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Abstract

In pursuit of extremely sensitive sensors, the dimensions of these devices get smaller and smaller.
Small scale resonators are commonly used as sensors by relating changes in the dynamic behaviour
to a sensed quantity. Conventionally, the dynamics used for sensing are in the linear regime. How­
ever, at smaller scales the dynamic range of the linear regime decreases. Therefore, it is of interest
to investigate the dynamic behaviour in the nonlinear regime, as with the decreasing scale of the res­
onators this becomes inevitable. Especially, little is known about the frequency stability in this region.
The frequency stability provides an indication for the potential sensitivity that the resonator can have as
sensor. By using phase locked loop (PLL) the frequency stability around the resonance frequency of
nonlinear resonators can be obtained. This research contains attempts to control multilayer graphene
drums around its fundamental resonance frequency with PLL. In addition, the frequency stability at
these points are presented by measure of the Allan Deviation. It is found that the frequency stability is
the best within the bistable regime. One resonator shows behaviour attributed to internal resonance.
This internal resonance is linked to an increase of nonlinear damping. Combining that with a single
degree of freedom simulation model, a relation was found between increased nonlinear damping and
an improvement of frequency stability.
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Preface

As an engineer­in­the­very­near­future, I believe in a certain malleability in the domain of mechanical
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pave the way to numerous sensing applications. The result of my enthusiasm at that moment is the
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discussions and hints, Ata, Farbod, Tomás, Irek and Richard! Something I really appreciated were the
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possible without the help of others. Therefore, I would like to thank my fellow peers, those I worked
with during our graduation projects. My parents and brother for trying to understand what I was working
on. And finally, I would like to thank my girlfriend for surviving to live with me when I had only time to
work on my graduation project.

Finally, I address you, dear reader. Although this research is not perfect, I hope it will contribute to your
attempts at malleability of mechanical systems.

Ties J. A. Verschuren
Delft, October 2020
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1
Introduction

In recent decades, sensor development has led to increasingly sensitive sensors. Therefore, the quan­
tities that can be measured become smaller and so do the sensors itself. One class of these small
sensors are the resonant sensors. The working principle of these vibrating devices is the fact that the
resonance frequency of the device changes when a quantity is sensed. The sensitivity of such devices
can be improved by reducing their weight and by increase their resonance frequency [1]. This is where
graphene comes into play.
Graphene is a thin sheet of graphite (same material as the core of a pencil) of only one atom layer thick.
Graphene was discovered, in 2004 [2] and since then, a lot of research has been conducted on this
new material and, remarkable mechanical properties were discovered. For example, its has a higher
tensile strength than steel [3], but it weights a lot less [4]. Graphene can be used in sensitive sensors,
to sense small quantities mass, pressure, strain, force or charge [5].

At micro­ and nanoscale, the resonance frequency of graphene does not only depend on the mechan­
ical properties of the resonator, but also on the vibration amplitude. This is called nonlinear dynamic
behaviour. A characteristic aspect is the existence of three vibration amplitudes at certain frequencies,
called the bistable region. Two of those amplitudes depend on the direction (increase or decrease) of
the frequency that causes the resonator to vibrate. The third one is unstable and therefore unreachable
by any frequency. One needs to understand the nonlinear dynamics in order to avoid or exploit these
[6, 7].
Exploiting these nonlinear dynamics has become more of interest in the last years in pursuit of the
practical limits of sensor performance. When scaling down the size of resonators, nonlinear behaviour
becomes unavoidable. Understanding of these nonlinear phenomena has the potential to improve per­
formance beyond what was conventionally considered possible [8].
To exploit the nonlinear behaviour, stabilizing the unstable branch in the bistable regime is of interest.
The goal is to reach each vibration amplitude in this regime on command. This can be achieved by
using a controller to drive the resonator. Specifically, a phase­locked loop can achieve this [9]. How­
ever, this is a challenge for graphene resonators due to their high resonance frequency and their strong
damping. This means that the resonator can adapt fast to changes, so the controller should also be
fast. This thesis shows that it is possible to overcome this challenge.

The sensitivity of a resonant sensor is also limited by the uncertainty of the measured resonance fre­
quency [10].This can be quantified with the Allan deviation which is a measure for frequency stability.
The frequency stability of graphene resonators is an underexposed topic in scientific literature. This
thesis presents the frequency stability of graphene resonators around its resonance frequency. Fur­
thermore, a relation between frequency stability and nonlinear damping is demonstrated. This shows
that at certain operation points the frequency stability can be improved, which can lead to a sensitive
sensor.

In the following sections, topics like resonators, difference between a linear and nonlinear resonator,
frequency stability and PLL are explained in more detail. Next, the main findings of this thesis are
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Figure 1.1: Frequency response for a linear resonator modelled as a forced harmonic resonator. Derivation of the amplitude and
phase equations are presented in appendix D.1. The parameters used are 𝜁 = 0.02 and 𝜔𝑛 = 1.

presented in a scientific paper format. The report concludes with recommendations for further research.
Supporting material can be found in the appendices.

1.1. Resonators
When an ideal (lossless) mechanical structure is oscillating at its eigenfrequency, the total energy
stored in the device consists solely of potential and kinetic energy. A vibrational mode () where this
occurs is called an eigenmode. Continuum mechanical structures have many of these eigenmodes.

In a real mechanical structure, a very small amount of energy is lost during each vibration cycle, due
to different dissipation mechanisms. In this case, the frequency at which the total energy is almost
solely being transferred between potential and kinetic energy is called the resonance frequency. The
phenomenon of eigenmodes in the ideal structures is called resonance in the real mechanical systems.
The resonance frequency of the real mechanical structure is typically close to the eigenfrequency of
the same structure assumed without losses [11]. Therefore, these terms are used interchangeably.

A mechanical system that shows distinct resonance is called a resonator. An oscillator on the other
hand is a mechanical structure that exhibits vibrations without any oscillatory input. When a resonator
is incorporated in a control loop (i.e. feedback is applied), it becomes an oscillator [12, 13].

When investigating resonance of a mechanical system, one typically looks at the frequency response,
which is the vibration amplitude for different excitation frequencies. Amplitude peaks in the frequency
response indicate the resonance frequencies. This frequency response can be obtained by either solv­
ing the differential equation or by taking the Fourier or Laplace transform from the resonator equation
of motion [13].

In the next subsections, the frequency response of different resonator models is discussed.

1.1.1. Linear resonator
A linear resonator can be modelled as a forced harmonic excitation system [13, 14], see eq. (1.1) below.

�̈� + 2𝜁𝜔𝑛�̇� + 𝜔2𝑛𝑥 = 𝐹 cos(Ω𝑡) (1.1)

The vibration amplitude is denoted by 𝑥, the resonance frequency by 𝜔𝑛 and the damping factor by
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Forced Duffing resonator
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Figure 1.2: Frequency response of a forced Duffing resonator for different values of 𝛾. The peak is linear (red) or shows
softening (blue) or hardening (yellow) behaviour. Derivation of the amplitude and phase equation can be found in appendix D.2.
The parameters used are 𝜁 = 0.1, 𝜔𝑛 = 1 and 𝐹 = 1.

𝜁. The harmonic force amplitude and excitation frequency are indicated by 𝐹 and Ω respectively. It
can be seen from Eq. 1.1 that it concerns a linear resonator, as it contains only linear combinations of
amplitude 𝑥 and its time derivatives (�̇� and �̈�).

The frequency response of a linear resonator is presented in fig. 1.1, which shows that the resonance
peak is symmetrical and the amplitude is proportional to the driving force.

1.1.2. Nonlinear resonator
The first eigenmode of a nonlinear resonator can be modelled as a forced harmonic Duffing resonator
[15, 16], which can be described as in eq. (1.2).

�̈� + 2𝜁�̇� + 𝑥 + 𝛾𝑥3 = 𝐹 cos(Ω𝑡) (1.2)

The symbols 𝑥, 𝜁, 𝐹 and Ω have the same meaning as with the linear resonator and eq. (1.2) is nor­
malized with respect to 𝜔𝑛 compared to eq. (1.1). The characteristic part is the cubic term 𝛾𝑥3, where
𝛾 is known as the cubic stiffness. When this parameter is zero, it behaves like a linear resonator. If
not, the frequency response of the Duffing resonator becomes a multivalued function of the frequency
around its resonance peak, i.e. it is not a straight peak any more. Depending on the cubic stiffness
this happens before (𝛾 < 0, called softening) or after (𝛾 > 0, called hardening) the linear resonance
frequency, see fig. 1.2.

Within this multivalued region, there are 3 coexisting solutions for the resonator. This is also called the
region of bi­stability because there are two stable solutions and one unstable solution. At the edges
of this region, the periodic response of the resonator loses stability, causing a jump in amplitude and
phase when sweeping the forcing frequency. In fig. 1.3 it is shown that the resulting amplitude and
phase trajectory depends on the sweep direction [17].

1.2. Frequency stability
Oscillators and resonators exhibit a periodic signal with a certain frequency. For many applications,
like clocks and sensors, it is important to know what the frequency stability of the resonance frequency
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Figure 1.3: Forward and backward frequency sweep for a hardening Duffing resonator. In both the amplitude and phase a jump
occurs when sweeping. The location of this jump differs for the forward and backward sweep.

is [18]. In other words, it answers questions like: how does the uncertainty of the measured frequency
influence the minimal change in resonance frequency one can observe? And how many measurement
samples are needed to have a sufficient frequency stability? All practical devices based on a resonator
have finite frequency precision. As this defines the smallest detectable frequency change, it therefore
defines the smallest change that a resonant sensor can sense. It is true that the smaller the uncertainty,
the lower the Allan Deviation and the greater the frequency stability.

