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Conditioning Generative Diffusion Models
Training-free and Asymptotically Consistent

V.R. Bockstael

Abstract Generative diffusion is a machine learning technique to generate high-quality samples from
complex data distributions. Much of its success can be attributed to the recently developed techniques
that flexibly control the data generation process, without additional training effort. These methods con-
trol a pre-trained diffusion model towards specific regions of interest, which are determined by external
information such as class labels, masks, or text descriptions. However, these approaches are typically
based on heuristic guidance techniques and break the consistency on which the theoretical justification
of generative diffusion relies. This is problematic when applying these controlled data generation tech-
niques to tasks that are sensitive to distribution characteristics rather than the perceptual quality of
individual samples. To this end, we introduce an asymptotically consistent approach for conditioning
generative diffusion models without retraining the entire system. We use an importance sampling tech-
nique for simulating diffusion bridges, where multiple draws of a guided proposal process are reweighted
to resemble paths of the true conditioned denoising process. A theoretical analysis shows that under
certain assumptions, our approach has a vanishing error. In an empirical analysis, we find that specific
nuances to the performance trade-off appear with a finite amount of computational effort. Specifically,
the effectiveness of our approach highly depends on the choice of the proposal process and the allocation
of computational effort towards independent runs of our algorithm.
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1
Introduction

Generative diffusion models have recently appeared as a successful technique to generate high-quality
samples from complex high-dimensional data distributions [SE20; HJA20; Cao+23; CKS23]. Notable
examples are image generators Dall-E [Ram+21] and Stable Diffusion [Rom+22]. Generative diffusion
stands out from deep generative modeling techniques [Ben23] due to its stability and qualitative perfor-
mance. This is in contrast to variational auto encoders, which are known to have difficulty producing
realistic data, or generative adversarial networks, which are typically unstable to train [XKV22].

Successful adoption in domains such as the generation of images [Ram+21; Rom+22; Rad+21], video
[Ho+22; Xin+24], sound [Zha+23], and time series [YQ24; SRH24; Yan+24] is largely attributed to the
ability to control the generation of the data towards regions of interest. Examples are text-to-image
and inpainting tasks. By controlling the generative process, the data distribution can be thoroughly ex-
plored through various conditioned distributions and yields a necessary statistical tool for risk-sensitive
application areas.

This is particularly important given the uncertainty about the ability of deep generative models to
capture the heavy-tailed nature of real-world data effectively [TD25; SSD24; Pan+24]. Therefore, con-
trolled generative diffusion offers a promising alternative by reframing the assessment of heavy-tailed
distributions as a rare event simulation task, thereby potentially circumventing the inherent architec-
tural and data limitations of deep generative models. Unfortunately, effectively controlling generative
diffusion remains an open challenge. Existing methods tend to rely either on computationally expensive
training-based techniques, or, on cheap training-free techniques that can introduce significant inconsis-
tencies with the true conditional distribution.

The expensive conditional generative diffusion methods are consistent, in the sense that they ap-
proximate the true conditional distribution, because they are obtained by training the entire system to
learn the joint distribution of the data and the additional information [DN21; HS22]. The theoretical
guarantees of generative diffusion models [Che+23] directly transfer to this class of methods. However,
they require the availability of the additional information at training-time, which is not always the case,
and are inflexible to adaptations of the system requirements.

The cheap conditional generative diffusion methods are inconsistent because they are based on heuris-
tic adaptations of a pre-trained unconditional generative diffusion model [He+24; Son+23; Yu+23;
Chu+24; Ye+24; Col+23; Lug+22; SE20]. The benefit is that the approaches are highly flexible to
adaptations of the system requirements and do not require additional (re)training.

In application areas such as finance [FJ22; Büh+20], renewable [Jia+19; Li+24; Che+18], and
weather forecasting [Pri+24; Hua+24], the statistical tasks are often characterized by the modeling of
their distributions, rather than individual samples. This is in contrast to image or sound generation,
where one is often more interested in the perceptual quality of individual samples instead. Applying
generative diffusion to risk-sensitive distribution-sensitive areas introduces new consistency requirements
for generative diffusion models.

1



1.1. Generative Diffusion Models 2

1.1. Generative Diffusion Models
Generative diffusion is based on a noising procedure that reduces complicated structural information to
a trivial state. Essentially, this transfers the unknown distribution of an observed data set, from which
it is impossible to sample, to a known distribution, from which it is easy to sample.

The noising process is a stochastic process (Xt)
T
t=0 on Rd, where X0 ∼ PX0

represents a sample
from the unknown data distribution and XT ∼ PXT

represents a sample from the known and trivial
distribution, that is obtained by adding a sufficiently large amount of noise to the data. The task of
generative diffusion is to learn the dynamics of the reverse process, i.e. the denoising process, such that
we can sample from PX0

by running through the reverse process starting at a sample XT ∼ PXT
. This

is done by simulating the noising process and simultaneously training a neural network that acts as a
denoiser. The noising process can be described by the following:

(Noising process) PX0 ∼ X0
noise→ . . .

noise→ Xt
noise→ . . .

noise→ XT ∼ PXT
.

Generative diffusion models produce high-quality results by leveraging the flexibility and expressiveness
of neural networks in a sophisticated way. At a high level, learning the denoising process can be framed
as training a neural network, denoted by b̂t and parameterized by t ∈ [0, T ), to recover the process state
Xt from a slightly more perturbed future state Xs, where s > t is typically close to t. This is formalized
as minimizing a loss function, commonly the mean squared error,

b̂t = argmin
bt

Loss (bt(Xs), Xt) . (1.1)

Then the procedure to generate realistic samples from the data distribution PX0
amounts to sampling

the known distribution PXT
and performing the following iterative procedure:

sample XT ∼ PXT
and compute Xt = b̂t(Xs) + Zt, with Zt ∼ N (0, |s− t|Id×d).

