce. Various case studies are performed and results are compared to
those of existing research. In this chapter, research questions are answered, final conclusions
are drawn and discussed, and recommendations for future research are provided.

9-1 Conclusions

The main research questions of this work was:

Can ENMPC using reinforcement learning be used in greenhouse climate control and
improve performance compared to robust sample-based MPC in the presence of parametric

uncertainty?

The sub-questions that were investigated in the case studies are:

• Can ENMPC using RL increase economic performance, starting from perturbed initial
model parameter values?
This sub-question can be answered with a definite no. The reward functions and ini-
tializations tested in this thesis have not resulted in an increase of the EPI.

• Can ENMPC using RL decrease constraint violations, starting from the nominal model
parameter values?
ENMPC using RL can decrease constraint violations significantly. In the case studies
it is shown that the constraint violations can be decreased by 30% when initializing
the system with perturbed parameter values, even reaching a decrease of over 90% in
certain cases. Unfortunately, starting from the nominal model parameter values has
resulted in solver issues that could not be solved in time.
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• Can ENMPC using RL increase economic performance and decrease constraint viola-
tions at the same time, while starting from perturbed initial model parameter values.
The answer to this sub-question is that Q-ENMPC has not shown to increase the eco-
nomic performance, while decreasing the constraint violations. No cases have resulted
in an increase of the EPI, while decreasing the constraint violations was possible in
many cases.

Because all sub-questions are answered, it is now possible to answer the main research ques-
tion. In this thesis, performance was defined both with an economic indicator and based
on constraint violations. The simulations-based case studies in this thesis show that an in-
crease of the performance, based on constraint violations, is possible. Significant decreases in
constraint violations have been shown in the case studies, suggesting that Q-ENMPC is well
able to increase performance in that regard. During the case studies, the constraint violations
have been decreased by up to 94%. Improving the performance based on EPI has been proven
di�cult. The case studies conducted in this thesis have resulted in an improvement of the
EPI compared to the level achieved with robust MPC, while decreasing constraint violations
to a similar level.

A data-driven ENMPC approach using Q-learning was proposed in this thesis to overcome
the challenges posed by parametric uncertainty in greenhouse climate control. Three case
studies were designed to test the approach on a greenhouse climate model with a lettuce
crop. Performance was tested based on the EPI and constraint violations. In those case
studies it has become clear that significant performance increases can be achieved in terms of
constraint violations, but increasing the EPI is not possible with the tested reward functions.
The overall performance, when compared to that of robust MPC is increased by almost 10%.
A draft of a paper based on these findings is attached to this thesis in Appendix C

9-2 Discussion

The implications of this work are worthy of discussion. From the results it is evident that the
economic performance and the constraint adherence of a greenhouse growing lettuce can be
improved significantly. Relevant questions should be asked about the validity and applicability
of these results.

First, it is not clear what performance is currently achieved in commercial greenhouses. The
results of this work are compared to previous academic results, which indicate upside poten-
tial. Commercial, rule-based, controllers have not been checked for their EPI or constraint
violations.

Secondly, a single episode encompasses one growth cycle, or 40 days in the real world. The
results indicate convergence after well over 15 episodes which is over 1.5 years of real world
time. Most farmers are already hesitant of implementing control techniques in their farm that
are unknown to them, having to wait for over a year before optimal performance is reached
might discourage further. It should be noted that performance at the start is not necessarily
bad, but the constraint violations could prove prohibitive.

Thirdly, the value for the constraints is not set in stone. Currently, the constraint boundaries
are decided upon based on rules of thumb in the field, which is based on research. From the
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simulations it is clear that much higher economic performance is theoretically possible, as
long as the lettuce doesn’t get any disease. The specific conditions for plant disease are still a
topic of research, and much research around high humidity focuses on humidity levels of over
80%, while levels of 75% already provide greatly improved economic performance.

Fourth, starting from di�erent initializations results in significantly di�erent results. The
source of these variations is most likely the non-linearity in the model. The model is highly
nonlinear with many local minima. It is beyond the scope of this work to work out the global
optimum, but is important to be aware of this aspect of the model used. There are many
strategies to overcome local minima and work towards a global optimum, this could be part
of future research based on this thesis.

Fifth, in Appendix B it is shown that the parameters that are updated after each episode have
a significant influence on the performance of the controller. In the case studies in chapter 8,
the same parameters are updated in all case studies. Since the chosen parameters have such
an influence on the resulting performance, a new parameter selection should be conducted for
every case study.

Computation time was a major limiting factor in this study, simulation of a single episode
took from around 45 minutes up to multiple hours, resulting in a single simulation taking
almost a day, but often much longer, to simulate 30 episodes. Since nothing is perfect the
first (or the second... or third...) time around, reaching satisfying results for a single case
study could take multiple weeks. The amount of episodes during learning was decided to be
30. In combination with the decreasing learning rate, this resulted in a meaningful amount of
updates without simulations taking too long. Still, some simulations could take over 3 days
to finish. Unfortunately, the amount of episodes meant that convergence, in terms of the TD
error going to zero, was never reached in any of the case studies. Longer simulations with
more episodes have been attempted, but convergence of the TD error was never really shown.
Some simulations have come close, but steady convergence to zero has never been the case.
One important factor in this result is the decreasing learning rate, by decreasing the learning
rate the update would become too small at some point to deliver significant changes in the
TD error. Longer simulations without a decrease in learning rate have resulted in solver issues
at some point during the simulation, never actually reaching convergence of the TD error.

9-3 Future work

This research has already shown some promising results. Unfortunately, not everything can
be investigated in one thesis study. Some suggestions for future work are given here:

Further analysis in parameter choice

All case studies in this work update the same set of model and ENMPC parameters. It
is shown in Appendix B that the choice of model parameters to update has a significant
impact on the learning behaviour and final performance of the controller. In this work some
foundations have been laid for determining which parameters should be updated in certain
cases, in future work, rigorous research should be done into the specific parameters that are
best updated for each case study.
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Multiple parameter updates per episode

Over the course of an episode the gradient of the system changes significantly. Both over the
course of a day, influenced by the day and night rhythm and radiance, as well as over multiple
days, influenced by the growth of the lettuce. The chosen method of dealing with this in this
work was to only apply one parameter update per episode and use the mean gradient during
the episode for that update. Finding a method to deal with the changing gradient during the
episode and applying multiple updates potentially allows to capture more information during
the episode.

Convergence

In this work, simulation time was a prohibitive factor to the results. Measures were taken
to make the program less computationally expensive and run the program simultaneously on
multiple devices. It was quickly found that, especially during development, running multiple
case studies at once would not speed up the initial stages of research. Results were needed
to build upon and solve issues. Running into the same issue on multiple devices at the same
time would not increase the research speed. Considering the length of the simulations, an
easy step for future work would be to run the various case studies towards convergence of all
aspects, as in this work time limitations prohibited that.

