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Preface

Before you lies the thesis work "Self-Supervised Continual Learning for Interaction-
Aware Pedestrian Prediction Models”, the basis of which is the exploration of a novel
framework to train a neural network online to improve a pedestrian trajectory prediction
model, using the onboard sensors of a mobile robot platform.

In March 2020, | embarked upon this journey after receiving the opportunity to pur-
sue my Masters of Science in the exciting field of robotics, at the Cognitive Robotics
Department of the Technical University of Delft. The basis for this research aligned
perfectly with my growing passion for autonomous vehicle and mobile robot technolo-
gies. Neural networks are becoming an integral part of modern robotics, but how can
we utilize them in dynamic unknown environments in our ever changing society? To
find out | have spend the last year developing a framework to continually train a neural
network for pedestrian trajectory prediction.

| would like to thank my supervisors, Ir. Bruno de Brito and Dr. Javier Alonso-Mora,
for their guidance during this process. | also wish to thank my fellow students in the
Cognitive Robotics Lab, especially Niels Marcelis, for helping with experiments and
making my time spent there a fun experience. Finally | would like to thank my family
and friends for supporting me throughout this sometimes hectic and stressful, but fun
period in my life.

C. Salmi
Delft, April 2021
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Introduction

Fuelled by the potentially large commercial and societal benefits, many research in-
stitutions and companies are working on autonomous vehicle and mobile robot tech-
nologies [1]. Autonomous vehicles are expected to improve safety, reduce traffic con-
gestion [2], and allow people to do productive or leisure activities while driving. One of
the major challenges still facing autonomous vehicles is driving in urban environments
[3]. Inorder to safely and efficiently drive in dynamic urban environments, autonomous
vehicles need to be able to account for the intentions of surrounding pedestrians.

Mobile robots, on the other hand, have been used for some time in constraint environ-
ments e.g. warehouses and production lines. For example, Amazon Robotics already
deployed 15,000 mobile robots in their warehouses in 2014 [4]. But when moving to
dynamic environments, mobile robots face similar challenges as autonomous vehi-
cles. Itis, however, expected that mobile robots will also have a significant impact on
our society in applications like service robots, parcel delivery robots, nursing robots,
and guidance robots. In a large part of these applications, mobile robots will interact
with humans in dynamic and unstructured environments e.g. hospitals, airports, or
sidewalks, which brings with it several challenges. Robots should:

» Navigate safely and conform to the established social rules and norms
* Act predictably to humans to make the interaction pleasant
» Adapt to new and unseen situations

By navigation, we mean the ability of the robot to plan a safe path or trajectory towards
a specified goal location. These challenges require the robot to take interactions with
humans into account while navigating, which will be referred to as socially aware mo-
tion planning in this thesis. Additionally, the social acceptance of robots in the pub-
lic domain remains an active area of research. To improve the social acceptance of
robots, Kruse et al. [5] state three explicit goals. Naturalness, which has to do with the
similarity between humans and the robot in their low-level behavior patterns. Socia-
bility, which is the adherence to explicit high-level cultural conventions. And comfort,
the absence of annoyance and stress for humans in the interaction with robots.

1



2 1. Introduction

Many State-of-The-Art (SoTA) socially-aware motion planning algorithms rely on pre-
dictions of the future trajectory of humans [6]. If a robot has a sense of what sur-
rounding pedestrians are going to do, it can take this into account when planning its
movement. Moreover, to act predictably towards humans requires knowledge of the
intention and implicit social behavior of humans.

However, explicit prediction of the trajectory of humans is not the only way of includ-
ing social awareness in motion planning algorithms. Another option is learning the
planning policy directly from sensor data, and thus implicitly learn social awareness.
Approaches like this are referred to as End-to-End learning approaches [7] and they
have become an active area of research because of the breakthroughs in artificial in-
telligence and deep neural networks of the last decade [8]. However, in practice, the
latter option is often currently not feasible or accepted. Autonomous motion planning
algorithms in the real world are inherently high risk and often explainable solutions are
preferred over black-box deep neural networks. Furthermore, End-to-End approaches
still face essential challenges with regards to verifiability, safety, and explainability and
have only been shown to work reliably in simplified settings [6].

Keeping this in mind, the short-term more feasible solutions towards socially aware
motion planning rely on explicit human motion prediction. A large body of research is
currently done in the direction of human motion trajectory prediction models [9]. Tradi-
tional physically inspired models [10, 11] have for a large part been replaced by neural
network-based models [12] because they allow for better prediction in more complex
scenarios based on learned features. Neural network models are not constrained by
manual feature extractions, which allows them to exploit highly dimensional sources
of context information like obstacle grids, satellite images, semantic maps or onboard
cameras [13, 14, 15, 16]. However human motion is inherently multi-modal, which
means there are multiple plausible trajectories a human might take in a given scenario.
Generative neural networks are therefore being used to capture this multi-modality [17,
18, 19].

In many of the earlier mentioned applications, mobile robots operate in dynamic,
changing environments, and consequently the behavior of surrounding pedestrians
subject to change. However human motion prediction models are currently trained
offline on beforehand available datasets [20, 21] and they don’t adapt to new and un-
seen behaviors or environments. To improve pedestrian prediction models online, we
explore multiple solutions from the recently emerged research paradigm of continual
learning [22, 23], which is concerned with training neural networks online from streams
of data. Using the online observations of an existing detection and tracking pipeline we
aim to investigate the possibility of training a neural network-based prediction model
continually.

1-1 Research Objective

Recent years have shown tremendous progress in architecture designs for neural
network-based pedestrian prediction models. However previous works focus solely
on improving prediction network architectures, whilst training them offline. Ultimately



1-1. Research Objective 3

it is still unknown if and how much continual learning of neural networks can con-
tribute to socially aware motion planning. Therefore, | pose the following research
questions:

1. Can we employ continual learning techniques making use of online observations
to improve a prediction model?

2. Which continual learning techniques can be applied to develop a stable learning
algorithm that consolidates knowledge over time?

3. Can we use the learned model for socially aware motion planning?
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Abstract—Learning human motion prediction models online is
key for autonomous navigation in unknown dynamic scenarios.
Previous works focus solely on improving prediction network
architectures, whilst training them offline. This paper introduces
a self-supervised continual learning framework that continuously
improves data-driven pedestrian trajectory prediction models
online across various environments. We propose to use online
streams of pedestrian data, normally available from detection and
tracking pipelines. Examples are autonomously extracted from
this data stream and aggregated in temporally bounded episodes,
where the data of each episode is discarded as soon as the model
has been adapted to it. Qur framework overcomes the problem
of catastrophic forgetting across episodes by selectively slowing
down learning of important neurons and by rehearsing a small
set of examples of constant length. Our approach is shown to
significantly improve prediction performance in new and unseen
environments compared standard gradient descent approaches.
Finally, we present qualitative experimental results in simulation
and in real environments.

I. INTRODUCTION

Autonomous mobile robots are being deployed in a variety
of application domains [1], such as service robots in hospitals
or guidance robots in airports. In these environments, robots
will often have to navigate in a joint space with pedestrians.
Like humans, autonomous robots need to have a sense of
what the people around them are going to do to navigate
efficiently and safely. Prediction models that capture the intent
of a pedestrian, enable robots to anticipate behaviors [2], avoid
other pedestrians, and comply with underlying social rules
without direct communication [3].

In dense pedestrian-rich spaces, pedestrians adjust their path
to comply with implicit social rules and norms [4], see Fig. 1.
At the same time, pedestrians are constrained by the static
environment, such as obstacles or walls [5], and there are
often multiple plausible ways a pedestrian can reach his goal
[6]. Furthermore, the presence of a robot in the environment
can change the behavior of pedestrians [7]. Hence, pedestrian
trajectory prediction is a complex task.