Then, we obtain the following chain that describes the reverse process, where the denoise operation is
described in the equation above,

(Denoising process) PX0 ∼ X0
denoise← . . .

denoise← Xt
denoise← . . .

denoise← XT ∼ PXT
.

In Figure 1.1, an illustration of the noising and denoising process is given. The overall ability to gen-
erate high-quality samples from the data distribution depends on the expressive abilities of the neural
network and the number of time steps. However, obtaining the denoising process is easier said than
done and relies on the neural network’s architectural choices, data availability, and the amount of train-
ing. These factors make generative diffusion a generally expensive method, both during training and
sampling, due to the multiple denoising passes required for each generated sample.

Figure 1.1: Horizontal illustration of generative diffusion. The diagram illustrates the perturbation of a clean
signal. This denoising process is depicted by the arrow from left to right. The noising process is depicted by the arrow
from right to left. The left side depicts the state of a trivial state drawn from PXT

(or equivalently PY0
). Moving

towards the right, the sample is denoised iteratively until it resembles a sample drawn from PX0
(or equivalently PYT

),
depicted on the right-hand side.
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Figure 1.2: Illustration of generative diffusion in Rd. The diagram illustrates the generative diffusion in the state
space (Rd), starting from some point sampled with PY0

and ending up as being distributed by approximately the data
distribution.

Our work is based on the continuous time framework, which is due to Song et al. in 2021, [Son+21]
and generalizes the discrete time framework as introduced by Ho et al. in 2020, [HJA20]. The underlying
theory of generative diffusion can be established through continuous-time reasoning, which enables a
coherent and flexible notational framework that has roots in many existing fields of mathematics and
physics. Conceptually, a continuous-time framework is obtained by taking infinitesimally small steps of
the above-described discrete-time operation. Then, informally, we can obtain two stochastic differential
equations (SDE) that describe the noising process and the denoising process:

(Noising SDE) dXt = dB̄t, X0 ∼ PX0 ,

(Denoising SDE) dYt = ∇ log pXT−t
(Yt)dt+ dBt, Y0 ∼ PXT

,

where pXt
is the marginal density of process X at time t. The term ∇ log pXT−t

is often referred to as
the score function, specifically of the marginal distribution. The denoising SDE essentially describes
a process that satisfies Y0 ∼ PXT

and YT ∼ PX0 , and is derived through a classic result on the time-
reversal of SDEs by Anderson in 1982 [And82]. In Figure 1.2, an abstract illustration of generative
diffusion is given, which we also use later in this chapter to describe conditioning. The marginal density
is not known as it ultimately depends on the unknown data distribution PX0

. Therefore, the score
function must be learned with a neural network, which is precisely the role of b̂t in Equation 1.1. A
compelling argument for using generative diffusion models is that, given an accurate enough neural
network approximation of the score function, theoretical guarantees of the method can be derived with
respect to the total variation between the approximated distribution PYT

and the true data distribution
PX0

[Che+23].

1.2. Control by Guidance or Conditioning
Now, the goal of controlling the generative diffusions is to approximate a conditional distribution instead
of an unconditional one. Say we want to be able to choose some subset A ⊆ Rd at sample-time and
sample from PX0

conditioned on X0 ∈ A. For example, we may consider X0 to satisfy a conditioning
on a linear transformation, i.e. A = {x ∈ Rd : Lx = v}, for some m× d full rank matrix L and vector
v ∈ Rd. Two classes of controlled generation methods can be identified in the literature.

The first class is based on conditioning at training time, which has the convenience that the true
conditional distribution is learned, to the extent that the class of neural network approximators limits
it. In principle, conditioning at training time is achieved by learning the joint distribution of the data
and the additional information. Training-based conditioning is generally not desirable as it requires
additional information to be available at training-time and therefore hinders flexibility.
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The second class avoids these disadvantages by heuristically guiding the denoising process at sampling-
time. The convenience of the training-free method comes at the cost of an accurate approximation of
the unconditional distribution, making it problematic in applications where consistency is highly im-
portant. For the typical application of generative diffusion, such as image, sound, or video generation,
one is often interested in the perceptual quality of individual samples, rather than an accurate represen-
tation of the entire data distribution. This emphasis on the realism of the individual samples creates
a fundamental mismatch between the state-of-the-art generative diffusion techniques and the domains
where the integrity of the distribution is critical.

1.2.1. Conditioning at Training-time
We denote the conditional data distribution by P(Xt ∈ ·|X0 ∈ A) for all t ∈ [0, T ]. If we have sufficient
available information about event {X0 ∈ A}, we can learn to sample from the conditional distribution
through learning the score of the marginal distribution of the conditioned process at training time, by
simply appending the information about the set A to the input of the neural network. This way, the
denoising process may be simulated for any appropriate choice of A.

This approach is often infeasible, as we often need the condition information to be available or
extractable in the dataset, and more importantly, we need the format of the condition to be characterized
prior to training the system. Therefore, to add some flexibility to the framework, instead of learning
the joint distribution, [DN21] described a procedure based on training a classifier. The approach is due
to an application of Bayes’ theorem to the marginal density of the process X conditioned on X0 ∈ A,
i.e.,

pXt|X0∈A(x) =
P(X0 ∈ A|Xt = x)pXt

(x)

PX0
(A)

,

then it is not hard to see that the conditional score satisfies

∇ log pXt|X0∈A(x)︸ ︷︷ ︸
conditional score

= ∇ logP(X0 ∈ A|Xt = x)︸ ︷︷ ︸
classifier

+ ∇ log pXt(x)︸ ︷︷ ︸
unconditional score

. (1.2)

From this, we see that we can use a classifier capable of predicting the probability of event {X0 ∈ A}
given that Xt = x to flexibly turn an unconditional diffusion model into a conditional one. However,
this procedure still requires training the classifier alongside the entire diffusion model. Note that an
existing classifier trained on the clean data from data distribution PX0

can not be used effectively, on
which we will elaborate in the following subsection.