Therefore, it is interesting to express this frequency stability in numbers so different devices can be
compared with each other. One method to quantify frequency stability is the Allan Deviation (𝜎𝑦(𝜏))
[19], also known as the Allan Variance (𝜎2𝑦(𝜏)) . This is a time domain method. The Allan Variance is
defined as the expectation (denoted by ⟨⟩) of the difference of two adjacent measurements.

𝜎2𝑦(𝜏) =
1
2⟨(�̄�𝑘+1(𝜏) − �̄�𝑘(𝜏))

2⟩ ≈ 1
2(𝑁 − 1)

𝑁−1

∑
𝑘=1
⟨�̄�𝑘+1(𝜏) − �̄�𝑘(𝜏)⟩2 (1.3)

The right part in eq. (1.3) is an approximation for a finite set of samples of 𝑦. Here is 𝑁 the number of
sequential adjacent samples.

To see how eq. (1.3) can be used, consider eq. (1.4) as the output of an oscillator [19].

𝑉(𝑡) = [𝑉0 + 𝜖(𝑡)] sin(𝜔0𝑡 + 𝜙(𝑡)) (1.4)

𝑉0 and 𝜔0 are the nominal amplitude and frequency, and 𝜖(𝑡) and 𝜙(𝑡) are the fluctuations over time
in amplitude and frequency respectively. This model assumes that there is no relation between the
amplitude and frequency deviation [18]. In this case we are only interested in the frequency fluctuations.
The actual frequency of the signal in eq. (1.4) is

𝜔(𝑡) = 𝜔0 +
𝑑𝜙(𝑡)
𝑑𝑡 (1.5)

Next, the fractional frequency deviation is defined in eq. (1.6).

𝑦(𝑡) = 𝜔(𝑡) − 𝜔0
𝜔0

(1.6)
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Figure 1.4: Drawing of the typical slopes of an Allan Deviation plot. Each slope represents a certain type of noise. 𝜏−1 is the
result of white or flicker noise in the phase of the signal. 𝜏−0.5 is caused by white noise in the frequency. 𝜏0 represents flicker
noise in frequency. 𝜏0.5 is the result of random walk, commonly caused by temperature differences, or aging of the device.

The values of �̄� in eq. (1.3) are the averaged fractional frequency deviation over averaging time 𝜏.
Mathematically this is defined as

�̄�𝑘(𝜏) =
1
𝜏 ∫

(𝑘+1)𝜏

𝑘𝜏
𝑦(𝑡)𝑑𝑡 (1.7)

For discrete samples, spaced by 𝜏0 time and assuming 𝜏 = 𝑛𝜏0 with 𝑛 = 1, 2, 3..𝑁/2, eq. (1.7) can be
written as eq. (1.8).

�̄�𝑘(𝑛𝜏0) =
1
𝑛

𝑛𝑘

∑
𝑖=1+𝑛(𝑘−1)

𝑦(𝑖𝜏0) (1.8)

Typically, the Allan Deviation is plotted against the averaging time 𝜏 so it becomes visible for what
averaging times the frequency stability is the best, i.e. the Allan Deviation is the smallest. Different
types of noise in the system manifests themselves in the Allan Deviation plot [19, 20]. This relation is
usually visible in the slopes of a 𝜎𝑦 against 𝜏 plot with logarithmic axes, see fig. 1.4. In practice, the
Allan Deviation for small averaging times is limited by white frequency noise. One noise source of this
type is thermomechanical noise. This is noise caused by movement of atoms in the resonator under
influence of temperature bigger than absolute zero. It is known that thermomechanical noise manifests
as a 𝜏−0.5 slope in the Allan Deviation. Typically, at some point the slope becomes horizontal. In this
region (or point), the frequency stability is the best. For longer averaging times the Allan deviation
starts to increase again due to noise sources that act on a long timescale, like temperature changes or
wear of the resonator.

1.3. PLL control
In the beginning of this chapter, it is stated that it is beneficial to use control if one wants to exploit
the nonlinear dynamics of a resonator. As shown in section 1.1.2 and fig. 1.3, amplitude jumps occur
naturally in the bistable regime. When tracking the frequency around the resonance peak, this is an
issue because when the amplitude jumps down, one has to reduce the frequency to jump up and then
increase the frequency again to get to the peak. Using a proper control mechanisms, jumps can be
prevented.

The phenomenon of the jumps in amplitude and the procedure to get back to the peak as just described
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Figure 1.6: Schematic representation of a PLL. The oscillator generates the excitation signal at a certain frequency. This signal
drives the resonator and goes to the phase detector. The phase detector finds the difference n phase between the signal from the
oscillator and resonator. Next, the difference between the detected phase and the desired phase, called the error, is calculated.
Then, the controller calculates the change in frequency that is required for a given error and the oscillator will adapt its frequency.
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is also known as operation in open loop. This is opposed to closed loop, where the controller uses the
output of the resonator to calculate the next input and therefore creating a loop [21]. When the output
of the resonator is used to calculate a new input, this is called feedback. What information is used
as feedback depends on the goal of the controller and the dynamic behaviour of the resonator. In
case of a nonlinear resonator, it is beneficial to use the phase as feedback. Figure 1.5 presents the
reason for this. In the bistable regime there are multiple phase values for a single frequency, but for any
phase, there is only one corresponding frequency value. Therefore, using the phase as feedback, the
controller can simply compare the phase of the resonator with the desired one and adjust the frequency
accordingly.

A control method that uses phase feedback is the phase­locked loop (PLL). It consists of a voltage
controlled oscillator (VCO), phase detector (PD) and loop filter (commonly a PI controller), see fig. 1.6.
The VCO generates the exitation signal for the resonator, whose output is compared to the signal of
the VCO in the phase detector. The PD yields the phase difference between these signals which then
is compared to the desired phase. The loop filter acts on the difference between the desired and the
actual phase. The resulting signal affects the VCO to correct its frequency to match the desired phase.
A downside is that a PD typically adds delay to the loop and can limit the speed at which the PLL can
correct for sudden changes. Whether a PLL can indeed stabilize the unstable branch of the nonlinear
resonator depends partly on the controller. Commonly a controller with proportional and integrator gain
(PI controller) is used. The P and I parameters need to be selected in such way that it stabilizes the
unstable branch.





2
Paper: Frequency stability of graphene

nonlinear resonators

The main findings of this thesis are presented in a scientific paper format on the next pages. The thesis
itself contains lots of additional information to support the paper and experiments that were conducted
but not relevant to the main findings.
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ABSTRACT
In pursuit of extremely sensitive sensors, the dimensions of these devices get smaller and smaller.
Small scale resonators are commonly used as sensors by relating changes in the dynamic behaviour to
a sensed quantity. Conventionally, the dynamics used for sensing are in the linear regime. However,
at smaller scales the dynamic range of the linear regime decreases. Therefore, it is of interest to inves-
tigate the dynamic behaviour in the nonlinear regime, as with the decreasing scale of the resonators
this becomes inevitable. Especially, little is known about the frequency stability in this region. The
frequency stability provides an indication for the potential sensitivity that the resonator can have as
sensor. By using phase locked loop (PLL) the frequency stability around the resonance frequency of
nonlinear resonators can be obtained. This research contains attempts to control multilayer graphene
drums around its fundamental resonance frequency with PLL. In addition, the frequency stability at
these points are presented by measure of the Allan Deviation. It is found that the frequency stability is
the best within the bistable regime. One resonator shows behaviour attributed to internal resonance.
This internal resonance is linked to an increase of nonlinear damping. Combining that with a single
degree of freedom simulation model, a relation was found between increased nonlinear damping and
an improvement of frequency stability.

1. Introduction
It was more than 15 years ago when graphene as 2D ma-

terial was discovered [1]. Since then, a lot of research has
been conducted on this newmaterial and, among others, out-
standing mechanical properties were discovered [2]. These
properties make graphene a huge potential material for sen-
sitive sensors, to sense small quantities of mass, pressure,
strain, force or charge [3]. To achieve high sensitivity, it is
beneficial to have a sensor that is small itself. Especially for
resonant sensors where sensitivity increases with a decrease
of sensor mass [3]. The sensitivity of a resonant sensor is
limited by themeasurement uncertainty of the resonance fre-
quency [4]. This frequency stability can be quantified with
the Allan Deviation [5].

In devices at this micro- and nanoscale, nonlinear dy-
namic behaviour is observed. Therefore, one needs to un-
derstand this behaviour in order to avoid or exploit it [6, 7].
Exploiting these nonlinear dynamics has becomemore of in-
terest the last years to find the practical limits of sensor per-
formance. Furthermore, an understanding of these nonlin-
ear phenomena could potentially improve the performance
beyond what was conventionally considered possible [8].

This research focusses on the nonlinear behaviour using
a multilayer graphene resonator. Lasers are used to actuate
and measure the displacement of the graphene. To exploit
the nonlinear behaviour, the drum is controlled with a phase-
locked loop (PLL). A PLL can stabilize the unstable branch
of a Duffing resonator because it uses the phase as feedback
and the excitation frequency is a single-valued function of
the phase [9]. However, in practise it is a challenge to sta-

⋆This paper is part of the authors master thesis of the same name under
supervision of Ata Keşkekler and Farbod Alijani. The author gratefully
acknowledges the supervisors for their guidance and Tomás Manzaneque,
Irek Rosłoń and Richard Norte for helpful discussions and practical tips.

ORCID(s): 0000-0001-9756-0968 (T.J.A. Verschuren)

bilize the unstable branch of graphene resonators because of
the relatively high resonance frequencies and lowQ-factors.
Section 3.2 presents how this challenge can be overcome.