A large amount of research was done on prediction models
that focus on the influence of implicit social rules and norms
on human motion [8]. Additionally, much progress has been
made in the direction of stochastic prediction models that ac-
count for the multi-model nature of humans [6]. And recently,
many works combine social compliance with surrounding
semantic features in stochastic models [9, 10]. However, these

Fig. 1: Example of interaction aware predictions by a contin-
ually learned prediction model.

models are trained offline and don’t adapt to new and unseen
behaviors or environments.

In the field of robotics, observational data usually comes in
sequential never-ending streams, which makes it is possible
to take advantage of the incoming data to continuously gather
training examples. However, as stated in [11], creating labeled
data is probably the slowest and the most expensive step in
most machine learning systems. This is one of the reasons
continually learning neural networks is often infeasible. Our
key insight is that the robots operating in the same environment
as pedestrians can autonomously collect training examples
based on the robot’s observations. If a robot can efficiently and
autonomously collect examples, its internal prediction models
can be updated on the fly and the robot effectively adapts its
behavior.

Another reason continually learning neural networks is
difficult is because previously learned behavior, in the form
of weight values, can be overwritten by new update steps.
Especially when the distribution of the stream of training
examples changes, knowledge of previous training examples
can be quickly forgotten. For example, when a mobile robot
moves to a different environment. In literature, this is referred



to as the problem of catastrophic forgetting in neural networks.
To overcome catastrophic forgetting, we use a regularization
strategy to selectively slow down learning on important neu-
rons and we rehearse a small set of previous examples.

In this paper, we employ the online observations of a mobile
robot to adapt a pre-trained prediction model on the fly. Our
contributions are the following:

1) We formulate the online optimization of pedestrian pre-
diction models from observations as a self-supervised
online learning problem and propose an online learning
framework allowing to continuously improve a predic-
tion model.

2) We present simulation results against baseline methods
demonstrating that our framework can improve predic-
tion performance and avoid catastrophic forgetting.

3) We demonstrate through extensive experiments on a mo-
bile robot platform, that our framework can continuously
improve a prediction model in the real world.

To our knowledge, this is the first application of online
learning to improve a pedestrian prediction model on the fly.

II. RELATED WORK
A. Pedestrian Trajectory Prediction

There is a vast amount of work devoted to pedestrian
trajectory prediction models [8]. Early on, physically inspired
models were most prevalent. In particular, the social forces
model was pioneering for pedestrian trajectory prediction and
crowd flow modeling [12]. The social forces model uses
attracting and repulsive potentials to model the social behavior
of pedestrians. In [7], a data-driven approach based on Gaus-
sian processes (GPs) was proposed. Every pedestrian trajectory
is modeled as a Gaussian process, where the kernel is learned
from data, and an interaction potential is used to model
social interactions. However, both of these methods utilize
handcrafted features, limiting their ability to capture complex
interactions. Recently, recurrent neural networks (RNNs) have
been used for trajectory prediction because of their success
in sequence-sequence modeling tasks. Instead of using hand-
crafted features, RNN-based pedestrian prediction models can
learn to extract features based on a set of example trajectories
(supervised-learning). [4] proposed to model every pedestrian
as a separate Long Short Term Memory unit (LSTM) and
propagate information about surrounding pedestrians using a
social pooling grid. Other works instead use attention mech-
anisms to selectively propagate features from surrounding
pedestrians [13]. Following the trend towards data-driven pre-
diction models, many works explore the use of more context
information to improve prediction accuracy. Different birds-
eye-view (BEV) 2D maps of the environment have been used
to extract context features, like obstacle grids [5], satellite
images of the environment [14, 10], and semantic maps [15].
While other works focus on extracting cues of surrounding
agents, like head pose [16], observed actions and awareness
of the robot’s presence [17]. Visual cues of agents can also be
learned directly from on-board camera images [18].

Concurrently, recent works explore stochastic data-driven
prediction models to capture the inherent multi-model nature
of human motion. Generative Adversarial Networks (GANs)
have been used to generate multiple socially plausible futures,
by randomly sampling from the latent space [6]. However,
GANSs are typically very difficult to train and can suffer from
mode collapse causing the models to predict very similar
trajectories. A recent extension of GAN called info-GAN was
used to prevent mode collapse [19]. In contrast to GANs, many
works explore the use of Conditional Variational Autoencoders
(CVAE) to explicitly model the variation [14]. Using vari-
ational learning, [20] propose a new Variational Recurrent
Neural Network (VRNN) architecture to generate more diverse
socially-plausible trajectories from fewer examples.

At the same time, there have been many works that explore
new ways of modeling interactions. Graph neural networks
(GNN) were used as attention mechanisms to propagate
the hidden states of LSTMs [21], variational learning was
combined with GNNs [15], and a Spatio-temporal GNN
architecture was proposed that directly models pedestrian
trajectories as a graph [22]. Another model architecture that
is considered state-of-the-art (SoTA) in neighboring sequence-
sequence learning domains, is the Transformer network [23].
In [24], a model architecture is proposed that models complex
Spatio-temporal interactions by interleaving between spatial
and temporal Transformers.

In the body of literature on prediction models, normally
performance is evaluated and compared using (offline) bench-
marking datasets [25, 26, 27, 28]. And often these prediction
models are deployed in AVs or autonomous mobile robots,
to anticipate the behavior of surrounding agents. However,
[29] noted that a learning-based state-action policy should be
learned online since the distribution of input data is dependent
on the policy. And this can be extended to learning a prediction
model because it ultimately affects the policy of the AV or
mobile robot.

B. Online Learning

Regret-based online convex optimization (OCO) has been
extensively studied [30]. The goal of OCO, when applied
to our problem setting, is to accurately predict pedestrian
trajectories, given knowledge of previously observed trajec-
tories. Follow the Leader (FTL), is the most straightforward
OCO method that works by optimizing across all previous
knowledge every step. Inspired by FTL, [29] introduced
DAgger, an online learning algorithm to learn a state-action
policy. DAgger aggregates all previous observations online
and queries an expert to get the optimal action in hindsight.
However, DAgger and FTL both save all previous examples
and periodically retrain a network on the entire aggregate,
which quickly becomes very computationally expensive.

Therefore, a large body of research is done in the direction
of learning deep NN-based models online, without saving all
previous examples [11, 31]. The biggest challenge of training
neural networks online is to retain good performance on
examples that are not shown anymore for a long time, or



as [32] states it, to prevent catastrophic forgetting. In their
pioneering work, [33] introduced Elastic Weight Consolidation
(EWC), a regularization approach that limits the plasticity of
specific neurons based on their importance. However, EWC
assumes that the input distribution can be split into different
tasks and separate importances can be calculated for each
task. Other regularization approaches have focused on relaxing
this assumption by automatically inferring task-boundaries
[34], or by calculating the importance in an online fashion
over the entire learning trajectory in parameter space [35].
The downside of regularization-based techniques is that an
additional loss term is added which can lead to a trade-off
between knowledge consolidation and performance on novel
tasks.

Inspired by the biological interplay between the hippocam-
pus and neocortex, many works explored the use of an episodic
memory that is rehearsed periodically. There are two types
of episodic memory methods that differ in the way they
model memory, rehearsal approaches explicitly save exam-
ples [36] and pseudo-rehearsal approaches save a generative
model instead [37]. A straightforward rehearsal approach can
be achieved by randomly selecting examples to add to the
episodic memory [38]. However, [36] proposed to select a
curated set of examples instead, such that the average feature
vector of the set best matches the average feature vector of the
entire task. Pseudo-rehearsal methods can use several different
generative models (e.g. GANs, CVAE) [37]. However, replay
using standard generative models was shown to break down
for complex tasks by [39] and they proposed a modified CVAE
that serves as both generator and solver by equipping it with
generative feedback connections. Additionally, they propose to
replay representations internally at the "hidden level’.

Instead of saving information through examples or gen-
erative models, many works focus on expanding the model
architecture [40, 41, 42]. Intuitively, these approaches prevent
forgetting by populating new untouched weights instead of
overwriting existing ones. However, the model complexity
grows with the number of tasks.

Importantly, most of the time combining continual learning
strategies allows finding the best solutions [11].