1.2.2. Guidance at Sampling-time
Alternative methods to control generative diffusion have been introduced to specifically omit the need
for (re)training. The basis for these training-free control methods lies in approximating the classifier
term in Equation 1.2. Specifically, this is done by leveraging the information that can be obtained from
the classifier term at time 0 to guide the denoising process in the direction of satisfying the condition.

Typically, it is easy to determine the event given a true (unperturbed) data sample X0. Indeed,
the score of the marginal distribution of process X at time 0 is based on the term P(X0 ∈ A|X0 = x).
This can often be determined deterministically, by computing the probability directly, or by using an
existing classifier module trained on the data. Clearlly the same does not hold for the conditional score
at time t, which relies on P(X0 ∈ A|Xt = x) as seen in Equation 1.2 and is inherently difficult to
determine due to the complicated dynamics of the denoising process.
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Figure 1.3: Illustration of heuristic guidance of generative diffusion at sampling-time. The orange curve
indicates the subspace of Rd where the condition is satisfied. The blue arrows indicate the guided denoising SDEs that
are guaranteed to satisfy the condition at their terminal time, albeit at a mismatch with the true conditioned
distribution.

Two foundational approximations of the above equation are replacement guidance [Lug+22], which
is based on an approximation of a perturbed state of the condition at time t, and reconstruction guid-
ance [SE20], which is based on an approximation of the clean state X0 given the perturbed state Xt.
The replacement guidance method is typically used to condition on masked data, such as in forecasting
and imputation of time series, and image inpainting. In contrast, the reconstruction guidance typically
has a more general application area, such as in [Col+23], where the approach is applied to constrained
scenario generation. Both these approaches have been extended to more generalized and more effective
forms.

For example, Diffusion Posterior Sampling (DPS) [Chu+24] is an approach that is aimed at solving
general inverse problems with a generative diffusion model as a prior. It is based on reconstruction
guidance and assumes Gaussian or Poisson noise measurements of the reconstruction of the clean state
given the noisy state. FreeDoM [Yu+23] improves upon the basic reconstruction guidance approach
by applying an efficient denoising strategy that decomposes the entire time-span [0, T ] into three sep-
arate stages, where only the middle stage is heuristically considered to be important for guiding the
diffusion towards satisfying the condition, while minimizing undesirable artifacts of the inconsistencies.
Manifold-Preserving Guided Diffusion (MPGD) [He+24] aims to correct inconsistencies of the guidance
techniques by making projections of the noisy state at each time step, such that some artifacts are also
minimized. In [Ye+24], the authors provide a framework that unifies some of these existing approaches
under a collective algorithmic formulation.

While practically impressive, all of the above-specified training-free methods are based on consistency-
breaking approximations of the conditional score function. The approaches are often capable of produc-
ing high-quality individual samples, but they typically do not reproduce an accurate approximation of
the conditional distribution, which remains an open question. The inconsistency of these training-free
methods has not gone unnoticed [She+24]. Recent attempts to correct the inconsistency in guided gen-
erative diffusion have been introduced [Wu+24; Tri+23]. These methods are based on drawing sample
steps from a proposal process, and correcting the error introduced by the approximations through a
reweighing with importance weights. These approaches to conditional generative diffusion sampling
shed a new light on the problem, as in contrast to the other heuristics, they satisfy the asymptotic
precision.
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1.3. Research and Contributions
In this work, we study the problem of conditioning generative diffusion models with a training-free and
asymptotically consistent approach. This means that for an infinite amount of computational effort our
approach should converge to the exact conditional distribution. We assume that we have access to an
arbitrarily accurate (unconditional) denoising process Y and study the simulation of the conditioned
denoising process. Specifically, we study the conditioning on a linear transformation of the data. Below,
we state a formal description of our objective.

Definition 1.1 (Problem Statement). Let us fix y0 ∈ Rd. Consider the denoising process to be driven
by the following SDE:

dYt = [−α(t)Yt +∇ log pXt
(Yt)︸ ︷︷ ︸

b(t,Yt)

]dt+ σ(t)dBt, Y0 = y0,

where the solution Y to this SDE is assumed to exist uniquely. α : [0, T ] → (−∞, 0] and σ : [0, T ] →
(0,∞) are scalar functions that characterize the noise schedules of the generative diffusion model. Let
L ∈ Rm×d be a full rank matrix with d > m and vector v ∈ Rm. The objective is to sample YT
conditioned on

LYT = v. (1.3)

The conditioned path measure is denoted by

P∗
Y (·)

def
= P(Y ∈ ·|LYT = v).

In practice, the generative diffusion model is trained with a collection of samples {X(i)
0 }ni=1 ⊂ Rd

from the data distribution PX0
, to obtain an approximate score function. For simplicity, we assume

that the score function is obtained exactly. If this is not the case, the results of this work translate
nonetheless, despite having its inaccuracies of the score superimposed on that of the exact setting.

Conditioning SDEs in general is a widely studied area. In particular, the canonical Doob’s h-
transform allows the exact conditioning of Markov processes, e.g., see [PR02]. A well-known example
of a conditioned process is a Brownian bridge, which essentially is a Brownian motion that is defined
to hit a specific value at time T and can be derived by making use of Doob’s h-transform, as we discuss
in Chapter 3. Unfortunately, the ability to perform this explicit conditioning is relatively unique.

