Developer-Centric Test Amplification:
User-Guided Test Amplification

Version of June 19, 2022

Danyao Wang

Developer-Centric Test Amplification:
User-Guided Test Amplification

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Danyao Wang
born in Yunnan, China

]
TUDelft

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewl.tudelft.nl

www.ewi.tudelft.nl

© 2022 Danyao Wang. Note that this notice is for demonstration purposes and that the
BIEX style and document source are free to use as basis for your MSc thesis.

Cover picture: A “random” maze generated in postscript.

Developer-Centric Test Amplification:
User-Guided Test Amplification

Author: Danyao Wang
Student id: 5274788
Email: d.wang-9@student.tudelft.nl

Abstract

Automated test generation techniques improve the efficiency of software testing.
However, the opacity of the test generation process and concerns about the readability
of generated tests make it difficult for software developers to accept them. Developer-
centric test amplification creates easy-to-understand test cases by amplifying existing
test cases that developers are familiar with and assists developers in integrating them
into their test suite. We propose user-guided test amplification to allow developers to
guide the test amplification to generate new test cases based on their branch cover-
age expectations. We create a user-guided test amplification prototype that starts with
the method developers want to test, aids developers in communicating which branch
should be covered, and assists developers in inspecting and selecting the amplified test
cases. We conduct a technical case study with two Java projects and show that our ap-
proach cannot always produce a test case to cover a given branch because objects are
not initialized with the right parameter values to fulfill the target branch condition. We
also perform a user study with 12 software developers to investigate developers’ opin-
ions on our approach. The evaluation result shows that the user-guided test amplifica-
tion generates amplified test cases that developers are satisfied with and is especially
useful when developers want to generate tests to cover a specific branch. Connect-
ing the developers’ coverage goal and the amplified test cases enables developers to
understand and select the test cases more easily.

Thesis Committee:

Chair: Prof. Dr. A. Zaidman, Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. A. Zaidman, Faculty EEMCS, TU Delft
Committee Member: C.E. Brandt, EEMCS, TU Delft

d.wang-9@student.tudelft.nl

Preface

When I write this preface, I am about to complete my final assignment in my master’s
phase, my master’s thesis. Looking back, the day I just arrived in the Netherlands seems
like yesterday. Feeling the time flies by has made me realize how fulfilling the past two years
have been, especially the last year of my master thesis project. After studying data science
for many years, I switched to software engineering. Designing and developing projects that
can be applied in real life is so fascinating. The much help I received along the way made
the journey even more memorable.

First, I would like to thank my supervisors, Andy Zaidman and Carolin Brandt. Andy’s
initial introduction to the research topic motivated me to start this master’s thesis project.
His grasp of the thesis procedure keeps my project progress on the right track. I am very
grateful to Andy for his valuable feedback and suggestions at crucial points in the project,
which were essential for me to complete this thesis. As my daily supervisor, Caro always
gives me detailed feedback and advice at our weekly meetings. She always gave great
answers to every question I had, which made me admire her erudition and strong scientific
research ability. Her detailed guidance and assistance have always helped me to remove
obstacles in the progress of the project.

Second, I would like to thank the 12 software developers who participated in my user
study. They actively participated in my user study with interest in my research topic and
provided valuable material for my thesis. Several developers even volunteered more time
than expected to share their views. Their contributions are an indispensable part of my
thesis.

Finally, I want to thank my parents and friends. Although I haven’t seen my parents
for two years, their financial support and concern from afar have always encouraged me to
finish my thesis. My dear friends, whether thousands of miles away or close at hand, always
cared and encouraged me and also helped me recruit participants for my user study. Their
help was so important for me to complete this thesis.

Danyao Wang
Delft, the Netherlands
June 19, 2022

iii

Contents

iii
v
vii
(IIntroduction 1
|I.I ~ Background and Motivation| 1
I1.2 Research Questions| 2
1.3 ResearchMethodl 3
(.4 Contributions| 5
[L5 ThesisOutlinel. 5
2 Background and Related Work| 7
2.1 Background| 7
22 RelatedWorkl 8
3 Design and Implementation| 13
3.1 Overview of the Implementation| 13
3.2 TestCube Extension| 14
3.3 DSpotExtension| 19
4 __Evaluation| 21
4.1 Technical Case Study|, 21
B2 UserStudy| 23
IS Results and Analysis| 29
[5.1 Technical Case Study Results|. 29
5.2 UserStudy Results|, 31
[5.3 Analysisand Discussion| 45
[5.4 Threatsto Validity|. 53

CONTENTS

[B.1 StreamSummary.javal

[B.2 ConcurrentStreammary.javal

B.3 StreamSummaryTestjaval

[B.4 ConcurrentStreamSummary Test.javal

|C Questionnaires|

[C.1 ConsentSurvey|
IC.2 Pre-Test Questionnaire|
|C.3 Post-Test Questionnaire|

vi

57
57
59
60

63

69

71
71
78
81
81

List of Figures

2.1 Overview of the open test amplification process within DSpot [8]] 8
[2.2 Overview of the open test amplification interaction in TestCube.| 9
3.1 Overview of the user-guided test amplification implementation.|. 13
[3.2 Reminder of creating an imtial class. 0L 15
[3.3 Reminder of writing an mitial test.| L. 15
3.4 Example Control Flow Graph of method.| 16
[3.5 Example initial coverage in the CFG allowing branch selection,. 17
[3.6 Example when the selected method has no branches.| 17
[3.7 Example when the selected method 1s all covered.| 18
3.8 Example of user-guided test amplification result.| 18
3.9 Example amplified test cases with coverage diversity| 19
[3.10 Overview of the directed test amplification process within DSpot.| 20
4.1 Example procedure of the user study interview.| 27
[5.1 Distribution of the ratio of satisfying testcases.| 31
[5.2 Participants’ experience of software development and testing.|. 32
[5.3 Participants’ technical background.|. 000 32
5.4 Answer distribution of the questions about the user-guided test amplification’s |
| understandability.| oo 33
[5.5 Answer distribution of question about the user-guided test amplification’s valu- |
[ablemformation) L 34
[5.6 Example amplified test case that covers partial lines following a covered branch.| 35
[5.7 Answer distribution of question about the user-guided test amplification’s ef- |
| fectiveness 1n conveying expectation.].o 36
[5.8 Answer distribution of question about the user-guided test amplification’s use- |
[fulness in result selection. L oL 36
[5.9 Answer distribution of questions about the open test amplification’s understand- |
....................................... 37

vii

LI1ST OF FIGURES

[5.10 Answer distribution of question about the open test amplification’s valuable |

[information 38
[5.11 Answer distribution of questions about the open test amplification’s usefulness |

mresultselection) oL oL 39
[5.12 Answer distribution of question about understandability of different code cov- |
....................................... 41
[5.13 Answer distribution of question about understandability of different display |
| form of code coverage.| 41
I5.14 Answer distribution of questions about helpfulness of different test amplification.| 42
[5.15 Answer distribution of questions about satisfaction with TestCube.| 44

viii

Chapter 1

Introduction

1.1 Background and Motivation

Testing is important for software development [41]] but labour-intensive and expensive [2].
Earlier studies estimated that testing often accounts for more than 50% of total develop-
ment costs [[7]. Many automated test generation techniques have been developed to help
developers write tests, reduce the cost and enhance the effectiveness of software testing [2].
Despite the benefits of automated test generation, some recent studies have revealed some
issues that prevent software developers from incorporating automated test generation into
their daily practice, including the opacity of the test generation process, the lack of collab-
oration with developers, and developers’ skepticism about the readability of the generated
tests [4} 135,138, 134].

Brandt and Zaidman proposed developer-centric test amplification to help developers
generate test cases that are easy to understand and integrate into their test suite [8]]. Test am-
plification is a technique that generates new test cases by adapting existing, manually written
test cases and can improve the code coverage of the existing test suite [9]. Developer-centric
test amplification provides amplified test cases that developers can take over into their man-
ually maintained test suite, with the developer accepting the test case being central [J].
Brandt and Zaidman’s approach generates new test cases by amplifying test cases that de-
velopers have manually written. Developers’ familiarity with the existing test cases helps
make the amplified test cases easy to understand. Specifically, they designed a tool that gen-
erates amplified test cases that contribute additional instruction coverage to the test suite.
Moreover, developers can interact with the tool to explore and inspect the amplified test
cases and add them to their test suite. We use the term open test amplification to describe
their design as it provides new test cases that can bring any additional instruction coverage
for the entire project. Developers mainly participate in the final stage of inspection and
acceptance in the open test amplification.

Inspired by the developer-centric test amplification, we propose user-guided test ampli-
fication to involve developers more directly in test amplification and make the test amplifica-
tion process more transparent to them. Besides, we expect to improve the understandability
and relevance of the test cases to developers by connecting developers’ coverage require-

1. INTRODUCTION

ments with the amplified test cases. The user-guided test amplification includes developers
in the test amplification process, with developers providing their branch coverage require-
ment to guide the test amplification in generating the tests they want.

We created a prototype to evaluate the value of the user-guided test amplification ap-
proach to software developers and compare it with the open test amplification approach.
The prototype consists of an interaction layer and a supportive test amplification tool. The
interaction layer allows developers to convey their branch coverage expectations for the
amplified test cases and inspect the test amplification result. The test amplification tool re-
ceives the branch coverage requirement and generates amplified test cases according to the
requirement. We develop the prototype based on the open test amplification tool, which is
implemented with a test exploration IntelliJ plugin TestCube [8]] and a test amplification tool
DSpot [10]. We implement the user-guided test amplification interaction layer in TestCube.
We add a directed amplification method in DSpot to support amplifying test cases in the
direction of covering specific branches. Based on DSpot’s result, TestCube filters ampli-
fied test cases that meet developers’ requirements and displays easy-to-understand results
to assist developers in building a test suite.

We evaluate the effectiveness of the directed test amplification method added in DSpot
by conducting a technical case study to estimate the probability that it can generate tests
that meet a given branch coverage requirement. We recruited 12 software developers and
conducted user study interviews with them to investigate the value of the user-guided test
amplification interaction in TestCube. We also propose further suggestions for creating an
effective user-guided test amplification interface by analyzing the evaluation result.

1.2 Research Questions
This thesis investigates how user-guided test amplification helps developers build and main-
tain their test suite and compare it with open test amplification. Specifically, we propose the

research questions below.

Research Question 1

Does the directed test amplification method generate test cases that satisfy the devel-
opers’ branch coverage expectations?

This project aims at allowing developers to guide test amplification to generate test
cases that meet their branch coverage expectations. Therefore, it is crucial to evaluate if the
amplified test cases generated by the directed test amplification method can meet the branch
coverage expectations of developers.

We answer this research question from both a technical and a user perspective. Techni-
cally, we execute the directed test amplification using a set of branch coverage requirements
as input and assess how frequently the directed test amplification can generate new test cases
that satisfy the branch coverage requirements. In addition, we invite developers to create
test cases with the directed test amplification method and provide feedback on the result.

2

1.3. Research Method

Research Question 2

Does the directed test amplification method generate more test cases that fulfill de-
velopers’ branch coverage expectations than the open test amplification method?

We add a new directed test amplification method to complement DSpot so that it can
lead test amplification towards the direction of meeting developers’ branch coverage expec-
tations. We want to verify that the new directed test amplification method can generate more
test cases that fulfill developers’ branch coverage expectations than Brandt and Zaidman’s
open test amplification method.

Research Question 3

How do developers perceive the user-guided test amplification?

We want to learn what developers think about the user-guided test amplification in-
teraction in TestCube and determine if it can effectively assist developers in guiding test
amplification and generating test cases they want.

Research Question 4

What different value do the user-guided test amplification and the open test amplifi-
cation bring to developers?

We want to explore the new value that the user-guided test amplification brings to de-
velopers compared with Brandt and Zaidman’s open test amplification and see if it can help
developers better leverage test amplification to enhance their test suites.

Research Question 5

What are the key facets to creating an effective interface for user-guided test ampli-
fication?

We want to figure out what factors are crucial to creating an effective user-guided test
amplification interface and make recommendations for future relevant research.

1.3 Research Method

This section introduces the research methods we use to answer the research questions in
Section[I.2]

1.3.1 Design and Implement User-Guided Test Amplification

To explore the user-guided test amplification, we design and implement a prototype by
extending TestCube and DSpot.

1. INTRODUCTION

We implement a new interaction in TestCube to allow developers to guide the test am-
plification. Developers start the test amplification by selecting a method they want to test.
Then TestCube visualizes the selected method by a Control Flow Graph (CFG) [1]. De-
velopers convey their branch coverage expectations for amplified test cases by selecting a
branch they want the new test cases to cover in the CFG. Moreover, we add a result window
to display the amplified test cases and visualize the new coverage they bring to the target
method in the CFG. Developers can add the amplified test cases to the existing test suite.

We extend DSpot to support user-guided test amplification in the back-end. First, we
extend DSpot to be able to receive the guidance information provided by developers inter-
acting with TestCube. As the guidance is specific branch coverage expectation, we extend
DSpot to be able to compute the branch coverage of amplified test cases, which is the cri-
terion to determine if an amplified test case satisfies the developers’ requirement. Further-
more, we add a directed amplifier, D-amplifier, to support directed test amplification better
as all the amplifiers used in the open test amplification amplify test cases without direction.

1.3.2 Technical Case Study

To answer RQ1 and RQ2, we conduct a case study [43]] to evaluate the new directed test
amplification method in DSpot. Specifically, we prepare several Java projects as the objects
to perform the directed test amplification and assess the result.

We add d D-amplifier in DSpot to support the directed test amplification, amplifying
manually written test cases and generating amplified test cases that satisfy specific branch
coverage requirements. Therefore, we prepare several Java projects and identify all the
branches in the source code to build up a case study dataset. The branches are what de-
velopers hope to have covered. Then, we sample a sequence of branches in the dataset as
a coverage goal to execute directed test amplification with DSpot. In actual development
scenarios, developers need to write a test method and then use test amplification to amplify
it. In the experiment, we use existing test methods in the project as the initial test case to
amplify. Eventually, we check how many sampled branches can be covered by the amplified
test cases, indicating how well the test amplification results can meet the developers’ branch
coverage expectations. We use the result of the case study to answer RQI1.

We compare the directed amplification method enabled by the D-amplifier to the open
test amplification approach to validate its effect. We use the two test amplification methods
to amplify the same initial test cases with the same branch coverage requirement. Finally,
we evaluate the efficiency of these two approaches by calculating the ratio of branches
covered and the frequency with which they can generate test cases that satisfy the branch
coverage requirement, which is how we answer RQ2.

1.3.3 User Study

As users play a crucial role in the developer-centric test amplification, we conduct a user
study to evaluate the user-guided test amplification designed and implemented in TestCube
and DSpot and compare it with the open test amplification. We recruit 12 software devel-
opers, invite them to use TestCube, and interview them about their experience.

4

1.4. Contributions

Developers are invited to generate test cases in the user-guided and open test amplifica-
tion methods and compare them to explore the differences. After developers try out the two
test amplification approaches, we conduct a semi-structured interview to investigate their
opinions on them. The semi-structured interview is based on a questionnaire prepared in
advance, containing a series of closed-ended questions. We ask the participants to fill in an-
swers to each question and explain why they select a particular option. We also flexibly ask
additional questions based on the interviewee’s responses, allowing us to interview them
in-depth. During the interview, we encourage the participants to propose suggestions for
our tool.

The questions in the questionnaire are divided into four parts. The first two parts are
about the participants’ impression of the user-guided test amplification and the open test
amplification individually. The third part asks developers to compare the two approaches’
differences explicitly, and the last part looks into developers’ overall impression of the test
amplification result and TestCube. The answer for the first part is analyzed to answer RQ3.
We answer RQ4 by comparing the result of the first two parts and analyzing the third part’s
result. The last part contributes to answering RQ1 from the developers’ perspective. We an-
swer RQ5 by analyzing the evaluation result of our user-guided test amplification prototype
and developers’ suggestions.

1.4 Contributions

This thesis makes the following contributions:

1. Extended TestCube: A new user-guided test amplification interaction in the TestCube
plugin, which visualizes code coverage and assists users in conveying their branch coverage
expectations for amplified test cases and displays the corresponding result for user selection.

2. New amplifier in DSpot: A directed amplifier that supports directed test amplification
that aims at generating new test cases meeting specific branch coverage requirements.

3. New selector in DSpot: A selector that can compute branch and line coverage of tests
and select amplified test cases based on coverage requirements.

4. An evaluation of the effect of the new directed amplification method in test amplifi-
cation aiming at specific branch coverage requirements.

5. Evaluate the value of user-guided test amplification and differences with the open
test amplification.

6. Four suggestions for creating an effective user-guided test amplification interface.

1.5 Thesis Outline

Chapter [2] sketches the background and related work of the thesis topic. In Chapter 3] we
introduce the design and implementation of the user-guided test amplification in TestCube
and DSpot. Chapter] describes the technical case study and user study we conducted to
evaluate the user-guided test amplification. Chapter [5] displays the evaluation results and
discusses them to answer RQ1-RQ5. Finally, we summarize the thesis and discuss some
potential future work opportunities.

Chapter 2

Background and Related Work

In this chapter, we introduce the background and related work. User-guided test amplifi-
cation is motivated by the developer-centric test amplification [8]] and developed based on
Brandt and Zaidman’s implementation, which we term open test amplification. We intro-
duce open test amplification in detail in Section Section introduces previous work
related to our topic, including interactive and directed test generation.

2.1 Background

Open test amplification starts from amplifying existing test cases and provides amplified
test cases that bring additional instruction coverage to the test suite. It is implemented with
TestCube and DSpot. TestCube provides an interface allowing developers to start the test
amplification and inspect the amplification result. DSpot is the back-end that conducts the
test amplification. Developers start test amplification in TestCube by selecting an existing
test method and asking TestCube to amplify it. TestCube then runs DSpot to amplify the
selected test case. After DSpot finishes the test amplification, TestCube displays the result,
and developers can choose to keep or discard the amplified test cases interactively.

2.1.1 Developer-Centric Test Amplification with DSpot

Brandt and Zaidman’s developer-centric test amplification revises the test amplification
process of DSpot to generate shorter, easier-to-understand test cases and select to keep
those that bring additional instruction coverage [8]. Figure@provides an overview of the
developer-centric test amplification approach.

At the start of the amplification process, the developer-centric test amplification removes
all the assertions and the method calls in the original test case as they will not match the
new amplified test case. Then the developer-centric test amplification uses input mutation
to explore a test case’s input space. Literals like integers, booleans, and strings are slightly
modified or replaced by random values. It also removes, duplicates, or adds new method
calls on existing objects, which means it is necessary to have an existing object for the
method call mutation. Specifically, DSpot only supports calling public, non-static, and
non-abstract methods. It can also create new objects or literals as parameters for method

7

2. BACKGROUND AND RELATED WORK

Original Remove Mutate Generate Select Amplified
Test Case Assertions - Input Assertion Test Cases - Test Cases

Figure 2.1: Overview of the open test amplification process within DSpot [8]].

calls. With the input mutation, a series of new test cases are generated. Then the developer-
centric test amplification adds one assertion to each test case. The developer-centric test
amplification only adds the assertion that the value it asserts changed through the mutation
to reflect the changes brought by the preceding input mutation.