III. PROBLEM DEFINITION

The goal of our framework is to adapt a trajectory pre-
diction model from the streamed positions p = {p,, p,} and
velocities v = {vg,v,} of all surrounding agents and a map
S € R? of the static environment. We assume a detection and
tracking pipeline exists that streams the states and provides
the map.

The trajectory prediction problem can be formally defined
as follows: Estimate the future velocities of all tracked pedes-
trians from their past states including information about their
environment.

For pedestrian ¢ at time ¢ = 0 his surrounding static
environment is denoted as sl € S. We now refer to the past
tops States of pedestrian i as:

Xé = {(pi7vj—a56)|7— = —tobs,---0}

and the future t,,..q velocities of pedestrian 7 as:
Yo =Vi,.. = {vilT =1, tprea}

We want to find a data-driven prediction model f() that
best approximates f*, where f*(x%) = y! across the entire
previous stream of states for every tracked pedestrian ¢ €
[1...N]. Here 0 refers to the weights of the model and N
refers to the total number of tracked pedestrians. Throughout
this paper the subscript ¢ denotes the ego pedestrian, i.e. the
pedestrian whose trajectory we want to predict.

In literature, online learning problems are often formulated
as a game where the answer becomes available in hindsight
[30]. The goal of online learning problems is to minimize the
loss on all past rounds, often referred to as regret. We propose
to view the problem of continually learning a data-driven
prediction model from observations as an online learning
problem:

fort=1,2,..

observe x;

predict y;¥
: 1I:N
receive true answer y;

update Z/(y; ™, y; ")

Here y; refers to the trajectory prediction of our data-driven
network (f(0)):

f(Xt; 9) =y = {’t+1:t+tp,‘e,1

In our setting the true answer y; will not directly become
available after round ¢, but only after observing the ground
truth trajectory that a pedestrian ends up taking for tpreq
rounds. So the update can be done earliest after round t+%;,¢q.

The goal of our framework is to minimize regret for all past
rounds by updating the weights 6 of a data-driven prediction

network:
t—(tpreat+1)

>

Jj=0

2LV, ¥5)

min
0

IV. APPROACH

In this section, we introduce Self-supervised Continual
RNN Learning (SCRNN-L) an online learning framework to
continually improve pedestrian prediction models. We explain
how the combination of a rehearsal and regularization strategy
allows SCRNN-L to overcome the problem of catastrophic
forgetting. We also briefly describe the pedestrian prediction
model architecture considered. SCRNN-L is designed to be
used in conjunction with a pedestrian detection and tracking
pipeline on a mobile robot.

A. SCRNN-L overview

SCRNN-L consists of two stages, a model adaptation stage,
and a task aggregation stage, see Fig. 2. The framework
proceeds as follows: Initially, we use a pre-trained prediction
model on the robot and aggregate new training examples using
the surrounding pedestrians as experts (task aggregation).
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Fig. 2: Schematics of the two stages of SCRNN-L. The aggregation stage (top) extracts examples from the stream of tracked
surrounding pedestrians and stores them in a temporary dataset. The adaptation stage (bottom) trains the prediction model
using the aggregated dataset and a separately saved coreset. An additional EWC regularization term is added to the loss to

prevent catastrophic forgetting when training online.

After T' seconds the prediction model is updated using the
aggregated task (model adaptation). The two stages are run
alternately over time to create a lifelong learning autonomous
agent.

SCRNN-L aims to learn from a time-varying continuous
data stream to have the least regret across the entire stream.
At the same time, SCRNN-L has to be computationally and
memory-wise feasible to run on a mobile robot platform.
Therefore our framework does not store all examples of
the input stream. Instead, we split the input stream into
temporally bounded episodes and separate our framework in an
aggregation and adaption stage. The aggregated dataset is then
discarded after training the prediction model in the adaptation
stage. This ensures the training dataset doesn’t grow over time
and remains feasible to train on. The consequence of dis-
carding the aggregated datasets is that training the prediction
network becomes susceptible to catastrophic forgetting since
data from previous episodes is not being trained on anymore.
To address this problem, we use a regularization strategy that
consolidates knowledge on an episode-by-episode basis. The
optimal episode length T" depends on the environment and how
many pedestrians the robot is able to observe and learn from.
At the same time setting 7" too large can cause the aggregated
datasets to be too big.

Our framework uses EWC as the regularization strategy.
EWC consolidates knowledge on a task-by-task basis by
selectively slowing down the learning of neurons that are
deemed important for previous tasks. Throughout this paper,
the aggregated dataset of a single episode is referred to as
a task. EWC assumes that task boundaries are given and
that every task contains new feature patterns to remember.
EWC is a suitable choice for our problem setting, because the
distribution of the continuous data stream gradually changes
across tasks, for example when the robot moves to a new
environment. So examples within a single task likely contain
new input and behavior patterns that EWC can consolidate.
A drawback of regularization-based strategies is that they
can lead to a trade-off between knowledge consolidation
and performance on novel tasks. Therefore SCRNN-L also
rehearses a set of examples of constant length, referred to
as the coreset. Coreset rehearsal allows better knowledge
consolidation while performing comparably on novel tasks.
The downside of coreset rehearsal is that it adds a memory
overhead to the framework. However, when the coreset size is
small compared to the size of the aggregated task, the memory
overhead on the overall framework is comparatively minimal.
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Fig. 3: Prediction Model architecture.

B. Prediction network architecture

To test our online learning framework we use a data-
driven pedestrian trajectory prediction model that builds on
[5]. The model architecture is shown in Fig. 3. Three streams
of information are used as inputs. First, the velocity of the ego
pedestrian (v%). Secondly, an occupancy grid around the ego
pedestrian containing information about the static obstacles in
the surrounding (O;""""). For the final input, [5] use an angular
pedestrian grid (APG) that encodes the relative positions of
surrounding pedestrians in polar coordinates and discretizes
the angle. However, during experiments, we found the model
has difficulties learning social interactions. The APG lacks ex-
plicit information about relative pedestrian velocities. Instead,
the model has to learn to integrate across the discretized bins of
the APG using its internal LSTM state, which makes learning
social interactions more difficult.

To address this limitation, we use a different input entirely.
Similar to [20], we use the relative velocity, position, and
heading of surrounding pedestrians and combine them into
a vector:

Ozoctabt — [pd —pi vi —vi ¢l — ¢ Vje[l...N]

We use the permutation invariant sort function as an attention
mechanism by sorting the relative vectors of surrounding
agents by euclidean distance [10]. To handle a variable number
of pedestrians, only the closest 5 pedestrians relative vectors
are used. For situations when there are fewer than 5 surround-
ing pedestrians, the relative vector of the closest pedestrian is
repeated.

C. Task aggregation

During the task aggregation stage, SCRNN-L saves the
inputs of the prediction model Of = {vi O Ofociabiy
(see Fig. 2) for every tracked pedestrian ¢ in a buffer of the
last 4, ¢ previous time steps. Our key observation is that, for
a model with a prediction horizon of .4, the ground truth
velocity vectors v, titpreq Can be extracted from the buffer
after ¢,,,..q timesteps (red arrows in Fig. 2). We then aggregate
the velocity vectors (target) together with the corresponding
model inputs (input) as an example and store them in the
aggregated dataset. Because our prediction model is recurrent
(meaning it depends on the previous model state), we aggre-
gate sequences of examples. Collecting structured sequences
of examples, enables the model to be trained through truncated
backpropagation through time (tbptt) and learn the temporal

dependencies of the model state. The aggregated sequences
of examples are of length t4,:;, which makes the total buffer
length 4, ¢ equal to tpreq + tippit-

D. Model adaptation

In the model adaptation stage, SCRNN-L uses the latest
aggregated task and trains the network for ) epochs. To
distinguish between tasks we will refer to a task as tasky,
where k£ = 0 for the initial task and %k increments per task.

