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A B S T R A C T   

While agent-based modeling (ABM) has become one of the most powerful tools in quantitative social sciences, it 
remains difficult to explain their structure and performance. We propose to use artificial intelligence both to 
build the models from data, and to improve the way we communicate models to stakeholders. Although machine 
learning is actively employed for pre-processing data, here for the first time, we used it to facilitate model 
development of a simulation model directly from data. Our suggested framework, ML-ABM accounts for causality 
and feedback loops in a complex nonlinear system and at the same time keeps it transparent for stakeholders. As 
a result, beside the development of a behavioral ABM, we open the ‘blackbox’ of purely empirical models. With 
our approach, artificial intelligence in the simulation field can open a new stream in modeling practices and 
provide insights for future applications.   

1. Introduction 

In social and environmental sciences, agent-based modeling (ABM) is 
the primary method to examine the dynamics and interactions of het-
erogeneous agent behaviors and understand underlying processes of 
decision-making [14,47]. It offers a modeling paradigm to simulate 
agents’ interactions within their networks and with the environment, 
explore their collective actions over time, and develop adaptive systems 
[38,68]. An ABM can simultaneously simulate individual decisions at 
the micro-level and the diffusion patterns at the macro-level. For these 
reasons, it has gained popularity among social scientists, especially for 
studying coupled human-environmental systems [62]. 

Modeling has always been a combination of art and science [39,67]. 
When designing a model, it takes artistic work to choose the right degree 
of complexity and put together the appropriate assumptions, data, and 
theories [31,55]. With computer simulations becoming increasingly 
powerful, there is an interest in how artificial intelligence (AI) can be 
used to derive the formalism needed for simulation modeling [1]. In one 
of the early applications, Schmidt and Lipson [54] have used machine 
learning (ML) to reconstruct equations of motion that govern the ki-
netics of a double pendulum. They claimed that with no prior knowledge 
of geometry, physics, and kinematics, they could detect fundamental 

theoretical insights: nonlinear energy conservation laws, Newtonian 
force laws, geometric invariants, and system manifolds by processing 
experimental data about the angles and angular velocities of a chaotic 
double-pendulum. More recently, using dynamic systems and 
data-based machine learning algorithms, Chowdhury et al. [12] and 
Chowdhury et al. [11] developed methods to predict extreme events and 
identify the mechanism and source of instabilities. 

Other applications of ML in physical [10] and material science [63] 
include automatic classification of structures by crystal symmetry [76], 
prediction of all possible combinations of material composition and 
crystal structures ([29], examining properties of liquid crystals directly 
from their optical images [57] and predicting their physical properties 
[56]. 

Deriving rules that describe the agents’ behavior is a sophisticated 
task. Even when detailed data about a particular system is available, the 
modeler requires proper knowledge of simulation modeling techniques 
and about the systems themselves to derive agents’ rules. Depending on 
the level of accuracy and completeness in the input data, methods for 
deriving the behavioral rules of agents vary, ranging from purely theo-
retical all the way to empirical methods [7]. Modelers can make as-
sumptions to define agent rules heuristically, based on common sense, or 
knowledge from theory in relevant scientific fields (psychology, 
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behavioral economics, neuroscience, etc.). 
While theoretical ABM provides insights on possible explanations for 

general patterns and emergent systems properties, the purpose of 
developing empirical models is to make predictions of future decisions 
relying on observations. Data required for parameterizing the agents and 
deriving decision-making rules (in the case of empirical models only) 
can be collected by surveys, role-playing games, laboratory experiments, 
and participatory modeling [50,59,70]. Statistical methods are 
commonly used to determine model input distribution functions, find 
the correlations, and deliver the equations. 

In both cases, building an ABM can be challenging and time- 
intensive given the complexity and scale alongside specialized knowl-
edge about systems under study. For complex systems, even when 
detailed empirical data are available, extracting appropriate functions 
and equations tends to be complicated. Understanding the decision- 
making process and agents’ rules in ABMs is an ad hoc process that 
depends significantly on the background, values and expertise of the 
modeler(s) rather than being driven by what is appropriate for the case 
study [28,71]. According to Parker et al. [40], “the process of model 
building can also be a process of knowledge building”, which has 
become the mantra of participatory modeling. Besides, calibration and 
validation of empirical agents’ behaviors can become time-consuming 
when the number of parameters and model specifications increases. 

The limitations of current practices in developing empirical-based 
ABMs drive modelers’ interest in finding ways to automate model 
development. In this regard, Suleimenova et al. [61] develop an auto-
mated simulation modeling tool, FabSim, to facilitate and speed up 
modeling of refugee movement. This tool incorporates a range of data 
sources and uses the Flee simulation code and Fabric library to generate 
simulation workflows. The study of Huang et al. [27] is another example 
of a framework for automatic model generation using pre-built and 
validated model components/modules. Coria et al. [13] propose intel-
ligent business process composition based on multi-agent systems to 
automatically build web services. Vu et al. [72] use multi-objective 
genetic programming in ABM as a trade-off between empirical fit and 
theoretical interpretability of complex social science models. Manson 
[37] adopts a similar approach to model decision-making in the context 
of human-environment relationships. 