After the assertion generation, we receive a broad range of test cases and can select
them according to a selection criterion. Brandt and Zaidman’s open test amplification de-
sign selects test cases based on the instruction coverage that DSpot supports for calculating.
Specifically, the open test amplification keeps the amplified test cases contributing addi-
tional instruction coverage to the test suite.

2.1.2 Open Test Amplification Interaction in TestCube

The test exploration plugin TestCube was designed to assist developers in generating and
exploring test cases using the open test amplification approach. Figure [2.2] shows the pro-
cedure of the open test amplification interaction.

Developers begin open test amplification by selecting one existing test method ((D in
Figure 2.2)) in the test suite and asking TestCube to amplify it (®). When the amplification
finishes, TestCube notifies the developer with a pop-up, and developers can click to inspect
the amplification result (@).

The result window consists of one amplified test case (), an information box (),
five navigation buttons (@), and a coverage inspection editor (©). The information box
contains the information of the amplified test case, including the additional instructions it
covers and the number of modifications applied. The navigation buttons allow developers
to inspect different amplified test cases, add them to the test suite, ignore them and close the
result window. The coverage inspection editor highlights the additional covered lines in the
source code when developers click on the additional instruction coverage line information
in the information box.

2.2 Related Work

In this section, we discuss past research related to two aspects of our work: interactive test
generation, which allows humans to guide the test generation, and directed test generation,
which has a specific goal for test generation.

2.2. Related Work

€ CalculatorTest java i TestCube Amplification of 'testSub()" o —

package fr.inria.stamp.tavern; 1221 ~ v Amplified test case 'testUncovered'

import |- _ Input modifications: 1
Assert statements added: 1

@ public class CalculatorTest { ~ This test case improves the coverage in these classes/methods/lines:
@Test (Click on the green links to see these lines within the class)

> public void testSub() {
i) culator(x: 3, v: 2); L +8 instr.
» Run 'testSub()' ~OR ted: 1, cale.subQ); | L5246 instr.
Debug 'testSub()’ AeD | L. 55 +3 instr.
G Run 'testSub()' with Coverage L. 56 +4 instr.
Modify Run Configuration... o = hadie
> Amplify 'testSub()’ Add Test To Test Suite Ignore Test Case Next Test Case Previous Test Case Close Amplification Results
Calculator calc = new Calculator(x 3, v: 2); @Test(timeout = 10000)
assertEquals(expected: 5, calc.add()); public void testUncovered() throws Exception {
¥ Assert.assertEquals(0, new Calculator(3, 2).uncovered());
}
st
> public void testDivide() { |
Calculator calc = new Calculator(x: 10, y: 2);
assertEquals(expected: 5, calc.div()); for (int i =1; 4 < x; ++1) {
ik £y
’ 0
Lest while (x>0) {
> public void testMult() { if (x > 10) {
Calculator calc = new Calculator(x: 5, v: 2); X -= 5;
assertEquals(expected: 10, calc.mult()); }
P =45
st ¥
> public void testMultiIfElse() { .
return x; ¥ Test Cube found 6 amplified test case

Calculator data = new Calculator(x: 1, v: 1);
data.multiIfElse();
+ EE AR,

blems [Terminal 4 Build & Dependencies

} Actions v
Inspect amplification results
Inspect DSpot terminal output @ Event Log

Figure 2.2: Overview of the open test amplification interaction in TestCube.

2.2.1 Interactive Test Generation

Several techniques incorporate humans and use the information humans provide to guide the
test generation. Marculescu et al. proposed Interactive Search-Based Software Testing (IS-
BST) to involve domain specialists in test generation [25,26]. Search-Based Software Test-
ing (SBST) uses meta-heuristic optimizing search techniques, such as genetic algorithms,
to automate or partially automate testing processes, such as the automatic generation of test
data [32]. ISBST is designed to use a dynamically adapted fitness function during the search
process, and domain-specialist users are allowed to adjust the fitness function. The fitness
function is composed of attributes relevant to system quality that leads the optimization of
the test cases. By changing the relative importance of these attributes, the domain specialist
can change the fitness function and influence the search. Marculescu et al. carried out a
series of implementations and validations for the concept of ISBST in industry [27, 28] and
academic [29] and concluded that the ISBST system develops test cases that are not found
by manual techniques [29] and the interaction with domain specialists makes the system
more usable and more readily accepted in an industrial setting [28]]. Seeing the potential of
ISBST, Marculescu et al. further transfer ISBST to industry [30] using the model of tech-
nology transfer to industry proposed by Gorschek et al. [16] and discuss the lessons they
learned along the way.

The primary difference between their work and ours is that they involve domain spe-
cialists in the test generation while we let software developers guide the test generation.
They pointed out the importance of perfecting how automated test systems communicate
with users and ensuring that their findings are understandable to the users when transferring

9

2. BACKGROUND AND RELATED WORK

ISBST to industry [30]. We address this by designing an interface in a test exploration tool
and visualizing all the information and test amplification results for the users’ interaction.

Besides ISBST, some recent studies also extend the interactivity of test generation. Mur-
phy et al. propose to apply Grammatical Evolution into SBST and incorporates human
expertise into the search [33]. Grammatical Evolution is a grammar-based evolutionary
algorithm. It uses a grammar, often a context free grammar, to create syntactically cor-
rect objects in any arbitrary language [36]. They proposed that users can define the search
space they want their tests to be created from by specifying a grammar. However, a further
empirical study is needed to validate the effectiveness of their approach.

Ramirez et al. observed two key issues that stymie the acceptance of automated test
cases by analyzing various studies that evaluated the effectiveness and acceptance of test
generation tools, which are the opacity of the automatic test generation process and the lack
of cooperation with the tester [34]]. To solve the issues, they make the test case’s readability
become their work’s goal. They let testers guide the test generation by interacting with the
testers for readability assessment when generating test cases using search-based algorithms.
Testers’ subjective assessment of test cases’ readability through scores will be used to com-
pare candidate test cases with the same fitness (aggregation of coverage criteria). Our work
also addresses the concerns they raised. We cooperate with testers and make the process
transparent by letting testers express their branch coverage goal and guide the test genera-
tion. We also improve the readability of test cases by connecting the amplified test cases
with testers’ coverage goals.

2.2.2 Directed Test Generation

Search-Based Software Testing (SBST) uses search algorithms to automatically find test
cases that optimize test goals [2]. SBST uses a fitness function to capture the test objective,
which is the test generation direction. SBST has been used to automate test generation for
various test goals, such as maximizing structural coverage [[15} 16, 21 18], crash reproduc-
ing [39, 12} [11]], and optimizing software function [42].

SBST for structural coverage is the most well studied within SBST [17]. Many ap-
proaches aim at maximizing structural coverage. The widely known tool EvoSuite gener-
ates tests for Java towards satisfying a coverage criterion [[15]. AUSTIN is an open source
SBST system for the C language that maximizes branch coverage [21]]. TestFul generates
tests for Java and aims to reach high statement and branch coverage [6]. Holmes et al. pro-
pose to use the relative line of code of software components to guide test generation as code
coverage is expensive to compute; methods with more lines will be called with a higher
probability [18]. Holmes et al.’s approach still aims at reaching high branch and statement
coverage even though they do not use it as an explicit test generation goal. All of these ap-
proaches aim at the overall structural coverage of the software without targeting coverage of
specific parts of the code structure while our work generates test cases for a specific branch.

Test suite augmentation techniques are used in regression testing to identify changed
behaviors of a program and to generate test cases targeting the changes if the existing test
suite is insufficient to handle the changes [40]. Most augmentation techniques are based on
specific code coverage criteria [40]. Some of the test augmentation approaches only focus

10

2.2. Related Work

on identifying changed code and provide guidance for test generation but do not actually
generate test cases [3, [37]; while Xu et al. devoted a series of work to the directed test
generation aiming at new coverage requirements arising from new versions of a program as
it evolves [44, 45| 147]].

Xu et al. first proposed a concolic testing algorithm to address test augmentation [44].
Specifically, they locate the branches of the evolved program that are not covered by the
existing test suite and generate test cases to cover them one by one. For each uncovered
branch, they find its source node and the existing test cases whose execution traces reach
the source node. Then they explore the different directions of the path conditions of the
existing test cases with a concolic testing method to find new test cases that can cover the
target branch. They applied their technique to an original version and 41 revised versions
of one of the Siemens programs, Tcas, from the SIR [14] repository and achieved branch
coverage rates between 95% and 100%.

Xu et al. address the same problem with a genetic algorithm in a subsequent work [45].
The algorithm targets an uncovered branch of the evolved program each time. The fitness
function measures a test case’s distance from the target branch. Minimizing the fitness
function generates test cases that can cover the target branch. Their experiment shows
that the branch coverage result reached the best when they used all existing test cases to
compose the initial population for the genetic algorithm; 35% to 46% of the target branches
are covered.

The concolic algorithm requires many constrain solver calls, and the generic algorithm
needs to use all the test cases. Both of them require much computational effort. Xu et al. ex-
plore the two approaches and several factors’ influence on the cost and effectiveness of test
generation techniques [46]]. Based on their findings, Xu et al. proposed a hybrid approach
by combing the concolic and genetic algorithms to get a more cost-effective approach [47].
This new approach runs both the concolic and genetic methods for multiple rounds until no
new branches are covered. They first apply the concolic testing in each round and pass the
output to the genetic algorithm as the initial population. They conducted an empirical study
and concluded that the hybrid algorithm is more effective than the two individual approaches
but less efficient than the concolic test case augmentation technique. Xu et al. further inves-
tigated different factors’ influence on their approach through an empirical investigation [48]]
and proposed a revised version of the hybrid approach [20]. The revised hybrid approach is
an interleaving framework that interleaves test case generation algorithms dynamically and
can adjust other factors potentially affecting the success of test generation flexibly, such as
the initial test case they use. Their experiments show that a technique in which two test case
generation algorithms are fully dynamic interleaved outperforms their previous techniques.

Although their work also uses existing test cases to generate new test cases for specific
branches, they focus on test augmentation, which aims to cover the branches of a new
version of a program that are not covered by the existing test cases when the program
evolves. However, our test amplification method focuses on all uncovered branches of
software. Besides, our approach is more cost-effective as we only use a small number of
initial test cases and amplify them for one round. In contrast, their approach needs to use a
large number of initial test cases and perform multiple rounds of iterations and calculations.

Besides targeting the changed code when software evolves and generating tests for re-

11

2. BACKGROUND AND RELATED WORK

gression testing, some researchers realize it is useful to generate test cases covering a par-
ticular code element for debugging [24} [13]]. Ma et al. proposed directed symbolic exe-
cution to generate test cases covering a specific line [24]. Specifically, they proposed two
types of directed symbolic execution, shortest-distance symbolic execution, and call-chain-
backward symbolic execution. Shortest-distance symbolic execution prioritizes the path
with the shortest distance to the target line [24]. Call-chain-backward symbolic execution
follows the call-chain backward from the target method containing the target line until it
finds a realizable path to the target [24]. The two directed symbolic execution approaches
use the distance to the target line as information to guide symbolic execution. Dinges et al.
proposed symcretic execution to generate test data covering a specific branch or statement
in a program [13]]. Their approach combines symbolic backward execution and concrete
forward execution. They first use symbolic backward execution to find an execution path
from the target to any program’s entry points but ’skip’ over problematic constraints for the
symbolic decision procedure. Then concrete forward execution uses a heuristic search to
find inputs that satisfy the constraints skipped by the symbolic backward execution. Both
their and our work specify the direction for test generation using the target code elements.
The directed symbolic execution and the symcretic execution need to analyze the path to the
target code element and generate tests from scratch. The constraint solver and the heuristic
search require extensive computation. However, our approach uses existing tests to generate
new ones and does not use symbolic execution to reduce the computational cost.

12

Chapter 3

Design and Implementation

This chapter introduces the design and implementation of the user-guided test amplification
prototype in detail, including the user-guided test amplification interaction in TestCube and
the directed test amplification method in DSpot. In Section [3.1] we provide an overview of
the implementation. Then we discuss more design details and motivation of TestCube and
DSpot in Section [3.2]and Section 3.3}

3.1 Overview of the Implementation

We realized the user-guided test amplification by implementing a new interaction process
in TestCube and a corresponding supportive directed test amplification method in DSpot.
Figure shows an overview of the user-guided test amplification prototype. A developer
first conveys expectations for the new test cases in TestCube by selecting one method they
want to test and one branch of the method they want to have covered. Then TestCube
looks for existing test cases as the input of the test amplification. TestCube will remind
the developer to write an initial test case if it cannot find an existing one. Then DSpot
receives the initial test cases with the user’s guidance from TestCube and amplifies them
based on the direction, the target method and the target branch. Finally, TestCube analyzes
DSpot’s results and displays the amplified test cases satisfying the developer’s coverage
expectations. The developer can add or ignore the amplified test cases when inspecting the

result.
0 TestCube o
User
Convey Expectation Pass Configuration DSpot
< > < Conduct Test Amplification
Inspect Result Generate Result

Figure 3.1: Overview of the user-guided test amplification implementation.

13

3. DESIGN AND IMPLEMENTATION

3.2 TestCube Extension

TestCube provides the interfaces where developers convey their branch coverage expec-
tations for the new tests and accept the amplified test cases by inspecting the amplifica-
tion results. Specifically, we help developers convey their branch coverage expectations
by showing a Control Flow Graph (CFG) of the method they want to test and letting them
select one branch they hope to have covered. We show the amplified test cases with their
branch coverage highlighted in the CFG, and then developers can choose to add them to the
test suite.

3.2.1 Developers’ Expectation

The user-guided test amplification interaction in TestCube is designed to assist developers
in communicating their expectations for the new amplified test cases. The most commonly
used engineering goal of test amplification is to improve coverage according to a coverage
criterion [9]]. Therefore, we use code coverage to express users’ expectations of an amplified
test case. TestCube already adopted instruction coverage as a criterion to select amplified
test cases in the open test amplification [8]. However, it is a very fine-grained evaluation
metric, more suited to demonstrating the final result of amplified tests than helping devel-
opers express their expectations of the amplified tests.

We use branch coverage to represent developers’ expectations. Branch coverage indi-
cates how many branches in a codebase tests execute. In our design, developers specify the
branch they want to test instead of setting a branch coverage goal, as branch coverage is a
quantitative metric that is difficult to define accurately as good or bad, while the branch is
an easy code structure for developers to understand.

First, developers select one method they want to test. Branches are the possible execu-
tion paths the code can take after a decision statement is evaluated, representing different
scenarios the method will face. When developers write tests for a specific method, they
usually would like to test if the method is doing what it is supposed to do in different sce-
narios. By specifying the branch of one method they hope amplified test cases to cover,
developers indicate the scenario they would like to test. In addition, it is often the case
that covering a specific branch also means covering a series of corresponding lines of code.
By specifying the target code branch, the developer is also considering the line coverage
expectation of the amplified test cases but avoiding potentially complicated operations of
selecting multiple lines of code.

3.2.2 Initial Test Cases

TestCube generates new test cases by amplifying existing test cases; hence having an exist-
ing manually written test case is a prerequisite for test generation. In our implementation,
TestCube uses all test methods in the test class of the class containing the method the user
wants to test as input for directed test amplification. Developers may use TestCube to gen-
erate new test cases at any stage of development when they are writing tests from scratch
for a class or have already written some tests. To ensure that developers can use TestCube

14

3.2. TestCube Extension

in both conditions, TestCube should remind and help developers write an initial test case

for the class they want to test when there are no existing test cases.

When a developer selects a method and asks TestCube to generate tests for it, TestCube
will look for the existing test class for the class containing the selected method. If no est
class exists for it, TestCube will ask the developer to create a test class and write an initial
test case. Also, TestCube will display a window to assist the developer in writing a Junit

test class, shown in Figure [3.2] TestCube will ask the developer to write one test method if
there is an empty test class without test methods, which is shown in Figure[3.3]

public Calculator(int x, int y){
this.x = x;
this.y =y;

TestCube Option

[] []
[~ generate test cases for 'add()" |
>"/V public int add() {

Please create a test class and write an test case for test amplification..
int result = x + vy;

return result; @ OK

+
¥ public int sub() {
/) test commen e e Create Test @
int result -y Testing library: 4 JUnitd v
return result; Class name: CalculatorTest|
¥ Superclass: =
Destination package: fr.inria.stamp.tavern - (..
» public int mult() { packag =
int POSULE = x * y; Generate: setUp/@Before
tearDown/@After
return result;
Generate test methods for: Show inherited methods
} Member
m add():int
»¥ public int div() { m sub():int
int result = x / y; m mult():int
return result; o div():int
} m other():String
m Singlelf():String
% i ; m uncovered():int
) public String other() { m multilfElse():String
if (x < 10) { & deneme(x:int):int
return "X is less than 10"; m switchTest(grade:char):String
} else if (x > 15) { m repeatTest(n:int):int
return "X is greater than 15"; " forTest(sum:int):int
} else { m tripleTest(denom:int):double
return "X is greater than 10 and less than 15";
y g coee | [
}

Figure 3.2: Reminder of creating an initial class.

1% public class CalculatorTest {

@Test o o
> public void testAdd() {
Please write an intial test method for test amplification.

} OK

Figure 3.3: Reminder of writing an initial test.

15

3. DESIGN AND IMPLEMENTATION

3.2.3 Control Flow Graph

We show a CFG of the selected method based on the source code to better assist developers
in identifying and pointing out the branch they want to cover. The example of the CFG
is in Figure [3.4] The CFG in our implementation is based on PlantUML [5] and depicts a
method’s structure, including all branches and lines. The boxes represent code lines, and
decision statements and arrows illustrate the code flow. The arrows out of each decision
statement have “True” and “False” on them, denoting different branches. By inspecting the
CFG, developers can see how the code runs following each true and false branch of each
decision statement and quickly understand different scenarios that possibly need testing.
Besides, each box of the CFG contains both the line number and corresponding source
code, which can help developers locate the code in the source file.

»% public String range() {
if (x < 10) {
return "X is less than 10";
} else if (x > 15) {
return "X is more than 15";
} else {
return "X is more than 10 and less than 15";

34: True - 34: False

¢ < 10/
36: True 36: False
35: return "X is less than 10"

(37: return "X is more than 15") [39: return "X is more than 10 and less than 15")
[>\« |

> <€

3 <
’g‘

Figure 3.4: Example Control Flow Graph of method.