The SDE that drives the conditioned process is obtained by a change of measure induced by Doob’s
h-transform. In essence, this enables us to instead consider a different stochastic process Y ∗ = (Y ∗

t )
T
t=0

that is governed by the following SDE:

dY ∗
t =

[
b(t, Y ∗

t ) + σ2(t)∇ log h(t, Y ∗
t )
]
dt+ σ(t)dBt, Y0 ∼ PY0 , (1.4)

where h is the marginal density of the distribution P(LYT ∈ ·|Yt = x) evaluated at v. The change of
measure allows us to interchange the conditioned measure P∗

Y , which is conceptually difficult with PY ∗ ,
which is conceptually simple as samples can be obtained by simulating the process driven by the above
SDE. The term ∇ log h(t, x) is typically intractable, and hence it is often the case that we can still
not find an explicit form of the conditioned SDE. Therefore, the problem this work aims to address is
related to sampling paths that resemble (Y ∗

t )
T
t=0

Our work distinguishes itself from the few related controlled generative diffusion methods [Tri+23;
Wu+24], that are also asymptotically consistent, in the order of discretization. Specifically, our ap-
proach is based only on a discretization of the path, while their approach is based on a discretization
of the weights and a discretization of the path 1. Furthermore, we study the asymptotically consistent
and training-free conditional generation within a continuous-time perspective of generative diffusion,
which offers two promising aspects.

1Essentially what we describe as an intermezzo in Section 4.2
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Figure 1.4: Diagram of our conditioned generative diffusion approach. The orange line represents the subset
of the state space where the condition is met. The arrows indicate samples of the proposal process that often fail to
resemble a sample from the true conditional distribution, indicated by their distance to the high-density area. Our
approach is based on reweighing these proposal paths, illustrated by the opacity, to obtain a sample that resembles the
true conditioned distribution.

First, the continuous-time framework is theoretically more flexible and allows us to reason about
the limiting behaviour of our practical algorithm. This perspective has been fundamental in deriving
theoretical guarantees of generative diffusion, such as in [Che+23]. Furthermore, most state-of-the-art
accelerated sampling techniques approaches are based on the continuous-time framework, as laid out in
[Ma+24].

Second, perhaps more importantly, the continuous-time framework allows us to bridge a gap between
the fields of controlled generative diffusion and simulating conditioned stochastic processes. Because the
transition density of the unconditioned denoising process Y is not known, conditioning the process to
satisfy a specific condition at time T is known to be hard. Contrary to controlled generative diffusion, of
which the scientific interest only recently emerged, the more general problem of conditioning continuous
time stochastic processes has received widespread attention in the last few decades, going back to work
on one-dimensional diffusion bridges [Cla90] to multivariate diffusions bridges [SMZ17] and conditioning
with linear observations [BMS20; Mar12; Cor24].

1.3.1. Importance Sampling Technique
An embraced methodology for simulating conditioned stochastic processes bridges uses guided proposal
processes, denoted by Y ◦, that are easy to sample, guaranteed to satisfy the desired conditions, and
for which importance weights can be computed with respect to the measure of the true conditioned
process Y ◦. Using these weights, which are values in (0,∞), importance sampling methods can be used
to approximate the intractable measure of the conditioned process.

The weighting promises a theoretically consistent approach that is lacking in many of the controlled
generation generative diffusion methods. For N > 1, the path-wise importance sampling technique
consists of three main steps.

1. Simulate paths from the proposal process {(Y ◦)(i)}Ni=1.

2. Compute importance weights {(W (Y ◦))(i)}Ni=1 = {W (i)}Ni=1.

3. Resample the set {(Y ◦
T )

(i)}Ni=1 with importance weights as sampling probabilities.

Computing the importance weights of paths requires the measures of the proposal process and the
target process to be equivalent 2. In the work by Schauer, van der Meulen and Zanten [SMZ17], which
introduced a technique for L = Id×d and Bierkens et al. [BMS20], which extended it to general L, a
specific class of proposal processes is used for which the equivalence w.r.t. the target measure is shown.
In this work, we take inspiration from this technique and adapt it to the setting of generative diffusions.

2P and Q are equivalent if P(A) > 0 ⇐⇒ Q(A) > 0



1.3. Research and Contributions 8

The proposal processes that enable the approach are based on an auxiliary process, denoted by Ỹ .
This process is chosen to be simple enough such that it is possible to perform an exact conditioning for
this stochastic process, i.e. we consider the measure P̃∗(·) = P(·|LỸT = v). Specifically, if the process
Ỹ has Gaussian transition densities, than the marginal density of LỸT conditioned on Ỹt = x function
satisfies

h̃(t, x)
def
= P(LỸt|Ỹt = x) ∝ exp

(
−1

2
||Lµ̃T (t, x)− v||2(LC̃T (t)L⊤)−1

)
,

where µ̃T is a function that represents the conditional expectation of ỸT given Ỹt = x, C̃T is a function
that represents the covariance. Then, the proposal processes are driven by the following SDE

dY ◦
t = [b(t, Y ◦

t ) + σ2(t)∇ log h̃(t, Y ◦
t )]dt+ σ(t)dBt, (1.5)

where h̃ replaces h in Equation 1.4 such that simulating with this SDE is tractable. It follows from the
properties of a Gaussian distribution that taking the logarithm and gradient of h̃ gives us

∇ log h̃(t, x) = ∇µ̃T (t, x)
⊤L⊤(LC̃T (t)L

⊤)−1(Lµ̃T (t, x)− v).

In [BMS20] ∇ log h̃, it is assumed that the gradient (w.r.t. x) of µ̃T (t, x) is independent of x, which
simplifies the form even further and is a sensible choice if the auxiliary process is determined a priori.
However, for our setting, due to the high-dimensional state spaces in which generative diffusion is often
applied, we may want to adapt the auxiliary process as time moves forward. Especially as the approach
intuitively benefits from a choice of Ỹ that is more similar to Y . This leads to the case that the gradient
of µ̃T (t, x) w.r.t. x does depend on x.

