
Delft University of Technology
Master’s Thesis in Embedded Systems

Interactive Design Studio: A
spatial-computing framework for non-IT

specialists

Agostino Di Figlia

Interactive Design Studio: A spatial-computing

framework for non-IT specialists

Master’s Thesis in Embedded Systems

Embedded Software Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Agostino Di Figlia
a.difiglia@student.tudelft.nl

15th August 2012

mailto:a.difiglia@student.tudelft.nl

Author
Agostino Di Figlia (a.difiglia@student.tudelft.nl)

Title
Interactive Design Studio: A spatial-computing framework for non-IT specialists

MSc presentation
15th August 2012

Graduation Committee
Prof. Koen Langendoen, Professor, Embedded Software, EWI
Dr. Stefan Dulman, Assistant professor, Embedded Software, EWI
Dr. Walter Aprile, Assistant professor, StudioLab, Fac. Industrial Design
Andrei Pruteanu, Phd student, Embedded Software, EWI

mailto:a.difiglia@student.tudelft.nl

Abstract

In recent years, application domains outside information technology such
as architecture have shown an increasing interest in the capabilities of net-
worked systems such as localized computation, reduced power-consumption,
and distributed interaction. These capabilities incline the design of interac-
tive environments towards the IT-domain. In particular the employment of
large scale distributed systems in interactive designs bring along new chal-
lenges for architects/designer such as distributed algorithm design, program-
ming skills, embedded platform knowledge. As a consequence of this new
trend, adequate software tools to bridge the gap between the IT-world and
the field of interactive design are scarce. In order to fill that gap we propose
a framework called Interactive Design Studio(IDS) which aims to provide
the necessary tools to hide the technological aspects from the end-user when
designing interactive environments. To tackle the problem of handling large
scale networks of embedded platforms we are convinced that spatial comput-
ing is a promising paradigm. The main reasons are the scalability(network
size does not influence node behavior) and resiliency to network dynam-
ics(network is hidden by space abstraction). Therefore we present a spatial
computing framework for non-IT specialists. We provide a way to specify
agent-level behavior and to generate the corresponding code for a specific
embedded platform. In our case, we use the eLua VM enhanced with the
necessary spatial computing capabilities. We show that spatial computing is
a good methodology for Industrial Design and Architecture. Moreover, we
show that spatial computing is possible using off-the-shelf virtual machines
for embedded platforms. In conclusion, we demonstrate that IDS succeeds
within a certain extent in abstracting or hiding the underlying technological
aspects(spatial computing) from end-users.

iv

Preface

My bachelor thesis at the University of Palermo introduced me to the world
of embedded systems and I immediately knew that this was the area I would
like to specialize for. In addition, I wanted to give a boost of enthusiasm to
my life by going abroad. The consequence was to apply at the TU Delft to
pursue the Master of Science in Embedded Systems. During my two years at
the TU Delft I experienced the exciting international community and Dutch
lifestyle which enriched me profoundly in terms of social and cultural inte-
gration. Besides that, I was able to have a glimpse at the various aspects in
embedded systems. My favorite area of interest became embedded software
applied to large scale distributed embedded systems. I believe that technol-
ogy and research is useful if it can be made accessible to domains outside
information technology. Therefore, I decided to join the embedded software
group and in particular the Snowdrop Project which aims to provide access
to embedded systems and its benefits to non-IT specialists such as architects
and designers. The project was ambitious and had everything I was looking
for: interdisciplinarity, embedded software design, and engineering.

The thesis work was characterized by ups and downs. Usually we are thank-
ful to people helping us in difficult times. I will do that by giving special
thanks to my supervisors Stefan and Andrei for giving me advice and ideas.
However, I want to thank them also for telling me ”good job” and creating
a friendly atmosphere within the Snowdrop Project, the Industrial Design
and Architecture collaborators. I also want to thank my family for giving
me the opportunity to study abroad and supporting me in difficult times.
Last but not least, I want to thank the ’family’ of friends created here in
Delft for the wonderful moments together.

Agostino Di Figlia

Delft, The Netherlands
15th August 2012

v

vi

CONTENTS

Contents

Preface v

1 Introduction 1

1.1 Context . 1

1.2 The Snowdrop Project . 4

1.3 Problem Statement . 5

1.4 Outline . 5

2 Background 7

2.1 Interactive environments . 7

2.2 Interactive Design Software Frameworks 8

2.3 Designer’s World . 10

2.3.1 Design and the role of the Designer 10

2.3.2 The role of Design in the Product Development Process 11

2.3.3 Designer’s means of communication 12

2.3.4 Design Process Iteration 15

2.4 User Survey . 15

2.4.1 Subject Profile . 16

2.4.2 Interactive Design in Architecture 16

2.4.3 Prototyping Tools . 18

2.4.4 Programming Skills and Hardware Knowledge 20

2.4.5 Design Process and Tools 21

2.4.6 Conclusions . 22

2.5 Spatial Computing . 23

2.6 Lua and eLua . 25

2.6.1 Lua . 25

2.6.2 eLua . 26

2.7 Target Platform - ProtoDeck 28

3 Software Framework Design 31

3.1 Requirements . 31

3.1.1 Design Process . 31

3.1.2 Software Architecture 32

vii

CONTENTS

3.1.3 Target Application . 32

4 Implementation 33
4.1 Interactive Design Studio - IDS 33

4.1.1 Graphical User Interface - GUI 33
4.1.2 StateChart - XML for spatial computing 35
4.1.3 CodeGenerator . 36
4.1.4 DeckSim . 37
4.1.5 Conclusions . 39

4.2 SpatialeLua Platform . 39
4.2.1 Platform Layer . 40
4.2.2 Middleware Layer . 41
4.2.3 Application Layer . 44

4.3 Spatial Computing primitives 45

5 Applications 47
5.1 Phototropia Project . 47

5.1.1 Setup and Application 47
5.1.2 Experience . 48

5.2 Spotlight on protoDeck . 49

6 Experimental Results 53
6.1 Spatial Applications . 53

6.1.1 Time primitive - Firefly 53
6.1.2 Spatial primitive - Gradient 54
6.1.3 Time-Spatial primitive - Spotlight 54
6.1.4 State Chart Generated vs Manual Version 54

6.2 Benchmarks . 55
6.2.1 Memory Consumption 56
6.2.2 Performance . 61

6.3 ELua Optimizations . 67
6.4 Simulation vs. Real World . 71
6.5 Discussion . 72

7 Conclusions 75
7.1 Future Work . 76

viii

Chapter 1

Introduction

1.1 Context

Application domains outside information technology are more and more at-
tracted by the capabilities that networked systems bring along such as local-
ized computation, reduced power-consumption, and distributed interaction.
In fact, architects show an increasing interest for intelligent and interactive
building environments [20]. Current state-of-the-art includes designs such as
the Ada floor [22]. Ada consists of mesh of tiles that interact with the users
stepping on it by means of light patterns. Healing pool by Brian Knep [33]
is another example. It consists of a projection of organic patterns on a
floor that self-heals after being torn apart by people walking on the floor.
These projects emphasize the growing trend of designing complex interactive
spaces in private or public buildings [27, 45]. This trend has been also no-
ticed in architecture faculties where master tracks and courses are focused on
interactive architectural components. An example is Phototropia [47]. Pho-
totropia is part of an ongoing research on the application of smart materials
in an architectural context realized by the Master of Advanced Studies class
at the Chair for Computer Aided Architectural Design(CAAD), Department
for Architecture at ETH Zurich. For this project smart materials are fused
with embedded platforms to create an interactive experience by means of
light patterns.

Based on the mentioned examples we notice that even though interactiv-
ity is achieved with various technologies a common property is occurring in
all applications: computational elements are spread out and fill the design
space. They interact with each other and the users in various ways leading to
complex behaviors. Moreover, the relationship between architecture/design
and the technology domain is becoming stronger and the necessity for an
architect or designer to be acquainted with programming and hardware en-
gineering is becoming a rule instead of an exception.

A commonality noticed when surveying the current deployments is the

1

1.1. CONTEXT

employment of some form of centralized control. When the installation con-
sists of a small number of embedded elements that is not an issue but when
we have to scale up to large installations centralized control becomes almost
impossible and the distributed interaction is difficult to create. When trying
to mimic distributed systems such as in the case of the healing pool appli-
cation [33] the used technology (projectors, cameras and image recognition,
a limited-sized deployment area) requires the need for a specific carefully
controlled environment, considerably limiting the design freedom.

We are convinced that the design problem faced by architects inherent to
interactive environment design represents the killer application for the field
of spatial computing. We can describe the solution at hand in relation to
either bottom-up or top-down design of complex systems:

• Computing devices equipped with sensing and actuation are becoming
ubiquitous. This triggers the research for feasible and interesting in-
teractive designs that make use of embedded platforms. A side effect
of this trend is having to deal with the underlying technological com-
plexity related to communication protocols, programming languages,
operating systems, embedded virtual machines, and hardware plat-
forms etc inherent to embedded platforms. Therefore, a way is needed
for non-IT specialists to fast prototype ideas on large-scale systems
while abstracting from the technological aspects.

• Secondly, the top-down design uncovers the complexity that arises in
such distributed systems which consists in the translation of specifi-
cations for system behavior into local rules (also called global-to-local
compiling). This problem has been addressed before for different ap-
plication domains [42] and it is an ongoing and challenging research
question.

The aforementioned problems are open for research in both the field of
complexity theory in general and the field of spatial computing in partic-
ular [11]. From what we know, solutions to both problems include human
expertise [23].

In recent years, a number of spatial computing domain-specific languages
(DSLs) targeting IT-specialists were made available such as Proto [13],
Kairos [26], Meld [10], and TOTA [38]. These DSLs attempt to specify
global system behavior via spatial computing constructs. Our framework
is built on top of the Lua programming language to be able to provide the
constructs inherent to spatial computing. We further elaborate on this in
Chapter 2.

In the architecture and design domain there exist software tools to in-
terface design with technological devices. The current most popular soft-
ware tools that designers use are Max/Msp [21] and Rhino/Grasshopper [4].
They can be interfaced with Arduino boards. These tools have too many

2

1.1. CONTEXT

constraints when it comes to large scale design and there is still no support
for a distributed way of thinking. We further investigate these frameworks
in Chapter 2.

In this thesis, we present a framework called Interactive Design Stu-
dio(IDS). We provide the non-IT specialists with a friendly tool chain to
facilitate the creation of interactive experiences for various purposes such as
education, entertainment and leisure, playground etc. To make that possible
we exploit the capabilities that come with the spatial computing paradigm
in tackling design issues inherent to large scale distributed embedded sys-
tems. We, therefore, present a holistic framework providing a way to specify
algorithms, test them, and finally deploy them on distributed embedded sys-
tems.

Figure 1.1: ProtoSpace 3.0

We target ProtoSpace [28](Figure 1.1) at TU Delft, Faculty of Architec-
ture, Hyperbody Group [17]. The space comprises an interactive floor, pro-
toDeck, consisting of 189 tiles each equipped with a micro-controller, RGB
LEDs and a pressure sensor (Figure 2.15). Moreover, ProtoSpace 3.0 [28]
is enhanced with other multimedia devices such as beamers, speaker sound
system and various interactive objects are under design. All the components
of ProtoSpace are thought to form an ecosystem capable to create interactive
user experiences. As user experiences we imagine use cases such as leisure
and entertainment, teaching, art exhibitions, dance performances etc.

3

1.2. THE SNOWDROP PROJECT

1.2 The Snowdrop Project

This thesis work is part of the Snowdrop project at the Technical University
of Delft. The project aims to provide a tool-chain for the creation of spatial
computing applications. In Figure 1.2 we show its components and the rela-
tions between them. The project can be divided into two areas of concern:
high-level specification of spatial constructs and low-level software compo-
nents that unleash the possibility to apply the spatial computing paradigm
on a specific hardware platform.

GUI

State Chart

CodeGenerator DeckSim
MetaCompiler

Community

Proto VM SpatialeLua

RTOS Spatialib

Hardware

Figure 1.2: The Snowdrop project block diagram.

There exist two levels of specifying the system specification. One level is
represented by a Meta-Compiler or Community, and the other by a GUI. The
Meta-Compiler attempts to find spatial computing primitives(local rules)
from global system specifications. On the other hand, the GUI gives to non-
IT specialists a mean to specify individual node behavior by using a library
providing spatial constructs. The applications can be tested on a simula-
tor for algorithmic validity. The output of both the Meta-Compiler or the
GUI is deployed on the embedded platform which comes with two differ-
ent approaches to provide spatial computing functionality: Proto and eLua.
The Proto platform is based entirely on the spatial computing paradigm
and comprises the DelftProto virtual machine which executes Proto lan-
guage scripts. My approach is to use a general purpose virtual machine,
eLua VM, enhanced with spatial computing capabilities. Both platforms
run on LPCXpresso 1769 hardware platforms. The focus of this thesis work
ranges from the high-level specification of spatial behaviors by means of a
GUI or State Chart Diagrams to the porting and adaptation of the eLua

4

1.3. PROBLEM STATEMENT

VM for spatial computing purposes. This includes the specification and
generation of spatial applications respectively by State Charts via a State
Chart Compiler, and the realization of a simulator to validate those appli-
cations. The framework targets the field of interactive design and archi-
tecture and aims to deliver all the necessary features and functionality for
that purpose(Chapter 3). Nevertheless, the framework can be adapted to
serve other purposes and applications for spatial computing as we see later
on(Chapter 4).

1.3 Problem Statement

The thesis introduces a framework in the form of a software tool-chain that
makes use of distributed computing, sensing, and actuation. It targets de-
signers and architects - the non-IT specialists - and aims to help them explore
various interactive design ideas via spatial computing constructs. The main
components of the framework target all the aspects that cover the design
process of an interactive space: algorithm design, behavior specification,
simulation, and ultimately deployment to the hardware platform.

More specifically, this thesis aims to answer the following research ques-
tions:

• Is spatial computing a good methodology for Interactive Design and
Architecture? To what kind of extent is spatial computing suitable?
What are the possible limitations?

• Is spatial computing possible using off-the-shelf virtual machines for
embedded platforms? If yes, what are the trade-offs, if any?

• Is it possible to abstract or hide the underlying technological aspects
(spatial computing) from end-users? How and why?

1.4 Outline

The thesis has the following structure. We start with presenting the back-
ground study on which the thesis work is based(Chapter 2). In Chap-
ter 3, we identify the software framework design requirements. Afterwards,
in Chapter 4, we present our solution to the problem statement and the
design requirements. We then show example applications for our frame-
work(Chapter 5). In Chapter 6, we show and discuss the platform specific
experiments and benchmarks. We conclude by drawing our own conclusions
and by identifying areas for future work(Chapter 7).

