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Summary

To overcome the computational challenges of shock-dominated flows, shock-capturing meth-
ods have been developed. Existing shock-capturing operators are designed to only become
active in the vicinity of the shock and try to resolve the discontinuous solution on the com-
putational grid by adding artificial dissipation. Furthermore, they are robust and generally
applicable. The problem with these methods however is that their very working principle,
using artificial dissipation, not only results in a smearing out the shock but also introduces
an unphysical damping of turbulence. This is especially problematic for the simulation of
shock-turbulence interactions.

In this thesis a different approach to shock-capturing is proposed, one that does not smear out
the shock using dissipation but one that explicitly accounts for the unresolved scales which
are present near a discontinuity. In this case shocks are seen as sharp discontinuities, the
internal shock structure will not be investigated. It is also assumed that the element size is
larger than the shock thickness such that a shock can always be captured in one element. A
reasonable assumption as the shock thickness is usually of the order of the molecular mean
free path.

We limit our attention to the Burgers’ equation for which two cases are considered: a shock
that is stationary with respect to the mesh and a shock that moves through the mesh. For
the former case a multiscale analysis of the existing DCDD and Y Zβ shock-capturing op-
erators revealed the extent to which these shock-capturing methods approximate the exact
integrated effect of the unresolved scales. In this thesis Multiscale Shock-Capturing (MSC),
a shock-capturing parameter that reproduces the integrated effect of the unresolved scales
was developed. For the stationary shock, MSC outperformed the existing shock-capturing
methods used for reference.

For the moving shock it was found that taking into account the time dependency of the
unresolved scales is essential. Here Dynamic Multiscale Shock-Capturing (DMSC) method is
developed that achieves nodally exact solution for simple moving shocks. It is implemented
in a semi-discrete formulation using an Euler implicit time march demonstrating its viability
in practice. Applied to an idealized shock-turbulence interaction problem, DMSC performed
very well and clearly better than the existing DCDD and Y Zβ methods.
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Chapter 1

Introduction

Shock-turbulence interaction problems are among the most difficult type of problems in com-
pressible flow. Turbulence by itself is a complex phenomenon that is not fully understood,
shock waves interacting with turbulent compressible flow add another layer of complexity. For
supersonic and hypersonic vehicles, particularly the development of air-breathing engines for
those high-speed regimes, shock-turbulence interactions are very important. But also com-
mercial airliners pushing operating speeds to a point where shock waves start to form face
shock-turbulence interaction problems. Outside of aerospace, shock-turbulence interaction
problems are also of interest to astrophysics for simulations of explosions of supernovae and
to research on inertial confinement fusion (fusion energy).

This thesis deals only with numerical methods used for computing shock-turbulence interac-
tions. Interest in such methods rose around World War II when compressibility effects had
become increasingly important for the computation of blast waves and the design of aircraft
and rockets. To be able to solve problems where shock waves played a role, shock-fitting
methods were initially developed. These were largely based on the method of characteris-
tics. With growing computer power and more sophisticated shock-fitting methods, ever more
complex problems could be analysed. An account of the development of these early methods
can be found in Salas (2011). A downside of shock-fitting methods, however, is the difficulty
of handling complex shock structures in two or three dimensions. This is the reason why
nowadays shock-capturing methods are more popular.

1.1 Shock-capturing methods

Shock-capturing methods generally use artificial viscosity as a remedy against the oscillations
that tend to occur when trying to numerically obtain a solution with sharp gradients (Gibbs
phenomenon). They are less cumbersome than shock-fitting methods and applicable to general
problems, including problems with complex shock structures. The downside of this approach
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2 Introduction

is that this artificial viscosity tends to smear out the shock over a broad region and damps
physically correct oscillations resulting in an unphysical damping of the turbulence (Larsson,
2009). This is especially problematic for shock-turbulence interaction problems.

The development of shock-capturing methods for finite difference and finite volume discretiza-
tions has received significant attention since the 1970’s, with important milestones including
the development of total variation diminishing (TVD) and ENO/WENO schemes ( (W)ENO
stands for (weighted) essentially non-oscillatory) along with less costly more recent contribu-
tions. For an overview see Yee et al. (2001).

Similar concepts were used in the development of finite element methods. One of the ear-
liest stabilized finite element formulations was streamline upwind/Petrov-Galerkin (SUPG),
it was developed as an upwinding technique for finite elements (Brooks and Hughes, 1982).
It was later rewritten for entropy variables and a shock-capturing operator was added. This
shock capturing operator was just an additional operator working in tandem with SUPG
(Hughes and Mallet, 1986), it would only be active in the crosswind direction to iron out the
oscillations that the stabilization method, only working in the streamline direction, had failed
to address. That formulation was later improved by Le Beau and Tezduyar (1991) with a
new shock-capturing term, which later became known as δ91. Detailed analysis and proof of
convergence of these shock-capturing streamline diffusion methods was done by Johnson and
Szepessy (Johnson et al., 1990; Szepessy, 1989, 1991).

As a reference two recent shock-capturing methods are implemented and used throughout this
thesis. The formulation of their shock-capturing parameters is both more compact and more
efficient than δ91. The first of those methods is called Y Zβ discontinuity capturing. It was
introduced by Tezduyar (2004) and very good results were reported in Tezduyar and Senga
(2006, 2007); Tezduyar et al. (2006). The second method used as reference is the Discontinuity
Capturing Directional Dissipation (DCDD) method developed by Rispoli et al. (2007).

Exploiting the possibilities of adaptivity for finite element methods, Nazarov and Hoffman
came up with a combination of adaptivity and artificial viscosity for their shock-capturing
method (Nazarov and Hoffman, 2010). Most other shock-capturing methods are consistent, in
that their error will go to zero as the element size goes to zero. So using an adaptive method,
where the element size is reduced in the regions where the shock-capturing operator is active,
will improve results for all of these methods. It will not however solve the problem of the
flawed unresolved scale models being used for that artificial viscosity. For compressible flow
problems they report that turbulence and shocks are under-resolved (Nazarov and Hoffman,
2013).

Another possibility is to use spectrally vanishing viscosity (Tadmor, 1989). With this tech-
nique the dissipation term only becomes active in the part of the spectral approximation where
the frequency is high. Then there is also the entropy viscosity method developed by Guer-
mond, Pasquetti, Richard and coworkers (Guermond and Pasquetti, 2011; Guermond et al.,
2011). Which bases the artificial viscosity on the magnitude of entropy production.

A recent approach to shock-capturing using the variational multiscale method, is to enforce a
monotonic solution by constraining the basis (Evans et al., 2009). While this does give good
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1.2 Multiscale concept 3

results in the test cases of a steady convection-diffusion equation, it also implies an unresolved
scale model and it is unclear how it will influence models for unresolved turbulence. As such
it will be difficult to control the outcome of shock-turbulence interactions because the subgrid
scale model is in two places, one is given by the turbulence model and the other is implied
by the constraining of the basis.

These are all techniques that can prevent oscillations from occurring, but without the capacity
to discern physically correct fluctuations from numerical errors. It is therefore inevitable that
the methods mentioned above will, to some extent, distort turbulent fluctuations.

1.2 Multiscale concept

Any phenomenon dealing with turbulence is characterised by an intricate interplay of eddies
and whirls of different length scales. Things that happen at the smallest length scales influence
the largest length scales and vice versa, and computing what happens at all these length scales
is computationally very intensive (it is known as a Direct Numerical Simulation (DNS)). For
real-world problems a DNS usually takes too much time and computational resources. As a
result, only the dynamics of the larger scales are normally computed while the influence of
the unresolved smaller scales is modelled. This is known as a large eddy simulation (LES).

The conceptual development of unresolved-scale models (USM) requires a precise definition
of the resolved scales ū and the unresolved scales u′. Classically this is done using explicit
filtering, although this is not often used in practice. In this thesis the variational multiscale
concept is used for scale separation, as this clarifies scale separation in realistic computations.

This work will consider two-scale variational multiscale methods for which different scales are
represented by projection into subspaces: the variational statement of the problem at hand
is defined in a suitable mathematical space and different scales are given by projection into a
finite dimensional subspace for the large scales and into an infinite dimensional subspace for
the small scales.

1.3 Scope of this thesis

To effectively treat shock-turbulence interactions it seems desirable to consider the design of
USM’s in a framework which allows the unresolved effects of shocks and turbulence to be
considered directly. We need an approach to develop unresolved scale models where the con-
cepts of unresolved shocks and turbulence can be united. The variational multiscale method
provides a suitable framework for this, as it deals explicitly with the (approximation of) un-
resolved scales. As a first step towards a unified shock-turbulence unresolved scale model,
we will investigate if existing shock-capturing techniques have a multiscale interpretation,
and then develop exact unresolved scale models for shocks as a guide for developing future
shock-turbulence variational multiscale unresolved scale models. As the development of exact
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4 Introduction

USM’s can be laborious, we restrict our attention to a model equation for shock dynamics,
the (viscous) Burgers’ equation.

The content of this thesis is as follows: in Chapter 2 the variational multiscale method is
presented. The link with stabilization methods SUPG and variable subgrid scale stabilization
(V-SGS) is demonstrated for the convection-diffusion equation. The next chapter, Chapter 3,
treats the Discontinuity-Capturing Directional Dissipation and Y Zβ shock-capturing meth-
ods. These two shock-capturing methods will be used as a reference later on. Chapter 4 deals
with a stationary Burgers’ shock, a multiscale analysis is made of DCDD and Y Zβ and a new
shock-capturing method called Multiscale Shock-Capturing is developed. The more difficult
problem of a moving Burgers’ shock is tackled in Chapter 5. A new method called Dynamic
Multiscale Shock-Capturing is developed here by taking into account the dynamic influence of
the unresolved scales. Then, in Chapter 6 the Dynamic Multiscale Shock-Capturing method
is tested on a model shock-turbulence interaction problem and the results are compared to
the DCDD and Y Zβ methods. Finally the conclusions and recommendations are presented
in the last chapter.
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Chapter 2

The variational multiscale method

This chapter will introduce the approach and notation of the variational multiscale method
which is used to develop shock-capturing methods later in the report. Standard approaches
to the representation of u′ will also be introduced. These will be used in connection with the
shock-capturing operators.

In the introduction it was explained that stabilization methods used in compressible
flow computations are not enough to solve the problem of oscillations around disconti-
nuities. In the chapters after this one both streamline upwind/Petrov-Galerkin (SUPG)
(Brooks and Hughes, 1982) and variable subgrid scale (V-SGS) (Corsini et al., 2005) stabi-
lization will be used in combination with different shock-capturing operators. So not only the
stabilization will be tested but also the interaction with shock-capturing operators. SUPG
was designed as a finite element implementation of a stabilization technique first developed
for finite volume and finite difference methods: upwinding. It was discovered later that SUPG
can be interpreted as an approximation to the small-scale terms in a variational multiscale
decomposition. V-SGS was developed later, it is similar to SUPG but used the variational
multiscale framework from the onset.

In this work the focus will be on two-scale variational multiscale methods, where the large-
scale equation will be resolved and the small-scale equation will be modeled. This type of
method is a relatively recent development. In Hughes et al. (1998), an L2 projector was used
to decompose the solution as a sum: u = ū + u′ (with ū being the large scales and u′ the
small scales). Other projectors are also possible, as will be discussed in this chapter. For an
explanation of the function spaces and notation used, the reader is referred to Appendix B.
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6 The variational multiscale method

2.1 The abstract problem

If Ω ⊂ R
d is an open bounded domain with smooth boundary Γ, then a standard boundary-

value problem with Dirichlet boundary conditions would read: find u : Ω → R such that

Lu = f in Ω (2.1)

u = g on Γ. (2.2)

In the above equation L can be up to a second-order non-symmetric differential operator.
To keep this discussion compact, only Dirichlet boundary conditions are used here but other
boundary conditions can be used as well. Now let V ⊂ H1(Ω) be the weighting function space
and S ⊂ H1(Ω) the trial solution space. So the following holds:

u = g on Γ ∀u ∈ S (2.3)

w = 0 on Γ ∀w ∈ V . (2.4)

The equivalent variational problem statement is: Find u ∈ S such that ∀w ∈ V :

B(w, u) = F (w) (2.5)

with B( . , . ) being the bilinear form

B(w, u) = (w,Lu) (2.6)

and F (.) a linear form

F (w) = (w, f). (2.7)

Throughout this document the inner product notation ( . , . ) will be used (see Appendix
B and references therein for more details). As explained above the solution is split up,
decomposed as a sum of the large-scale and small-scale solution:

u = ū+ u′ (2.8)

w = w̄ + w′ (2.9)

note that now the trial function space and weighting function space are also decomposed as
S = S̄ ⊕ S ′ and V = V̄ ⊕ V ′ respectively. The boundary conditions now become:

ū = g on Γ ∀ū ∈ S̄ (2.10)

u′ = 0 on Γ ∀u′ ∈ S ′ (2.11)

w̄ = 0 on Γ ∀w̄ ∈ V̄ (2.12)

w′ = 0 on Γ ∀w′ ∈ V ′ (2.13)

The actual splitting of V and S is done by a linear projector P, this projector is called the
variational projector. The most used ones are the L2-projector

P̄L2 : u ∈ V → ū ∈ V̄ s.t. (w̄, ū) = (w̄, u) ∀w̄ ∈ V̄ (2.14)
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2.1 The abstract problem 7

and the H1-projector, or the H1 semi-norm projector:

P̄H1 : u ∈ V → ū ∈ V̄ s.t. (∇w̄,∇ū) = (∇w̄,∇u) ∀w̄ ∈ V̄ . (2.15)

The projector onto V ′ is called P ′, it is defined as P ′ = Ker(P̄).

u′ = u− ū = (I − P̄)u = P ′u (2.16)

The initial variational problem can now be rewritten as

B(w̄ + w′, ū+ u′) = (w̄ + w′, f) ∀w̄ ∈ V̄ , ∀w′ ∈ V ′ (2.17)

From (2.17) the following identities can be established:

B(w̄, u′) = (L∗w̄, u′) ∀w̄ ∈ V̄, u′ ∈ S ′, (2.18)

B(w′, ū) = (w′, Lū) ∀w′ ∈ V ′, ū ∈ S̄, (2.19)

B(w′, u′) = (w′, Lu′) ∀w′ ∈ V ′, u′ ∈ S ′, (2.20)

where L∗ is the adjoint operator of L, i.e. (w,Lu) = (L∗w, u). (2.17) can now be split up into
two problems (this is allowed because w̄ and w′ are linearly independent), the first problem
is:

B(w′, ū) +B(w′, u′) = (w′, f) ∀w′ ∈ V ′ (2.21)

or equivalently

(w′, Lū) + (w′, Lu′) = (w′, f) (2.22)

and the second one:

B(w̄, ū) +B(w̄, u′) = (w̄, f) ∀w̄ ∈ V̄, (2.23)

or equivalently

(w̄, Lū) + (L∗w̄, u′) = (w̄, f). (2.24)

The large-scale equation (2.24) contains a small-scale term that represents the influence of
the unresolved scales on the resolved scales. Stabilization methods following a multiscale
philosophy try to approximate this small-scale term. The small-scale solution can be expressed
in terms of its Green’s function:

u′(y) =

∫

Ω
g′(x, y)(f − Lū)(x)dx (2.25)

and because this small-scale Green’s function is generally not known it is usually approximated
by a parameter τ such that:

u′ ≈ τ(f − Lū). (2.26)

Note that this is a function of the large-scale residual R̄:

R̄ = Lū− f. (2.27)

For further details about this Green’s function, the reader is referred to Appendix A.1.
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8 The variational multiscale method

2.2 The link between stabilized methods and the variational
multiscale method

Stabilized Galerkin methods can generally be written in the form

B(w, u) +Bstab(w, u) = F (w) + Fstab(w) ∀w ∈ V (2.28)

Using the variational multiscale method explained in the previous section, (2.28) can be split
up into a large-scale and a small-scale equation. For non-linear problems, this assumption is
often made: B2(w

′, u′, u′) ≈ 0. Using (2.26), the large-scale equation of (2.28) can be written
as

(w̄, Lū) + (L∗w̄, τ(Lū− f))∪Ωe = (w, f) ∀w̄ ∈ V (2.29)

So now the small-scale term in that large-scale equation is expressed as a function of the
adjoint operator L∗, the small scale Green’s function (in this case approximated by τ) and
the large scale residual R̄ = Lū−f . In the subsequent sections the relation of this small-scale
Green’s function with τ will be analysed for the convection-diffusion equation. There are
different ways to approximate g′ which will result in a different τ , and different stabiliza-
tion methods. Here SUPG and V-SGS stabilization will be considered but note that other
stabilization methods may differ in the u′ terms that are included (e.g. GLS).