The selected method may have been partially covered as there are existing test methods
that are the input of test amplification. Knowing which part of the method is uncovered is
essential for developers. It allows the developer to learn about the current code coverage and
identify branches that are not yet covered. Therefore, TestCube computes initial coverage
for the selected method and first displays it in the CFG. We compute both branch coverage
and line coverage as the CFG comprises branches and lines. Figure [3.3] shows the initial
coverage identified in the CFG. The dark green border identifies the branches and lines
covered by existing tests in the CFG. We use pink borders to identify the branches that are
not covered and available for selection. Developers are allowed to select one branch each
time. The pink border becomes red after being selected. Developers click the “Generate

16

3.2. TestCube Extension

Test Covering the Selected Branch” button below the CFG to start the test amplification.
TestCube will amplify all the existing test cases and return test cases that can cover the
selected branch.

Test Cube Control Flow Graph of range o —

(35: return "X is less than lO")

(3 7: return "X is more than 15") (BE): return "X is more than 10 and less than IS'D
I > e
> <<
o Y

> <

Generate test to cover the selected branch Close

Figure 3.5: Example initial coverage in the CFG allowing branch selection.

If the selected method has no branches, TestCube informs the user that it will generate
test cases that can cover the method. TestCube will not generate new test cases if the selected
method is fully covered. The examples of the two cases are in Figure [3.6/and Figure

€ Calculator.java ¢’ CalculatorTest.java ¢ Test Cube Control Flow Graph of add

»¥ public int add() {
int result = x + y;
return result;

o ©
The selected method has no branches. We will cover all of the lines for you.

OK Cancel

Figure 3.6: Example when the selected method has no branches.

3.2.4 Results Display

After test amplification completes, TestCube will pop up a notification to report the result,
indicating the number of amplified test cases covering the selected branch. Developers can
choose to inspect the result and explore the result window. Figure 3.8 shows an example of
the test amplification result where the left part is IntelliJ’s regular editor and the right part is

17

3. DESIGN AND IMPLEMENTATION

€ Calculator.java ¢’ CalculatorTest.java ¢ TestCube Control Flow Graph of add

»¥ public int add() {

int result = x + vy; -
13: int result = x + V|
return result;

14: return result

The selected method has no branches and is fully covered. Please select another method.

OK Cancel

2 []

Figure 3.7: Example when the selected method is all covered.

the TestCube result window. The amplified test case is at the top of the result window, and
the CFG of the target method is at the bottom. Besides the existing coverage identified by
dark green borders, light green borders identify the new branch coverage and line coverage
brought by the amplified test case in the upper part. When developers switch to inspect
another amplified test case, the new coverage on the CFG updates correspondingly. Also,
developers can continue to select the pink-bordered branches to continue to generate test
cases for them. There are a series of buttons below the amplified test cases where developers
can switch between amplified test cases and add amplified test cases to their test suite, which
follows the existing design of the open test amplification [8]].

€ Calculator.java € CalculatorTest java i TestCube Test Generation for range()' o —
—
6 ¥3 ~ v 1Q@Test(timeout = 10000)
5 public String range() public void testSub_mgl2_assSep368() throws Exception {
. Assert.assertEquals("X is less than 10", new Calculator(3, 2).other());
if (x < 10) {
return "X is less than 10"; s
} else if (x > 15) { Add Test To Test Suite Ignore Test Case Next Test Case Previous Test Case Close Amplification Result

return "X is more than 15";
} else {
return "X is more than 10 and less than 15";

+
] 35 return "X is less than 10°

¥ public String SingleIf(){ (37 return "X is more than 15") (9 return 'X is more than 10 and less than 15)
if (v > o{ [J
return "Y is larger than X"; 'Y‘
+
return "X is larger than Y";
+
» public int uncovered() {

for (int i = 1; i < x; ++i) {
--X;

»* Test Cube found 3 amplified test cases.

Actinne v

} Generate test to cover the selected branch Close Inspect amplification results
blems Terminal 4 Build < Dependencies Inspect DSpot terminal output %) Event Log

Figure 3.8: Example of user-guided test amplification result.

We limit the number of amplified test cases to three in the final implementation. We
found that most of the amplified test cases covering a specific branch are similar because
they amplify the same initial test cases, call the same method, and use similar parameters
to satisfy the same decision statement. Providing developers with too many options to ana-

18

3.3. DSpot Extension

lyze and choose from is unnecessary. Nevertheless, there is still potential diversity among
the amplified test cases when there are multiple nested branches in the target method. For
instance, Figure |3.9| shows two amplified test cases with different coverage. The two am-
plified test cases are from the amplification result targeting covering the branch “66:False”
in the first level of the nested branches. However, they cover different branches of the in-
ner decision statements. Keeping such diversities can provide developers with potential
benefits.

Test Cube Test Generation for multilfElse()' Test Cube Test Generation for multilfElse ()’

@Test(timeout = 10000) @Test(timeout = 10000)
public void testDivide_mg7_assSep233() throws Exception { public void testRange_mg9_literalMutationNunber28_assSep208() throws Exception {

Assert.assertEquals("X is equal than 16", new Calculator(10, 2).multilfElse()); Caloulator data = new Calculator(26, 1);
N data.multiIfElse();

Assert.assertEquals("X is more than 15", data.range());
Add Test To Test Suite Ignore Test Case Next Test Case Previous Test Case Close Amplific:

/L Add Test To Test Suite | Ignore Test Case || Next Test Case | Previous Test Case | Close Amp
66 True/; 1o \bb Fake /i\
j—; B5-True AT
5 Trud 69: False << 10 YT
67: return "X is less than 10" %—L Nt
69:True /7 oo 1o \BOFalE
67 return "X i less than 10" =

(70 return "X is equal than m‘) (72: return "X is greater than \0") M
} (70 return "X is equal than 10") [72 return X is greater than 10‘)

(a) Amplified test case 1 (b) Amplified test case 2

Figure 3.9: Example amplified test cases with coverage diversity.

3.3 DSpot Extension

DSpot is TestCube’s backend. TestCube passes input and configuration settings to DSpot
and calls DSpot to perform test amplification. After DSpot finishes execution, TestCube
reads and analyzes the result files produced by DSpot and then displays the critical infor-
mation in the result window.

3.3.1 Extend Configuration Option

To support directed test amplification, DSpot is first extended to be able to accept the direc-
tion given by developers in the form of configuration parameters. The direction includes the
method developers want to test and the branch they want the amplified test cases to cover.

3.3.2 Coverage Computation

DSpot utilizes OpenClover [31] to support computing branch and line coverage. The branch
and line coverage is crucial when assisting developers in inspecting the current coverage sta-
tus and selecting amplified test cases according to developers’ coverage expectations. When
assisting developers in choosing the branch they want to cover, DSpot computes the branch
coverage and line coverage of the existing tests to help TestCube show the initial coverage
in the CFG. After finishing test amplification, DSpot generates a report containing each am-
plified test case’s branch coverage and line coverage. Then TestCube selects the amplified

19

3. DESIGN AND IMPLEMENTATION

test case according to the coverage report. The report, including all the amplified test cases,
can also be reused by the following test amplification round and helps save time in case
of repetitive runs of test amplification. When another round of directed test amplification
starts, TestCube will look in the previous round’s output for amplified test cases that can
satisfy the new requirement. The directed test amplification will perform again only when
no existing amplified test case meets the new requirement. Otherwise, TestCube will read
the existing result and return it.

3.3.3 Directed Amplifier

Brandt and Zaidman’s developer-centric test amplification method, which we call open test
amplification, uses a series of amplifiers to mutate the input of a test case in diverse ways
without a specific direction. To better support directed test amplification and improve the
possibility of generating amplified test cases that can cover a specific branch, DSpot is
extended with a new directed amplifier, the D-amplifier.

The D-amplifier becomes a directed test amplifier by calling the target method according
to the configuration. Figure [3.10]shows the directed test amplification process. D-amplifier
is used to call the target method after removing all assertions to set a direction before per-
forming any other input mutation. This way, all the other input mutations will be performed
on a test case called the target method. Modifying other elements of the test case is like
changing the scenarios the target method will face. As a result, the directed test amplifica-
tion amplifies the test case in the direction of testing the target method and trying to cover
different branches of the method.

Original =~ Remove Call Mutate Generate Amplified
Test Case Assertions - Target Method - Input Assertion Test Cases

Figure 3.10: Overview of the directed test amplification process within DSpot.

20

Chapter 4

Evaluation

This chapter introduces the evaluation we conduct to explore the value of user-guided test
amplification and compare it with Brandt and Zaidman’s open test amplification, including
the technical case study and user study. The technical case study evaluates if the directed test
amplification method in DSpot can generate more amplified test cases that can cover a given
branch than the open test amplification method. The user study investigates developers’
opinions on user-guided test amplification.

4.1 Technical Case Study

The technical case study mainly consists of preparing a dataset, using the dataset to conduct
test amplification with the directed test amplification method and the open test amplification
method in DSpot, and collecting and analyzing the test amplification results of the two
methods. Sectiond.1.T|describes how we prepare the dataset, and Section [4.1.2]introduces
how we conduct the case study and process the results.

4.1.1 Technical Case Study Dataset

As introduced in Section[I.3.2] we need several Java projects and sample their branches to
construct the dataset. Therefore, the source code of the projects we use should have many
code branches. Besides, when generating test cases for a specific branch, the initial test case
that we amplify has to contain one object of the class that the branch belongs to so that we
can call the target method containing the branch. Therefore, for each branch, we first find
the class that contains it and then use the first test method in the corresponding test class
as the directed test amplification’s input. It requires that the projects we use have a clearly
defined test class for each class.

We selected two open-source Java projects, J avapoe and Stream—li to conduct the
case study. Javapoet is a Java API for generating java source files, and Stream-lib is a Java
library for summarizing data in streams. They are both built with Maven and tested with

Ihttps://github.com/square/javapoet
Zhttps://github.com/addthis/stream-1ib

21

https://github.com/square/javapoet
https://github.com/addthis/stream-lib

4. EVALUATION

JUnit. They were also part of the dataset used for the evaluation of DSpot [10]]. We selected
the two projects because they have many branches in the source code. Specifically, Javapoet
has 7026 branches and Stream-lib has 1250 branches. Besides, the two projects’ unit tests
are clearly structured and defined as most classes have a clearly corresponding test class.
We first filtered all the classes with corresponding test classes to guarantee that we
could find the initial test case to amplify and generate new test cases for each target branch.
Then we filtered all the methods in the filtered classes that DSpot supports to call on an
existing object. For every branch in the filtered methods, we use the first test method in the
corresponding test class as the initial test case used to amplify. All the branches and their
corresponding initial test cases build up the complete dataset of the case study.

4.1.2 Technical Case Study Execution

We sampled 100 branches and their initial test cases from the dataset described in the pre-
vious section for each project to conduct the directed test amplification and the open test
amplification.

To ensure that the two methods generate the same number of amplified test cases and
limit the execution time, we limit the number of amplified test cases after input mutation to
200 and the number of amplified test cases after generating assertions to 200.

Finally, we collect the amplification result of the two test amplification approaches,
including all the amplified test cases generated and the corresponding code coverage they
bring to the target branch. We calculate the same two metrics, the ratio of covered branches
(Equation [4.1)) and the ratio of satisfying test cases (Equation {.2) for the directed test
amplification method and the open test amplification. We use the two metrics to evaluate
and compare the two test amplification methods’ effectiveness.

For each test amplification method, we filter all the branches covered by the amplified
test cases and count their number to calculate the ratio of covered branches. Equation 1]
shows how we calculate this metric, and the number of sampled branches equals 100. The
ratio of covered branches indicates the probability that a test amplification method will
generate test cases that can cover a given branch.

For each test amplification method and each branch covered by its amplified test cases,
we count the number of all generated amplified test cases and the number of amplified test
cases that can cover the branch. Equation.2]shows how we calculate the ratio of satisfying
test cases with the two numbers. The ratio of satisfying test cases indicates the frequency
that a test amplification method generates satisfying test cases for a branch it can cover.

number of branches covered

(4.1)

ratio of covered branches =
f number of sampled branches

number of amplified test cases covering the given branch

ratio of satisfying test cases =
f fying number of all amplified test cases

4.2)

22

4.2. User Study

4.2 User Study

As described in Section |1.3.3] we conduct a user study to investigate developers’ opinions
on the user-guided test amplification, explore the different value of user-guided test am-
plification and open test amplification, and analyze the key facets for creating an effective
user-guided test amplification interface. Section [4.2.1] introduces the preparation we did
before conducting the study. The formal interview mainly consists of two user tasks and
a semi-structured interview. Section and Section explain the design of the two
parts. Finally, Section {.2.4] describes how we conduct the study, including the interview’s
procedure and data collection and analysis.

4.2.1 Pre-Study Preparation

As our study involves Human Research, we designed the study following the Human Re-
search Ethics Committee (HERC) guidelines of the Delft University of Technology. We
obtained the HERC’s approval before conducting the study.

We prepare an informed consent to seek participants’ consent for the study and data use.
The consent survey is in Appendix The first part of the consent survey introduces the
interview procedure and requests their consent to participate in the study. The second part
explains how we collect, store, process, and use their data and requests consent for each
step. We also prepare a pre-test [[19] questionnaire to investigate the participants’ technical
background and experience if they agree to take part in our study. Appendix [C.2]shows the
pre-test questionnaire containing a series of demographic questions.

We use convenience sampling [23] to recruit participants for our user study. Specifically,
we invite software developers to participate in our study by posting recruitment ads on
Twitter’| and LinkedInf]

4.2.2 User Task Design

To evaluate the user-guided test amplification and compare it with the open test amplifi-
cation, we ask every participant to use the two methods to generate test cases before the
semi-structured interview. We ask participants to try the two methods one by one to allow
them to better distinguish between the two methods. In addition, to fairly compare the two
methods, we fairly present the two methods and inform participants that both methods are
our primary assessment targets.

Specifically, we prepared two Java classes and one initial test case for each class as the
starting point where developers start test amplification. Each participant is asked to generate
new test cases for each class by one of the two methods. Using two different classes rather
than the same class for the two methods avoids the order in which the two methods are used
affecting the results. Suppose two methods are used one after the other to generate tests for

3nttps://twitter.com/danyao_wang/status/15138389785286819872t=7£fH31M00xYrewwf2T6Dkx
w&s=19

#https://www.linkedin.com/posts/danyao-wang-56955a200_testcube-experiment-interview
-danyao-wang-activity-6919586914115145730-zwl0?utm_source=linkedin_sharesutm_medium=m
ember_desktop_web

23

https://twitter.com/danyao_wang/status/1513838978528681987?t=7fH3lM00xYrewwfZT6Dkxw&s=19
https://twitter.com/danyao_wang/status/1513838978528681987?t=7fH3lM00xYrewwfZT6Dkxw&s=19
https://www.linkedin.com/posts/danyao-wang-56955a200_testcube-experiment-interview-danyao-wang-activity-6919586914115145730-zw10?utm_source=linkedin_share&utm_medium=member_desktop_web
https://www.linkedin.com/posts/danyao-wang-56955a200_testcube-experiment-interview-danyao-wang-activity-6919586914115145730-zw10?utm_source=linkedin_share&utm_medium=member_desktop_web
https://www.linkedin.com/posts/danyao-wang-56955a200_testcube-experiment-interview-danyao-wang-activity-6919586914115145730-zw10?utm_source=linkedin_share&utm_medium=member_desktop_web

4. EVALUATION

the same class. In that case, participants may become familiar with the class after trying the
first method, which may affect their impression of the second method.

The two classes we select are from the project Stream-lilﬂ and shown in Appendix
and[B.2] StreamSummary.class and ConcurrentStreamSummary.class. The two classes
are used to store and count elements in a stream and have methods with similar functions
but are implemented differently in detail. To prepare input for the test amplification, we
prepare initial test cases for the two classes that differ only in the class of the object but
are otherwise the same, as shown in Appendix and The two classes are similar in
terms of functionality and complexity, and the two initial test cases are almost the same, so
their differences would have little influence on test amplification results.

Besides, we split participants into four groups and exchange the order of them trying
the two methods and using the two classes to avoid bias owing to order. The set-up of the
four groups of participants is in Table

Table 4.1: Set-up of the user tasks.

First Task Second Task
User-Guided Test Amplification Open Test Amplification
Groupl
StreamSummary ConcurrentStreamSummary
User-Guided Test Amplification Open Test Amplification
Group2
ConcurrentStreamSummary StreamSummary
Open Test Amplification User-Guided Test Amplification
Group3
StreamSummary ConcurrentStreamSummary
Open Test Amplification User-Guided Test Amplification
Group4
ConcurrentStreamSummary StreamSummary

4.2.3 Semi-Structured Interview Design

We conduct a semi-structured interview to investigate participants’ experiences after try-
ing the two test amplification methods. Specifically, we let participants fill out a post-test
questionnaire and ask them to explain why they choose a specific option. The questionnaire
contains prepared closed-ended questions whose answers are easy to analyze and provide
quantitative results. By talking to the participants, we adapted the conversation depending
on the respondents’ answers, allowing us to probe for a deeper understanding. The discus-
sion allows the participants to converse in-depth, choose their own words, and contribute
qualitative data.

The complete questionnaire is in Appendix [C.3|and consists of four parts. The first two
parts are about user-guided and open test amplification, respectively. The third part explic-
itly compares the two test amplification methods, and the last part is about participants’
overall impression of TestCube. The order of the first two parts is consistent with the order
in which a participant tries the two test amplification methods.

Shttps://github.com/addthis/stream-lib

24

4.2. User Study

4.2.3.1 User Guided Test Amplification

The five questions used to investigate developers’ opinions on the user-guided test amplifi-
cation are in Appendix [C.3.1] All the questions are statements to be agreed or disagreed in
various degrees, and participants are supposed to rate on a 1-5 Likert scale [22]], where one
means “strongly disagree” and five means“strongly agree”.

There are two core panels for user-guided test amplification. The first panel is intro-
duced in Section which contains the CFG with the initial coverage of the method
developers want to test, where developers can select one branch they hope to cover and start
the test amplification. The second panel is introduced in Section [3.2.4, which shows the
test amplification result, including one amplified test case and the CFG of the target method
presenting the new coverage brought by the amplified test case.

The CFG is the primary content that we provide to support the user-guided test ampli-
fication. The first two questions focus on it. We ask participants if they can understand
the CFG easily and find valuable information in it. As the user-guided test amplification
interaction aims to help developers generate new test cases according to their requirements,
the third question asks if the interaction with the CFG can effectively assist developers in
conveying their expectations for the test cases. The last two questions evaluate the useful-
ness of the CFG in the result panel. We investigate if it helps developers understand the
amplification result and select the amplified test cases.

4.2.3.2 Open Test Amplification

We also prepare five questions for the open test amplification interaction to fairly evaluate
and compare the two test amplification methods, which are in Appendix [C.3.2] The five
questions’ format is the same as for the user-guided test amplification.