5

1.4. OUTLINE

6

Chapter 2

Background

In this Chapter we present the background study on which the thesis work
is based. The study comprises notions inherent to the design world and to
the engineering world. We first focus on previous work in the field of inter-
active environments emphasizing on both the aesthetics and the technical
realization. Afterwards, we show the state of the art of current tools on
the market for designing interactive design involving micro-controller. After
that we focus on the designer’s world by pursuing a study on the role of
design and the designer. Moreover, we focus on the aspects concerning the
collaboration and communication between designers and engineers. The de-
sign related study ends by presenting a user survey conducted on a sample
of architecture students from TU Delft and ETH Zurich. The second part
of this Chapter targets the related work in the spatial computing field, the
chosen platform and language for our framework. We conclude this Chapter
by presenting the target platform of this thesis.

2.1 Interactive environments

In the recent years an ever increasing popularity for interactive environments
has been observed [16]. In this Section we discuss three interactive spaces
(Ada [22], Healing Pool [33] and Hallway monitoring [12]) and their main
characteristics in terms of interactivity types as well as technologies.

Delbruck et al. have created a tactile luminous floor, Ada [22]. It is part
of an interactive autonomous space comprising a floor, projection screens,
microphones, ceiling cameras, speakers and theatre lights. The floor tiles are
equipped with tactile pressure sensors and RGB lamps. They are networked
in a mesh like topology and communication is achieved by using an indus-
trial automation network called Interbus [25]. The floor’s tiles are centrally
controlled: the tile’s local controller delivers the data to a PC that controls
the individual node behavior. On the contrary, our approach aims to provide
a complete distributed approach achieving interactive user experiences.

7

2.2. INTERACTIVE DESIGN SOFTWARE FRAMEWORKS

One more example of an interactive floor is the Healing Pool project [33].
Healing Pool is an interactive video installation that was presented at an
exhibition in the Brauer Museum of Art (Valparaiso University). The ex-
hibition space is equipped with video projectors, cameras, custom software,
and a vinyl floor. The distinctive feature of the installation is the ability
to project organic patterns that are torn apart by visitors walking on the
floor. These pattern are rebuilding continuously in an always unique way.
Even though artificial intelligence and imaging techniques are the main fo-
cus of this realization it shows the increasing interest in creating interac-
tive environments. Their results are promising but we strongly believe that
large-scale complex interaction can be achieved only by means of distributed
systems of sensors and actuators via the spatial computing paradigm.

The Hallway Monitoring [12] project is technologically similar to ours.
In fact, this project consists of a hallway floor equipped with wireless sen-
sor nodes underneath. Each node is equipped with a pressure sensor and
light actuators. These lights together with speakers placed on the hall-
way’s wall are triggered by exerting pressure on the tiles. Nevertheless, the
project presents limited complex interaction capabilities due to the limited
space and the lack of direct feedback from the tiles. Moreover, apart of
the hallway there are no extra objects to interact with and the movement
is restricted to one person along one direction only. That translates into
a poor expressiveness for designers and architects. On the other hand, it
might result more interesting from a computer science point of view.

2.2 Interactive Design Software Frameworks

Since interactive design presents an increasing trend in architecture and
design, a series of software frameworks that bridge the gap between software
design and/or deployment onto embedded systems have been made available.
We briefly describe the most important ones. Among those are Rhino3D’s
plug-ins Grasshopper [4] and Firefly [2], MAX/Msp [21], and Processing [6].
All the previously mentioned tools in most cases interface with an Arduino
micro-controller. In the following paragraphs we describe each tool in more
detail.

The first framework consist of the following parts: Rhino3D/Grasshopper,
Firefly and Arduino. Rhino3D [7] is a modeling-tool that is commonly used
for industrial design, architecture, rapid prototyping, CAD/CAM, and more.
It features a Visual Basic based scripting language and it became popu-
lar in architectural design in part because of Grasshopper. Grasshopper
is a graphical algorithm editor that provides a way to generate paramet-
ric forms by dropping scripting and using functional block design. Firefly
tries to bridge the gap between parametric modeling and Arduino. It pro-
vides the necessary software tools to facilitate the mapping between software

8

2.2. INTERACTIVE DESIGN SOFTWARE FRAMEWORKS

and hardware. In other words, Firefly allows real-time data flow between
Grasshopper and the Arduino board. The main feature of interest for our re-
search is the Code Generator component provided by Firefly which attempts
to convert a Grasshopper definition into Arduino compatible code(C++).
The Code Generator checks the component ID against a library of custom
C++ functions which will then be added to the code in case of a match.
Grasshopper, Arduino, and Firefly represent a tool-chain that is capable
to cover the whole design process that starts with the algorithm design and
ends with the deployment onto an Arduino based design installation. At the
moment, no distributed system made of Arduinos are supported leaving a
gap that our framework aims to fill. Moreover, since only Arduino platforms
are supported, it limits the design space and the design projects in terms
of hardware capabilities. In fact, with our tool-chain we aim to facilitate
the usage of distributed algorithms for design installations that make use of
large scale embedded platforms. It adds an additional choice when it comes
to choosing the most suitable embedded platform that best suits a given
project.

Another framework is represented by Max/Msp and Arduino. MAX is
a visual programming language environment for music and multimedia de-
veloped by Cycling’74 [21]. It is highly modular and is easily extensible.
There are several extensions that allow to interface MAX to an Arduino:
Maxuino [5], Arduino2Max [1] and Firmata [3]. Maxuino seems the most
actively developed and it is a collaborative open source initiative for quickly
and easily getting MAX to talk to the I/O of an Arduino board. This allows
Max to read analog and digital pins, to write to digital and PWM pins, to
control servos, to listen to i2c sensors, and more. All the aforementioned ex-
tensions are really basic and they only allow to access the Arduino I/O pins.
It allows little design freedom for eventual interactive design projects. Fir-
mata is different from the other two extensions since it is a generic protocol
for communicating with micro-controllers from software on a host computer.

The last framework we discuss is called Processing [6]. It is an open
source programming language and environment for people who want to cre-
ate images, animations, and interactions. Processing together with Rhino3D
is the most used software among architecture students (see User survey in
Section 2.4). Also for Processing the Firmata firmware is used on an Arduino
to establish communication between them. In this framework, Processing
programming language (C++ like) is a prerequisite and the common usage
is to use the Arduino and its sensors in order to display their readings. The
communication is therefore mostly done from the Arduino board to Pro-
cessing that is running on a PC. No actuation and interactivity has been
explored so far with these tools.

We have noticed that the current software frameworks that interface to
micro-controllers are still at a basic level when it comes to features required
for creating interactive designs on large scale embedded platforms. Even

9

2.3. DESIGNER’S WORLD

when it comes to single device installations in some of the frameworks the
previously mentioned limitations still exist. However, the most promising of
the aforementioned frameworks is Firefly since it provides a code generator
and a basic graphical algorithm design interface. In our work, we try to
tackle all these shortcomings in order to provide a way to specify distributed
behaviors and generate corresponding low-level code that is executed on
large-scale embedded platforms.

2.3 Designer’s World

Since the activity for this thesis has involved a close collaboration with de-
signers and architects, an extensive study had to be done to understand
the designer’s world and way of thinking. This effort has ultimately paid
off when it comes to incorporating ideas and thoughts about the common
interface that separates the design and the engineering domains. The col-
laboration regarded the possible use cases and scenarios in ProtoSpace and
exploring the feasibility of a GUI-concept to specify local-agent behaviors
targeting protoDeck tiles.

This Section is mostly inspired from ”Sketching User Experiences: getting
the design right and the right design” by Bill Buxton [18]. In his book,
Buxton tries to point out the complex design problems and the ever changing
requirements that designers have to cope with due to the pervasiveness of
nowadays technology. Buxton emphasizes the importance of a proper design
phase that has to precede the engineering and sales phase in the product
development cycles as well as the importance of a close collaboration between
designers and engineers. In the following sections we focus on the most
relevant parts of Buxton’s book that are meaningful for our project.

2.3.1 Design and the role of the Designer

Buxton does not give a formal and precise definition of what ”design”: ”de-
sign” is what someone who went to art college and studied industrial design
would recognize as design. Design is seen as ”design for the wild”. By this,
the author tries to detach design from the mere object design. In fact, he uses
a term introduced by Hummels, Djajadiningrat and Overbecke [29], ”context
of experience”. With that he means that the output will not necessarily be
a physical entity but an user experience that the design is able to provoke by
generating behavioral, emotional, and experiential responses. The previous
interpretation of design is mostly dictated by the current technological status
quo. For example, designers will have to deal with objects and environments
equipped with embedded systems. In fact, pervasive computing is more and
more a reality. Most of the times it has interactive properties and requires
an in depth study of ecosystems. By that, we mean the established relation
between user/s and computers. Another example where this change in the

10

2.3. DESIGNER’S WORLD

design process has already happened is the architecture domain. Buildings
are not seen as static entities any more but are becoming active and re-
active in response to the interaction with people in the interior or in the
exterior. This behavior will contribute to the architectural object as much
as the shape, materials and structures do. A perfectly tailored example is
ProtoSpace 3.0 [28] where protoDeck and the the surrounding technology
contribute to an ever changing and immersive experience by means of light
shows and projections onto the walls. We conclude that design is going
through a metamorphosis from an object centered activity to an experience
centered design due to the advent of pervasive computing devices.

2.3.2 The role of Design in the Product Development Pro-
cess

The thesis work requires the collaboration with designers and architects with
the common goal to create a design tool-chain for interactive environments
design. That tool-chain can be seen as product which has to go through a
design phase and engineering phase.

Design and the designer have to face domains which are out of their exper-
tise due to the pervasiveness of technology in their designs. As a consequence
the role of design - seen as product design - and engineering in the whole
product development(PD) process has to change. Figure 2.1a shows the
status quo of the PD where the process consists of two separated phases:
engineering and sales. The product design phase is completely left out and
the product is created starting from the project requirements passed di-
rectly to the engineers. That translates into an engineering phase that has
no feedback from the design domain but the requirements. The critical point
of failure is that issues appearing in the production/engineering phase could
have been predicted or foreseen by a proper product design phase. Doing
so, time and resources could be better used.

Buxton promotes a more holistic approach(Figure 2.1b)where the different
phases are mutually influencing each other to a certain extent. Designers
and engineers interact with each other in order to clarify sector specific
knowledge and different way of thinking during the whole product devel-
opment process. In fact, it should include the consideration of engineering
issues and product requirements as well as aspects related to management
and marketing. The engineering phase is also influenced by the design/er,
management and marketing activities. A close collaboration should some-
how reduce incomprehension between the two ”worlds” and lead to a better
end result saving time and resources.

This approach has been used as general guide lines for the collaboration
with the Industrial Design Faculty of the TU Delft. In fact, periodic weekly
to monthly meetings have been organized during the product development
phase in order to drive the process towards a common goal. In my opin-

11

2.3. DESIGNER’S WORLD

(a) Status quo PD [18] (b) Ideal PD [18]

ion, the key aspect towards a successful collaboration between engineers and
designers is to have all parts with some background knowledge of the coun-
terparts ”world”. The following paragraphs are exploring these concepts in
more detail.

2.3.3 Designer’s means of communication

As we stated above we promote a close collaboration between designer and
engineers during the development process of the product. That means that
communication plays a big role. The way of communicating is usually de-
pendent on the domain. For example, engineers use modeling languages like
UML to describe a system. In contrast, designers have different ways such
as sketching, or prototyping. In this Section we describe the communication
means of designers.

Designers use different techniques based on the specific design stage. The
most important techniques are sketching and prototyping. Sketching is used
in the early design phase where ideas come to birth in a continuous and al-
ways evolving manner. In contrast, prototyping is used in a later stage when
an idea has already been consolidated. The time moment in the design cycle
represents the detail of representation in the design object: low and impre-
cise in sketches and high detail and closer to the end design in prototypes.
Nevertheless, both sketching and prototyping have a commonality: they are
both used to help the designer explore the design space. This is done by
creating a mock up of the target experience. The key point is to experience
the interactivity of a product before the finalization of the design. In the
following, we illustrate what is meant by sketching and its purpose. Finally,
we will show the differences with respect to prototyping and a user feedback
based technique called ”The Wizard of Oz”.

12

2.3. DESIGNER’S WORLD

Sketching and its purpose

By sketching we mean both the classic drawing of sketches and sketching
with a graphical tool on a PC. Example of the latter could be MAX/MSP
or Rhino3D software tool. Sketching is used as a means to explore ideas and
to communicate them in a graphical form. Sketching is a graphic mean of
technical exploration, McGee [35]. Since it consists in drawing or modeling
on a PC it reveals to be the perfect initial design technique. In fact, changing
the initial ideas has to be easy and quick. All this allows to explore the
new ideas in an efficient and accurate way. However, the most important
attribute of sketching is its use as a powerful means of communicating ideas.
With a sketch the designer gives life to ideas and communicate them in a
”comprehensible” way. ”Comprehensible” because in the end a sketch is not
used to give precise instructions but to suggest roughly a certain vision. That
means that it has to give rise to debates that help to refine the final design.
”Sketching is a catalyst for stimulating new and different interpretations
that are fundamental to the cognitive processes of design”(Buxton [18]). The
most important aspect in the sketching phase is the ability to extract the
meaning of the sketch. In fact as Alan Kay says: ”It takes almost as much
creativity to understand a good idea, as to have it in the first place”. If we
connect this to our previous discussion in Section 2.3.2 about the importance
of having interactions between designer and engineers we can see that it is
necessary for an engineer to acquire or develop new skills that allow him to
”understand” a designer(sketch in this case). We conclude by saying that
sketching is an important tool for a designer both for his own design process
and for communicating his ideas.

Prototyping vs Sketching

Another technique that designers use is prototyping. Often prototyping and
sketching are erroneously seen as synonyms. As already mentioned before
sketching and prototyping differ in the granularity of detail by which they
represent the design object. In contrast to sketching, prototyping is closer
to the end design than sketching: the whole iterative process described for
sketching has been performed and a more finalized idea exists. In Figure 2.1
we can see the differences between a sketch and a prototype.

As we can see, prototyping represents something that is closer of being
”ready” for usage. It does not has to suggest, question, or provoke but it
gives certainties and facts to be evaluated.

The ”Wizard of Oz” technique

The ”Wizard of Oz” technique is a popular technique to investigate user
experience during the design process before the actual product is ready for
the consumers. The technique is inspired by story of ”The Wizard of Oz”.

13

2.3. DESIGNER’S WORLD

Figure 2.1: Sketch vs Prototype [18]

Figure 2.2: Sketch of a workshop use case in ProtoSpace by Industrial Design
collaborator. It shows the desired light patterns.

As everybody knows, in the story the protagonists fear the wizard of Oz
due to its ”appearance”. In the end, it turns out that the Wizard of Oz is a
tiny, old, and scared wizard. The moral of the story is that appearance can
deceive and deceiving can be, in our case ,used to fake user experience. As
an example, we imagine the ticket vending machines in an airport. In order
to test these systems the design company simulates the back-end mechanism
with human operators that are hidden from the user. By that way, the user-
machine interaction is recreated in order to retrieve useful data about the
user experience. We introduced this technique to point out that a designer
sometimes needs to know in advance the user before a final implementation
is created. That shows that a designer uses user experience, touch, and
visual representations in the design process. These are important tools with
which a designer has to be provided with or has to provide for himself.