There are partial applications of artificial intelligence (AI) and ma-
chine learning (ML) algorithms in eliciting the behavioral rules, defining 
learning and adaptability in agents ([17], and testing the sensitivity and 
validity of the model outputs [23]. AI is a branch of computer science 
that has been developed to enable machines to mimic human intelli-
gence. ML, a subdomain of AI, entails the automated ability to learn 
patterns in data and improve prediction accuracy. Al has multiple ap-
plications in the ABM discipline. For example, relying on video data as 
the data source, Tan et al. [66] combined a support vector machine al-
gorithm with ABM to develop a data-driven pedestrian 
origin-destination and route choice model. In another study, Cuevas 
et al. [15] developed a new metaheuristic algorithm based on AI and 
ABM principles (i.e., generating very complex global search behaviors) 
that outperforms the existing optimization algorithms. 

More specifically, for the challenge of defining agent rules, ML 
methods can be used to automatically derive predictive models of 
behavior from available data. This approach can significantly increase 
the accuracy of predictions, speed up the process of model development 
and perhaps remove some of the researcher bias in determining the 
behavioral rules. For instance, Su et al. [60] develop a framework 
embedding reinforcement learning methods in multi-agent modeling to 
decide about preventive maintenance policies. Bell and Mgbemena [5] 
propose a combined ABM-decision tree (DT) method to understand the 
factors influencing customers’ intentions to stay or leave a mobile 
network operator. Similarly, Sánchez-Maroño et al. [53] and Polhill 
et al. [42] use this combined method to examine the diffusion of 
everyday pro-environmental behavior at work. Smajgl and Bohensky 
[58] simulate the impact of fuel price changes on vulnerable households 

in Indonesia by developing an ABM based on the results of ML analysis. 
Gonzalez-Redin et al. [22] integrate geo-spatial data with expert 
knowledge to build Bayesian Belief Networks to be used as the behav-
ioral rules of an ABM for examining the future impacts of land-use 
change on the sustainability of the Wet Tropics regions of Australia. 
Hu et al. [26] empower ABMs with directed information graphs and 
boosted regression tree algorithms to investigate the impacts of agents’ 
pumping behavior on the underlying groundwater system. 

In all these studies, the researchers focus on improving the predict-
ability of behaviors, the accuracy of prediction, and the speed of model 
development. However, the empirical models produced remain difficult 
to understand and justify to social scientists and stakeholders. They are 
often seen as a black box that does not tell us much about the system at 
stake and remains unclear about the causal relationships and feedback 
loops in the system. These play critical roles in developing policies to 
accentuate desired behavior [30] and to communicate the models to 
stakeholders. Though AI shows state-of-art performance in delivering 
high prediction accuracy, social scientists are skeptical about its use-
fulness due to its lack of transparency and failure in explaining the 
observed phenomena and results [32]. They raise concerns about the 
deployment of black-box systems and unguided data crunching without 
clear connections to the social science theories [44], especially when it 
comes to designing interventions [36,45]. Since interpretability and 
causality have non-trivial differences from prediction, the main focus of 
ML algorithms, their findings, particularly for microdata on behavior, 
are sometimes rejected by social scientists [21]. 

Bridging theory with computational experimentation could accel-
erate scientific progress if technical challenges are overcome as 
explained in the Nature report "Theorists and experimentalists must join 
forces" [4]. Understanding the rules governing the decision-making 
process (i.e., theory) and its cumulative impacts (i.e., scenario ana-
lyses performed by ABM) is crucial to address many societal challenges, 
such as behavioral biases and social influences guiding mass behavior in 
a pandemic or climate change and sustainability transitions. Since many 
ABMs are about generating exploratory and explanatory knowledge [3], 
to obtain solid scientific ground outcomes, there is a need to connect the 
computational experimentations to theories [16,41]. On these grounds, 
algorithm-driven decisions, and rules, especially in social science, were 
rejected when ML was considered as a blackbox that cannot be appre-
ciated and communicated to stakeholders. Leveraging the recent 
advancement in explainable AI [35,52] and the growing availability of 
micro-data on behavior and social processes [21] can provide an op-
portunity to endorse transparency of algorithms and facilitate 
human-computer collaboration. 