Under these new circumstances, the validity of the approach by [BMS20] no longer holds directly.
Therefore, we must make new assumptions and derive new proofs to verify the technique’s validity. In
particular, we focus on both the behavior of ||LY ◦

t − v||2 (Theorem 4.1), and the absolute continuity of
the measure of Y ∗ w.r.t the measure of Y ◦ (Theorem 4.2), as t becomes closer to the terminal time T
.

Process Symbol Measure Drift
Unconditioned Y PY b
Conditioned Y ∗ P∗

Y (or PY ∗) b+∇ log h

Proposal Y ◦ P◦
Y (or PY ◦) b+∇ log h̃

Auxiliary Ỹ PỸ b̃

Cond. auxiliary Ỹ ∗ P̃∗
Ỹ

b̃+∇ log h̃

Figure 1.5: The solid arrows indicate a change-of-measure operation, that is incited by the associated Radon-Nikodym
derivative (Definition 1.1). The dashed lines merely indicate an informal notion of resemblance between the measures.
The description of the measures and the associated processes are given in the table. There are three characteristics of
the processes: whether they satisfy the condition (satisfactory), whether they can be simulated (simulatable), and
whether they have a known exact solution (solvable).

Contribution 1 (Importance sampling algorithm for conditioned generative diffusion). We derive an
importance sampling algorithm for asymptotically consistent conditioning of generative diffusion models,
taking inspiration from [BMS20] and [SMZ17]. In particular, we derive a method that uses proposal
processes of the form in Equation 1.5 and computes importance weights for the paths with the aim of
using importance sampling techniques (Proposition 4.2). We verify that the proposal process satisfies the
condition at the time T (Theorem 4.1) and that the proposal and target measures of the paths remain
absolutely continuous (Theorem 4.2), under various assumptions on the auxiliary process Ỹ .
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1.3.2. Practical Algorithm
As foreshadowed, choosing an auxiliary proposal process is inherently hard. Therefore, we introduce
an adaptive auxiliary process that uses the current information of the process at time t to obtain a
tractable approximation of the process. This leads to some adjustments to Proposition 4.2 that we do
in Proposition 5.5. To show that our approach is asymptotically consistent, we use the approximation
of the conditioned probability of some set A with

P̂ ∗
N,M (A) =

∑N
i=1W

(i)1{(Y ◦
T )

(i) ∈ A}∑N
i=1W

(i)
.

Here, M denotes the discretization of the sampled processes Y ◦, and N denotes the number of sampled
paths used to approximate the distribution, that we may also refer to as particles. Specifically, we
show that the mean squared error vanishes under a few assumptions. These assumptions are primarily
related to the auxiliary process, the importance weights, and the set A.

Contribution 2 (Asymptotic consistency of our approach). We show that our approach is asymptot-
ically consistent (Theorem 5.1), in the sense that the mean squared error converges to zero as we take
the limit in N →∞ and M →∞. Specifically, we find that under the assumptions laid out in Chapter 4
and Chapter 5, there exists a positive constant C such that for all appropriate3 sets A, we have

E
[
(P̂ ∗

N,M (A)− P∗
YT

(A))2
]
≤ C

(
1

M
+

1

N

)
.

1.3.3. Numerical Experiments
In the experimental part of this work, we focus on two concrete proposal processes that are obtained
from two specific auxiliaries. The first is based on an adaptive drifted Brownian motion, referred to
as (G)CDA 4. In principle, here the auxiliary drift term is assumed to be constant, but it is updated
at each sample step, resulting in a consecutively changing choice of auxiliary processes. The second is
based on a fixed non-drifted Brownian motion, referred to as ZDA. Here, the auxiliary drift term is
assumed to be zero, and is therefore not affected by the adoption of the adaptive framework.

Our experimental results are based on data distributions where we can analytically derive∇ log pXT−t
,

to omit the need for training neural networks. We are specifically interested in the practical implications
of the asymptotic consistency, primarily focused on the effect of the number of particles N , because the
effect of the discretization level M is already quite intuitive in the context of (unconditional) generative
diffusion models.

To establish the statistical performance for finite computational effort, we make use of sample-based
statistical performance metrics and find a significant impact of our approach even for small values of
NI. In addition, it is well known that importance sampling collapses in high-dimensional state spaces
[Aga+17; LBB05], which is typically the case for applications of generative diffusion. This will result
in only one unique sample, even when we use N particles initially. For this reason, we investigate the
effect of the number of particles on the statistical performance in a variety of settings, e.g., low- and
high-dimensional, and method configurations, e.g., ZDA and (G)CDA.

Contribution 3 (Empirical Statistical Performance). We find that using more computational effort
typically increases the statistical performance for various metrics, establishing a positive insight into the
non-asymptotic behavior of our approach. The significance at which they increase is negatively affected by
the dimensionality of the problem. Furthermore, in practically all moderately high-dimensional settings,
we need O(N) computation for a single sample. However, using K independent runs of our approach
with each O(N/K) computational effort can significantly improve the statistical performance, thereby
inciting an allocation problem that concerns managing K and N .

3they have to satisfy some mild conditions about the boundary of A and the discretizations of Y ◦.
4(G)CDA is an acronym for (Gradient propagated) Constant Drift Approximation, and ZDA is an acronym for Zero

Drift Approximation.
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1.4. Outline
In Part I, we lay out the theoretical framework of our work. The primary focus is on generative dif-
fusion and how, at a more fundamental level, (generative) diffusions can be conditioned in exact or
approximate ways. In Chapter 2, we describe the continuous time perspective on generative diffusion.
We discuss how the noising and denoising processes are precisely related and how, in practice, one can
use neural networks to approximate the score function. The chapter also contains illustrative examples
of generative diffusion models. In Chapter 3, we first describe how one can formally condition SDEs.
Furthermore, we discuss two commonly used heuristics, called replacement guidance and reconstruction
guidance, that form the basis of most of the state-of-the-art work in (controlled) generative diffusion.