14

2.4. USER SURVEY

2.3.4 Design Process Iteration

From the previous paragraphs we conclude that a designer follows a partic-
ular design process. Transforming an idea into a sketch or prototype is a
continuous iterative process involving creation, realization, and/or adapta-
tion. The outcome is a prototype used for proving the validity of the idea.
We call this process Design Process Iteration. As mentioned, it has a dy-
namic and empirical nature. In Figure 2.3 we see a state transition diagram
that shows the design process iteration.

(new)Idea Sketch
Prototype

testing

create

see

Design phase Test phase

Figure 2.3: Design Process Iteration

The main characteristic of the design process iterations is the possibility
to iterate from the creation and/or sketching phase to the prototyping and
testing phase in a quick manner. Moreover, during various phases the de-
signer has to be provided with specific means and tools such as the wizard
of oz technique. In this thesis work we try to provide as much as possible
the tools necessary for designing user experiences.

2.4 User Survey

In order to be able to create the right features when designing the IDS
framework and to highlight the need of such a framework we conducted a
survey that targets a group of students from the faculty of architecture at
the TU Delft and the Computer Aided Architectural Design department for
Architecture at ETH Zurich. The survey was split in four areas of interest:

15

2.4. USER SURVEY

1. Interactive design in architecture

2. Prototyping tools

3. Programming skills and hardware knowledge

4. Design process and tools

This Section is organized as follows: we first show the subject profile and
then discuss the topics targeted by the survey.

2.4.1 Subject Profile

We conducted the survey on architecture students from TU Delft and ETH
Zurich. The former are students which currently exploit the capabilities
of ProtoSpace 3.0 and related projects in work of the Hyperbody group.
The latter are architecture students which participated at the Master of
Advanced Studies in CAAD at ETH in Zurich. It is a one-year postgraduate
program with a focus on computer-based architectural design.

(a) Gender (b) Age distribution (c) MSc Track

Figure 2.4: Subject Profile.

As we can see from the survey, the sample group consists of two thirds
males (Figure 2.4a) while the age group is mostly from 23 to 30 years (Fig-
ure 2.4b). The MSc track (Figure 2.4c) is variegated and consists mostly of
general architecture students and students that are part of either the CAAD
group of ETH Zurich or the Hyperbody group of the TU Delft.

2.4.2 Interactive Design in Architecture

In this part of the survey we investigate the importance of interactive de-
sign in architecture. Furthermore, we ask them for the type of interactive
components they think will be mostly used in interactive architecture. We
inquire them about what kind of purposes they think interactive architec-
ture is suitable for. Finally, we ask about the project they are working on
or would like to work on and that involves some kind of interactiveness.

16

2.4. USER SURVEY

(a) Importance of Interactive Design in Ar-
chitecture

(b) Design purpose (c) Preferred ”smart” components

Figure 2.5: Interactive Design in Architecture.

In Figure 2.5a we see that students imagine that interactive design is and
will be a strong area of interest and future development for architectural
design. Moreover, we notice that the main areas of interest in terms of design
purpose are entertainment and leisure, and art but also educational as well
as playground purposes. Little interest is given to security information for
example (Figure 2.5b). When considering what kind of ”smart” components
the students would like to deal with the majority would like to create reactive
building components(see Figure 2.5c). Finally we asked the students to
describe a project they are working on or they would like to work on that
involves interactivity and embedded technology. In the following we describe
a creative and ambitious example of one of the Hyperbody project group [46].

The first element is the Lighting system: a grid of points.
This reactive system encourages people to explore the world around
them. The design is part of the research on how to discover new
systems helps people in changing their surrounding environment.
How appealing it is for people to adjust their surroundings to
their own needs and how to interact with the lights. It is impor-

17

2.4. USER SURVEY

tant to see how the building changes when more and more people
adapt it in accordance to their individual needs. The Lighting

Figure 2.6: Inspire me 2 change [46]

system is used in four scenarios:

• Automated reactive control of the grid of lights by people
that move around in the building.

• Automated reactive control of the grid of points by a sinus
movement.

• Making corridors, walkways, and spaces based on predefined
shapes.

• Allowing people to control the lights with an application on
their smart-phone (99 cents).

2.4.3 Prototyping Tools

We want to know from the students what kind of software tools are cur-
rently used for prototyping interactive design. To do that we pursued them
to assess these tools in terms of specific criteria that in our opinion are im-
portant for designing interactive environments. Finally, we asked to suggest
eventual improvements or limitations of the current tools.

In Figure 2.7 we see that Grasshopper is clearly the most used tool among
the survey subjects for creating interactive designs. A relatively strong
presence is Processing which is more popular in students from the ETH
Zurich group. That can be explained by the fact that Grasshopper was
partly developed at the TU Delft and therefore it is mostly used among the
TU Delft students.

In Figure 2.8 we see the column diagrams which show the four aspects of
assessment of the preferred software tool: interactive design features, scal-

18

2.4. USER SURVEY

Figure 2.7: Design tools

(a) Interactive design features (b) Scalability to large scale systems

(c) Required programming skills (d) Deployment onto hardware

Figure 2.8: Software tool assessment

ability to large scale systems, required programming skills and deployment
onto hardware. We ask the students to rate their favorite tool based on the
aforementioned criteria with 5 being the highest value and 1 the lowest in
terms of suitability to the corresponding feature. Each Figure shows the
rating distribution. A better understanding of the software tool assessment
can be seen in Figure 2.9.

In Figure 2.9 we observe that on average the current design tools are not
suitable when it comes to the deployment of the code onto the hardware

19

2.4. USER SURVEY

Figure 2.9: Design tool average rating

platform. Furthermore, we notice that both scalability and required pro-
gramming skills have a low average rating, meaning that the software tools
still require adequate programming skills and large scale systems are not yet
of interest for software developers.

2.4.4 Programming Skills and Hardware Knowledge

Since interactive design involves the use of technology such as micro con-
trollers and thereby require programming skills we were highly interested in
the programming skills and hardware knowledge of the subjects.

(a) Programming knowledge (b) Micro-controller programming experi-
ence

Figure 2.10: Programming skills

In Figure 2.10 we see that only 57% of the students have programming
skills (Figure 2.10a). Out of these, 75% have experience in micro-controller

20

2.4. USER SURVEY

programming. As we can the from Figure 2.11, Arduino represents the
micro-controller and programming platform. A quite high amount of stu-
dents are also acquainted with the Processing programming language.

Figure 2.11: Known programming languages

2.4.5 Design Process and Tools

In Section 3.1.1 we described the importance of the design process and its
most important phases. The design process is of peculiar importance for our
framework in order to target the designer’s or architect’s requirements and
needs. Therefore, we reserve a part of the survey to investigate the most
important phases of the design process. In order to do so, we split the design
process in the following phases: sketching, prototyping, simulation, testing,
and deployment. Based on this classification, we asked the subjects to give
an opinion on the relative importance of each phase in the design process
and, moreover, which would be the main obstacle to overcome according to
their skills.

Figure 2.12 shows the average ranking of each phase. We can see that the
students did not choose unanimously one of the phases or a similar ranking
of the phases. If we would extract some meaningful trend we can say that
prototyping and testing are the activities with the highest average ranking.
Strangely, deployment onto the real hardware is seen as an easy task.

Another important aspect we investigate is knowing which are the areas
where the subject would encounter most issues. The areas we are interested
in are algorithm design, hardware knowledge, programming, and deploy-
ment. In Figure 2.13 we see that on average the area with most difficulty
would be algorithm design followed by programming. We see that hardware
knowledge is not seen as the main issue as well as the deployment onto the
embedded platform.

21

2.4. USER SURVEY

Figure 2.12: Design process ranking

Figure 2.13: Design key issues

2.4.6 Conclusions

The survey shows that interactivity is a desired feature of architecture de-
sign. The sample group shows to be acquainted with programming languages
although they all do not target embedded platforms. Most of the students
have used an Arduino; hence, they have hands-on experience with micro-
controllers. Nevertheless, most students struggle when it comes to algorithm
design and programming. Moreover, there is a lack in dealing with large-
scale distributed devices in terms of hardware and as a general concept, as
we can notice by the fact that all the used software design tools do not sup-
port more than one device. The survey outcome is used to fill the gap that
current students have to face when designing interactive environments that
imply the use of adequate software tools and hardware knowledge.

22

2.5. SPATIAL COMPUTING

2.5 Spatial Computing

When we talk about interactive design, interactivity is achieved by an in-
terconnection of many devices spatially distributed which react to external
events(ProtoSpace). Usually, an architect or designer has an idea of the ag-
gregate behavior of the system but the the programming environment they
are presented with operates mainly at the level of single devices. This boils
down to the need of a global-to-local compilation [8] which allows to specify
the aggregate behavior and to compile it to local behavior.

The specific domain of this thesis is interactive design for a space filled
with a collection of local computational devices, spatial computer [15]. More-
over, the two main properties of this setup are the platform’s spatial and
temporal properties; therefore a way is needed to explore and use these
two properties. Spatiality and time are strongly correlated to the spatial
computing paradigm which makes use of spatial abstraction to unleash the
potential of using the concepts of space and time in distributed systems
programming. To exploit the benefits of spatial abstractions researchers
have built domain specific languages(DSLs) aiming to simplify the prob-
lem of programming aggregates. In the following we will first present the
spatial computing paradigm. Afterwards, we discuss the research that has
been pursued in the field of spatial computing in terms of domain specific
languages and platforms. Finally, we discuss our approach and its rationale.

Zambonelli et. all [52] highlights the inadequacy of traditional approaches
to tackle modern distributed systems scenarios in relation to their key char-
acteristics: large-scale, network dynamism, and situatedness. These char-
acteristics are not fully handled and supported by traditional approaches
such as transparent distributed computing or network-aware computing. To
do so a new way of abstracting the network is proposed which is based on
”spatial abstractions”. The paradigm is denominated spatial computing and
presents the following key characteristics:

• The concept of network - a discrete system of variously interconnected
nodes - evolve into a concept of ”space” which is a metric continuum.

• Distributed components are context-aware and they can perceive and
influence the local properties of space.

• Spatial abstractions used in communication and application level.

The spatial computing paradigm is based on adaptive and automatic cre-
ation of an virtual metric overlay over the physical network where nodes
are assigned to a specific area and are logically connected based on spatial
neighborhood relations. Zambonelli identifies four levels which can provide
”spatial services” and puts them in a spatial computing stack. From bottom
to top the stack presents the physical level (communication), the structure

23

2.5. SPATIAL COMPUTING

level (localization), the navigation level (local interaction/behavior) and the
application level (global/system behavior).

In literature their exist several classes of spatial computers: amorphous
computer [8], multi-agent systems, pervasive computers, and parallel com-
puters. Each of them has different spatial abstractions which are based
on computational fields. The later are mostly inspired by biology(chemical
gradient) [43], chemistry(chemical reactions) [49], geometry/mathematics
(manifold concept) [14], or physics(force fields). While the aforementioned
techniques provide a means to abstract space from local interactions of
the system’s components, programming languages are necessary to describe
goals by high-level abstractions. In the following we describe several pro-
gramming languages and platforms providing the necessary spacial abstrac-
tions: GPL [19], Meld [10], Kairos [26], TOTA [39], and Proto [13].

Growing point language(GPL) is a language developed by Coore [19] for
pattern formation in amorphous computer [44]. GPL is used to specify topo-
logical patterns consisting of lines of various thickness; these are compiled
into a local agent program. Patterns are specified in terms of a botanical
metaphor of ”growing points” -a locus of activity in an amorphous medium-
that lay down material which secretes pheromones, and tropisms which de-
termines the trajectory of the growing point. Complex patterns are the
result of local rules.

Meld [10] is a declarative programming language for programming ensem-
bles of modular robots which have to accomplish a distributed task. Meld
is based on P2, a logic programming language. The global task of the en-
semble can be described as a high-level abstraction by specifying facts and
rules. Facts are situated in a single point in the network and they can either
be independent(e.g. neighborhood status) or dependent on other facts. On
the other side, rules specify a set of conditions and a new fact that can be
proven. A process called forward chaining takes place: new facts are cre-
ated from initial facts and which in turn satisfy additional rules and so on.
This process ends whenever the common goal has been accomplished and all
provable facts have been proven. The validity of Meld’s approach has been
evaluated only in simulation.

Kairos[26] is based on ideas from shared-memory parallel programming.
It delivers three primitives: a node abstraction delivering the programmer
tools to manipulate (lists of) nodes, a list of one-hop neighbors, and re-
mote data access. Remote data access does not guarantee delivering the
correct value, instead, Kairos relies on ’eventual consistency’. Eventually
the system should converge to the correct solution of the problem at hand.
Kairos’s functionality is delivered through an API which can be accessed
from imperative programming environments. However, it still remains in a
proof-of-concept state.

TOTA[38] stands for ’Tuples over the Air’. TOTA is thought to be used for
pervasive computing scenarios. It is based on the notion of tuple fields which

24

2.6. LUA AND ELUA

can be seen as information fields inspired from nature like force fields or
chemical gradients. Each tuple consists of three elements: content, diffusion
rule, and maintenance rule. The content element contains the tuple data; the
diffusion rule specifies the policy by which the tuple is cloned and diffused;
the maintenance rule specifies the policy through which the tuple should
evolve in response to events or time constrains. The spatial neighbor concept
is followed when distributing tuples through the network. Its limitation
is the impossibility of aggregating tuples’ information. TOTA come as a
middle-ware and exposes a Java API to the end user.

Proto[13] is a functional lisp-like language that employs the concept of
an amorphous medium abstraction[9], in which the discretization of space
and time is hidden from the end user. Proto is based on the mathematical
definition of manifold, a space that looks like an Euclidean space locally but
globally might be more complex. In fact, Proto’s primitives are mathemat-
ical operations on fields(functions that associate a value to each point in
space-time). Communication and related services(e.g neighborhood discov-
ery or distance estimation) are not incorporated in Proto programs. More-
over, the information about the network and neighborhood is presumed to
be available and should be taken care of by the underlying layers allowing
Proto programs to be very compact. Proto comes with a tool chain that
includes a compiler, a simulator, and a virtual machine.

From the aforementioned programming languages, Proto suits best to the
spatial computing paradigm in terms of both spatial and temporal abstrac-
tions. Nevertheless, we decided to use Lua as programming language. In
fact, we use Lua’s main features in terms of extensibility and tailor it to
best fit the spatial computing paradigm. We will use Proto as reference for
our evaluation.