This paper explores how an ABM can be designed directly from 
empirical data, while being transparent about the conceptual models 
involved. Our modeling framework, ML-ABM, aims at facilitating the 
process of ABM development through deploying ML to automatically 
identify the causal relationships and derive decision rules for agents 
from microdata on behavior. At the same time, we generate a conceptual 
model that links to the appropriate theoretical work and clarifies the 
feedbacks in the system. Although AI is actively employed for explaining 
human choices, to the best of our knowledge, this is the first study that 
extended the scope of modeling beyond the behavior prediction to 
causality and feedback loop elicitation in a complex nonlinear system. 
The combined ML-ABM framework enables identification of temporal 
and dynamic dependencies of the behavior change process, draws 
individual-level interferences, and uncovers undesired consequences for 
interventions while adding to the transparency of the model logic open 
for stakeholders’ discussions. We demonstrate the value of the proposed 
framework in developing an agent-based model related to purchasing 
behavior. This case study is a suitable experiment for the goal of our 
study since we have (i) micro-level data on consumer behavior, (ii) a set 
of behavioral theories – Theory of Planned Behavior, Goal Framing 
Theory, Alphabet Theory – explaining purchasing behavior, and (iii) a 
previously built benchmark empirical ABM to compare with. 
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We discuss how the overall accuracy and reliability of ABM can be 
improved and maintained, explaining the differences between this 
modeling approach and the conventional empirical modeling methods, 
and examining the advantages and limitations. We also go beyond 
extracting the rules and use ML to generate conceptual models of the 
system, which can be further discussed, analyzed, and tested for validity 
and compliance with social theories and common sense. Bayesian Ma-
chine Scientist approach follows the same directions in terms of both 
describing the observed data and predicting new data accurately [24]. 
Interested readers can find more information about the approach in 
Reichardt et al. [49] and its application in Vázquez et al. [69]. 

2. Materials and methods 

The empirical data are borrowed from the study of Taghikhah et al. 
[65], in which a survey provided extensive empirical data about the 
organic-conventional wine preferences of 1003 Australians living in the 
City of Sydney. This microdata was used to instantiate the agents’ de-
cisions in the data-driven model, ORVin-E [64]. Compared to other 
topics, modeling human behavior would be more challenging as the 
agents’ decisions are not fully rational. Yet, insufficient information, 
varying cognitive abilities, emotions and intuitions, and limited time 
affect the rationality and perceptions of humans about the environment 
and bias their future evaluations [25]. 

We next adopt a combination of ML algorithms (in our case, Random 
Forest (RF) and Decision Trees (DT)) to automatically derive rules to be 
used in the simulation model ORVin-ML, so that it reproduces patterns 
by which heterogeneous consumers behave. Behavioral rules can be 
represented with, for example, a tree of “if-then” statements, fuzzy logic, 
or other forms of equations. 

The ML-ABM approach consists of four phases (Fig. 1). In the first 
phase, the aim is to obtain structured data allowing the application of 
supervised ML algorithms. We pre-process the collected data to a format 
that algorithms can process and interpret. In the second phase, super-
vised ML algorithms are used to detect important factors influencing 
behavior decisions. In the third phase, for every explanatory factor of 
behavior, stand-alone predictive functions are derived, which are then 
used to formulate the ABM. Further analysis is then conducted to reveal 
the feedback loops and find the causal links in the system. In a way, a 
conceptual model of the system is built based on the data available; it 
can be further analyzed to check against existing social theories as well 
as the ideas that were originally used when developing the survey. 
Finally, the synthesis of predictive functions and the theoretically veri-
fied conceptual model generated can provide the empirical micro- 
foundation of an ABM. 

2.1. Phase 1: survey design and data collection 

Both in physical and social sciences, we are trying to provide sci-
entific descriptions of observable phenomena. Nevertheless, the ap-
proaches taken in this pursuit and the notions of observable reality are 
different. Physical sciences rely on repeated laboratory tests and ex-
periments to derive laws about the way the world operates in their 
concrete reality and predict natural phenomena until the hypothesis can 
be tested. Social sciences can only describe social phenomena within a 
cultural context based on experimental data collected in interviews and/ 
or surveys and limited to specific places and times. We cannot be sure 
that the same surveys will produce similar results when repeated in 
other locations or with other responders. Moreover, different survey 
designs can produce different explanations for social phenomena. 

For example, in the particular case of purchasing organic wine, 
Taghikhah et al. [65] designed a survey based on the potential explan-
atory factors driven from various social theories, such as the Theory of 
Planned Behavior (TPB) [2], which explains the influence of cognitive 
(e.g., attitudes, perceived behavioral control (PBC), and norms) on 
driving planned purchasing behavior, in combination with Alphabet 
Theory [75], and Goal Framing Theory [34] that consider how the 
repetition of behavioral patterns and environmental and atmospheric 
cues (e.g., packaging, posters, and retail environment design) can 
prompt habitual and unplanned behavior, respectively. One thousand 
and three (1003) consumers living in the City of Sydney, Australia, have 
responded to this online survey carried out in Sep-November 2019. Data 
are related to socio-demographics, shopping-drinking patterns, and 
behavioral factors [65]. Generally, consumers have positive attitudes 
(83%) and intentions (80%) towards organic wine. However, there is a 
significant gap between intention and behavior, as only about 5% of 
respondents reported purchasing all organic wine. This gap implies that 
the TPB is not sufficient to explain what stands behind various con-
sumption decisions. Our further analysis explores whether alphabet 
theory and goal framing theory can justify why consumers act against 
their intentions. 