For sensing applications the frequency stability is of in-
terest as this provides a lower limit on the sensitivity of res-
onant sensors [10]. The frequency stability of graphene res-
onators is an underexposed topic. The frequency stability
around the resonance frequency at different phase setpoints
using a PLL are presented in section 4.

The Allan Deviation, used as frequency stability mea-
sure, has not the same distribution over the frequency re-
sponse for different resonators. By taking a closer look at the
frequency response, the vicinity of internal resonance is pre-
dicted for one graphene drum. Using a simulationmodel and
recent work connecting an increase of nonlinear damping to
internal resonance [11], this research relates an increase of
nonlinear damping to an improvement in frequency stability.

2. Experimental setup
The multilayer graphene drums are fabricated by stamp-

ing a thin flake of graphite onto a cavity etched in a layer
of SiO2 on Si [12] with a depth of 285 nm (see fig. 1). The
drums have a diameter of 10 µm.

The dynamic behaviour of the graphene drum is captured
by an Fabry-Pérot optical interferometer, which is schemat-
ically shown in fig. 2. A red He-Ne laser with a wavelength
� = 632 nm is used to measure the out of plane movements
of the drum. The reflectivity of the light changes with po-
sition of the drum membrane and is therefore a measure for
the position of the membrane [13]. The forced vibrations of
the membrane are induced by a power modulated blue laser
(� = 488 nm), which acts as a thermomechanical actuator.
The drum is glued in a vacuum chamber and pumped down
to a pressure of 1 × 10−4mbar.

To aim the laser at the drum, a manual positioning stage
Ties J.A. Verschuren Page 1 of 7
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Figure 1: Image of a few drums on a SiO
2
chip made with

an optical microscope (magni�cation 1000X). The holes have
an diameter of 10 µm. The drums marked with 2, 3 and 4 are
referred to as drum 2, drum 3 and drum 4 in this work.

PBS PBS

P
B
SBE

QWP

DM

NDF

PD

VC

VNA

UHFLI

Figure 2: Schematic drawing of the Fabry-Pérot interferom-
eter. The red laser power is controlled by a variable neutral
density �lter (NDF) and led through a beam expander (BE).
Followed by a quarter wave plate (QWP), a couple of polar-
ized beam splitters (PBS) and a lens. The drum is located in
the vacuum chamber (VC) and the red laser is re�ected back
to the photodiode (PD). The blue laser is brought into the
red lasers path by the dichroic mirror (DM). The photodiode
is connected to the UHFLI or VNA which controls the blue
laser. Images from the camera are used to position the drum
and vacuum chamber. For these images a white light source
is used.

is used. A camera and corresponding white light source is
acting as microscope to help visually aim the lasers. By
inspecting the forced frequency response of the drum, dis-
played by aVector NetworkAnalyser (VNA), the drum is po-
sitioned in such a way that the fundamental resonance peak
has the highest possible amplitude [14]. To control the drum,
the lasers are connected to a Zurich Instruments UHFLI (Ul-
tra High Frequency Lock-In) which is configured as PLL.

3. Control of graphene resonator by PLL
To track the resonance frequency and overcome the am-

plitude jumps in the bistable region, a controller is employed.
The time required by the resonator to adapt to changed ex-
ternal conditions is of the order � ∼ 2Q∕!0. As grapheneresonators have low Q-factors (between 100 and 600) and
high resonance frequencies (1MHz and higher) [14], it is a
challenge to get the controller to respond on time. A fast
control system is required, i.e. a high control bandwidth.

The use of the phase for control is beneficial, because the
forcing frequency is a single-valued function of the phase.
This is in contrast with the amplitude and frequency which
are multivalued functions of each other. A PLL can stabi-
lize the unstable branch of the fundamental resonance of a
resonator described by the Duffing equation [9, 15].

A typical PLL consists of an oscillator, phase detector
and a controller, see fig. 3. An oscillatory signal is created
by the (voltage controlled) oscillator, which drives the res-
onator. The response of the resonator is then compared to
the oscillator output in the phase detector. The phase detec-
tor can be seen as a demodulator using homodyne detection.
The output is proportional to the phase difference between
the signals. Next, the detected phase (�̂) is compared to the
phase setpoint (�c). The difference is the error e which is
converted to a correction on the oscillator frequency (y). The
PLL tries to minimize the error to ensure that the resonator
is driven at the desired phase.
3.1. Control parameter selection

Besides an oscillator and phase detector, a PLL typically
contains a PI controller. The selected proportional kp and
integrator gain ki should stabilize the resonator for all phasevalues around resonance.

One way to select these parameters is by analysing the
stability of PLL and resonator combined using the method
of averaging [9, 15]. However, for the investigated graphene
drums this method did not result in parameter values that sta-
bilized the unstable branch. This may be caused by the us-
age of a perturbationmethod, as thesemethods assume small
nonlinearities and forces compared to the other parameters.

Anothermethod finds is origin in a somewhat unexpected
field of study. While this paper investigates a nonlinear res-
onator, literature for controlling a linear resonator with PLL
is consulted as this could provide values for the control pa-
rameters. In the supplementary material of [16], the next
values are suggested.

kp = !pll, ki =
kp
�c

(1)
The desired loop bandwidth of the PLL and time constant of
the resonator are denoted by !pll and �c = 2Q

!0
respectively.

The use of a linear model makes it therefore easy to select
and investigate the loop bandwidth of the PLL [17]. How-
ever, when using a graphene nonlinear resonator, kp loses itsmeaning.

Next to kp and ki, a value needs to be selected for the de-modulation filter cut-off frequency !c in the phase detector.
Ties J.A. Verschuren Page 2 of 7
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Figure 3: Schematic representation of a resonator incorporated with a PLL. The oscillator generates a periodic signal with
frequency Ω and amplitude F to drive the resonator. In the phase detector the response of the resonator is compared with the
driving signal resulting in the estimated phase di�erence �̂. This phase is then compared to the phase set-point �c and on this
di�erence, the error, acts a PI controller. The resulting correction y of the controller is added to the initial driving frequency !init
and proceeds as the oscillator frequency Ω.
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Figure 4: Amplitude and phase response around the �rst mode
of drum 1 while being controlled by PLL. The controlled points
are denoted by the blue markers. A line is drawn between
them to compare with the sweeps. The grey lines are forward
and backward sweeps of the drum taken before, during and
after the experiment. Clearly the response changes over time,
presumably due to slight movement of the positioner.

As a rule of thumb, the following applies: !0 >> !c >>
!pll. Distinguishing a factor 10 between the natural reso-
nance, demodulator cut-off and loop bandwidth frequency
works in practise.
3.2. Stabilize the unstable branch

To control the drum, the lasers are connected to a Zurich
Instruments UHFLI which is configured as a PLL. Before
doing the experiment, the driving power is decreased until
the frequency response of the drum is linear and can be used
to fit the resonance frequency f0 = !0∕(2�) and Q-factorwith the UHFLI. These values are used to calculate ki. Af-ter converting the kp and ki to match the UHFLI parameter
units, the demodulator filter cut-off frequency is set to fc ≈
f0∕10. With the PLL enabled, the phase setpoint is swept to

recreate the frequency response curve of the graphene res-
onator.

The procedure described above is applied to drum 1. The
extracted values are f0 = 8.495MHz and Q = 295. These
parameters are fittedwhile using a blue laser power of−5 dBm.
Later experiments use a power of 5 dBm. A 4th order de-
modulator low pass filter is set to fc = 100 kHz and fpll =
!pll∕(2�) = 10 kHz, resulting in kp = −174.5 and ki =
−2.958 × 104. These values do not work well for phase set-
points close to resonance peak and therefore the linear PLL
bandwidth was increased fpll = 100 kHz. Likewise, the de-modulator low pass filter cut-off frequency was raised to the
maximal value possible fc = 674.8 kHz and kp and ki areincreased accordingly.

With these values the PLL is able to control the drum, al-
though the standard deviation on the error signal �e grows onthe unstable branch, from 10° to 80°. The phase setpoint is
swept with steps of 10° over the course of five hours. Before,
during and after the measurements an open loop frequency
sweep is performed. Figure 4 indicates that it is possible to
control the unstable branch of the graphene resonator. The
figure also reveals that the open loop sweep changes over
time. Most likely this is caused by tension in the connection
of the vacuum chamber to the pump causing the positioner
to move a little over time. In this research, only the unsta-
ble branch of drum 1 was successfully stabilized. In other
experiments only the stable branches of the resonance peak
were investigated.

4. Frequency stability
When using a resonator for sensing, the frequency sta-

bility is a property of interest. For resonant sensors, the fre-
quency stability limits the minimal sensitivity of the sensor
[4, 18]. For graphene nonlinear resonators it is not known
where at the resonance curve the frequency stability is op-
timal. Therefore, the frequency stability of graphene res-
onators is investigated. In this paper, the 2-sample Allan
Deviation is used. This deviation is a function of the aver-
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Table 1
Parameter values for eq. (2) found by comparing the frequency
response of the Du�ng equation with the open loop frequency
sweep of drum 4.

Parameter Value

b 0.0057
� 980

 9100
F 6 × 10−5

aging time � [5]. The Allan Deviation is typically presented
in a log-log plot where different noise types in the resonator
and actuation and measurement system can be distinguished
by their slope. This slope can be described by the value of �
in the function �� . Characteristic is the slope for � = −0.5,
as this indicates white noise in the frequency, since this is
the primary disturbance of frequency stability. For sensor
applications one is interested in the lowest Allan Deviation
because this corresponds with the best frequency stability
and therefore the best sensitivity. The corresponding aver-
aging time is also of interest, as the application can require
a certain averaging time.