2.2.1 Convection-diffusion equation

The 1D scalar convection-diffusion equation is of the form:

a
du

dx
− k

d2u

dx2
= f(x) (2.30)

where a is a constant that determines the convection speed and k is diffusivity constant. Let
ux be the derivative of u with respect to x, uxx the second derivative, then (2.30) can be
formulated as

aux − kuxx = f(x). (2.31)

The solution of this equation on the domain Ω = [0, 1] ∈ R with boundary Γ and f = 0,
u(0) = u(1) = 0, a = 1, k = 0.01 will be the model problem considered for the next sections.
Note that the convection-diffusion differential operator can be written as

L = a
d

dx
− k

d2

dx2
, (2.32)

and its adjoint (for the case of zero Dirichlet boundary conditions) as:

L∗ = −a
d

dx
− k

d2

dx2
. (2.33)
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2.2 The link between stabilized methods and the variational multiscale method9

So the model problem can also be written as

Lu = 0 (2.34)

u(0) = 0 (2.35)

u(1) = 0. (2.36)

For the convection-diffusion equation, the Green’s function of interest can be computed

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Exact solution
Standard Galerkin

Figure 2.1: Solution of the 1D advection-diffusion problem with a = 1 and k = 0.01 using the
standard Galerkin method and 16 elements.

(see Appendix A.2) and the stabilization parameter τSUPG and τV−SGS are approximations
thereof. The exact solution of the model problem along with a finite element approximation
is given in Fig. 2.1.

2.2.2 SUPG stabilization

The SUPG stabilization parameter τSUPG is found by taking the average τexact (see A.44)
over the element domain:

τSUPG =
1

h

∫

Ωe

τexact(ζ)dΩe, (2.37)

=
−2k + ah coth

(
ah
2k

)

2a2
, (2.38)

=
h

2|a|

(

coth (Pe)−
1

Pe

)

(2.39)

MSc Thesis Jan Willem Van Langenhove



10 The variational multiscale method

where h is the element size, Pe is the element Peclet number Pe = |a|h
2k . This τexact is exactly

the Green’s function ge as derived in Appendix A.2.1. For this case with linear test functions,
SUPG is a special case of the variational multiscale method, where instead of the adjoint L∗,
only the advective part of the original differential operator is used (because ∂2w/∂x2 = 0) and
τ is used in the approximation of g′.

BSUPG(w, u) = (Ladvw, τLu) (2.40)

The SUPG formulation worked out for this example is

(w, aux) + (wx, kux) + (awx, τSUPG(aux − kuxx − f)) = (w, f) (2.41)

In this example the solution using this stabilization with linear elements is nodally exact, as
can be seen in Fig. 2.2. Which is clearly a lot better than the solution without stabilization
shown in Fig. 2.1.
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0.8

1.0

Exact solution
SUPG stabilization

Figure 2.2: Solution of the 1D advection-diffusion problem with a = 1 and k = 0.01 using SUPG
stabilization and 16 elements.

2.2.3 Variable subgrid scale stabilization (V-SGS)

The V-SGS method for compressible flows by Rispoli and Rafael Saavedra (2006) was devel-
oped with the variational multiscale framework of Hughes, using the insight that stabilization
can in some cases be seen as a manifestation of the subgrid scales.

In the original work of Rispoli and Rafael Saavedra (2006) the stabilization parameter is
derived for a parent element with domain [−1, 1], here however the parent element is taken
as [0, 1] so the τV−SGS computed here will be slightly different from their paper.
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2.2 The link between stabilized methods and the variational multiscale method11

In this method, the stabilization parameter τV−SGS is not the mean value over the element,
as with SUPG, instead it is exactly (A.44). So τV−SGS will vary over the domain, it can be
decomposed in a mean and a fluctuating term:

τV−SGS = τSUPG(1 + ffluct(ζ, Pe)), (2.42)

where the fluctuating part is

ffluct(ζ, Pe) = −1− 2ah2
ζ − 1 + e

2 a
|a|

Peζ
− e

2 a
|a|

Pe
ζ

e
2 a
|a|

Pe
− 1

(

coth (Pe)−
1

Pe

)−1

(2.43)

Fig. 2.3 shows the result of V-SGS stabilization on the example problem. The result is good,
but not quite as good as SUPG which uses a simpler approximation for τexact. The reason
for this is explained below.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Exact solution
V-SGS stabilization

Figure 2.3: Solution of the 1D advection-diffusion problem with a = 1 and k = 0.01 using V-SGS
stabilization and 16 elements.

2.2.4 Comparison of SUPG and V-SGS

The approximation of the small-scale element Green’s functions g′e of SUPG (τSUPG) and that
of V-SGS τV−SGS are plotted (on a single 1D element) in Fig. 2.4 and 2.5. From those figures
it is clear that τSUPG is just a constant, while τV−SGS varies over the element domain. V-
SGS was developed for quadratic elements, but in the computations here only linear elements
were used. We will stick to linear elements throughout this thesis to avoid making things
needlessly complicated later on. If V-SGS performs worse here than reported in literature the
restriction to linear elements is the cause.
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12 The variational multiscale method
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Figure 2.4: Comparison of τSUPG and τV−SGS when a > 0.
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Figure 2.5: Comparison of τSUPG and τV−SGS when a < 0.
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2.3 Summary of results 13

2.3 Summary of results

In this chapter the variational multiscale method was explained for a general abstract problem.
Then the SUPG and V-SGS stabilization were derived for an example problem where the
convection-diffusion equation was considered.

The reader should remember from this chapter how stabilization methods in the variational
multiscale framework try to approximate the influence of the unresolved scales on the large-
scale equation. The variational multiscale method is not just a way to split up a partial
differential equation (PDE) into multiple equations each describing the solution at different
scales, it also provides a framework to analyze and develop stabilization and shock-capturing
methods. In the next chapters, this idea will be used to try and find a multiscale interpretation
of existing shock-capturing operators as well to develop new shock-capturing methods.
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Chapter 3

Shock-capturing

In this chapter two existing shock-capturing methods are presented. They will be demon-
strated on two model problems to give the reader some insight into their performance. In
subsequent chapters, the shock-capturing methods presented here will be used to generate
reference solutions. The chapter will focus on their application to the Burgers’ equation,
which is used for later comparisons.

3.1 Burgers’ equation

Continuing with the same notation as in chapter 2, the variational form of Burgers’ equation
will now be presented. One important fact here is that it is a nonlinear equation, so when
looking at the VMS formulation of this equation one must make sure to correctly take into
account all the terms resulting from this nonlinearity.

For nonlinear problems, the problem B(w, u) = F (w) (see Eq. 2.5) is split up into B1(w, u)+
B2(w, u, u) = F (w) where B1 contains all the linear terms and B2 all the nonlinear terms.
B1 is a regular bilinear form, while B2 is a trilinear form.

The 1D Burgers’ equation is:

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f (3.1)

(3.2)

or in short notation:

ut + uux − νuxx = f. (3.3)

The corresponding Burgers’ operator L, linearized around u (see the nonlinear term uux as
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16 Shock-capturing

a(u)ux) is

L =
∂ ·

∂t
+ a(u)

∂ ·

∂x
−

∂

∂x

(

ν
∂ ·

∂x

)

(3.4)

L∗ = −
∂ ·

∂t
− a(u)

∂ ·

∂x
−

∂

∂x

(

ν
∂ ·

∂x

)

(3.5)

(3.6)

such that:

Lu =
∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
(3.7)

and then the variational form of the problem is:

(w,Lu) = (w, f). (3.8)

When Eq. 3.8 is expanded, the terms can be grouped into linear terms and nonlinear terms
(the linear terms will be collected into B1 and the nonlinear term into B2):

(w, u,t) + (w,x, νu,x)
︸ ︷︷ ︸

B1(w,u)

+(w, uu,x)
︸ ︷︷ ︸

B2(w,u,u)
︸ ︷︷ ︸

B(w,u)

= (w, f)
︸ ︷︷ ︸

F (w)

(3.9)

Variational Multiscale Formulation

The variational formulation Eq. 3.8 can be decoupled into two equations:

B(w̄, ū+ u′) = L(w̄) (3.10)

B(w′, ū+ u′) = L(w′) (3.11)

Worked out a bit further:

B1(w̄, ū) +B1(w̄, u
′) +B2(w̄, ū, ū) +B2(w̄, ū, u

′) +B2(w̄, u
′, ū) +B2(w̄, u

′, u′) = L(w̄)
(3.12)

B1(w
′, ū) +B1(w

′, u′) +B2(w
′, ū, ū) +B2(w

′, ū, u′) +B2(w
′, u′, ū) +B2(w

′, u′, u′) = L(w′)
(3.13)

And if the large-scale equation is worked out further the result is:

(w̄, ūt) + (w̄x, νūx) + (w̄, u′t) + (w̄x, νu
′
x) + (w̄, ūūx) + (w̄, ūu′x) + (w̄, u′ūx) + (w̄, u′u′x)

= (w̄, f)

(3.14)

More detail on the discretization of Burgers’ equation, including time-march, is provided in
Appendix C.
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3.2 Existing Shock-capturing methods 17

3.1.1 Case 1: Initial discontinuity

In this test case the initial solution takes the form

u(x, t = 0)

{

uL ∀x ≤ xs

uR ∀x > xs

here xs = 0.5, it is the initial shock position. And the viscosity is ν = 0.001.

3.1.2 Case 2: Steepening wave

In this test case the initial solution is a sine wave:

u(x, t = 0) = sin(2πx),

and as time goes by, this wave will steepen into a sawtooth-like shape, limited by the value
of ν, which was chosen as 0.001.

3.2 Existing Shock-capturing methods

Summarizing the works of Wilkins (1980), Noh (1987), Christensen (1990) and
Caramana et al. (1998), Scovazzi gives a good overview of the design requirements for clas-
sical shock-capturing operators in his PhD thesis (Scovazzi, 2004): “. . . design requirements
can be summarized as follows:

1. Dissipativity: the DC operator must be a dissipative operator (i.e., it must dissipate
energy), possibly - but not necessarily - defined through a viscosity operator.

2. Galilean Invariance: the DC operator must be invariant under Galilean transformations
of coordinates.

3. Rotation invariance: it is advisable, especially in problems involving convergent flows,
for the DC operator to be invariant under rotations.

4. The model should not introduce artificial dissipation along a surface of constant phase
(a surface along which the magnitude of the velocity is constant, with a possible change
in direction). An example of a surface of constant phase is a shock front, either planar
or curved, as in the case of cylindrical or spherical symmetry.

5. The DC operator must vanish for expansions, since the solution is smooth enough to be
accurately computed by the underlying numerical discretization. It is also advisable for
the DC operator to vanish in a zone of uniform compression, for which a second-order
code can represent the exact solution. Finally, it is of interest that the transition from
zones in which the DC operator is inactive, to zones in which it is different from zero,
be continuous.”
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18 Shock-capturing

Much in the same way as with stabilization, for shock-capturing a new term is added. So
using both stabilization and shock-capturing terms, the formulation for a general problem
would look like this:

B(w, u) + (Lstabw, τ(Lu− f))
︸ ︷︷ ︸

stabilization

+(∇w, kshock∇u)
︸ ︷︷ ︸

shock-capturing

= (w, f). (3.15)

3.2.1 Discontinuity-Capturing Directional Dissipation

A recent shock-capturing operator or discontinuity-capturing operator is the Discontinuity-
Capturing Directional Dissipation (DCDD) method proposed by Rispoli et al. (2007). The
DCDD artificial viscosity is defined as:

kshock = νshockrr − νshock(r · s)
2ss (3.16)

with νshock:

νshock =
1

2

(
||u||

uref

)2

(hDCDD)
2||ux|| (3.17)

and hDCDD = 2
(∑nfuns

a=1 |r∇Na|
)−1

, s = u
||u|| and r = ∇||u||

||∇||u|| || . The full term becomes:

nel∑

e=1

∫

Ωe

wxkshockuxdΩ

or when expanded fully:

nel∑

e=1

∫

Ωe

wx(kshockrr − kshock(r · s)
2ss)uxdΩ

The performance of DCDD for the two test problems both with and without stabilization is
demonstrated in Fig. 3.1 and 3.2.

3.2.2 Y Zβ shock capturing

Y Zβ shock capturing, uses a parameter kshock computed as follows:

kshock = νshockD (3.18)

where νshock is the magnitude and D is a matrix that determines the direction in which this
operator works. An isotropic operator is produced when D = I and νshock computed by:

νshock =
∣
∣
∣
∣Y −1Z

∣
∣
∣
∣

(
ndim∑

i=0

∣
∣
∣
∣

∣
∣
∣
∣
Y −1 ∂u

∂xi

∣
∣
∣
∣

∣
∣
∣
∣

2
)β/2−1(

hshock
2

)β

(3.19)
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Figure 3.1: DCDD with and without stabilization on initial discontinuity test case at t = 0.2,
using 16 elements plotted in red; the DNS is plotted in blue.
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Figure 3.2: DCDD with and without stabilization on the steepening wave test case at t = 0.4,
using 16 elements plotted in red; the DNS is plotted in blue.
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with

Y = uref

Z = u∇u

hshock = 2

(nfun∑

a=1

|j · ∇Na|

)−1

and unit vector j =
∇u

||∇u||
.

The parameter β is set to 1 for shocks that are somewhat smooth and to 2 for sharp dis-
continuities (Tezduyar and Senga, 2006), and nfuns is the number of basis functions. The
operator Z can also be taken as Lu − f , in that case Z is not an advective operator but
rather a residual-based one. In the latter case, the accuracy of the result depends less on the
chosen value for β and a sharper shock representation is possible (Bazilevs et al., 2007). For
the 1D Burgers’ equation this can be reduced to:

νshock =

∣
∣
∣
∣

1

uref
u
∂u

∂x

∣
∣
∣
∣

(
1

uref

∂u

∂x

)2(β/2−1)

(hshock)
β (3.20)

with hshock =

(nfun∑

a=0

∣
∣
∣
∣

∂u/∂x

||∂u/∂x||

∂Na

∂x

∣
∣
∣
∣

)−1

. (3.21)

In the expressions above, uref is some chosen reference solution. In this case uref will be taken
as un+1,i, the local solution at the previous iteration. When inserted into the variational form,
1D Burgers’ equation with YZβ discontinuity capturing becomes:

(w, ut + uux − νuxx) +



wx,

∣
∣
∣
∣

uux
uref

∣
∣
∣
∣

∣
∣
∣
∣

ux
uref

∣
∣
∣
∣

β−2
(nfun∑

a=1

∣
∣
∣
∣
j
∂Na

∂x

∣
∣
∣
∣

)−β

· uux



 = (w, f)

(3.22)

and when Z is a residual-based operator it becomes:

(w, ut + uux − νuxx) +



wx,

∣
∣
∣
∣

ut + uux − νuxx − f

uref

∣
∣
∣
∣

∣
∣
∣
∣

ux
uref

∣
∣
∣
∣

β−2
(nfun∑

a=1

∣
∣
∣
∣
j
∂Na

∂x

∣
∣
∣
∣

)−β

· uux



 = (w, f)

(3.23)

The results for Y Zβ are shown in Fig. 3.3 and Fig. 3.4.
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Figure 3.3: Y Zβ with and without stabilization on initial discontinuity test case at t = 0.2, using
16 elements plotted in red; the DNS is plotted in blue.