2.2. Phase 2: A data-driven function for consumer behavior 

In this phase, the collected data are transformed into standard for-
mats that ML algorithms can work with. There are several methods for 
dealing with discrete and categorical variables. In this study, for the 
variables containing discrete sequences of values, we use the min-max 
normalization method. For the categorical variables, we use a one-hot 
encoding method [9] to transform categorical variables to numerical 
and scale the differences in the range of variables. We also balance the 
dataset by increasing the size of rare samples using oversampling 
methods. We then label consumers as organics (i.e., those whose wine 
purchases were at least 75% organic-class 1) and conventionals (the rest 

Fig. 1. A brief description of the ML-ABM 
framework. Initially, the survey is designed, 
and responses are collected, formatted, and 
preprocessed to ensure and to enhance the 
performance of ML algorithms. Next the algo-
rithms drive the data-driven predictive models 
(i.e., decision rules) related to the variable of 
interest and elicit the influential factors. After-
wards, data-predictive rules drive the causal 
relationships among the extracted factors to 
build a conceptual model with feedback loops. 
Finally, the derived rules are directly imple-
mented in an ABM.   
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– class 0). Pre-processing provides us with a structured database to 
derive the rules. In the first step, the model is developed based on a 
training set which in our case is 70% of the dataset. In the second step, 
the rest of the dataset (30%) is used to validate the model built. Thus, we 
use the training data to fit the model and testing data to test it. All ML 
analyses are run in Python. 

Supervised learning, the most common ML approach for building 
predictive functions, is a two-step process consisting of learning and 
then testing expected prediction ability. We use the RF algorithm to set 
behavior as the target variable (i.e., output to be predicted) and all the 
other factors in the database as the model inputs. Random Forest (RF) 
algorithm [8] is a powerful non-parametric ML method, addressing this 
issue by determining the importance level of factors while enhancing the 
predictive functions accuracy and reducing the computational 
complexity. It guides the node splitting process by minimizing the 
within-node variance to automatically detect the most important pre-
dictive factors of the purchasing behavior. Nodes in a tree are the points 
where the path splits into ‘Yes’ (observations meet the criteria) and ‘No’ 
branches (observations do not meet the criteria). We followed the sug-
gestion of Dong and Rudin [18] to assure that the selected features are 
consistently highly important across algorithms delivering equally ac-
curate predictions. 

We then use Decision Tree (DT) learning algorithms to build a pre-
dictive model considering a set of highly explanatory factors identified 
by RF. DTs are one of the easiest and most popular classification/ 
regression algorithms to understand and interpret. These algorithms sort 
data into discrete classes and adopt a top-down recursive strategy to 
reveal patterns in datasets to produce predictive functions [6]. It has a 
tree-like structure, where branches denote the classification rules and 
leaves are the class labels. DTs can handle non-linear relationships be-
tween variables and are ideal for understanding, interpreting, and 
visualizing predictive functions. That is to say, their transparent char-
acteristics allow us to identify thresholds and reconstruct the functions 
as the behavioral rules for defining the decision-making process of 
heterogeneous agents. Since each node in the tree separates a single 
explanatory variable, effectively creating a hyperplane in explanatory 
variable space orthogonal to that variable’s axis, pre-processing is 
essential to avoid ‘bushy’ trees that fit classification regions, which do 
not neatly fit in a hypercube. 

As our database has many variables, using the RF method before 
applying DT algorithms helps us prune the tree without overfitting and 
reduce the size of the obtained model (i.e., the number of nodes in the 
tree). Overfitting happens when the learner algorithm tightly fits the 
given training data so that it fails in making accurate predictions of the 
untrained data. 

2.3. Phase 3: eliciting causal relations and feedback loops for behavior 

This phase addresses the core principle of systems thinking and 
makes our understanding of the system structure explicit by establishing 
the causal relationships between the explanatory factors using ML. We 
use a combination of classification and regression tree (CART) [48] to 
build data-driven functions for all the explanatory factors identified in 
phase 2. By extending the analysis from building a stand-alone function 
predicting people’s behavior to functions predicting the explanatory 
factors of behavior, we pursue two objectives: firstly, we automatically 
extract the causal relationships and understand to what extent changing 
one factor can cause changes in other interrelated factors as well as 
resulting behavior; secondly, we prune DTs to facilitate the interpreta-
tion of the predictive functions and increase their accuracy. Appendix A 
presents DTs for all the explanatory factors, and Appendix B lists the 
applied algorithms and the accuracy results of predictive functions. The 
highest accuracy rate belongs to the predictive function of wine for 
special occasions (86%), whereas the social media influence model has 
the lowest accuracy (57%). 

To get an indication of how well the data-driven models can be 

generalized to an independent/ unseen data set and perhaps avoid the 
problems of underfitting or overfitting, we use the cross-validation 
approach. Two popular methods, Stratified K-Fold and Leave-P- Out 
[46,73], are used to assure the robustness of results. The former is a 
non-exhaustive validation method, which is useful for databases with a 
large imbalance in the response variables. In contrast, the latter com-
putes all possible ways the database can be split into training and test 
sets. Stratified K-Fold is similar to the K-Fold method, with the only 
difference that each fold/database section contains nearly the same 
percentage of samples of each target class as the full dataset. We set K 
equal to 10, meaning that the data is divided into 10 subsets, and every 
time, one subset is used for testing and the rest of subsets are used for 
training the predictive functions. 