The open test amplification has one window shown in Fig[2.2] which shows the result
of the test amplification, containing one amplified test case, a test case information box,
and a coverage inspection editor. The information box offers the modification information
and an additional instruction coverage list brought by the amplified test case. The editor
shows the additional instruction coverage with source code highlighting. To compare the
instruction coverage’s and the branch coverage’s understandability, the first question asks if
developers can easily understand the instruction coverage. The second question investigates
the valuable information participants find in the open test amplification to compare it with
that in the user-guided test amplification. The third question asks if the instruction coverage
helps participants understand the amplification result so that we can compare it with the
branch coverage. Question 4 and Question 5 ask developers if the modification information
and the instruction coverage are helpful when they select to add the amplified test cases,
which is used to compare with the CFG’s usefulness in result selection.

4.2.3.3 Comparison of Two Test Amplification Methods

Besides comparing the answers to the first two parts of the questionnaire, we ask developers
to compare the differences between the two test amplification methods to obtain more direct
comparison results.

25

4. EVALUATION

User-guided and open test amplification have three main differences:

1. The user-guided test amplification uses branch and line coverage, while the open test
amplification uses instruction coverage.

2. The user-guided test amplification uses the CFG to display the code coverage, while
the open test amplification displays the coverage in text.

3. They are two different types of test amplification. The user-guided test amplification
aims at covering a specific method and branch directly, while the open test amplifica-
tion aims to cover any uncovered instructions.

The four questions to compare the three differences are in Appendix [C.3.3] The first two
questions ask participants which coverage and display form is easier to understand. The last
two questions inquire which test amplification method helps them more in result selection
and test generation.

We use multiple choice questions instead of statements and the Likert scale to organize
the four questions. We do not use statements to organize the four questions because they
involve comparisons, and using statements to describe either of the parties being compared
as better could impact the participants’ opinions. Every multiple choice question has three
options: the two objects being compared and the neutral. The order of the three options is
shuffled for different participants to avoid bias due to a fixed order.

4.2.3.4 Opverall Impression

We use two questions to investigate participants’ overall impression of the amplified test
cases proposed by TestCube, which are in Appendix [C.3.4] This part assesses the amplified
test cases generated by the directed test amplification method from the developer’s perspec-
tive, which can be a complement to the technical case study.

4.2.4 User Study Execution

We conducted the user study in April 2022 with the 12 recruited participants. They are
divided into four groups evenly based on Table All the interviews were fully remote
and conducted via Zoom. Most of the interviews were finished in a session of about 60
minutes. Three interviews lasted longer, up to 90 minutes, when participants volunteered to
spend more time sharing their opinions.

4.2.4.1 Interview Procedure

Figure shows an example procedure of the interview for Group1 in Table

We first send each developer who registers for the user study a consent survey and a
pre-test questionnaire and ask them to read and fill them out before the official interview
begins.

When an official interview starts, we first spend about 10 minutes briefly introducing
our research, including the concept of test amplification and developer-centric test amplifi-
cation. Then we explain that the goal of the interview is to evaluate and compare the two

26

4.2. User Study

Formal

Interview Introduction (10 mins)
(60 mins)

Test Amplification
Interview Procedure

|

User Tasks (30 mins)
First Task Second Task
. | User-Guided Test Amplification . Open Test Amplification
Informed Consent |Pre-test Questionnaire Introduction Introduction
—_—
B N StreamSummary ConcurentStreamSummary
Consent Survey Demographic Questions
Practice | Try out in TestCube Practice Try out in TestCube

|

Semi-Structured Interview (20 mins)

Questionnaire + Discussion

Figure 4.1: Example procedure of the user study interview.

developer-centric test amplification methods in TestCube, the user-guided test amplification
and the open test amplification.

In order to make participants distinguish more clearly between the two methods and
avoid confusion of concepts, we divide the user task into two separate tasks based on the
two methods. We use Groupl’s first task in Table to explain. We first explain the con-
cept of the user-guided test amplification method and use a simple example project different
from what the participants will use for the task to show how the method works in TestCube.
Then we introduce the project Stream-lib, the class StreamSummary, and the initial test
case they will use to try out the method to help them understand the environment. After
the participants understand everything, they are allowed to remote control the interviewer’s
computer and interact with the TestCube running on the interviewer’s computer. The par-
ticipants then start test amplification, explore the information shown in the tool window and
inspect the test amplification result. The procedure of the second task is the same as the first
task. The participants are allowed to spend about 10 minutes on each task, and they usually
can finish one or two rounds of test amplification for each task. The two tasks usually take
30 minutes in total, including the task introduction and task practice.

After participants finish the two TestCube tasks, we spend about 20 minutes on the semi-
structured interview. We send the participants a link to the post-test questionnaire. Then we
ask them to answer every question and explain why they select a specific option. For the
opinions that participants do not explain clearly, we encourage them to discuss them in more
detail. We also encourage the participants to put forward suggestions to help us improve
TestCube. The interview ends when participants finish the questionnaire and submit it.

27

4. EVALUATION

4.2.5 Data Collection and Analysis

We collected the answers to the pre-test and post-test questionnaires the participants sub-
mitted. Besides, we took notes during the interview to collect the participants’ opinions.
As all the participants agreed to record the interview, we also recorded the semi-structured
interview in audio format so that we could check the recording when anything was missing
in the notes. Finally, we summarized and categorized the data obtained according to the
questionnaire section and question topic.

28

Chapter 5

Results and Analysis

This chapter presents the technical case study and user study results and analyzes them to
answer the research questions.

5.1 Technical Case Study Results

This section presents the technical case study result. Section displays the dataset we
created for the technical case study according to the method described in Section {.1.1]
Section displays the two metrics of the test amplification result introduced in Sec-
tion

5.1.1 Technical Case Study Dataset

Table[5.Tlshows the statistical information about the dataset we built to conduct the technical
case study, including the number of classes and branches that are filtered according to the
rule described in Section .1.1] Table[5.2]lists the specific class names of the dataset.

Table 5.1: Technical case study dataset.

Project Number of Classes | Number of Branches | Number of Sampled Branches

Javapoet 13 160 100

Stream-lib 18 264 100

5.1.2 Test Amplification Results

We collected the amplification result of the directed and open test amplification methods
and calculated the two metrics introduced in Section

Table [5.3]shows the ratio of covered branches for the two example projects obtained by
the two test amplification methods. We can see that more branches are covered for Stream-
lib by both test amplification methods. Besides, the directed test amplification method can

29

5. RESULTS AND ANALYSIS

Table 5.2: Classes of the technical case study dataset.

Project Class

Javapoet AnnotationSpec, TypeName, ClassName, CodeBlock, CodeWriter, FieldSpec,
JavaFile, LineWrapper, MethodSpec, NameAllocator, ParameterSpec, Type-
Spec, Util

Stream-lib | Lookup3Hash, =~ MurmurHash, ConcurrentStreamSummary, SampleSet,
StochasticTopper, StreamSummary, AdaptiveCounting, CountThenEstimate,
HyperLogLog, HyperLogLogPlus, LinearCounting, Loglog, RegisterSet,
CountMinSketch, BloomkFilter, Filter, QDigest, DoublyLinkedList

cover more branches than the open test amplification method for both Javapoet and Stream-
lib.

Table 5.3: Ratio of covered branches.

Javapoet | Stream-lib
Open Test Amplification 23% 35%
Directed Test Amplification 32% 41%

We calculate the ratio of satisfying test cases for each branch covered by the two test
amplification methods. Figure [5.1] shows the box plots that describe the distribution of the
ratio of satisfying test cases for each project and each test amplification method. Compar-
ing the two projects, we can see that the distribution for Javapoet is relatively concentrated
while the distribution for Stream-lib is highly dispersed. Moreover, the mean ratio of satis-
fying test cases for Javapoet is lower than that for Stream-1ib for the same test amplification
method. Comparing two test amplification methods, the median ratio of satisfying test cases
of the directed test amplification is higher than that of the open test amplification.

We also calculate the average ratio of satisfying test cases for each project and test
amplification method, shown in Table [5.4] We can see that the directed test amplification’s
ratio of satisfying test cases reaches 70% on average for both projects, which far exceeds
the result of the open test amplification.

Table 5.4: Average ratio of satisfying test cases.

Javapoet | Stream-lib
Open Test Amplificatino 24% 45%
Directed Test Amplification 70% 70%

30

5.2. User Study Results

1.0 A ¢
¢
0.8
0.6 -
Method

I Directed Test Amplification
04 [Open Test Amplification

Ratio of Satisfying Test Cases

0.2

W 1B -

T T
Javapoet Stream-lib

Project

Figure 5.1: Distribution of the ratio of satisfying test cases.

5.2 User Study Results

We present the questionnaires and interview results in five categories. We show the par-
ticipants” demography and experience in Section [5.2.1] based on the data of the pre-test
questionnaire. The other four parts are classified according to the questions of the post-
test questionnaire. Section and Section [5.2.3] show the participants’ opinions on the
user-guided and open test amplification. We asked participants to compare the differences
between the two test amplification methods and present the result in Section [5.2.4] Sec-
tion [5.2.5] summarizes participants’ impression on TestCube and further suggestions.

5.2.1 Participants

We recruited 12 participants for the user study and investigated their technical background
and experience through the pre-test questionnaire. The demographic questions in the pre-
test questionnaire are in Appendix [C.2]

Figure demonstrates the participants’ development experience. The participants’
experience with software development and testing varies from 1 to 9 years. Only 2 partici-
pants have used an automatic test generation tool before. One has used a test data generation
tool to generate data for batch tests. The other’s experience is with JUnit, which she used to
build a test framework. Both rated the tool they used before three points on a scale between
1 and 5.

Figure[5.3]shows the participants’ technical background. The participants’ primary pro-
gramming languages are Python and Java. Although Java is not the primary language for
many participants, they all have experience with Java. Moreover, they come from seven
different industry domains.

31

5. RESULTS AND ANALYSIS

Number of Participants
(IS} w ES W (=)} ~

(=3

13 46 7-9 - Yes No
Years of Development Experience Used Automatic Test Genertion Tool

Figure 5.2: Participants’ experience of software development and testing.

Software development - other 4

g;“ = Research - academic or scientific 2
= —
%0 E Data and analytics 2
i
ED % Internet 1
§ .§ Manufacturing 1
2 g
09_ Financial and banking 1

Energy or untilities 1

0 1 2 3 4 5 6 0 1 2 3 4
Number of Participants Number of Participants

Figure 5.3: Participants’ technical background.

5.2.2 User-Guided Test Amplification

The questions to survey participants’ perceptions of the user-guided test amplification are
in Appendix [C.3.1] They focus on four aspects of the user-guided test amplification, its un-
derstandability, valuable information it provides, its effectiveness in conveying developers’
expectations, and its usefulness in result selection.

5.2.2.1 Understandability

The first and the fourth questions in Appendix [C.3.1] ask participants if the CFG and the
amplification result shown with the CFG are easy to understand. The distribution of the
participants’ answers over the Likert scale is shown in Figure [5.4] We also calculate the
mean and median scores and mark them in the distribution figure.

Almost all participants found the content in the two windows of user-guided test ampli-
fication easy to understand.

For the CFG itself, the participants think it is simple, and the shapes of the components
are standardized for use in general flowcharts, making it easy to understand.

For the coverage identified in the CFG, the participants think the colors are pretty
distinct. The significant contrast between different colors is clear. One participant who is
red-green weak mentioned that even though the old coverage and the new coverage are both
green, the significant contrast between the light green and dark green is still large enough

32

5.2. User Study Results

1 2 3 4 5
Y A L A A 2@
E 0 A mean: 4.67
'% @ median: 5.0 9
2
é:f ¢ | Question: CFG is easy to understand.
o
g 4
E
5 24 1
& 0
Strongly disagree Disagree Neutral Agree Strongly agree
1 2 3 4 5
iz A L A ® A A
ES 0 A mean: 425
% @ median: 4.0 9
2
& ¢ | Question: Result is easy to understand.
B
T 47
e}
E]
Z

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.4: Answer distribution of the questions about the user-guided test amplification’s
understandability.

for him to tell them apart. The coverage is especially easy to understand for the participants
familiar with coverage tools as we use the typical colors used in other coverage tools. Only
one participant indicated that these colors were not immediately apparent to him as he was
unfamiliar with code coverage tools; therefore expressed neutrality for the statement “CFG
is easy to understand”.

For the result window, participants think it is appropriate to present one amplified
test case each time, making it clear and easy to connect the amplified test case with the
corresponding new coverage. Participants also think the coverage in the CFG helps them
understand the amplified test cases. They believe it is not easy to understand the amplified
test cases individually. Nevertheless, the new coverage on the CFG helps them know the
modifications applied and what is happening.

5.2.2.2 Valuable Information

The second question in Appendix [C.3.T] asks if developers find valuable information in the
CFG. The participants’ answer distribution is in Figure[5.5]

All participants agree that the CFG provides them with valuable information. The pri-
mary information they value is the code structure and coverage.

The CFG provides users with much information about the code structure, including
the lines, branches, statements, flows, and all possibilities for program execution. It tells
developers what kind of situation they are supposed to expect when they test. The line
number in the CFG is valuable information when they want to check the source code. The
code structure information helps developers understand the code. Participants think they can

33

5. RESULTS AND ANALYSIS

1 2 3 4 5

" &
A mean: 4,67
17 @ median: 5.0

oo
!

| Question: CFG provides valuable information.

ENE—-
!

Number of Participants

o

Strongly' disagree Disa'gree NeLlltral Agree Strongly agree

Figure 5.5: Answer distribution of question about the user-guided test amplification’s valu-
able information.

understand the code with the CFG and usually do not need to read the source code. They
think the code structure information is especially useful when the method’s complexity is
high and some of the information tends to be neglected without the CFG, such as some
branches.

Participants consider code coverage shown in the CFG essential. The branch coverage
tells them which branches are covered and not and helps them learn about the tests. Some
participants also notice the importance of line coverage. Sometimes a branch is covered, but
the lines that follow it are not all covered, and people usually overlook this kind of situation
while line coverage reminds them of this case. Figure [5.6]shows an example of this kind of
situation. The stream’s size equals its capacity, so it covers the branch “106: False”, but its
capacity is zero, so there are no items in it, and only part of the following lines are executed.

The code structure information in the CFG helps developers understand the code cov-
erage. The CFG gives developers an understanding of the method in an abstract way. Just
with the CFG, they can see the flow of the method and understand better with different di-
rections. And then it makes it easier to see what is covered and what is not and understand
what kind of situations are covered.

Some participants think the CFG is also helpful in some other situations, such as debug-
ging and when they do not understand code written by others.

5.2.2.3 Effectiveness in Conveying Expectation

The third question in Appendix [C.3.1] asks if the user-guided test amplification interaction
effectively assists developers in conveying their expectations for the new test cases. The
distribution of the participants’ answers is shown in Figure

All participants think that the user-guided test amplification interaction can effectively
assist them in conveying their expectations for amplified test cases. First, the CFG helps
them to identify all the possible scenarios. Developers can follow the flow in the CFG and
see what the response is, and consider if they want to test the scenario. Sometimes they do
not need to cover all branches because some branches are not important to them. Then the
current coverage tells developers which branches or lines are already covered. So they can
see which ones are not covered and focus on those and make a selection.

34

5.2. User Study Results

Test Cube Test Generation for offerReturnAll()" a —
@Test(timeout = 10600)
public void offer_literalMutationNumberé_failAssert0() throws Exception {
try {
StreamSummary stream = new StreamSummary(0);
new StreamSummary(0).offer("X");
Assert.fail("offer_literalMutationNumberé should have thrown NullPointerException");

} catch (NullPointerException expected) {
| Assert.assertEquals(null, expected.getMessage());
¥

¥

Add Test To Test Suite Ignore Test Case Next Test Case Previous Test Case Close Amplification Result

L\ 104: False

106: False

.getValue().counterList.add(new Counter<T> (bucketList.tail(), item]) (109: Bucket min = buckelLlst.ﬁrs(())

(110: counterNode = min.counterList.tail())

¥

(111: Counter<T> counter = counterNode.getValue()J

¥

(112: droppeditem = counter.item)

J{ y

(1 13: counterMap.remove(dropped Item))

114: counter.item = item

(115: counter.error = min.count)

AV

Figure 5.6: Example amplified test case that covers partial lines following a covered branch.

5.2.2.4 Usefulness in Result Selection

The fifth question in Appendix [C.3.1] asks if the CFG shown in the result window helps
participants select the amplified test cases. The distribution of the participants’ answers is
shown in Figure[5.8]

Ten participants agreed that the coverage is helpful when selecting test cases to add.
They know how many branches of the method are already covered, and more branches
would be covered if they added the test. The coverage is especially useful when the new
coverage brought by the amplified test cases is diverse. The result may offer a surpris-
ing coverage besides the target branch selected before when there are multi-level nested
branches. Then developers can make a choice based on the different new coverage. One
example is shown is Figure [3.9]

Two of the participants express neutrality. They think they do not need to observe the
new coverage if they only want to cover the target branch they selected and do not consider
other information like the modifications. The result must satisfy their requirement, and they
just need to add it to the test suite directly. They even do not need to make a choice. Also,
when all the amplified test cases have the same new coverage, the coverage would not be

35

5. RESULTS AND ANALYSIS

1 2 3

IS
M

A mean:4.17
@ median: 4.0

S
!

oo
!

| Question: Interaction effectively helps you convey expectation.

=N

&~
!

()
!

Number of Participants

o

Strongly' disagree Disa'gree NeLlltral Agree Strongly agree

Figure 5.7: Answer distribution of question about the user-guided test amplification’s effec-
tiveness in conveying expectation.

1 2 3 4 5
o i . . X 'y X
E A mean: 425
% 17 @ median: 4.0
.g N
% ¢ | Question: CFG helps you select result. 5 5
24

2
- o
Z
Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.8: Answer distribution of question about the user-guided test amplification’s use-
fulness in result selection.

helpful for them to choose among them.

5.2.3 Open Test Amplification

The questions to survey participants’ perceptions of the open test amplification are in Ap-
pendix [C.3.2] which are mainly about three aspects of the open test amplification, its under-
standability, valuable information it provides, and its usefulness in result selection.

5.2.3.1 Understandability

We use the first and the third questions in Appendix to investigate the understand-
ability of all the content in the open test amplification result window. Specifically, the first
question asks developers if the coverage display is easy to understand, and the third question
asks if the overall result window is easy to understand. The distribution of the participants’
answers is shown in Figure[5.9]

Eight participants agree that the information in the result window is easy to understand.
They like the coverage list, especially the highlighting in the editor, which helps them un-
derstand the effect of the amplified test cases. Other participants expressed neutrality or did
not think some of the information was easy to understand.

