Developer-Centric Test Amplification:
User-Guided Test Amplification

Version of June 19, 2022

Danyao Wang

Developer-Centric Test Ampli cation:
User-Guided Test Ampli cation

THESIS

submitted in partial ful llment of the
requirements for the degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

by

Danyao Wang
born in Yunnan, China

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

www.ewi.tudelft.nl

© 2022 Danyao WangNote that this notice is for demonstration purposes and that the
IATEX style and document source are free to use as basis for your MSc thesis.

Cover picture: A “random” maze generated in postscript.

Developer-Centric Test Ampli cation:
User-Guided Test Ampli cation

Author: Danyao Wang
Studentid: 5274788
Email; d.wang-9@student.tudelft.nl

Abstract

Automated test generation techniques improve the ef ciency of software testing.
However, the opacity of the test generation process and concerns about the readability
of generated tests make it dif cult for software developers to accept them. Developer-
centric test ampli cation creates easy-to-understand test cases by amplifying existing
test cases that developers are familiar with and assists developers in integrating them
into their test suite. We propose user-guided test ampli cation to allow developers to
guide the test ampli cation to generate new test cases based on their branch cover-
age expectations. We create a user-guided test ampli cation prototype that starts with
the method developers want to test, aids developers in communicating which branch
should be covered, and assists developers in inspecting and selecting the ampli ed test
cases. We conduct a technical case study with two Java projects and show that our ap-
proach cannot always produce a test case to cover a given branch because objects are
not initialized with the right parameter values to ful Il the target branch condition. We
also perform a user study with 12 software developers to investigate developers' opin-
ions on our approach. The evaluation result shows that the user-guided test ampli ca-
tion generates ampli ed test cases that developers are satis ed with and is especially
useful when developers want to generate tests to cover a speci ¢ branch. Connect-
ing the developers' coverage goal and the ampli ed test cases enables developers to
understand and select the test cases more easily.

Thesis Committee:

Chair: Prof. Dr. A. Zaidman, Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. A. Zaidman, Faculty EEMCS, TU Delft
Committee Member: C.E. Brandt, EEMCS, TU Delft

Preface

When | write this preface, | am about to complete my nal assignment in my master's
phase, my master's thesis. Looking back, the day | just arrived in the Netherlands seems
like yesterday. Feeling the time ies by has made me realize how ful lling the past two years
have been, especially the last year of my master thesis project. After studying data science
for many years, | switched to software engineering. Designing and developing projects that
can be applied in real life is so fascinating. The much help | received along the way made
the journey even more memorable.

First, I would like to thank my supervisors, Andy Zaidman and Carolin Brandt. Andy's
initial introduction to the research topic motivated me to start this master's thesis project.
His grasp of the thesis procedure keeps my project progress on the right track. | am very
grateful to Andy for his valuable feedback and suggestions at crucial points in the project,
which were essential for me to complete this thesis. As my daily supervisor, Caro always
gives me detailed feedback and advice at our weekly meetings. She always gave great
answers to every question | had, which made me admire her erudition and strong scienti ¢
research ability. Her detailed guidance and assistance have always helped me to remove
obstacles in the progress of the project.

Second, | would like to thank the 12 software developers who participated in my user
study. They actively participated in my user study with interest in my research topic and
provided valuable material for my thesis. Several developers even volunteered more time
than expected to share their views. Their contributions are an indispensable part of my
thesis.

Finally, | want to thank my parents and friends. Although | haven't seen my parents
for two years, their nancial support and concern from afar have always encouraged me to

nish my thesis. My dear friends, whether thousands of miles away or close at hand, always
cared and encouraged me and also helped me recruit participants for my user study. Their
help was so important for me to complete this thesis.

Danyao Wang
Delft, the Netherlands
June 19, 2022

Contents

Preface iii
Contents \
List of Figures Vii
1 Introduction 1
1.1 Background and Motivation 1
1.2 ResearchQuestions i 2
1.3 ResearchMethod 3
1.4 Contributions 5
15 ThesisOutline 5
2 Background and Related Work 7
2.1 Background 7
2.2 RelatedWork 8
3 Design and Implementation 13
3.1 Overview of the Implementation 13
3.2 TestCube Extension e 14
3.3 DSpotExtension e 19
4 Evaluation 21
4.1 TechnicalCaseStudy 21
4.2 UserStudy 23
5 Results and Analysis 29
5.1 TechnicalCase StudyResults 29
5.2 UserStudyResults 31
5.3 Analysisand Discussion 45
54 ThreatstoValidity. e 53

CONTENTS

6 Conclusions and Future Work 57
6.1 Conclusions 57
6.2 Contributions 59
6.3 Futurework 60

Bibliography 63

A Glossary 69

B Materials for User Tasks 71
B.1 StreamSummary.java 71
B.2 ConcurrentStreammary.java. 0 e 78
B.3 StreamSummaryTestjavao 81
B.4 ConcurrentStreamSummaryTestjava 81