In this research, data is collected while the drum is con-
trolled by the PLL to determine the Allan Deviation for a
graphene resonator. For each phase setpoint on the stable
branch of the resonance peak, the demodulator frequency,
phase and amplitude are recorded for 2min at a sampling
rate of 100 kHz. From the recorded frequency data the Al-
lan deviation can be calculated. The phase and amplitude
data is used to recreate the frequency response.
4.1. Frequency stability for different phase

setpoints
The procedure described above is applied to three differ-

ent graphene resonators: drum 2, drum 3 and drum 4. In
fig. 5a the Allan Deviation for drum 2 is presented. From
the figure it becomes clear that for lower averaging times the
frequency stability is limited by white frequency noise, in-
dicated by the �−0.5 slope. After reaching a minimum value,
the Allan Deviation increases again. However, this plot does
not clearly show how the frequency stability changes with
the PLL setpoint. For this reason the minimal Allan De-
viation for each PLL setpoint is plotted with the open loop
frequency sweep of the different drums in figs. 5b to 5d. It
stands out that figs. 5b and 5d reveal a minimal Allan Devi-
ation within the bistable region. However, fig. 5c shows that
this point is at the resonance peak.

5. Simulations
A simulation model is built in attempt to explain the be-

haviour found in the previous section. The PLL is modelled
with MATLAB Simulink1 after the control loop in fig. 3.
The oscillator is imposed by an integrator followed by a co-

1MATLAB 2019b, copyright The MathWorks, Inc.

sine block and a constant gain F . This results in an os-
cillatory output signal with amplitude F and frequency Ω.
The phase detector employs homodyne detection and syn-
chronous demodulation to find the phase difference between
the two signals [19, 20]. The two outputs are proportional to
the phase and amplitude of the resonator output. White noise
with power STMN is added to the input signal of the res-
onator to represent the thermomechanical noise. It is added
to the force instead of the phase signal because amplitude-
phase noise conversion occurs in nonlinear resonators [21].
Additionally, white noise with power SA is added to the res-
onator output to mimic the noise floor from the measure-
ments. The Allan Deviation is calculated from the oscillator
frequencyΩ. This signal is decimated to match the 100 kHz
sampling frequency from the experiments.

As a model for fundamental resonance of the graphene
resonator, the Duffing equation is used. Fitting this equa-
tion to the open loop frequency response of drum 4 results
in the following mass and resonance frequency normalized
Duffing equation:

ẍ + bẋ + �ẋx2 + x + 
x3 = F cos(Ωt) (2)
The parameters b, �, 
 , F and Ω are linear damping, nonlin-
ear damping, cubic stiffness, amplitude of the driving force
and frequency of the driving force respectively. Values for
these parameters are found by assuming b = 1∕Q and tuning
the other values while comparing the frequency response of
the model with the open loop frequency response of drum 4.
The frequency response of the model is created with AUTO
97 [22]. The resulting values are presented in table 1. Now
the noise powers can be defined. The thermomechanical
noise power is described by:

STMN = 4kbT b (3)
where kb, T and b are the Boltzmann constant, temperature
in Kelvin and the coefficient of damping of the drum, re-
spectively [23]. When assuming T = 300K, it follows that
STMN =9.47 × 10−23 N2 Hz−1. SA is set to 1.8924 × 10−5 V2 Hz−1,
as this is the average noise floor coming from the measure-
ments. Due to the large difference between the noise powers,
it is expected that the influence of thermomechanical noise
is not visible at all. This corresponds with the experiments
where it was impossible to present a clear thermomechanical
peak.

Simulations are executed for ts = 1 × 106 (normalized
time). When calculating theAllanDeviation, the first 1 × 105 s
simulation time is discarded as this time is required to reach
steady state. The resulting Allan Deviation is compared with
the experimental one in fig. 6. The simulation and exper-
imental acquired values do not match. The best frequency
stability was reached at 60° for the simulations and 45° for
the experiments.

Despite the simulation mismatch, the simulations will be
used to show another phenomenon later in this paper.
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Figure 5: (a) Allan Deviation for the stable branch of drum 2 while controlled by PLL. For small averaging times, the frequency
stability is limited by white frequency noise. This is indicated by the �−0.5 slope. For the di�erent phase setpoints the minimal
Allan Deviation is di�erent. (b), (c) and (c) Open loop frequency response with the dots indicating the minimal Allan deviation
during PLL control at that setpoint for drum 2, drum 3 and drum 4 respectively. The star indicates the lowest Allan Deviation
and therefore the best frequency stability. The more dark blue the better the frequency stability.

5.1. Influence of nonlinear damping on frequency
stability

Next, the dynamic response of drum 3 is inspected more
closely. Figure 7 shows the open loop frequency sweeps of
this drum for different excitation levels. It stands out that the
descending difference of drop down frequencies for succes-
sive excitation levels. This suggests an increase in nonlin-
ear damping. Recent work shows that nonlinear damping in
graphene resonators increases as much as by 80% when op-
erated near internal resonance [11]. This raises the question
if the frequency stability is influenced by a changing nonlin-
ear damping.

To investigate this, the simulation model with the same
parameter values from table 1 is used. The nonlinear damp-
ing parameter � is set to 980N sm−3 and 9800N sm−3. The

Allan Deviation for different phase setpoints is calculated
in both cases and compared in fig. 8. From this figure it is
clear that for all the phase setpoints the frequency stability
improved with an increase of the nonlinear damping. The
best frequency stability setpoint has moved from 60° to 80°.
Therefore, the increase in nonlinear damping also explains
the difference in the position of the best frequency stability
point in fig. 5c compared to figs. 5b and 5d.

6. Discussion & Conclusion
As presented in the literature [9, 15] and fig. 4, it is possi-

ble to fully control a nonlinear resonator with a PLL. How-
ever, the challenge exists in finding proper control param-
eters. Although multiple analyses exist, they seem not al-
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Figure 7: Open loop frequency sweeps for di�erent powers
of drum 3. The dotted lines are the corresponding backward
sweeps. The di�erence between the jump down frequencies
of two consecutive power levels decreases. This suggests the
vicinity of internal resonance.

ways one-to-one applicable to the multilayer graphene res-
onators presented in this work. The method for control pa-
rameter selection assumes a linear resonator and therefore
does not include stability analysis of the unstable branch.
Additionally, the advantage of simple selection of the PLL
bandwidth is not valid anymore when using a nonlinear res-
onator. Although it was possible to fully control a drum
with these linear parameters, the exact PLL bandwidth is un-
known. Hence, it is hard to say what bandwidth is required
to control these graphene resonators.

Subsequently, the phase error standard deviation increased
up to 80°, due to noise in the system. The mean phase er-
ror was approximately 0°, so over time the controller does
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Figure 8: Allan Deviation calculated from simulations for dif-
ferent values of the nonlinear damping parameter �.

its job. However, because of practical limits in the data ac-
quisition equipment, the maximal sampling rate was in the
100 kHz range. Accordingly, it is not for sure that the res-
onator amplitude or phase quickly changes between two data
points. This might be investigated by connecting an oscillo-
scope to the resonator output.

Although it was possible to stabilize the unstable region
of drum 1, this stabilization did not succeed for drum 2, drum
3 and drum 4. Despite that all drums show nonlinear be-
haviour when excitation power of 5 dBm is applied, linear
behaviour is observed at different power levels. The drums
behave linear when the applied power is −5 dBm, −10 dBm,
−20 dBm and −15 dBm for drum 1, drum 2, drum 3 and
drum 4 respectively. What stands out is that drum 1 behaves
linear at a relatively high power. One could speculate that the
drum behaves slightly different and has a less strong nonlin-
earity. This may be the reason why it was possible to control
drum 1 and not the others. Further research in developing
better methods for selection of control parameters is needed
to get more predictable results for this kind of resonators.

The presented simulation model does not match the ex-
periments. A reason for this is the use of the normalized
Duffing equation and the absence of sufficient computing
time. The linear resonance frequency of drum 4 is around
9MHz. Therefore, a simulation time ts = 1 × 106 would
be 1 × 106∕(2�9 × 106) = 17.7ms in an experiment. As
the experimental data is recorded for 2min, this is a big dif-
ference. Especially since the precision Allan Deviation de-
pends on the number of samples, running the simulation for
about 6.8 × 109 could improve the result. The computational
resources required for running the simulation for this time
period were not available in this research.

Another improvement to the simulation is using a model
that better reflects the behaviour of graphene. The Duffing
equation is a single degree of freedom model, but graphene
is way more complex. In this study, modal interactions and
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internal resonances were left out of the simulation. By in-
cluding these properties in the resonator model and using
sufficient computation resources, the simulation can be im-
proved.

From fig. 8 it shows that an increased nonlinear damp-
ing has a positive effect on the frequency stability. However,
this is not fully validated by the experiments conducted in
this research, although drum 3 shows clearly behaviour of
increased nonlinear damping in contrast to the other drums.
Whether an increase in nonlinear damping will always result
in the improvement of frequency stability near the resonance
peak is something that requires additional attention.

In summary, this research has shown that it is possible
to control a multilayer graphene resonator fully around its
resonance phase. This opens a path to exploit the nonlinear
behaviour of such resonators instead of avoiding it. Further-
more, the frequency stability of graphene resonators around
its resonance phase is presented. Taken into account that re-
cent work [11] discovered an increase of the nonlinear damp-
ing near internal resonance, this work relates an increase in
nonlinear damping to an improvement in frequency stabil-
ity. It shows that graphene resonators have the potential to
be applied as sensors while operated in the nonlinear regime.
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3
Recommendations

A goal of this thesis is to provide a foundation for further research. In this chapter recommendations
and directions for further research are presented.
The recommendations are divided in three topics and presented below.