36

5.2. User Study Results

1 2 3 4 5
o2 A L A i ® A
é]o_ A mean: 3.92
5 @ median: 4.5
.g g
=6 Question: Coverage is easy to understand.
o
5 44
=}
E]
Z 0

Strongly disagree Disagree Neutral Agree Strongly agree

1 2 3 4 5
iz A L A 2@ A
é 0 A mear‘1:3.67
5 @ median: 4.0
g ¢
o6 Question: Result is easy to understand. 5
=]
5 4 :

2
E 21 1
g 0
Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.9: Answer distribution of questions about the open test amplification’s understand-
ability.

There are three major topics mentioned by participants.

* Instruction Coverage

A common complaint mentioned by the participants is the number of additional
instructions. They think it is too detailed and not easy to understand.

The eight participants that still selected agree or strongly agree did think that the abso-
lute numbers of instructions were not informative. Nevertheless, they think the class,
method, and corresponding lines of the coverage are enough for them to understand
the coverage. They tend to understand the coverage by reading the highlighted code
and think the hyperlinks help them locate the code conveniently, and they do not need
to look for it by themselves.

The other four participants were more critical of the instruction coverage. They think
the connection between the instructions and the code is not straightforward even
with the hyperlinks. They still need to click each line to read the code. Then they still
do not know what instructions they are, even though they know the corresponding
code. The instruction coverage is not clear enough to help them determine whether
the branch or path is covered if they care about a branch or path, especially when
there are nested branches.

* Scope of Code Coverage

The open test amplification displays the additional coverage for the whole project,
causing two problems.

37

5. RESULTS AND ANALYSIS

First, the instruction coverage comes from different classes making it complicated
to understand. It is easy to understand only if they understand the code very well.
However, if they do not, it can be difficult because then they have to go through the
code to find the different methods called in the code to understand what is going on.
Besides, the participants do not know what the test case is really testing as the cover-
age comes from different classes, which is an obstacle to maintaining and developing
the test suite in the future.

Second, it is possible that the instruction coverage list becomes long when there is
much additional instruction coverage. Then it is not easy for the participants to
get the information they need from a long list when they care about specific cover-
age, such as a branch or line. Participants are worried that the additional instruction
coverage would become too much to understand for a large project.

Lack of Existing Coverage

Some participants think displaying only the additional instruction coverage makes
it difficult for participants to understand the amplified test case. Participants believe
the extended coverage is so scattered without the existing coverage that it is difficult
to understand the relation between the highlighted code and why the amplified test
case covers the highlighted code.

5.2.3.2 Valuable Information

The second question in Appendix [C.3.2] asks if developers find valuable information in the
result window. The distribution of the participants’ answers is shown in Figure[5.10]

Number of Participants

SIS
! !

oo
f

| Question: Result window provides valuable information.

1 2 3 4 5
A \ A 2@)
A mean: 3.67
@ median: 4.0

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.10: Answer distribution of question about the open test amplification’s valuable
information.

38

Eight participants agree that the result window provides them with valuable information,
including the additional instruction coverage and the modification information. The
additional instruction coverage tells them what is being newly covered by the amplified
test case. The modification information helps them understand the amplified test cases by
connecting them with the original test case. They have to find the difference between the
amplified test case and the original one by themselves without the modification information.

5.2. User Study Results

The other four participants questioned the value of the information provided. For the
modification information, some participants think the number of modifications is not very
valuable as it does not specify the modification in detail. Others think they do not care
about the modifications and read the amplified test cases directly to understand them. For
the instruction coverage, some participants think it may not be able to offer meaningful
information to them if they care about some specific code to have covered. One participant
thinks the instruction coverage is informative but possibly not important to her, “it is
like the shop attendant tells you that they have lots of pretty clothes, but does not say which
one would suit you.”

5.2.3.3 Usefulness in Result Selection

The fourth and fifth questions in Appendix [C.3.2] ask if the modification information and
the additional coverage in the result window help participants select the amplified test cases.
The distribution of the participants’ answers is shown in Figure [5.T1]

Number of Participants

Number of Participants

o ®» o o
N ! !

1 2 3 4 5
A L A 20 A
A mean: 3.83
@ median: 4.0
| Question: Modification information helps you select result.
4 4
2 2
Strongly' disagree Disagree Neutral Agree Strongly agree
1 2 3 4 5
. . A ® A A
A mean: 425
@ median: 4.0
| Question: Additional coverage helps you select result. 5 5
2
Strongly' disagree Disa'gree Neutral Agree Strongly agree

Figure 5.11: Answer distribution of questions about the open test amplification’s usefulness
in result selection.

¢ Modifications Information

Eight participants agree that the modification information helped them select the am-
plified test cases. Some participants think the modifications help them understand
the effect of the amplified test cases by assisting them in checking what has been
changed. Then they know how the impact is supposed to vary based on that. Others
think it is helpful when they are picky with the test cases and not only care about
the effect of the amplified test cases. They may have some requirements for the new

39

5. RESULTS AND ANALYSIS

test case in terms of code statement and would observe the modifications to determine
if the amplified one is satisfying.

Other participants think they do not consider the modifications when selecting re-
sults. Some believe modifications are unimportant and only care about the effect
of the test cases. Some think the modifications are too minor, so there is no need
to introduce them or consider them. Some participants shared their opinions by con-
necting with the usage scenarios: they would use open test amplification when they
want to use it to generate test cases that can cover as much code as possible. Then
they would add all the results directly to reach high coverage and would not consider
the modifications.

¢ Additional Coverage

Ten participants think the additional instruction coverage is helpful for them to make
the selection, and two participants expressed neutrality. The reason why it is helpful
is that it explains the effect of the amplified test case. If the developers hope to cover
as much as possible, they can select the amplified test cases with a lot of additional
coverage.

A common concern mentioned by participants that chose agree and neutrality was
that the coverage only contains additional coverage without existing coverage. They
think it is also important to know the initial coverage. They are not sure if it is good
enough to add the amplified test case with only knowing the additional coverage.
For example, if they hope to cover a specific line, the additional coverage information
helps only when the line is newly covered. They do not know the previous cover-
age, so it is difficult to determine if the line is already covered when it is not in the
additional coverage.

One participant also reflected on the idea that test cases bringing more coverage are
good. She thinks the test cases with more coverage and highlighting look good, but
she is unsure if the coverage is really important. The extensive range of highlighting
may mislead the developers. Bringing much coverage does not definitely mean it
is a good test case.

5.2.4 Comparison of Two Test Amplification Methods

We ask the participants to compare the differences between the user-guided and open test
amplification, and the related questions are in Appendix|C.3.3

5.2.4.1 Branch Coverage vs. Instruction Coverage

The first question in Appendix [C.3.3] asks the participants which type of code coverage is
easier to understand. The distribution of the participants’ answers is shown in Figure
All participants think branch and line coverage is easier to understand than in-
struction coverage.
First, branch and line coverage are known by all the participants, while some partic-
ipants indicated that it was their first exposure to instructional coverage. Secondly, the

40

5.2. User Study Results

)
!

A mean:3.0
@® median:3.0

=
!

| Question: Which is easier to understand

Number of Participants

Instruction Coverage Neutral Branch Coverage

Figure 5.12: Answer distribution of question about understandability of different code cov-
erage.

branch and line coverage can be mapped to the source code easily. Participants think they
only consider the line where the instructions are by checking the highlighting in the source
code when inspecting instruction coverage and do not understand what the instructions are.
They said they needed to know the code sufficiently to understand the instructions. In addi-
tion to the understandability, some participants also mentioned the importance. They think
branch coverage is more important than instruction coverage when considering a test suite’s
code coverage.

5.2.4.2 Control Flow Graph vs. Text

The second question in Appendix [C.3.3]asks the participants which representation of code
coverage is easier to understand. The distribution of the participants’ answers is shown in

Figure[5.13]

>
o

A mean:2.58
@® median:3.0

S
N-}

oo
f

| Question: Which is easier to understand

Number of Participants

Text Neutral Control Flow Graph

Figure 5.13: Answer distribution of question about understandability of different display
form of code coverage.

Nine participants think the coverage shown in the CFG is easier to understand. The
most important reason is that they all like visualization, making the coverage clear and
straightforward. They do not need to read the source code in the editor, and the flow of
the code in the CFG also helps them understand the coverage. For the coverage listed and

41

5. RESULTS AND ANALYSIS

highlighted in the text, they need to read and understand the code first, and then they can
have a good understanding of the coverage.

Only one participant thinks he likes the coverage in the text because he likes looking at
the code instead of the graph.

Two participants expressed neutrality. One said she likes both and it is better to combine
the two formats; the other said his favorite coverage display form is a percentage, so the
CFG and text are the same.

5.2.4.3 User-Guided Test Amplification vs. Open Test Amplification

The third and fourth questions in Appendix [C.3.3]ask the participants which type of test am-
plification is more helpful for them in result selection and test generation. The distribution
of the participants’ answers is shown in Figure [5.14]

Number of Participants

Number of Participants

)
!

S
!

| Question: Which helps more in result selection

A mean:2.75
@ median:3.0

| Question: Which helps more in test generation

Open Test Amplification Neutral User-Guided Test Amplification
1 2 3
' ' 7'} ¢
A mean:2.42
@® median:3.0

Open Test Amplification Neutral User-Guided Test Amplification

Figure 5.14: Answer distribution of questions about helpfulness of different test amplifica-
tion.

42

Result Selection

Ten participants think directed test amplification enables them to select the result
more easily. When writing tests, they usually have a specific coverage goal and con-
sider what kind of coverage the test cases can bring, not only the amount of coverage.
Then it is challenging to select the result according to an open coverage as they need
to check every class, method, and line to decide if they want to keep the amplified test
case. It is easier with a specific goal and checking if the amplified test case realizes
the goal.

5.2. User Study Results

One participant thinks she prefers open test amplification. She typically hopes to
cover the whole project as much as possible. So it is better to have more new coverage
and add them based on the coverage amount.

One participant thinks selecting test cases depends on the usage scenario instead of
the result. It is easy to select the result with both methods. He would add all of the
results provided by TestCube no matter which method he used.

¢ Test Generation

Seven participants prefer directed test amplification. They expressed their apprecia-
tion of the idea of user-guided test amplification because it is closer to the perspective
of writing tests in real-life scenarios. They usually focus on specific features and
write tests for them, while open test amplification is like looking around without any
goal and generating test cases for the sake of generating test cases.

Two participants prefer open test amplification. One participant thinks she would use
open test amplification first to cover as much as possible and then use directed test
amplification to refine the test suite. So he thinks the open test amplification has more
application scenarios and is more helpful. The other participant thinks she is actually
doing test amplification instead of generating test cases. She likes to connect the new
test cases with the existing test cases. This connection is more explicit in open test
amplification as it starts from selecting an existing test method and then amplifies it.

Three participants expressed neutrality and would like to combine the two types of
methods. They would use open test amplification when they do not have a coverage
goal and want much coverage. If they have a specific coverage goal, they will use
directed test amplification. It also depends on how much control they want over the
test cases. If they want to have less control, the open test application is good enough
to provide more additional coverage. If they want more control over each test case’s
coverage, then directed amplification is better.

5.2.5 Opverall Impression and Suggestions

We investigate the participants’ opinions on the test amplification result and TestCube. The
related questions are in Appendix [C.3.4] We also encourage them to put forward further
suggestions for improving TestCube.

5.2.5.1 Satisfaction with TestCube

We ask developers if they are satisfied with the amplified test cases TestCube generates and
if they want to use TestCube in the future. The distribution of the participants’ answers is
shown in Figure [5.15]

» Amplified Test Case

All participants think they are satisfied with the amplified test cases provided by
TestCube. The amplified test cases are simple and easy to understand. They can know

43

5. RESULTS AND ANALYSIS

1 2 3
51 . . .
g A mean: 425
5 @ median: 4.0
=R
é ¢ | Question: You are satisfied with amplified test cases.
=)
5 41
£
-
Z 0 T T T
Strongly disagree Disagree Neutral Agree Strongly agree
1 2 3 4 5
. i -
g 0 A mean: 4.5
5 @® median: 5.0
£ 4 7
&6 Question: You want to use TestCube in the future.
o
5 4 -
o
E 2 1
=
Z 0 T T
Strongly disagree Disagree Neutral Agree Strongly agree
Figure 5.15: Answer distribution of questions about satisfaction with TestCube.
the effect the amplified test cases can bring to the test suite by inspecting the code
coverage brought by them and edit them. Clear presentation of results is essential to
their satisfaction with the amplified test cases.
* TestCube

Eleven participants think they want to use TestCube in the future. They think TestCube
can help them write simple test cases for simple test scenarios. It can reduce much
mechanical and repetitive work and save time. Besides, they can also see what is
happening, so they are not blinded when generating tests with TestCube.

One participant expressed neutrality because he enjoys writing tests manually and
does not use Java, even though he was surprised by the good quality of amplified test
cases.

5.2.5.2 Suggestions

Developers put forward many suggestions for TestCube during the experiment. They are
mainly about the display format of code coverage and amplification result and the user-
guided test amplification interaction.

¢ Code Coverage Display

S1 Developers suggest that there should be an explanation for the information pro-
vided. The text “instr” in the open test amplification result window should be

44

5.3. Analysis and Discussion

replaced by “instructions.” The meaning of different colors used to identify dif-
ferent coverage in the CFG should be explained.

S2 Although developers think the coverage shown in the CFG is good enough to
understand, some still believe it is good to combine CFG with hyperlinks and
coverage highlighted in the editor. It provides convenience when they some-
times want to read the code in the editor.

S3 Some developers are interested in other coverage metrics and suggest we add
them. They think there should be an overall introduction about the coverage
brought by the amplified test cases, such as the total number of additional cov-
erage and the code coverage in percentage form.

S4 Some developers think it would be better to provide some preference settings.
For example, they want the autonomy to choose different color themes for the
code coverage highlighting. Some of them hope to have the option not to show
some details when they think they are not necessary.

* Amplification Result Display
S5 Some developers hope we can return the result in a specific order that they can

determine, such as the new coverage amount.

S6 Several developers think the distribution of the information panel in the result
window should be organized well for the open test amplification result window.
The amplified test cases should not separate the information box and the editor
with code coverage highlighting.

S7 Some developers think highlighting code coverage in the regular editor is better
than a new editor in the tool window.

¢ Test Amplification Interaction

S8 One participant thinks starting the test amplification from the code in the editor
would be a pretty straightforward way to generate test cases. It provides another
option for users in addition to starting from the CFG.

S9 Several participants think supporting to select multiple branches can help devel-
opers convey their branch coverage expectations better.

S10 One participant thinks it would be better if we only make the branches that we
can eventually cover by amplified test cases available to select.

5.3 Analysis and Discussion

5.3.1 RQ1: Does the directed test amplification method generate test cases
that satisfy the developers’ branch coverage expectations?

We discuss this research question based on the technical case study result and the user study
result.

45

5. RESULTS AND ANALYSIS

5.3.1.1 Technical Perspective

The result in Table [5.3] shows that 32% and 41% of the sampled branches are successfully
covered for Javapoet and Stream-lib by the directed test amplification method implemented
with the D-amplifier in DSpot. The result means that using one initial test case and one
random branch as input, the directed test amplification method has a 30% to 40% chance of
generating an amplified test that can cover the given branch. Since covering a given branch
is the developers’ expectation, the directed test amplification can generate test cases that
satisfy developers’ expectations in 30% to 40% of cases.

To find out why more than half of the branches cannot be covered by the amplified
test cases generated, we checked the test amplification process of 80% of the uncovered
branches. We found that the core reason we cannot cover a branch is that the objects under
test and target methods’ parameters are not initialized with the right parameter values to
fulfill the target branch condition. Sometimes DSpot cannot call the target method because
DSpot does not support the parameters’ type, which is often a client class without public
constructors. Sometimes it does generate the parameters and calls the target method. How-
ever, the parameters it generates are null or empty and often lead to breaking down when
it comes to assertion generation. Even though DSpot generates non-empty parameters and
calls the target method, the object under test often does not have the right field value to meet
the target branch.

We also analyzed the initial test case’s influence on the technical case study result. We
only amplify one existing test method to generate new test cases in our experiment. We are
curious if amplifying more test methods would cover the branch uncovered in the case study.
Therefore, we sampled five branches covered neither by the amplified test cases obtained in
the case study nor the existing test suit for each project to explore the influence of the initial
test case. For each of the sampled ten branches, we amplify all the existing methods instead
of only the first test method in the corresponding test class with the directed test amplifi-
cation approach. The result shows that the directed test amplification still cannot generate
amplified test cases that can cover the ten sampled branches. We found that using more and
different initial test cases still cannot solve the problem of not being able to generate proper
parameter values for the target branch because these parameters are often objects’ fields and
complex to initialize and mutate. Not being able to generate proper parameter values is the
core obstacle to obtaining satisfying amplified test cases.

Taking the above analysis together, we further analyze the reason for the different
technical case study results of the two projects, Javapoet and Stream-lib. We found that
Javapoet’s source code has more methods whose parameters are classes without public con-
structors, which DSpot does not support. Conversely, Stream-lib has relatively more meth-
ods whose parameters are simple data types, such as the integer. Besides, most Stream-
lib classes have public constructors, so DSpot supports generating them. The differences
between the two projects make generating proper parameter values for target branches in
Stream-lib easier than in Javapoet. Therefore, more branches are covered in Stream-lib. It
also indicates that the simpler and more flexible the methods’ parameters in a project, the
better the performance of the directed test amplification method.

46

5.3. Analysis and Discussion

5.3.1.2 Developers’ Perspective

According to the result in Section|[5.2.5.1] all 12 participants are satisfied with the amplified
test cases generated with TestCube. It indicates that the directed test amplification method
can generate test cases that satisfy the developers’ expectations from the developers’ per-
spective.

During the user study, developers are surprised and happily add them to the test suite
when they can get new test cases that precisely cover the branch they hope to be covered.
There is also the case when developers select one branch and start test amplification but
do not get amplified test cases that can cover the selected branch. However, developers do
not think it is a big issue. They think that the result of not always meeting expectations
is acceptable as long as the tool reports the result clearly. It indicates that presenting a
clear result and providing feedback on developers’ expectations is also crucial to making
the amplification result satisfying.

RQ1: Does the directed test amplification method generate test cases that
satisfy the developers’ branch coverage expectations?

The directed test amplification can generate test cases that satisfy developers’ branch
coverage expectations in 30% to 40% of cases. Although developers cannot always
obtain the expected result, they are satisfied with the amplified test cases generated
by the directed test amplification method.

5.3.2 RQ2: Does the directed test amplification method generate more test
cases that fulfill developers’ branch coverage expectations than the
open test amplification method?

According to Table [5.3] the ratio of covered branches increases from 23% to 32% and
from 35% to 41% after adding the D-amplifier. Moreover, according to Table for the
covered branches, the average ratio of satisfying test cases has increased significantly from
24% to 70% and from 45% to 70% for Javapoet and Stream-lib. The result indicates that
the directed test amplification has a higher probability of generating test cases that fulfill
developers’ expectations than the open test amplification method.