In Part II, we introduce the importance sampling technique, the associated practical algorithm, and
the asymptotic consistency. In Chapter 4, we elaborate on the importance sampling technique that is
fundamental to our approach. Here, we describe how importance sampling procedures can be achieved
for continuous-time stochastic processes. Specifically, we derive an appropriate version of the approach
introduced in [SMZ17] and verify the well-definedness. In Chapter 5, we introduce our practical algo-
rithm based on a discretization and an adaptive proposal process. Apart from deriving the necessary
theoretical adjustments that are required for our practical approach to work, we describe an upper
bound of the squared error of the particle approximation and the ground truth distribution as a func-
tion of the number of particles N and the level of discretization M . The upper bound vanishes in the
limit of large N and M , thereby implying an asymptotically consistent method. Finally, we provide
details for two practical implementations of the proposal processes based on a zero and constant drift
approximation.

In Part III, we provide experimental insights into the empirical performance of our approach. In
Chapter 6, we demonstrate the statistical performance in terms of sample-based performance metrics for
comparing distributions. We are primarily concerned with how the statistical performance is affected by
increasing amounts of computational effort, and how this effect is changed for different dimensionalities
of the state space. Apart from comparing the two different proposal strategies (ZDA and (G)CDA), we
provide some insight into the particle efficiency, which reduces to a degeneracy within our approach.
We study how minor variations of our algorithm may partially resolve some of the issues, and therefore
regain some of its efficiency. In Chapter 7, we demonstrate an application of our approach. Specifically,
we perform a selection of experiments in the context of conditional scenario generation. First, the
generated scenarios are conditioned on masks of certain events happening in the future, such as hitting
a certain value at a certain time. Second, we condition the scenarios on information in the frequency
domain, such as the average (zeroth frequency) or certain trend and seasonal behaviours (low-pass
and band-pass). Finally, we consider conditioning the generated scenarios on inequality conditions,
instead of equality conditions, which promises a generalization of our technique to conditions of the
form LYT ∈ V .

In Part IV, we discuss the main results and caveats of this approach with respect to the intersecting
research and application areas. In Chapter 8, we focus primarily on recommendations for future work.
We describe the assumptions on which our theory relies and how they may be alleviated. Also, we
consider improved variants of our proposal processes and how some can be related to existing work.
Furthermore, we discuss some possible extensions and provide an outlook for the general technique. In
Chapter 9, we provide an executive summary of the main conclusions of this work.
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1.5. Preliminaries and Notation
The preliminaries of this work are primarily results from stochastic calculus. The reader is directed
to a standard textbook of stochastic differential equations, such as that of Øksendal [Øks03] or Mao
[Mao11a]. Furthermore, the works by Schauer et al. [SMZ17] and Bierkens et al. [BMS20] are especially
important, as our approach builds on the foundation laid out there. It is also recommended to study
the introductory chapters of the work by Corstanje [Cor24], where the technique and preliminaries
are described in an approachable manner. After providing some notational remarks, we will define a
stochastic process and work towards stating Girsanov’s theorem, which enables the measure changes of
stochastic processes.

1.5.1. General Notation
The typical state space we consider is Rd endowed with the Euclidean norm, i.e. ||x|| =

√
x · x. Further-

more, we consider the following notation of the energy norm, defined with a d×d positive definite matrix
A, i.e. ||x||A =

√
x ·A · x⊤. We denote the matrix square root for positive definite matrices by A1/2.

Note that the energy norm and the Euclidean norm can be related through ||x||A = ||A1/2x||. ||A||
denotes the operator norm w.r.t. the Euclidean norm, i.e. ||A|| = supv∈Rd

||Av||
||v|| . For the operator norm

we have the following sub-multiplicative properties ||AB|| ≤ ||A|| ||B|| and ||Av|| ≤ ||A|| ||v||. Further-
more, we often use proportional bounds and therefore, to avoid the notational clutter and ambiguity in
writing constants, we may adopt Big-O notation or ≲ to express the proportional upper bounds instead,
i.e.

∃C > 0 independent of x such that ∀x f(x) ≤ Cg(x) ⇐⇒ f = O(g(x)) ⇐⇒ f(x) ≲ g(x).

1.5.2. Multivariate Calculus
Consider the notation of x = (x1 . . . xd) ∈ Rd. For some function f : Rd → Rd′ and h : Rd → R we use
the following notation

(Gradient) ∇h(x) =
(

∂
∂x1

h(x) . . . ∂
∂xd

h(x)
)
∈ Rd,

(Hessian) ∇2h =


∂2

∂x2
1
h(x) . . . ∂2

∂x1xd
h(x)

... . . . ...
∂2

∂xdx1
h(x) . . . ∂2

∂xdxd
h(x)

 ∈ Rd×d,

(Jacobian) ∇f(x) =

∇f1(x)...
∇fd′(x)

 ∈ Rd′×d,

(Divergence) ∇ · f =
∂

∂x1
f1(x) + · · ·+

∂

∂xd
fd(x) if d = d′,

(Laplacian) ∆h(x) = tr
[
∇2h

]
=

∂2

∂x21
h(x) + · · ·+ ∂2

∂x2d
h(x),

and for time dependent functions f : [0, T ]×Rd → Rd′ , we always take the above operations only w.r.t.
the x arguments, for example,

∇g(t, x) =
(

∂
∂x1

g(t, x) . . . ∂
∂xd

g(t, x)
)
.