2.6 Lua and eLua

For our framework we decided to use Lua programming language based
virtual machine for embedded platform, eLua. In this Section, we first
describe and present the Lua programming language and the Lua virtual
machine. We describe its main features and most important characteristics
of Lua. Finally, we describe the embedded version of Lua, eLua, and describe
briefly its architecture.

2.6.1 Lua

Lua [32] is designed, implemented, and maintained by a team at PUC-Rio,
the Pontifical Catholic University of Rio de Janeiro in Brazil. It combines
simple procedural syntax with powerful data description constructs based on
associative arrays and extensible semantics. Lua is dynamically typed, runs

25

2.6. LUA AND ELUA

by interpreting byte-code for a register-based virtual machine, and has auto-
matic memory management with incremental garbage collection, making it
ideal for configuration, scripting, and rapid prototyping [30]. Lua is a multi-
paradigm language, meaning that it supports more than one programming
paradigm.

”The idea of a multi-paradigm language is to provide a frame-
work in which programmers can work in a variety of styles, freely
intermixing constructs from different paradigms.”

The main characteristics and features can be summarized in the following:

Extensibility Lua is not a stand-alone package. It is both an extension
language and an extensible language. It can be used as a library that
we can link with other applications to incorporate Lua facilities into
them. On the other hand, Lua is an extensible language since a pro-
gram can register new functions in its environment; such functions are
implemented in C (or another language), so that they can add facil-
ities that cannot be written directly in Lua [31]. These two views of
Lua imply two kinds of interaction between Lua and C. Lua as an ex-
tension language means that C has the control and Lua is the library,
while in the other case Lua has the control and the C code is called
library code.

Simplicity Lua is a simple and small language. It has few (but powerful)
concepts. This simplicity makes Lua easy to learn and contributes to
its small size [31].

Efficiency Lua has a quite efficient implementation. Independent bench-
marks show Lua as one of the fastest languages in the realm of scripting
(interpreted) languages [31].

Portability Lua is distributed in a small package and builds out-of-the-
box in all platforms that have a standard C compiler. Lua runs on
all flavors of Unix, Windows, mobile devices (running Android, iOS,
BREW, Symbian, Windows Phone), embedded microprocessors such
as ARM, IBM mainframes, etc. [30].

Free Lua is free open-source software, distributed under the MIT license.
It may be used for any purpose, including commercial purposes, at
absolutely no cost [30].

2.6.2 eLua

eLua [24] stands for embedded Lua and this project brings all the advantages
and features of the Lua programming language and VM based programming

26

2.6. LUA AND ELUA

to the embedded world. For that purpose, eLua offers the full features
of the regular Lua version and uses Lua’s native mechanisms to extend
with embedded development optimized and specific features. As a result,
eLua allows to develop and run Lua programs on a wide variety of micro-
controllers. The most important feature of eLua is the possibility to extend
Lua with platform specific C modules and drivers. ELua’s support for a wide
range of embedded platforms is mainly due to its the particular structure.
In Figure 2.14 is an overview of eLua’s architecture.

Figure 2.14: eLua logical structure [24]

For eLua, a platform is a group of CPUs that share the same core struc-
ture, in our case LPC17xx. Within that platform an eLua port implements
one or more CPUs. As seen in Figure 2.14 eLua uses simple design rules in
order to be as portable as possible:

• all the code that is platform-independent is common code and it has
to be written in ANSI C as much as possible, this makes it highly
portable among different architectures and compilers, just like Lua
itself [24].

• all the code that can not be made generic (mostly about peripherals
and CPU specific code) must still be made as portable as possible by
using a common interface that must be implemented by all platforms
on which eLua runs. This interface is called platform interface [24].

• all platforms (and their peripherals) are not created equal and vary
greatly in capabilities. As already mentioned, the platform interface

27

2.7. TARGET PLATFORM - PROTODECK

tries to group only common attributes of different platforms. If one
needs to access the specific functionality on a given platform it can do
so by using a platform module. These are platform specific and their
goal is to fill the gap between the platform interface and the full set
of features provided by a certain hardware platform [24].

2.7 Target Platform - ProtoDeck

The target platform and application of this thesis is protoDeck. ProtoDeck
is part of ProtoSpace 3.0 [28] which is a state of the art multi-purpose fa-
cility designed for the development of non-standard, virtual, and interactive
architecture. It is developed by the Hyperbody team at the Delft University
of Technology as a revolutionary real-time collaborative design environment.

Figure 2.15: The protoDeck floor

The space consists of a set of distributed components/actuators such as
protoDeck(Figure 2.15), beamers, sound sources. ProtoDeck is composed of
a network of 189 tiles, each equipped with a micro-controller with a pressure
sensor and RGB led actuator. All the components of ProtoSpace give rise
to an interactive space for a new user experience oriented design. The main
focus of this thesis is protoDeck and the underlying embedded platform. In
the following we will present the hardware specification of the embedded
platform.

28

2.7. TARGET PLATFORM - PROTODECK

LPCXpresso 1769

Flash 512 kByte

CPU 32 bit, 120MHz

RAM 64 kByte

EEPROM 64 kByte

UART 4

CAN 2

Misc I2C, SPI/SSP, USB Host, 10/100 Ether-
net, on board JTAG debugger

Table 2.1: Hardware platform

Each tile on the protoDeck is equipped with an LPCXpresso 1769 by NXP
with specification shown in Table 2.1.

29

2.7. TARGET PLATFORM - PROTODECK

30

Chapter 3

Software Framework Design

Having determined the void for a framework that would aid designers and
architects in designing interactive spaces filled with technological devices, we
aim to design and implement a software framework, denominated Interactive
Design Studio(IDS). IDS aims to provide all the necessary tools required
in the interactive design process. Ideally, these tools allow to design and
specify the target system’s behavior and the deployment onto the hardware
platform hiding the technological aspects from the end-user. In order to
do so, a series of requirements have to be met. In the following section we
uncover these requirements (Section 3.1).

3.1 Requirements

The objective of the IDS framework is to bridge the gap between design-
ers/architects and embedded software engineering. In this particular case,
we have two sets of requirements that have to scope the entire process con-
sisting of a high level and non-technical perspective of the system and an
engineering perspective determined by the target hardware and software con-
straints. The requirements can be categorized based on whether they are
inherent to the Design process, Software Architecture aspects or the Target
Platform and Application. In the following we describe them singularly.

3.1.1 Design Process

As already described in Section 2.3 the iterative design process is strongly
characterized by the iteration between design phase and test phase(see Fig-
ure 2.3). For that reason IDS should be able to speed-up the process that
starts with the algorithm specification and end up with the deployment and
testing on the target platform. The main issues to be tackled are summa-
rized as follows:

31

3.1. REQUIREMENTS

• Design process speed-up - fast deployment and code updates dissemi-
nation onto the target platform.

• Abstract algorithm specification - modeling and specification language
that abstracts away from a platform specific and language specific
programming language.

3.1.2 Software Architecture

In order to allow further improvements and to support as many target hard-
ware and software configurations, IDS must have a modular software archi-
tecture which allows to be easily extended in its functionality.

3.1.3 Target Application

Since the target applications may vary from one design project to the other
in terms of capabilities of the embedded platform(sensor and actuator con-
figuration), IDS should be able to cope with that as much as possible. To
do so, IDS needs:

• Support for distributed control by means of spatial computing con-
structs.

• Generalized system behavior description - a behavior specification should
be universal for all the supported target platforms. That means that
a behavior description will have the same outcome for all the target
platforms independently from being Netlogo, Proto or eLua.

• Target application customization - IDS should support embedded plat-
form customization in terms of hardware configuration(sensors and
actuators).

• Hardware platform independent - IDS should be able to support a
variety of embedded platforms.

• Lack of domain specific knowledge - IDS should hide as much as pos-
sible all the technological aspects from the end-users.

32

Chapter 4

Implementation

This chapter describes the implementation aspects of the two main contribu-
tions of the thesis: Interactive Design Studio(IDS) and eLua VM for spatial
computing. In Section 4.1 we discuss the IDS software framework and its
main components. In Section 4.2 we show the adaptation and extension of
eLua VM to the spatial computing paradigm.

4.1 Interactive Design Studio - IDS

In order to tackle the aforementioned requirements(Chapter 3) we designed
IDS. IDS has two design goals. The first is the high-level behavior specifica-
tion aspect which serves as an interface to the non-IT specialists community,
while the second is the mapping and translation of these high-level specifi-
cation onto binary code for the specific hardware platforms.

In Figure 4.1 we show the block diagram of IDS. IDS consists of four main
components: GUI, CodeGenerator, DeckSim, and the Embedded Software
platform which in our case is represented by eLuaVM [24].

The diagram shows the four components that correspond to the four stages
of the design process. In the following sections we discuss each component
and its implementation. Moreover, we show how it meets the requirements
of Section 3.1.

4.1.1 Graphical User Interface - GUI

From the framework perspective, the GUI represents the component which
serves as an interface to the designer for the ProtoSpace user experience
creation. The design of the graphical user interface(GUI) is the outcome
of the collaboration between the correspondents of the Faculty of Industrial
Design and EEMCS of the TU Delft. The design as well as its concept are
to be credited to Sandro Macchioli, MSc student at the Industrial Design
Faculty. In Figure 4.2 you can see the structure of the GUI. It is a concept

33

4.1. INTERACTIVE DESIGN STUDIO - IDS

GUI - plugin

CodeGenerator DeckSim

Design

ES platform

StateChart

eLua VM SpatialLib

LPCXpresso 1769

Figure 4.1: Block diagram of IDS framework

on how a possible user interface can be used for specifying a tile’s behavior
in the protoDeck floor.

Figure 4.2: Concept GUI Industrial Design collaboration

Since the described GUI is only a concept, the actual GUI consists of
a graphical state chart editor [41]. It allows non-IT experts to design a
state chart representing the desired behavior of individual tiles. The state
chart describes the program state transitions. The ultimate ambition is to

34

4.1. INTERACTIVE DESIGN STUDIO - IDS

design a user friendly and easy to use GUI plug-in for an already existing
modeling and design software such as Grasshopper. The plug-in should allow
the specification of system level and node level behaviors that will hide the
cumbersome design of a state chart.

A commonality of the aforementioned GUIs is the fact that they pro-
duce an SCXML, structured according to the W3C State Chart extensible
Markup Language(SCXML). The SCXML is discussed in more detail in the
following Section.

4.1.2 StateChart - XML for spatial computing

As stated in Section 3.1.1 we need a way to abstract algorithm specification
that is independent from any programming language. For that purpose
the choice was to use the StateChart - XML format. However, the default
SCXML format is not suitable for our purpose. We thereby decide to extend
the standard with custom fields which would facilitate its usage for spatial
computing purposes. An example code snippet is shown in Figure 4.3.

Figure 4.3: SCXML example

We extended the format in order to be able to specify actions that are ei-
ther state variables changes or actions performed by actuators of the target
platform. The rationale behind the use of a state chart representation for
the tile’s behavior is the following. A state chart is based on automata with
the addition of hierarchical model support as well as concurrency. In addi-
tion, it includes a limited way of specifying time [40] which is enough for our
purposes. The system under design is reactive and its evolution is based on
local events and conditions. These are all aspects that can be modeled with
a state chart. Another important reason to use state charts is an implication
of being an extension of a finite state machine [40]: it is widely acknowledged
that a FSM can represent any algorithm abstracting away from a specific
programming language. In fact, a state machine can be described and ma-

35

4.1. INTERACTIVE DESIGN STUDIO - IDS

nipulated with ordinary mathematics; therefore, they provide an uniform
way to describe computation with simple mathematics [36].

4.1.3 CodeGenerator

CodeGenerator is the core component of IDS. It is a Java based tool that
parses a SCXML file and produces platform specific code. In our case,
the supported languages are Netlogo[51], Proto[13], and Lua[30]. In order
to be able to support as many target platforms as possible, the SCXML
has a set of events, conditions, and actions that are mapped to specific
platform code. These specifics are stored in platform specific XML library
files(Lib.xml). They implement spatial computing primitives that are used
by the applications. The CodeGenerator module has a modular software
architecture that aims to be fully extendible with new modules and add-ons
to further improve its capabilities. In Figure 4.4 we show the CodeGenerator
diagram showing its modules and the respective inputs/outputs.

SpatialLibrary
Reader

State Chart
Builder

CodeGenerator

TargetConfig
Reader

Lib.xml Config.xml StateChart

Code Generator

*.lua
*.proto

*.nls

Figure 4.4: CodeGenerator modules and data flow diagram

CodeGenerator has four modules: SpatialLibrary Reader, TargetConfig
Reader, StateChart Builder, and a platform specific CodeGenerator mod-
ule. The SpatialLibrary and the TargetConfig Reader are both an XML
file interpretation module which respectively takes as input Lib.xml and
Config.xml. The library XML file contains the platform specific spatial

36

4.1. INTERACTIVE DESIGN STUDIO - IDS

computing primitives and the relative utility functions. The platform spe-
cific configuration file(Config.xml) specifies the embedded target platform
configuration in terms of sensors and actuators. For each actuator a set of
actuation modalities are specified. The StateChart Builder takes as input
the *.scxml and the output of the configuration file reader. The output is
a state chart object containing the SCXML file translation with the corre-
sponding platform specific changes. The output of both the StateChart and
the library reader module are fed into the code generation module. The
CodeGenerator module differs for each target platform: there exists a mod-
ule for Netlogo, Proto, and Lua. The CodeGenerator ultimately translates
the SCXML and platform specific directives into the target platform’s code.
The translation process differs for each platform since they differ in syn-
tax and/or in programming paradigm(Proto is functional;Lua and Netlogo
imperative). The module maps the scxml specifications with the platform
specific library and creates the syntactically correct platform code. Besides
the application code, the CodeGenerator creates the spatial library for eLua
and Proto. The focus was mostly on the eLua module for which we provide
a customizable way to generate the spatial library. The library file specifies
the data to be exchanged between nodes and the means to interpret that
data(more detail in Section 4.3).

4.1.4 DeckSim

DeckSim is a Netlogo based simulator for protoDeck. More precisely, it
models the tiles’ topology and their connectivity. Each ”hosts” a software
agent which can communicate with its immediate neighbors of a cellular
automata like topology. Each agent is equipped with a LED and a pressure
sensor.

The simulator’s purposes are manifold:

• investigate space-time evolution of the system

• test algorithmic correctness

• visual feedback - emergent behavior

• test tool for Industrial Design colleagues

In Table 4.1 we show the main characteristics of the simulator.
The iterative design process consists of a design and test cycles that are

usually performed during sketching or prototyping. By providing a simula-
tor which models the target system, protoDeck, a non-IT specialist is able
to iterate from the algorithm specification phase to the test phase and back
before deploying the code. In Figure 4.5 we show the DeckSim architecture.
The simulator uses the StateChart.nls which contains the application gener-
ated from the SCXML. The application uses the spatial computing library,

37

4.1. INTERACTIVE DESIGN STUDIO - IDS

Context Type Description

Time ticks Time is represented by an in-
ternal counter for each agent.