The advantage of the directed test amplification comes from the D-amplifier. The D-
amplifier calls the target method before amplifying the initial test case with all the other
amplifiers. However, the open test amplification method amplifies the initial test case with-
out direction; therefore has a more negligible probability of calling the target method. As a
result, only a tiny part of amplified test cases call the target method in the open test ampli-
fication method’s amplification result. In contrast, most amplified test cases call the target
method in the directed test amplification method’s result, which accounts for the gaps be-
tween the two methods’ ratio of satisfying test cases. As we limit the number of amplified
test cases to 200, the directed amplification method has a higher probability of keeping
amplified test cases containing the target method than the open test amplification, which
accounts for the differences between their ratio of covered branches.

47

5. RESULTS AND ANALYSIS

Comparing the two projects, Javapoet and Stream-lib, we can see that the improvement
in generating test cases that fulfill developers’ expectations brought by the D-amplifier is
more significant for Javapoet than Stream-lib. By analyzing the two projects, we found that
the number of methods in Javapoet’s classes is higher than that in Stream-lib. Therefore,
the probability of calling the target method by the open test amplification method is smaller
for Javapoet than Stream-lib, and the D-amplifier’s effect is more significant for Javapoet.

As the directed test amplification increases the ratio of satisfying test cases, it can obtain
satisfying test cases by generating fewer amplified test cases than the open test amplifica-
tion. Then the directed test amplification method will generate assertions and calculate
code coverage for fewer amplified test cases. It helps reduce test amplification execution
time and makes it more efficient. The directed test amplification’s efficiency improvement
is particularly significant for projects with many methods in a single class.

RQ2: Does the directed test amplification method generate more test cases that
fulfill developers’ branch coverage expectations than the open test
amplification method?

The directed test amplification method improves the probability of generating tests
that meet developers’ branch coverage expectations by 9% and 6% for the two exam-
ple projects. Besides, the directed test amplification method increases the proportion
of amplified tests that meet requirements among all amplified test cases from 24%
and 45% to 70%, making it possible to reduce the total number of amplified test
cases needed to get the amplified test cases covering a given branch.

5.3.3 RQ3: How do developers perceive the user-guided test amplification?

We summarize three main impressions that participants have of the user-guided test ampli-
fication by analyzing the result in Section[5.2.2]and Section[5.2.5.1]

5.3.3.1 Easy to Understand

According to the result in Section almost all participants found the content in the
user-guided test amplification interaction is easy to understand, including the CFG, the cov-
erage shown in the CFG, and the amplified test case. The CFG and branch coverage helps
the developers to understand the amplified test cases.

5.3.3.2 Provide Valuable Information

User-guided test amplification interaction provides developers with valuable information by
CFG according to the result in Section [5.2.2.2] First, the CFG contains much information
about the code structure, which helps them understand both the source code and the cov-
erage of test cases. Second, the coverage shown in the CFG is also valuable. The new
coverage indicates the impact of the amplified test cases. The initial coverage is also essen-
tial information for developers to understand the status of the test suite and determine what
needs further testing.

48

5.3. Analysis and Discussion

5.3.3.3 Easy to Use

The user-guided test amplification is easy to use as it provides practical assistance in convey-
ing developers’ expectations and result selection according to the result in Section

and Section[3.2.2.4]

The user-guided test amplification effectively assists developers in conveying their ex-
pectations for amplified test cases, where the CFG and coverage display play a crucial role.
The CFG helps developers identify the possible scenarios that need to be tested, and the
coverage helps them focus on uncovered ones. Developers are satisfied with selecting one
branch each time, although they also expressed a desire for TestCube to offer a more flexible
branch selection.

The user-guided test amplification effectively assists developers in result selection with
the CFG and coverage, especially when the amplified test cases have different coverage.
The coverage in the CFG indicates the new coverage the amplified test cases can bring to
the test suite, which is a critical factor for developers to consider when making their choices.
It is pretty useful when the amplified test cases can cover other parts of the target method
besides the target branch, and developers need to inspect them and make a choice.

5.3.3.4 Satisfactory Test Amplification Method

According to the result in Section[5.2.2.4] almost all participants are satisfied with the am-
plified test cases generated with TestCube and want to use TestCube in the future. TestCube
is especially useful for people who do not like to write tests. It can help them save the time
of writing simple repetitive tests and provide valuable information about the new tests to
help them understand the effect and further development.

RQ3: How do developers perceive the user-guided test amplification?

In summary, the developers think the user-guided test amplification is easy to un-
derstand, provides valuable information, and is easy to use. The CFG contains code
structure and presents code coverage, which is valuable information and easy to un-
derstand. The user-guided test amplification effectively assists developers in convey-
ing their branch coverage expectations for amplified test cases and result selection.
The user-guided test amplification can generate satisfying amplified test cases and
help developers write tests well.

5.3.4 RQ4: What different value do the user-guided test amplification and
the open test amplification bring to developers?

We analyze the value of the open test amplification based on the result in Section [5.2.3]
and compare it with the user-guided test amplification. Besides, we use the result in Sec-
tion [5.2.4]to compare the value of different aspects of the two test amplification methods.

49

5. RESULTS AND ANALYSIS

5.3.4.1 Different Way of Test Amplification

Open test amplification follows the logic of traditional test amplification, starting from se-
lecting an existing test method and then amplifying it. The explicit connection between
the amplified test cases and the original test case makes the test amplification result easy to
understand. The goal of increasing instruction coverage for the whole project displays the
effect of amplified test cases and provides open results to choose from.

User-guided test amplification also uses test amplification but changes the starting point
of the test amplification from the test method to the method that needs testing. It is a new
perspective of test amplification and closer to the perspective of writing tests in real-life
scenarios. It also assists developers in conveying their expectations for the new test cases,
giving test amplification a defined goal rather than open exploration.

User-guided test amplification facilitates developers having a clear objective for the
new test. They can obtain what they want by expressing their requirement and having more
control over the generated test cases. The fact that each new test has an apparent effect also
provides a sound basis for the maintenance and further development of the test suite.

In addition, the user-guided test amplification solves the issues about the additional in-
struction coverage in the result selection part of the open test amplification in Section
The coverage goal of covering a specific branch focuses on the meaning of the coverage,
preventing developers from being misled by the amount of coverage. The coverage of re-
sults obtained based on user requirements also solves users having difficulty finding their
target of interest in open coverage.

The user-guided test amplification is a good complement to TestCube’s existing inter-
action. More than half of the participants think they prefer the directed interaction to the
open interaction. The remaining participants also believe they would use the two methods
for different situations and purposes. The open test amplification allows them to cover more
code, while the directed one is more convenient when they have a specific coverage goal.
Combing the two methods is always better than only using one type of interaction.

5.3.4.2 Different Valuable Information

The valuable information that open test amplification provides is amplified test cases’ mod-
ification information and additional instruction coverage. The modification information
helps developers understand the change of the amplified test cases compared with the orig-
inal test case. The additional instruction coverage displays the effect of the amplified test
cases. Most developers think this information is easy to understand and valuable, helping
them understand the amplification result and select it.

According to the result, the number of participants agree that user-guided test amplifi-
cation provides valuable information and is easy to understand is more than that of open test
amplification. Also, most participants think the user-guided test amplification helps them
more in result selection. The valuable information that the user-guided test amplification
provides to contribute to the result is the CFG and visualized code coverage.

* Control Flow Graph

50

5.3. Analysis and Discussion

The user-guided test amplification visualizes the method developers want to test by
the CFG. Most participants prefer the visualization of code to plain text because it
is more intuitive and easier to understand. Therefore, the CFG provides them with
a better way to understand the code structure. It is useful not only when generating
tests but also whenever they want to understand the code structure.

Code Coverage

The user-guided test amplification shows different code coverage and visualizes the
code coverage in the CFG. The different types of coverage provide new valuable in-
formation missing in the open test amplification. The CFG offers a more intuitive way
of understanding the code coverage. There are three key points that avoid the prob-
lems the participants mentioned in the open test amplification, make the amplification
result easier to understand, and assist developers in result selection.

— Use Branch/Line Coverage

Developers think the instruction coverage is difficult to understand and usually
only check the highlighted code to understand the coverage. Some developers
think they still do not know if a branch or path is covered with the instruction
coverage. The user-guided test amplification interaction uses line coverage and
branch coverage directly to provide the information developers need explicitly.
Also, instead of clicking the hyperlinks one by one to check the source code,
the CFG displays the source code directly to make it more convenient to read.

— Limit Scope of Code Coverage

The open test amplification presents the additional instruction coverage for the
whole project. The user-guided test amplification only displays the coverage of
the method that the developers want to test and focuses on the new branch and
line coverage required by developers.

The user-guided test amplification limits the scope of the code coverage so that
there is not too much covered code needing to be displayed in the result. It
avoids overloading with information and makes the content easy to understand.
More importantly, the developer’s requirements determine the scope of code
coverage. It solves the problem that developers think it is not easy to find critical
information from the open coverage list. It makes it easier for developers to
select the amplified test cases as it focuses on developers’ coverage goals and
excludes the information that developers are not interested in.
— Display Existing Coverage

The open test amplification only shows the additional instruction coverage of
the amplified test cases. The user-guided test amplification shows the new cov-
erage brought by the amplified test cases and the existing coverage, which helps
developers understand the coverage. It also allows developers to learn about the

coverage status and ensure that the amplified test case is good enough to add to
the test suite.

51

RESULTS AND ANALYSIS

RQ4: What different value do the user-guided test amplification and the open
test amplification bring to developers?

The user-guided test amplification brings a new perspective of test amplification,
starting test amplification from the method developers want to test, and assisting de-
velopers in conveying their branch coverage expectations for the new test cases. The
user-guided test amplification is more convenient when developers have a specific
coverage goal, while the open test amplification allows them to cover more code.
Besides, the user-guided test amplification uses the CFG and directed branch cover-
age to help developers understand the amplification result and select results better.

5.3.5 RQS5: What are the key facets to creating an effective interface for

user-guided test amplification?

We summarized some principles for creating an effective user-guided test amplification
interface by analyzing the evaluation result of the user-guided test amplification prototype
we designed and the suggestions provided by developers in Section[5.2.5.2]

52

* Make the content in the interface clear and easy to understand for all kinds of
users.

We provide the CFG and present the branch coverage to guarantee the understand-
ability of the content during the interaction. The result shows that making the content
easy to understand helps developers interact better with the interface and get satis-
fying results. Several developers further suggest adding some explanation for the
content as they are unfamiliar with software testing tools (S1 in Section[5.2.5.2)).

We should consider all types of users, including both new users of software testing
tools and experienced developers, and provide valuable information with a clear in-
troduction to help them get started quickly and generate test cases efficiently.

* Consider preferences of different developers.

The user-guided test amplification’s core goal is to assist developers in test amplifica-
tion based on their preferences for the new test cases. We allow developers to convey
their preferences by selecting one method and branch they want to test. Develop-
ers express their preferences and requirements for the user-guided test amplification
interface (S2, S3, S4, S5, S9 in Section [5.2.5.2)), such as supporting different color
themes for the code coverage display. We should consider the diversity of developers’
preferences and expectations to help them generate test cases they want and provide
better information presentation.

¢ Make every user action count.

We design a series of notification windows in our prototype to respond to users’ every
click and save their time understanding what is happening. We also keep the number
of amplified test cases small to save the developer’s time. It allows developers to
interact with the interface efficiently.

5.4. Threats to Validity

Some developers also put forward suggestions that can make the interaction more effi-
cient (S5, S9, S10 in Section[5.2.5.2)), such as supporting selecting multiple branches
when conveying coverage expectations.

An important point to improve the efficiency of developers using the tool is to maxi-
mize the value of each user action and provide positive feedback to the user for each
action. This saves the users’ time and motivates them to use the tool through positive
feedback.

Use the interface features developers are familiar with.

The user-guided test amplification starts from the ordinary editor developers work
with. It uses standardized flow graph elements and typical colors that other code cov-
erage tools use to display the CFG and code coverage. These features allow devel-
opers to understand the content easily and get used to TestCube quickly. Developers
also suggested reusing the features they are familiar with (S7, S8 in Section[5.2.5.2),
such as conveying their expectations in the editor based on the source code instead of
the CFG. It indicates that using elements that developers are familiar with to create
the interface can make it easier to use.

RQS5: What are the key facets to creating an effective interface for user-guided
test amplification?

First, we should make the content in the interface clear and easy to understand for all
kinds of users, as understanding the content is essential for users to think about their
expectations for test cases and select the result. Second, we should consider all types
of users’ preferences and cater to different preferences for test cases and information
display. Third, we should maximize each user action’s value and provide positive
feedback for each action to improve the efficiency of conveying users’ expectations
and generating test cases. Last but not least, we should use the interface features de-
velopers are familiar with to integrate the test amplification process into developers’
daily development environment and make the interface easy to use.

5.4 Threats to Validity

This section discusses some threats to the validity of the technical case study result and the

user study result.

5.4.1 Technical Case Study
5.4.1.1 Internal Validity

The technical case study evaluates the performance of the directed test amplification meth-
ods in generating new test cases to cover a given branch. When conducting test amplifi-
cation, we limit the number of amplified test cases after input mutation and after assertion
generation to 200, which can threaten the internal validity. However, the core factor deter-
mining if the directed test amplification method can generate an amplified test case that can

5. RESULTS AND ANALYSIS

cover a given branch is whether it can generate right parameter values to fulfill the target
branch. The number of amplified test cases has little influence on the result.

The technical case study also compares two test amplification methods’ performance.
Except for using two different test amplification methods, the experiment is conducted on
the same computer with the same DSpot configuration and input data. Therefore, only one
factor, the test amplification method, influences the final result. We avoided threats to the
internal validity of the comparison result by keeping all the experimental settings the same
except the test amplification method.

5.4.1.2 Construct Validity

The directed test amplification method is implemented by adding one D-amplifier based on
Brandt and Zaidman’s open test amplification method. One threat to the construct valid-
ity is that the result only represents the performance of one type of implementation as the
open test amplification could use different amplifiers. The case study result might be dif-
ferent if the open test amplification uses different amplifiers, which can lead to a different
conclusion.

5.4.1.3 External Validity

Since it is a case study, the result we obtained only works for the projects we selected to
construct the dataset. The two projects we selected provide an evaluation result of the di-
rected test amplification for java projects with many code branches, complex data types,
and test classes corresponding to the classes. The data types’ complexity in a project sig-
nificantly influences the effectiveness of the directed test amplification. It might perform
better in other projects with more simple data types. The result might differ from our case
study result in other projects with fewer branches and without test classes corresponding to
the classes.

5.4.2 User Study
5.4.2.1 Confirmability

To ensure that all the user study results are from the participants instead of the interviewer,
we keep the results in Section [5.2] closely based on the interviews. The result structure is
wholly based on the questionnaire used in the interview. For each part, we first present the
participants’ answers to all the questions and then describe the reasons that explain their
answers to avoid information omission. All the explanations for the answers are from the
participants’ words, and we keep their words as much as possible.

5.4.2.2 Internal Validity

All the user study interviews were conducted by the same interviewer online. The user
tasks were all conducted through remote control, and TestCube was running on the same
computer. The interview was finished in one go with no pauses for each participant. To
avoid the influence of the order in which the two test amplification methods are tried and the

54

5.4. Threats to Validity

influence of the two exampled classes used, we divided the participants evenly to experience
every possible set-up of the user task. One threat to the internal validity is the groups of
participants, and we mitigate the threat by dividing the participants randomly.

5.4.2.3 Construct Validity

One threat to the construct validity is that the interview result mainly follows the pre-
prepared questionnaires’ structure and may not contain all aspects of the test amplification
methods we tend to evaluate. We mitigate this threat by encouraging participants to share
any opinions in their minds. We also motivate their thinking by asking their opinions about
the content in TestCube but do not share any personal opinions of the interviewer. We can
see from the results that the participants’ views were vibrant and far exceeded the frame-
work of the questionnaire, making the final result comprehensive. Another fact that makes
the results comprehensive in evaluating the test amplification methods is that the partici-
pants experienced all kinds of situations and results when practicing the test amplification
tasks, including when the method they wanted to test was already covered and when they
did not get satisfying test cases, etc.

Another threat to the construct validity is that the developers are only trying out a pro-
totype of the user-guided test amplification. Design and implementation flaws affect the
developers’ experience and evaluation result of the general user-guided test amplification.
Furthermore, all the participants in our user study knew nothing about the example project
Stream-lib and TestCube before participating in the user study. Developers familiar with
the example project and TestCube may spend less time understanding the tool and relevant
information, thus influencing their opinions.

5.4.2.4 External Validity

There are two threats to external validity.

The participants influence the generalization of our results to all developers. Accord-
ing to the result in Section [5.2.1] the participants are from diverse industry domains and
have experience in the development of different duration. We also have participants with
and without experience in using automatic test generation tools, enjoying and not enjoying
writing tests, which should contribute to generalizing results. One threat is that no partic-
ipants have more than ten years of development experience, making the result potentially
not generalizable to very senior developers.

The example project Stream-lib and the two example classes used in the user tasks also
impact the result. The two projects contain all kinds of methods, including simple and
complicated methods, methods with and without branches. The two initial test cases are
very simple, composed of three statements. The initial test cases also create all kinds of
coverage situations, including methods uncovered, partially covered, and fully covered. We
expect the diversity of the example classes to make the result generalizable.

55

Chapter 6

Conclusions and Future Work

This thesis proposes a novel type of developer-centric test amplification, user-guided test
amplification. The user-guided test amplification involves developers in the test amplifica-
tion process by allowing developers to guide the test amplification to generate new test cases
according to their branch coverage expectations. Based on the current design of developer-
centric test amplification in TestCube, which we call open test amplification, we imple-
mented the user-guided test amplification interaction in TestCube. Besides, we extended
DSpot with a directed test amplification method to support TestCube in the back-end. We
explore how user-guided test amplification helps developers generate new test cases by
evaluating our prototype. This chapter summarizes the conclusions based on our proposed
research questions and contributions. We also put forward some opportunities for future
work.

6.1 Conclusions

We proposed five research questions in Chapter |1} We studied the current state-of-the-art,
implemented a user-guided test amplification prototype, and conducted a technical case
study and a user study. By analyzing all the information obtained during the study, we
propose answers to the five research questions.

Research Question 1

Does the directed test amplification method generate test cases that satisfy the devel-
opers’ branch coverage expectations?

We define the developers’ branch coverage expectations for a new test case as covering
a specific branch of a method they want to test. We answer this research question from both
a technical and a user perspective.

Technically, we selected two Java projects, Javapoet and Stream-lib, and sampled 100
branches for each project to simulate the branch developers want to cover. We conduct the
directed test amplification with the sampled branches and evaluate how many branches are
covered by the amplified test cases. The result shows that the directed test amplification

57

6. CONCLUSIONS AND FUTURE WORK

can generate test cases that satisfy developers’ expectations for the two example projects in
30% to 40% of cases.