LSTDQ-Learning

The simulations have shown the potential of using ENMPC as a function approximator of
RL. In this work a simple Q-learning RL approach was taken. In theory, more information
can be included in the update steps when taking into account the Hessian information of the
system. One method of including this information is by using an LSTDQ-learning method,
described in [57]. One of the potential benefits is that by including the Hessian information
of the system, one can in theory make much larger update steps and reach convergence in
less steps. Reaching convergence in less steps would make this technology would appealing.

Time-dependent parameters

Potentially, certain parameters can be identified that aid in the growth of the crop. It could
be the case that in the early growth stages the temperature is much more important than at
the end of the crop cycle, while the CO2 level is much more important at the end of the growth
cycle. This information could by identified in future work and a method can be implemented
to include this information.

Comparison to reality

Unfortunately, a clear comparison to reality is not possible in this work. Comparisons have
been made to existing research, but comparisons to the commercial field would be relevant
and interesting for real world implementation. Future work could focus on bridging this
gap, finding real world examples of the amount of constraint violations and the EPI. Using
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the same weather scenario during simulations could then help determine if improvement is
possible.

New plant models

This work uses the greenhouse-lettuce model by van Henten. The theory discussed in this
research could be used for any other crop grown in a greenhouse. The reasons for using a
lettuce model have been discussed in this work, and extra work will be necessary to take other
crops into account. The application of this theory to other crops is not straightforward, but
interesting nonetheless.

Bridging the gap between theory and reality

Once the theory discussed in this work has been thoroughly proven, it should be implemented
in a real wold greenhouse. The first time this is done it should be in a environment where all
greenhouse aspects are well-known beforehand or even one where the weather aspects can be
controlled. The benefit of this highly controlled environment is that the step from simulation
to reality is smaller, as the main di�erence will be the plant itself and not the outside world.
Once the results of that experiment are satisfying, experiments in a commercial greenhouse
can be done.
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Appendix A

Exploration

During simulations it was discovered that exploration has a significant influence on the learn-
ing process. Initially this influence is positive, but the overall learning performance seems to
deteriorate by the exploration.

The case below is equal to case 3 discussed in chapter 8, the parameter value initialization
is the same and the reward function is the same. The only di�erence is that exploration is
included in these cases, starting at a value of 5000 and decreasing every episode (the value of
the exploration parameter is multiplied by 0.613 after every episode). Here the influence of
exploration on the learning behavior can be seen.

In the study, when including exploration, a good value for the constraint violations is found
in episode 5. The influence of keeping the decay rate of the exploration constant, keeping
the value for the exploration parameter constant, and setting the value for the exploration
parameter to zero after 5 episodes is compared to the learning behavior of not having any
exploration and the randomized initialization.

In all cases where exploration was initially present, compared in Figure A-1 and Figure A-2,
it can be seen that the constraint violations and EPI converge to the same level. This is the
performance level achieved with the randomized initialization and no exploration in the first
episode. No performance increase is seen whatsoever when comparing the final performance
of the cases where exploration was present and decayed to zero, or the initial performance
when exploration is not included.

When exploration is kept constant after 5 episodes, the constraint violations and EPI also
stay constant. Again, no learning behavior on the model parameter values is seen.

In the case that exploration is not included, learning behavior of the parameter values is
significant. It is thus concluded that including exploration in this research is not beneficial
to the learning behavior and exploration will not be considered in this thesis work.
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Figure A-1: The influence of the exploration on the evolution of the EPI during learning. No
exploration is present in blue, in orange a constantly decaying value for the exploration parameter
is present, in yellow the value for the exploration parameter is set to zero after 5 episodes, in
purple the value for the exploration parameter is kept constant after 5 episodes.

Figure A-2: The influence of the exploration on the evolution of the Constraint violations during
learning. No exploration is present in blue, in orange a constantly decaying value for the exploration
parameter is present, in yellow the value for the exploration parameter is set to zero after 5
episodes, in purple the value for the exploration parameter is kept constant after 5 episodes.
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Appendix B

Increasing the yield

In this chapter increasing the yield starting from perturbed initial model parameter values
in investigated. This research was not initially part of this thesis work and thus comprises
simulations that are not as coherent as the case studies discussed in chapter 8.

It was seen that learning for the yield can be done quite successfully, The reward function
when learning for the yield alone is much simpler:

RLreward = ≠10 ú
!
y1(tf

"
(B-1)

Multiple simulations are conducted and they are initialized in various manners.

B-1 Results

Results of learning for the yield are shown in Figure B-1, Figure B-2, and Figure B-3. In these
plots it is seen that the yield increases in all instances, but significantly more in the case that
the weight on the slack variables is put to zero and di�erent parameters are updated than
in all other case studies. In Figure B-3, the yield factor, light use e�ciency, e�ective canopy
surface, and to a lesser extend the temperature influence on the photosynthesis are updated
after each episode. In Figure B-1 and Figure B-2, and all other case studies, the CO2 capacity
of the greenhouse, heat capacity of the greenhouse air and coe�cient of leaf-air vapor flow,
for the CO2 concentration, temperature and humidity are updated after each episode. In
the first case, all parameters that are updated are determined to have the largest possible
influence on the yield, while in the second case the influence on the inputs is also considered.

An important consideration in these cases is that the learning rate is initialized such that the
weight on the slack variable changes by 50% after the first episode. If the weight is initially
5e3 this will change to 7.5e3 after the first episode, while if the weight is initially zero it will
not change. The yield increase is 1.7% when the weights on the slack variables are initialized
at 5e3, against 28.7% when they are zero and di�erent parameters are updated.
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Figure B-1: The evolution of the yield during learning for the yield alone. The randomized
initialization is used for the model parameters. In blue the evolution of the yield is shown during
learning. It can be seen that the yield increases during learning.

Figure B-2: The evolution of the yield during learning for the yield alone. Randomized initial-
ization is used, with no weight on the slack variables. In blue the evolution of the yield is shown
during learning. It can be seen that the yield increases during learning.
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Figure B-3: The evolution of the yield during learning for the yield alone. Randomized initializa-
tion is used, with no weight on the slack variables. Furthermore, di�erent parameters are updated
and the learning rate is not decreased after each episode. In blue the evolution of the yield is
shown during learning. It can be seen that the yield increases during learning.

Master of Science Thesis Seymour Lubbers



70 Increasing the yield

Seymour Lubbers Master of Science Thesis



Appendix C

Paper draft

A draft version of a paper describing the findings of this thesis is attached. The paper focuses
on increasing the performance of the system based on the constraint violations.
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Greenhouse climate control with data-driven
ENMPC using reinforcement learning

Seymour Lubbers, Name Surname 2,

Abstract—Greenhouses allow production of crops that would

otherwise be impossible. Permitting more local, fresher and

nutrient richer crop production. Efforts are taken to minimize

societal harm due to energy and resource consumption by

greenhouse production systems. One way to control such systems

is by using model predictive control. Optimal crop yield and

resource efficiency can, in theory, be achieved by model predictive

control. Unfortunately, one major drawback of model predictive

control is that it is not well equipped to deal with uncertainty.