Jan Willem Van Langenhove MSc Thesis



3.2 Existing Shock-capturing methods 23

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

No stabilization

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

YZβ, β=1

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

YZβ, β=2

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

SUPG

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

SUPG+YZβ, β=1

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

SUPG+YZβ, β=2

0.0 0.2 0.4 0.6 0.8 1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

V-SGS

0.0 0.2 0.4 0.6 0.8 1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

V-SGS+YZβ, β=1

0.0 0.2 0.4 0.6 0.8 1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

V-SGS+YZβ, β=2

Figure 3.4: Y Zβ with and without stabilization on the steepening wave test case at t = 0.4,
using 16 elements plotted in red; the DNS is plotted in blue.
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3.3 Summary of results

As can be seen from the results in this chapter, both shock-capturing methods try to such
that it does not affect smooth parts of the solution but does stabilize the solution near
discontinuities.

For the steepening wave test case, adding shock capturing is not useful. It can be seen in Fig.
3.2 and 3.4 that stabilization is enough, extra shock-capturing only adds diffusion making the
solution less accurate (note that the result still depends on the mesh resolution, for a refined
mesh the situation might be different). In the other test case, with the initial discontinuity,
one can see the benefit of shock capturing. Fig 3.1 and Fig. 3.3 show shock-capturing in
action, over- and undershoots are eliminated, oscillations disappear and a smooth solution is
obtained. The main downside of the shock-capturing methods is also immediately clear: the
shock is smeared out over multiple elements. It can also be seen that DCDD is more diffusive
than Y Zβ.

Why these shock-capturing methods are designed the way they are and the reason they work
is not always clear. Determining the shock-capturing parameters seems to be more art than
science. That is why the next chapters treat the development of shock-capturing parameters
that are consistent with multiscale theory.
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Chapter 4

Multiscale shock-capturing for stationary

shocks

In this chapter an attempt will be made to explain the working of DCDD and Y Zβ shock-
capturing from a multiscale perspective. To what extent do they approximate the small-scale
terms needed to be consistent with multiscale theory?

Furthermore a new shock-capturing method is proposed which reproduces the integrated effect
of those small-scale terms for a shock that is stationary with respect to the mesh.

4.1 Stationary shock problem

Focus here will be on pure shock dynamics, for that the one-dimensional inviscid Burgers’
equation is used:

∂u

∂t
+

1

2

∂u2

∂x
= 0. (4.1)

Now take the case depicted in Fig. 4.1, with the inviscid Burgers’ equation as the governing
equation, that discontinuity will travel to the right as time progresses. Define a control
domain around the shock and let this control domain move with the shock, it will move with
velocity ẋ (which will be the same velocity as the shock speed). Because the control domain
will be moving with the shock, the equation inside that moving control domain will look a
little different. Integrating (4.1) and rewriting it for the moving control domain yields

∫

D

∂u

∂t
dD +

∫

D

∂
(
u2

2 − ẋu
)

∂x
dD = 0 (4.2)

⇐⇒

∫

D

∂u

∂t
dD +

∫

C

(
u2

2
− ẋu

)

· n dC = 0. (4.3)
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ẋ

xa xb

ū
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Figure 4.1: Sketch of the inviscid Burgers test case.

This control domain is basically the domain from xa to xb in Fig. 4.1, and the contours C are
the points xa and xb. Note that the figure is a snapshot and that the entire control domain
will be moving as the solution is time dependent. It is not defined in the beginning where
exactly within the control domain the shock should be, but the control domain should move
with the shock. This can be enforced by setting

∫

D

∂u

∂t
dD = 0. (4.4)

Under that condition, only the second term in (4.3) is left and, using the conventions from
Fig. 4.1, that becomes

(
u2L
2

− ẋuL

)

· n1 +

(
u2R
2

− ẋuR

)

· n2 = 0. (4.5)

With n1 = −1 and n2 = 1 the result is

−

(
u2L
2

− ẋuL

)

+

(
u2R
2

− ẋuR

)

= 0, (4.6)

⇒ ẋ =

u2
R

2 −
u2
L

2

uR − uL
=

uL + uR
2

. (4.7)

The solution can now be split up into a large- and small-scale solution: u = ū + u′, in the
variational form (4.1) now becomes

(w̄, ūt + u′t) +

(

w̄,
∂

∂x

(
(ū+ u′)2

2
− ẋ(ū+ u′)

))

= 0, (4.8)

setting ūt to zero and also assuming for now that u′t is negligible results in

(

w̄,
∂

∂x

(
ū2

2
− ẋū

))

+

(

w̄,
∂

∂x

(

ūu′ +
u′2

2
− ẋu′

))

= 0, (4.9)
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and the large-scale residual is now defined as

R =
∂

∂x

(
ū2

2
− ẋū

)

. (4.10)

By using integration by parts, (4.9) can be written as
(

w̄x, ẋū−
ū2

2

)

+

(

w̄x, ẋu
′ − ūu′ −

u′2

2

)

= 0. (4.11)

In the ideal case where ū is nodally exact, the large-scale solution will just be a linear inter-
polation between uL and uR:

ū = uL +
uR − uL

h
ξ, (4.12)

and its derivative with respect to the local spatial coordinate ξ will be

ūξ =
uR − uL

h
. (4.13)

Note that here ξ is defined as ξ = x − xa and 0 ≤ ξ ≤ h, ξ here is not the same as the
reference element coordinate, furthermore h is defined as h = xb − xa (the length of the
element containing the shock).

The small-scale solution u′ is discontinuous, and depends on the location of the discontinuity
ξs. For ξ ≤ ξs:

u′ξ≤ξs = uL − ū (4.14)

⇒ u′ξ≤ξs = −
uR − uL

h
ξ, (4.15)

and for ξ > ξs:

u′ξ>ξs = u2 − ū (4.16)

⇒ u′ξ>ξs = (uR − uL)

(

1−
ξ

h

)

. (4.17)

Knowing ẋ and ū, the large-scale residual (4.10) can now be written out as

R̄ =
∂

∂ξ

(

1

2

(

uL +
uR − uL

h
ξ

)2

−

u2
R

2 −
u2
L

2

uR − uL

(

uL +
uR − uL

h
ξ

))

(4.18)

= uL
uR − uL

h
−

u2R − u2L
2h

+
(uR − uL)

2

h2
ξ (4.19)

= −
(uL − uR)

2(h− 2ξ)

2h2
. (4.20)

From (4.9) it is easy to see that the small-scale terms contributing to the large scale solution
are represented by

(

w̄x, ẋu
′ − ūu′ −

u′2

2

)

(4.21)

the analytical expressions of these terms are known for this test case, they are plotted in Fig.
4.2. The next step is comparing the exact small-scale terms to the shock-capturing terms.
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Figure 4.2: Exact small scale terms that contribute to the large-scale solution, when uL = 1,
uR = 0 and ξs = 0.5.

4.2 Existing shock-capturing terms for the stationary shock
problem

Discontinuity-Capturing Directional Dissipation

The DCDD-term for the present test problem, as defined in section 3.2.1, reduces to

(wx, νshockux) (4.22)

=

(

wx,
1

2u2ref

(
2

∑nfuns

a=1 |j · ∇Na|

)2

(||∇||u|| ||) ||u||2ux

)

. (4.23)

And when using linear shape functions in 1D, this can be even further reduced to

(wx, νshockux) (4.24)

=

(

wx,
1

2u2ref
h2
∣
∣
∣
∣

∣
∣
∣
∣

∂||u||

∂x

∣
∣
∣
∣

∣
∣
∣
∣
||u||2ux

)

. (4.25)
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Y Zβ shock-capturing

The Y Zβ term, given in section 3.2.2, for this problem reduces to

(wx, νshockux) (4.26)

=




wx,

∣
∣
∣

∣
∣
∣

Z
uref

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣

ūx

uref

∣
∣
∣

∣
∣
∣

β−2

(∑nfuns

a=1 |j · ∇Na|
)β

ux




 , (4.27)

where Z is either the advective part of the original problem Ladv or the residual R. In this
test case Z will be taken to be the large-scale residual and taking linear shape functions,
(4.27) can be further reduced to

(

w̄x,

(
h

2

)β ∣∣
∣
∣

∣
∣
∣
∣

R̄

uref

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

ūx
uref

∣
∣
∣
∣

∣
∣
∣
∣

β−2

ūx

)

. (4.28)

4.3 Comparing shock-capturing terms to exact analytic terms

In the case of linear shape functions, the term (4.21) will in fact be the integral of −ūu′ −
1/2u′2 + ẋu′ multiplied by some constant as in this case the derivative of the test functions
will be just constants. For a shock-capturing term to have the correct effect, the integral
value, that is the term integrated over the element, needs to approximate that of the exact
small-scale effect given by (4.21). First define this integral of the exact small-scale effect as:

S =

∫ ξs

0
(−ūu′ − 1/2u′2 + ẋu′)dξ +

∫ h

ξs

(−ūu′ − 1/2u′2 + ẋu′)dξ, (4.29)

filling in the exact expressions for ū, u′ and ẋ and integrating results in

S = −
1

12
h(uL − uR)

2. (4.30)

Note that this expression is independent of the exact position of the discontinuity ξs. Taking
ūx as the derivative of the large-scale solution over the element with the shock, one can write
out the following relation

ūx =
uR − uL

h
, (4.31)

⇒ uL − uR = −ūxh. (4.32)

Using expression (4.32), equation (4.30) can be rewritten as

S = −
1

12
ū2xh

3. (4.33)

The surface S as a function of ūx and h is shown in Fig. 4.3. In Fig. 4.4 the surface
representing the value of the Y Zβ shock-capturing term, with β = 1 integrated over the
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ū x

−4

−2

0

2

4

S
Y
Z
β

-7.38

-5.74

-4.10

-2.46

-0.82

0.82

2.46

4.10

5.74

7.38

−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

Figure 4.5: Integral value of the Y Zβ term, with β = 2, as a function of the element size h and
the gradient over the element given by ūx = uR−uL

h
.

element as a function of ūx and h is plotted. The same with β = 2 is shown in Fig. 4.5. The
perfect shock-capturing operator for this test case would produce exactly the surface given in
Fig. 4.3. Obviously the Y ZB-term is not the perfect shock-capturing parameter here. The
difference between the two surfaces computed as Sexact−SY Zβ is plotted in Fig. 4.6 for β = 1
and in Fig. 4.7 for β = 2. The most obvious difference between the exact small-scale term
and the Y Zβ term is that the integrated value of the former is always negative, irrespective
of the sign of ūx while the Y Zβ term switches sign. Note that ūx > 0 means a step up and
ūx < 0 means a step down as depicted in Fig. 4.1. In this thesis we will focus on ūx < 0, as
a step up (expansion) would be unphysical in the context of fluid dynamics shocks. Even in
the part of the domain where ūx < 0, however the Y Zβ term does not fully display the ideal
behaviour. In Fig. 4.8 some cross-sections of the surface plots are shown where for each plot
h is fixed. In Fig. 4.9 cross-sections from the surface plots are depicted where in each plot
ūx is fixed. Clearly the dependency of S on ūx, uL and h is not fully captured by the Y Zβ
term. Furthermore for different values of ūx, uL and h, different values of β need to be found
to get the best results. All of the aforementioned plots were also generated for DCDD but
they are not printed here because they were very far off.
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ūx

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
h=0.5

Figure 4.8: Comparison of the integrated exact and Y Zβ terms for different values of h with
uL = 1 and uR a function of ūx.
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4.4 Multiscale shock-capturing (MSC)

From Fig. 4.8 and Fig. 4.9 it is clear that the Y Zβ shock-capturing parameter with β
either equal to 1 or 2 only approximates the exact value of the small-scale contribution, for
particular combinations of the element size and the height of the discontinuous step. Based
on the findings of the previous sections, one can now construct a shock-capturing operator
that mimics the behaviour of the small-scale term (wx,−ūu′ − 1/2u′2). It is not required that
this shock-capturing operator produces exactly the same result as in Fig. 4.2, as long as the
value integrated over the element approximates that of the exact term integrated over the
element domain. In other words the behaviour shown in Fig. 4.3 should be approximated by
this new shock-capturing operator.

From the previous section it is also clear that the value of the exact small-scales integrated
over the element is a function of uL, uR, h. Or, by rewriting uR as uR = (ūxh + uL), and
denoting uL, the inflow velocity, as uref , the value of the small-scale terms integrated over
the element can be seen as a function of ūx, h and uref . And so it seems natural to take the
following form as a starting point for the new shock-capturing term

MSC term =




w̄x, u

α
ref ū

β
xh

γRδ

︸ ︷︷ ︸

SMSC




 (4.34)

=






w̄x,

(

uαref ū
β−1
x hγRδ

)

︸ ︷︷ ︸

νMSC

ūx







. (4.35)

The relation between the exponents α, β, γ and δ is found by enforcing dimensional con-
sistency. Interpreting the solution of the Burgers’ equation as a velocity, with units length
per time [L/T ] means that the derivatives with respect to time will have units [L/T 2] and the
derivatives with respect to x will have dimension [1/T 2]. Where L and T signify length- and
timescales respectively. The original strong formulation of the problem

∂u

∂t
+ u

∂u

∂x
= 0 (4.36)

will therefore be in units [L/T 2]. If a term is added to the formulation, it should be dimension-
ally consistent. Term (4.35) is a result of an integration-by-parts operation that brings the
derivative to the test functions, originally the variational formulation for this specific term
would have been

(

w,
∂

∂x

(

uαref ū
β
xh

γRδ
))

. (4.37)

By applying integration by parts (assuming the term introduced here does not produce jump
terms at the boundaries) one then gets

−
(

w̄x, u
α
ref (ūx)

βhγRδ
)

. (4.38)
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This means that the units of the term ∂
∂x

(

uαref ū
β
xhγRδ

)

have to be [L/T 2] and after integration,

consequently the term uαref (ūx)
βhγRδ will have units [L2/T 2]. So now a relation between the

three exponents can be set up:

[
L

T

]α

︸ ︷︷ ︸

uα
ref

[
1

T

]β

︸ ︷︷ ︸

ūβ
x

[L]γ
︸︷︷︸

hγ

[
L

T 2

]

︸ ︷︷ ︸

Rδ

=

[
L2

T 2

]

. (4.39)

Collecting the exponents for [L] and [T ] yields a system of two equations,

{

α+ γ + δ = 2

α+ β + 2δ = 2,
(4.40)

now γ and δ can be expressed in function of α and β:

{

γ = 1− 1
2α+ 1

2β

δ = 1− 1
2α− 1

2β
(4.41)

Using these expressions for γ and δ, the MSC term can be rewritten with only α and β as
unknown exponents:

uαref ū
β
xh

1−1/2α+1/2βR1−1/2α−1/2β. (4.42)

The only thing left is to optimise α and β such that the value of this term, when integrated
over the element domain, SMSC approximates S (see Fig. 4.3), ideally the result would be:

∫ h

0
uαref ū

β
xh

1−1/2α+1/2βR1−1/2α−1/2βdξ = S = −
1

12
ūxh

3. (4.43)

And it turns out that α = 0, β = −2, γ = 0 and δ = 2 yields a perfect fit. With those
exponents the integral of SMSC over the element is an exact reformulation of S (see Eq.
4.33). The MSC term has now been determined to be:

MSC term =
(
w̄x,−R2ū−2

x

)
(4.44)

As (4.44) is a residual-based term, the formulation of the problem is consistent. The term is
dimensionally consistent, and there is no need for the tweaking the exponents or coefficients.