C Questionnaires 83
C.1 ConsentSurvey 83
C.2 Pre-TestQuestionnaire i 85
C.3 Post-TestQuestionnaire e 85

Vi

21
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1

51
5.2
53
5.4

55

5.6
5.7

5.8

5.9

List of Figures

Overview of the open test ampli cation process within DSpot[8]. 8
Overview of the open test ampli cation interaction in TestCube. 9
Overview of the user-guided test ampli cation implementation. 13
Reminder of creating aninitialclass. 15
Reminder of writing aninitialtest. 15
Example Control Flow Graph of method. 16
Example initial coverage in the CFG allowing branch selection. 17
Example when the selected method has no branches. 17
Example when the selected methodisallcovered. 18
Example of user-guided test ampli cationresult. 18
Example ampli ed test cases with coverage diversity. 19
Overview of the directed test ampli cation process within DSpot. 20
Example procedure of the user study interview. 27
Distribution of the ratio of satisfyingtestcases. 31
Participants' experience of software development and testing. 32
Participants' technical background. 32
Answer distribution of the questions about the user-guided test ampli cation's
understandability. 33
Answer distribution of question about the user-guided test ampli cation's valu-
ableinformation. 34
Example ampli ed test case that covers partial lines following a covered branch. 35
Answer distribution of question about the user-guided test ampli cation's ef-
fectiveness in conveying expectation. oL, 36
Answer distribution of question about the user-guided test ampli cation's use-
fulnessinresultselection. Lo 36
Answer distribution of questions about the open test ampli cation's understand-
ability. 37

LIST OFFIGURES

5.10 Answer distribution of question about the open test ampli cation's valuable

information. 38
5.11 Answer distribution of questions about the open test ampli cation's usefulness
inresultselection. 39
5.12 Answer distribution of question about understandability of different code cov-
Erage. e e e 41
5.13 Answer distribution of question about understandability of different display
formofcode coverage. 41
5.14 Answer distribution of questions about helpfulness of different test ampli cation. 42
5.15 Answer distribution of questions about satisfaction with TestCube. 44

viii

Chapter 1

Introduction

1.1 Background and Motivation

Testing is important for software development [41] but labour-intensive and expensive [2].
Earlier studies estimated that testing often accounts for more than 50% of total develop-
ment costs [7]. Many automated test generation techniques have been developed to help
developers write tests, reduce the cost and enhance the effectiveness of software testing [2].
Despite the bene ts of automated test generation, some recent studies have revealed some
issues that prevent software developers from incorporating automated test generation into
their daily practice, including the opacity of the test generation process, the lack of collab-
oration with developers, and developers' skepticism about the readability of the generated
tests [4, 35, 38, 34].

Brandt and Zaidman proposed developer-centric test ampli cation to help developers
generate test cases that are easy to understand and integrate into their test suite [8]. Test am-
pli cation is atechnique that generates new test cases by adapting existing, manually written
test cases and can improve the code coverage of the existing test suite [9]. Developer-centric
test ampli cation provides ampli ed test cases that developers can take over into their man-
ually maintained test suite, with the developer accepting the test case being central [8].
Brandt and Zaidman's approach generates new test cases by amplifying test cases that de-
velopers have manually written. Developers' familiarity with the existing test cases helps
make the ampli ed test cases easy to understand. Speci cally, they designed a tool that gen-
erates ampli ed test cases that contribute additional instruction coverage to the test suite.
Moreover, developers can interact with the tool to explore and inspect the ampli ed test
cases and add them to their test suite. We use the term open test ampli cation to describe
their design as it provides new test cases that can bring any additional instruction coverage
for the entire project. Developers mainly participate in the nal stage of inspection and
acceptance in the open test ampli cation.

Inspired by the developer-centric test ampli cation, we propose user-guided test ampli-
cation to involve developers more directly in test ampli cation and make the test ampli ca-
tion process more transparent to them. Besides, we expect to improve the understandability
and relevance of the test cases to developers by connecting developers' coverage require-

1

1. INTRODUCTION

ments with the ampli ed test cases. The user-guided test ampli cation includes developers
in the test ampli cation process, with developers providing their branch coverage require-
ment to guide the test ampli cation in generating the tests they want.