Significant prediction errors can occur when a mismatch between

the model and the real system exists, resulting in deteriorated

performance of the system. Strategies exist, such as robust MPC,

that are designed to handle uncertainty, but those often result in

conservative control policies. This thesis proposes to use model

predictive control as a function approximator for RL in order

to learn model and MPC parameters that can deliver optimal

performance in the case of model mismatch.

In this paper, data-driven economic nonlinear model predictive

control using reinforcement learning is proposed as a method

to alter the model parameters. The performance of the system

after learning is compared to approaches using robust and

nominal model predictive control. The goal in this paper is to

decrease constraint violations, starting from perturbed initial

model parameter values. The simulation results show that the

data-driven ENMPC using reinforcement learning is able to

achieve economic performance 10% higher than when the system

is controlled using robust control, while constraint violations are

similar. The constraint violations are decreased by more than

90% during the learning process.

Index Terms—Model predictive control (MPC), reinforcement

learning (RL), greenhouse climate control, function approxi-

mation, adaptive nonlinear model predictive control, economic

NMPC (ENMPC).

I. INTRODUCTION

Greenhouses shelter crops, enable control over crop produc-
tion, allow to boost production, permit the control of quality,
have production of crops that would otherwise be impossible,
and prolonging of the cultivation period [1]. Energy is needed
for the climate control of the greenhouse, and water and
nutrients, including CO2 must be supplied from the outside.
Societal demands for fresh, safe, and price-worthy foods [2],
in combination with sustainability concerns make it necessary
to optimize greenhouse operations. A consequence of this
combination of demands is that one can’t simply increase
inputs to grow better produce, this would dramatically lower
the number of crops grown per unit of energy or nutrient input.

Seymour received the B.Sc degree in Mechanical Engineering from Delft
University of Technology, Delft, The Netherlands in 2019. He is currently
finishing his M.Sc degree in Systems and Control from Delft University of
Technology, Delft, The Netherlands, focusing on using data-driven ENMPC
using reinforcement learning in greenhouse climate control applications. E-
mail address: {s.z.lubbers@student.tudelft.nl.

Energy usually accounts for the second highest overhead
cost in greenhouse crop production [3]. In the Netherlands, the
cultivation of fruits and vegetables in greenhouses requires an
enormous amount of energy. 77% of the total 100.5 PJ was
due to heating and 23% due to electricity for supplemental
lighting [4]. The Dutch horticultural industry has agreed with
the Dutch government to decrease the total energy consump-
tion [4].

Optimal control, and its derivative MPC, have grabbed the
attention of researchers for many years already [5]. Because
this control method allows capturing system knowledge and,
therefore, offers an opportunity to capture plant dynamics to
a higher degree than growers themselves can [2]. A second
opportunity for optimal control is offered by reinforcement
learning. This machine learning approach can learn system
dynamics by trial and error, also capturing system uncertainties
in the process. Being able to deal with system uncertainties is
a welcome characteristic of reinforcement learning that stan-
dard MPC approaches do not offer. However, reinforcement
learning also comes with its shortcomings, for one learning
from trial and error dismisses any prior knowledge about the
system and its dynamics.

Both approaches offer advantages that neatly overcome
the disadvantages of the other strategy. Research towards
combining the strengths of MPC and RL is rising and some
promising results are achieved [6] [7] [8]. Nonetheless, little
research can be found on combining MPC and RL in the field
of greenhouse climate control up to this date.

The objective of this study is to improve the performance
of greenhouse climate control in uncertain conditions, by
using MPC as a function approximator for RL. Since model
parameters can differ great from greenhouse to greenhouse
and in most cases are not known with great certainty, MPC
can struggle with providing consistently good performance.
This study aims to overcome the problems that parametric
uncertainty poses when MPC is used to control the greenhouse
climate, while maintaining the ability to incorporate system
knowledge in the controller. This is done by using MPC as a
function approximator in a Q-learning approach.

This paper is organised as follows: First the greenhouse
climate and crop model is discussed in section II. Then, the
Q-ENMPC approach is discussed in section III, with the set-
up for the case study presented in section IV. Numerical
simulations are ran and the results are presented in section V.
Conclusions are drawn in section VI.
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II. GREENHOUSE LETTUCE MODEL

The model that is used in this work is the nonlinear
model first presented in [9], previously used in [10] and [11].
The model is discretized using the fourth-order Runge Kutta
method. This results in

x(k + 1) = f(x(k), u(k), d(k), p), (1)
y(k) = g(x(k), p) (2)

with discrete time k 2 Z0+, state x(k) 2 R4, input u(k) 2 R3,
disturbance d(k) 2 R4and f(·), g(·) nonlinear functions.

The state, input and disturbance signals are further defined
as:

x(k) =
⇣
W (k) CCO2,a(k) Ta(k) CH2O,a(k)

⌘T
(3)

=
⇣
x1(k) x2(k) x3(k) x4(k)

⌘T
(4)

u(k) =
⇣
uCO2,o(k) uv(k) uq(k)

⌘T
(5)

=
⇣
u1(k) u2(k) u3(k)

⌘T
(6)

d(k) =
⇣
I(k) CCO2,o(k) To CH2O,o(k)

⌘T
(7)

=
⇣
d1(k) d2(k) d3(k) d4(k)

⌘T
(8)

The state x(k) contains the dry matter content of the lettuce,
W , in kg ·m�2, which is the lettuce’s weight per square meter,
after all its water has been removed. The crop dry matter
is often used because it shows less seasonal variation than
fresh weight. Furthermore, the state contains the indoor carbon
dioxide concentration, CCO2,a, in kg · m�3, air temperature,
Ta, in �C, and humidity, CH2O,a, in kg · m�3.

The control input u(k) contains the rate of carbon dioxide
supply, uCO2 , in mg · m�2 · s�1, ventilation rate through the
window vents, uv , in mm · s�1, and energy supply by the
heaters, uq , in W · m�2.

The weather disturbance, d(k), contains the radiation from
the sun, Io, in W · m�2, the outside carbon dioxide concen-
tration, CCO2,o, in kg · m�3, outdoor temperature To, in �C,
and humidity, CH2O,o, in kg · m�3.

The measurements, y(k) 2 R4, contain the dry weight
matter, W , in g·m�2, the indoor carbon dioxide concentration,
CCO2,a, in ppm, the indoor air temperature, Ta, in �C, and
relative humidity, CH2O,a, in %. It should be clear that y(k)
contains equivalent states as x(k), but with different units
for the dry weight, indoor carbon dioxide concentration and
humidity.