4.5 Results

The new MSC shock-capturing term will now be evaluated by trying it out on the model
problem sketched out in Fig. 4.1 with uL = 2 and uR = 1 (similar to the model problem
defined in section 3.1.1 except now the mesh is moving with the shock). To quantify the
results, the error must be measured. This will be done in two ways, in the L2 norm and in
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the H1 norm. Let u be the exact solution and uh be the approximate solution (the outcome
of the computations) on the domain Ω, then the L2 error is defined as:

eL2(Ω) = ||u− uh||L2(Ω) =

(∫

Ω
(u− uh)2dΩ

) 1
2

, (4.45)

and the H1 error is defined as:

eH1(Ω) = ||u− uh||H1(Ω) =

(

||u− uh||2L2(Ω) +
d∑

i=1

∣
∣
∣
∣

∣
∣
∣
∣

∂u

∂xi
−

∂uh

∂xi

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(Ω)

) 1
2

, (4.46)

where d is the number of dimensions of the domain. In all the computations discussed below,
the time discretization used is a 3rd order Runge-Kutta scheme where the mass matrix is
lumped and is updated at every time step. To prevent the results and conclusions from
being influenced by errors coming from the time discretization, the Courant number in the
computations is always kept fixed at 0.25. The Courant number is computed as

Cr =
uav∆t

h
, (4.47)

where uav is the average velocity in the domain. For the model problem with uL = 2 and
uR = 1 this becomes uav = 3/2.

4.5.1 Results of stabilization and shock-capturing methods

An overview of the results is given in Fig 4.10, in each computation only one stabilization
or shock-capturing method was used (no combinations of both). It is clear from this figure
that the MSC term works well for this case, the other shock-capturing methods smear the
shock out over multiple elements and also attenuate the shock strength as time progresses
(the shock strength should remain the same here). In Fig. 4.11 the L2 and H1 error is plotted
for different stabilization and shock-capturing methods. The element size was varied from 1/5
until 1/65 and the time step was varied as well to ensure the Courant number is equal to 0.25
in every computation. The data used to in Fig. 4.11 is also given in Table D.1 for the results
at t = 0.1 and Table D.2 for the results at t = 0.5.

4.5.2 SUPG stabilization with shock-capturing

The different shock-capturing methods can be used in combination with stabilization, in Fig.
4.12 the errors from computations where SUPG stabilization was combined with different
shock-capturing methods are plotted. The data used in Fig. 4.12 is shown in Table D.3
(t = 0.1) and Table D.4 (t = 0.5).
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Figure 4.10: Overview of the results at time t = 0.1 and t = 0.5. In all the runs, the Courant
number was kept at Cr = 0.25 (∆t = h/6 and the average velocity uav = 3/2).
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Figure 4.11: Overview of the L2 and H1 errors at time t = 0.1 and t = 0.5. In all the runs, the
Courant number was kept at Cr = 0.25 (∆t = h/6 and the average velocity uav = 3/2).
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Figure 4.12: Overview of the L2 and H1 errors at time t = 0.1 and t = 0.5 with SUPG
stabilization and different shock-capturing methods. In all the runs, the Courant number was
kept at Cr = 0.25 (∆t = h/6 and the average velocity uav = 3/2).
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4.5.3 SUPG stabilization with shock-capturing and shock-detection

The results shown in Fig. 4.12 are obtained by simply activating both SUPG stabilization
and the shock capturing method of choice over the entire domain. In the region around
the shock, both the stabilization and the shock-capturing will be active. To be consistent
with multiscale theory, it is better to choose to activate either the stabilization or the shock-
capturing operator to represent the unresolved scales. In Fig. 4.13 the errors are shown for
computations where a shock detector was used. When the shock detector detects a shock,
it turns off the stabilization on the element in which the shock was detected and it turns on
the shock-capturing method of choice. The shock detector in this case is a simple gradient
threshold.
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Figure 4.13: Overview of the L2 and H1 errors at time t = 0.1 and t = 0.5 for SUPG stabilized
computations with shock detection. In all the runs, the Courant number was kept at Cr = 0.25
(∆t = h/6 and the average velocity uav = 3/2).

4.5.4 V-SGS stabilization with shock-capturing

In Fig 4.14, the errors from computations where V-SGS stabilization was combined with
different shock-capturing methods are plotted. The data that makes up Fig. 4.14 is printed
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Figure 4.14: Overview of the L2 and H1 errors at time t = 0.1 and t = 0.5 for V-SGS stabilized
computations. In all the runs, the Courant number was kept at Cr = 0.25 (∆t = h/6 and the
average velocity uav = 3/2).
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in Table D.7 (t = 0.1) and D.8 (t = 0.5).

4.5.5 V-SGS stabilization with shock-capturing and shock-detection

The computations done in this section are almost the same as those in section 4.5.4, except
here shock-detection is used. The L2 and H1 errors are shown in Fig. 4.15 and the data is
printed in Table D.9 and Table D.10.
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Figure 4.15: Overview of the L2 and H1 errors at time t = 0.1 and t = 0.5 for V-SGS stabilized
computations with shock-detection. In all the runs, the Courant number was kept at Cr = 0.25
(∆t = h/6 and the average velocity uav = 3/2).

4.6 Summary of results

Overall one can see from the results in the previous chapter that the MSC-term does what it
was designed to do. It captures the shock accurately and better than any of the other shock-
capturing methods in the comparison. It must be noted though that this is a restricted case
and that it is also the test case for which MSC was specifically designed. The results above are
not sufficient to conclude that MSC holds preference over the other shock-capturing methods

Jan Willem Van Langenhove MSc Thesis



4.6 Summary of results 43

for general cases, they do however confirm that the design methodology works and that MSC
works for a stationary normal shock. For MSC, it is illogical to have both it and stabilization
turned on in the same element, this is confirmed by the results. For the other methods as well
it is not beneficial to have both the shock-capturing and stabilization activated simultaneously
for this test case. This not a new observation and usually shock-capturing methods contain
a mechanism to prevent a doubling of stabilization and shock-capturing (see for example
Hughes and Mallet (1986) or the research of Tezduyar and Rispoli on the use of Y Zβ shock-
capturing). Using both stabilization and shock-capturing is beneficial as long as they are not
active in the same direction at the same time. This can clearly be seen by comparing the
results in section 4.5.2 to those in section 4.5.3 (SUPG stabilization plus shock-capturing,
without and with shock-detection respectively) and 4.5.4 to the results in section 4.5.5 (V-
SGS stabilization plus shock-capturing with and without shock-detection respectively). Also
the MSC benefits from stabilization as very small oscillations before and after the shock are
cured by the stabilization.

Finally it is interesting to note that for the steady case, the details of u′ (the exact shock lo-
cation within the element) do not matter. Enough information exists to match the integrated
effect of u′ exactly.

In the next chapter, a more challenging case with a moving shock will be considered.
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Chapter 5

Multiscale shock capturing for moving shocks

A sketch of the problem under consideration in this chapter is shown in Fig. 5.1, a discontinu-
ity moving from one element (element 1) to the next element (element 2). This in contrast to
Ch. 4, where the shock position was fixed relative to the mesh. At time level n the shock is in
element 1 and at the next time level, n+1, it is in element 2. The shock-capturing parameter

u

x

uL

uR

element 1 element 2 element 3element 0

ū
n

ū
n+1

u
n

u
n+1

Figure 5.1: 1D diagram of the shock moving from one element to the next. The initial solution
is in green (the exact solution in dark green, the large-scale solution in bright green), the solution
at the next time step is drawn in red (the exact solution in orange and the large-scale solution in
bright red). Below the x-axis, the shape functions active on elements 1 and 2 are drawn.

developed in the previous chapter cannot be expected to work well for moving shocks as it
does not take into account any time dependent behaviour of the small scales. The result of
applying this steady shock-capturing operator to a moving shock is shown in Fig. 5.2. That
is clearly not a good result.
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Figure 5.2: Steady shock-capturing operator applied to a moving shock after one time step
(explicit Euler time step with ∆t = 0.0025 and h = 1/31).

5.1 Space-time formulation

In order to extend the MSC term developed in Chapter 4 to the case of moving shocks, a
space-time formulation is natural. In this setting, every space-time element has a domain Qn

e

as depicted in Fig. 5.3, the numbering with index e is analogous to the numbering of elements
in Fig. 5.1 and the superscript n denotes that t ∈ [tn, tn+1) in the element. The space-time
representation of the problem at hand is sketched in Fig. 5.4.Furthermore the boundaries in
time of the space-time elements are denoted by Ωn and Ωn+1 where n indicates the time level
tn.

t

ξe
Ω

n

+

Ω
n+1
−

P+
e

P−

e
Qn

e

h0

tn+1

tn

Figure 5.3: Space-time element Qn
e .
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Figure 5.4: Space-time diagram of the moving shock as it moves from one element to the next.

The idea used in Chapter 4 was to get a nodally exact large-scale solution ū by modelling
the small-scales u′ such that the integrated effect of the u′ terms produced the exact solution
u. As a guide to achieving this we first consider expressions for the exact u′. With a moving
shock in a space-time setting, this would mean that u′ also has a time dependency, the nodally
exact large-scale solution in space-time would then be as depicted in Fig. 5.5. The governing
equation here is the inviscid Burgers’ equation and the problem on a space-time domain
Q = [0, T ] × [0, 1] (one dimension in time and one in space), in variational form reads: find
u(t, x) ∈ S (S ⊂ H1(Q)) such that ∀w(t, x) ∈ V (V ⊂ H1(Q)) the following holds:

(

w,
∂u

∂t

)

Q

+

(

w,
1

2

∂u2

∂x

)

Q

= (w, f)Q, (5.1)

with initial condition

u(t = 0, x) =

{

uL ∀x ≤ x0s
uR ∀x > x0s,

(5.2)

where x0s is the position of the shock at t = 0. The boundary conditions are

u(t, 0) = uL,

u(t, 1) = uR.
(5.3)
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Figure 5.5: The nodally exact large-scale solution in space-time.

5.2 Semi-discrete formulation

Although space-time methods are very elegant, in practice they often require more compu-
tational effort to reach the same accuracy as modern semi-discrete methods. To be able to
use existing time-discretization schemes, a representation needs to be found that is discrete
in time. The first thing that is done to get a semi-discrete formulation is limit the choice of
test functions to functions that are independent of time (such that ∂w

∂t = 0). By applying
integration by parts, (5.1) can be written as

[(w, u)Ωn+1 − (w, u)Ωn ]−

(
∂w

∂t
, u

)

Q

+

[(

w,
u2

2

)

P+

−

(

w,
u2

2

)

P−

]

−

(
∂w

∂x
,
u2

2

)

Q

= (w, f)Q

(5.4)

and using the fact that ∂w
∂t = 0 this can be simplified to

[(w, u)Ωn+1 − (w, u)Ωn ] +

[(

w,
u2

2

)

P+

−

(

w,
u2

2

)

P−

]

−

(
∂w

∂x
,
u2

2

)

Q

= (w, f)Q. (5.5)

To keep things simple we will restrict ourselves to the implicit Euler discretization. Although
this is not a very efficient time march method, its simple form allows us to examine the
interpretation of semi-discrete methods with relative clarity. So the goal is to rewrite (5.1)
in the form of (5.6) plus possible extra terms such that it is still equivalent to the original
equation formulated in space-time. For (5.1) this results in

(

w,
un+1 − un

∆t

)

Ω

+

(

w,
1

2

∂
(
un+1

)2

∂x

)

Ωn+1

= (w, f)Ωn+1 (5.6)
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note here that for the first term the assumption was made that integration over Ωn is the
same as integration over Ωn+1 (Ωn = Ωn+1 = Ω) in other words, it is assumed that the
time boundaries of the domain do not change. Thus the first term of (5.6) is written as an
integration over Ω, and similarly the first term of (5.5): [(w, u)Ωn+1 − (w, u)Ωn ] can be written
as
(
w, un+1 − un

)

Ω
. So (5.5) now looks like this:

(
w, un+1 − un

)

Ω
+

[(

w,
u2

2

)

P+

−

(

w,
u2

2

)

P−

]

−

(
∂w

∂x
,
u2

2

)

Q

= (w, f)Q. (5.7)

Now divide both sides by ∆t:

(

w,
un+1 − un

∆t

)

Ω

+
1

∆t

[(

w,
u2

2

)

P+

−

(

w,
u2

2

)

P−

]

−
1

∆t

(
∂w

∂x
,
u2

2

)

Q

=
1

∆t
(w, f)Q,

(5.8)

then add and subtract
(

w, 1/2∂(u
n+1)2

∂x

)

Ωn+1
:

(

w,
un+1 − un

∆t

)

Ω

+
1

∆t

[(

w,
u2

2

)

P+

−

(

w,
u2

2

)

P−

]

−
1

∆t

(
∂w

∂x
,
u2

2

)

Q

+

(

w,
1

2

∂(un+1)2

∂x

)

Ωn+1

−

(

w,
1

2

∂(un+1)2

∂x

)

Ωn+1

=
1

∆t
(w, f)Q.

(5.9)

Now do the same trick with (w, f)Ωn+1 on the right-hand side

(

w,
un+1 − un

∆t

)

Ω

+
1

∆t

[(

w,
u2

2

)

P+

−

(

w,
u2

2

)

P−

]

−
1

∆t

(
∂w

∂x
,
u2

2

)

Q

+

(

w,
1

2

∂(un+1)2

∂x

)

Ωn+1

−

(

w,
1

2

∂(un+1)2

∂x

)

Ωn+1

=
1

∆t
(w, f)Q + (w, f)Ωn+1 − (w, f)Ωn+1 .

(5.10)

After rearranging the terms, the result is an equation that is still equivalent to (5.7) but
in the form of the implicit Euler discretization (5.6). This differs from a standard Galerkin
discretization by the terms in the square brackets:

(

w,
un+1 − un

∆t

)

Ω

+

(

w,
1

2

∂(un+1)2

∂x

)

Ωn+1

+

[

1

∆t

((

w,
u2

2

)

P+

−

(

w,
u2

2

)

P−

)

−
1

∆t

(
∂w

∂x
,
u2

2

)

Q

−

(

w,
1

2

∂(un+1)2

∂x

)

Ωn+1

−
1

∆t
(w, f)Q + (w, f)Ωn+1

]

= (w, f)Ωn+1 .

(5.11)
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As described in Chapter 2, the variational multiscale method can be used write (5.11) out as
a large-scale and a small-scale equation. The large-scale equation of (5.11) is then

(

w̄,
ūn+1 − ūn

∆t

)

Ω

+

(

w̄,
1

2

∂(ūn+1)2

∂x

)

Ω

+

[(

w̄,
u′n+1 − u′n

∆t

)

Ω

−

(

w̄,
1

2

∂(ūn+1)2 + 2ūn+1u′n+1 + (u′n + 1)2

∂x

)

Ω

+

(

w,
1

2

∂
(
2ūn+1u′n+1 + (u′n+1)2

)

∂x

)

Ωn+1

+
1

∆t

((

w̄,
u2

2

)

P+

−

(

w̄,
u2

2

)

P−

)

−
1

∆t

(

w̄x,
u2

2

)

Q

−
1

∆t
(w̄, f)Q + (w̄, f)Ωn+1

]

= (w̄, f)Ωn+1

(5.12)

which can be rewritten as
(

w̄,
ūn+1 − ūn

∆t

)

Ω

+

(

w̄,
1

2

∂(ūn+1)2

∂x

)

Ω

+

[(

w̄,
u′n+1 − u′n

∆t

)

Ω

−

(

w̄,
1

2

∂(ūn+1)2

∂x

)

Ω

+
1

∆t

((

w̄,
u2

2

)

P+

−

(

w̄,
u2

2

)

P−

)

−
1

∆t

(

w̄x,
u2

2

)

Q

−
1

∆t
(w̄, f)Q + (w̄, f)Ωn+1

]

= (w̄, f)Ωn+1 .