Execution synch. round Agents’ state is stored before
each round. New state takes
effect at the end of the round.

Neighborhood mesh-like Each agent has four neigh-
bors(except border agents).

Distance-metric hopcount Hopcount from a pressure sen-
sor triggered source used as
distance metric.

Events discrete events Possible events are: Pressure
sensor pressed or particular
neighborhood states.

Table 4.1: Simulation environment characteristics

SpatialLib.nls. As a result, we are able to test the generated code in terms
of its algorithmic correctness and its space-time behavior. In Figure 4.6 we
see the front-end of the simulator in the form of a Java applet which can be
embedded in a website.

DeckSim.nlogo

StateChart.nls

Simulator
features

Application

SpatialLib.nls

Figure 4.5: DeckSim Architecture

Even though the simulator tries to model the system as true to reality
as possible, it is obvious that the shift to the real hardware platform is not
straightforward in some cases. In Section 6.4 we discuss the issues that
might emerge when this shift happens.

In our design process, our Industrial Design collaborator used the sim-
ulator for testing purposes. In this test cases the simulator was remotely
accessed with an iPad and used as an interactive test medium to explore

38

4.2. SPATIALELUA PLATFORM

Figure 4.6: DeckSim front-end

and assess the GUI’s capabilities(example of ”Wizard of Oz” technique,
Figure 4.7).

4.1.5 Conclusions

In Section 3.1 we listed a series of requirements that in our opinion are
necessary for our goal. In this paragraph we show how IDS tries to tackle
those requirements. The code generation module aims to tackle the require-
ments discussed in Section 3.1. By dividing the code generation process in
separate module tasks we tackle the need for a modular software architec-
ture that is easily extendible and customizable. Moreover the use of xml
standard for the configuration and library files gives the possibility to easily
bind them with a GUI. By using platform specific configuration files we are
able to drop constraints that are platform and target application related.
More precisely, we are able to tackle the requirement of Target application
customization with the use of platform specific configuration files where we
configure the embedded target platform’s sensor and actuator configuration
and features. The code generation itself avoids domain specific knowledge
in embedded software from the end-user. Finally, we provide a simulator,
DeckSim, which models the floors behavior that contributes in speeding up
the design iteration process.

4.2 SpatialeLua Platform

The last peace of the puzzle is SpatialeLua, an adaptation of eLua to the
spatial computing paradigm. As mentioned in Section 2.6.2 eLua comes with

39

4.2. SPATIALELUA PLATFORM

Figure 4.7: Example use case of DeckSim for the ’Wizard of Oz’ technique

a series of supported embedded platforms. Out of the box there is a port
to the Mbed LPC1768 platform which is similar to the used LPCXpresso
1769. Therefore, we adjust the peripheral’s port mappings and update the
drivers to port eLua to the LPCXpresso 1769. With that being done, we
are able to run the eLua VM on our embedded platform. In order to make
eLua ’spatial’ we have to provide the following features:

Neighborhood: Neighborhood discovery and information retrieval.

Spatialib: Spatial Computing primitives.

ViralCode dissemination Code dissemination features to allow rapid pro-
totyping and application updates.

Communication Inter-node communication protocol.

Each requirement can be mapped into the corresponding building block.
In Figure 4.8 we show the software architecture and the relation between
the various blocks of SpatialeLua. In the following we describe each layer.

4.2.1 Platform Layer

The platform layer consist of the platform specific drivers. In our imple-
mentation we used the platform drivers supported by eLua for the LPC17xx
series. Since the provided eLua UART driver did not support buffered trans-
mission and reception we added this feature to eLua’s platform interface. In
more detail, the UART driver uses a software FIFO buffer to allow asyn-
chronous sending and receiving of bytes. The mechanism is interrupt-based:

40

4.2. SPATIALELUA PLATFORM

Application

UART Driver

eLuaComm SpatialeLua

eLua VM

Middle Layer

Application Layer

Platform Layer

Figure 4.8: SpatialeLua platform

bytes are placed into a software FIFO buffer by the interrupt routine. Trans-
mission is initiated by placing the bytes into the hardware buffer until it is
full. When the buffer is empty again an interrupt is raised which triggers the
interrupt routine to check whether the software buffer contains more bytes
to send. If that is the case, sending is restarted until the software FIFO is
empty.

4.2.2 Middleware Layer

The Middleware Layer consists of two components: eLuaComm library, Spa-
tialeLua VM. The main task of the Middleware Layer is to provide eLua
with spatial capabilities. These are achieved by providing the necessary
data structures and manipulation means, and an adequate communication
protocol. In this Section, we first describe the software components respon-
sible for the neighborhood data manipulation and, afterwards, discuss the
communication protocol.

eLuaComm supplies the VM with neighborhood information in a best-
effort way. The basic services of eLuaComm are reading the raw data byte
stream coming from the UART driver, scan the software buffer for valid
packages, and deliver them to the VM. The library is implemented in C and
it exposes an API for sending and receiving packets respectively from and to
the eLua VM. Further details about packet structure and the communication
protocol follows in Section 4.2.2.

SpatialeLua VM, eLua VM for spatial computing, provides the features
that are necessary for the spatial computing paradigm. We adopt a modu-
lar approach and divide SpatialeLua in the following sub-components (Fig-
ure 4.9): Neighborhood, Spatialib, and ViralCode.

41

4.2. SPATIALELUA PLATFORM

Figure 4.9: SpatialeLua modules

The Neighborhood module is connected to the Communication module
since it is the core part for providing spatial capabilities. The main re-
sponsibilities of the Neighborhood module are: maintain neighborhood in-
formation, neighborhood discovery, and packet processing. This includes
the active participation in the communication protocol. The module main-
tains a data structure containing the neighbor data and the temporary data
structures used for the viral code dissemination. At each virtual machine
execution round the UART buffers are checked for the availability of valid
packets. They are processed and the payload(state variables) is stored.
Neighborhood discovery is performed by using time-out mechanism based
on the last time neighbor information was received.

The Spatialib is the spatial library module generated by the IDS Code-
Generator. Spatialib maintains the node specific exports which represent
the information that is sent to the neighbors. In addition, all the spatial
primitives(see Section 4.3) are declared in this module. Finally, the module
also provides access to sensing, actuating, and local clock access of the node.

Communication Protocol

The communication protocol is implemented in Lua and provides the fol-
lowing features:

• neighborhood discovery

• state updates

• code updates

Neighborhood discovery is achieved in two ways: beaconing and state/code
updates. To avoid the use of erroneous neighborhood information caused by
faulty communication links we constantly update neighborhood information.
The mechanism is based on a periodic beaconing. If a node has not received

42

4.2. SPATIALELUA PLATFORM

any beacon or valid packet within a specified time interval the neighbor is
removed from the neighborhood data structure.

Figure 4.10: State update communication protocol

For both neighbor state and code updates dissemination we employ a
negotiation based protocol [34]. In Figure 4.10 we show the negotiation
phases between two nodes. Upon an ADV packet received, indicating that
the neighbors state or code is new, the a node will send a REQ packet to
the neighbor. Upon reception of that packet the neighbor will send back a
DATA packet. The mechanism is slightly modified upon state/code update
of a node. In that case, the ADV packet is replaced by a DATA packet.
Only if this packet is missed the default negotiation mechanism takes place.

The code dissemination process is also negotiation based and is inspired
by Trickle [37]. Upon receiving of an ADV packet a node(B) sends REQ
packet. The sender node starts the DATA transmission upon reception of
the REQ packet. The first DATA packet contains as payload the number of
chunks the application is split. In that way, a node knows when the code
update has been completed. If one or more DATA packets are lost, the
receiver node(after a time-out) sends a REQ packet having as payload the
indexes of the missing packets. In Figure 4.11 we show the protocol in both
ideal(Figure 4.11a) and faulty case(Figure 4.11b).

Packet Formats

In Table 4.2 we show the UART packet format. The packet header is the
same for each packet type. In contrast, the Payload section varies based on
the packet type. An eLua packet can have the following types: Beacon, Ex-
portUpdateReq, ExportUpdateData, CodeUpdateReq, CodeUpdateData,

43

4.2. SPATIALELUA PLATFORM

(a) Correct (b) Missed code chunk packet

Figure 4.11: Code update protocol

and Invalid. PacketID, Application ID, and Export ID are used to indi-
cate the sequence number of respectively the packet, the application code,
and the information. These are used by the protocol to advert the current
state of the sender node. The Payload size is variable and contains informa-
tion only for ExportUpdateData and CodeUpdateData packet types. Each
packet contains two bytes for the CRC that gets calculated from the packets
content.

4.2.3 Application Layer

The Application Layer consists of the Lua code that is generated by the
IDS-CodeGenerator. The application is a direct mapping of a state chart
structure which takes advantage of the spatial capabilities provided by the
underlying layers.

44

4.3. SPATIAL COMPUTING PRIMITIVES

Variable Size(bits) Notes

Packet type 3 Beacon / ExportUpdateReq
/ ExportUpdateData / Code-
UpdateReq / CodeUpdate-
Data / Invalid

Packet ID 16

Application ID 16

Export ID 16

Source Address 16

Destination Address 16

Payload Size 16

Payload variable

CRC 32

Table 4.2: Packet Format

4.3 Spatial Computing primitives

The main prerequisite for spatial computing is implicit local neighborhood
communication and space abstraction. The former is achieved via the UART
based communication and the Neighborhood module of SpatialeLua VM.
The space abstractions as well as the neighborhood states are handled in the
spatialib which is generated by the IDS-CodeGenrator. The spatialib is de-
fined at design time by means of a configuration file. The provided spatialib
targets protoDeck and provides the necessary features for demonstrating the
feasibility of applications involving time and spatial primitives(Section 6.1).

In Table 4.3 we show the state variables identifying a specific state of the
node; while, in Table 4.4 we show the provided neighborhood functions.

Variable Values Description

hopcount [0-255] Indicates the hops away from
a source

flash {0,1} Indicates whether LED is on
or off

sensor1 {0,1} Indicates whether tile is
pressed or not

Table 4.3: State Variables

The data exchanged in the neighborhood identifies node state variables,
while the functions are used to extract the desired information from that
data. By providing the aforementioned state variables and functions we
prove that SpatialeLua is suitable for spatial computing.

With our framework we want to make spatialib customizable at design

45

4.3. SPATIAL COMPUTING PRIMITIVES

Function name Description

min/maxNeighborHopcount Returns the mini-
mummaximum hopcount
value in the neighborhood

neighborsPressed Returns the number of neigh-
bors that have the pressure
sensor active

neighborsLED ON Returns the number of neigh-
bors which have their LED on

Table 4.4: Neighborhood state functions

time. In fact, we aim to provide a mean to exploit the software architecture
of SpatialeLua VM to employ user-defined spatial abstractions. We make
this possible by providing IDS with a configuration file for specifying state
variables and spatial functions(in a specific domain specific language). In on
our case for instance, we use the hopcount state variable to create a gradient
based spatial abstraction. The provided functions in turn use this informa-
tion to determine specific neighborhood states. In conclusion, we aim to
ease the specification of other spatial abstractions inspired from mathemat-
ics, biology or chemistry. By doing that we do not limit the framework
to use a fixed modus operandi, but we render the framework as general as
possible.

46

Chapter 5

Applications

In this Chapter we present two applications for both IDS and SpatialeLua:
Phototropia and Spotlight. The two projects were realised in different stages
of the thesis work. Phototropia in the very early phase of the eLua VM
platform; while, spotlight is an application targeting protoDeck and is used
as a test case for the whole IDS design tool-chain. In the following we
first present the Phototropia project experience. Afterwards, we present the
Spotlight application for protoDeck.

5.1 Phototropia Project

Phototropia is a project of the Chair of Computer Aided Architectural De-
sign (CAAD) at the Faculty of Architecture, ETH Zurich. Our collaboration
consisted in providing the interactive experience by means of our eLua based
embedded platform. As said before, the project was in the early stage of
the eLua VM porting and it was the perfect challenge to face in that stage
to extrapolate the necessary requirements for the thesis project. The in-
stallation consisted of two parts: custom active components and embedded
devices. The active components where three: light-emitting electrolumines-
cent displays, shape-changing electro-active polymers and energy-creating
dye-sensitized solar cells, while the main structure was composed of eco-
friendly bioplastics. As embedded devices we used LPCXpresso 1769 con-
nected in a line. In order to provide interactive behavior we equipped each
board with a proximity sensor in order to detect people approaching the
installation and trigger an action. In Figure 5.1 we see the installation.

5.1.1 Setup and Application

The installation is equipped with six LPCXpresso boards running the eLua
VM in its early stage. By that time SpatialeLua did not exist. We used
eLua VM out-of-the-box after porting it to the LPC1769. The boards have

47

5.1. PHOTOTROPIA PROJECT

Figure 5.1: Phototropia installation

a line topology and each node is responsible for a region of the installa-
tion. The application for the installation consists in creating a wave pattern
starting from a triggered proximity sensor. The algorithm is very simple
and consists in notifying the neighbors of their state consisting in specifying
whether their actuators are active or not, and the waveID. The waveID is
used to start a new wave and the direction of the wave(from greater waveID
to smaller). The wave pattern is created by delaying the information trans-
mission. A wave can be a wave of ’OFF’ states as well as ’ON’ states. Since
the eLua UART driver does not provide buffering mechanism(asynchronous
sending/receiving) we adopt a polling strategy. This requires a careful tim-
ing of the application’s timings. In Figure 5.2 we show the time subdivision
of the application loop.

In order to not miss packets we decide to reserve the main part of the round
to the UART’s polling. The timings are approximate timings. This setup
required a lot of tweaking and empirical tests since accurate measurements
were not possible at that stage.

5.1.2 Experience

The Phototropia experience resulted very useful to determine the require-
ments of our framework and the extensions to be made on the eLua VM

48

5.2. SPOTLIGHT ON PROTODECK

Figure 5.2: Application round timings

(Chapter 3 and Chapter 4): buffered asynchronous transmission/reception
over UART, sensor calibration mechanism, and efficient neighborhood dis-
covery and management module.

5.2 Spotlight on protoDeck

In conclusion of the thesis work, we use protoDeck to test IDS and Spa-
tialeLua for the purpose of interactive design. For that we propose the
application called Spotlight. As spotlight we mean a pulsating light circle
activated by a node’s pressure sensor. In Figure 5.3 we see the light pattern
sequence.

(a) (b) (c)

Figure 5.3: Spotlight light pattern

In Figure 5.3a we show the initial state of the pattern with all tiles turned
off. Figure 5.3b shows the pattern created when the central tile is pressed.
In that precise moment the tiles light on with a specific delay until the limit
hopcount is reached. Figure 5.3b shows the maximum circle radius after the
central tile was triggered. The circle then decreases in steps of one hope at
the time until the minimum one-hop distance from the source(Figure 5.3c).
In that state there will be a small pulsating circle around the central tile.