In Figure 1, the greenhouse model with lettuce is graphically
depicted. The interaction between the states, control inputs,
and disturbances is indicated by arrows. From this figure it is
clear that the control inputs and weather disturbances influence
the greenhouse climate, which in turn influences the lettuce.
The only exception to this is the solar radiation, which also has
a direct influence on the crop. All three control inputs have
a direct influence on the greenhouse climate, while having
an indirect influence on the lettuce’s dry weight. It is via

Fig. 1: Greenhouse with lettuce schematically represented.
The interaction between the greenhouse and lettuce model is
indicated with the arrows. The influence of the control signal
u(k) and weather disturbance d(k) are also indicated by the
arrows. The figure is taken from [11].

controlling the greenhouse climate that the lettuce growth is
controlled.

A. Uncertainty in this work

The kind of uncertainty that will be considered in this work
is parametric uncertainty, equal to the uncertainty considered
in [10]. In this work, it is assumed that the model parame-
ters can be modeled as an uncertain parameter with known
probabilistic properties. It is assumed that:

p̂ ⇠ U
⇣
µp̂,⌃p̂(k)

⌘
, (9)

with uniform distribution U(·) having a mean value of µp = p

and co-variance matrix ⌃p̂ = E
⇥
(p̂ � µp̂)(p̂ � µp̂)T

⇤
.

with expectation operator E. Furthermore, it is assumed that
⌃p̂ is a diagonal matrix, meaning that there is no cross-
covariance. The justification for a uniform distribution is
two-folded. Firstly, certain parameters can not be negative
or outside certain ranges. Secondly, it is undesired to have
an infinite support (such as a Gaussian distribution). Due
to the assumption of having an uncertain parameter in the
measurement model, the state and measurement estimation are
also uncertain. The system model is then depicted as:

x(k + 1) = f(x̂(k), u(k), d(k), p̂), (10)
y(k) = g(x̂(k), p̂) (11)

where p̂ indicates the uncertain parameters.

B. Optimization problem

The goal is to achieve maximum dry matter production, with
the least amount of energy input as possible. It is assumed that
at each time instant, the state x(k) can be measured. Then, the
following optimization problem is solved at each time step:
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min
u(k)

NsX

i=1

k0+NPX

k=k0

V
�
u(k), ŷi(k)

�
,

s.t. Equation 1, x̂(k0) = x̂0,

umin  u(k)  umax,

|u(k)� u(k � 1)|  �u,

ŷmin(k)  ŷ
i(k)  ŷmax(k), for i = 1, . . . , Ns,

and for k = k0, . . . , k0 +NP ,

(12)

with NP 2 R the prediction horizon. The value Ns 2 R
represents the number of realisations taken from Equation 9. In
this work the number of realisations taken from the distribution
will be 1. The comparison work utilizes sample-based robust
control and takes multiple realisations.

The constraints in Equation 12 are defined:

umin =
�
0 0 0

�T
, (13)

umax =
�
1.2 7.5 150

�T
, (14)

�u =
1

10
umax, (15)

ŷmin =
�
0 0 fŷ3,min(k) 0

�T
, (16)

ŷmax =
�
inf 1.6 fŷ3,max(k) 70

�T
, (17)

with lower and upper bound on the control signal defined
by umin and umax 2 R3, and the bound on the change of the
control signal defined by �u 2 R3. These bounds correspond
to current horticultural practice. The lower and upper bound
on the output are ŷ3,min(k) and ŷ3,min(k) 2 R4. In these
bounds, only the third element is time-varying and defined as:

fŷ3,min(k) =

(
15, if d1(k0) < 10

20, otherwise.
,

fŷ3,max(k) =

(
20, if d1(k0) � 10

25, otherwise.

(18)

The time varying constraints are on the indoor temperature
are set such that it is colder during the night than during the
day. A consequence is that during the night, when the outside
temperature is colder, the controller is not working as hard to
keep the temperature at a high level. Since, if there is any, the
sun is heating up the greenhouse during the day, less additional
heating is necessary during this period to achieve relatively
high temperatures in the greenhouse hence energy can be saved
[11].

III. REINFORCEMENT LEARNING WITH ECONOMIC NMPC
A powerful tool to perform optimal control without de-

pending on a model of the system is reinforcement learning.
RL methods are often based on learning the optimal control
policy. Unfortunately, RL can’t provide strong guarantees on
the behavior of the resulting control scheme. Model predictive
control (MPC), on the other hand, is a standard tool for the
closed-loop control of systems with constraints and limitations.
Furthermore, the theory behind (N)MPC has been developed
thoroughly. In [12], it is shown that an (E)NMPC scheme

can be tuned to deliver an optimal policy of the real system,
even when using a wrong model. The model and (N)MPC
parameters can be changed with the help of RL strategies to
achieve better performance. This is seen as an opportunity in
the case of greenhouse climate control and will be further
explained in this chapter.

RL is a tool for tackling Markov decision processes without
depending on the model underlying the state transitions. Most
RL methods rely on observed state transitions and realisations
of the stage cost to increase the performance of the control
policy. Indirect learning methods learn an approximation of the
optimal action-value function underlying the MDP. Generally,
the action-value function is unknown a priori, typically a
generic function, such as a deep neural network, is used to
approximate it. Direct RL methods learn the optimal policy
directly. Most direct methods are based on policy gradient
methods. Direct RL methods often use DNN’s to approximate
the optimal policy and the (action-) value function associated.
It can be difficult to formally analyze the closed loop behavior
of systems subject to an approximate optimal policy supported
by a DNN or a generic function approximation method [12],
furthermore DNN’s limit the amount of knowledge that can
be included about the system and its underlying constraints.
(E)NMPC schemes can be used instead of DNN’s to sup-
port the parametrization to approximate the (action-) value
functions and the policy [12]. By adapting the stage cost,
terminal cost, and constraints the NMPC scheme can deliver
the optimal control policy, even if the underlying model is
incorrect. Using (E)NMPC as a parametrization for RL allows
one to use the rich theory underlying (E)NMPC schemes in
the context of RL, system knowledge and constraints can be
included by using (E)NMPC as a function approximator. Most
of the theory in this chapter is based on [12] [13] [14] [15].
The reader is referred to these papers for a more in depth
explanation of the theory and proofs thereof.

A. Using ENMPC as a Function Approximator

A parametrized ENMPC scheme can be used to approximate
the optimal policy and the value functions ⇡?, V?, and Q?,
even if the underlying model of the ENMPC is not accurate.
System knowledge and constraints can be captured in the
ENMPC scheme, while the RL algorithm will help improve
the performance of the system.