EWC is applied during training on taskj to preserve
prediction performance on the previous tasks (tasko.r—1).
For each previous task, we saved an importance measure F'
together with the network weights 6 directly after training.
Based on Fp.;,_1 and 0g.,_1 the following regularization term
is added to the loss function:

=1y
gewc(e) = Z §FJ(6 - 0]')2
j=0
Where 6 is the current set of weights, &k refers to the index of
the current task, and A is a hyperparameter that dictates how
important not forgetting the old tasks is compared to learning
the new one. The complete loss function then looks as follows:

Z = gADE + og/pewc

ZLADE(V it preas Vittyrea) =

ZLapg refers to the average displacement error (ADE) of the
predicted trajectory, often used as a loss metric for trajectory
prediction models [8].

Coreset Rehearsal is used in addition to EWC to mitigate
forgetting. A set of examples (coreset) of constant length N
is saved alongside the model. The goal is for the coreset to
contain representative examples of all previous tasks. During
the model adaptation stage, the coreset is combined with the
aggregated task set to rehearse the examples. The total dataset
looks as follows:

]5 = Dy, U Deoreset

Where Dj, contains all examples of taski and Depreset cON-
tains all examples of the coreset. After the model adaptation
stage is completed, we update the coreset with M examples
of the latest task Dj. Importantly the new examples replace
existing ones to ensure the coreset remains of constant length
N. We use a random selection of examples to update our
coreset.

E. SCRNN-L

In summary, SCRNN-L continually adapts the pedestrian
prediction model of a mobile robot using surrounding pedes-
trians as experts. In its simplest form, the algorithm proceeds
as follows (algorithm 1), every T seconds a dataset D; is
aggregated. Using D; and the saved D oreset the model is
adapted. During training, learning is selectively slowed down
on important weights to preserve knowledge about previous
environments.



Algorithm 1: SCRNN-L

1 Load pretrained model: f(6)

2 Load map: S

3 Initialize coreset: Deoreser —
4 for i = 0 to oo do

5 Initilize empty task dataset: Dy, <+ ()

6 Aggregate examples for 7' seconds as follows:

7 fort =0t T do

8 Process pedestrian positions py, velocities v,
and map state S to model inputs O; and save
them to a buffer

9 Execute prediction network f(6) on model
inputs

10 Get examples from buffer:
Dy = {(Ot—(t,eat1)s Ve—tyreat) }

11 Update task dataset: Dy, < Dy | D:

12 end

13 Combine coreset and task: D <« Di. U Deoreset

14 Train prediction model f(6) on D using EWC.

15 Add EWC importances for task dataset Dy,

16 Update coreset D.yreser With random examples

from Dy,
17 Clear Dy, from memory
18 end

V. EXPERIMENTS
A. Implementation Details

The model parameters of our prediction network are kept
as shown in Fig. 3. We predict 15 steps with a time-step of
0.2 seconds resulting in a 3.0 seconds prediction horizon at
a frequency of 5 Hz. Note that inference on the prediction
model can be run at higher frequencies, only the aggregation
of examples is constrained to 5 Hz. All models used in our
experiments are pre-trained on the ETH and UCY pedestrian
prediction datasets [25, 26], for 60 epochs with a learning rate
of 2e-3 and L2 regularization of 5e-4. The total training time
was 20 minutes on an Intel Core i7.

Our online learning framework will improve this pre-trained
model based on the behavior of surrounding pedestrians. We
use a task aggregation buffer length 3,y = 30, consisting
of the 15 step prediction horizon and a 15 step truncated
backpropagation through time. We switch stage after 7" = 200
seconds and train the network for () = 10 epochs. For our
model that includes EWC, we use A = 1e6, and for our
model that includes coreset rehearsal, we use a coreset size
of N =100 and an update size of M = 20.

B. Evaluation Details
We include two versions of our SCRNN-L method in
experiments:

1) EWC: A prediction model that is trained using the same
aggregated tasks as SCRNN-L, while also using EWC
regularization, but without coreset rehearsal.

2) EWC+Coreset: A prediction model that is trained using
SCRNN-L with both EWC regularization and Coreset
rehearsal.

Furthermore, we compare against the following baselines:

1) Vanilla: A prediction model that is trained using the
same aggregated tasks as SCRNN-L, while using stan-
dard gradient descent without any continual learning
methods.

2) Offline: A prediction model that is trained offline on all
aggregated tasks simultaneously.

The focus of this paper is on applying continual learning
strategies to improve a prediction model on the fly without
forgetting. Therefore we only change the learning strategy
across baselines and keep the prediction network architecture
the same. Similarly, we don’t directly compare against the
SoTA in pedestrian prediction models because our focus is
on the learning strategy and not on the model architecture.
Similar to other works on pedestrian prediction models, we
use the average (ADE) and final displacement error (FDE) as
performance metrics [10, 20].

Fig. 4: The incremental learning scenario consists of (A)
Square, (B) Obstacles, and (C) Hallway environments.

C. Incremental Learning Benchmark

To effectively compare learning strategies, we propose a
simulation-based incremental learning benchmark for pedes-
trian trajectory prediction. Incremental learning scenarios are
often used as continual learning benchmarks. At the same time,
incremental learning benchmarks allow to easily evaluate how
much a model forgets by continually reevaluating the model’s
performance on previous tasks. Popular continual learning
benchmarks, like split MNIST [39], focus on classification
problems. In classification problems, the task boundaries can
simply be defined by grouping class labels, so each new task
consists of new class labels. In contrast, the prediction of
human motion is a regression problem hence defining task
boundaries is more difficult. Since human motion is heavily
influenced by environmental context, we propose to define task
boundaries in our benchmark by the environment.

We include three environments that contain distinctly differ-
ent motion behavior based on environmental as well as social
context. We train prediction models incrementally on arbitrary
orders of the environments which enables us to evaluate
different online learning methods based on their ADE/FDE
performance on test sets of all environments. The following
three environments are considered, see Fig. 4:



1) Square: An infinite corridor setting with three pedestri-
ans walking clockwise and three anticlockwise.
2) Obstacles: Pedestrians walking towards each other in
an obstacle filled space.
3) Hallway: Pedestrians walking towards each other in a
hallway while behaving cooperatively.
The pedestrian behavior is simulated in ROS using the open-
source pedsim simulation framework ' employing the social
forces model [12].
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Fig. 5: Prediction performance on only the square scenario.
Shows ADE (top) and FDE (bottom) of all models on the
test set of the square task, while learning new tasks. Note
that the offline model is used as an upperbound on prediction
performance for comparison purposes only. Since in the real
world, data of the scenarios will not be known beforehand and
can be time-varying.

D. Quantitative results in simulation

We compare our methods against baselines on various
sequence orders of our proposed incremental learning bench-
mark. Table I reports the average ADE and FDE evaluated
at the end of the sequence on all three scenarios, under the
columns denoted average. Additionally, Table I reports the av-
erage ADE and FDE increase of previous environments across
the incremental learning sequence, under the columns denoted
avg. forgotten. As shown, EWC+Coreset significantly outper-
forms Vanilla. Our method is also independent of sequence
order, arriving at within +/- 0.02 the same average ADE/FDE
for all sequence orders. The significant increase in average
forgotten ADE and FDE indicates that the Vanilla baseline

Uhttps://github.com/srl-freiburg/pedsim_ros

suffered from catastrophic forgetting across the incremental
learning sequence.

To gain insight into where catastrophic forgetting takes
place in the Vanilla model, we plotted the ADE/FDE of the
test set of only the initial square scenario across the entire
learning trajectory, using the sequence square — obstacle —
hallway (Fig. 5). By evaluating a single environment over
time, we can clearly visualize when and how much the models
degraded in prediction performance in the respective environ-
ment. For ease of comparison, the offline trained model is also
plotted as a constant line. In the first section, all models are
trained on the aggregated dataset of the square scenario and,
as expected, all online learning methods similarly converge
towards the offline trained prediction model. However, when
changing from the square environment to the obstacle envi-
ronment, the ADE/FDE performance quickly and drastically
degrades for the Vanilla baseline (red arrow). The green line
in Fig. 5 depicts that using EWC to selectively slow down
learning on important neurons helps to significantly mitigate
the magnitude of the loss in ADE/FDE. Nevertheless, after
two subsequent tasks, the EWC baseline performed ~ 30%
worse on FDE and ~ 20% worse on ADE. The red line in
Fig. 5 shows that combining EWC with the rehearsal of a
small Coreset of examples helps to further mitigate forgetting.
Using EWC and Coreset rehearsal SCRNN-L was able to train
in two subsequent scenarios while retaining knowledge of the
initially experienced scenario.