Besides, we recruited 12 software developers to generate test cases with the directed test
amplification method and ask for their opinion on the result. All the developers are satisfied
with the amplified test cases they get. We conclude that although developers cannot always
obtain the expected result, they are satisfied with the amplified test cases generated by the
directed test amplification method.

Research Question 2

Does the directed test amplification method generate more test cases that fulfill de-
velopers’ branch coverage expectations than the open test amplification method?

We implemented the directed test amplification method in DSpot by adding a directed
amplifier, D-amplifier, to amplify the initial test case directly before all the amplifiers used
in the open test amplification amplify the test case.

To evaluate the effect of the D-amplifier, we conducted a technical case study with
the same dataset used in the case study conducted for answering RQ1. We conducted the
directed and open test amplification with the same input and configuration and compared
their amplification result.

The result shows that the directed test amplification method improves the probability
of generating tests that meet developers’ branch coverage expectations by 9% and 6% for
the two example projects. Besides, the directed test amplification method increases the
proportion of amplified tests that meet requirements among all amplified test cases from
24% and 45% to 70%, making it possible to reduce the total number of amplified test cases
needed to get amplified test cases covering a given branch.

Research Question 3

How do developers perceive the user-guided test amplification?

We implemented the user-guided test amplification in TestCube. We visualize the
method developers want to test by a Control Flow Graph and display the branch and line
coverage in the CFG. Developers convey their branch coverage requirement to the ampli-
fied test cases by selecting one uncovered branch in the CFG. Finally, developers inspect
the amplified test cases with the CFG showing the new coverage of the amplified test cases.

We conducted a user study to investigate developers’ opinions on the user-guided test
amplification we designed and implemented in TestCube. We recruited 12 developers and
invited them to try the user-guided and open test amplification in TestCube. Then we con-
ducted a semi-structured interview by asking them to fill in a questionnaire and discuss the
reason for their answers.

We conclude that the developers think the user-guided test amplification is easy to un-
derstand, provides valuable information, and is easy to use by analyzing the answers to
the questionnaire and their discussion. The CFG contains code structure and presents code
coverage, which is valuable information and easy to understand. The user-guided test am-

58

6.2. Contributions

plification effectively assists developers in conveying their branch coverage expectations
for amplified test cases and result selection. The user-guided test amplification can generate
satisfying amplified test cases and help developers write tests well.

Research Question 4

What different value do the user-guided test amplification and the open test amplifi-
cation bring to developers?

We also use the user study conducted for RQ3 to explore the new value the user-guided
test amplification brings to developers compared with the open test amplification. We com-
pare the two test amplification methods by asking developers to evaluate the open test am-
plification method and compare the two methods directly.

We summarized the new value of the user-guided test amplification by analyzing the
user study result. The user-guided test amplification brings a new perspective of test ampli-
fication, starting test amplification from the method developers want to test, and assisting
developers in conveying their branch coverage expectations for the new test cases. The user-
guided test amplification is more convenient when developers have a specific coverage goal,
while the open test amplification allows them to cover more code. Besides, the user-guided
test amplification uses the CFG and directed branch coverage to help developers understand
the amplification result and select results better.

Research Question 5

What are the key facets to creating an effective interface for user-guided test ampli-
fication?

During the user study, we encourage developers to put forward suggestions for TestCube.
We discover the critical points for designing an effective interface for user-guided test am-
plification by analyzing the feedback on our prototype and developers’ suggestions.

We concluded four critical points for creating an effective interface for user-guided test
amplification. First, we should make the content in the interface clear and easy to under-
stand for all kinds of users, as understanding the content is essential for users to think about
their expectations for test cases and select the result. Second, we should consider all types
of users’ preferences and cater to different preferences for test cases and information dis-
play. Third, we should maximize each user action’s value and provide positive feedback for
each action to improve the efficiency of conveying users’ expectations and generating test
cases. Last but not least, we should use the interface features developers are familiar with
to integrate the test amplification process into developers’ daily development environment
and make the interface easy to use.

6.2 Contributions

The contributions of this thesis are:

59

6. CONCLUSIONS AND FUTURE WORK

1. Extended TestCube: A new user-guided test amplification interaction in the TestCube
plugin, which visualizes code coverage and assists users in conveying their branch coverage
expectations for amplified test cases and displays the corresponding result for user selection.

2. New amplifier in DSpot: A directed amplifier that supports directed test amplification
that aims at generating new test cases meeting specific branch coverage requirements.

3. New selector in DSpot: A selector that can compute branch and line coverage of tests
and select amplified test cases based on coverage requirements.

4. An evaluation of the effect of the new directed amplification method in test amplifi-
cation aiming at specific branch coverage requirements.

5. Evaluate the value of user-guided test amplification and differences with the open
test amplification.

6. Four suggestions for creating an effective user-guided test amplification interface.

6.3 Future work

We can do much work to enhance the value of the user-guided test amplification even though
our study shows that our current design is already valuable for software developers. We put
forward the following suggestions for future work based on the research.

Empower the Parameter Generation in DSpot. Since the core limitation of our cur-
rent directed test amplification method stems from DSpot not supporting parameters of
complicated data types, we can improve the DSpot implementation to support more power-
ful parameter generation capabilities.

Find the Optimal Configuration of Test Amplification. Many configurations need
to be settled when conducting test amplification with DSpot. We should find the best set
of amplifiers and combine them with the D-amplifier to realize the best performance. We
also need to find a decent number to limit the number of amplified test cases after input
mutation and assertion generation. This number should ensure that we can get an amplified
test case that satisfies developers’ coverage expectation and minimize the time spent on
DSpot execution.

Optimize the Information Display. First, we should provide more information visu-
alization options to meet different developers’ preferences, such as different color themes.
We should also maximize the value of the user’s action by only making the branches that we
can generate test cases to cover available to select. Besides, we can optimize the amplified
test cases that we keep and present to developers by maximizing the diversity of results and
removing duplicates.

Support Diverse User Expectations. We can consider all kinds of expectations devel-
opers would have for the new test cases and integrate them into the user-guided test ampli-
fication design. For example, the code coverage requirement includes not only the branch
coverage but also the path coverage. There are also other metrics to measure a test case’s
value, such as the mutation score. We can support generating new test cases according to
developers’ expectations on all kinds of metrics in the future.

Support Diverse Expectation Delivery Method. We only support conveying develop-
ers’ expectations for the amplified test cases by selecting one branch in the Control Flow

60

6.3. Future work

Graph. We can also support other methods to meet different developers’ preferences, such
as selecting branches from the source code in the editor.

61

(1]
(2]

(3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

Bibliography

Frances E Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1-19, 1970.

Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, Antonia
Bertolino, et al. An orchestrated survey of methodologies for automated software
test case generation. Journal of Systems and Software, 86(8):1978-2001, 2013.

Taweesup Apiwattanapong, Raul Santelices, Pavan Kumar Chittimalli, Alessandro
Orso, and Mary Jean Harrold. Matrix: Maintenance-oriented testing requirements
identifier and examiner. In Testing: Academic & Industrial Conference-Practice And
Research Techniques (TAIC PART 06), pages 137-146. IEEE, 2006.

Andrea Arcuri. An experience report on applying software testing academic results in
industry: we need usable automated test generation. Empirical Software Engineering,
23(4):1959-1981, 2018.

Arnaud Roques. Plantuml. https://plantuml.com, 2009.

Luciano Baresi and Matteo Miraz. Testful: Automatic unit-test generation for java
classes. In 2010 ACM/IEEE 32nd International Conference on Software Engineering,
volume 2, pages 281-284. IEEE, 2010.

Boris Beizer. Software Testing Techniques (2nd Ed.). Van Nostrand Reinhold Co.,
USA, 1990. ISBN 0442206720.

Carolin Brandt and Andy Zaidman. Developer-centric test amplification. Empirical
Software Engineering, 27(4):1-35, 2022.

Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin Monper-
rus, and Benoit Baudry. A snowballing literature study on test amplification. Journal
of Systems and Software, 157:110398, 2019.

Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, and Martin Monperrus.
Automatic test improvement with dspot: a study with ten mature open-source projects.
Empirical Software Engineering, 24(4):2603-2635, 2019.

63

https://plantuml.com

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

64

Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, and Arie
Van Deursen. Botsing, a search-based crash reproduction framework for java. In 2020
35th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 1278-1282. IEEE, 2020.

Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman. It is not only about control
dependent nodes: Basic block coverage for search-based crash reproduction. In Inter-
national Symposium on Search Based Software Engineering, pages 42-57. Springer,
2020.

Peter Dinges and Gul Agha. Targeted test input generation using symbolic-concrete
backward execution. In Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering, pages 31-36, 2014.

Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled ex-
perimentation with testing techniques: An infrastructure and its potential impact. Em-
pirical Software Engineering, 10(4):405-435, 2005.

Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-
oriented software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages 416419, 2011.

Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. A model for technology
transfer in practice. IEEE software, 23(6):88-95, 2006.

Mark Harman, Yue Jia, and Yuanyuan Zhang. Achievements, open problems and chal-
lenges for search based software testing. In 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), pages 1-12. IEEE, 2015.

Josie Holmes, Iftekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex
Groce. Using relative lines of code to guide automated test generation for python.
ACM Transactions on Software Engineering and Methodology (TOSEM), 29(4):1-38,
2020.

Shu Hu. Pretesting, pages 5048-5052. Springer Netherlands, Dordrecht, 2014. ISBN
978-94-007-0753-5. doi: 10.1007/978-94-007-0753-5-2256. URL https://doi.or
g/10.1007/978-94-007-0753-5_2256,

Yunho Kim, Zhihong Zu, Moonzoo Kim, Myra B Cohen, and Gregg Rothermel. Hy-
brid directed test suite augmentation: An interleaving framework. In 2014 IEEE Sev-
enth International Conference on Software Testing, Verification and Validation, pages
263-272. IEEE, 2014.

Kiran Lakhotia, Mark Harman, and Hamilton Gross. Austin: An open source tool for
search based software testing of ¢ programs. Information and Software Technology,
55(1):112-125, 2013.

https://doi.org/10.1007/978-94-007-0753-5_2256
https://doi.org/10.1007/978-94-007-0753-5_2256

Bibliography

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

Rensis Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.

Clifford E Lunneborg. Convenience sample. The Blackwell encyclopedia of sociology,
2007.

Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and Michael Hicks. Directed sym-
bolic execution. In International Static Analysis Symposium, pages 95-111. Springer,
2011.

Bogdan Marculescu, Robert Feldt, and Richard Torkar. A concept for an interactive
search-based software testing system. In International Symposium on Search Based
Software Engineering, pages 273-278. Springer, 2012.

Bogdan Marculescu, Robert Feldt, and Richard Torkar. Objective re-weighting to
guide an interactive search based software testing system. In 2013 12th International
Conference on Machine Learning and Applications, volume 2, pages 102-107. IEEE,
2013.

Bogdan Marculescu, Robert Feldt, and Richard Torkar. Practitioner-oriented visual-
ization in an interactive search-based software test creation tool. In 2013 20th Asia-
Pacific Software Engineering Conference (APSEC), volume 2, pages 87-92. IEEE,
2013.

Bogdan Marculescu, Robert Feldt, Richard Torkar, and Simon Poulding. An initial in-
dustrial evaluation of interactive search-based testing for embedded software. Applied
Soft Computing, 29:26-39, 2015.

Bogdan Marculescu, Simon Poulding, Robert Feldt, Kai Petersen, and Richard Torkar.
Tester interactivity makes a difference in search-based software testing: A controlled
experiment. Information and Software Technology, 78:66-82, 2016.

Bogdan Marculescu, Robert Feldt, Richard Torkar, and Simon Poulding. Transferring
interactive search-based software testing to industry. Journal of Systems and Software,
142:156-170, 2018.

Marek Parfianowicz, Grzegorz Lewandowski. Openclover. https://openclover.o
rg, 2012.

Phil McMinn. Search-based software testing: Past, present and future. In 2011
IEEE Fourth International Conference on Software Testing, Verification and Valida-
tion Workshops, pages 153—-163. IEEE, 2011.

Aidan Murphy, Thomas Laurent, and Anthony Ventresque. The case for grammatical
evolution in test generation. EVOLUTION, 10:3520304-3534042, 2022.

65

https://openclover.org
https://openclover.org

BIBLIOGRAPHY

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

66

Aurora Ramirez, Pedro Delgado-Pérez, Kevin J Valle-Gémez, Inmaculada Medina-
Bulo, and José Rail Romero. Interactivity in the generation of test cases with evolu-
tionary computation. In 2021 IEEE Congress on Evolutionary Computation (CEC),
pages 2395-2402. IEEE, 2021.

José Miguel Rojas and Gordon Fraser. Is search-based unit test generation research
stuck in a local optimum? In 2017 IEEE/ACM 10th International Workshop on Search-
Based Software Testing (SBST), pages 51-52. IEEE, 2017.

Conor Ryan, John James Collins, and Michael O Neill. Grammatical evolution: Evolv-
ing programs for an arbitrary language. In European conference on genetic program-
ming, pages 83-96. Springer, 1998.

Raul Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong, Alessandro
Orso, and Mary Jean Harrold. Test-suite augmentation for evolving software. In
2008 23rd IEEE/ACM International Conference on Automated Software Engineering,
pages 218-227. IEEE, 2008.

Sina Shamshiri, José Miguel Rojas, Juan Pablo Galeotti, Neil Walkinshaw, and Gor-
don Fraser. How do automatically generated unit tests influence software mainte-
nance? In 2018 IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), pages 250-261. IEEE, 2018.

Mozhan Soltani, Pouria Derakhshanfar, Annibale Panichella, Xavier Devroey, Andy
Zaidman, and Arie van Deursen. Single-objective versus multi-objectivized optimiza-
tion for evolutionary crash reproduction. In International Symposium on Search Based
Software Engineering, pages 325-340. Springer, 2018.

Bharti Suri and Prabhneet Nayyar. Coverage based test suite augmentation techniques-
a survey. International Journal of Advances in Engineering & Technology, 1(2):188,
2011.

Maneela Tuteja, Gaurav Dubey, et al. A research study on importance of testing and
quality assurance in software development life cycle (sdlc) models. International Jour-
nal of Soft Computing and Engineering (IJSCE), 2(3):251-257, 2012.

Joachim Wegener and Oliver Biihler. Evaluation of different fitness functions for the
evolutionary testing of an autonomous parking system. In Genetic and Evolutionary
Computation Conference, pages 1400-1412. Springer, 2004.

Claes Wohlin, Martin Host, and Kennet Henningsson. Empirical research methods
in software engineering. In Empirical methods and studies in software engineering,
pages 7-23. Springer, 2003.

Zhihong Xu and Gregg Rothermel. Directed test suite augmentation. In 2009 16th
Asia-Pacific Software Engineering Conference, pages 406-413. IEEE, 2009.

Bibliography

[45]

[46]

[47]

[48]

Zhihong Xu, Myra B Cohen, and Gregg Rothermel. Factors affecting the use of ge-
netic algorithms in test suite augmentation. In Proceedings of the 12th annual confer-
ence on Genetic and evolutionary computation, pages 1365-1372, 2010.

Zhihong Xu, Yunho Kim, Moonzoo Kim, Gregg Rothermel, and Myra B Cohen. Di-
rected test suite augmentation: techniques and tradeoffs. In Proceedings of the eigh-

teenth ACM SIGSOFT international symposium on Foundations of software engineer-
ing, pages 257-266, 2010.

Zhihong Xu, Yunho Kim, Moonzoo Kim, and Gregg Rothermel. A hybrid directed
test suite augmentation technique. In 2011 IEEE 22nd International Symposium on
Software Reliability Engineering, pages 150-159. IEEE, 2011.

Zhihong Xu, Yunho Kim, Moonzoo Kim, Myra B Cohen, and Gregg Rothermel. Di-
rected test suite augmentation: an empirical investigation. Software Testing, Verifica-
tion and Reliability, 25(2):77-114, 2015.

67

Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

Test Amplification: A technique that generates new test cases by adapting existing, manu-
ally written test cases and can improve the code coverage of the existing test suite [9]].

Developer-Centric Test Amplification: Test amplification that provides amplified test cases
that developers can take over into their manually maintained test suite, where the de-
veloper accepting the test case is central [[8]].

Open Test Amplification: A prototype of develoepr-centric test amplification designed by
Brandt and Zaidman [8]], which provides amplified test amplification that can bring
any additional instruction coverage to the existing test suite.

Amplifier: DSpot used a series amplifiers to modify the input of test cases.
D-amplifier: A directed amplifier that modify test cases by calling a given target method.

Directed Test Amplification: A test amplification method supported by the D-amplifier,
which can amplify test cases directly to cover a given branch.

User-Guided Test Amplification: A test amplification that allows developers to guide the
test amplification to generate new test cases according to their branch coverage ex-
pectations.

Control Flow Graph (CFG): A directed graph in which the nodes represent basic blocks
and the edges represent control flow paths [[1].

69

Appendix B

Materials for User Tasks

This appendix includes the materials we use for the user task in the user study.

B.1 StreamSummary.java

package com.clearspring . analytics .stream;

import java.
import java.
import java.
import java.
import java.
import java.

import java.
import java.
import java.

import com.
import com.
import com.
import com.