3.1. Recommendations regarding control
In general, there is a lot to learn about controlling nonlinear resonators. For this thesis, the next rec­
ommendations are made concerning control:

• Use active adaptive or nonlinear control. These methods suppress the nonlinearities in the res­
onator by cancelling them with the resonator input signal (Interview with Hassan HosseinNia,
Assistant Professor Mechatronic System Design, Delft University of Technology. January 20,
2020).

• Apply sliding mode control. This is a method consisting of two parts. One part that tries to get
close to the setpoint and another part that keeps it at the setpoint (Interview with Hassan Hossein­
Nia, Assistant Professor Mechatronic System Design, Delft University of Technology. January 20,
2020).

• Use a more sophisticated model for graphene in simulations to test the controller. This thesis
uses a single degree of freedom model, but graphene itself is way more complex. The actuation
is now modelled as an external force. However, the laser is changing the tension in the drum
causing it to vibrate. Downside is that this will require more computational effort.

3.2. Recommendations regarding frequency stability
The ultimate goal for sensors is to reach the frequency stability limit of the thermomechanical noise.
However, as that is not the case in this thesis, the following recommendations are made.

• Explorer if and how the frequency stability changes when changing the extrication power. This is
specially interesting when combined with smaller steps in the phase sweep.

• Use overlapping samples in the Allan Deviation. This increases computing power, but the uncer­
tainty of the Allan Deviation reduces as more samples are used.

3.3. Recommendations regarding experiments
One can have a very sophisticated model and controller, but in the end it needs to work in practice.
The next recommendations concern the used measurement setup and the procedure.

• Measure the dynamics of the measurement setup itself to see how it influences the measure­
ments.

17



18 3. Recommendations

• Analyse the noise in the different components of the measurement setup to get an image of what
the limiting components are for measurements of frequency stability.

• Use a nano positioner in a vacuum chamber to aim the laser at the drum and keep it that way.
Manual positioners have a bad resolution and do not actually move only one axis at the time.

• Automate as much as possible. When analysing the frequency stability, it gets really tedious to
wait a few minutes for each phase setpoint.

• When the process is automated, it is recommended to record data for longer times as this de­
creases the uncertainty of the Allan Deviation.



A
Experimental results

This chapter contains experimental results per graphene drum. The results are grouped by chip and
drum coordinates related to their positions on the chip, see fig. B.1. These coordinates have the format
a_b.x.y where a is the diameter of the cavity in µm, b is the number of the column where the drum
is located (left is 1). x and y represent the horizontal and vertical number of the drum in this column
and row, where the top left drum is x=1 and y=1. For example, 10_2.3.5 is a drum with a diameter of
10 µm, in the second column, the third hole from the left and the fifth one from the top.

The drums in the paper are mapped as follows:

Drum coordinates Referred in paper by
Chip 3 10_2.5.8 drum 1
Chip 5 10_2.13.2 drum 2
Chip 5 10_2.14.2 drum 3
Chip 5 10_2.16.2 drum 4

A.1. Chip 2

Figure A.1: Detail of chip 2 where the most interesting drums are located.
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A.1.1. Drum 10_1.4.2
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Figure A.2: Frequency response of drum 10_1.4.2 with a power of 5 dBm
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Figure A.3: Allan Deviation for drum 10_1.4.2
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Figure A.5: Power spectrum density of drum 10_1.4.2, with the blue laser turned off. There is no thermomechanical peak visible
at the resonance frequency.
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A.2. Chip 3

Figure A.6: Detail of chip 3 of region 10_2.
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Figure A.7: Allan Deviation for drum 10_2.5.8 with a power of 5 dBm
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Figure A.8: Allan Deviation for drum 10_2.5.8
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Figure A.10: The result of controlling the unstable branch of drum 10_2.5.8. The data points are acquired by averaging over 1 s
of frequency, amplitude and phase data.
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A.3. Chip 5

Figure A.12: Detail of chip 5 of the first two columns of 10 µm cavities.
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Figure A.13: Allan Deviation for drum 10_2.13.2 with a power of 5 dBm



26 A. Experimental results

10-6 10-4 10-2 100

Averaging time  (s)

10-4

10-3

10-2

A
lla

n 
de

vi
at

io
n

Chip 5 drum 10_2.13.2

110
100
90
80
75
70
65
60
55
-10
-15

Phase

Figure A.14: Allan Deviation for drum 10_2.13.2
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Figure A.15: Allan Deviation at the frequency response for drum 10_2.13.2
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A.3.2. Drum 10_2.14.2
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Figure A.16: Allan Deviation for drum 10_2.14.2 with a power of 5 dBm
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Figure A.17: Allan Deviation for drum 10_2.14.2
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Figure A.18: Allan Deviation at the frequency response for drum 10_2.14.2
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Figure A.19: Frequency Spectrum of drum 10_2.14.2 when controlling it at 105°
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Figure A.20: Frequency Spectrum of drum 10_2.14.2 when controlling it at 150°

A.3.3. Drum 10_2.16.2
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Figure A.21: Allan Deviation for drum 10_2.16.2 with a power of 5 dBm
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Figure A.22: Allan Deviation for drum 10_2.16.2
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Figure A.23: Allan Deviation at the frequency response for drum 10_2.16.2
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B
Experimental procedures

This appendix contains additional information concerning the procedures used by the conducted ex­
periments.

B.1. Graphene drum fabrication
This section explains the steps required to fabricate a graphene drum on a silicon chip with SiO2 sub­
strate. The fabrication of the silicon chip is not explained in this work.

B.1.1. Chip layout
The drum is stamped on a silicon chip with different hole sizes. Each row of grouped holes in fig. B.1
has holes with the same diameter: 10 µm, 8 µm, 6 µm, 4 µm and 2µm, from top to bottom. The columns
consist of different spacial distributions, so a flake of graphene can be positioned on one or multiple
cavities. These cavities are etched in a layer of SiO2 and have a depth of 285 nm.

Before a graphene flake can be stamped onto the chip, it needs to be synthesized.

B.1.2. From graphite to graphene
To achieve thin layers of graphite, a procedure generally known as the ”Scotch Tape method” [22] is
used. For more details on this dry viscoelastic stamping method the reader is referred to [23]. By
using adhesive tape, a thin layer of graphite is peeled off a piece of natural graphite. Subsequently,
the material on the tape is further exfoliated using more adhesive tape to peel off the graphite layer by
layer. This continues until the graphite flakes (i.e. the layers) are thin enough. This means usually that
they are barely visible with the naked eye. In this work multilayer graphene is used to create drums.
This means that the membranes are not exactly one atom thick, but contains multiple layers.

The next step is to transfer the freshly created flakes to the chip.

B.1.3. Transfer graphene to PDMS
In order to select and position a graphene flake onto the chip, it first needs to be transferred to a
microscopic glass. Therefore, something is needed to attach the flake to the glass. A 0.5 cm square
slice of Polydimethylsiloxane (PDMS) is placed onto one end of the microscopic glass to serve for this
purpose. The flakes are transferred from the adhesive tape to the PDMS by pressing the glass with
PDMS to the flakes on the tape, and then separate them again (make sure the PDMS stays on the
glass!). This can be done multiple times to transfer more flakes.

Now is a good time to place the chip on the graphene transfer setup positioner, see (1) in fig. B.2. Turn
on the vacuum pump to fix the chip to the stage.
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Figure B.1: Optical image of the chip. The numbers at the left are the size of the holes in the corresponding row. A bit of residual
graphene is visible. Image by Irek Rosłoń.

�
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��

Figure B.2: 2D Heterostructure Transfer System from hq graphene. The chip is put on the stage (1) which can move indepen­
dently of the microscopic glass with the PDMS and graphene flakes (2). Themicroscope (3) is used to visually inspect the position
the flakes and the chip on the screen (4). The chip can be fixed to the stage by a vacuum pump and can be heated/cooled from
the controller (5).
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B.1.4. Select graphene flake
Next, the best flakes need to be selected. This can be done by using the microscope in the graphene
transfer setup. Clamp the microscopic glass onto the positioner with the PDMS facing downwards. By
scanning the PDMS for flakes, the best ones can be selected. In most cases the best ones have a
greyish colour, as they don’t reflect that much light from the microscope. Besides, they show no sign
of ripples like lines crossing the flake itself.

B.1.5. Transfer the flake to the chip
Once a flake is selected, the chip is aligned so it covers the desired holes. Now the chip is slowly
brought closer to the glass with PDMS. It is important to check if the relative position of the flake to the
chip is still the desired one.

When the PDMS attaches to the chip, the colour of the chip changes for this region. It is important to
look for this region, as it is vital that the selected flake is slowly attached to the chip. This region is
brought close to selected flake by slowly moving the chip toward the microscopic glass.

At this point, expansion of the PDMS due to an increase in temperature can be used to slowly attach
the flake to the chip. Increase the temperature setpoint slowly, only a couple of degrees Celsius at the
time. It can take 5min to 10min (depending on the size of the flake) to extend the attachment region
to fully cover the flake. Typically, one doesn’t need to set the temperature setpoint higher than 45 °C.

The tricky part is separating the PDMS and the chip, while the flake stays attached to the chip. There­
fore, it is important that it is done slowly, for example by cooling the chip down. This usually takes
longer than heating it. When the flake is not in the attachment region anymore, the chip can be moved
away from the PDMS.

This process can be repeated for other flakes. Be aware that stamping another flake to the chip can
cause a flake that is already there to ripple or detach.