E. Qualitative analysis in simulation

To further inspect the benefit of EWC and Coreset rehearsal
we compared predicted trajectories of all models after online
training in the three tasks of our proposed incremental learning
benchmark, depicted in Fig. 6. In Fig. 6A our EWC+Coreset
method learned from observations that pedestrians are likely
to follow a corner in a corridor. Furthermore, it shows that our
method can maintain this prediction behavior after learning on
two subsequent tasks. Note how near corners our method that
solely uses EWC outperforms the Vanilla benchmark but was
not able to fully consolidate it’s prediction performance (green
line), indicating the need for an additional method of consol-
idation like Coreset rehearsal. In Fig. 6B our model adapted
to an environment with different static obstacle configurations
and learned obstacle avoidance behavior from observations.
Finally, Fig. 6C demonstrates that our model can also adapt
to take social interactions into account.

FE. Real-world validation with perfect observations

While the simulation results indicate EWC and Coreset
rehearsal, significantly help maintain performance on previous
tasks, this is not necessarily true in a real-world situation
because the policy of a real pedestrian can differ from the
social forces model. To validate whether it is possible to
improve a prediction model with SCRNN-L from observed
pedestrians in the real world, we ran a number of controlled
experiments. To eliminate the perception-related errors as



Method square — obstacle — hallway obstacle — square — hallway hallway — obstacle — square obstacle — hallway — square

avg. forgotten average avg. forgotten average avg. forgotten average avg. forgotten average
Vanilla +0.15 / +0.41 0.24 /7 0.55 +0.15 / +0.37 0.24 7 0.52 +0.16 / +0.41 0.24 7 0.56 +0.25 / +0.63 0.30/0.71
Ours (EWC) +0.04 / +0.12 0.16 / 0.37 +0.06 / +0.17 0.18 / 0.40 +0.09 / +0.22 0.21/70.47 +0.07 / +0.19 0.19/70.42
Ours (EWC+Coreset) +0.01 / +0.04 0.15/ 0.33 +0.03 / +0.07 0.17 / 0.34 +0.02 / +0.06 0.16 / 0.35 +0.02 / +0.05 0.16 / 0.35

TABLE I: Quantitative results of EWC + Coreset vs. Vanilla on various orders of our incremental learning scenarios. The table
lists the average ADE / FDE on all environments at the end of the sequence. We additionally list the average forgotten ADE

/ FDE, which refers to the average increase in ADE / FDE on previous environments across the learning sequence.
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Fig. 6: Qualitative evaluation of all prediction models. The BEV of all three evaluation scenarios are depicted. The view
contains obstacles (black) and pedestrians with their ground truth paths (dashed grey). Predictions are color coded by model
(solid lines). The three scenarios consist of: (A) Square scenario, (B) Obstacles scenario, and (C) Hallway scenario.

Method square — obstacle — obstacle — square —
cooperative cooperative
avg. forgotten average || avg. forgotten average
vanilla +0.24 / +0.58 | 0.46 / 0.97 || +0.21 / +0.50 | 0.45 / 0.94
Ours(EWC) +0.19 / +0.42 1 0.43 / 0.86 || +0.12 / +0.31 | 0.41 / 0.87
Ours(EWC+Coreset) || +0.04 / +0.13 | 0.36 / 0.73 || +0.05 / +0.11 | 0.40 / 0.80

TABLE II: Quantitative results of EWC + Coreset vs. Vanilla
on real world data collected using an optical tracking system.
The table lists the average ADE / FDE on all environments
at the end of the sequence. We additionally list the average
forgotten ADE / FDE, which refers to the average increase
in ADE / FDE on previous environments across the learning
sequence.

much as possible, we first tested with an optical tracking sys-
tem (optitrack) that provides pose information for all tracked
pedestrians. We again started with a model pre-trained on
ETH and UCY. Furthermore, we set up three scenarios similar
to our simulation benchmark (see Appendix B). Because of
Covid related regulations, we weren’t able to test with more

than two people. Nevertheless, our model was still able to
improve prediction performance and learn certain concepts,
such as avoiding crashing into walls, pillars, or fences. Table 11
reports quantitative results on two different orders of our
experiment. Similar to Table I, the average ADE and FDE
evaluated at the end of the sequence is shown, in addition to
the average ADE and FDE increase of previous environments
across the incremental learning sequence. Our framework
again significantly outperformed the Vanilla baseline on both
metrics. Indicating that we can not only learn a prediction
model from real human motion but also consolidate the learned
knowledge. Figure 7 shows a qualitative example of the
experiment, where our framework learns to avoid both static
obstacles and pedestrians.

G. Real-world results with integrated perception pipeline

Finally, we evaluated our framework in an uncontrolled
environment using the robot’s detection and tracking pipeline
instead of the optitrack system. In Fig. 8 we show that
our framework improves a prediction model by observing



Fig. 7: Real world validation using an optical tracking system
that streams tracked pedestrian states.

Fig. 8: Learned predictions on a real world mobile robot
platform. Pedestrians are tracked using only the robots own
sensors (LiDAR and cameras). The figure shows predictions
(orange) and ground truths (blue).

surrounding pedestrians in a hallway. The orange markers
represent the predictions and the blue markers the ground
truth positions detected by the perception pipeline. The pre-
diction model learned online when pedestrians are likely to
take corners, by observing how real pedestrians walk in the
environment. Note that the ETH and UCY datasets, on which
our model was pre-trained, contain almost no interactions
with static obstacles, yet our framework autonomously learns
complex obstacle interactions. Furthermore, the occupancy
map shown in Fig. 8 is generated by the robot itself using
depth information from its LiDAR. So our framework can
continuously learn in new and unseen environments entirely
autonomously. However, in Fig. 8, the mobile robot was
stationary while observing pedestrians, making it easier for the
detection and tracking algorithms of our perception pipeline. In
other experiments, with a moving robot, the tracked pedestrian
states contained too much noise, prohibiting our framework
from improving the prediction model online. Appendix B
elaborates on the experiments.

H. Integrated motion planner

To summarize, we’ve shown through extensive experiments
that it is possible to improve a prediction model online
by observing how surrounding pedestrians behave. Addition-
ally, we’ve shown that using our online learning framework
(SCRNN-L) allows a mobile robot platform to autonomously
improve its prediction model while overcoming the problem
of catastrophic forgetting.

Ultimately the predictions of surrounding pedestrians allow
a mobile robot platform to anticipate the intentions of pedestri-
ans and adjust its movements accordingly. To gain insight into
the integration of a motion planning algorithm with SCRNN-
L we’ve done several experiments. Since we’ve found earlier
that our detection and tracking pipeline on the real mobile
robot platform is not yet robust enough during movement,
these experiments are performed in simulation.

A model predictive control (MPC) algorithm based on [9], is
used as the motion planner. MPC algorithms work by optimiz-
ing (predicting) a fixed number of time steps ahead, subject
to several costs and constraints. To account for surrounding
static obstacles first the obstacles are parametrized by fitting
polygonal shapes around them. Using these polygonal shapes
a free space area is calculated that contains no obstacle poly-
gons. The MPC then adds as a constraint to the optimization
that the predictions have to be inside the free space area.
Similarly, surrounding pedestrians are accounted for, the main
difference is that the location of the pedestrian can change
over the prediction horizon. Therefore, using the predictions
of our prediction model, a dynamic constraint is added to the
optimization formulation. A circle with a fixed radius of 0.3
meters around the location of the pedestrians is used in the
constraint formulation.