(5.13)

For the remainder of this chapter the forcing f will be assumed to be zero, in that case (5.13)
becomes:

(

w̄,
ūn+1 − n̄n

∆t

)

Ω

+

(

w̄,
1

2

∂(ūn+1)2

∂x

)

Ω

+

[(

w̄,
u′n+1 − u′n

∆t

)

Ω

−

(

w̄,
1

2

∂(ūn+1)2

∂x

)

Ω

+
1

∆t

((

w̄,
u2

2

)

P+

−

(

w̄,
u2

2

)

P−

)

−
1

∆t

(

w̄x,
u2

2

)

Q

]

= 0.

(5.14)

The term within the square brackets in (5.13) is what one needs to add to the implicit Euler
discretization to have a nodally exact large-scale solution ū. A good shock-capturing operator
will approximate the behaviour of this term. For f = 0, a term Ssc is defined as follows:

Ssc =

[(

w̄,
u′n+1 − u′n

∆t

)

Ω

−

(

w̄,
1

2

∂(ūn+1)2

∂x

)

Ω

+
1

∆t

((

w̄,
u2

2

)

P+

−

(

w̄,
u2

2

)

P−

)

−
1

∆t

(

w̄x,
u2

2

)

Q

]

(5.15)

With the exact solution (in green in Fig. 5.6 and Fig. 5.7) and the required large-scale
solution (defined in red in Fig. 5.6 and Fig. 5.7) known, the small-scale solution is then
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Figure 5.6: The exact (green) and large-scale solution (red) on element 1 and the subdivision of
Q1 with the exact from of u, ū and u′ on each subdomain.
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Figure 5.7: The exact (green) and large-scale solution (red) on element 2 and the subdivision of
Q2 with the exact from of u, ū and u′ on each subdomain.
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52 Multiscale shock capturing for moving shocks

obtained by subtracting the large-scale solution from the exact solution (u′ = u − ū). Now
that u, ū, and u′ are known, the terms from (5.15) can be computed exactly. The path of
the shock in space-time, going from element 1 to element 2, can be parametrised in terms
of t and ξ1 or ξ2. For simplicity we consider ξ1 and ξ2 being equivalent to the physical x-
coordinates on elements 1 and 2 respectively, each equal to zero at the start of the element.
So ξ1 = x − xe1 where xe1 is the x coordinate of the left-hand boundary of element 1 as
depicted in Fig. 5.8. Note that although the first two terms in (5.14) require integration over

ξ1 ξ2ξn
s

ξn+1
s

ts(ξ1)

ts(ξ2)

element 1 element 2

On element 1:

tc =
2

uL+uR

(h− ξn
s
)

ts(ξ1) =
2

uL+uR

(ξ1 − ξn
s
)

On element 2:

tc = ∆t− 2

uL+uR

ξn+1
s

ts(ξ2) =
2

uL+uR

(ξ2 − ξn+1
s

) + ∆t

te

∆t

0 x

tc

Figure 5.8: Parametrisation of the shock line ts(ξ) in elements e1 and e2.

Ω (so in the x direction) as is usual for a discrete-in-time implicit Euler formulation, within
the square brackets there are still some time integrations to be done for the terms on Q and
P . The parametrization shown in Fig. 5.8 will be used to compute these integrals in the next
section.

5.2.1 Semi-discrete formulation on element 1

With the inner products from 5.15 written out in integrals, the term Ssc can be written as

Ssc =

∫ h

0
w̄
u′n+1 − u′n

∆t
dξ −

∫ h

0
w̄
1

2

∂(ūn+1)2

∂x
dξ +

1

∆t

∫ ∆t

0
w̄(h)

u(h)2

2
dt

−
1

∆t

∫ ∆t

0
w̄(0)

u(0)2

2
dt−

1

∆t

∫ ∆t

0

∫ h

0

∂w̄

∂x

u2

2
dξdt

(5.16)

To compute this term, the integrals over the domain will be split up as indicated in Fig. 5.6:
element 1 is divided into four sub-domains where u, ū or u′ are defined differently. Applying
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5.2 Semi-discrete formulation 53

u, ū and u′ as given in Fig. 5.6, Ssc for this element becomes:

Ssc =
uR − uL

∆t

(
∫ h

0
w̄
ξ

h
dξ −

∫ h

ξns

w̄dξ

)

+

∫ tc

0
w̄

1

∆t

u2R
2
dt+

∫ ∆t

tc

w̄
1

∆t

u2L
2
dt− w̄(0)

u2L
2

−
1

∆t

(
∫ ξns

0

∫ ∆t

0

∂w̄

∂x

u2L
2
dtdξ +

∫ h

ξ2n

[∫ ts

0

∂w̄

∂x

u2R
2
dt+

∫ ∆t

ts

∂w̄

∂x

u2L
2
dt

]

dξ

)

=
uR − uL

∆t

(
∫ h

0
w̄
ξ

h
dξ −

∫ h

ξns

w̄dξ

)

+
w̄(h)

∆t

u2R
2

w

uL + uR
(h− ξns )

+
w̄(h)

∆t

u2L
2

(

∆t−
2

uL + uR
(h− ξns )

)

− w̄(0)
u2L
2

−
1

∆t

[
∫ ξns

0

∂w̄

∂x

u2L
2
∆tdξ +

∫ h

ξns

∂w̄

∂x

(
u2R
2

2

uL + uR
(ξ − ξns ) +

u2L
2

(

∆t−
2

uL + uR
(ξ − ξns )

))

dξ

]

(5.17)

Which, when worked out, results in

Se1
sc =

∫ h

0
w̄
uR − uL

∆t

ξ

h
dξ =

(

w̄,
uR − uL

∆t

ξ

h

)

Ω1

(5.18)

So for element 1 the entire term in the square brackets in (5.15) reduces to just (5.18). And
the semi-discrete formulation for this element becomes

(

w̄,
ūn+1 − ūn

∆t

)

Ω

+

(

w̄,
1

2

∂(un+1)2

∂x

)

Ω

+ Se1
sc = 0. (5.19)

The large-scale residual is defined as

R̄ =
ūn+1 − ūn

∆t
+

1

2

∂(ūn+1)2

∂x
(5.20)

and on element 1, substituting ūn+1 and ūn this becomes

R̄e1 = −
uR − uL

∆t

ξ

h
. (5.21)

Note the similarity between 5.18 and 5.21, 5.18 can also be written as

Se1
sc =

∫ h

0
w̄(−R̄e1)dξ =

(
w̄,−R̄e1

)
. (5.22)
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54 Multiscale shock capturing for moving shocks

5.2.2 Semi-discrete formulation on element 2

The same can be done for element 2, using the division of Q2 as given in Fig. 5.7 and applying
the u, ū and u′ as indicated, the term Ssc then becomes

Se2
sc =

∫ h

0
w̄
u′n+1 − u′n

∆t
dξ −

∫ h

0
w̄
1

2

∂(ūn+1)2

∂x
dξ +

1

∆t

∫ ∆t

0
w̄(h)

u(h)2

2
dt

−
1

∆t

∫ ∆t

0
w̄(0)

u(0)2

2
dt−

1

∆t

∫ ∆t

0

∫ h

0

∂w̄

∂x

u2

2
dξdt

=

∫ ξn+1
s

0
w̄

1

∆t

(
−(uR − uL)

h
ξ − 0

)

dξ +

∫ h

ξn+1
s

w̄
(uR − uL)

(

1− ξ
h

)

− 0

∆t
dξ

−

∫ h

0
w̄
1

2

∂

∂x

(

uL +
uR − uL

h
ξ

)2

dξ +
1

∆t

∫ ∆t

0
w̄(h)

u2R
2
dt

−
1

∆t

∫ tc

0
w̄(0)

u2R
2
dt−

1

∆t

∫ ∆t

tc

w̄(0)
u2L
2
dt

−
1

∆t

∫ ξn+1
s

0

∂w̄

∂x

(∫ ts

0

u2R
2
dt+

∫ ∆t

ts

u2L
2
dt

)

dξ −
1

∆t

∫ h

ξn+1
s

∫ ∆t

0

∂w̄

∂x

u2R
2
dtdξ

(5.23)

When worked out further, this reduces to:

Se2
sc =

∫ h

0
w̄

[
uR − uL

∆t

(

1−
ξ2
h

)

−
uR − uL

h

(

uL +
uR − uL

h
ξ2

)]

dξ2

=

(

w̄,
uR − uL

∆t

(

1−
ξ2
h

)

−
uR − uL

h

(

uL +
uR − uL

h
ξ2

))

Ω2

(5.24)

This means that for element 2 the semi-discrete formulation is
(

w̄,
ūn+1 − ūn

∆t

)

Ω

+

(

w̄,
1

2

∂(un+1)2

∂x

)

Ω

+ Se2
sc = 0. (5.25)

The large-scale residual as given in (5.20) for this element is

R̄e2 = −
uR − uL

∆t

(

1−
ξ2
h

)

+
uR − uL

h

(

uL +
uR − uL

h
ξ2

)

, (5.26)

and so Se2
sc can also be written as

Se2
sc =

∫ h

0
w̄(−R̄e2)dξ =

(
w̄,−R̄e2

)
. (5.27)

5.2.3 Result: shock moving from one element to its neighbour

In Fig. 5.9 the effect of the shock-capturing terms derived above is demonstrated. The domain
[0, 1] is divided into four elements and the initial solution is uL = 2, uR = 1 and the shock-
position at t = 0 is xs = 0.4. With a time-step size ∆t = 2/15 and the shock moving with
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5.3 Shock moving across multiple elements 55

us = (uL+uR)/2 = 1.5, the shock position after one time step will be xs(t = ∆t) = 0.6, which
is in the next element. The nodally exact large-scale solution is plotted together with the
computed solution. It is clear from Fig 5.9 that adding the Ssc terms, as derived in sections

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

1.2

1.4

1.6

1.8

2.0

2.2

u

t=0 ǫL2 =0
 ǫH1 =0

t=0.133333 ǫL2 =7.38797e-14
 ǫH1 =9.04876e-13

exact ū at t=0

exact u at t=0

exact ū at t=0.133333

exact u at t=0.133333

Figure 5.9: xs = 0.4 4 elements, ∆t = 2/15, one time-step Implicit Euler time march.

5.2.1 and 5.2.2, to the problem formulation produces the nodally exact large-scale solution.
This is also clear from the L2 and the H1 error of the computed solution (the convergence
tolerance for the corrector passes in the Newton iteration in this computation was 10−6).

5.3 Shock moving across multiple elements

In the previous section the focus was on the case where the shock moves from one element to
its neighbour. Now the case where the shock moves faster, and crosses multiple elements in
one time-step will be considered. The situation of a shock moving at a constant speed across
k elements is shown in Fig. 5.10. The situation for the first and last elements is exactly the
same as for element 1 and 2 from the previous section, only the value of tc, the time at which
the shock crosses the element boundary, will be different. However the analytic expression
is still the same. Thus the Ssc term for the first and last element will be the same the ones
derived in the previous section. All elements between the first and kth element can all be
characterised in the same way; this is shown in Fig 5.11. The Ssc term for the ith element
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Figure 5.10: Shock moving through multiple elements in space-time.
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Figure 5.11: The exact (green) and the large-scale (red) solution on element ei.
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can be derived by substituting u, ū and u′ as given by Fig. 5.11 into the expression for Ssc:

Ssc =

∫ h

0
w̄
u′n+1 − u′n

∆t
dξ −

∫ h

0
w̄
1

2

∂(ūn+1)2

∂x
dξ +

1

∆t

∫ ∆t

0
w̄(h)

u(h)2

2
dt

−
1

∆t

∫ ∆t

0
w̄(0)

u(0)2

2
dt−

1

∆t

∫ ∆t

0

∫ h

0

∂w̄

∂x

u2

2
dξdt,

resulting in

Sei
sc =

1

∆t

∫ t
(i)
c

0
w̄(h)

u(h)2

2
dt+

1

∆t

∫

t
(i)
c

w̄(h)
u(h)2

2
dt−

1

∆t

∫ t
(i−1)
c

0
w̄(0)

u(0)2

2
dt

−
1

∆t

∫ ∆t

t
(i−1)
c

w̄(0)
u(0)2

2
dt−

1

∆t

∫ h

0

∂w̄

∂x

[∫ ts

0

u2

2
dt+

∫ ∆t

ts

u2

2
dt

]

dξ

=
w̄(h)

∆t

u2R
2

2

uL + uR
(ih− ξns ) +

w̄(h)

∆t

u2L
2

(

∆t−
2

uL + uR
(ih− ξns )

)

−
w̄(0)

∆t

u2R
2

2

uL + uR
((i− 1)h− ξns )−

w̄(0)

∆t

u2L
2

(

∆t−
2

uL + uR
(i− 1)h− ξns

)

−
1

∆t

∫ h

0

∂w̄

∂x

[
u2R
2

2

uL + uR
(ξ − ξns + (i− 1)h) +

u2L
2
(∆t−

2

uL + uR
(ξ − ξns + (i− 1)h))

]

dξ

=
w̄(h)

∆t
(uR − uL)(ih− ξns ) + w̄(h)

u2L
2

− w̄(0)
uR − uL

∆t
((i− 1)h− ξns )

− w̄(0)
u2L
2

−
1

∆t

∫ h

0

∂w̄

∂x

[

(uR − uL)(ξ − ξns + (i− 1)h) +
u2L∆t

2

]

dξ,

(5.28)

and when this is worked out, it yields

Sei
sc =

∫ h

0
w̄
uR − uL

∆t
dξ =

(

w̄,
uR − uL

∆t

)

. (5.29)

For this element, the large-scale residual is

R̄ei =
ūn+1 − ūn

∆t
+

1

2

∂(ūn+1)2

∂x

= −
uR − uL

∆t
,

(5.30)

one can quickly see that, as in the previous case, the Ssc term can be written in terms of the
residual:

Sei
sc =

∫ h

0
w̄(−R̄ei)dξ =

(
w̄,−R̄ei

)
. (5.31)

5.3.1 Result: shock moving across multiple elements

In Fig. 5.12 the result is shown for the case where, on a 6 element mesh, the shock moves
from the second element to the fourth element. On element 2, the term (5.18) was used, on
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Figure 5.12: The shock moves from xs = 0.25 to xs = 0.58 on a 6 element grid. ∆t = 2/9 and
one Implicit Euler time step was taken.

element 3, the term (5.29) was used and on element 4 the term (5.24) was used. As can be
observed from Fig. 5.12, the result is the exact large-scale solution. One can also make the
shock move further in a single time-step, in that case the term (5.29) should be applied to all
but the first and last shock elements.

5.4 Shock moving within one element

There is one situation that has not yet been mentioned: the shock that moves but does not
leave the element. This situation is sketched in Fig. 5.13.

In this case the large-scale solution is constant in time and there are no discontinuities along
the time borders of the element, so here it is easier to derive the Ssc term without the inte-
gration by parts applied before. Starting with the original large-scale equation in variational
form:

(

w̄,
∂(ū+ u′)

∂t

)

Q

+

(

w̄,
1

2

∂u2

∂x

)

Q

= 0, (5.32)
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Figure 5.13: The exact (green) and the large-scale (red) solution when the shock moves but
stays in one element.

now add and subtract
(

w̄, 12
∂(ūn+1)2

∂x

)

Ω
and rearrange terms:

(

w̄,
∂(ū)

∂t

)

Q
︸ ︷︷ ︸

=0 ( ū is constant in time)

+

(

w̄,
1

2

∂(ūn+1)2

∂x

)

Ω

+

(

w̄,
∂u′

∂t

)

Q

−

(

w̄,
1

2

∂(ūn+1)2

∂x

)

Ω

+

(

w̄,
1

2

∂u2

∂x

)

Q
︸ ︷︷ ︸

Ssc

= 0.