49

5.2. SPOTLIGHT ON PROTODECK

The Spotlight algorithm is the result of using the whole design tool-chain.
We use the State Chart editor and DeckSim to test the generated code.
Afterwards, we deploy the generated Lua code onto protoDeck. As expected,
the visual feedback differs when shifting from simulation to protoDeck. The
main reason is the different timing properties between the simulator and the
hardware platform. Nevertheless, the light pattern is quite similar.

Algorithm 1 SpotlightSC Algorithm

Require: hopcount = 255, f lash = OFF
1: state⇐ start
2: while true do
3: if state = start then
4: if pressed then
5: hopcount⇐ 0
6: flash⇐ ON
7: LEDIntensity ⇐ hopcount
8: nextState⇐ fade
9: end if

10: if minNeighborHopcount < radius then
11: nextState⇐ neighbor
12: end if
13: end if
14: if state = neighbor then
15: wait for waitInterval
16: hopcount⇐ minNeighborHopcount + 1
17: nextState⇐ fade
18: end if
19: if state = fade then
20: if #rounds mod rate = 0 then
21: hopcount⇐ hopcount + 1
22: LEDIntensity ⇐ hopcount
23: end if
24: if clock > fadePeriod then
25: resetStateV ariables
26: nextState⇐ wait
27: end if
28: end if
29: if state = wait then
30: wait for waitInterval
31: nextState⇐ start
32: end if
33: state⇐ nextState
34: end while

50

5.2. SPOTLIGHT ON PROTODECK

In Algorithm 1 we show the Spotlight state chart algorithm. The algo-
rithm makes use of node internal counters and timers. It consists of four
states: start, neighbor, fade, wait. All the nodes start in the start state
and hopcount equal to 255. Whenever the pressure sensor is pressed the
next state is fade, the node becomes a source(hopcount is 0), and the LED
intensity is set as a function of the hopcount(highest). While, if a node
detects the presence of a neighbor with hopcount less than radius the next
state is neighbor. This ensures the light pattern to span to within the radius
range(Figure 5.3b). The nodes in the neighbor state wait for waitInterval
determining the delay by which the light pulse propagates. When this in-
terval expires the node is in state fade and updates its hopcount. A node
stays in the fade state for a fixed fadeInterval, after which the wait state
is entered. In the fade state the hopcount is increased at a certain round
rate updating accordingly the LED intensity. This gives the pulsating circle
effect.

In conclusion, we show that our framework and the choice of using state
chart model for specifying algorithms is able to generate non trivial algo-
rithms and light patterns on protoDeck.

51

5.2. SPOTLIGHT ON PROTODECK

52

Chapter 6

Experimental Results

In this chapter we investigate via experiments the suitability of the previ-
ously described framework for the purpose of interactive design by means
of spatial computing. Moreover, this chapter provides the necessary infor-
mation to answer our research questions. To do that we perform several
experiments. We first show interactive applications that use spatial com-
puting primitives(Section 6.1). In Section 6.2 we benchmark SpatialeLua
memory consumption and performance with respect to the spatial applica-
tions and neighborhood configuration. In Section 6.4 we discuss the possible
issues that exist when shifting from simulation to the hardware platform.
In the end, we discuss our findings and the suitability of our framework.

6.1 Spatial Applications

For designing interactive environments consisting of a space filled with a net-
work of embedded devices, we strongly believe that using spatial computing
is a viable solution. We show example applications which demonstrate the
use of spatial, time, and spatial-time primitives for interactive design. We
use two version for each application: state chart version and a manually
implemented version. In the following, we present the Firefly, Gradient
and Spotlight application which respectively are used to show time, spatial,
and time-spatial capabilities of our platform. Finally, we compare the two
versions of the applications.

6.1.1 Time primitive - Firefly

In order to prove the temporal behavior of our platform we implement a
slightly modified Firefly algorithm of the Netlogo Firefly Algorithm [50](NFA).
The algorithm enables internal clock synchronization in a distributed net-
work of nodes with only local communication. Each node maintains a time
period(period) in which it glows for a certain time interval (glowTime). Syn-

53

6.1. SPATIAL APPLICATIONS

chronization is achieved by each node by resetting its internal clock (clock)
to the end of the glowing interval whenever it detects that at least one neigh-
bor is glowing. This keeps going until the nodes are synchronized. The NFA
is not suitable for nodes with low connectivity as it is in our case (example
line topology in Figure 6.1) [48].

Figure 6.1: Problematic node topology for NFA

In fact, it happens to node b to reset continuously when node a and c
flash in non-overlapping periods. To avoid that behavior we use a modified
version of the NFA which uses a threshold(listenTime) in which a node
listens for flashing neighbors. When this interval expires a node is able to
finish its period and start its glow interval.

6.1.2 Spatial primitive - Gradient

To test the spatial behavior we use an application that builds a hopcount
based gradient across the network. A pressure sensor on the node triggers
the gradient creation. Initially, every node has an infinite hopcount value.
As soon as a node’s pressure sensor is activated, it sets its hopcount to zero.
As a consequence, a node that detects a node in the neighborhood with a
lower hopcount than its own will set its hopcount to the smallest hopcount in
the neighborhood incremented by one. In that way, a distance measure from
a source is established. The gradient primitive is also a great building block
for interactive applications since it detects the presence of people triggering
a sensor. This might trigger every sort of action or effects in an interactive
environment. For example, it might show the direction to a certain source
by means of a gradient of light intensity on the protoDeck floor.

6.1.3 Time-Spatial primitive - Spotlight

Applications for interactive environment usually require both time and spa-
tial constructs. A perfect example is the previously presented application
Spotlight which makes use of time and spatial constructs to create a spotlight
like pattern (Section 5.2).

6.1.4 State Chart Generated vs Manual Version

As mentioned before, IDS produces executable code having a state chart
structure for Netlogo, Lua, and Proto. We consider the Lua generated code
that runs on SpatialeLua VM. In Figure 6.2 and Table 6.1 we show the com-
parison between state chart and manual version of the applications in terms

54

6.2. BENCHMARKS

of its script size. We use the script size as an indicator for the application
complexity. We can easily see that the script size of the IDS generated ap-
plications is much larger than the manual implementations. The reason is
that a state structure is less compact than a manually implemented algo-
rithm. However, as we will see later(Section 6.2) a smaller script size is not
synonym for faster execution time since it highly depends on branching. In
fact, state charts are characterized by a highly branched structure: only the
code of a specific state is executed at each round. As a consequence, the
expected linearity between script size and execution time is dropped.

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

Firefly

FireflySC

Gradient

GradientSC

SpotlightSC

A
p

p
lic

a
ti

o
n
 s

iz
e
 [

b
y
te

s]

Figure 6.2: Script size comparison for Lua
applications

Table 6.1: Application script
size

Application Size [bytes]

Firefly 914

FireflySC 1026

Gradient 970

GradientSC 1182

SpotlightSC 1686

6.2 Benchmarks

In order to answer the research question of whether it is possible to use
spatial computing in off-the-shelf virtual machines we perform benchmark
tests for memory consumption and performance on our embedded platform.
In this section, we present and discuss the benchmark results. First, we
show the memory consumption in case of both statically and dynamically
allocated memory. Afterwards, we present a performance analysis in terms
of execution time. For our tests we use the aforementioned spatial applica-
tions(state chart version and manual version). We compare both memory
consumption and performance with the Proto platform of the Snowdrop
project [48]. Since the latter is tailored for spatial computing application,
we decide to use it as the reference platform.

55

6.2. BENCHMARKS

6.2.1 Memory Consumption

The LPC1769 board comes with 64 kBytes of non-consecutive RAM consist-
ing of two chunks of 32 kBytes. For SpatialeLua we use both chunks. We ran
the same experiments several times for more reliable results. This Section is
organized as follows. We first show the statically and dynamically allocated
memory. Afterwards, we investigate the dynamic memory consumption of
each application as a function of the neighborhood size and/or number of
state variables. Finally, we compare the results with the Proto platform and
discuss the implications for our framework.

Statically Allocated Memory

Figure 6.3 shows the breakdown of the statically allocated memory. The
total amount of statically allocated memory is 4708 bytes of which 3220
bytes for the .bss and 1488 bytes for the .data segment.

 0

 1000

 2000

 3000

 4000

 5000

.data
.bss

M
e
m

o
ry

 u
sa

g
e
 [

b
y
te

s]

misc
malloc
eLuaComm
romfs
UART buffers

Figure 6.3: Static memory breakdown

The .bss is a data segment that contains all the uninitialized variables
that are declared at the file level. In our case, it mainly contains both the
transmission and the receiving buffer for each of the four UART ports(2048
bytes). Obviously, the reduction of the buffer size(256 bytes) for each UART
could significantly decrease the amount of allocated memory. The .bss seg-
ment also contains the ROM filesystem(romfs) tables required by eLua(64
bytes). The romfs is a table which is used to load the modules after startup

56

6.2. BENCHMARKS

of the VM. The remaining of the segment contains variables and data struc-
tures of eLua modules.

The .data segment contains all the global and static variables that are
explicitly initialized with a value. In our case, most part of the .data segment
is occupied by newlib’s malloc implementation.

Dynamically Allocated Memory

In Figure 6.4 we see the maximum dynamic memory allocation breakdown
for each application.

 0

 10000

 20000

 30000

 40000

 50000

 60000

firefly

firefly-SC

gradient

gradient-SC

M
e
m

o
ry

 u
sa

g
e
 [

kB
y
te

s]

Heap
UART stack
RomfsTab stack
Elua comm stack
App. modules

Figure 6.4: Dynamic memory consumption breakdown

We see that all the application have approximately the same memory
consumption. The only difference is the heap usage. That is as expected
since each application uses different functions of the ”spatialib” and therefore
it account for more or less memory usage. However, the heap usage is similar
and that is mostly due to the fact that the heap is used by the Lua interpreter
and the SpatialeLua modules’ data structures which do not differ from one
application to the other. The application modules’ byte-code consumes a
substantial quantity of RAM (13632bytes). This further expands into the
heap where the necessary data structure are allocated. In the following we
show the influence of the neighborhood size and the number of exchanged
state variables on the memory consumption. We show the overall memory
usage allocated by malloc and in addition we show the memory usage of
Lua. The overall memory consumption is used as indicator for the maximum
memory needed for the application to run on the embedded platform.

57

6.2. BENCHMARKS

Memory Consumption as function of the Neighborhood Size

In Figure 6.5 we show the memory consumption for the aforementioned
applications. As expected, the dynamically allocated memory has a clear
increasing linear trend: the memory allocation increases with the increase of
the neighborhood size. That is more clear in Figure 6.5a where the overall
memory consumption shows a linear trend for each application. We notice
that the state chart versions require more memory compared to its manual
version.

 51200

 51400

 51600

 51800

 52000

 52200

 52400

 52600

 52800

 53000

 1 2 3 4

M
e
m

o
ry

 u
sa

g
e
 [

b
y
te

s]

Neighbourhood size [# nodes]

Firefly
Firefly-SC
Dummy
Gradient
Gradient-SC

(a) System dynamic memory usage

 26800

 27000

 27200

 27400

 27600

 27800

 28000

 28200

 28400

 28600

 1 2 3 4

M
e
m

o
ry

 u
sa

g
e
 [

b
y
te

s]

Neighbourhood size [# nodes]

Firefly
Firefly-SC
Dummy
Gradient
Gradient-SC

(b) Lua dynamic memory usage

Figure 6.5: Dynamic memory usage with respect to the neighborhood size

A less clear behavior is observed in Figure 6.5b. In fact, Lua’s memory
consumption has still an increasing trend with the increase of the number

58

6.2. BENCHMARKS

of neighbors but the slope for each step is irregular. The measurements are
taken in the same runs but nevertheless they differ in terms of regularity. A
possible explanation might reside in the garbage collection strategy of Lua
which might take into account dead objects that have not been collected
when the measurement was taken. However, the overall dynamic memory
consumption is the most indicative and it shows that, increasing the neigh-
borhood size by one, the memory consumption increases by a value that
ranges from 300 to 400 bytes. In the future with a possible support for
radio communication medium these findings might be indicative. In fact,
this result signals that an increase in the neighborhood size is possible to a
certain extent since the platform’s memory is limited to 64 kBytes.

Memory Consumption with respect to the number of State Vari-
ables

Another aspect we investigate is the dynamic memory consumption as func-
tion of the number of state variables for each node. An increase in the
number of state variables implies an increased packet payload and more
information to be stored for each neighbor.

 51000

 51500

 52000

 52500

 53000

 53500

 54000

 54500

 1 2 3 4

M
e
m

o
ry

 u
sa

g
e
 [

b
y
te

s]

Neighbourhood size [# nodes]

4 SV
8 SV
12 SV

Figure 6.6: Overall dynamic memory consumption as a function of the neigh-
borhood size and number of state variables.

We perform the measurements using the FireflySC application. As ex-
pected, increasing the number of state variables implies a greater memory
consumption and a linear relation between memory consumption and neigh-
borhood size(Figure 6.6). In Figure 6.7 we show the increase ratio of the
memory consumption using as reference the one-node-neighborhood. For
greater number of state variables, meaning a greater neighbor information
table entry, corresponds a greater increase ratio. This is important in case
of for future developments of the platform. The limitation to 64 kBytes of

59

6.2. BENCHMARKS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4

M
e
m

o
ry

 i
n
cr

e
a
se

 r
a
ti

o
 [

%
]

Neighbourhood size [# nodes]

4 SV
8 SV
12 SV

Figure 6.7: Dynamic memory consumption increase ratio.

RAM might become an issue when increasing both neighborhood size and
the number of state variables.

Memory Consumption: eLua vs Proto

In this Section we compare SpatialeLua’s dynamic memory consumption to
the Proto platform [48]. We compare the two platforms using the Gradi-
entSC and FireflySC applications. In Figure 6.8 we see that SpatialeLua’s
memory consumption is one order of magnitude greater than Proto’s in both
cases. The exact values are shown in Table 6.2. The result is not surprising
since elua is a general purpose virtual machine and the spatial capabilities
are provided by modules which resides in RAM; while, Proto is a spatial
computing tailored virtual machine providing spatial capabilities at the op-
code level.

Platform GradientSC FireflySC

eLua 52872 52512

Proto 3920 4408

Table 6.2: Memory Consumption elua vs Proto.

However, it is interesting to see how the neighborhood size influences the
memory usage. In Figure 6.9a we see the memory increase in bytes as a
function of the neighborhood size for the Firefly application. The increase
uses as reference the one-node-neighborhood. Both FireflySC and FireflySC
in eLua consume more memory for all neighborhood sizes. On the other
hand, if we compare the increase ratio of the memory consumption, using
as reference always the one-node-neighborhood, we see that elua has lower
increase ratios than Proto(Figure 6.9b). However, that does not tell the

60

6.2. BENCHMARKS

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

Gradient-SC

Firefly-SC

M
e
m

o
ry

 u
sa

g
e
 [

b
y
te

s]

Proto
eLua

Figure 6.8: Dynamic memory usage comparison for Firefly and Gradient
application

whole story since in quantitative terms Proto behaves much better. In fact,
Proto has smaller increases in terms of bytes for each additional neighbor.