We created a prototype to evaluate the value of the user-guided test ampli cation ap-
proach to software developers and compare it with the open test ampli cation approach.
The prototype consists of an interaction layer and a supportive test ampli cation tool. The
interaction layer allows developers to convey their branch coverage expectations for the
ampli ed test cases and inspect the test ampli cation result. The test ampli cation tool re-
ceives the branch coverage requirement and generates ampli ed test cases according to the
requirement. We develop the prototype based on the open test ampli cation tool, which is
implemented with a test exploration Intellid plugin TestCube [8] and a test ampli cation tool
DSpot [10]. We implement the user-guided test ampli cation interaction layer in TestCube.
We add a directed ampli cation method in DSpot to support amplifying test cases in the
direction of covering speci ¢ branches. Based on DSpot's result, TestCube Iters ampli-
ed test cases that meet developers' requirements and displays easy-to-understand results
to assist developers in building a test suite.

We evaluate the effectiveness of the directed test ampli cation method added in DSpot
by conducting a technical case study to estimate the probability that it can generate tests
that meet a given branch coverage requirement. We recruited 12 software developers and
conducted user study interviews with them to investigate the value of the user-guided test
ampli cation interaction in TestCube. We also propose further suggestions for creating an
effective user-guided test ampli cation interface by analyzing the evaluation result.

1.2 Research Questions

This thesis investigates how user-guided test ampli cation helps developers build and main-
tain their test suite and compare it with open test ampli cation. Speci cally, we propose the
research questions below.

Research Question 1

Does the directed test ampli cation method generate test cases that satisfy the devel-
opers' branch coverage expectations?

This project aims at allowing developers to guide test ampli cation to generate test
cases that meet their branch coverage expectations. Therefore, it is crucial to evaluate if the
ampli ed test cases generated by the directed test ampli cation method can meet the branch
coverage expectations of developers.

We answer this research question from both a technical and a user perspective. Techni-
cally, we execute the directed test ampli cation using a set of branch coverage requirements
as input and assess how frequently the directed test ampli cation can generate new test cases
that satisfy the branch coverage requirements. In addition, we invite developers to create
test cases with the directed test ampli cation method and provide feedback on the result.

2

1.3. Research Method

Research Question 2

Does the directed test ampli cation method generate more test cases that ful Il ge-
velopers' branch coverage expectations than the open test ampli cation method

~NJ

We add a new directed test ampli cation method to complement DSpot so that it can
lead test ampli cation towards the direction of meeting developers' branch coverage expec-
tations. We want to verify that the new directed test ampli cation method can generate more
test cases that ful Il developers' branch coverage expectations than Brandt and Zaidman's
open test ampli cation method.

Research Question 3

How do developers perceive the user-guided test ampli cation?

We want to learn what developers think about the user-guided test ampli cation in-
teraction in TestCube and determine if it can effectively assist developers in guiding test
ampli cation and generating test cases they want.

Research Question 4

What different value do the user-guided test ampli cation and the open test amp
cation bring to developers?

We want to explore the new value that the user-guided test ampli cation brings to de-
velopers compared with Brandt and Zaidman's open test ampli cation and see if it can help
developers better leverage test ampli cation to enhance their test suites.

Research Question 5

What are the key facets to creating an effective interface for user-guided test ampli-
cation?

We want to gure out what factors are crucial to creating an effective user-guided test
ampli cation interface and make recommendations for future relevant research.

1.3 Research Method

This section introduces the research methods we use to answer the research questions in
Section 1.2.

1.3.1 Design and Implement User-Guided Test Ampli cation

To explore the user-guided test ampli cation, we design and implement a prototype by
extending TestCube and DSpot.

1. INTRODUCTION

We implement a new interaction in TestCube to allow developers to guide the test am-
pli cation. Developers start the test ampli cation by selecting a method they want to test.
Then TestCube visualizes the selected method by a Control Flow Graph (CFG) [1]. De-
velopers convey their branch coverage expectations for ampli ed test cases by selecting a
branch they want the new test cases to cover in the CFG. Moreover, we add a result window
to display the ampli ed test cases and visualize the new coverage they bring to the target
method in the CFG. Developers can add the ampli ed test cases to the existing test suite.

We extend DSpot to support user-guided test ampli cation in the back-end. First, we
extend DSpot to be able to receive the guidance information provided by developers inter-
acting with TestCube. As the guidance is speci ¢ branch coverage expectation, we extend
DSpot to be able to compute the branch coverage of ampli ed test cases, which is the cri-
terion to determine if an ampli ed test case satis es the developers' requirement. Further-
more, we add a directed ampli er, D-ampli er, to support directed test ampli cation better
as all the ampli ers used in the open test ampli cation amplify test cases without direction.

1.3.2 Technical Case Study

To answer RQ1 and RQ2, we conduct a case study [43] to evaluate the new directed test
ampli cation method in DSpot. Speci cally, we prepare several Java projects as the objects
to perform the directed test ampli cation and assess the result.