B.1.6. Make the chip ready for experiments
When there are sufficient drums stamped onto the chip, it can be used for experiments. Note that the
chip is fixed by a vacuum, so turn off the vacuum pump and slide the chip over the stage with soft
tweezers before picking it up. This way it one can be sure that the chip won’t stick to the stage any
more.
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Table B.1: PLL parameters for tuning fork measurements

Field Value Unit

Filter BW 3.277 kHz
Filter order 4 ­
Center 32.764 kHz
Upper and lower limit ±5 Hz
P −5.718 Hz °−1

I −78.7 mHz °−1 s−1

D 0 Hz s °−1

Rate 3.516 MHz
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Figure B.3: Allan deviation for a tuning fork. The line labelled 𝜏−0.5 represents the slope of the white phase noise in the Allan
Deviation.

B.2. Validation of measurement and calculation of Allan Deviation
To make sure the whole procedure of tuning, recording and processing data from the setup is done in
a correct way, the same measurements with a linear tuning fork were done. Because the properties of
a tuning fork are known, it is possible to validate the measurement procedure. The tuning fork used is
RS PRO 32.768kHz Crystal 1. This tuning fork has a frequency tolerance of ±20ppm.

B.2.1. Experiment
The tuning fork is wired up to the Zurich Instruments UHFLI and a frequency sweep is performed. Using
the linear fitting functionality of the UHFLI the Q factor (𝑄 = 119 × 103), resonance frequency (𝑓0 =
32.76 kHz) and phase (𝜙0 = 247.17 × 10−3°) are determined. For the demodulator filter bandwidth and
the PLL bandwidth a 10th and a 100th of the resonance frequency are used respectively. These values
are then used to calculate the value of P and I according to appendix B.3.
The values are inserted to their corresponding fields within the PLL tab of the UHFLI. The demodulator
filter order is set to 4, the frequency limit is set to ±5Hz and the rate is set sufficiently high. The exact
values can be found in table B.1.

1https://nl.rs­online.com/web/p/crystal­units/1442305/

https://nl.rs-online.com/web/p/crystal-units/1442305/
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Table B.2: Average resonance frequency of the tuning fork.

Excitation power Mean frequency
50mVpk 32764.279144 129 9Hz
100mVpk 32764.270017 001 7Hz
150mVpk 32764.249131 754 1Hz
200mVpk 32764.237607 797 0Hz

For different forcing amplitudes (𝑉𝑝𝑘) of 50mV, 100mV, 150mV and 200mV, the PLL is active and the
demodulation frequency is recorded for one hour with a sampling rate of 1.717 kHz. Next, the recorded
data is supplied to the allandev function in MATLAB (see appendix E.1), resulting in fig. B.3.

B.2.2. Validation
From fig. B.3 it is shown that the frequency stability is limited by white phase noise (slope of 𝜏−0.5),
which is expected. This white phase noise indicates the frequency instability due to thermomechanical
noise. As the data points for the lowest values of 𝜏 are influenced by the PLL bandwidth, the overall
results have the expected slope. The reduction of the Allan Deviation for an increase in force is as
predicted. An increase in force results in better signal­to­noise ratio which improves the frequency
stability.

By inspecting the average demodulation frequency (which is the resonance frequency) for each mea­
surement, one can see if the frequency tolerance from the specs is met. The 20 ppm frequency toler­
ance translates in a resonance frequency between 32 767.34464Hz and 32768.65536Hz. However,
the conducted measurements have a mean frequency outside this domain, see table B.2. From the
measurement it is shown that the resonance frequency is at 32 764Hz. Using this as the average fre­
quency, the range of the averagedmeasured resonance frequency should be between 32 763.34472Hz
and 32 764.65528Hz. The values in table B.2 are clearly within this domain and therefore meets the
frequency stability from the specs.
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Figure B.4: Schematic representation of a resonator incorporated with a PLL. The oscillator generates a periodic signal with
frequency Ω and amplitude 𝐹 to drive the resonator. In the phase detector the response of the resonator is compared with the
driving signal resulting in the estimated phase difference �̂�. This phase is then compared to the phase set­point 𝜙𝑐 and on this
difference, the error, acts a PI controller. The resulting correction 𝑦 of the controller is added to the initial driving frequency 𝜔𝑖𝑛𝑖𝑡
and proceeds as the oscillator frequency Ω.

B.3. PLL parameters selection
A phase locked loop (PLL) needs to be tuned in order to operate correctly. Tuning involves finding
values for the PI controller, 𝑘𝑝 and 𝑘𝑖, and determining the demodulator low pass filter bandwidth and
order.

Values for the PI parameters are found by using the method by Denis et al. [9] or Olcum et al.. In
the next sections the methods are explained and is demonstrated that the first method is not valid for
graphene drums.
To determine the demodulator filter cut­off frequency 𝑓𝑐 and the PLL bandwidth 𝑓𝑝𝑙𝑙, a rule of thumb is
used. This rule states 𝑓0 >> 𝑓𝑐 >> 𝑓𝑝𝑙𝑙, which essentially means that a factor of 7 to 10 is between
these frequencies. In this work, the factor 10 is used.

B.3.1. PI parameters by averaged equations
Denis et al. [9] use the method of averaging to find values for 𝑘𝑖 that stabilize the system. Following
along with both [9, 24], it starts with a set of differential equations, including a mathematical description
of the PLL.

�̈� + 2𝜁𝜔0�̇� + 𝜔20𝑥 + 𝛾𝑥3 = 𝐹 cos(𝜃) (B.1a)
�̇� = Ω = 𝜔𝑖𝑛𝑖𝑡 + 𝑦 (B.1b)

�̇� = 𝑘𝑖(�̂� − 𝜙𝑐) (B.1c)
̇�̂� = 𝜔𝑐(𝜙 − �̂�) (B.1d)

Besides the symbols used in main text and fig. B.4, 𝜙 is the actual phase shift between the forcing
signal and the output signal and 𝜔𝑐 = 𝑓𝑐/2𝜋 is the cut­off frequency of the low pass filter incorporated
in the phase detector. After averaging the Duffing equation in eq. (B.1) and solving for the fixed points,
the equations are written in the jacobian matrix 𝐽. From here stability can be easily investigated by
calculating the eigenvalues. The system is stable if the real parts of 𝐽 are negative. This results in
conditions for the value of 𝑘𝑖.
As the method of averaging is a perturbation method, it assumes that the nonlinearities as forces are
small compared to the other parameters. From experiments it became clear that this is not the case for
graphene drums. No values that where stable according tot the method where able to control a drum.

B.3.2. PI parameters using a linear model
For linear devices it is possible to find a transfer function for the resonator including the PLL. This has
been done by Olcum et al. [25] and improved upon by Demir & Hanay [26]. To make it simple to control
the bandwidth of the PLL (𝜔𝑝𝑙𝑙), they set 𝑘𝑝 = 𝜔𝑝𝑙𝑙. To cancel this pole by an other zero, 𝑘𝑖 = 𝑘𝑝/𝜏𝑐 is
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Figure B.5: PID block diagram. Simplified version from the manual [27]. The units of 𝜙 and the setpoint are degree and of the
center and 𝑓𝑑𝑟𝑖𝑣𝑒 are in hertz. The PID parameters are constant gain blocks, marked with their corresponding letter.

used. Here is 𝜏𝑐 = 2𝑄/𝜔0 the characteristic time of the resonator. This method can be a nice starting
point to work at at least at the stable branch of the Duffing resonator.

Parameter unit conversion
To use these parameters in the UHFLI, they need to be converted, as the units are different in the device
and from the paper by Olcum et al.. Appendix B.3.2 displays a simplified version of the UHFLI PID block
diagram. In this image the input and setpoint have the unit degree and the center and output the unit
hertz. Therefore the P, I and D parameters have units Hz °−1, Hz °−1 s−1 and Hz s °−1 respectively. The
units of the parameters of Olcum et al. have units rad s−1 and rad s−2 for 𝑘𝑝 and 𝑘𝑖 respectively. The
unit conversion between these units and the UHFLI units (denoted by the superscript UHFLI) is shown
in eq. (B.2). Note that also a minus sign is introduced for 𝑘𝑈𝐻𝐹𝐿𝐼𝑝 . This because without it does not
work.

𝑘𝑝 = 𝜔𝑝𝑙𝑙 , 𝑘𝑈𝐻𝐹𝐿𝐼𝑝 = −
𝜔𝑝𝑙𝑙
360 𝑘𝑝 = −

2𝜋
360𝑓𝑝𝑙𝑙

𝑘𝑖 =
𝑘𝑝
𝜏𝑐
= 𝑘𝑝

𝜔0
2𝑄 , 𝑘𝑈𝐻𝐹𝐿𝐼𝑖 = 𝑘𝑈𝐹𝐻𝐿𝐼𝑝

𝜔0
2𝑄 = 𝑘

𝑈𝐻𝐹𝐿𝐼
𝑝

2𝜋
2𝑄𝑓0

(B.2)





C
Simulations

The simulations are performed with a MATLAB Simulink model. This appendix shows the model and
some results.

C.1. Simulink model
The model consists of a nonlinear Duffing equation incorporated in a PLL. An overview of the model is
presented in fig. C.1. There are two subsystems, one representing the resonator and another one rep­
resenting the phase detector. Some blocks require parameters. The important ones are omega_init,
the initial excitation frequency in rad s−1, phase the phase setpoint in rad, the PI parameters and the
noise powers of the two band­limited white noise blocks. The one at the left represents the thermome­
chanical noise and the one at the bottom the amplitude noise. They are set to the values described in
the main text.

C.1.1. Nonlinear resonator subsystem
This subsystem consists of two integrators which feed their results to a MATLAB function, see fig. C.2.
This function calculates the second derivative which goes to the integrators again. The code in this
MATLAB function is the following:

function ddy = fcn(u, y, dy, c, eta, k, gamma)
ddy = u - c*dy - eta*dy*y^2 - k*y - gamma*y^3;

The parameters used are c, eta, k and gamma, which represent the linear damping, nonlinear damping,
stiffness and cubic stiffness respectively.