(5.33)

By substituting the u, ū and u′ as given in Fig. 5.13, Ssc is computed:

Ssc =

∫ h

0

∫ ∆t

0
w̄
∂u′

∂t
dtdξ −

∫ h

0
w̄
1

2

∂(ūn+1)2

∂x
dξ +

1

∆t

∫ ∆t

0

∫ h

0
w̄
1

2

∂u2

∂x
dξdt

= −

∫ h

0
w̄

[

uL
uR − uL

h
+

(uR − uL)
2

h2
ξ

]

dξ.

(5.34)

And as before, a relation can be found between the Ssc term and the large-scale residual. The
large-scale residual for the element under consideration is

R̄ =
ūn+1 − ūn

∆t
+

1

2

∂(ūn+1)2

∂x

= uL
uR − uL

h
+

(uR − uL)
2

h2
ξ.

(5.35)

This means that Ssc, expressed in terms of the large-scale residual, is:

Ssc =

∫ h

0
w̄(−R̄)dξ =

(
w̄,−R̄

)
. (5.36)
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5.4.1 Result: shock moving within one element

When the term (5.34) is used for the specific case of the shock moving but staying within the
same element, then he result is the nodally exact large-scale solution. This is demonstrated
in Fig 5.14.
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exact u at t=0
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Figure 5.14: xs = 0.4 4 elements, ∆t = 0.05, one time-step Implicit Euler time march. The
shock stays within the element.

5.5 Dynamic Multiscale Shock-Capturing (DMSC)

To make all of the above useful, one needs to know when to apply which term and on what
elements to use them. To be able to do that, knowledge about the position of the shock at
time tn, the position at tn+1 and the shock strength (i.e. the values for uL and uR) is required.
The name coined here for a strategy that does that is Dynamic Multiscale Shock-Capturing
(DMSC). The term Dynamic emphasises the fact that, in contrast to some existing shock
capturing methods, time-dependent behaviour of the small scales was not neglected in the
derivations. In the computations done in this chapter and the next, the initial shock location
xs(t = 0) was given as well as the initial shock strength (uL and uR at t = 0). For subsequent

time steps, the new shock location at time n+1 is computed by xs(t
n+1) = xns+

uL(t
n)+uR(tn)

2 ∆t
(note that uL+uR

2 is the shock speed). With uL(t
n) and uR(t

n) being the value of the solution
in the middle of the element before and after the shock at time level tn respectively.

In the next chapter this method will be used on a problem that is a little more challenging
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than just a moving shock.
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Chapter 6

A model shock-turbulence interaction

problem

In the previous chapters the test case has been a stationary or moving Burgers’ shock. In
this chapter, upstream fluctuations will be added. This is a step towards shock-turbulence
interactions. This case does not mimic the complete interaction, in that it is dominated by
the effects of the fluctuations on the shock. It is still useful, however, for demonstrating the
potential of improved representations of the unresolved scales.

6.1 Test case

The spatial domain of the computation is [0, 1], a time-dependent Dirichlet boundary condi-
tion is imposed on the left-hand side and a non-reflecting boundary condition on the right
hand side. The solution at t = 0 is given as

u(x, t = 0) =

{

uL ∀x ≤ xs

uR ∀x > xs
(6.1)

with uL = 1, uR = 0.5 and xs = 0.2. The Dirichlet boundary condition on the left-hand side
(at x = 0) is given by

u(x = 0, t) = uL + 0.1 sin (2πt) .

This is a simple sine wave centered at uL with an amplitude of 0.1 and a period of 1 time
unit. The simulation will be run for a duration of 6 time units.

The interaction of these fluctuations resulting from the time-varying left-hand boundary con-
dition and the shock will cause the shock to increase in strength, and the mean shock speed
will increase. For this specific problem, no spectral transfer through the shock will occur.
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A good theoretical model explaining this process is given by Zank et al. (2002). This model
confirms that we should expect that the turbulent kinetic energy of those fluctuations will
cause an increased average shock strength and speed. To prevent the shock from running
out of our domain, the frame of reference will be moving with the initial shock velocity
ẋ = us(t = 0) = uL+uR

2 = 1+0.5
2 = 0.75. With the moving frame of reference, the boundary

condition on the left-hand side becomes:

u(x = 0, t) = uL + 0.1 sin

(

2π

(

t+
u∆t

ẋ

))

6.2 Results

Y Zβ, DCDD and DMSC results for a 32 element mesh are compared to the exact solution
in Fig. 6.1 and 6.2. In addition to the shock-capturing methods indicated, Fig. 6.1 used
SUPG stabilization whereas in Fig. 6.2 V-SGS stabilization was used. Note that for DMSC
the stabilization was only applied to elements where the shock-capturing was not active; for
the other shock-capturing the stabilization was active in the entire domain as this generally
gave better results in this case.
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Figure 6.1: Comparison of different shock-capturing methods for the test case at t = 6 on a 32
element grid with the DNS solution plotted in blue. In all computations SUPG was used as well
as the shock-capturing method mentioned above each plot.

In Chapter 4 it was observed that V-SGS stabilization is more dissipative than SUPG stabi-
lization. One can see this effect here again by comparing Fig. 6.1 to Fig. 6.2. It is also very
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Figure 6.2: Comparison of different shock-capturing methods for the test case at t = 6 on a 32
element grid with the DNS solution plotted in blue. In all computations V-SGS was used as well
as the shock-capturing method mentioned above each plot.

clear from the figures that DMSC outperforms the other methods. The next best performer
seems to be Y Zβ with β = 2, although in combination with V-SGS stabilization the shock is
highly dissipated.

To quantify the performance of the different methods and probe their sensitivity to grid
refinement, the errors of computations on a 32 (h = 0.03125) and a 64 (h = 0.015625)
element grid are plotted in Fig. 6.3 for the SUPG stabilized case and Fig. 6.4 for the V-SGS
stabilized case.

Just as in Chapter 4, the L2 error is defined as

eL2(Ω) = ||u− uh||L2(Ω) =

(∫

Ω
(u− uh)2dΩ

) 1
2

. (6.2)

A second error measurement is defined as the nodal error :

ǫnodal =

√
√
√
√

ne∑

i=1

(u(xi)− ū(xi))2, (6.3)

where xi is the x-coordinate of the ith node of the mesh.

Another interesting metric is how the shock position is affected by the different methods.
An overview of the shock location as a function of time is given in Fig. 6.5 for the SUPG
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Figure 6.3: Overview of the L2 and nodal error for SUPG stabilized computations with different
shock-capturing methods. The plots show the errors at t = 6 with respect to the DNS.
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Figure 6.4: Overview of the L2 and nodal error for V-SGS stabilized computations with different
shock-capturing methods. The plots show the errors at t = 6 with respect to the DNS.
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stabilized case and in Fig. 6.6 for the V-SGS stabilized case. The DMSC-line shows the shock
location as a function of time during the computation. As in the previous chapter, for the
DMSC, x̄s indicates the location of the shock in the large-scale solution. The shock location
is difficult to define for the shock-capturing methods that smear it out over several elements.
Therefore the shock location was defined by the coordinates where the absolute value of the
gradient was the greatest.
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Figure 6.5: The shock position as it moves in time on a 32 element grid with SUPG stabilization
and different shock-capturing mechanisms. Note that the shock position is indicated with respect
to a moving frame of reference, moving with the speed ẋ = 0.75. The shock location was defined
as the location where the absolute value of the gradient of the solution was largest.

It can be seen from Fig. 6.5 and Fig. 6.6 that the evolution of the shock location over
time with DCDD or Y Zβ shock-capturing is quite erratic. DMSC, however follows the mean
behaviour of the exact (DNS) solution quite accurately.
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Figure 6.6: The shock position as it moves in time on a 32 element grid with V-SGS stabilization
and different shock-capturing methods. Note that the shock position is indicated with respect to
a moving frame of reference, moving with the speed ẋ = 0.75. The shock location was defined
as the location where the absolute value of the gradient of the solution was largest.
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Chapter 7

Conclusions

In this final chapter an overview is given of the results obtained. Conclusions are drawn and
recommendations for improvements are given.

In Chapter 4 the small-scale term that influences the large-scale solution was derived for a
stationary 1D Burgers’ shock. It was shown that Y Zβ, with a certain value for β (depending
on the specific problem), approximates this exact term in the integral sense. Specifically the
Y Zβ term, when integrated over the element containing a stationary shock, approximates the
value of the exact term when integrated over that element. The Y Zβ integrand however does
not resemble the exact term. It is only their integrated values that are somewhat similar. In
contrast, the Discontinuity-Capturing Directional Dissipation(DCDD) was too dissipative and
was shown to be far off the mark when compared to the exact term. It can be concluded that
the Y Zβ term does, to some extent, behave as a multiscale approximation of the unresolved
scales. The same cannot be said of the DCDD term.

For the stationary Burgers’ shock, a residual based shock-capturing term was proposed: Mul-
tiscale Shock-Capturing (MSC). MSC was developed by starting out with a term inspired by
Y Zβ:

MSC term =




w̄x, u

α
ref ū

β
xh

γRδ

︸ ︷︷ ︸

SMSC




 ,

where the exponents were constrained to make SMSC dimensionally consistent. Then by
varying the exponents, within the constraints, a formulation was found that replicates the
small-scale term in the large-scale equation. MSC performed very well on the test problem,
results were clearly better than those achieved by the existing DCDD and Y Zβ shock-
capturing methods.

The MSC term can only be applied to problems for which the shock is stationary with respect
to the mesh. We therefore also examined the requirements for representing the shock moving
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relative to the mesh. An important finding of this work is that in order to achieve nodally
exact shock-capturing, the dynamic behaviour of that small-scale term is essential. Simply
applying MSC to a moving shock did not give good results as it does not take the time
dependency of that small-scale term into account.

Therefore a Dynamic Multiscale Shock-Capturing (DMSC) technique was developed in Chap-
ter 5. This was based on the derivation of the exact small-scale terms that appear in the
large-scale equation. Which made it possible for DMSC to obtain nodally exact solutions to
simple moving shocks. That the time dependency of the small scales is important has previ-
ously been stressed by Codina et al. (2007), yet the approach taken here to represent these
small-scale terms exactly is quite different. A semi-discrete approach with Euler implicit time
integration was used to demonstrate the viability of the approach in practice. Furthermore,
when combined with SUPG or V-SGS stabilization over the part of the domain not containing
the shock, the DMSC method performed very well for a more general shock-fluctuation inter-
action problem. Solutions were considerably better than those from existing shock-capturing
operators.

This work clearly shows that the way forward is towards more fidelity in the unresolved scale
models if one is looking for single element shock-capturing (only using ū to determine a shock-
capturing parameter will not suffice). Even when this unresolved scale model only takes onto
account the shock itself, not even the interaction of the fluctuation with the shock, the results
shown in Fig. 6.1, 6.2, 6.5 and 6.6 are significantly better than the existing shock-capturing
methods used for comparison. By using advanced analytical models of interactions of shocks
with turbulence, such as Wouchuk et al. (2009), it seems possible that high-fidelity unresolved
scale models can be constructed for real shock-turbulence interactions.

7.1 Recommendations

The next step is to extend MSC and DMSC to multiple dimensions and to systems of multiple
equations. MSC and DMSC can be used as an inspiration for methods applicable to the Euler
and Navier-Stokes equations. Going from Burgers’ equation to the Euler equations or the
Navier-Stokes equations will certainly not be trivial and it will be more difficult to obtain
exact expressions for small-scale terms which was already complicated for Burgers’, but that
is where the terms derived here can be used: as approximations to the exact small-scale terms
in the Euler or Navier-Stokes equations when they cannot be obtained exactly.

MSC and DMSC are called shock-capturing methods as their formulation resembles a residual
based shock-capturing term yet they are also different from regular shock-capturing methods
in that they need to be actively switched on and off at the shock. Ideally a shock-capturing
method automatically becomes active in the presence of shock and vanishes elsewhere. In that
respect MSC and DMSC resemble shock-fitting methods. Making MSC and DMSC more
generally applicable will require a shock-detection method to activate the shock-capturing
terms. Shock-detection methods already exist, and it is recommended to research to what
extent they can be used in combination with MSC and DMSC.
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DMSC can be extended to more sophisticated time-march methods. In this thesis the implicit
Euler time-march was used for DMSC because it was a very simple one. The performance of
DMSC could be improved by using more advanced time-march methods.
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Appendix A

Green’s Function

“The inverse of a linear differential operator is an integral operator, whose kernel is called the
Green’s function of the differential operator.”(chapter 10 in Hunter and Nachtergaele (2001))
What a Green’s function does qualitatively is best explained by this paragraph from “Green’s
functions: Introductory theory with applications” by G.F.Roach:

“The two point function G(x, y) is understood as describing that displacement of the system
at a point x which is due to a unit force applied at point y. It follows from the symmetry
of the function G(x, y) that G(x, y) also represents that displacement at y which is due to
a unit applied force at x. Consequently, if we multiply G(x, y) by an appropriate weighting
factor, and integrate over all possible points in the region of interest, we shall get that total
displacement of the system at the point y which is due to an applied force distributed according
to the behaviour of the function f(x). That is, we obtain the required solution to our problem.”

A.1 Expressing the small-scale solution in terms of a Green’s
function

Consider the abstract problem given in Chapter 2 and define the global Green’s operator G
as

u = Gf, (A.1)

it represents the Green’s function g : Ω× Ω → R:

u(y) =

∫

Ω
g(x,y)f(x)dx. (A.2)
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78 Green’s Function

Similarly one can define a small-scale Green’s operator G′ for the small-scale problem (2.22),
the small-scale Green’s function is a function g′ : Ω× Ω → R s.t.:

u′(y) =

∫

Ω
g′(x,y)(f − Lū)(x)dx (A.3)

u′ = G′R′(ū) (A.4)

with R′ being the residual of the large-scale solution projected onto the fine scales:

(w′, R′(ū)) = F (w′)−B(w′, ū) ∀w′ ∈ V ′. (A.5)

So the small scales u′ are a function of the residual of the large scales f − Lū. Note however
that g′ is defined in the space V ′ and so it is not the Green’s function associated with the
strong form of (A.3). An exact expression for G′ was found by Hughes and Sangalli (2007):

G′ = G − GPT (PGPT )−1PG (A.6)

By substituting (A.4) into (2.24) the following is obtained:

B(w̄, ū) + (L∗w̄, G′(f − Lū)) = (w̄, f) ∀w̄ ∈ V̄ , (A.7)

with

(L∗w̄, G′(f − Lū)) =

∫

Ω

∫

Ω
(L∗w̄(y)g′)(x,y)(f − Lū)(x)dxdy. (A.8)

Note that (A.7) is an exact equation for the large scales (remember that (2.17) was split up
into two problems: one for the large scales and one for the small scales).