We add d D-ampli er in DSpot to support the directed test ampli cation, amplifying
manually written test cases and generating ampli ed test cases that satisfy speci ¢ branch
coverage requirements. Therefore, we prepare several Java projects and identify all the
branches in the source code to build up a case study dataset. The branches are what de-
velopers hope to have covered. Then, we sample a sequence of branches in the dataset as
a coverage goal to execute directed test ampli cation with DSpot. In actual development
scenarios, developers need to write a test method and then use test ampli cation to amplify
it. In the experiment, we use existing test methods in the project as the initial test case to
amplify. Eventually, we check how many sampled branches can be covered by the ampli ed
test cases, indicating how well the test ampli cation results can meet the developers' branch
coverage expectations. We use the result of the case study to answer RQ1.

We compare the directed ampli cation method enabled by the D-ampli er to the open
test ampli cation approach to validate its effect. We use the two test ampli cation methods
to amplify the same initial test cases with the same branch coverage requirement. Finally,
we evaluate the ef ciency of these two approaches by calculating the ratio of branches
covered and the frequency with which they can generate test cases that satisfy the branch
coverage requirement, which is how we answer RQ2.

1.3.3 User Study

As users play a crucial role in the developer-centric test ampli cation, we conduct a user
study to evaluate the user-guided test ampli cation designed and implemented in TestCube
and DSpot and compare it with the open test ampli cation. We recruit 12 software devel-
opers, invite them to use TestCube, and interview them about their experience.

4

1.4. Contributions

Developers are invited to generate test cases in the user-guided and open test ampli ca-
tion methods and compare them to explore the differences. After developers try out the two
test ampli cation approaches, we conduct a semi-structured interview to investigate their
opinions on them. The semi-structured interview is based on a questionnaire prepared in
advance, containing a series of closed-ended questions. We ask the participants to Ilin an-
swers to each question and explain why they select a particular option. We also exibly ask
additional questions based on the interviewee's responses, allowing us to interview them
in-depth. During the interview, we encourage the participants to propose suggestions for
our tool.

The questions in the questionnaire are divided into four parts. The rst two parts are
about the participants' impression of the user-guided test ampli cation and the open test
ampli cation individually. The third part asks developers to compare the two approaches'
differences explicitly, and the last part looks into developers' overall impression of the test
ampli cation result and TestCube. The answer for the rst part is analyzed to answer RQ3.
We answer RQ4 by comparing the result of the rst two parts and analyzing the third part's
result. The last part contributes to answering RQ1 from the developers' perspective. We an-
swer RQ5 by analyzing the evaluation result of our user-guided test ampli cation prototype
and developers' suggestions.

1.4 Contributions

This thesis makes the following contributions:

1. Extended TestCube: A new user-guided test ampli cation interaction in the TestCube
plugin, which visualizes code coverage and assists users in conveying their branch coverage
expectations for ampli ed test cases and displays the corresponding result for user selection.

2. New ampli er in DSpot: A directed ampli er that supports directed test ampli cation
that aims at generating new test cases meeting speci ¢ branch coverage requirements.

3. New selector in DSpot: A selector that can compute branch and line coverage of tests
and select ampli ed test cases based on coverage requirements.

4. An evaluation of the effect of the new directed ampli cation method in test ampli -
cation aiming at speci c branch coverage requirements.

5. Evaluate the value of user-guided test ampli cation and differences with the open
test ampli cation.

6. Four suggestions for creating an effective user-guided test ampli cation interface.

1.5 Thesis Outline

Chapter 2 sketches the background and related work of the thesis topic. In Chapter 3, we
introduce the design and implementation of the user-guided test ampli cation in TestCube
and DSpot. Chapter 4 describes the technical case study and user study we conducted to
evaluate the user-guided test ampli cation. Chapter 5 displays the evaluation results and
discusses them to answer RQ1-RQ5. Finally, we summarize the thesis and discuss some
potential future work opportunities.

Chapter 2

Background and Related Work

In this chapter, we introduce the background and related work. User-guided test ampli -
cation is motivated by the developer-centric test ampli cation [8] and developed based on
Brandt and Zaidman's implementation, which we term open test ampli cation. We intro-
duce open test ampli cation in detail in Section 2.1. Section 2.2 introduces previous work
related to our topic, including interactive and directed test generation.

2.1 Background

Open test ampli cation starts from amplifying existing test cases and provides ampli ed
test cases that bring additional instruction coverage to the test suite. It is implemented with
TestCube and DSpot. TestCube provides an interface allowing developers to start the test
ampli cation and inspect the ampli cation result. DSpot is the back-end that conducts the
test ampli cation. Developers start test ampli cation in TestCube by selecting an existing
test method and asking TestCube to amplify it. TestCube then runs DSpot to amplify the
selected test case. After DSpot nishes the test ampli cation, TestCube displays the result,
and developers can choose to keep or discard the ampli ed test cases interactively.