The true greenhouse model can be described by a discrete
MDP having the state transition dynamics:

P[s+|s, a] (19)

Which, in more typical control fashion, can also be written as:

s+ = f(s, a, ⇣) (20)

For this thesis it is assumed that the true model of the system is
not known and an approximate model is taken into account for
the control purposes, having the following transition dynamics:

P[ŝ+|s, a] (21)

This model does not necessarily match the real model (Equa-
tion 19), indicated by ŝ+. In the approximate instance, f is
replaced by f̂✓.
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The ENMPC scheme will be based upon the imperfect
model of the greenhouse system, f̂✓, and seek the minimization
of the associated stage cost L̂(s, a).

L̂(s, a) =

(
Q?(s, a)� �V+

? (s, a), if |V+
? (s, a)| <1

1, otherwise.

(22)

Where V+(s, a) = E[V?(ŝ+|s, a], and the expectation is taken
over the approximate system model. It should be noted that the
conditional formulation of the stage cost is to create a well-
defined L̂. In [12], it is stated that, under some conditions, the
optimal policy ⇡? that minimizes the stage cost for the true
dynamics is also generated by using the approximate model
with its associated stage cost L̂. Thus, making it possible to
find the optimal policy based on a wrong model. L̂ can be
learned directly from the data.

L̂ is not known a priori and will have to be learned, as a
result the parametrization of the mixed constraints will also
have to be learned through RL tools. The constraints can
be used in the ENMPC scheme to exclude the undesirable
states and inputs. In the most generic form the constraints
will consist of pure input constraints, and mixed constraints
which constrain combinations of states and inputs:

g(a)  0, h(s, a)  0 (23)

Since RL can’t handle infinite values easily the domain where
L̂ is finite needs to be captured, the pure input constraints can
remain fixed, but the mixed constraints need to be modified.
A slack variable is added to relax the mixed constraints as
follows:

h✓(xk, uk)  �k, h
f
✓ (xN )  �N . (24)

As a result, the parametrization of the value function V? uses
the following ENMPC scheme. The value function ENMPC
scheme is parametrized by ✓.

V✓(s) = min
u,x,�

�(x0) + �
N
�
V

f
✓ (xN ) + w

>
f �N

�
+

N�1X

k=0

�
k
�
l✓(xk, uk) + w

>
�k

�

s.t. xk+1 = f✓(xk, uk), x0 = s

g(uk)  0,

h✓(xk, uk)  �k, h
f
✓ (xN )  �N .

(25)

The ENMPC scheme holds parametrizations of the model, f✓,
the mixed constraints, h✓, the initial cost, �✓, the stage cost,
l✓, and the terminal cost, V f

✓ .
RL is used to increase the closed-loop performance of

the system, by modifying the parameter values for the
parametrization of the model, constraints and costs. The EN-
MPC scheme above is a classic ENMPC formulation in the
case the � = 1 and �✓ = 0 [16]. The mixed constraints are
relaxed using slack variables, �k. The l1 constraints relaxation
is critical for the TD RL approaches that will be used in this
work. If this relaxation were absent, the value functions might
take on infinite values. Only finite values can be used for the
TD learning, infinite values would cause the learning to be

meaningless/infinite. The weights placed on the slack variables
are denoted by w,wf . The initial cost, �✓, is used to form
nominal stability guarantees of the ENMPC scheme.

The action that is taken by the system is defined as taking
the first element of the input sequence generated by solving
the value function ENMPC scheme for a given state.

a = u
?
0

(26)

Accordingly, the action-value function, Q✓ of the Q-
Learning problem is given by:

Q✓(s) = min
u,x,�

�(x0) + �
N
�
V

f
✓ (xN ) + w

>
f �N

�
+

N�1X

k=0

�
k
�
l✓(xk, uk) + w

>
�k

�

s.t. xk+1 = f✓(xk, uk), x0 = s

g(uk)  0,

h✓(xk, uk)  �k, h
f
✓ (xN )  �N .

u0 = a.

(27)

In which only the final equality constraint is added to the
scheme of Equation 25. A further difference between the two
schemes, is that the cost function for the value function scheme
can be slightly perturbed in order to enhance exploration. This
perturbation happens by the addition of a value resulting from
f(u0, q) := ⇢||(u0 � q)||, or q

T
u0, where q is randomly

chosen. This parametrization will automatically satisfy the
fundamental equalities underlying the Bellman equations:

⇡✓(s) = argmin
a

Q✓(s, a) (28)

V✓(s) = min
a

Q✓(s, a) (29)

B. RL for ENMPC

In theory, it is possible to generate the optimal policy
and value functions using an ENMPC scheme based on an
inaccurate model. In practice, a smart parametrization of the
ENMPC scheme should be relied upon. The goal is to adjust
the parameters ✓ in such a way that the policy resulting
from the ENMPC scheme fits the optimal policy as closely
as possible. The adjustment of the parameters relies on RL
algortithms. In this work, classical RL approaches will be
used, which are mostly gradient based. Hence, these methods
require the gradient of the value functions, which requires the
sensitivities of the optimal values of Q✓ [17]. The sensitivity
analysis of optimization problems is detailed in [18] and
delivers r✓Q✓, needed in Equation 34. In order to evaluate the
gradients of the functions Q✓, V✓ and ⇡✓ the Lagrange function
associated with the action-value function ENMPC problem has
to be found. It is observed that:

r✓Q✓ = r✓L✓(s, y
?) (30)

Where y
? holds the primal-dual variables associated to the

ENMPC problem Equation 27. The Lagrangian of the action-
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value function is as:

L(s, y) =�✓(x0) + �
N
V

f
✓ (xN ) + �

>
0
(xo � s) + µ

>
Nh

f
✓ (xN )

+
N�1X

k=0

�
>
k+1

(f✓(xk, uk)� xk+1) + ⌫
>
k g✓(uk)

+ �
k
l✓(xk, uk) + µ

>
k h✓(xk, uk) + ⇣

>(u0 � a)
(31)

Where �, µ, ⌫, and ⇣ are the multipliers associated to
the constraints of Equation 27. The gradient of Q is then
created by differentiating the Lagrangian with respect to the
parameters of interest.

C. Q-learning for ENMPC

One approach to Q-learning is based on parameter updates
driven by the temporal difference [19]. The TD error is
calculated as:

⌧k = L✓(sk, ak) + �V✓(sk+1)�Q✓(sk, ak) (32)

with gamma as the discount rate. L✓ represents the rewards
function:

L✓(sk, ak) = l✓(xk, ak) + w
>
max(0, h✓(xk, ak)) (33)

Where l✓ is based on the inputs and the states, and
w

>
max(0, h✓(xk, ak)) is the importance placed on the con-

straint violations.
The parameter update is then given by

✓  ✓ + ↵⌧kr✓Q✓(sk, ak) (34)

in which r✓Q✓(sk, ak) is found by differentiating the La-
grangian associated with the ENMPC problem of the action-
value function with respect to the parameters, as explained
above. The action, ak, is selected according to the ENMPC
policy. The scalar ↵ is the step size, determining the speed at
which ✓ is altered.