Leave-P-Out method leaves P data points out of training data, i.e., if 
there are n data points in the original sample, then n – p samples are used 
to train the model, and p points are used as the validation set. This 
process is repeated for all combinations in which the original sample can 
be separated. Then, the error is averaged for all trials to calculate the 
overall effectiveness of the model. We use a particular case of this 
method when P = 1 to assess the effectiveness of the models and avoid 
overfitting. This method, known as Leave-one-out cross-validation, is 
useful when the amount of training data is small. The number of possible 
combinations equals the number of data points in the original sample or 
n. Result of validation tests is available in Appendix B. As the differences 
between the accuracy rates and the cross-validations of models are 
negligible (less than 5%), we can claim that the resulting models are 
valid and do not have the overfitting issue. Conducting validation 
analysis is particularly critical in our case since the ratio of data points to 
the number of factors is relatively low. At the end of this phase, we can 
infer the causal relationships describing the agents’ behavior in the 
ABM. 

2.4. Phase 4: data-driven agent-based modeling 

The derived predictive functions from phase 2 (a function for pre-
dicting behavior) and phase 3 (functions for predicting the explanatory 
factor of behavior) reveal the relative importance of different variables – 
similar to the feature selection process in ML – in instigating or influ-
encing the responses at different process-response ranges. DTs can be a 
bit brittle (i.e., their structure changes a lot for small gains/losses in a 
fit), and unexpected improvements can be achieved just by leaving out 
unimportant variables. These functions (DTs) are directly implemented 
in the agents of ABM to serve as behavioral rules. This integration offers 
opportunities to understand the relative performance of model struc-
tures and parameter settings, from which we may deduce hypotheses 
about decision-making mechanisms and governing states. The suggested 
approach does not require data from multiple timepoints; rather, the 
ABM can be built from single time point measurements. A similar 
concept has been used in the study of Sachs et al. [51] for building dy-
namic models from a snapshot in time. 

In our case study, ORVin-ML is designed to explore organic wine 
purchasing decisions. It is a spatially explicit model in which a popu-
lation of 1003 consumers is distributed over 30 suburbs in the City of 
Sydney, based on the postal codes of survey participants. The city of 
Sydney is approximately 26.15 square kilometers and is home to over 
103,844 estimated households with an average size of 2.2 in 2016. We 
locate one wine retailer for each of the five major suburbs of this area, 
according to Google Maps. Consumers make purchasing decisions be-
tween organic and conventional wines based on their attitude, willing-
ness to pay, social norms, personal goals, and norms as well as habits. 
Every time they go shopping for wine, they consider the available wine 
retailers and visit the closest one. The shops are assumed to sell similar 
wines for the same prices, i.e., there are no differences between the 
shops in the model. Empirical data collected from the survey in phase 1 
inform all the parameters of ORVin-ML. The model is programmed in 
AnyLogic Software, and the code is available (here). Since more than 
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70% of households report shopping for wine at least once per week, the 
time step in the model is set to one week, and it runs for 600 weeks. 

3. Results and discussion 

3.1. ML for learning feedback loops from data: why do they matter? 

A combined Random Forest (RF) / Decision Tree (DT) method de-
rives a set of if-then rules for predicting purchasing behavior and its 
associated conceptual model as presented in Fig. 2 [3]. Following the 
recommendation of Li et al. [33], to ensure the validity of predictive 
models based on their generalizability and reproducibility in different 
experiments, ML methods should be used to find the complete set of 
features and relationships influencing the outcome and not only those 
strong predictive variables contributing to the accuracy. We thus extend 
the analysis and extract if-then rules and conceptual models for the 
explanatory factors of behavior – intention, personal norms, perceived 
behavioral control (PBC), social norm, and hedonism. Appendix A pre-
sents the details of rules (in the format of DTs) and related conceptual 
models for all the explanatory factors. 

By linking these conceptual models, we reveal the causal relation-
ships and feedback loops between behavior and explanatory factors that 
are built with ML algorithms (refer to Fig. 3). The inclusion of data- 
driven functions of behavior components can develop the causal re-
lationships and make the ABM dynamic. Hence, when one of the factors 
changes, we observe changes not only in behavior but also in other 
system factors. For example, changing personal norms (such as pur-
chasing frequencies and shopping size) causes changes in individual 
purchasing behavior, intention, and PBC. For systems modeling, the 
feedback concept is an essential component [20] as the outputs of the 
model come back as inputs to the system, depending on the causal 
inference. Since ABM is a continuous system, the current actions of an 
agent change their future decisions. In a way, machine-driven rule-
s/functions should be deployed to support this system property. Thus, 
ML-ABM drives the analysis beyond the data patterns mined by ML 
algorithms. 

Another interesting observation extracted by the ML-ABM approach 
(in Fig. 3) is that factors such as attitude and normativism (dotted cir-
cles) can indirectly impact consumer choice. These implicit relationships 
are not captured in Fig. 2, resulting in an incomplete cognitive process of 
decision-making. A comprehensive conceptual model helps the decision- 
makers design interventions that target changes in multiple factors, for 
example, towards more sustainable choices in our case. Our proposed 
modeling approach adds the systems thinking perspective to the process of 
ABM development using ML algorithms and produces qualitative results 
about how various factors interact in the system. 