2.1.1 Developer-Centric Test Ampli cation with DSpot

Brandt and Zaidman's developer-centric test ampli cation revises the test ampli cation
process of DSpot to generate shorter, easier-to-understand test cases and select to keep
those that bring additional instruction coverage [8]. Figure 2.1 provides an overview of the
developer-centric test ampli cation approach.

At the start of the ampli cation process, the developer-centric test ampli cation removes
all the assertions and the method calls in the original test case as they will not match the
new ampli ed test case. Then the developer-centric test ampli cation uses input mutation
to explore a test case's input space. Literals like integers, booleans, and strings are slightly
modi ed or replaced by random values. It also removes, duplicates, or adds new method
calls on existing objects, which means it is necessary to have an existing object for the
method call mutation. Speci cally, DSpot only supports calling public, non-static, and
non-abstract methods. It can also create new objects or literals as parameters for method

7

2. BACKGROUND AND RELATED WORK

Figure 2.1: Overview of the open test ampli cation process within DSpot [8].

calls. With the input mutation, a series of new test cases are generated. Then the developer-
centric test ampli cation adds one assertion to each test case. The developer-centric test
ampli cation only adds the assertion that the value it asserts changed through the mutation
to re ect the changes brought by the preceding input mutation.

After the assertion generation, we receive a broad range of test cases and can select
them according to a selection criterion. Brandt and Zaidman's open test ampli cation de-
sign selects test cases based on the instruction coverage that DSpot supports for calculating.
Speci cally, the open test ampli cation keeps the ampli ed test cases contributing addi-
tional instruction coverage to the test suite.

2.1.2 Open Test Ampli cation Interaction in TestCube

The test exploration plugin TestCube was designed to assist developers in generating and
exploring test cases using the open test ampli cation approach. Figure 2.2 shows the pro-
cedure of the open test ampli cation interaction.

Developers begin open test ampli cation by selecting one existing test methad (
Figure 2.2) in the test suite and asking TestCube to amplifg i (When the ampli cation
nishes, TestCube noti es the developer with a pop-up, and developers can click to inspect
the ampli cation result (3).

The result window consists of one ampli ed test case){ an information box ¢),
ve navigation buttons (7), and a coverage inspection edito$. The information box
contains the information of the ampli ed test case, including the additional instructions it
covers and the number of modi cations applied. The navigation buttons allow developers
to inspect different ampli ed test cases, add them to the test suite, ignore them and close the
result window. The coverage inspection editor highlights the additional covered lines in the
source code when developers click on the additional instruction coverage line information
in the information box.

2.2 Related Work
In this section, we discuss past research related to two aspects of our work: interactive test
generation, which allows humans to guide the test generation, and directed test generation,

which has a speci ¢ goal for test generation.

8

2.2. Related Work

Figure 2.2: Overview of the open test ampli cation interaction in TestCube.

2.2.1 Interactive Test Generation

Several techniques incorporate humans and use the information humans provide to guide the
test generation. Marculescu et al. proposed Interactive Search-Based Software Testing (IS-
BST) to involve domain specialists in test generation [25, 26]. Search-Based Software Test-
ing (SBST) uses meta-heuristic optimizing search techniques, such as genetic algorithms,
to automate or partially automate testing processes, such as the automatic generation of test
data [32]. ISBST is designed to use a dynamically adapted tness function during the search
process, and domain-specialist users are allowed to adjust the tness function. The tness
function is composed of attributes relevant to system quality that leads the optimization of
the test cases. By changing the relative importance of these attributes, the domain specialist
can change the tness function and in uence the search. Marculescu et al. carried out a
series of implementations and validations for the concept of ISBST in industry [27, 28] and
academic [29] and concluded that the ISBST system develops test cases that are not found
by manual techniques [29] and the interaction with domain specialists makes the system
more usable and more readily accepted in an industrial setting [28]. Seeing the potential of
ISBST, Marculescu et al. further transfer ISBST to industry [30] using the model of tech-
nology transfer to industry proposed by Gorschek et al. [16] and discuss the lessons they
learned along the way.

The primary difference between their work and ours is that they involve domain spe-
cialists in the test generation while we let software developers guide the test generation.
They pointed out the importance of perfecting how automated test systems communicate
with users and ensuring that their ndings are understandable to the users when transferring

9

2. BACKGROUND AND RELATED WORK

ISBST to industry [30]. We address this by designing an interface in a test exploration tool
and visualizing all the information and test ampli cation results for the users' interaction.

Besides ISBST, some recent studies also extend the interactivity of test generation. Mur-
phy et al. propose to apply Grammatical Evolution into SBST and incorporates human
expertise into the search [33]. Grammatical Evolution is a grammar-based evolutionary
algorithm. It uses a grammar, often a context free grammar, to create syntactically cor-
rect objects in any arbitrary language [36]. They proposed that users can de ne the search
space they want their tests to be created from by specifying a grammar. However, a further
empirical study is needed to validate the effectiveness of their approach.