Batch updates can be used in the case of episodic tasks,
such as the greenhouse climate control problem. Now, learning
is performed with an alternative ENMMPC scheme. The
policy is based on the original ENMPC scheme, of which
the parameters can be replaced with the learned parameters at
convenience. Instead of updating the parameters every time-
step, the update happens at convenience. The information con-
tained in all time-steps between parameters can be combined
and used for the next parameter update. In the case of episodic
tasks, the system behavior might change during an episode and
system updates based on partial information can deteriorate
performance.

In the remainder of this thesis Q-learning for ENMPC will
be named Q-ENMPC.

IV. SET-UP

A. The ENMPC scheme

The basis of the ENMPC scheme that is used in this work is
the same as the one used in [10]. Some adjustments are made
to the cost function and constraints, with respect to their work.
In this section the changes in the ENMPC scheme of this work
with respect to [10] will be pointed out.

1) Cost function: The cost function for the action-value
function is constructed by including a cost on all the inputs
of the system and rewarding the yield. The cost function is
implemented as follows:

J(s) =�✓

+
N�1X

k=0

3X

i=1

cu,i ⇤ ui,k

+
N�1X

k=1

cy,1 ⇤ (yk � yk�1)

+ cy,2 ⇤ yN

+
NX

k=1

w ⇤ �k

(35)

The initial cost, �✓, is initialised at 100. The inputs are
penalised per time-step in the prediction-horizon. The three
different inputs are weighted differently by cu,i. The yield is
weighted via cy,1 and cy,2. Lastly, the slack variables, which
register constraint violations, are weighted by w. The value
of the weights cu,i, cy,i and w will be learned. Furthermore,
to reward an increase in yield, the yield related weighting
is initialized negative. Via the third term in Equation 35,
part of the cost on the yield is placed on the terminal yield
within the time horizon, weight is also placed on the increase
(or decrease) per time-step in the prediction horizon, via the
second term in Equation 35.

Exploration of the system can be enhanced by using a
perturbation in the cost function used for approximating the
value function:

V✓(s) = Q✓(s) + q
T
u0 (36)

Where q is a weight placed on the first input in the prediction
horizon. This weight has a uniform distribution with mean 0.
With q the exploration is regulated. It has been concluded that
exploration is not beneficial for this research, as such q is set
to zero.

2) Constraints: The constraints follow the structure of the
model discussed in section II. It should be noted that the
inequality constraints are extended with slack variables and
an extra constraint on the action-value function that is shown
in Equation 27. The first input of the action-value function,
Q✓, is fixed to the first input resulting from calculating the
value-function, V✓.

The objective of the final optimization problem is given by
Equation 35. The constraints are given in Equation 12. Slack
variables are added to the inequality constraints, similarly to
Equation 27. A final constraint is added with the addition of
the final equality constraint of Equation 27.

B. Changing parameters

For the various case studies, a couple of factors are of im-
portance to make the system learn correctly. In the following,
these factors will be discussed briefly.
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1) RL reward function: The reward function of the RL
agent is the main differentiator in the learning process. It
dictates what is good progress and what is bad behavior of
the system. The main parts that will be present in the reward
function are a rewards for the performance, and a penalty for
constraint violations.

c1 and c2 are the weights placed on the performance and the
constraint violations, allowing one to decide what is important
in the learning process. Generally, the value of c1 will be
between zero and a negative integer, while the value of c2

will be between 0 and a positive integer. The reward function
is part of the TD error as described in subsection III-C. Hence
the reward function is defined as:

L✓(sk, ak) = c1 ⇤ l✓(x, a) + c2 ⇤
NX

k=1

(max{0, h✓(xk, ak)})

(37)
Where l✓(x, a) is taken as the EPI, explained
in subsection IV-C, minus a fixed integer, 1.8.
c2 ⇤

PN
k=1

(max{0, h✓(xk, ak)}) is the sum of the magnitude
of the constraint violations at each time-step, as discussed in
subsection IV-C.

2) Exploration: Exploration is done through the addition of
a perturbation to the value function in the ENMPC scheme.
This perturbation is explained in further detail in subsec-
tion III-A. In this work, no exploration will be included.

3) Learning rate: The learning rate determines the rate
at which the parameter values are adjusted during learning.
High learning rates can cause the system to ’jump’ around the
optimal values or even cause instability, while too low of a
learning rate causes slower learning than necessary.

The learning rates are initiated to cause a 1% change in the
values of the model and ENMPC parameters. The learning
rate for the value of weight on the slack variables is higher, at
a rate of 50%. The learning rates are decreased by 10% every
episode during learning.

4) Slack variables: Slack variables are needed for Q-
ENMPC to work, as described in section III. The weights
placed on the slack variables are an important factor in deter-
mining how conservative the system is and in decreasing the
constraint violations. The initialization of the slack variables
is a factor in the initial constraint violations.

Since the learning rate is a percentage of the initial value of
the parameters, the weight on the slack variables should not be
too low, as this could prohibit relevant learning of the param-
eter. A value of 5000 is settled upon as good starting ground
for learning, while not yet prohibiting constraint violations so
much that none are present at the start.

5) Parameter initialization: Multiple different initializa-
tions for the values of the model parameters are used in
the case studies. First, the nominal values for the model
parameters can be used. When the values for the model
parameters are initialized with their nominal value, it will be
referred to as nominal initialization.

Second, in some case studies the parameters are initialised
within a band around the nominal parameters of 20%, as
explained in subsection II-A. This means that the value for
each parameter deviates a maximum of 20% from the nom-

inal value. The actual deviation is chosen at random, such
that a significant increase in constraint violations is present,
compared to the nominal parameters. When the values for the
model parameters are initialized with this random value, it will
be referred to as randomized initialization.

The model parameters values with which the system is
initialised in the case of randomized initialization are presented
in Table I.

parameter value parameter value
c1,1 0.37354 c2,1 3.459
c1,2 2.242 · 10�7

c2,2 4.434 · 10�7

c1,3 50.69 c2,3 7.5 · 10�6

c1,4 2.07 · 10�9
c2,4 75560

c1,5 4.52 · 10�6
c2,5 273.15

c1,6 3.65 · 10�4
c2,6 101325

c1,7 5.96 · 10�4
c2,7 0.044

c1,8 5.2 · 10�5

parameter value parameter value
c3,1 2.52 · 104 c4,1 4.799
c3,2 1070 c4,2 0.0032
c3,3 6.03 c4,3 9348
c3,4 0.207 c4,4 8314

c4,5 273.15
c4,6 17.4
c4,7 239
c4,8 17.269
c4,9 238.3

TABLE I: Initialisation values of the model parameters.