This shows how computational models enhanced with ML- 

preprocessed data on decisions could help testing theoretically- 
hypothesized relationships. Especially since there could be alternative 
and competing theories explaining the same phenomenon/behavior. In 
our case, consistent with the Theory of Planned Behavior, feedback 
loops exist between behavior and social norm as well as intention and 
PBC, while intention has a one-way relationship with the behavior. 
Attitude indirectly influences behavior through impacting intention and 
social norms. In line with the Goal Framing Theory, hedonism has a two- 
way relationship with behavior, whereas normativism can only implic-
itly change behavior. Note PBC entails gain goals as they are highly 
correlated. We can also see the relevance of these two theories, where 
attitude, intention, and social norm guide hedonism and vice-versa. 
Lastly, personal norms, coming from the Alphabet Theory, affect TPB 
through influencing social norms along with the behavior. Besides, 
purchasing size and frequency are driven by the pursuit of hedonistic. 

While the proposed ML-ABM approach has similarities with the 
previous applications of ML in extracting agents’ rules from data, there 
is a difference in the inclusion of feedback loops. Our approach focuses 
on using ML to reveal causal relationships between explanatory factors 
of behavior, whereas previous studies exclude the causalities and only 
focus on the predictive function of behavior. We observe a similar line of 
thinking in a recent study of Xie et al. [74], in which they used unsu-
pervised ML algorithms to cluster the data generated from an ABM for 
better explaining and understanding of the behaviors of complex 
systems. 

Functions derived by ML algorithms are static, representing a snap-
shot of relationships captured in data. However, human systems are 
dynamic, and behavior of agents can change. To use ML for analyzing 
complex systems, every exploratory factor should be treated as an 
adaptive subsystem in its own right, interacting with other systems. This 
gives the factors a dynamic characteristic, enabling them to change, 
adapt and reorganize in response to their environment. Additionally, 
interactions and feedback mechanisms may reveal the emergent prop-
erties of the overall system that the study of individual system elements 
cannot capture [19]. 

In line with Li et al. [33], our results support the importance of using 
domain knowledge to identify the potential causes of the outcome before 
data collection and model building. According to Polhill and Salt [43], 
“validation by fit-to-data is not, on its own, a sound basis for estimating 
the ability of a model to make reliable predictions, not least because of 
issues with path dependency.” Since fit-to-data cannot be considered as 
the sole indicator of ABM suitability, it is vital to closely study and 
monitor the model structure/ontologies and explore how they relate to 
known theoretical conceptualizations that show a bigger picture, 
beyond a single dataset or a particular case-specific ABM. The prediction 
accuracy and even cross validation tests are not sufficient to ensure the 
reproducibility and validity of the ML outputs. 

Fig. 2. Conceptual model of factors influencing behavior 
extracted from the data on purchasing behavior using the 
machine learning methods. PBC, social norm, and in-
tentions are elements of Theory of Planned Behavior. He-
donism is an element of Goal Framing Theory, while 
personal norm is the element of Alphabet Theory. The size 
of circles indicates their importance in predicting behavior. 
For example, social norm and hedonism have the highest 
importance. Complementary information is available in 
Appendix A.   
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Feature selection and result validation should be guided by domain 
experts, as well said by Li et al. [33] “data-driven discovery needs a 
collaboration between domain experts and ML practitioners”. Schmidt 
and Lipson [54] proposed a similar approach to automatically derive 
equations describing the natural laws without prior field knowledge. 
The authors discussed that the selection of variables to feed the algo-
rithm determines the data-driven laws. For example, if they have only 
provided position coordinates, the algorithm would converge on a 
manifold equation of the system’s state space. In our case, indeed, if we 
additionally supply data about other behavioral traits, the algorithms 
tend to find new rules for behavior prediction. 

We also conducted a simple experiment to test this statement and 
included data about the feelings and emotions of consumers during their 
shopping to the existing dataset. As expected, we observed changes in 
the structure and accuracy of behavior functions and spotted those 
emotions and habits are new explanatory factors of organic wine pur-
chasing decisions (refer to Appendix A6). 

3.2. Empirical vs. machine driven ABMs: what does the comparison tell 
us? 

Addressing some of the knowledge gaps and questions regarding 
replacing empirical rules with machine-driven rules, we conduct a 
comparative study between ORganic Vine- Empirical model (ORVin-E) 
[64] and ORganic Vine- ML model (ORVin-ML). Our objective is to 
assess the quality and performance of the ML-ABM approach and test the 
validity of results generated by the algorithms. We follow the structure 
of ORVin-E for setting up the environment, agent types, and networks, 
but the outputs of ML algorithms are used to define the rules. Survey 
data are used to parameterize heterogeneous consumer agents of 
ORVin-E and ORVin-ML. We implement all predictive functions as in 
ORVin-ML. In ORVin-E, however, data-driven parameters are updated 
by the changes in the shopping experience and habits of agents, obser-
vations, and social learning (e.g., the wine choice of others at shops), the 
exchange of information about organic products within agents’ social 
networks (e.g., interactions with family and friends), which eventually 
determine the wine preference of consumers. Much effort is required to 
deliver a calibrated model with accuracy and precision. Nevertheless, 
the ML-ABM framework does not require any further calibration, and 
the model is ready to use as is. In the case of ORVin-ML, in contrast to the 
long calibration process of ORVin-E, we can skip calibration tests so that 