6.2.2 Performance

Interactivity is all about response time: interactivity needs a response time
from both the human and system to be of the same order. In order for
the system to be reactive to people’s actions we have to guarantee a re-
sponse time in order of the human perception time that is about 16.6ms.
In this Section, we perform execution time benchmarks to verify the plat-
forms performance. We investigate how SpatialeLua performs with respect
to application script size and neighborhood size. Moreover, we measure the
execution time distribution for the various tasks performed in a VM round
to provide the spatial computing capabilities such as communication, neigh-
borhood discovery, export update, and neighborhood information retrieval.
Afterwards, we compare our findings with the Proto platform.

Execution Time as a function of the script size

In Figure 6.10 and Table 6.3 we see the relation between execution time and
script size. It is clear that the script size cannot be used as an indicator of
complexity and predictor for how execution time behaves with the increase
of script size. As expected, Figure 6.10 confirms that due to branching the
state chart versions of the application do not have a linear relation between
execution time and script size.

61

6.2. BENCHMARKS

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4

M
e
m

o
ry

 i
n
cr

e
a
se

 [
b
y
te

s]

Neighbourhood size [# nodes]

elua-Firefly
elua-Firefly-SC
Proto-Firefly

(a) Increase rate of dynamic memory usage in eLua VM and Proto VM

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4

M
e
m

o
ry

 i
n
cr

e
a
se

 r
a
ti

o
 [

%
]

Neighbourhood size [# nodes]

elua-Firefly
elua-Firefly-SC

Proto-Firefly

(b) Increase ratio of memory consumption as a function of the neighbor-
hood size

Figure 6.9: eLua vs Proto memory usage comparison

Execution Time as a function of the neighborhood size

In Figure 6.11 we see the relation between the execution time and the neigh-
borhood size for each application. The influence of the neighborhood size
to the execution time is almost negligible and in the order of microseconds.
Another, aspect to notice is that the start chart version has not necessarily
higher execution time as its counterpart version.

Updating of neighborhood information is a frequent operation in spa-
tial applications. For example, determining the number of neighbors which
have their LED on. We measure the execution time distribution for net-
work information retrieval. Figure 6.12 shows the execution time distribu-

62

6.2. BENCHMARKS

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 200 300 400 500 600 700 800 900 1000 1100 1200

Ti
m

e
 [

m
s]

Script size [bytes]

Figure 6.10: Execution time with respect to
script size

Table 6.3: Application
script size

Application Size [bytes]

Dummy 276

Firefly 914

Gradient 970

FireflySC 1026

GradientSC 1182

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4

E
xe

cu
ti

o
n
 t

im
e
 [

m
s]

Neighbourhood size [# nodes]

Firefly
Firefly-SC

Dummy
Gradient

Gradient-SC

Figure 6.11: Execution time with respect to neighborhood size

tion for retrieving information from the neighborhood table data structure.
We investigate the worst-case scenario which correspond to the four-node-
neighborhood.

We see that the time is almost constant around 0.15ms which is good
news. However, outliers are possible and these can be close to double the
mean time.

SpatialeLua VM tasks’ execution time analysis

In Figures 6.13, 6.14, 6.15 we see the execution time distribution for the
three tasks performed at each virtual machine round. Each VM execution
round performs communication(neighborhood information update), export-

63

6.2. BENCHMARKS

Mean [ms] Std.Dev. [ms]

0.150 0.031

Figure 6.12: Neighborhood information retrieval time distribution.

ing(inform neighbors of state variable changes), and beaconing. In the box-
plots, we see that the execution times for each task are almost constant
within a certain range. The histograms help giving a better view of the ex-
ecution time distribution. A commonality is the presence of outliers which
might overshoot by more than 50%. The probability of these outliers hap-
pening in the same round is remote but not impossible. This might affect
the temporal correctness of the applications using timer or counters.

The last eventuality is investigated by studying the VM round execution
time. Figure 6.16 shows the execution time distribution of the virtual ma-
chine round. The round execution time is not the straightforward sum of the
tasks it consists of, since beaconing is performed periodically(every 32ms)
and the export task is only performed whenever a state variable has been
altered. In Figure 6.16 we see that the range between the smallest and the
greatest outlier goes from 0.375ms to 0.664ms.

Figures 6.13, 6.14, 6.15 and Figure 6.16 show similar distributions. In Ta-
ble 6.4 we summarize them by showing their mean and standard deviation.
As we can see, the export task takes the highest amount of time on average.
To notice, that the export and the beacon task have small standard devi-
ation. Both tasks rely on the eluaComm library. On the other hand, the
communication task comprises both the use of eluaComm and neighborhood
information data structure management which is Lua based. We see that,
in that case, the standard deviation is greater than in the other tasks. A
reason might reside in the fluctuation in execution time due to Lua code
interpretation. In addition, the fluctuations are most probably due to the
fact that some phases of the Lua garbage collection stop the Lua program
execution. This might explain the outliers in general.

64

6.2. BENCHMARKS

Figure 6.13: SpatialeLua’s Communication task execution time distribution

Task Mean[ms] Std.dev[ms]

Communication 0.392 0.273

Export 1.134 0.043

Beacon 0.833 0.036

VM Round 0.581 0.340

Table 6.4: Summary execution time distribution

The round execution time is of particular importance for our purpose since
it determines the response capabilities of our embedded platform when it
has to satisfy the response time constraints for responsive interactive ex-
periences. The measurements show that even though the greatest outlier

65

6.2. BENCHMARKS

Figure 6.14: SpatialeLua’s Beacon task execution time distribution

is about 3.6 ms for the VM round, SpatialeLua comfortably satisfies the
16.6ms requirement.

Performance: eLua vs Proto

In Figure 6.17 we compare the script and full loop(VM round) execution
time of eLua and Proto [48]. The script is the Firefly application. In case
of the script, elua performs better than Proto in both cases: elua’s average
and maximum execution time. However, that is not the case for the full
loop(including all VM tasks) execution times. We see that Proto performs
better than elua when we compare it to elua’s worst execution time. That
is not the case if we compare Proto with elua’s mean execution time.

66

6.3. ELUA OPTIMIZATIONS

Figure 6.15: SpatialeLua’s Export task execution time distribution

The difference in the full loop case resides mostly in the fact that the
spatial capabilities of eLua are implemented in Lua, while Proto’s spatial
capabilities are at the op-code level. That implies better performance since
the spatial capabilities are the key operations. Nevertheless, SpatialeLua
shows acceptable performance for being a general purpose virtual machine
adapted to spatial computing.

6.3 ELua Optimizations

As described in Section 2.6.2 it is possible to extend elua with both C mod-
ules and Lua modules. During the development process the initial focus

67

6.3. ELUA OPTIMIZATIONS

Figure 6.16: SpatialeLua VM round execution time distribution

was on getting a working version of the eLua VM with the necessary spatial
computing capabilities. Hence, the focus was not on performance or mem-
ory usage. Partly, it was due to the lack of experience with Lua and the
elua platform. That experience was achieved slowly during the development
process and in ambitious collaborations such as the Phototropia project at
ETH Zurich(see Section 5.1). In this Section we show how that experience
influenced the final version and what trade-off was accepted when choosing
whether to use C or Lua modules. Besides the language choice, we adjusted
the Lua modules in order to fully exploit Lua’s VM features [31]. In Ta-
ble 6.5 we show the modules of the initial version of SpatialeLua and the
added improvements.

68

6.3. ELUA OPTIMIZATIONS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Script

Full loop

E
xe

cu
ti

o
n
 t

im
e
 [

u
s]

Proto
eLuaAvg
eLuaMax

Figure 6.17: eLua vs Proto execution time comparison for script and appli-
cation loop.

Module Optimization Description

ADC Lua optimization
Exploit the Register-based property of
LUA: all variables and functions are
declared as local(stored into register).

PWM
Neighborhood
Application

Packet C module
Packet information and creation in C

Table 6.5: Summary execution time distribution

For most of the modules we decide to optimize the Lua code to better
exploit the register-based property of the Lua VM. These register are ta-
bles(stored in the Lua stack) that behave like registers. Each function can
use up to 250 registers. That means that the Lua pre-compiler can store
all local variables and functions in ”registers” that can be accessed very
fast in Lua [31]. From the performed benchmarks we know that the Neigh-
borhood module comprising communication and neighborhood information
management is the most time and memory consuming part of our platform.
Nevertheless, we decide to keep the implementation in Lua in favor of porta-
bility of the spatial capabilities. On the other hand, we converted the packet
information and creation module into a C module. The main reason is that
bitwise shifts are not possible in Lua and divisions take much more time. In
addition, the packet module is used most frequently and an implementation
in C appeared to be the most obvious choice.

69

6.3. ELUA OPTIMIZATIONS

Figure 6.18: SpatialeLua loop execution time distribution without optimiza-
tions

In Figure 6.18 we see the VM loop execution time distribution of the
initial not optimized version. The range spans from 2.77ms to 11.17ms that
is to wide and unreliable for our purposes.

Version Mean[ms] Std.dev[ms]

Not opt. 4.063 0.916

Opt. 0.581 0.340

Table 6.6: Mean and standard deviation for optimized and not optimized
elua.

In Table 6.6 we compare mean and standard deviation of the full loop for
both version optimized and not optimized. With the performed optimiza-
tion we are able to lower the mean execution time and standard deviation of
SpatialeLua with benefits for time reliability for our time constraint appli-
cations. As we see in Figure 6.19 the memory usage also improves. Overall,
we reduce the dynamic memory consumption by 4224 bytes.

These findings demonstrate that SpatialeLua can be further improved by
converting Lua modules to C modules. If a more domain specific version
would be necessary an area of further optimization would be represented
by the Neighborhood module. The reason are two: first, it contains the
greatest amount of table data structures which occupy much more memory
than arrays in C; second, the communication protocol is performed in this
module and optimizing it would imply a gain in performance. However,

70

6.4. SIMULATION VS. REAL WORLD

Version Lua [bytes] Overall [bytes]

Not opt. 31252 56736

Opt. 27880 52512

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

elua
Overall

M
e
m

o
ry

 u
sa

g
e
 [

b
y
te

s]
elua not optimized
eLua optimized

Figure 6.19: Dynamic memory usage comparison: elua with and without
optimizations

it is up to the design requirements and hardware platform to indicate the
direction to undertake.

6.4 Simulation vs. Real World

As mentioned before we provide DeckSim, a Netlogo based simulator which
models protoDeck floor. DeckSim is used to test the the behavior of the
distributed system and provide a visual feedback of the given design. In
this Section, we show to which extent DeckSim is able to simulate the real
world scenario. We use the Firefly, Gradient, and Spotlight application and
generate the Netlogo and Lua code. In Table 6.7 we show the outcome of
comparing simulation with real world.

Application DeckSim → protoDeck Differences

FireflySC different Time handling; no synchro-
nization in protoDeck

GradientSC identical No differences at all

SpotlightSC similar Radius light limit works; de-
crease of circle does not hap-
pen

Table 6.7: Comparison between simulation and real world

As expected, the shift from simulation to real world is problematic. As we

71

6.5. DISCUSSION

see in Table 6.7 the timing differences of simulation and real world influence
the visual feedback of the algorithm as well as the validity of the algorithm.
In fact, both FireflySC and SpotlightSC include time and in both cases
simulation and real world differ to some extent. Certainly, it depends on
how accurate DeckSim models the target platform. However, DeckSim can
be used in some cases as a preliminary algorithm verification tool.

6.5 Discussion

Our findings show that spatial computing is achievable with an off-the-shelf
virtual machine. We are able to construct time, spatial, and time-spatial
primitives for interactive applications. The benchmark results show that
SpatialeLua is able to satisfy the memory and performance requirements.
The memory consumption benchmarks emphasize the high memory usage
of the eLua VM. However, it shows that for the current target applica-
tion consisting of mesh-like network of interconnected embedded platforms
everything works fine. In terms of performance SpatialeLua proves to be
responsive enough for our purposes. The worst case loop execution time is
about 3.5ms and it is way lower than the limit of 16.6ms set by the hu-
man visual perception. If we compare SpatialeLua to the Proto platform
it is clear that Proto outperforms SpatialeLua in every performance related
aspect.

Results at hand we are able to answer our research questions(Section 1.3):

• By providing evidence through spatial computing applications for cre-
ating interactive user experiences on protoDeck we show the suitability
of spatial computing as a methodology for Interactive Design and Ar-
chitecture. Moreover, we show that architects need methods to specify
behaviors for large scale distributed systems(see user survey and Pho-
totropia project). Possible limitations to spatial computing might be
grasping the concept of locality and implicit communication by the
students and architects/designers. This was experienced in the col-
laboration and interaction with non-IT specialists(user survey, GUI
conceptualization, presentation in Zurich).

• The benchmark findings support the use of off-the-shelf virtual ma-
chines such as eLua for embedded platforms. The trade-off of such as
choice is the effort to create language-specific spatial capabilities. We
achieved that by implementing the necessary communication proto-
col, neighborhood management and spatial constructs modules. The
trade-off is represented by high memory consumption and lower execu-
tion time performance. A possible limitation can be represented by an
increase of the neighborhood size in case of radio medium support. In
that case, different factors like the modules memory consumption and

72

6.5. DISCUSSION

the limit on the maximum neighborhood size might represent a limit
for SpatialeLua. For that inconvenient the use of C modules instead of
Lua modules might be taken into consideration. Worth to mention is
the fact that we used the official release of the eLua VM(v0.8). In the
’bleeding edge’ version the byte-code of all the eLua modules does not
reside in RAM anymore and they are directly loaded from the flash
memory. In our case this would cause a drastic decrease in dynamic
memory usage of at least 13632 bytes. As benefits inherent to eLua
we mention the readability of the Lua code, easy maintainability and
extensibility of the VM, debugging tools, and a fast script execution.
Another positive point for eLua and Lua is the huge community behind
both projects. The development and user community is very active for
both eLua VM and Lua.

• With the creation of IDS we aim to hide the underlying technologi-
cal aspects and spatial computing concepts from end-users. For that
purpose we provide a state chart for local agent behaviors as well as a
CodeGenerator. The latter catalyses the specifications and generates
the code for the embedded platform(eLua in our case). IDS targets
protoDeck but it is designed to be extended with other target plat-
forms. Besides the generation of the application code from the state
chart, IDS generates the spatial library which specifies the data ex-
changed in the neighborhood and its interpretation. This offers the
possibility to come up with its own spatial abstractions. The down-
side of this approach is the flexibility in itself since it gives rise to
a more error prone scenario: syntax errors in the configuration files,
buggy spatial abstraction algorithms etc. Another aspect is sensor
calibration. The Phototropia experience uncovered the possible pit-
falls when dealing with unreliable sensors which may require hands on
the code or hardware. In these cases IDS fails and an engineer is still
required. However, magic does not exist.