In the finite element method the domain Ω is split up into elements with domain Ωe and
boundary Γe, the domain Ω′ is defined as as the union of the element domains and Γ′ is the
union of the element boundaries modulo the element interfaces (Γ):

Ω′ = ∪nel
e=1Ω

e

Γ′ = (∪nel
e=1Γ

e) Γ
(A.9)

Furthermore J·K is the jump operator and b∗ is the boundary operator.This means that now,
by integration by parts, the following should hold:

B(w̄, u′) =

nel∑

e=1

(
L∗w̄, u′)Ωe + (b∗w̄, u′)Γe

)
, (A.10)

= (L∗w̄, u′)Ω′ + (Jb∗w̄K, u′)Γ′ , (A.11)

= (L∗w̄, u′)Ω. (A.12)

B(w′, ū) =

nel∑

e=1

(
w′, Lū)Ωe + (w′, bū)Γe

)
, (A.13)

= (w′, Lū)Ω′ + (w′, JbūK)Γ′ , (A.14)

= (w′, Lū)Ω. (A.15)
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B(w′, u′) =

nel∑

e=1

(
w′, Lu′)Ωe + (w′, bu′)Γe

)
, (A.16)

= (w′, Lu′)Ω′ + (w′, Jbu′K)Γ′ , (A.17)

= (w′, Lu′)Ω. (A.18)

With the above equations in mind the exact expression for u′ becomes:

u′(y) =

∫

Ω
g′(x,y)(f − Lū)(x)dx (A.19)

=

∫

Ω′

g′(x,y)(f − Lū)(x)dx−

∫

Γ′

g′(x,y)JbūK(x)dx (A.20)

=

nel∑

e=1

(∫

Ωe

g′(x,y)(f − Lū)(x)dx−

∫

Γe

g′(x,y)(bū)(x)dx

)

(A.21)

By substituting (A.21) into (A.7), the exact expression for the small-scale effect on the large
scales is:

(L∗w̄, G′(Lū− f)) = −

∫

Ω

∫

Ω
(L∗w̄)(y)g′(x, y)(Lū− f)(x)dΩxdΩy

= −

∫

Ω′

∫

Ω′

(L∗w̄)(y)g′(x, y)(Lū− f)(x)dΩxdΩy

−

∫

Ω′

∫

Γ′

(L∗w̄(y)g′(x, y)JbūK(x)dΓxdΩy

−

∫

Γ′

∫

Ω′

Jb∗w̄K(y)g′(x, y)(Lū− f)(x)dΩxdΓy

−

∫

Γ′

∫

Γ′

Jb∗w̄K(y)g′(x, y)JbūK(x)dΓxdΓy

= −

nel∑

e=1

nel∑

l=1

(∫

Ωe

∫

Ωl

(L∗w̄)(y)g′(x, y)(Lū− f)(x)dΩxdΩy

−

∫

Ωe

∫

Γl

(L∗w̄(y)g′(x, y)(bū)(x)dΓxdΩy

−

∫

Γe

∫

Ωl

(b∗w̄)(y)g′(x, y)(Lū− f)(x)dΩxdΓy

−

∫

Γe

∫

Γl

(b∗w̄)(y)g′(x, y)(bū)(x)dΓxdΓy

)

(A.22)

All of the above exact expressions are very nice, but in practice, u′, G and G′ are not known
and so approximations are needed.
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A.2 The exact Green’s function for the convection-diffusion
equation

From the definition of the Green’s function, one can see that the element Green’s function of
the convection-diffusion problem (2.36) must satisfy

−a
∂ge(x, y)

∂x
− k

∂2ge(x, y)

∂x2
= δ(x, y) ∀x ∈ Ωe (A.23)

and

ge(x, y) = 0 ∀x ∈ Γe. (A.24)

Using ξ as the reference element coordinate and x as the physical coordinate, then in the case
of linear shape functions, the Jacobian of the mapping from the reference element to physical
coordinates is:

J =
∂x

∂ξ
= x,ξ = h (A.25)

with h being the element size. The Jacobian of the inverse mapping, form physical to reference
coordinates is then:

J−1 =
∂ξ

∂x
= ξ,x =

1

h
. (A.26)

This means that the relation of the Dirac delta function on the parent element and physical
coordinates is:

δ(x, y) = J−1δ(ξ, ζ) =
1

h
δ(ξ, ζ). (A.27)

Now transferring (A.23) to the parent element yields:

−(J−1)age(ξ, ζ),ξ − (J−1)2kge(ξ, ζ),ξξ =(J−1)δ(ξ, ζ)

−age(ξ, ζ),ξ − (J−1)kge(ξ, ζ),ξξ =δ(ξ, ζ)

−age(ξ, ζ),ξ −
1

h
kge(ξ, ζ),ξξ =δ(ξ, ζ) with ξ, ζ ∈]0, 1[

(A.28)

and

ge(0, ζ) = 0,

ge(1, ζ) = 0.
(A.29)

The solution of the above differential equation will be of the form

ge(ξ, ζ) = C1(ζ)e
λ1ξ + C2(ζ)e

λ2ξ 0 ≤ ξ ≤ ζ, (A.30)

ge(ξ, ζ) = C3(ζ)e
λ1ξ + C4(ζ)e

λ2ξ ζ < ξ ≤ 1. (A.31)

(A.32)
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A.2 The exact Green’s function for the convection-diffusion equation 81

And λ1 and λ2 can be determined by finding the roots of the characteristic equation:

λ1 =−
ah

k
, (A.33)

λ2 =0. (A.34)

To find C1, C2, C3 and C4, four conditions are needed. The first two conditions are the
boundary conditions A.29, the third condition comes from the requirement for continuity in
the element interior:

ge(ζ
+, ζ) = ge(ζ

−, ζ). (A.35)

The final condition can be found by noting that the first derivative of the element Green’s
function has a discontinuity at ξ = ζ, this can be found by integrating (A.28) across ξ = ζ.

∫ ζ+

ζ−

(

−a
∂ge(ξ, ζ)

∂ξ
−

k

h

∂2ge(ξ, ζ)

∂ξ2

)

dξ =

∫ ζ+

ζ−
δ(ξ, ζ)dξ (A.36)

−a [ge(ξ, ζ)]
ζ+

ζ−
−

k

h

[
∂ge(ξ, ζ)

∂ξ

]ζ+

ζ−
= 1 (A.37)

ge(ζ
+, ζ),ξ − ge(ζ

−, ζ),ξ = −
h

k
. (A.38)

From these conditions the values of the coefficients C1 through C4 can be computed, the
result is:

C1 =
h

k

eλ1(1−ζ) − 1

λ1(eλ1 − 1)
,

C2 =
h

k

eλ1(1−ζ) − 1

λ1(eλ1 − 1)
,

C3 =
h

kλ1

1− e−λ1ζ

1− eλ1
,

C4 =
h

kλ1

eλ1 − eλ1(1−ζ)

eλ1 − 1
.

(A.39)

A.2.1 Approximating the fine scale element Green’s function with a stabi-
lization parameter τ

Using a Dirac delta function, τ can be written as

τ =

∫

Ωe

τ · δ(x, y)dx. (A.40)

And defining g̃′e(x, y) as an approximation to the element Green’s function

g̃′e(x, y) = τ · δ(x, y). (A.41)
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82 Green’s Function

Since g̃′e(x, y) is an approximation of the fine scale element Green’s function g′e(x, y), (A.40)
can also be written as

τ(y) =

∫

Ωe

g′e(x, y)dx. (A.42)

Note that so far g′e(x, y) and τ(y) are arbitrary functions, so all of the above will also hold
after a change of variables:

g′e(x, y) = g′e(ξ, ζ) τ(y) = τ(ξ). (A.43)

This means that τ can be computed on the parent domain as

τ(ζ) =

∫ 1

0
g′e(ξ, ζ) det(J)dξ

= h

∫ 1

0
g′e(ξ, ζ)dξ

= h

[∫ ζ

0
g′e(ξ, ζ)0≤ξ≤ζdξ +

∫ 1

ζ
g′e(ξ, ζ)ζ<ξ≤1dξ

]

= h

[
C1

λ1
eλ1ζ + C2ζ −

C1

λ1
+

C3

λ1
eλ1 + C4 −

C3

λ1
eλ1ζ − C4ζ

]

= −
h

a

ζ − 1 + e
ah
k
ζ − e

ah
k ζ

e
ah
k − 1

.

(A.44)
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Appendix B

Some definitions from functional analysis

In this appendix a short review of some definitions form functional analysis is given. This is
by no means an exhaustive or rigorous overview, for a more extensive and structured reading
the following resources are recommended Oden and Demkowicz (2010) and Atkinson (2009).

Norm

Given a linear space V , a norm || · || is a function from V to R that satisfies three rules:

1. ||αv|| = |α| ||v|| ∀v ∈ V and α ∈ K

2. ||v|| ≥ 0 ∀v ∈ V and ||v|| = 0 ⇐⇒ v = 0

3. ||u+ v|| = ||u||+ ||v|| ∀u, v ∈ V

A norm can be induced by an inner product as follows:

||u|| =
√

(u, u)

where (·, ·) is the inner product.

Operator

Operators have a lot of synonyms, people also call them maps, transformations or functions.
L : U → V is a map or operator from the space U to the space V . It is a function (just a rule
if you will) that assigns to every u ∈ U an unique element v ∈ V .
The operator L is called a linear operator if

L(αu1 + βu2) = αL(u1) + βL(u2) with u1, u2 ∈ U and α, β ∈ R
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The operator L : U → V is bounded if there exists a constant C > 0 such that
||Lu||V ≤ C||u||U for all u ∈ U .

L : U → V is called a continuous operator if for every sequence {un} in U that converges to
the limit u in U the following holds:

L(un) → L(u)

L(U, V ) is the space of all bounded linear operators from U to V . It is itself a normed space
using the operator norm:

||L|| = sup
||u||U=1

||L(u)||V = sup
u 6=0

||L(u)||V
||u||U

Linear functional

A linear map from space V to R is called a linear functional.

Dual or adjoint space

For a normed space V , its dual space is the space of bounded linear functionals on V : L(V,R),
also written as V ∗. V ∗ is a normed space under the dual norm. Let l be a linear functional
such that l ∈ L(V,R) or equivalently l ∈ V ∗, then the dual norm is:

||l||V ∗ = sup
v∈V,||v||V =1

|l(v)| = sup
v∈V,v 6=0

|l(v)|

||v||V

Bracket notation

Let V be a normed space over R and V ∗ be its dual space, then for every v ∈ V and l ∈ V ∗

one can say:

l(v) = 〈v, l〉.

Cn spaces

The space of continuous functions in the interval [a, b], with a, b ∈ R, is C([a, b]). This can be
generalized by taking Ω to be a domain in R

n, then the space of continuous functions on Ω
is C(Ω). The space of functions with a continuous first derivative on [a, b] is called C1([a, b]).
And the reader can now guess what the function spaces C2([a, b]), C3([a, b]) and so on are.
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Lp spaces

Let Ω be a domain in R
n, and 1 ≤ p ≤ ∞. The space Lp(Ω) is the space of functions that are

measurable on Ω and bounded in the p-norm:

Lp(Ω) = {f : f is measurable on Ω and ||f ||p ≤ ∞}

and the p-norm is defined as:

||f ||p =

(∫

Ω
|f |pdΩ

)1/p

except for the case p = ∞:

||f ||∞ = ess. sup
Ω

|f |.

Banach space

A space with a norm such that every Cauchy sequence converges to a limit within the space
is a Banach space. It is also a complete space. Some examples of Banach spaces are the LP

spaces and C([a, b]).

Hilbert and Sobolev spaces

A Hilbert space is a complete inner product space.
Riesz representation theorem: For each bounded linear functional F on a Hilbert space V ,
there is a unique element u ∈ V such that for all v ∈ V :

F (v) = (v, u) and ||u||V ∗ = sup
v∈V,v 6=0

|F (v)|

||v||

Wm,p(Ω), with 1 ≤ p ≤ ∞ and m ∈ Z, is a Sobolev space containing the functions in Lp(Ω)
whose derivatives (in the distributional sense) of order m or less are also in Lp(Ω). Is is a
Banach space with the || · ||Wm,p(Ω)-norm.

||v||Wm,p(Ω) =




∑

|j|≤m

||Djv||pLp(Ω)





1/p

where j is a multi-index j = (j1, . . . , jn), and the length |j| of a multi-index is defined as
|j| =

∑n
i=1 ji. So the differential operator Dj is defined as

Dj = Dj1
1 . . . Djn

n =
∂|j|

∂xj11 . . . ∂xjnn
.
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If p = 2, Wm,2(Ω) is a Hilbert space: Wm,2(Ω) = Hm(Ω) and this Hilbert space has the inner
product

(u, v)Hm(Ω) =
∑

|j|≤m

(Dju,Djv)

A subspace of Hm(Ω) containing functions that vanish on the boundary is known as Hm
0 :

Hm
0 (Ω) = {u ∈ Hm(Ω) : u =

∂u

∂n
. . .

∂m−1u

∂nm−1
= 0 on ∂Ω}

The dual space of Hm
0 (Ω) is H−m(Ω).

Dual or adjoint operator

Let U and V be normed spaces, and U∗ and V ∗ their dual spaces. Furthermore use u ∈ U ,
v ∈ V , u∗ ∈ U∗, v∗ ∈ V ∗ and define a bounded linear transformation L ∈ L(U, V ) as
L : U → V . Then the adjoint operator L∗ is defined by:

v∗(L(u)) = L∗v∗(u)

or in bracket notation

〈L(u), v∗〉 = 〈u, L∗(v∗)〉,

the above indentity is called the bilinear identity.
If U = R

m and V = R
n, then using the standard inner product, one can use the Riesz

representation theorem to formulate that bilinear identity for L ∈ L(Rm,Rn) as

(Lu, v) = (u, L∗v) with u ∈ R
m, v ∈ R

n.
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Appendix C

Detailed discretization of Burgers’ equation

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f with ν > 0. (C.1)

C.0.2 Discretization

For the time discretization a generalized trapezoidal rule will be used:

un+θ = θun+1 + (1− θ)un, (C.2)

where the superscript indicates the time step. By setting θ to 0, 0.5 or 1 the time discretization
becomes forward Euler, Crank-Nicolson or backward Euler respectively. For Burgers’ equation
this yields

un+1 − un

∆t
+ un

∂
(
θun+1 + (1− θ)un

)

∂x
− ν

∂2
(
θun+1 + (1− θ)un

)

∂x2
= f. (C.3)

Now the variational form of this equation is

(w, un+1)− (w, un)

∆t
+ θ

(

w, un
∂un+1

∂x

)

+ (1− θ)

(

w, un
∂un

∂x

)

− ν

[

θ

(

w,
∂2un+1

∂x2

)

+ (1− θ)

(

w,
∂2un

∂x2

)]

= (w, f),

(C.4)

where the operator (·, ·) signifies integration over the spatial domain Ω: (a, b) =
∫

Ω a · bdΩ.
Using integration by parts on the diffusion terms, and assuming homogeneous boundary
conditions, this becomes:
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(w, un+1)− (w, un)

∆t
+ θ

(

w, un
∂un+1

∂x

)

+ (1− θ)

(

w, un
∂un

∂x

)

+ ν

[

θ

(
∂w

∂x
,
∂un+1

∂x

)

+ (1− θ)

(
∂w

∂x
,
∂un

∂x

)]

= (w, f).

(C.5)

Eq. C.5 can be rearranged into:

1

∆t
(w, un+1) + θ

(

w, un
∂un+1

∂x

)

+ νθ

(
∂w

∂x
,
∂un+1

∂x

)

= (w, f) +
1

∆t
(w, un)− (1− θ)

(

w, un
∂un

∂x

)

− ν(1− θ)

(
∂w

∂x
,
∂un

∂x

)

.

(C.6)

C.0.3 Variational Multiscale Formulation

The basic concept of a two-scale multiscale method is to split up the solution into a large-scale
and a small scale solution by taking u = ū+u′. This also means splitting up the trial function
and test function spaces such that:

S = S̄ ⊕ S ′ (C.7)

V = V̄ ⊕ V ′ (C.8)

with the boundary conditions now becoming:

ū = g on Γ ∀ū ∈ S̄, (C.9)

u′ = 0 on Γ ∀u′ ∈ S ′, (C.10)

w̄ = 0 on Γ ∀w̄ ∈ V̄, (C.11)

w′ = 0 on Γ ∀w′ ∈ V ′. (C.12)

It is now possible to work out a small-scale and a large-scale equation. By writing out Eq.
2.21 one comes to the small-scale equation is:

1

∆t
(w′, u′n+1) + θ

(

w′, un
∂u′n+1

∂x

)

+ νθ

(
∂w′

∂x
,
∂u′n+1

∂x

)

= (w′, f) +
1

∆t
(w′, u′n)− (1− θ)

(

w′, un
∂u′n

∂x

)

− ν(1− θ)

(
∂w′

∂x
,
∂u′n

∂x

)

−
1

∆t
(w′, ūn+1)−

(

w′, un
(

θ
∂ūn+1

∂x
+ (1− θ)

∂ūn

∂x

))

− ν

(
∂w′

∂x
, θ

∂ūn+1

∂x
+ (1− θ)

∂ūn

∂x

)

,

(C.13)
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and using Eq. 2.23, the large-scale equation becomes:

1

∆t
(w̄, ūn+1) + θ

(

w̄, un
∂ūn+1

∂x

)

+ νθ

(
∂w̄

∂x
,
∂ūn+1

∂x

)

= (w̄, f) +
1

∆t
(w̄, ūn)− (1− θ)

(

w̄, un
∂ūn

∂x

)

− ν(1− θ)

(
∂w̄

∂x
,
∂ūn

∂x

)

−
1

∆t
(w̄, u′n+1)−

(

w̄, un
(

θ
∂u′n+1

∂x
+ (1− θ)

∂u′n

∂x

))

− ν

(
∂w̄

∂x
, θ

∂u′n+1

∂x
+ (1− θ)

∂u′n

∂x

)

.