the model development process becomes agile. 
We empirically conduct a validation test by fixing the parameters 

across the models and then assessing the intention and behavior outputs 
against the survey data at the individual (person) level. Fig. 4 compares 
the performance of models when estimating the number of organic wine 
consumers and consumers intending to purchase organic wine. The 
ORVin-E and ML results can estimate the organic-conventional prefer-
ences of consumers with high accuracy, translating to an error of 8% and 
15%, respectively. This result indicates that our suggested approach is 
robust enough to deal with heterogeneity in behavior, and its perfor-
mance is comparable to the empirical methods. Regarding the shopping 
intention, the estimation errors for ORVin-E and ML are 40% and 49%, 
respectively, implying that the predictions of ORVin-E is slightly (9%) 
better than ORVin-ML and the outputs of our approach are still within 
the acceptable range. Note that the accuracy of intention prediction with 
the ML algorithm standalone is 67% (see Appendix B, Table B1), which 
is 16% higher than the accuracy of predicted intention in ORVin-ML 
(51% as shown in Fig. 4). The prediction power of machine-driven 
ABMs can be improved when more data points become available, and 
the accuracy of functions are improved. 

Fig. 3. Conceptual model of ORVin-ML extracted directly 
from data using ML-ABM. We combined the conceptual 
models of all explanatory factors. Notably, these factors 
mirror the Theory of Planned Behavior (PBC, social norm, 
intention explicitly, whereas attitude implicitly), Goal 
Framing Theory (hedonism explicitly, whereas normati-
vism implicitly) and Alphabet Theory (personal norm 
explicitly). Here, there are feedbacks/causalities, between 
PBC-Intention, social norm-behavior, and hedonism- 
behavior, which were not present in Fig. 2. We can also 
observe the co-influence among the behavioral theories. 
Dotted circles indicate the elements that do not have any 
direct relationship with behavior. Complementary infor-
mation is available in Appendix A.   

Fig. 4. Comparing the validation results of the hand-calibrated computational 
agent-based model (ORVin-E) vs. a model enhanced with ML- with pre-
processed data on decisions (ORVin-ML) for intention and behavior. The out-
puts of the latter ML-ABM are within the acceptable range. Overall, the 
prediction accuracies of ORVin-E with regards to shopping intention and 
behavior are slightly (9% and 7%, respectively) better than ORVin-ML. 
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3.3. ML-ABM goes dynamic: what do feedbacks bring to the table when 
developing ABMs? 

It is important to test causality in using ML for developing ABMs. To 
investigate the performance of casualties in the ML-ABM approach, a 
straightforward way is to conduct comparative experiments with 
ORVin-ML. 

which has the casual relationships of behavior, and with an other-
wise identical model, named ORVin-ML-N, which only has the predic-
tive function of behavior, with no built-in casualties. These experiments 
are related to changing implicit (e.g., attitude) and explicit (e.g., PBC) 
factors of behavior. For example, the values of attitude and PBC for all 
the agents are maximized (set to 1). By comparing the results between 
the two models in two distinct experiments, it is possible to quantita-
tively measure the importance of the casualties and isolate their effects. 

Fig. 5 highlights how such conceptual modeling differences can 
affect the simulation results. There are noticeable distinctions between 
the influence of attitude on shifting consumer preferences toward 
organic products (0% using the predictive function of behavior only 
(ORVin-ML-N), compared to 80% using ML-ABM approach (ORVin- 
ML)). Regarding the PBC, we observe 4% difference between the outputs 
of two models (57% using predictive function of behavior only (ORVin- 
ML-N) compared to 61% using ML-ABM approach (ORVin-ML)). This 
analysis gives rise to the significance of embedding the causal re-
lationships in the machine-driven ABMs. 

The findings indicate that a combination of detailed behavioral data 
and classification and regression tree (CART) algorithms reduces biases, 
assumptions, and errors, expands simulation capabilities, but not 
necessarily enhances the accuracy of results. We also observed that in 
certain instances as in our case study, a well-developed theory-driven 
model that is parameterized with quality data can outperform the 
machine-driven ABM with regard to accuracy of prediction. But we 
should keep in mind that theoretical model development is way more 
time-consuming and requires a comprehensive and detailed knowledge 
of conceptual models and theories related to the topic under investiga-
tion. We showed that the deployment of machine intelligence speeds up 
analyzing and interpreting data to be used for the ABM development. 

4. Conclusions 

When designing policies and practices for behavior change across 
multiple domains, it is essential to examine the mechanisms underlying 

human decision making. Most often, linear statistical techniques are 
used to find the determinants of the behaviors and their impacts on the 
outcomes, which are assumed to be constant and additive. These limi-
tations related to interrelationship between factors can impede or 
mislead our understanding of the behavior change process and the 
consequences of interventions. Applying systems science, however, one 
can consider the complexity, non-linearity, and dynamics of the human 
system. The science of complex adaptive systems provides a set of the-
ories and methods for identifying the causality and feedback complexity. 