Ramirez et al. observed two key issues that stymie the acceptance of automated test
cases by analyzing various studies that evaluated the effectiveness and acceptance of test
generation tools, which are the opacity of the automatic test generation process and the lack
of cooperation with the tester [34]. To solve the issues, they make the test case's readability
become their work's goal. They let testers guide the test generation by interacting with the
testers for readability assessment when generating test cases using search-based algorithms.
Testers' subjective assessment of test cases' readability through scores will be used to com-
pare candidate test cases with the same tness (aggregation of coverage criteria). Our work
also addresses the concerns they raised. We cooperate with testers and make the process
transparent by letting testers express their branch coverage goal and guide the test genera-
tion. We also improve the readability of test cases by connecting the ampli ed test cases
with testers' coverage goals.

2.2.2 Directed Test Generation

Search-Based Software Testing (SBST) uses search algorithms to automatically nd test
cases that optimize test goals [2]. SBST uses a tness function to capture the test objective,
which is the test generation direction. SBST has been used to automate test generation for
various test goals, such as maximizing structural coverage [15, 6, 21, 18], crash reproduc-
ing [39, 12, 11], and optimizing software function [42].

SBST for structural coverage is the most well studied within SBST [17]. Many ap-
proaches aim at maximizing structural coverage. The widely known tool EvoSuite gener-
ates tests for Java towards satisfying a coverage criterion [15]. AUSTIN is an open source
SBST system for the C language that maximizes branch coverage [21]. TestFul generates
tests for Java and aims to reach high statement and branch coverage [6]. Holmes et al. pro-
pose to use the relative line of code of software components to guide test generation as code
coverage is expensive to compute; methods with more lines will be called with a higher
probability [18]. Holmes et al.'s approach still aims at reaching high branch and statement
coverage even though they do not use it as an explicit test generation goal. All of these ap-
proaches aim at the overall structural coverage of the software without targeting coverage of
speci ¢ parts of the code structure while our work generates test cases for a speci ¢ branch.

Test suite augmentation techniques are used in regression testing to identify changed
behaviors of a program and to generate test cases targeting the changes if the existing test
suite is insuf cient to handle the changes [40]. Most augmentation techniques are based on
speci ¢ code coverage criteria [40]. Some of the test augmentation approaches only focus

10

2.2. Related Work

on identifying changed code and provide guidance for test generation but do not actually
generate test cases [3, 37]; while Xu et al. devoted a series of work to the directed test
generation aiming at new coverage requirements arising from new versions of a program as
it evolves [44, 45, 47].

Xu et al. rst proposed a concolic testing algorithm to address test augmentation [44].
Speci cally, they locate the branches of the evolved program that are not covered by the
existing test suite and generate test cases to cover them one by one. For each uncovered
branch, they nd its source node and the existing test cases whose execution traces reach
the source node. Then they explore the different directions of the path conditions of the
existing test cases with a concolic testing method to nd new test cases that can cover the
target branch. They applied their technique to an original version and 41 revised versions
of one of the Siemens programs, Tcas, from the SIR [14] repository and achieved branch
coverage rates between 95% and 100%.

Xu et al. address the same problem with a genetic algorithm in a subsequent work [45].
The algorithm targets an uncovered branch of the evolved program each time. The tness
function measures a test case's distance from the target branch. Minimizing the tness
function generates test cases that can cover the target branch. Their experiment shows
that the branch coverage result reached the best when they used all existing test cases to
compose the initial population for the genetic algorithm; 35% to 46% of the target branches
are covered.

The concolic algorithm requires many constrain solver calls, and the generic algorithm
needs to use all the test cases. Both of them require much computational effort. Xu et al. ex-
plore the two approaches and several factors' in uence on the cost and effectiveness of test
generation techniques [46]. Based on their ndings, Xu et al. proposed a hybrid approach
by combing the concolic and genetic algorithms to get a more cost-effective approach [47].
This new approach runs both the concolic and genetic methods for multiple rounds until no
new branches are covered. They rst apply the concolic testing in each round and pass the
output to the genetic algorithm as the initial population. They conducted an empirical study
and concluded that the hybrid algorithm is more effective than the two individual approaches
but less ef cient than the concolic test case augmentation technique. Xu et al. further inves-
tigated different factors' in uence on their approach through an empirical investigation [48]
and proposed a revised version of the hybrid approach [20]. The revised hybrid approach is
an interleaving framework that interleaves test case generation algorithms dynamically and
can adjust other factors potentially affecting the success of test generation exibly, such as
the initial test case they use. Their experiments show that a technique in which two test case
generation algorithms are fully dynamic interleaved outperforms their previous techniques.