In conclusion, in Table 6.8 we show a spec comparison between eLua
(Spatialelua) and Proto as platform for spatial computing.

First we mention aspects related to the VM typology such as VM type,
programming language type, and how spatial computing is achieved. In Ta-
ble 6.8 we rate(three stars highest) aspects such as memory usage, perfor-
mance, development tools, community support, code readability, and porta-
bility. In terms of memory consumption and performance, Proto outper-
forms eLua for obvious reasons such as VM type and and spatial computing
constructs. However, eLua provides great debugging tools which are inher-
ent to Lua, while Proto does not provide any at all. Which in the end
means more debugging time and low productivity. Another, factor con-
tributing to a lower productivity is code readability. For programmers with

73

6.5. DISCUSSION

Aspect eLua Proto

VM type general purpose spatial computing

Programming language procedural functional

Spatial Computing library instruction set level

Memory usage * ***

Performance ** ***

Devel. Tools *** *

Community support *** *

Code readability *** *

Portability ** *

Table 6.8: ELua vs Proto specs

a strong background in procedural languages(the majority), procedural pro-
gramming languages such as Lua are more readable and understandable
than functional languages such as Proto. Other aspects in favor of eLua
is the huge and active web community support and the continuous devel-
opment of eLua. This is not the case for Proto which is a stale project
with a slow update rate. Finally, eLua has a port for 19 different embed-
ded platforms which ease the work to bind the spatial computing features
since the underlying drivers and services are ready out-of-the-box. On the
contrary, Proto needs to be provided with the necessary drivers and commu-
nication library for a specific platform. In conclusion, we claim to be able
to provide a means to non-IT specialists to exploit the spatial computing
capabilities of an off-the-shelf virtual machine for the creation of applica-
tions for interactive environments. The choice of whether to chose Proto or
eLua resides depends on the importance given to the pros and cons of the
two platforms. If memory consumption is the key aspect than Proto is the
best choice. If memory is not an issue than eLua is clearly the best choice
for the aforementioned reasons.

74

Chapter 7

Conclusions

The purpose of this thesis was threefold: use spatial computing in interactive
environment design, show that spatial computing is possible is possible in off-
the-shelf virtual machines for embedded platforms, and show that it possible
to abstract or hide the underlying technological aspects(spatial computing)
from end-users. We do that, by providing a framework called Interactive
Design Studio targeting non-IT specialists such as designers and architects.

IDS targets protoDeck. ProtoDeck is part of ProtoSpace 3.0, a state of
the art multi-purpose facility designed for the development of non-standard,
virtual, and interactive architecture at the Faculty of Architecture of the
Delft University of Technology. The floor’s tiles are equipped each with an
LPCXpresso 1769 board from NXP. We provide a way to specify agent-level
algorithms via state charts XML. In order to hide the technological aspects
we implemented a CodeGenerator tool which can be tailored to a specific
target platform by means of configuration files. The tool takes as input
the SCXML and the platform specific configuration files and generates the
platform specific code. In our case, we decide to use eLua VM which is a
Lua based virtual machine for embedded platforms. In order to make spatial
computing possible, we extend eLua by providing the necessary drivers and
modules(eLuaComm and spatialib). We provide eLua(SpatialeLua) with
a communication protocol, neighborhood management and discovery, and
viral code dissemination. Worth to mention is the capability of defining
custom spatial abstractions by providing the CodeGenerator module with
the necessary configuration and library files.

We evaluate IDS and SpatialeLua using spatial(Gradient), time(Firefly),
and spatial-time(Spotlight) applications on protoDeck. By performing mem-
ory consumption and performance benchmarks we show that eLua VM is
suitable as platform for spatial computing and interactive installations.

In conclusion, we state that IDS provides a all inclusive spatial computing
tool-chain that enables architects/designer to design complex interactive
user experiences by abstracting away from technological aspects.

75

7.1. FUTURE WORK

7.1 Future Work

The IDS framework aims to provide all the necessary tools and features
that in our opinion are necessary to render accessible spatial computing for
non-IT specialists. Since it is the first version several aspects can be further
improved.

The agent-level algorithm specification in the form of state charts has to
be verified for more complex and diverse applications. Moreover, it is still
an open question whether it is the best way to interface a future GUI with
the CodeGeneration module.

The customizability of the CodeGenerator is major feature but can also
become the Achilles heel. In fact, in the current state there is no validity
control for the configuration and library files. This might endanger the
correct functioning of the whole tool-chain. On the other hand, the choice
of using the XML format facilitates the creation of a GUI -based validation
tool.

The benchmarks showed that eLua consumes quite a lot of RAM which
might limit the increase of the neighborhood size and the switch from wired
to wireless network. In that case, further platform specific optimizations
might help. Moreover, the choice of converting some Lua modules to C
might be considered since Lua data structures use more memory.

Finally, a workshop for architecture students using the tool would help
targeting the areas which have to be improved or rethought.

76

BIBLIOGRAPHY

Bibliography

[1] Arduino2max. http://www.arduino.cc/playground/interfacing/MaxMSP.
[2] Firefly. http://www.fireflyexperiments.com/.
[3] Firmata. http://www.arduino.cc/playground/Interfacing/Firmata.
[4] Grasshopper. http://www.grasshopper3d.com/.
[5] Maxuino. http://www.maxuino.org/.
[6] Processing. http://processing.org/.
[7] Rhino3d. http://www.rhino3d.com/.
[8] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy,

Thomas F. Knight, Jr., Radhika Nagpal, Erik Rauch, Gerald Jay Sussman,
and Ron Weiss. Amorphous computing. Commun. ACM, 43(5):74–82, May
2000.

[9] H. Abelson et al. Amorphous computing. Communications of the ACM,
43(5):74–82, 2000.

[10] M.P. Ashley-Rollman, S.C. Goldstein, P. Lee, T.C. Mowry, and P. Pillai. Meld:
A declarative approach to programming ensembles. In Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages
2794–2800, 2007.

[11] J. Bachrach and J. Beal. Building spatial computers. Technical report, Tech.
report, MIT CSAIL, 2007.

[12] Tobias Baumgartner, Sándor P. Fekete, Tom Kamphans, Alexander Kröller,
and Max Pagel. Hallway monitoring: distributed data processing with wireless
sensor networks. In Proceedings of the 4th international conference on Real-
world wireless sensor networks, REALWSN’10, pages 94–105, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[13] J. Beal and J. Bachrach. Infrastructure for engineered emergence on sen-
sor/actuator networks. Intelligent Systems, IEEE, 21(2):10 – 19, march-april
2006.

[14] Jacob Beal and Jonathan Bachrach. Programming manifolds. In André De-
Hon, Jean-Louis Giavitto, and Frédric Gruau, editors, Computing Media and
Languages for Space-Oriented Computation, number 06361 in Dagstuhl Semi-
nar Proceedings, Dagstuhl, Germany, 2007. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[15] J. Beal, S.O. Dulman, K. Usbeck, M. Viroli, and N. Correll. Formal and
Practical Aspects of Domain-Specific Languages: Recent Developments, chap-
ter Organizing the Aggregate: Languages for Spatial Computing, pages –. IGI
Global, 2012.

[16] Tilde Bekker, Janienke Sturm, and Berry Eggen. Designing playful interac-
tions for social interaction and physical play. Personal and Ubiquitous Com-
puting, 14:385–396, 2010. 10.1007/s00779-009-0264-1.

77

BIBLIOGRAPHY

[17] N. Biloria. Emergent technologies and design. eCAADe 23, pages 441–447,
2005.

[18] Bill Buxton. Sketching User Experiences: Getting the Design Right and the
Right Design. Morgan Kaufmann, first edition, March 2007.

[19] D. Coore. Botanical Computing: A Developmental Approach to Generating
Interconnect Topologies on an Amorphous Computer. Massachusetts Institute
of Technology, Department of Electrical Engineering and Computer Science,
1999.

[20] A. Crabtree, T. Hemmings, and T. Rodden. Pattern-based support for inter-
active design in domestic settings. In DIS 2002 Proceedings, pages 265–276.
ACM, 2002.

[21] Max/Msp Cycling’74. http://cycling74.com/.
[22] Tobi Delbrck, Adrian M. Whatley, Rodney Douglas, Kynan Eng, Klaus Hepp,

and Paul F.M.J. Verschure. A tactile luminous floor for an interactive au-
tonomous space. Robotics and Autonomous Systems, 55(6):433 – 443, 2007.

[23] S. Dulman. Robotics in Architecture, chapter Practical Programming of Large-
Scale Adaptive Systems. JapSam Books, 2012.

[24] eLua project website. http://www.eluaproject.net/.
[25] Tozer; David J. Fowler; Glenville C. E. Inter-bus system, 03 1988. Patent.
[26] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. Macro-

programming wireless sensor networks using kairos. In DCOSS, volume 3560
of LNCS, pages 466–466. 2005.

[27] M.H. Haeusler. Media facades: history, technology, content. Avedition, 2009.
[28] JC Hubers. Collaborative design in protospace 3.0. Changing roles; new roles,

new challenges, 2009.
[29] CCM (Caroline) Hummels, JP (Tom) Djajadiningrat, and CJ (Kees) Over-

beeke. Knowing, doing and feeling : communicating with your digital prod-
ucts. 2001.

[30] Roberto Ierusalimschy. http://www.lua.org/.
[31] Roberto Ierusalimschy. Programming in Lua, Second Edition. Lua.Org, 2006.
[32] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes.

The evolution of lua. In Proceedings of the third ACM SIGPLAN conference
on History of programming languages, HOPL III, pages 2–1–2–26, New York,
NY, USA, 2007. ACM.

[33] B Knep. http://www.blep.com/healingPool/.
[34] Joanna Kulik, Wendi Heinzelman, and Hari Balakrishnan. Negotiation-based

protocols for disseminating information in wireless sensor networks. Wirel.
Netw., 8(2/3):169–185, Mar. 2002.

[35] Wolfgang Lefevre, editor. Picturing machines 1400-1700, chapter The origins
of early modern machine design, pages 53–84. The MIT Press, 2004.

[36] Lamport Leslie. Computation and state machines.
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html,
April 2008.

[37] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: a self-
regulating algorithm for code propagation and maintenance in wireless sensor
networks. In Proceedings of the 1st conference on Symposium on Networked
Systems Design and Implementation - Volume 1, NSDI’04, pages 2–2, Berke-
ley, CA, USA, 2004. USENIX Association.

[38] Marco Mamei and Franco Zambonelli. Programming pervasive and mo-
bile computing applications: The tota approach. ACM Trans. Softw. Eng.
Methodol., 18:15:1–15:56, ’09.

78

BIBLIOGRAPHY

[39] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Tuples on the air: A
middleware for context-aware computing in dynamic networks. In Proceedings
of the 23rd International Conference on Distributed Computing Systems, ICD-
CSW ’03, pages 342–, Washington, DC, USA, 2003. IEEE Computer Society.

[40] Peter Marwedel and Peter Marwedel. Specifications and modeling. In Embed-
ded System Design, Embedded Systems, pages 21–118. Springer Netherlands,
2011. 10.1007/978-94-007-0257-8 2.

[41] F Morbini. http://code.google.com/p/scxmlgui/.
[42] R. Nagpal. Programmable self-assembly: constructing global shape using

biologically-inspired local interactions and origami mathematics. PhD thesis,
Massachusetts Institute of Technology, 2002.

[43] Radhika Nagpal and Marco Mamei. Engineering amorphous computing sys-
tems. In Federico Bergenti, Marie-Pierre Gleizes, Franco Zambonelli, and
Gerhard Weiss, editors, Methodologies and Software Engineering for Agent
Systems, volume 11 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, pages 303–320. Springer US, 2004. 10.1007/1-4020-8058-1 19.

[44] Radhika Nagpal, Howard Shrobe, and Jonathan Bachrach. Organizing a global
coordinate system from local information on an ad hoc sensor network. In
Proceedings of the 2nd international conference on Information processing in
sensor networks, IPSN’03, pages 333–348, Berlin, Heidelberg, 2003. Springer-
Verlag.

[45] B. Quinn. Textile Futures: Fashion, Design and Technology. Berg Pub Ltd,
2010.

[46] P Schachtschabel and L Suijker. http://msc1.hyperbody.nl/index.php/.
[47] Phototropia A self-sufficient architectural vision.

http://www.caad.arch.ethz.ch/blog/?p=2778.
[48] Karger Steffan. An embedded spatial computing platform for interactive en-

vironments. MSc thesis, TU Delft, July 2012. Snowdrop Project.
[49] Mirko Viroli, Matteo Casadei, Sara Montagna, and Franco Zambonelli. Spa-

tial coordination of pervasive services through chemical-inspired tuple spaces.
ACM Trans. Auton. Adapt. Syst., 6(2):14:1–14:24, June 2011.

[50] U Wilensky. Netlogo fireflies model, 1997.
http://ccl.northwestern.edu/netlogo/models/Fireflies. Center for Con-
nected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

[51] U. Wilensky. Netlogo, 1999. http://ccl.northwestern.edu/netlogo/.
[52] Franco Zambonelli and Marco Mamei. Spatial computing: An emerg-

ing paradigm for autonomic computing and communication. In Michael
Smirnov, editor, Autonomic Communication, volume 3457 of Lecture Notes
in Computer Science, pages 227–228. Springer Berlin / Heidelberg, 2005.
10.1007/11520184 4.

79

	Preface
	Introduction
	Context
	The Snowdrop Project
	Problem Statement
	Outline

	Background
	Interactive environments
	Interactive Design Software Frameworks
	Designer's World
	Design and the role of the Designer
	The role of Design in the Product Development Process
	Designer's means of communication
	Design Process Iteration

	User Survey
	Subject Profile
	Interactive Design in Architecture
	Prototyping Tools
	Programming Skills and Hardware Knowledge
	Design Process and Tools
	Conclusions

	Spatial Computing
	Lua and eLua
	Lua
	eLua

	Target Platform - ProtoDeck

	Software Framework Design
	Requirements
	Design Process
	Software Architecture
	Target Application

	Implementation
	Interactive Design Studio - IDS
	Graphical User Interface - GUI
	StateChart - XML for spatial computing
	CodeGenerator
	DeckSim
	Conclusions

	SpatialeLua Platform
	Platform Layer
	Middleware Layer
	Application Layer

	Spatial Computing primitives

	Applications
	Phototropia Project
	Setup and Application
	Experience

	Spotlight on protoDeck

	Experimental Results
	Spatial Applications
	Time primitive - Firefly
	Spatial primitive - Gradient
	Time-Spatial primitive - Spotlight
	State Chart Generated vs Manual Version

	Benchmarks
	Memory Consumption
	Performance

	ELua Optimizations
	Simulation vs. Real World
	Discussion

	Conclusions
	Future Work