Thirdly, an initialization is used in which the value of all
model parameters is initialized at 1.1 times their nominal
value. When the values for the model parameters are initialized
in this way, it will be referred to as initialization 1.1.

Lastly, a more complicated initialization is used. Initializa-
tion 1.1 is used as a starting point. This initialization is then
used to learn for constraint violations, the reward function and
results are shown in case study 2. By learning for constraint
violations, the EPI decreases rapidly within a limited number
of episodes. The parameters of the system in the third episode
are used for the this initialization. This initialization will only
be used in case study 1, it will be referred to as initialization 3.
The benefit of this initialization is that it is known beforehand
that in a limited amount of parameter updates a significantly
increased EPI can be achieved.

Five parameters are usually kept to their true value, this is
done because they represent well known physical constants
(e.g. conversion factor from Kelvin to Celsius). In one cases,
while using a randomized initialization these values are also
randomized, in that case the initialization will be referred to
as randomizedr.

The initial value of the learn-able parameters of the ENMPC
scheme are presented in Table II. In the table, it can be seen
that the inputs are penalised, while the yield is rewarded.
The initial value of the learn-able parameters of the ENMPC
scheme is the same for all case studies.
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Parameter Initial value
Initial cost 100

cost on CO2 input 50
cost on ventilation 1

cost on heating input 1000
cost on yield increase -10
cost on terminal yield -100

Weight on slack variables 5000

TABLE II: Initialisation parameters of the ENMPC scheme.

6) RL updates: During training parameter values for the
CO2 capacity of the greenhouse, heat capacity of the green-
house air and coefficient of leaf-air vapor flow, for the CO2

concentration, temperature and humidity are updated by the
RL agent. The interval between updates is a hyperparatemer
in the controller design. In this study the parameters will be
updated once per episode, with an episode being the length of
one growth cycle. It is chosen to only update once per episode
because the gradient of the system changes significantly during
the episode. It would not be feasible to implement a changing
learning rate. Due to there only being one update per episode,
it is the amount of episodes that determines the amount of
parameter updates.

The information contained in all time-steps is combined to
form the TD error for the parameter update. As discussed in
section III, the TD error for each episode is given by

⌧k = L✓(sk, ak) + �V✓(sk+1)�Q✓(sk, ak) (38)

with the rewards function defined in Equation 37. As explained
in subsection III-C, the parameter update is then given by

✓  ✓ + ↵⌧kr✓Q✓(sk, ak) (39)

The reward function is calculated once per episode, and
changes for each case study. The gradient is averaged over
the entire episode for each parameter. The average gradient is
then used in the update equation above.

C. Performance indicators

The first performance indicator used in this work was
introduced in [20], an economic profit indicator. The economic
profit indicator calculates the profit that stems from a certain
growth cycle of lettuce, when the lettuce is harvested and sold
at the end of that cycle. The function is as follows:

EPI = �(y1(tf))�
tfX

tb

(cquq(t) + cCO2uCO2(t))dt (40)

where �(y1(tf)) is the gross income from selling the harvested
lettuce, which is obtained at harvest time tf , in Hflm

�2. The
operating cost of the airconditioning equipment is indicated
by cquq(t) + cCO2uCO2(t). The auction price of the lettuce
is assumed to follow a linear ratio �(y1(tf)) = cpri,1 +
cpri,2y1(tf) between the auction price and harvest weight.
cpri,1 in Hflm

�2 and cpri,2 in Hflkg
�1

m
�2. It is assumed

that the operating cost of the air conditioning equipment are
related to the amount of energy, uq in (Wm

�2), and the
amount of carbon dioxide introduced into the system, uCO2

in (kgm�2
s
�1, linearly. The operating costs are parameterised

by the price of energy, cq in (HflJ
�1), and the price of carbon

parameter value
cco2 42⇥ 10�2

Hflkg
�1

cq 6.35⇥ 10�9
HflJ

�1

cpri,1 1.8 Hflm
�2

cpri,2 16 Hflm
�1

TABLE III: Parameters of the economic profit function.

dioxide, cCO2 in (Hflkg
�1). The values of these parameters

can be found in Table III.
The second performance indicator is the constraint viola-

tions during the growth cycle. The constraint violations are
calculated as the total amount of constraint violation summed
over the entire horizon. For example, the humidity constraint
is always set at 70%. If, during three time-steps the humidity
is at 75%, the total constraint violation is 15. During those
same time-steps it could be that the temperature constraint is
also violated by one degree, then the total constraint violation
is 15, for the humidity violation, plus 3, for the temperature
violation, for a total of 18. The total constraint violations over
the growth cycle are divided by 50 to reach a more intuitive
number.

V. NUMERICAL SIMULATION

The aim of this case study is to decrease constraint vio-
lations over time. In this case, performance based on EPI
is not the main concern. The first interesting case is to
initialize the system with the true parameters and try to find
parameter updates that will decrease the constraint violations
from there, ideally with only a minor decrease in EPI. The
second case is to decrease constraint violations from the
parameters that result in maximum EPI, these parameters cause
quite significant constraint violations that could be harmful for
the health of the crop.

In this case study the parameters are initializes in multiple
ways. First, the randomized initialization is used. Secondly,
initialization 1.1 is used. Lastly, simulations starting from the
nominal model parameter values have been done, unfortu-
nately some optimization error occurred that could not be
solved within the time available.

The RL reward function is kept the same in both simula-
tions:

RL reward = 0.04 ⇤
NX

k=1

(max{0, h✓(xk, ak)}) (41)

The factor for c2, 0.04, is kept small such that the contribution
of the constraint violations to the TD error is of the same order
of magnitude as the difference between the value functions.

A. Results

In Figure 2 and Figure 3, the EPI and constraint violations of
the system are shown while learning for minimizing constraint
violations starting from the randomized initialization. The re-
sults indicate that a significant decrease in constraint violations
is possible when starting from these initial parameter values.
The best results are achieved when using initialization 1.1.
The initial constraint violations are at a level over 504, while
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Fig. 2: The evolution of the economic performance during
learning for the constraint violations. In blue the evolution of
the EPI is shown during learning, when the parameters are
initialized as in Table I. In orange the economic performance
is shown when the parameters are initialized as 1.1 times
the nominal value. In green the performance with nominal
parameter values, and in purple the performance with samble-
based MPC with 10 samples and 10% uncertainty. It can
be seen that the economic performance stays close to its
initial level in the first case, always being higher than in
both the nominal and the robust case. In the second case, the
performance drops significantly, but stays higher than in the
robust case.

Fig. 3: The evolution of the constraint violations during
learning for the constraint violations. In blue the evolution
of the constraint violations is shown during learning, when
the parameters are initialized as in Table I. In orange the
evolution of constraint violations is shown when the param-
eters are initialized as 1.1 times the nominal value. In green
the constraint violations with nominal parameter values, and
in purple the constraint violations with samble-based MPC
with 10 samples and 10% uncertainty. It can be seen that
the constraint violations drop in both cases, but much more
significantly in the second case.