Although their work also uses existing test cases to generate new test cases for speci ¢
branches, they focus on test augmentation, which aims to cover the branches of a new
version of a program that are not covered by the existing test cases when the program
evolves. However, our test ampli cation method focuses on all uncovered branches of
software. Besides, our approach is more cost-effective as we only use a small number of
initial test cases and amplify them for one round. In contrast, their approach needs to use a
large number of initial test cases and perform multiple rounds of iterations and calculations.

Besides targeting the changed code when software evolves and generating tests for re-

11

2. BACKGROUND AND RELATED WORK

gression testing, some researchers realize it is useful to generate test cases covering a par-
ticular code element for debugging [24, 13]. Ma et al. proposed directed symbolic exe-
cution to generate test cases covering a speci c line [24]. Speci cally, they proposed two
types of directed symbolic execution, shortest-distance symbolic execution, and call-chain-
backward symbolic execution. Shortest-distance symbolic execution prioritizes the path
with the shortest distance to the target line [24]. Call-chain-backward symbolic execution
follows the call-chain backward from the target method containing the target line until it
nds a realizable path to the target [24]. The two directed symbolic execution approaches
use the distance to the target line as information to guide symbolic execution. Dinges et al.
proposed symcretic execution to generate test data covering a speci ¢ branch or statement
in a program [13]. Their approach combines symbolic backward execution and concrete
forward execution. They rst use symbolic backward execution to nd an execution path
from the target to any program's entry points but 'skip’ over problematic constraints for the
symbolic decision procedure. Then concrete forward execution uses a heuristic search to
nd inputs that satisfy the constraints skipped by the symbolic backward execution. Both
their and our work specify the direction for test generation using the target code elements.
The directed symbolic execution and the symcretic execution need to analyze the path to the
target code element and generate tests from scratch. The constraint solver and the heuristic
search require extensive computation. However, our approach uses existing tests to generate
new ones and does not use symbolic execution to reduce the computational cost.

12

Chapter 3

Design and Implementation

This chapter introduces the design and implementation of the user-guided test ampli cation
prototype in detail, including the user-guided test ampli cation interaction in TestCube and
the directed test ampli cation method in DSpot. In Section 3.1, we provide an overview of
the implementation. Then we discuss more design details and motivation of TestCube and
DSpot in Section 3.2 and Section 3.3.

3.1 Overview of the Implementation

We realized the user-guided test ampli cation by implementing a new interaction process
in TestCube and a corresponding supportive directed test ampli cation method in DSpot.
Figure 3.1 shows an overview of the user-guided test ampli cation prototype. A developer
rst conveys expectations for the new test cases in TestCube by selecting one method they
want to test and one branch of the method they want to have covered. Then TestCube
looks for existing test cases as the input of the test ampli cation. TestCube will remind
the developer to write an initial test case if it cannot nd an existing one. Then DSpot
receives the initial test cases with the user's guidance from TestCube and ampli es them
based on the direction, the target method and the target branch. Finally, TestCube analyzes
DSpot's results and displays the ampli ed test cases satisfying the developer's coverage
expectations. The developer can add or ignore the ampli ed test cases when inspecting the
result.

Figure 3.1: Overview of the user-guided test ampli cation implementation.

13

3. DESIGN AND IMPLEMENTATION

3.2 TestCube Extension

TestCube provides the interfaces where developers convey their branch coverage expec-
tations for the new tests and accept the ampli ed test cases by inspecting the ampli ca-
tion results. Speci cally, we help developers convey their branch coverage expectations
by showing a Control Flow Graph (CFG) of the method they want to test and letting them
select one branch they hope to have covered. We show the ampli ed test cases with their
branch coverage highlighted in the CFG, and then developers can choose to add them to the
test suite.

3.2.1 Developers' Expectation

The user-guided test ampli cation interaction in TestCube is designed to assist developers
in communicating their expectations for the new ampli ed test cases. The most commonly
used engineering goal of test ampli cation is to improve coverage according to a coverage
criterion [9]. Therefore, we use code coverage to express users' expectations of an ampli ed
test case. TestCube already adopted instruction coverage as a criterion to select ampli ed
test cases in the open test ampli cation [8]. However, it is a very ne-grained evaluation
metric, more suited to demonstrating the nal result of ampli ed tests than helping devel-
opers express their expectations of the ampli ed tests.

We use branch coverage to represent developers' expectations. Branch coverage indi-
cates how many branches in a codebase tests execute. In our design, developers specify the
branch they want to test instead of setting a branch coverage goal, as branch coverage is a
gquantitative metric that is dif cult to de ne accurately as good or bad, while the branch is
an easy code structure for developers to understand.