ABM is the favorable method for simulating complex systems. One of 
the most common applications of ABM in sociology is to test hypotheses 
about the drivers of behavior and present decision-making theories. As 
an analytical method in social science, ML has been widely adopted for 
providing data-driven predictions. The novelty of this research lies in 
automatically developing ABMs from empirical data by applying ML 
techniques to derive the rules that define agents’ behavior. The ML-ABM 
framework allows us to understand and simulate causal relationships 
and feedback loops compatible with common social science theories 
explaining the fundamentals of behavior and generate models in a 
timely manner without sacrificing much accuracy (7% drop as shown in 
Fig. 4). 

Although the power of AI for explaining human choices has been 
acknowledged elsewhere, to the best of our knowledge, this is the first 
study that extended the scope of modeling beyond the behavior pre-
diction to causality and feedback loop elicitation in a complex nonlinear 
system. Using AI to extract feedback loops from data to reflect under-
lying causality and disproportionate influences can greatly add value to 
the validity and explanatory power of ML-ABMs. The interconnected-
ness and non-ergodicity characteristics of our framework enables iden-
tification of temporal and dynamic dependencies of the behavior change 
process, draws individual-level interferences, and prevents undesired 
consequences for interventions. Moreover, it adds to the transparency of 
the built model, helps to communicate the model to stakeholders, and 
provides them access to the logic involved in the decision-making pro-
cess. Opening up the black box to explain and understand the system 
may reveal new implicit knowledge, potential risks and biases to the 
stakeholders. 

ML-ABM framework offers a basis for broadly applicable analysis 
methods for complex systems modeling and can be used in different 
areas including, but not limited to, social science, medicine, physics, and 
biology, to address theoretical gaps despite abundance in data. When 
detailed data are available, it provides a generic, flexible approach to 

Fig. 5. Comparing the performance of two versions of the model (ORVin-ML developed by ML-ABM approach vs. ORVin-ML-N developed by existing methods) when 
attitude and perceived behavior control (PBC) values change. There are noticeable distinctions between the outputs of these models when changing the attitude 
parameter. However, when changing the PBC parameter, we observe a slight difference (4%) between the rate of change in the outputs of the two models. 
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describe agents and their attributes for further formalization in terms of 
an ABM experiment, considerably reducing the model development 
time. This automation allows ABM developers to quickly analyze the 
data, rapidly develop decision support tools, and explore possible future 
scenarios or active interventions timely. 

Furthermore, it identifies explanatory factors in the decision-making 
process and therefore provides a direction for future data collection ef-
forts, suggesting what data to include and what data to exclude. When 
raw data are simply fed into ML algorithms, they are decontextualized, 
with important information not included. When psychologists collect 
survey data, the questions asked are carefully designed and typically 
derived from selected constructs and theories that have been tested and 
developed over many years by the research community. With just the 
raw data, this knowledge is not included in the information fed into the 
algorithms, even though it is relevant and important for understanding 
the data. 

One approach, though limited, to encoding such knowledge is to 
constrain the set of features acting as explanatory variables for an 
outcome variable. Another approach is to use expert assessment to 
evaluate the results of the algorithms. However, this can be time- 
consuming and may lead to criticism that it would have been better to 
use knowledge acquisition and engineering to derive the algorithmic 
formalization of the system and leave out the ML step altogether. This 
thinking offers insight into why there is skepticism among some social 
scientists about using ML with big data to derive useful insights into 
social and psychological phenomena since such data are not collected 
with appropriate theoretical underpinning to necessarily justify the in-
sights gained. 

In the real world, the system environment (e.g., market prices, in-
come, awareness, etc.) unpredictably changes over time and co-evolves 
with the behavior, and so does the agent behavior (e.g., consumer 
preference). Under such circumstances, ML-based models, as any data- 
driven models built based on the initial environmental conditions, are 
bound to become invalid over time and hence may lose the reliability of 
their results. Since the ML-ABM does not accommodate these changes, it 
continues to use the original rules and becomes invalid if there are 
significant changes in the environment. We can associate this challenge 
to issues in developing atmospheric prediction models, in which data 
assimilation methods, such as the Cressman analysis method or the 
optimal interpolation method, are used to provide an estimate of the 
system state by combining observations, theory and models. One 
possible future direction is to complement survey data with real-time 
market transactions to update the ML-driven rules. This enables the 
ML-ABMs to be consistently updated in sync with their environment. 

A take-home message of this paper is that cautious steps need to be 
taken to examine the empirical rules and relationships from the 
perspective of behavioral theories and cross validate the observations 
with the relationships in theory. Since the models developed based 
purely on data and over an observed range of explanatory variables are 
biased, generating the inferences and conceptual models behind the 
machine-driven models is especially important for further scrutiny and 
verification. Future research may consider ML-ABM as a tool that can 
automate the process of theory extraction and matching. 
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