Initially, the above-mentioned MPC is used in conjunction
with our pedestrian prediction model pre-trained on ETH and
UCY. We use SCRNN-L to improve the prediction model
every 200 seconds. To quantitatively evaluate the prediction
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(a) Crowded hallway scenario where the robot continually moves from one side of the corridor to the other while SCRNN-L
improves the prediction model.
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(b) Hallway scenario with an obstacle in the middle. The robot continually moves from one side of the hallway to the other
while SCRNN-L improves the prediction model.

Fig. 9: Results of various simulation scenarios combining an MPC motion planner with SCRNN-L. The running mean of the
ADE and FDE of last 10 seconds is plotted. The running means can be viewed as regret values. The robot only has access
to pedestrian locations within 10 meters, simulating the sensor range of a detection and tracking pipeline. Additionally, the
figures show the current predictions of SCRNN-L (orange) and the current prediction horizon of the MPC (blue).



performance over time, we plot in real-time the running mean
of the ADE and FDE of the past 10 seconds. Furthermore,
we compare this running mean to the constant velocity (CV)
predictions. CV is often used as a baseline for pedestrian
prediction model [8].

Firstly a crowded hallway scenario is considered, where we
instruct the mobile robot to move towards a goal position
at the opposite end of the hallway, see Fig. 9a. Initially,
the pre-trained prediction model performed worse than CV
on ADE and FDE regret. We attribute this to the fact that
the simulation scenario differs in observed behavior from the
behaviors shown in the ETH and UCY dataset. After the
first update stage of SCRNN-L, at approximately t = 400,
our prediction model closes the gap and performs comparably
to CV in ADE and FDE regret. Qualitatively the improved
model predicts more cooperative trajectories. As a second
scenario we placed an obstacle in the middle of the hallway,
to test if, with SCRNN-L, we can take advantage of the local
environmental context of pedestrians to improve predictions,
see Fig. 9b. Again CV outperformed our pre-trained prediction
model initially. However, after the second update stage of
SCRNN-L, at approximatley t = 950, our improved prediction
model now significantly outperforms CV in both ADE and
FDE regret. We refer the reader to the supplementary video
accompanying this paper, for a more in depth look at the
results of the integrated motion planning experiments. 2

How to appropriately quantify the performance of the
motion planning algorithm is an unsolved problem. Multiple
factors are of importance for instance: number of collision,
time to goal and how the movement is perceived by other
pedestrians. Improving the performance of the prediction
model in terms of regret is the main goal of this paper,
therefore we leave the further quantification of the integration
with a motion planning algorithm to future work. Appendix
D elaborate on our attempt at quantifying the motion planners
performance using the number of collision, however we did
not observe a significant improvement. We encourage future
work to incorporate additional performance metrics.

VI. CONCLUSION

In this paper, we posed the problem of learning a pedestrian
trajectory prediction model as a self-supervised continual
learning problem. We proposed a continual learning frame-
work that includes EWC and coreset rehearsal to overcome
catastrophic forgetting. We show through extensive experi-
ments that it significantly outperforms vanilla gradient descent
and performs similarly to offline trained models with full ac-
cess to data of the environments. To the best of our knowledge,
we present the first approach that combines recent advances
in the field of continual learning with a data-driven pedestrian
trajectory prediction model. Additionally, we show using real-
world experiments that our pedestrian prediction model can
learn to generalize to new and unseen environments over time.

2Video is attached to email.

Finally, we demonstrated the integration of SCRNN-L with an
MPC-based motion planner in simulation.
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Discussion

In general, the proposed self-supervised continual learning framework is a feasible
solution to train a pedestrian prediction model on an online stream of data. Although
research in the field of continual learning shows the online training of neural networks
can be applied to robotics, to the best of our knowledge, we are the first to apply
continual learning methods to the pedestrian prediction problem. The division of the
online learning procedure in dedicated aggregation and adaptation stages allowed us
to incrementally learn and consolidate new behaviors experienced in the surrounding.
Additionally, the incremental learning of temporally bounded aggregated datasets, al-
lowed us to run the framework using the onboard perception and computational re-
sources of the mobile robot platform. The regularization-based approach towards
mitigating catastrophic forgetting met the expectation that it significantly reduced the
magnitude of the loss in prediction performance over time. The essential trade-off
between stability and plasticity of regularization-based approaches encouraged us to
incorporate a secondary means of consolidation. Through the rehearsal of a small
persistent set of examples, the magnitude of loss in performance over time is further
mitigated.

3-1 Data Aggregation

We have presented a self-supervised approach towards the aggregation of pedes-
trian trajectory examples, using surrounding pedestrians as experts. Combining the
aggregation procedure with the inference of the prediction model allowed to store the
already pre-processed examples, circumventing a significant portion of computation
time in the following adaptation stage. The results of our integrated motion planner ex-
periment showed that the temporally bounded data aggregation procedure is feasible
in real-time in a crowded area with a limited sensing range. An observed drawback of
this approach however is the fixed aggregation time. In the simulation, the density of
surrounding pedestrians was relatively constant over time, which resulted in equally
sized aggregated datasets. Nevertheless, in real-world experiments, there were few
pedestrians around, because of the covid regulations on campus. This resulted in rel-
atively few periods of dense crowds and large periods without any observations. We
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encourage future work to apply different methods of aggregation e.g. by having a fixed
minimum number of aggregated examples, or by separating the aggregation spatially
instead of temporally. Finally, the performance of the data aggregation procedure is
tightly coupled to the accuracy of the detection and tracking pipeline. In real-world ex-
periments, the frequency of observed tracks of our detection and tracking pipeline was
inconsistent and the tracks themselves contained too many false positives, resulting
in inappropriate ground truth values for many aggregated examples. Additionally, it is
not yet well understood if occlusions in the view of the robot’s sensors have an impact
on the aggregated examples and subsequently on the learned prediction model.

3-2 Elastic Weight Consolidation

The task-based EWC regularization method was shown to significantly mitigate the
magnitude of the loss in performance in average and final displacement error in our
pedestrian prediction incremental learning benchmark. Furthermore, the performance
on novel tasks remained comparative to vanilla gradient descent. By using EWC we
essentially save the information contained in the latest aggregated dataset, in a more
compressed form as Fisher importances on the neurons of the prediction network.
The inherent limitation of the current implementation of EWC, in the long run, is that
the number of saved parameters still grows with the number of previous tasks, albeit
not as rapidly as saving the dataset directly.

3-3 Prediction Network Architecture

The proposed obstacle-aware prediction model was shown to be able to use the gen-
erated occupancy grid map of the environment. The occupancy grid is generated us-
ing the onboard 3D LiDAR, allowing the online learning framework to take advantage
of changing environmental context. Explicitly using a vector of relative position, veloc-
ity, and heading enabled the prediction model to take social interactions into account.
Overall, the purpose of our proposed prediction model was to show through a relatively
straightforward prediction model architecture that the online learning framework can
learn social as well as environmental interactions. Future research is needed to verify
the proposed online learning approach is feasible for SoTA multi-modal pedestrian
prediction models.

3-4 Motion Planner Integration

By modeling the predicted trajectories of pedestrians as dynamic obstacles in the
constraint formulation of a Model Predictive Controller (MPC), we demonstrated it is
possible to integrate the presented online learning framework with a socially aware
motion planning algorithm. Through the simulation of a dense crowd in a hallway, we
demonstrated the prediction error goes down over time yet we did not observe a sig-
nificant decrease in the number of collisions. Further research is needed to evaluate
if the improvement of the prediction model translates into quantifiable improvements
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of the socially aware motion planner.