First, developers select one method they want to test. Branches are the possible execu-
tion paths the code can take after a decision statement is evaluated, representing different
scenarios the method will face. When developers write tests for a speci ¢ method, they
usually would like to test if the method is doing what it is supposed to do in different sce-
narios. By specifying the branch of one method they hope ampli ed test cases to cover,
developers indicate the scenario they would like to test. In addition, it is often the case
that covering a speci ¢ branch also means covering a series of corresponding lines of code.
By specifying the target code branch, the developer is also considering the line coverage
expectation of the ampli ed test cases but avoiding potentially complicated operations of
selecting multiple lines of code.

3.2.2 Initial Test Cases

TestCube generates new test cases by amplifying existing test cases; hence having an exist-
ing manually written test case is a prerequisite for test generation. In our implementation,
TestCube uses all test methods in the test class of the class containing the method the user
wants to test as input for directed test ampli cation. Developers may use TestCube to gen-
erate new test cases at any stage of development when they are writing tests from scratch
for a class or have already written some tests. To ensure that developers can use TestCube

14

3.2. TestCube Extension

in both conditions, TestCube should remind and help developers write an initial test case
for the class they want to test when there are no existing test cases.

When a developer selects a method and asks TestCube to generate tests for it, TestCube
will look for the existing test class for the class containing the selected method. If no est
class exists for it, TestCube will ask the developer to create a test class and write an initial
test case. Also, TestCube will display a window to assist the developer in writing a Junit
test class, shown in Figure 3.2. TestCube will ask the developer to write one test method if
there is an empty test class without test methods, which is shown in Figure 3.3.

Figure 3.2: Reminder of creating an initial class.

Figure 3.3: Reminder of writing an initial test.

15

3. DESIGN AND IMPLEMENTATION

3.2.3 Control Flow Graph

We show a CFG of the selected method based on the source code to better assist developers
in identifying and pointing out the branch they want to cover. The example of the CFG

is in Figure 3.4. The CFG in our implementation is based on PlantUML [5] and depicts a
method's structure, including all branches and lines. The boxes represent code lines, and
decision statements and arrows illustrate the code ow. The arrows out of each decision
statement have “True” and “False” on them, denoting different branches. By inspecting the
CFG, developers can see how the code runs following each true and false branch of each
decision statement and quickly understand different scenarios that possibly need testing.
Besides, each box of the CFG contains both the line number and corresponding source
code, which can help developers locate the code in the source le.

Figure 3.4: Example Control Flow Graph of method.

The selected method may have been partially covered as there are existing test methods
that are the input of test ampli cation. Knowing which part of the method is uncovered is
essential for developers. It allows the developer to learn about the current code coverage and
identify branches that are not yet covered. Therefore, TestCube computes initial coverage
for the selected method and rst displays it in the CFG. We compute both branch coverage
and line coverage as the CFG comprises branches and lines. Figure 3.5 shows the initial
coverage identi ed in the CFG. The dark green border identi es the branches and lines
covered by existing tests in the CFG. We use pink borders to identify the branches that are
not covered and available for selection. Developers are allowed to select one branch each
time. The pink border becomes red after being selected. Developers click the “Generate

16

3.2. TestCube Extension

Test Covering the Selected Branch” button below the CFG to start the test ampli cation.
TestCube will amplify all the existing test cases and return test cases that can cover the
selected branch.

Figure 3.5: Example initial coverage in the CFG allowing branch selection.

If the selected method has no branches, TestCube informs the user that it will generate
test cases that can cover the method. TestCube will not generate new test cases if the selected
method is fully covered. The examples of the two cases are in Figure 3.6 and Figure 3.7.

Figure 3.6: Example when the selected method has no branches.

3.2.4 Results Display

After test ampli cation completes, TestCube will pop up a noti cation to report the result,
indicating the number of ampli ed test cases covering the selected branch. Developers can
choose to inspect the result and explore the result window. Figure 3.8 shows an example of
the test ampli cation result where the left part is IntelliJ's regular editor and the right part is

17

	Preface
	Contents
	List of Figures
	Introduction
	Background and Motivation
	Research Questions
	Research Method
	Contributions
	Thesis Outline

	Background and Related Work
	Background
	Related Work

	Design and Implementation
	Overview of the Implementation
	TestCube Extension
	DSpot Extension

	Evaluation
	Technical Case Study
	User Study

	Results and Analysis
	Technical Case Study Results
	User Study Results
	Analysis and Discussion
	Threats to Validity

	Conclusions and Future Work
	Conclusions
	Contributions
	Future work

	Bibliography
	Glossary
	Materials for User Tasks
	StreamSummary.java
	ConcurrentStreammary.java
	StreamSummaryTest.java
	ConcurrentStreamSummaryTest.java

	Questionnaires
	Consent Survey
	Pre-Test Questionnaire
	Post-Test Questionnaire