C.1.2. Phase detector subsystem
The phase detector is modelled after [28] and its working principle is synchronous demodulation, see
fig. C.3. In essence, the resonator response signal is multiplied with a sine and cosine signal at the same
frequency as the excitation signal. This product is then led through a low­low­pass filter resulting in the
in­phase (Y) and quadrature component (X). This low­pass filter is build from a zero­pole­gain model
with the desired cut­off frequency and filter order that is converted to state space. The calculations of
the state space values and initial conditions using the parameters wh (cut­off frequency) and order is
presented below.

%% Build Low Pass filter
z = []; % no zeros
p = ones(1, order) * (-wh); % all poles at -wh
g = wh^order; % a gain that makes the passband gain 1
lpf_tf = zpk(z,p,g);
lpf = canon(lpf_tf,'modal');
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Figure C.1: Overview of the Simulink Simulation model
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Figure C.2: The subsystem representing the nonlinear resonator.



44 C. Simulations

Figure C.3: The subsystem operating as the phase detector. It is modelled after [28].



C.2. Simulation results 45

5 6 7 8 9 10 11 12 13

Frequency (Hz) 106

0

1

2

3

4

5

A
m

pl
itu

de
 (

V
)

10-3

Experiment
Model

Figure C.4: The frequency response of the resonator model compared to one of an actual drum.

% initial conditions equeal to steady state
lpfY0 = -inv(lpf.A)*lpf.B;
% lpfY0 = zeros(1, order);
lpfX0 = zeros(1, order);

From these filtered signals the amplitude and phase are calculated. The additional blocks on the phase
output are there to shift the phase clipping boundaries and to unwrap the phase if desired.

C.2. Simulation results
The results described in this section use the parameters mentioned in the main text.

C.2.1. Comparison of resonator model with experiment
To compare the resonator model with the experiments, AUTO97 [29] is used to generate the frequency
response of the model. This is compared visually with a frequency response obtained from experi­
ments, see fig. C.4.

C.2.2. Allan Deviation
In fig. C.5, the Allan Deviation is presented that results from the simulations. This simulation has run
for 1 × 106 s simulation time, but this is 17.7ms in normal time. This is also visible in the Allan Deviation
as the lines are not smooth. Running the simulation longer will result in smoother Allan Deviation lines.

C.2.3. Nonlinear damping and force
What if the increased force when using a higher nonlinear damping value to compensate for the am­
plitude results in the better Allan Deviation? To check this all combinations of the two force levels and
nonlinear damping values are plotted in fig. C.6. This figure shows that an increase in force improves
the frequency stability. However, for higher phase values the frequency stability does not match the
frequency stability of the increased nonlinear damping. Next to that, for phase setpoins higher than
40°, the frequency stability improves more than without increased nonlinear damping.
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Figure C.5: Allan Deviation resulting from the simulations.
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D
Derivations of resonator frequency

responses

This appendix contains the derivation of the linear and nonlinear frequency responses.

D.1. Frequency response of a forced harmonic resonator
The forced harmonic resonator can be used as a model for a linear resonator.

�̈� + 2𝜁𝜔𝑛�̇� + 𝜔2𝑛𝑥 = 𝐹 cos(Ω𝑡) (D.1)

To find the amplitude and frequency response we find a solution for eq. (D.1), a non­homogenous
linear differential equation, following along with [14, 30]. To find the amplitude and the phase in the
steady state, only the particular solution is required as the homogenous solution decays away over
time. Because the amplitude and phase are of interest, a solution is sought in the form of

𝑥𝑝(𝑡) = 𝐴 cos(Ω𝑡 − 𝜃) (D.2)

where 𝐴 and 𝜃 represent the amplitude and the phase respectively. Ω is the same forcing frequency as
used in eq. (D.1). This solution and its derivatives are substituted into eq. (D.1), resulting in eq. (D.3).

− Ω2𝐴 cos(Ω𝑡 − 𝜃) − 2𝜁𝜔𝑛Ω𝐴 sin(Ω𝑡 − 𝜃) + 𝜔2𝑛𝐴 cos(Ω𝑡 − 𝜃) = 𝐹 cos(Ω𝑡) (D.3)

sin(Ω𝑡 − 𝜃) = sin(Ω𝑡) cos(𝜃) − cos(Ω𝑡) sin(𝜃) (D.4a)
cos(Ω𝑡 − 𝜃) = cos(Ω𝑡) cos(𝜃) + sin(Ω𝑡) sin(𝜃) (D.4b)

To collect all the sin and cos terms, the trigonometric function in the particular solution can be rewritten
as the in­phase and quadrature components, see eq. (D.4). Doing so, i.e. substituting the equations
from eq. (D.4) into eq. (D.3), yields the following result.

cos(Ω𝑡)[ − Ω2𝐴 cos(𝜃) − 2𝜁𝜔𝑛Ω𝐴 sin(𝜃) + 𝜔2𝑛𝐴 cos(𝜃) − 𝐹]
+ sin(Ω𝑡)[ − Ω2𝐴 sin(𝜃) − 2𝜁𝜔𝑛Ω𝐴 cos(𝜃) + 𝜔2𝑛𝐴 sin(𝜃)] = 0

(D.5)

As it is expected that the condition in eq. (D.5) holds for all values of 𝑡, each of the two parts between
the square brackets have to be equal to zero. The two resulting equations will lead to an expression
for the amplitude and the phase of the resonator.

−Ω2𝐴 cos(𝜃) − 2𝜁𝜔𝑛Ω𝐴 sin(𝜃) + 𝜔2𝑛𝐴 cos(𝜃) − 𝐹 = 0 (D.6a)
−Ω2𝐴 sin(𝜃) − 2𝜁𝜔𝑛Ω𝐴 cos(𝜃) + 𝜔2𝑛𝐴 sin(𝜃) = 0 (D.6b)
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Starting with eq. (D.6a), one can get rid of the sin(𝜃) and cos(𝜃) by visualizing the expression as a
vector with length 𝐹 and angle 𝜃. The adjacent and the opposite sides of the triangle that this vector
describes have a length of the expression before sin(𝜃) and cos(𝜃).Therefore, the lengths are (𝜔2𝑛 −
Ω2)𝐴 and −2𝜁𝜔𝑛Ω𝐴 of the adjacent and opposite side respectively. Now the lengths of all the sides of
the triangle are known, the Pythagorean theorem can be applied.

((𝜔2𝑛 − Ω2)𝐴)2 + (−2𝜁𝜔𝑛Ω𝐴)2 = 𝐹2 (D.7)

Rearranging eq. (D.7) and solving it for 𝐴 results in an expression for the amplitude for a given driving
frequency Ω.

𝐴(Ω) = 𝐹
√(𝜔2𝑛 − Ω2)2 + (−2𝜁𝜔𝑛Ω)2

(D.8)

To find an expression for the phase, eq. (D.6b) is used. After grouping the coefficients by sin(𝜃) and
cos(𝜃), the expression in eq. (D.9) can be written.

sin(𝜃)
cos(𝜃) =

2𝜁𝜔𝑛Ω𝐴
(𝜔2𝑛 − Ω2)𝐴

= tan(𝜃) (D.9)

By cancelling out the 𝐴 and taking the inverse tangent, the expression for the phase as a function of
the driving frequency is found.

𝜃(Ω) = arctan( 2𝜁𝜔𝑛Ω𝜔2𝑛 − Ω2
) (D.10)

D.2. Frequency response of a forced Duffing resonator
To model nonlinear primary resonance, a forced Duffing resonator can be used as a model.

�̈� + 2𝜁�̇� + 𝑥 + 𝛾𝑥3 = 𝐹 cos(Ω𝑡) (D.11)

To find the forced frequency response of the resonator presented in eq. (D.11), the Krylov–Bogolyubov
method of averaging is used, following [31–35]. This is a perturbation method which means it assumes
a weakly nonlinear system. This means that the following derivation is valid for small values of 𝜁, 𝛾 and
𝐹.

�̈� + 𝑥𝜖ℎ̄(𝑥, �̇�, 𝑡) = 0 (D.12)
One starts with an equation in that looks like eq. (D.12). Here is 0 < 𝜖 << 1 the small parameter
that suffices the assumption of a weakly nonlinear system. To match eq. (D.12) with eq. (D.11), an
expression for ℎ̄(𝑥, �̇�, 𝑡) needs to be established.

ℎ̄(𝑥, �̇�, 𝑡) = 2 ̄𝜁�̇� + �̄�𝑥3 − �̄� cos(Ω𝑡) (D.13)

The parameters with a bar above it represent the values of these parameters of 𝒪(1), while without bar
the values are of 𝒪(𝜖). They are related as 𝜁 = 𝜖 ̄𝜁, 𝛾 = 𝜖�̄� and 𝐹 = 𝜖�̄�. Substituting eq. (D.13) into
eq. (D.12) results in the equation of concern, eq. (D.11).

Now eq. (D.12) is converted to state space in eq. (D.14). Now a solution is presented for 𝜖 = 0, as it
were the linear case, see eq. (D.15).

{
�̇� = 𝑦
�̈� = �̇� = −𝑥 − 𝜖ℎ̄(𝑥, 𝑦, 𝑡) (D.14)

𝑥 = 𝐴 cos(𝑡 + 𝜃) , 𝑦 = −𝐴 sin(𝑡 + 𝜃) (D.15)
The symbols 𝐴 and 𝜃 are the amplitude and phase of oscillation respectively. They are defined as the
polar representation of 𝑥 and 𝑦, see eq. (D.16).