Conclusion

The field of pedestrian trajectory prediction is moving towards interaction-aware neural
network models. Aninherent limitation of the way neural networks are currently used is
that they are trained on a constant dataset of examples that are known and available
beforehand. However, in the field of pedestrian prediction for autonomous naviga-
tion, data comes in sequential never-ending streams. This thesis work focussed on
contributing to the field of pedestrian trajectory prediction by taking advantage of the
online data streams of a detection and tracking pipeline, to continually train a neural
network. The first research question is directed towards the feasibility of learning from
online observations to improve a neural network-based prediction model, since to our
knowledge this concept is not explored in previous works. With the second research
question, we aimed to find a stable learning algorithm that consolidates knowledge
over time. Finally, the last research question seeks to find out whether the concept
can be applied in combination with a socially aware motion planning algorithm. The
presented self-supervised continual learning framework, including extensive experi-
mental evaluation, provides an answer to the research questions. In both simulation
and real-world experiments, we’ve shown that it is possible to learn from an online
stream of tracked pedestrians. By designing an incremental learning benchmark for
pedestrian trajectory prediction, we demonstrated the framework can consolidate pre-
diction performance over time. Lastly, we showed in simulation that it's possible to
integrate the framework with an MPC socially-aware motion planning algorithm. Due
to problems with our detection and tracking pipeline we were not able to perform real-
world experiments with an integrated motion planner. Further improvements on the
proposed framework can be made by exploring different aggregation strategies, us-
ing SoTA prediction models, and incorporating recent more complex methods from
the field of continual learning.
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Recommendations For Future Work

. Investigate different methods of defining aggregated tasks. The proposed
online learning framework works with fix temporally bounded aggregation inter-
vals. During real-world experiments, this form aggregation proved sub-optimal
because the aggregated dataset size is determined by the number of surround-
ing pedestrians, which is not necessarily constant over time. Recent work on
continual learning proposed to automate the process of determining when to
update the model, by monitoring the loss over time [24]. Additionally bounding
the aggregation intervals spatially instead of temporally is worth investigating.

. Integrate SoTA multi-modal pedestrian prediction model. Recent pedes-
trian prediction models aim to capture the multi-modality of human motion by
using generative neural network models like GANs or CVAEs. The currently
proposed framework is only tested using a deterministic prediction model. Fur-
ther research is required to make sure the proposed online learning framework
allows for training generative models.

. Incorporate recent innovations in the field of continual learning. The field of
continual learning has recently seen an increasing number of research papers.
Promising proposed solutions to the problem of catastrophic forgetting include:
Generative Replay methods [25, 26], Network Expansion methods [27, 28, 29].

. Thorough evaluation of integrated motion planner with additional evalu-
ation metrics. In our attempt at quantifying the performance of our proposed
online learning framework integrated with a socially aware MPC, we looked at
the number of collisions, travel time, average prediction error, and final predic-
tion error. Further evaluation is required, with additional metrics to indicate the
social acceptance of the motion planner.

. Investigate different approaches to integrate the proposed online learning
framework with a motion planning algorithm. In the demonstrated integra-
tion of the proposed online learning framework with a socially aware MPC, the
predictions were only used in the constraint formulation to set the location of
dynamic obstacles. In future research it could be promising to use the pedes-
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5. Recommendations For Future Work

trian prediction model on the robot itself to use as a guide, possibly making the
movement of the robot more predictable towards humans.

. Incorporate onboard camera view around detected pedestrian as addi-

tional input for improved feature extraction. Incorporating high-dimensional
context information for pedestrian trajectory prediction is a promising area of
research. In the proposed online learning framework an occupancy grid of the
environment is used, however, it is worth investigating if it is possible to leverage
the onboard cameras of our mobile robot to extract additional context features
from surrounding pedestrians and improve the prediction accuracy online.

. Use pedestrian goal estimator instead of trajectory predictor. The predic-

tion of a fixed horizon trajectory is but one way to gain insight into the intention of
surrounding pedestrians. Another option to predict a pedestrian’s goal location
in the environment. Incorporating a pedestrian goal estimator in the proposed
online learning framework could be a promising area of research.



Mobile Robot Platform

This research was done as part of an MSc thesis. The appendixes, therefore, contain
additional information on related subjects that were explored during the thesis. In this
section, we give an overview of our in-house designed and built mobile robot platform
Appendix A-1. In, Appendix A-2 we explain unique design choices.

A-1 Overview

During my thesis, | helped design, build and integrate a mobile robot platform from
scratch. We started with a bare-bones Jackal UAGV mobile robot unit ', without
any sensors except for the built-in imu and GPS. The Jackal is a small robotics re-
search platform with an onboard computer, which runs Ubuntu Linux, see Fig. A.1.
The jackal is a differential wheeled robot, which means the two wheels on each side
of the robot are driven independently. This removes the need for an explicit steering
mechanism.

Figure A.1: Jackal Unmanned Autonomous Ground Vehicle (UAGV)

1https ://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/ (ac-
cessed April 10, 2021)
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28 A. Mobile Robot Platform

The onboard computer has an Intel Core i54570T Dual-core processor at 2.9 GHz and
is only meant to run the low-level controllers for wheels and other non computationally
heavy workloads. To run a detection and tracking pipeline we, therefore, chose to add
a computer in the form of a laptop on top of the Jackal. Furthermore, we use the
combination of an ouster 64-layer LIDAR and five intel stereo cameras to accurately
build occupancy maps of the environment, localize the robot, and detect and track
surrounding pedestrians. The cameras are mounted in a pentagonal pattern to give
full 360° vision. All devices on the Jackal are on the same local area network (LAN) by
connecting them through an ethernet switch. To allow for remote access we extended
the network using a Deco m9 router that includes a wireless access point. This makes
it possible to wirelessly connect to the ROS master of the Jackal and visualize all
internal messages of the network. Our fully assembled mobile robot platform is shown
in Fig. A.2.

Figure A.2: Mobile robot development platform

A-2 Design Choices

A-2-1 Dedicated Laptop For Heavy Workloads

As mentioned the onboard computer of the Jackal alone is not computationally power-
ful enough for our purposes. Therefore, we use a Dell G7 laptop as the second com-
puter for heavy computational workloads. The laptop includes an Intel Core i7-8th gen
and an Nvidia GTX 2070. We chose a laptop over a small form-factor computer like
an intel NUC and/or Nvidia Xavier because a laptop is more convenient as a research
and development platform. We can use the laptop independently from the mobile
robot platform, which allows remote working. Additionally, the Dell G7 outperforms
most small form-factor computers both in CPU and GPU performance. With devel-
opment convenience and flexibility in mind, we designed a mounting mechanism to
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house the laptop on top of the Jackal, see Fig. A.2. The laptop can be entirely discon-
nected from the Jackal by unclipping the clamps and disconnecting the cables without
requiring any tools.

A-2-2 LiDAR And Cameras Setup

One of the key factors when designing our sensor setup was the detection and tracking
pipeline. Although the detection and tracking pipeline is not part of this thesis, I'll
shortly explain how it works in simplified terms to justify our design choices. First,
the 3D point cloud of the LIDAR sensor is fused with depth information of the five
stereo cameras. Using the fused point cloud a NN is used to detect pedestrians.
Additionally, a Yolo pedestrian detector runs directly on all five camera images. The
Yolo detections are used to validate the detections made by the point cloud detector.
Since all 3D detections are to be verified by a corresponding Yolo detection, we require
full 360° camera vision. The additional benefit of being able to detect pedestrians in all
directions is that our mobile robot platform can observe more pedestrians and possibly
for longer trajectories. This benefits our proposed online learning method since we
essentially observe and learn from more pedestrians.






Additional Experimental Results

B-1 Optitrack Experiments

Our simulation experiments were useful, but ultimately we wanted to know if it also
works on real pedestrians. An autonomous pipeline of a robot is a complex system
and there are multiple possible sources of errors or inaccuracies, such as the robot’s
sensing, localization, detection, and tracking. To get rid of as many additional sources
of error as possible we used an optical tracking system, that we refer to as the Cyber-
zoo. By placing reflective markers on the robot and helmets, the overhead camera
array can accurately track the poses. A minimum of three markers is required per
tracked rigid body, to estimate full pose information. The pose information is streamed
through ROS onto the LAN of the robot. In total we did experiments in three different
scenarios, similar to our simulation scenarios, see Fig. B.1.