We recall the following differentiation rules,

(Divergence product rule) ∇ · (hf) = h∇ · f + f · ∇h,
(Gradient chain rule) ∇(h(f(x))) = ∇f(x)⊤((∇h)(f(x))).
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1.5.3. Itô Processes
A stochastic process is a random variable X : [0, T ]×Ω→ Rd, where Rd denotes the state space. Typi-
cally, the process is denoted by an index of the time, i.e., such that Xt(·) → Rd is a random variable5.
We denote the path measure of a process X = (Xt)

T
t=0 with PX .

Specifically, in our setting, we may consider the triple (Ω,F ,P) where Ω = C([0, T ],Rd) which de-
notes the set of continuous paths in Rd from time 0 to T . Then F = B(C([0, T ],Rd)) is the Borel
σ-algebra associated to the space of continuous paths in Rd. We refer to a filtration as an ordered
collection (Ft)

T
t=0 where Ft is a sub-σ-algebra of F and Ft ⊆ Fs for all s ≤ t ≤ T . We say that a

process X is adapted to the filtration (Ft)
T
t=0 if the random variable Xt is Ft measurable.

We say that P is absolutely continuous w.r.t. Q if for all A ∈ F , we have that P(A) > 0 implies Q(A) > 0.
If the absolute continuity between two measures is symmetric, we speak of equivalent measures, denoted
by P ∼ Q. The following theorem introduces the Radon-Nikodym derivative that formalizes densities
of measures

Theorem 1.1 (Radon-Nikodym theorem). If P and Q are two measures on (Ω,F) such that P is
absolutely continuous w.r.t. Q then there exists a random variable Z such that for any F-measurable
set A,

P(A) =
∫
A

ZdQ.

The function Z satisfying the above equation is uniquely defined up to a Q-null set, and is typically
denoted with Z def

= dP
dQ .

Now, we can define the marginal density of the stochastic process at time t with a Radon-Nikodym
derivative of P with respect to the Lebesgue measure, i.e.

pXt
(x) =

P(Xt ∈ dx)

dx
.

In a similar viewpoint, we write the transition density of the process with

pXs|Xt=x(y) =
P(Xs ∈ dy|Xt = x)

dy
.

We use the following notation to describe marginal distributions PXt(·) = P(Xt ∈ ·).
Let (Bt)t>0 be a Brownian motion on Rd and (Xt)t>0 be a stochastic process on Rd governed by the
following SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 ∼ PX0
, (1.6)

where the drift coefficient is denoted by b : [0, T ] × Rd → Rd and the diffusion coefficient by σ :
[0, T ] × Rd → Rd×d. In this work, we often consider σ to be a scalar function and will also use it to
denote with σ : [0, T ]→ R. In that case

dXt = b(t,Xt)dt+ σ(t)dBt, X0 ∼ PX0
. (1.7)

The differential form of Equation 1.6 is a shorthand notation for

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs. (1.8)

This class of stochastic processes is referred to as Itô processes. A unique strong solution to the above
SDE exists if the coefficients are Lipschitz continuous. Lipschitz continuity is satisfied if

||b(t, x)− b(s, y)||+ |σ(t, x)− σ(s, t)| ≲ ||x− y||+ |s− t|,
for all x, y ∈ Rd and t, s ∈ [0, T ]. Furthermore, the Lipschitz continuity implies a linear growth condition:

||b(t, x)||+ |σ(t)| ≲ (1 + ||x||+ |t|).
5We use X to denote the noising process and Y to denote the denoising process.
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Figure 1.6: Girsanov transformation illustrated for (drifted) Brownian motions. The opacity of the paths
represents the Radon-Nikodym derivative of the paths.

1.5.4. Girsanov's theorem
We use Girsanov’s theorem to derive Radon-Nikodym derivatives for stochastic processes. An example
is given below. In our work, we use the Radon-Nikodym derivatives between the proposal process and
the true conditional process to obtain importance weights that can be used to reweigh the sample paths
of the proposal process so that they match the true measure of the conditional process.

Theorem 1.2 (Girsanov’s Theorem[Øks03]). Suppose that (Xt)t≥0 is a strong solution to the SDE in
Equation 1.6. Let (Bt)

T
t=0 be a P-Brownian motion and let η : [0, T ]×Rd : Rd be such that (η(t,Xt))

T
t=0

is an Ft- adapted process that satisfies Novikov’s condition, i.e.

E

[
exp

(
1

2

∫ T

0

||η(s,Xs)||2ds

)]
<∞,

then the process

Mt =

∫ t

0

η(s,Xs)dBs

is a P-martingale. Moreover, if

E [E(M)T ] = 1 where E(M)T = exp

(∫ t

0

η(s,Xs)dBs −
1

2

∫ t

0

||η(s,Xs)||2ds
)
,

then E(M), also called the stochasit exponential, is also a P-martingale and specifically the process

B′
t = Bt −

∫ t

0

η(s,Xs)ds,

is a Brownian motion under the measure Q, which is defined by the following Radon-Nikodym derivative:

E(M)T =
dQ
dP

∣∣∣∣∣
FT

.

Note: Throughout this work, the context of the Brownian motion and SDEs should clarify under which
measure we consider the Brownian motion, to avoid cluttering the notation.

Example 1.1. Consider the following stochastic differential equations

dXt = θdt+ dBt,

where B is a P-Brownian motion Then Girsanov’s theorem tells us that

dQ
dP

∣∣∣∣∣
Ft

(Y ) = exp

(
−θBt −

1

2
θ2t

)
.

where Q is the measure under which X is a Brownian motion. In Figure 1.6, we have illustrated this
example for various values of θ.
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1.5.5. Infinitesimal generators
Definition 1.2 (Infinitesimal Generator). The family of infinitesimal generators {Lt}Tt=0, parametrized
by a time parameter t, of Markov process X is defined by

Ltf(x) = lim
s→0

E[f(Xt+s)|Xt = x]− f(x)
s

.