𝑥2 + 𝑦2 = 𝐴2 (D.16a)

𝜃 + 𝑡 = −arctan(𝑦𝑥 ) (D.16b)
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In the linear case, 𝐴 and 𝜃 are constant. But for a nonlinear resonator they change slowly (compared
to the oscillations) over time. So for 𝜖 > 0, 𝐴 → 𝐴(𝑡) and 𝜃 → 𝜃(𝑡) is assumed. The goal is to find
approximations for the change of these parameters over time. Therefore, by definition eq. (D.14) stays
the same although 𝐴 and 𝜃 are now considered to be time dependent.

By taking the derivative with respect to time of eq. (D.16a) and eq. (D.16a) and then substituting
eq. (D.14) and eq. (D.15) to come up with an expression without 𝑥 and 𝑦, see eq. (D.17).

�̇� = 𝜖ℎ̄ sin(𝑡 + 𝜃) (D.17a)
𝐴�̇� = 𝜖ℎ̄ cos(𝑡 + 𝜃) (D.17b)

The following step is to substitute eq. (D.13) into eq. (D.17) and makes sure all references to 𝑥 and 𝑦
are substituted. Starting with eq. (D.17a) to do this and defining 𝛽 = 𝑡+𝜃, Ω = 1+𝜖𝜎 and 𝛼 = 𝜃−𝜖𝜎𝑡,
results in eq. (D.18). Here is 𝜎 a small parameter (therefore multiplied with 𝜖) that can be varied around
the resonance frequency, which is 1 in this case.

�̇� = 𝜖 (−2 ̄𝜁𝐴 sin2(𝛽) + �̄�𝐴3 cos3(𝛽) sin(𝛽) − �̄� cos(𝛽) cos(𝛼) sin(𝛽) − �̄� sin2(𝛽) sin(𝛼)) (D.18)

𝐹 appears twice in eq. (D.18) because of the expansion cos(𝛽 − 𝛼) = cos(𝛽) cos(𝛼) + sin(𝛽) sin(𝛼).
This is where the averaging comes in. To remove the fast dynamics from the equation, they are aver­
aged. The averaged value of a function is denoted by a bar or <> and defined as in eq. (D.19).

̄𝑓 =< 𝑓(𝑡) >= 1
2𝜋 ∫

𝑡+𝜋

𝑡−𝜋
𝑓(𝑠)𝑑𝑠 (D.19)

When applying this to eq. (D.18) and noting < sin2(𝛽) >= 1
2 and < sin(𝛽) cos(𝛽) >= 0, it results in

eq. (D.20).
̇�̄� = 𝜖 (−2 ̄𝜁𝐴 < sin2(𝛽) > +�̄�𝐴3 < cos3(𝛽) sin(𝛽) >

−�̄� < cos(𝛽) sin(𝛽) > cos(𝛼) − �̄� < sin2(𝛽) > sin(𝛼))

= 𝜖 (− ̄𝜁𝐴 − 12�̄� sin(𝛼))

(D.20)

As expected, ̇�̄� is 𝒪(𝜖), which is also the error compared to the exact solution.

The same procedure can be applied to eq. (D.17b), eventually resulting in eq. (D.21).

𝐴 ̇�̄� = 𝜖 (38�̄�𝐴
3 + 12�̄� cos(𝛼)) (D.21)

By remembering that 𝜃 = 𝛼 + 𝜖𝜎𝑡 and its time derivative �̇� = �̇� + 𝜖𝜎, eq. (D.21) can be written as
eq. (D.22).

𝐴�̇� = 𝜖 (38�̄�𝐴
3 − 𝜎𝐴 + 12�̄� cos(𝛼)) (D.22)

At this point, the slow dynamics of the phase and amplitude are known. To construct a frequency
response, the steady state is of interest and therefore the fixed points of these slow dynamics. These
fixed points can be found by evaluating ̇�̄� = 0 and �̇� = 0. Doing so and getting rid of 𝜖 by substituting
the original parameters results in the following two equations.

𝜁𝐴 = −12𝐹 sin(𝛼) (D.23a)

3
8𝛾𝐴

3 − 𝜎𝐴 = −12𝐹 cos(𝛼) (D.23b)
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To combine eq. (D.23a) and eq. (D.23b), they are squared and added up which results, after rearrang­
ing, in the forced frequency response function for the amplitude, see eq. (D.24).

𝜎 = 3
8𝛾𝐴

2 ±√ 𝐹2
4𝐴2 − 𝜁

2 (D.24)

An expression for the phase can be found similarly. The averaged phase is 𝛼, as the fast time oscilla­
tions are averaged out. By dividing eq. (D.23a) by eq. (D.23b), see eq. (D.25) results in the frequency
response for the phase in eq. (D.26).

𝜁𝐴
3
8𝛾𝐴

3 − 𝜎𝐴
=
−12𝐹 sin(𝛼)
−12𝐹 cos(𝛼)

= tan𝛼 (D.25)

𝛼 = arctan( 𝜁
3
8𝛾𝐴

2 − 𝜎
) (D.26)

Note: to match the phase direction of the linear resonator, eq. (D.26) needs to be multiplied with −1.
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Code

This appendix contains a selection of the MATLAB code used in this thesis. All the MATLAB code is
available at https://doi.org/10.4121/13055690.

E.1. Function allandev

function [sigma, tau, M] = allandev(freqSignal, sampleFreq, varargin)
%ALLANDEV Returns the allan deviation for the given frequency signal and
%sample frequency.
%
% Author: Ties Verschuren (c) 2019
%
%[sigma, tau, M] = allandev(freqSignal, sampleFreq, ___)
%
% INPUT
% freqSignal Frequency signal to calculate the allan deviation
% from.
% sampleFreq Sample frequency: used to calculate tau values.
% Expected unit: Hz
% OPTIONAL INPUT (___)
% minSamples The minimal values to average over for sigma,
% default 100.
% minGateTime Minimal gate time to start from, default smallest
% possible (1/sampleFreq).
% quiet Disable progress output. Default true. When set to
% false, some progress data is shown.
%
% OUTPUT
% sigma The allan deviation. (2 sample method)
% tau The gate times for which the allan deviation is
% calculated.
% M The number of samples used per gate time in the
% calculation.

%% Default values for optional parameters
minSamples = 100; %minimal 100
minGateTime = 1/sampleFreq;
pointsPerDecade = 5;
quiet = true;

%% parse optional parameters
if nargin > 2

for i = 1:2:(nargin - 2)
if size(varargin) < (i + 1)

error('allandev: No value given for optional parameter %s', varargin{i});
end
value = varargin{i+1};
switch varargin{i}
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case 'minSamples'
minSamples = value;

case 'minGateTime'
minGateTime = value;

case 'pointsPerDecade'
pointsPerDecade = value;

case 'quiet'
quiet = value;

otherwise
error('allandev: Unknown option "%s" given.', varargin{i});

end
end

end

%% Parameter validation
if ~isnumeric(minSamples) || minSamples < 0

error('allandev: Parameter minSamples should be a positive number, got %s', minSamples)
end

if ~isnumeric(minGateTime) || minGateTime < 0
error('allandev: Parameter minGateTime should be a positive number, got %s', minSamples)

end

if ~isnumeric(pointsPerDecade) || pointsPerDecade < 0
error('allandev: Parameter pointsPerDecade should be a positive number, got %s', pointsPerDecade)

end

if ~islogical(quiet)
error('allandev: Parameter quiet should be a logical value (i.e. 1 or 0), got %s', quiet);

end

%% Calculate initial values
numSamples = numel(freqSignal);
freqAvg = mean(freqSignal); % average frequency

% Take the frequency fraction: normalized frequency values to their mean.
y = freqSignal ./ freqAvg;

% Number of loops (number of different gate times used)
startTauNum = max(round(minGateTime * sampleFreq), 1); % starting index for gate time
endTauNum = max(floor(numSamples / (minSamples + 1 )), 1);

%% Calculate evaluation points
startTau = startTauNum * 1/sampleFreq;
endTau = endTauNum * 1/sampleFreq;
decades = log10(endTau) - log10(startTau);
evaluationTaus = logspace(log10(startTau), log10(endTau), round(decades * (pointsPerDecade + 1)));
evaluationPoints = unique(round(evaluationTaus * sampleFreq));
numPoints = numel(evaluationPoints);

%% Show status if needed
nbytes = 0;
if ~quiet

fprintf('allandev: calculate for %d points\n', numPoints); % print status message
end

%% Initialize empty loop variables
sigma = zeros(numPoints, 1);
tau = sigma;
M = sigma;

%% Calculation
for i = 1:numPoints

sampleIdx = evaluationPoints(i);
% Tau is the time
tau(i) = (1/sampleFreq) * sampleIdx;
% num samples is always the number of average bins minus 1
M(i) = floor(numSamples / sampleIdx) - 1;
% sum for this tau value
loopSum = 0;
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% Average for the first bin
mm = 1;
y_m = mean( y((1+(mm-1)*sampleIdx):(mm*sampleIdx)) );
% loop over the other bins
for m = 1:M(i)

y_mplus1 = mean( y((1+m*sampleIdx):((m+1)*sampleIdx)) );
loopSum = ((y_mplus1 - y_m)^2)/2 + loopSum;
% store the average for the next loop
y_m = y_mplus1;

end
% Calculate the allan deviation
sigma(i) = sqrt( loopSum /(M(i)+1) );

if ~quiet
fprintf(repmat('\b',1,nbytes))
nbytes = fprintf('allandev: pocessed %.2f %%\n', i/numPoints*100); % print status message

end
end
% fprintf(repmat('\b',1,nbytes))
if ~quiet

fprintf('allandev: Done\n');
end
end
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