VET
* Based on

io. ByteArrayInputStream;
i0o. Externalizable ;
i0.IOException;

io. ObjectInput ;

i0. ObjectInputStream;

io . ObjectOutput;

util . ArrayList;
util . HashMap;
util . List;

clearspring . analytics . util . DoublyLinkedList;
clearspring . analytics . util . ExternalizableUtil ;
clearspring . analytics . util .ListNode2;
clearspring . analytics . util . Pair;

the <i>Space—Saving</i> algorithm and the <i>Stream—Summary</i>

x data structure as described in:
x <i> Efficient Computation of Frequent and Top—k Elements in Data Streams</i>
x by Metwally, Agrawal, and Abbadi

%

* @param <T> type of data in the stream to be summarized

%/

71

B. MATERIALS FOR USER TASKS

public class StreamSummary<T> implements ITopK<T>, Externalizable {
protected class Bucket {
protected DoublyLinkedList<Counter<T>> counterList;
private long count;

public Bucket(long count) {
this .count = count;
this . counterList = new DoublyLinkedList<Counter<T>>();

}

protected int capacity ;
private HashMap<T, ListNode2<Counter<T>>> counterMap;
protected DoublyLinkedList<Bucket> bucketList;

VET
* @param capacity maximum size (larger capacities improve accuracy)
x/
public StreamSummary(int capacity) {
this . capacity = capacity ;
counterMap = new HashMap<T, ListNode2 <Counter<T>>>();
bucketList = new DoublyLinkedList<Bucket>();

}

public int getCapacity () {
return capacity ;
}

VEY
x Algorithm: <i>Space—Saving</i>
*
x @param item stream element (<i>e</i>)
x @return false if item was already in the stream summary, true otherwise
%/
@OQOverride
public boolean offer (T item) {
return offer (item, 1);
}

VET
x Algorithm: <i>Space—Saving</i>

72

B.1. StreamSummary.java

%k
x @param item stream element (<i>e</i>)
x @return false if item was already in the stream summary, true otherwise
%/
@Override
public boolean offer (T item, int incrementCount) {
return offerReturnAll (item, incrementCount). left ;
}

VET:
x @param item stream element (<i>e</i>)
* @return Pair<isNewltem, itemDropped> where isNewltem is the return value
of offer () and itemDropped is null if no item was dropped
%/
public Pair <Boolean, T> offerReturnAll(T item, int incrementCount) {
ListNode2<Counter<T>> counterNode = counterMap.get(item);
boolean isNewltem = (counterNode == null) ;
T droppedltem = null;
if (isNewltem) {

if (size () < capacity) {

counterNode = bucketList .enqueue(new Bucket(0)). getValue () .

counterList .add(new Counter<T>(bucketList.tail (), item));

} else {

Bucket min = bucketList . first () ;

counterNode = min. counterList . tail () ;

Counter<T> counter = counterNode.getValue() ;

droppedltem = counter .item;

counterMap.remove(droppedltem);

counter .item = item;

counter . error = min.count;

}

counterMap.put(item, counterNode);

}

incrementCounter(counterNode, incrementCount);

return new Pair<Boolean, T>(isNewltem, droppedItem);

}

@OQOverride

public void writeExternal (ObjectOutput out) throws IOException {
out. writelnt (this . capacity) ;
out. writelnt (this . size ());

73

B. MATERIALS FOR USER TASKS

for (ListNode2<Bucket> bNode = bucketList.tail () ; bNode != null; bNode =
bNode.getNext()) {
Bucket b = bNode.getValue() ;
for (Counter<T> c:b. counterList) {
out. writeObject (c);
}

}

protected void incrementCounter(ListNode2<Counter<T>> counterNode, int
incrementCount) {

Counter<T> counter = counterNode.getValue() ; // count_

ListNode2 <Bucket> oldNode = counter.bucketNode;

Bucket bucket = oldNode.getValue() ; // Let Bucket_i be the
bucket of count_i

bucket. counterList .remove(counterNode); // Detach count_i

from Bucket_i’s child— list
counter .count = counter .count + incrementCount;

// Finding the right bucket for count_i

// Because we allow a single call to increment count more than once,
this may not be the adjacent bucket.

ListNode2<Bucket> bucketNodePrev = oldNode;

ListNode2 <Bucket> bucketNodeNext = bucketNodePrev.getNext();

while (bucketNodeNext != null) {
Bucket bucketNext = bucketNodeNext.getValue(); #~ Let Bucket.i™+ be

Bucket_i ’s neighbor of larger value

if (counter.count == bucketNext.count) {

bucketNext. counterList .add(counterNode); // Attach count_i to
Bucket_i "+’s child — list
break;

} else if (counter.count > bucketNext.count) {
bucketNodePrev = bucketNodeNext;
bucketNodeNext = bucketNodePrev.getNext(); / Continue hunting
for an appropriate bucket
} else {
// A new bucket has to be created
bucketNodeNext = null;

}

if (bucketNodeNext == null) {
Bucket bucketNext = new Bucket(counter.count);
bucketNext. counterList .add(counterNode);

74

B.1. StreamSummary.java

bucketNodeNext = bucketList . add After (bucketNodePrev, bucketNext);
}

counter . bucketNode = bucketNodeNext;

// Cleaning up

if (bucket. counterList .isEmpty()) // If Bucketi’s child— list
is empty
{
bucketList .remove(oldNode); // Detach Bucket_i from the
Stream—Summary
}
}
@Override

public List <T> peek(int k) {
List <T> topK = new ArrayList<T>(k);

for (ListNode2<Bucket> bNode = bucketList.head(); bNode != null; bNode =
bNode.getPrev()) {

Bucket b = bNode.getValue();
for (Counter<T> c :b. counterList) {
if (topK.size () ==k) {
return topK;
}

topK.add(c.item);

}

return topK;

}

public List <Counter<T>> topK(int k) {
List <Counter<T>> topK = new ArrayList<Counter<T>>(k);

for (ListNode2<Bucket> bNode = bucketList.head(); bNode != null; bNode =
bNode.getPrev()) {

Bucket b = bNode.getValue() ;
for (Counter<T> c :b. counterList) {
if (topK.size () ==k) {
return topK;
}

topK.add(c);

75

B. MATERIALS FOR USER TASKS

return topK;

}

@OQOverride
public String toString () {
StringBuilder sb = new StringBuilder () ;
sb.append(’[’);
for (ListNode2<Bucket> bNode = bucketList.head(); bNode != null; bNode =
bNode.getPrev()) {
Bucket b = bNode.getValue() ;
sb.append(’{’);
sb.append(b.count);
sb.append(”:[);
for (Counter<T> c:b. counterList) {
sb.append(’{’);
sb.append(c.item);
sb.append(’:’);
sb.append(c. error) ;
sb.append(”},”);
}
if (b. counterList . size () > 0) {
sb.deleteCharAt(sb. length () — 1);
}

sb.append(’1},”);
}

if (bucketList.size () >0) {
sb.deleteCharAt(sb. length () — 1);
}

sb.append(’]’);
return sb. toString () ;

}

@SuppressWarnings(’unchecked”)

@Override

public void readExternal (ObjectInput in) throws IOException,
ClassNotFoundException {
this . bucketList = new DoublyLinkedList<Bucket>();
this . capacity = in. readInt () ;

int size = in. readInt ();
this . counterMap = new HashMap<T, ListNode2 <Counter<T>>>(size);

Bucket currentBucket = null;

76

B.1. StreamSummary.java

ListNode2<Bucket> currentBucketNode = null;
for (int i =0; i <size; i++) {
Counter<T> ¢ = (Counter<T>) in.readObject();
if (currentBucket == null || c.count != currentBucket.count) {
currentBucket = new Bucket(c.count);
currentBucketNode = bucketList .add(currentBucket) ;
}
c.bucketNode = currentBucketNode;
counterMap.put(c.item, currentBucket. counterList .add(c));

}

VETS
* @return number of items stored
%/
public int size () {
return counterMap.size () ;
}

VETS
x For de— serialization
%/
public StreamSummary() {

}

VEE)
x For de— serialization
k
x* @param bytes
x @throws IOException
x @throws ClassNotFoundException
%/
public StreamSummary(byte[] bytes) throws IOException,
ClassNotFoundException {
fromBytes(bytes) ;

}

public void fromBytes(byte[] bytes) throws IOException,
ClassNotFoundException {
readExternal (new ObjectInputStream(new ByteArrayInputStream(bytes))) ;

}

public byte[] toBytes() throws IOException {
return ExternalizableUtil .toBytes(this);

77

B. MATERIALS FOR USER TASKS

B.2 ConcurrentStreammary.java

package com.clearspring . analytics .stream;

import java. util . ArrayList;

import java. util . Collections ;

import java. util . List;

import java. util .Map;

import java. util . concurrent . ConcurrentHashMap;
import java. util . concurrent . atomic. AtomicBoolean;
import java. util . concurrent . atomic. AtomicLong;
import java. util . concurrent . atomic. AtomicReference;

VEE
* Based on the <i>Space—Saving</i> algorithm and the <i>Stream—Summary</i>
% data structure as described in:
x <i> Efficient Computation of Frequent and Top—k Elements in Data Streams</i>
by Metwally, Agrawal, and Abbadi
<p/>
Ideally used in multithreaded applications , otherwise see {@link
StreamSummary}

* %

*

*

@param <T> type of data in the stream to be summarized
* @author Eric Vlaanderen
%/
public class ConcurrentStreamSummary<T> implements [TopK<T> {

private final int capacity ;

private final ConcurrentHashMap<T, Scoredltem<T>> itemMap;
private final AtomicReference<Scoredltem<T>> minVal;
private final AtomicLong size;

private final AtomicBoolean reachCapacity;

public ConcurrentStreamSummary(final int capacity) {
this . capacity = capacity ;
this . minVal = new AtomicReference<Scoredltem<T>>();
this . size = new AtomicLong(0);
this .itemMap = new ConcurrentHashMap<T, Scoredltem<T>>(capacity);
this . reachCapacity = new AtomicBoolean(false);

78

B.2. ConcurrentStreammary.java

@OQverride
public boolean offer (final T element) {
return offer (element, 1);

}

@OQverride
public boolean offer (final T element, final int incrementCount) {
long val = incrementCount;
Scoredltem<T> value = new ScoredItem<T>(element, incrementCount);
Scoredltem<T> oldVal = itemMap.putlfAbsent(element, value);
if (oldVal != null) {
val = oldVal.addAndGetCount(incrementCount);
} else if (reachCapacity.get() || size.incrementAndGet() > capacity) {
reachCapacity . set (true) ;

ScoredItem<T> oldMinVal = minVal.getAndSet(value);
itemMap.remove(oldMinVal.getltem());

while (oldMinVal.isNewltem()) {
// Wait for the oldMinVal so its error and value are completely
up to date.
// no thread. sleep here due to the overhead of calling it — the
waiting time will be microseconds.

}

long count = oldMinVal.getCount();

value . addAndGetCount(count);
value . setError (count);

}

value . setNewltem(false) ;

minVal. set (getMinValue()) ;

return val != incrementCount;

}

private Scoredltem<T> getMinValue() {
ScoredItem<T> minVal = null;
for (Scoredltem<T> entry : itemMap.values()) {
if (minVal ==null || (!entry.isNewltem() && entry.getCount() <
minVal.getCount())) {
minVal = entry ;

79

B. MATERIALS FOR USER TASKS

return minVal;

}

@OQverride
public String toString () {
StringBuilder sb = new StringBuilder () ;
sb.append(’[”);
for (Scoredltem entry : itemMap.values()) {
sb.append(”’(” + entry.getCount() + ”:.” + entry.getltem() + 7, e:.
+ entry . getError) + 7),”);

2

}

sb.deleteCharAt(sb.length () — 1);
sb.append(”’]”);
return sb. toString () ;

}

@OQverride
public List <T> peek(final int k) {
List <T> toReturn = new ArrayList<T>(k);
List <ScoredItem<T>> values = peekWithScores(k);
for (ScoredItem<T> value : values) {
toReturn .add(value . getltem ()) ;
¥

return toReturn;

}

public List <Scoredltem<T>> peekWithScores(final int k) {

List <Scoredltem<T>> values = new ArrayList<Scoredltem<T>>();

for (Map.Entry<T, ScoredItem<T>>> entry : itemMap.entrySet()) {
Scoredltem<T> value = entry. getValue () ;
values .add(new ScoredItem<T>(value.getltem(), value . getCount(),

value . getError ()));

¥

Collections . sort (values);

values = values. size () >k ? values. subList (0, k) : values;

return values;

}

public long size () {
return this . size . get() ;
}

80

B.3. StreamSummaryTest.java

B.3 StreamSummaryTest.java

package com.clearspring . analytics .stream;
import org. junit . Test;
import static org. junit . Assert .x;
public class StreamSummaryTest {
@Test
public void offer () {
StreamSummary stream = new StreamSummary(3);

stream . offer ("X”);
assertEquals (1, stream. size ());

B.4 ConcurrentStreamSummaryTest.java

package com.clearspring . analytics .stream;
import org. junit . Test;
import static org. junit . Assert .x;
public class ConcurrentStreamSummaryTest {
@Test
public void offer () {
ConcurrentStreamSummary stream = new ConcurrentStreamSummary(3);

stream . offer ("X”);
assertEquals (1, stream. size ());

81

Appendix C

Questionnaires

This appendix presents the questionnaires we used before and during the user study exper-
iment interview. Section [C.I] and Section [C.2] show the consent survey and pre-test ques-
tionnaire we send to the participants before the user study interview. Section[C.3|shows the
questionnaire we use to investigate developers’ opinions on the user-guided test amplifica-
tion during the interview.

C.1 Consent Survey

Welcome to the informed consent survey for the Test Cube evaluation interviews. This
study is done by Danyao Wang from the TD Delft for her master thesis. In this survey we
will inform you of the data we are collecting during the interview, how we are handling the
data and how you can request for your data to be deleted.

C.1.1 Taking Part in the Study

This part is about the general procedure of the study and consent to take part in the study.

The purpose of this interview is to explore what developers think of the Test Cube
plugin’s function of generating test cases. We will introduce the Test Cube plugin and
the example project to you and then ask you to generate test cases with Test Cube in two
different ways for two example java classes. Finally, we will ask you to fill out a survey
containing some questions about your opinion on the Test Cube plugin and discuss why you
choose a specific answer. The survey and discussion will be analyzed to extract aggregated
and anonymized information for the final thesis report.

The interview will be conducted over a video call (e.g., Zoom) and will take about 60
minutes. Below we ask you whether you are okay with us recording the video call so we
can re-analyze the interview afterwards. Please tell us beforehand if you do not want to be
recorded, and we will come up with an alternative.

You can also choose whether we can anonymously quote you in any research output
and include the data from your interview in an aggregated and anonymized data set. If you
choose 'no’, we will exclude your quotes from our research outputs, and not include your
data in the dataset we will publish after finishing the research.

83

C. QUESTIONNAIRES

The interviews will be conducted by Danyao Wang (d.wang-9 @student.tudelft.nl). Car-
olin Brandt (c.e.brandt@tudelft.nl) and Andy Zaidman (a.e.zaidman @tudelft.nl), her super-
visors, are also part of the research team.

As with any online activity, the risk of a breach is always possible. To the best of our
ability, your answers in this study will remain confidential. We will minimize any risks by
making the survey completely anonymous, keeping the data only accessible to the research
team, ensuring any result in the publications completely anonymous, and destroying all
the personal research data(your email address and interview recording) after finishing the
research.

If you have any further questions about the interview procedure, the data processing or
publishing afterwards, or you wish for your personal data to be deleted, you can ask during
the interview or contact Danyao (d.wang-9 @tudelft.nl) at any time.

1 To match your answers in this survey to you, please fill in the email we used to contact
you for the interview.

[open]

2 I have read and understood the study information above. I have been able to ask
questions about the study, and my questions have been answered to my satisfaction.
[multiple choice]: Yes/No

3 I consent voluntarily to be a participant in this study and understand that I can refuse

to answer questions and I can withdraw from the study at any time, without having to
give a reason.

[multiple choice]: Yes/No

C.1.2 Use of Information in the Study

1 I consent to record the interview video call (audio and video, including the shared
screen). The recordings will be destroyed after the study is completed. Any results
that will be shared in publications will be anonymized.

[multiple choice]: Yes/No

2 I agree that the information I give during the interview can be anonymously quoted
in research outputs resulting from this study.
[multiple choice]: Yes/No

3 I understand that information I provide during the interview will be used for research

and scientific publications from the TU Delft and an inspiration for further features
and versions of the Test Cube.

[multiple choice]: Yes/No

84

C.2. Pre-Test Questionnaire

4

C.2

I understand that personal information collected about me that can identify me, such
as my e-mail address and the interview recordings, will not be shared beyond the
research team.

[multiple choice]: Yes/No
I give permission for aggregated data and anonymized quotes (if you agreed above)

from this interview to be archived on the Git(lab)/subversion repository at TU Delft
so it can be used for future research and learning.

[multiple choice]: Yes/No

Do you have any further comments on how we should process your data? If questions
arise later, please contact Danyao: d.wang-9 @student.tudelft.nl.

[open]

Pre-Test Questionnaire

We ask you a set of general questions to determine your experience with software devel-
opment. Test amplification tools propose new test cases based on your existing test cases.
They can be used to automatically improve test suites, e.g., their coverage or their mutation

SCore.

1

CJ3

For how many years have you developed software and written tests for it?
[open]

Which programming languages do you primarily use?

[open]

Which industry domain are you developing software for?

[open]

You enjoy writing tests for software.

[Likert 1-5]

Have you ever used automated tools for generating test cases?

[multiple choice] Yes/No

How would you rate your experience with automated test case generation tools?
[Likert 1-5]

Post-Test Questionnaire

This questionnaire consists of a series of questions about your experience using the Test
Cube’s two different ways of generating test cases. Please select an answer for each question
and explain why you choose the specific option.

85

C. QUESTIONNAIRES

C.3.1 User-Guided Test Amplification

This section is about the first method you tried to generate test cases.

1 The Control Flow Graph of methods is easy to understand.

[Likert 1-5]

The Control Flow Graph of methods provides valuable information.

[Likert 1-5]

The interaction with the Control Flow Graph effectively assists you in conveying your
expectations for the test cases.

[Likert 1-5]

The test generation results displayed with the Control Flow Graph are clear and easy
to understand.

[Likert 1-5]

The the Control Flow Graph and branch/line coverage is helpful when you select test
cases.

[Likert 1-5]

C.3.2 Open Test Amplification

This Section is about the second method you tried to generate test cases.

86

1 The instruction coverage and corresponding code highlighting is easy to understand.

[Likert 1-5]

The test case information provides valuable information.
[Likert 1-5]

The test generation result displayed with additional instruction coverage is clear and
easy to understand.

[Likert 1-5]

The modifications applied to test cases are helpful when you select test cases.

[Likert 1-5]

The instruction coverage and highlighting code are helpful when you select test cases.

[Likert 1-5]

C.3. Post-Test Questionnaire

C.3.3 Compare the Two Types of Test Amplification
1 Which type of coverage is easier to understand?

[Multiple choice]: Line and branch coverage/Instruction coverage/Neutral

2 Which display form of coverage is easier to understand?

[Multiple choice]: The coverage shown in CFG/The coverage shown in text/Neutral

3 Which type of test amplification goal helps you select the amplified test cases more?

[Multiple choice]: Aiming to cover a specific method and branch/Aiming to cover
any additonal instructions/Neutral

4 Which type of test amplification is more helpful for you to generate test cases?

[Multiple choice]: User-Guided Test Amplification/Open Test Amplification/Neutral

C.3.4 Opverall Impression
1 The amplified test cases provided by TestCube satisfy your expectations.
[Likert 1-5]

2 You would want to use TestCube to help you write tests in the future.

[Likert 1-5]

87

	Preface
	Contents
	List of Figures
	Introduction
	Background and Motivation
	Research Questions
	Research Method
	Contributions
	Thesis Outline

	Background and Related Work
	Background
	Related Work

	Design and Implementation
	Overview of the Implementation
	TestCube Extension
	DSpot Extension

	Evaluation
	Technical Case Study
	User Study

	Results and Analysis
	Technical Case Study Results
	User Study Results
	Analysis and Discussion
	Threats to Validity

	Conclusions and Future Work
	Conclusions
	Contributions
	Future work

	Bibliography
	Glossary
	Materials for User Tasks
	StreamSummary.java
	ConcurrentStreammary.java
	StreamSummaryTest.java
	ConcurrentStreamSummaryTest.java

	Questionnaires
	Consent Survey
	Pre-Test Questionnaire
	Post-Test Questionnaire