Fig. 4: The evolution of the TD error during learning for
the constraint violations. The parameters are initialized as
in Table I. In blue the evolution of the TD error is shown
during learning, in yellow the evolution of the reward function
is shown, and in orange the difference between the value
functions. It can be seen that the reward function converges to
around �185, while the difference between the value functions
stays around the same level.

Fig. 5: The evolution of the TD error during learning for
the constraint violations. The parameters are initialized as 1.1
times the nominal parameter value. In blue the evolution of
the TD error is shown during learning, in yellow the evolution
of the reward function is shown, and in orange the difference
between the value functions. It can be seen that the reward
function converges to around 5, while the difference between
the value functions first drops and then creeps up.
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the final level is around 30, a decrease of 94% and well under
the level achieved with the nominal parameter values.

Using the randomized initialization also results in a sig-
nificant improvement of the constraint violations, but the
improvement is not as good as with initialization 1.1. The
initial constraint violation is at 297, and the final level is
around 218, slightly above the level of constraint violations
with the nominal parameter values. This decrease is about
26.6%.

The simulations show that the EPI decreases during learn-
ing. The EPI decreases from 2.73 to around 2.71 when the
randomized initialization is used. When initialization 1.1 is
used, the decrease is from 2.89, to around 2.3, a decrease of
20.5%.

The results achieved initialization 1.1 are notable because
they are able to achieve constraint violations close to that
of robust MPC, while still having economic performance
almost 10% higher. The slack variables were expected to
play the largest role in decreasing the constraint violations,
by increasing the weight on the slack variables it is more
costly to violate constraints. It is interesting to see that the
weight on the slack variables is increased more in the case
that the randomized initialization is used. In the randomized
initialization case the weight increases to 3e4, while in the
initialization 1.1 case the weight is only increased to 2e4.

Both cases do not show convergence of the TD error. This
lack of convergence can mainly be attributed to the behavior
of the value functions. The value of the TD error is dominated
by the value functions.

Starting from the nominal parameter values has presented
some unexpected issues. Due to unknown solver issues, the
results stagnate after around 2000 time-steps and become un-
usable. Multiple scenarios were investigated, but unfortunately
the issue could not be resolved in time.

Constraint violations are only seen in the temperature and
humidity constraints. The temperature bounds are slightly
violated both on the high end and low ends, this is deemed
to little to be of concern. The humidity is constantly being
violated on the high end. It is quite logical to steer towards
violating this bound, as a high humidity helps with crop growth
according to the model. The bounds are in place to prevent
crop disease, which is not explicitly accounted for in the
model. Literature reports higher chances of crop disease at
elevated humidity levels, however, studies are conducted at
humidity levels of 80% or higher, which is significantly higher
than the average learned humidity level of 71%. It can also
be seen that at the start of the learning process the average
humidity is at over 73%, which is significantly higher than
the average humidity at the end of learning.

VI. CONCLUSIONS

In this paper, a data-driven ENMPC using reinforcement
learning approach is proposed to tackle the greenhouse cli-
mate control problem. A framework is constructed in which
ENMPC functions as the function approximator within a
Q-learning framework. Within this framework the ENMPC
applies the best action for the known system to the real

system, while the Q-learning agent alters the parameters of the
ENMPC control structure to better fit the real system. The RL
reward function is constructed to punish constraint violations.
The mpc parameters are updated once per growth cycle of the
crop.

A simulation-based case study is performed in which the
economic performance and constraint violations of the Q-
ENMPC are compared to that of nominal ENMPC to demon-
strate the effectiveness of Q-ENMPC. Starting from the per-
turbed initial model parameter values, the system reaches an
economic performance 10% higher than the system controlled
with robust MPC, while having constraint violations that
are similar. As it is currently unclear what performance is
achieved in commercial greenhouses, the question remains
what the theoretical change in performance is with respect to
commercial circumstances. Learning would take a significant
amount of time were it to be done in the real world. Since one
episode encompasses a full growth cycle of the lettuce crop,
and the systems approaches its final performance only after 10
episodes, learning would take over a year in the real world.
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Glossary

List of Acronyms

CFD Computational Fluid Dynamics
FIR Far Infrared
MDP Markov Decision Process
NiCoLet Nitrate Control in Lettuce
SUCROS87 Simple and Universal Crop Growth Simulator

List of Symbols

Symbols
– Learning rate
p̂ uncertain parameters
⁄ Initial cost
L◊ Lagrangian, influenced by theta
‡ slack variable
·k TD error at time k
q Value determining exploration magnitude
◊ Parameters subject to learning
c1 Weight placed on the EPI in the RL reward function
c2 Weight placed on the constraint violations in the RL reward function
CInj CO2 injected by control equipment
CPhot CO2 flow due to photosynthesis
CVent CO2 flow due to ventilation
d1 disturbance state, radiation
d2 disturbance state, outdoor CO2 concentration
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d3 disturbance state, outdoor temperature
d4 disturbance state, outdoor humdity
E Energy in the greenhouse
h◊ Inequality constraints, influenced by parameters theta
k discrete time of the system
L◊(s) RL reward function
l◊ stage cost, influenced by parameters theta
MC CO2 concentration in the greenhouse
MW Water vapor mass in the greenhouse
Np Prediction horizon taken into account MPC
Ns Number of samples taken into account for robust control
p parameters
QCon Convective and conductive heat exchange with outside climate
QCool Heat input from coolers
QFIR Heat input from far infrared radiation
QHeat Heat input from heaters
QLamp Heat input from lamps
QLatent conversion from sensible to latent heat
QSun Heat input from the sun
QVent Heat input through ventilation
Q◊(s) Action-value function
Si Sensitivity of the dry weight to parameter i
tb Time at beginning of growth cycle
tf Time of harvest
u0 Action resulting from the calculation of the value function
u1 Input, CO2 injection
u2 Input, ventilation
u3 Input, heat input
V◊(s) Value function
V f

◊ Terminal cost
w Weight on the slack variables
WCond Water vapor mass flow due to condensation
WDehum Water vapor mass flow due to dehumidification
WEvap Water vapor mass flow due evaporation
WHum Water vapor mass flow due to humidification
WTrans Water vapor mass flow due to crop transpiration
WVent Water vapor mass flow due to ventilation
x1 state, crop dry weight
x2 state, indoor CO2 concentration
x3 state, indoor temperature
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x4 state, indoor humidity
Xc State, greenhouse CO2 concentration
Xd State, crop dry weight
Xh State, greenhouse humidity
XT State, greenhouse temperature
Ydw crop dry weight in the sensitivity function
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