(C.14)

C.0.4 Stabilization

A stabilized method is usually of the form

a(w,u) + (Lw, τ(Lu− f)) = (w, f), (C.15)

where L is some operator (for GLS L = L and for SUPG L = Ladv) and τ is an algebraic
operator, also called the intrinsic length scale. Stabilization of this form has a strong link
with the variational multiscale method.

For Burgers’ equation this τ , computed following the method of Shakib et al. (1991), is:

τ =

[(
2

∆t

)2

+

(
2a(u)

h

)2

+

(
4ν

h2

)2
]− 1

2

(C.16)

where a(u) is some convection speed which is a function of u. In this case it was taken to be
the local velocity. And h in Eq. C.16 is the size of the mesh in the flow direction (easy in
here since it is a 1D case). The general variational form of 1D Burgers’ equation with SUPG
stabilization reads:

(w, ut + uux − νuxx) +



uwx,

[(
2

∆t

)2

+

(
2u

h

)2

+

(
4ν

h2

)2
]− 1

2

(ut + uux − νuxx − f)



 = (w, f)

(C.17)

where ut = ∂u/∂t and ux = ∂u/∂x. Eq. C.5 with the SUPG stabilization term becomes:

(w, un+1)− (w, un)

∆t
+ θ

(

w, un
∂un+1

∂x

)

+ (1− θ)

(

w, un
∂un

∂x

)

+ ν

[

θ

(
∂w

∂x
,
∂un+1

∂x

)

+ (1− θ)

(
∂w

∂x
,
∂un

∂x

)]

+

(

u
∂w

∂x
, τ

[
un+1

∆t
+ un

∂xn+1

∂x
− νθ

(
∂un+1

∂2x2

)])

= (w, f)−

(

u
∂w

∂x
, τ

[
un

∆t
− (1− θ)un

∂un

∂x
+ ν(1− θ)

∂2un

∂x2

])

.

(C.18)
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Appendix D

Stationary shock error data

D.1 Stabilization and shock-capturing methods

h 1/65 1/35 1/15 1/5

DCDD H1 error 5.48817 3.94425 2.14904 0.563537
DCDD L2 error 0.0507345 0.0685667 0.0968429 0.124882
MSC H1 error 0.100771 0.0958584 0.0870473 0.107109
MSC L2 error 0.0264213 0.0362112 0.0555655 0.0920219

SUPG H1 error 4.48305 2.68486 1.07392 0.276045
SUPG L2 error 0.0462064 0.0581953 0.0747669 0.107876
V-SGS H1 error 6.9027 4.86579 2.82154 1.04125
V-SGS L2 error 0.083031 0.102537 0.13086 0.163865
YZB1 H1 error 6.91698 4.87686 2.82854 0.982175
YZB1 L2 error 0.0834986 0.102969 0.130837 0.158869
YZB2 H1 error 4.60271 2.97074 1.25074 0.24967
YZB2 L2 error 0.0424544 0.0570628 0.0768168 0.10592
clean H1 error 13.4685 5.18057 1.32495 0.252284
clean L2 error 0.0553096 0.0396203 0.0435608 0.0848977

Table D.1: Errors for different mesh size at t = 0.1(with time step ∆t = h/6, resulting in a
Courant number of Cr = 0.25)
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h 1/65 1/35 1/15 1/5

DCDD H1 error 5.59876 4.07716 2.60652 1.29522
DCDD L2 error 0.0511548 0.0691801 0.103191 0.166225
MSC H1 error 0.23692 0.237901 0.240543 0.0953943
MSC L2 error 0.0264199 0.0362644 0.0566373 0.0940624

SUPG H1 error 4.8204 3.53174 2.22937 0.880752
SUPG L2 error 0.049678 0.0659883 0.0980748 0.14672
V-SGS H1 error 7.16679 5.22466 3.34015 1.79238
V-SGS L2 error 0.0949698 0.125929 0.178508 0.272425
YZB1 H1 error 7.17349 5.22276 3.32694 1.74474
YZB1 L2 error 0.0946836 0.125336 0.175623 0.258413
YZB2 H1 error 5.15391 3.65945 2.15866 0.756625
YZB2 L2 error 0.0435881 0.058613 0.0861 0.131719
clean H1 error 39.3738 20.335 7.3757 1.35411
clean L2 error 0.174865 0.166407 0.133537 0.0826977

Table D.2: Errors for different mesh size at t = 0.5 (with time step ∆t = h/6, resulting in a
Courant number of Cr = 0.25)

D.2 SUPG stabilisation with shock-capturing

h 1/65 1/35 1/15 1/5

SUPG+DCDD H1 error 6.09577 4.343 2.53028 0.835475
SUPG+DCDD L2 error 0.0623706 0.0814642 0.11162 0.144298
SUPG+MSC H1 error 4.55374 2.85406 1.33571 0.473282
SUPG+MSC L2 error 0.0464913 0.0597117 0.0804142 0.120032

SUPG+YZB1 H1 error 7.11651 5.04977 3.01629 1.17788
SUPG+YZB1 L2 error 0.0908555 0.111459 0.141854 0.175704
SUPG+YZB2 H1 error 5.68019 4.0055 2.11493 0.60058
SUPG+YZB2 L2 error 0.0566006 0.0742637 0.0995047 0.12831

clean H1 error 13.4685 5.18057 1.32495 0.252284
clean L2 error 0.0553096 0.0396203 0.0435608 0.0848977

Table D.3: Errors of SUPG stabilized computations for different mesh size at t = 0.1 (with time
step ∆t = h/6, resulting in a Courant number of Cr = 0.25)
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h 1/65 1/35 1/15 1/5

SUPG+DCDD H1 error 6.17402 4.51821 2.91489 1.5477
SUPG+DCDD L2 error 0.0650477 0.0870401 0.129239 0.202515
SUPG+MSC H1 error 4.82042 3.53225 2.25218 0.994375
SUPG+MSC L2 error 0.0496781 0.0659968 0.0984486 0.154213

SUPG+YZB1 H1 error 7.36725 5.36495 3.43003 1.84697
SUPG+YZB1 L2 error 0.105764 0.138929 0.193432 0.292547
SUPG+YZB2 H1 error 5.76333 4.22021 2.7239 1.3792
SUPG+YZB2 L2 error 0.0594067 0.0793706 0.117996 0.18538

clean H1 error 39.3738 20.335 7.3757 1.35411
clean L2 error 0.174865 0.166407 0.133537 0.0826977

Table D.4: Errors of SUPG stabilized computations for different mesh size at t = 0.5 (with time
step ∆t = h/6, resulting in a Courant number of Cr = 0.25)

D.3 SUPG stabilisation with shock-capturing and shock-
detection

h 1/65 1/35 1/15 1/5

SUPG+DCDD H1 error 6.09223 4.33349 2.47476 0.523564
SUPG+DCDD L2 error 0.0623222 0.08122 0.109911 0.123317
SUPG+MSC H1 error 0.0644934 0.064629 0.0702626 0.098766
SUPG+MSC L2 error 0.0263568 0.0360091 0.0551752 0.0956767

SUPG+YZB1 H1 error 7.11492 5.04631 3.00308 1.11898
SUPG+YZB1 L2 error 0.0907899 0.111255 0.141023 0.170442
SUPG+YZB2 H1 error 5.66497 3.90189 1.47056 0.227931
SUPG+YZB2 L2 error 0.0564107 0.0727967 0.0838846 0.104987

clean H1 error 13.4685 5.18057 1.32495 0.252284
clean L2 error 0.0553096 0.0396203 0.0435608 0.0848977

Table D.5: Errors of SUPG stabilized computations with shock detection for different mesh size
at t = 0.1 (with time step ∆t = h/6, resulting in a Courant number of Cr = 0.25)
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h 1/65 1/35 1/15 1/5

SUPG+DCDD H1 error 6.17402 4.51815 2.9136 1.52512
SUPG+DCDD L2 error 0.0650476 0.0870385 0.129167 0.200036
SUPG+MSC H1 error 0.156868 0.148768 0.151683 0.172457
SUPG+MSC L2 error 0.0301253 0.0384151 0.0569773 0.10178

SUPG+YZB1 H1 error 7.36719 5.3647 3.42983 1.8433
SUPG+YZB1 L2 error 0.105768 0.138902 0.193279 0.291157
SUPG+YZB2 H1 error 5.76333 4.21999 2.71594 0.706539
SUPG+YZB2 L2 error 0.0594067 0.0793657 0.117561 0.135812

clean H1 error 39.3738 20.335 7.3757 1.35411
clean L2 error 0.174865 0.166407 0.133537 0.0826977

Table D.6: Errors of SUPG stabilized computations with shock detection for different mesh size
at t = 0.5 (with time step ∆t = h/6, resulting in a Courant number of Cr = 0.25)

D.4 V-SGS stabilisation with shock-capturing

h 1/65 1/35 1/15 1/5

V-SGS+DCDD H1 error 7.03307 5.00825 3.03895 1.29942
V-SGS+DCDD L2 error 0.0873804 0.108893 0.14225 0.185562
V-SGS+MSC H1 error 6.90373 4.8682 2.83081 1.06852
V-SGS+MSC L2 error 0.083066 0.102643 0.131312 0.166157

V-SGS+YZB1 H1 error 7.38072 5.28175 3.25516 1.49582
V-SGS+YZB1 L2 error 0.106701 0.129543 0.164361 0.211522
V-SGS+YZB2 H1 error 6.97622 4.94874 2.95819 1.19019
V-SGS+YZB2 L2 error 0.0854064 0.106084 0.13751 0.176143

clean H1 error 13.4685 5.18057 1.32495 0.252284
clean L2 error 0.0553096 0.0396203 0.0435608 0.0848977

Table D.7: Errors of V-SGS stabilized computations for different mesh size at t = 0.1 (with time
step ∆t = h/6, resulting in a Courant number of Cr = 0.25)
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h 1/65 1/35 1/15 1/5

V-SGS+DCDD H1 error 7.24453 5.28685 3.39377 1.85088
V-SGS+DCDD L2 error 0.0988282 0.131218 0.186816 0.289949
V-SGS+MSC H1 error 7.16681 5.22476 3.34053 1.79426
V-SGS+MSC L2 error 0.0949711 0.125938 0.17857 0.273016

V-SGS+YZB1 H1 error 7.60307 5.5397 3.55947 2.00859
V-SGS+YZB1 L2 error 0.130382 0.168393 0.233351 0.370287
V-SGS+YZB2 H1 error 7.20915 5.25898 3.37059 1.82762
V-SGS+YZB2 L2 error 0.0970316 0.128797 0.183148 0.282635

clean H1 error 39.3738 20.335 7.3757 1.35411
clean L2 error 0.174865 0.166407 0.133537 0.0826977

Table D.8: Errors of V-SGS stabilized computations for different mesh size at t = 0.5 (with time
step ∆t = h/6, resulting in a Courant number of Cr = 0.25)

D.5 V-SGS stabilisation with shock-capturing and shock-
detection

h 1/65 1/35 1/15 1/5

V-SGS+DCDD H1 error 7.02459 4.99032 2.92169 0.448218
V-SGS+DCDD L2 error 0.0870294 0.107886 0.134867 0.120355
V-SGS+MSC H1 error 0.0430831 0.0496882 0.0640486 0.0976829
V-SGS+MSC L2 error 0.0262583 0.0357767 0.0546654 0.0949216

V-SGS+YZB1 H1 error 7.37786 5.27573 3.2365 1.44518
V-SGS+YZB1 L2 error 0.106482 0.128969 0.162233 0.202325
V-SGS+YZB2 H1 error 6.93649 4.76639 0.797822 0.191843
V-SGS+YZB2 L2 error 0.0839398 0.0982274 0.071502 0.103345

clean H1 error 13.4685 5.18057 1.32495 0.252284
clean L2 error 0.0553096 0.0396203 0.0435608 0.0848977

Table D.9: Errors of V-SGS stabilized computations with shock detection for different mesh size
at t = 0.1 (with time step ∆t = h/6, resulting in a Courant number of Cr = 0.25)
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h 1/65 1/35 1/15 1/5

V-SGS+DCDD H1 error 7.24432 5.28602 3.3887 1.81013
V-SGS+DCDD L2 error 0.0988154 0.131132 0.185832 0.274619
V-SGS+MSC H1 error 0.0793311 0.0827888 0.0955135 0.140592
V-SGS+MSC L2 error 0.0289861 0.0381649 0.0572524 0.101346

V-SGS+YZB1 H1 error 7.60285 5.53923 3.55847 2.00008
V-SGS+YZB1 L2 error 0.130365 0.168317 0.232816 0.36614
V-SGS+YZB2 H1 error 7.20824 5.25322 3.33629 0.409989
V-SGS+YZB2 L2 error 0.0969803 0.128238 0.177326 0.126197

clean H1 error 39.3738 20.335 7.3757 1.35411
clean L2 error 0.174865 0.166407 0.133537 0.0826977

Table D.10: Errors of V-SGS stabilized computations with shock detection for different mesh
size at t = 0.5 (with time step ∆t = h/6, resulting in a Courant number of Cr = 0.25)
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Moving shock error data

E.1 SUPG stabilized results

h 1/64 1/48 1/32

ADMSC+SUPG Nodal Error error 0.0535888 0.0899839 0.0759868
ADMSC+SUPG L2 error 0.0432265 0.0439535 0.027438

DCDD+SUPG Nodal Error error 0.261581 0.315624 0.267178
DCDD+SUPG L2 error 0.0402422 0.0421122 0.050953
SUPG Nodal Error error 0.103289 0.31374 0.122254

SUPG L2 error 0.0369477 0.0356176 0.0317859
YZB1+SUPG Nodal Error error 0.507659 0.513621 0.512617

YZB1+SUPG L2 error 0.0655426 0.0735526 0.0910829
YZB2+SUPG Nodal Error error 0.22346 0.286907 0.225463

YZB2+SUPG L2 error 0.0378186 0.0380662 0.0448099

Table E.1: Errors for different mesh size at t = 6, all using SUPG stabilization and different
shock-capturing methods.

E.2 V-SGS stabilized results

MSc Thesis Jan Willem Van Langenhove



98 Moving shock error data

h 1/64 1/48 1/32

ADMSC+V-SGS Nodal Error error 0.149306 0.601561 0.146706
ADMSC+V-SGS L2 error 0.0475438 0.0553798 0.0363033

DCDD+V-SGS Nodal Error error 0.495959 0.510712 0.496485
DCDD+V-SGS L2 error 0.0648709 0.0720262 0.0883684
V-SGS Nodal Error error 0.477166 0.493369 0.478345

V-SGS L2 error 0.0626208 0.069574 0.0852509
YZB1+V-SGS Nodal Error error 0.679572 0.683919 0.743157

YZB1+V-SGS L2 error 0.0840196 0.101254 0.131382
YZB2+V-SGS Nodal Error error 0.487074 0.502591 0.487788

YZB2+V-SGS L2 error 0.0638107 0.0708651 0.0868729

Table E.2: Errors for different mesh size at t = 6, all using V-SGS stabilization and different
shock-capturing methods.
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