B-2 Real World Experiments

The logical next step after our Cyberzoo experiments was to test our framework on
the robot using its localization, detection, and tracking pipelines. We tested our net-
work throughout the TU Delft 3ME faculty building. Every 200 seconds we aggre-
gated a dataset using the people walking by as examples and updated our prediction
model.

B-2-1 Static Robot

In the first two experiments, the robot remained stationary while observing pedestri-
ans. The first test scenario consisted of an intersection in a hallway, see Fig. B.2(a).
The robot remained stationary at the intersection to observe people from all directions.
As shown in Fig. B.2(a), after observing pedestrians for 200 seconds the prediction
model learned to infer from the surrounding local static environment of pedestrians
that they are going to take a corner. The second test scenario consisted of a more
open hallway at the main entrance of the building, see Fig. B.2(b). Again the robot re-
mained stationary in the environment while observing. This time the predictions were
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32 B. Additional Experimental Results

less affected by static obstacles since there was more open space.

B-2-2 Dynamic Robot

In our final experiments, we drove the robot manually across the building. The goal of
this experiment was to show the learned predictions generalize across environments.
Fig. B.3, depicts a snapshot of one of the experiments. However, we did not observe
a significant improvement of predictions by learning online while moving the robot.
We hypothesize that, when moving the robot, the quality of the tracks of pedestrians
was not high enough, and too many false positives are introduced in the aggregated
dataset.
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(a) Camera view of cooperative movement scenario. (b) Predictions after learning online.

(d) Predictions after learning online.

(e) Camera view of the obstacles scenario. (f) Predictions after learning online.

Figure B.1: Examples of predictions after learning online in cyberzoo test scenarios.
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(b) BEV of the mainentrance, including predictions after learning online.

Figure B.2: Real world tests. All agents are tracked using the robots detection and tracking pipeline.
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Figure B.3: Real world tests. All agents are tracked using the robots detection and tracking pipeline.






Prediction Network Implementation
Details

C-1 Prediction Network Details

In this research, a recurrent neural network prediction model is used with model ar-
chitecture as in Fig. C.1.
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Figure C.1: Prediction Model architecture.

Encoder To extract environmental features from the local occupancy grids surround-
ing pedestrians, we use a multi-layer convolutional neural network (CNN). The output
of the CNN is flattened and passed through a multi-layer perceptron (MLP). We first
train this network separately from the rest of the prediction network and freeze the
weights afterward. The purpose of the CNN is to extract descriptive features of the
local occupancy grid and these features are subsequently used by an LSTM module.
Because we only have access to a limited number of examples including obstacles,
we did not train the CNN in conjunction with the rest of the network. Instead, the CNN
was trained as the encoder part of an autoencoder. We used the MNIST dataset
to pre-train the encoder (CNN), the MNIST dataset contains single layer (black and
white) images of numbers. In our obstacle grids we also mostly deal with sharp edges
and corners. In an obstacle grid, a cell is either an obstacle or empty space and in
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the MNIST dataset, a cell is either a letter or not a letter. The similar binary nature of
these tasks encouraged us to use MNIST to pre-train.

Other pedestrians Social interactions between pedestrians affect their motion plans,
therefore the prediction network has a separate input for information on surrounding
pedestrians. Like [19], we encode every surrounding pedestrian as a relative vector
of [6x, 8y, 6v,, 6vy, 5p]. Next, the vectors are appended together to form the input of
an LSTM. Since we use the LSTM as a sequence across time, the input has to be of
fixed size each timestep. However, the number of surrounding pedestrians is variable.
Therefore, we sort the pedestrian vectors by Euclidean distance, so that the furthest
away pedestrian is appended last. Now we simply crop the input to only contain a
fixed amount of pedestrian vectors. When there are fewer than expected surrounding
pedestrians, we pad the input with the vector of the closest pedestrian until it's of a
fixed size again.

C-2 Pre-training Data Details

For all our experiments we use the ETH and UCY datasets to pre-train the networks.
The ETH dataset contains data collected from two locations:

1. Hotel: A busy street outside the entrance of a hotel. There is also a tram present
in the scenario (Fig. C.2).

2. Univ: The outside of the entrance of an ETH university building (Fig. C.3).
The UCY dataset contains data collected from two locations:

1. Zara: A busy street outside of a shop (Fig. C.4).

2. University: A very crowded park, including many groups of pedestrians (Fig. C.5).
To get a better understanding of our training data we visualized the follow:

1. Velocity profile of all tracks in datasets.

2. Velocity profile of all training examples. The distribution of training examples is
different because we filtered out examples of people that are standing still.

3. A BEV heatmap of the scenario, to get a better understanding of the densest
areas in the dataset.

4. Ground truth prediction profile distribution of all training examples, relative to
the pedestrians heading. As expected the mean of the distribution lies at an
approximately constant velocity.
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Figure C.2: ETH hotel dataset
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Figure C.3: ETH university dataset
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Figure C.4: Ucy Zara dataset
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Figure C.5: Ucy students dataset
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(c) BEV camera image of the Ucy Zara scenario. (d) BEV camera image of the Ucy Students scenario.

Figure C.6: Overhead images of all (offline) pre-training scenarios.






Additional Integrated Motion Planner
Experiments

In this research, we investigate the possibility of improving pedestrian trajectory pre-
diction models online. One of the main motivations is that mobile robots can take
advantage of better predictions about surrounding agents, to improve their motion
planning. However this assumption hasn’t been thoroughly tested, and recent work
suggests that anything better than a constant velocity model won’t have much impact
on motion planning performance. To put this to the test, we use an MPC motion plan-
ner that models the surrounding agents as dynamic obstacles. The positions of the
dynamic obstacles over the prediction horizon are provided by our pedestrian predic-
tion model. Although in our paper we’'ve already shown the integration of the MPC
algorithm with our SCRNN-L algorithms, we did not yet quantitatively evaluate the
planner’s performance over time.

To do this we use a simulation environment adapted from the open-source gym colli-
sion environment'. Our test case scenario consists of a corridor of three meters wide
that several agents have to cross. The number of agents present in the scene dictates
the difficulty of the task. We found that using 10 agents in total provides a difficult yet
feasible challenge. The behavior of the simulated agents depends on their policy,
which in turn affects the prediction performance (since the policy was not provided
to our prediction model beforehand). The initial prediction model has an architecture
as in Fig. C.1 and was trained on the ETH and UCY datasets only. We tested with
two different policies for other agents, first we used an RVO policy, which is a reac-
tive policy based on velocity obstacles. Secondly, we used an MPC for every agent
in the scene, which in contrast to RVO is a predictive policy. To quantify the motion
planning performance we used the following metrics: Number of collisions, number
of deadlocks, time to goal, total traveled distance. To link this to prediction model
performance we used: Average displacement error, Final displacement error, Aver-
age squared displacement error, Final squared displacement error. We included the
squared displacement error variants because large prediction errors should matter
more than small prediction errors.

"https://github.com/mit-acl/gym-collision-avoidance
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We ran the corridor scenario, see Fig. D.1(a), for 400 episodes, retraining the predic-
tion model every 20 episodes. In Fig. D.1(b) and Fig. D.1(c) we show the ADE and
FDE when using the multiagent MPC policy. Somewhat surprisingly the ADE and FDE
show the same or worse performance compared to CV. In Fig. D.1(d) and Fig. D.1(e)
we show the ASDE and FSDE of the same run. Using the squared displacement error,
our prediction model consistently outperforms CV. This means our prediction model
on average has a larger displacement error, but the peak errors (that could lead to
collisions) are lower. However this theory doesn’t translate to the actual number of
collisions, see Fig. D.1(f). We think this could be because the collisions are caused by
other factors not directly related to the predictions. Further research in this direction
is necessary to improve the integration of motion planning and prediction.
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