The infinitesimal generator depicts the behavior of the stochastic process through the expectation of a
functional of X as it evolves in time, which can be seen from the identity that holds for vanishing s

E[f(Xt+s)|Xt = x] = sLtf(Xt) +O(s).

Definition 1.3 (Domain of infinitesimal generator). The set of functions for which the limit exists is
denoted by DLt(x)

DLt
(x) =

{
f ∈ C0(Rd) : Ltf(x) exists

}
.

Throughout the thesis, we typically assume that the generator is in the domain whenever we apply it
to a function, and it is not stated explicitly.

Proposition 1.1 (Infinitesimal generator of an Itô process). Let (Xt)t≥0 be driven by the SDE given
in Equation 1.6 and let f ∈ DLt , then

Ltf(x) = b(t, x) · ∇f(x) + 1

2
Tr
[
σ(t, x)σ(t, x)⊤∇2f(x)

]
.

Corollary 1.1 (Infinitesimal generator of an Itô process with state-independent scalar diffusion coeffi-
cient.). Let (Xt)t≥0 be driven by the SDE given in Equation 1.7 and let f ∈ DLt

, then

Ltf(x) = b(t, x) · ∇f(x) + 1

2
σ2(t)∆f(x).

If f is a time-dependent function as opposed to just dependent on the state, we use the space-time
generator, which is given by ∂tf +Ltft. Here we say that ft = f(t, ·), in the sense that the operator Lt

acts on the state variable.

The infinitesimal generator can be used to specify the Kolmogorov Backward Equation (KBE) and
Kolmogorov Forward Equation (KFE) in the following.

Theorem 1.3 (Kolmogorov Backward Equation and Kolmogorov Forward Equation). Let pXs|Xt=x(y)
denote the transition density of process X. Then, the Kolmogorov Backward equation is specified as

∂ pXs|Xt=x(y)

∂t
= −b(t, x) · ∇x pXs|Xt=x(y)−

1

2
Tr
[
σ(t, x)σ(t, x)⊤∇2

x pXs|Xt=x(y)
]
= −Lt pXs|Xt=x(y),

(1.9)
where the infinitesimal generator and the gradient operators act on x, and not on y. Let pXt denote the
marginal density of process X. Then, the Kolmogorov Forward equation is specified as

∂ pXt(x)

∂t
= −

d∑
i=1

∂

∂xi
(bi(t, x)pXt

(x)) +
1

2

d∑
i=1

d∑
j=1

[(σ(t, x)σ(t, x)⊤)ijpXt
(x))] = L′

t pXt
(x), (1.10)

where L′
t is the adjoint operator of Lt.



Part I

Essential Concepts and Theoretical
Setting

15



2
Generative Diffusion

In this chapter, we elaborate on the mathematical description of generative diffusion techniques. In
essence, the technique is based on two stochastic processes that can be studied by the stochastic differ-
ential equations (SDE) that drive them. In doing so, we elaborate on the relation between the noising
SDE and the denoising SDE, which we display here together below for convenient comparison

(Noising SDE) dXt = ᾱ(t)Xtdt+ σ̄(t)dB̄t, with X0 ∼ PX0
,

(Denoising SDE) dYt =

[
−α(t)Yt +

1

2
σ2(t)∇ log pXT−t

(Yt)

]
dt+ σ(t)dBt, with Y0 ∼ PY0

,

where B̄ and B denote two different independent Brownian motions. Throughout this chapter, we will
carefully describe the relations among the scalar functions α, σ, ᾱ and σ̄, and how they determine the
behavior of the noising and denoising process, through what is known as the noise schedule. Under
certain ideal settings, it turns out that the marginal distributions of Xt and YT−t are identical for all
t ∈ [0, T ]. This justifies the denoising process for generating samples of the data distribution PX0

.

Even in a less-than-ideal setting, theoretical guarantees can be derived for the statistical performance
of generative diffusion models. For example, in the theoretical work by Chen et al. [Che+23], it is shown
that the total variation between the PYT

and PX0 can be bounded by three sources of errors, i.e.,

TV (PX0 ,PYT
) = O

(
ϵforward +M−1/2 + ϵscore

)
, (2.1)

where ϵforward is an error bound induced by the mismatch between PY0
and PXT

, M is the number of
discretization steps, and ϵscore is an error bound of the learned score function. The intuition is that the
performance of generative diffusion can be improved by choosing appropriate parameters for the noising
SDE, choosing a small discretization step, and obtaining an accurate score function. Satisfying these
score accuracy aspects is difficult. In particular, the design of the neural networks that approximate
the score functions is a deep topic on its own, where their success heavily depends on the structure of
the data distribution. Therefore, studying data distributions for which the marginal distribution PXt

has analytically tractable score functions is worthwhile for developing a theoretical understanding, so
we can study our approaches in isolation from the neural network design choices.

The performance guarantee shows that a trade-off between performance and computational effort
must be made to determine an appropriate number of discretization steps. The computational draw-
backs of choosing a larger number of (Euler-Maruyama) discretization steps are evident, given that
every simulated step of the denoising process requires a neural network evaluation.

In Section 2.1, we describe the noising process and its analytical properties. Specifically, we show
how the noising process may have explicit transition distributions and how noise schedules can be
interpreted. In Section 2.2, we describe the denoising process, which forms the basis of the generative
diffusion technique. This denoising SDE is obtained by performing a time-reversal of the noising SDE.
Finally, Section 2.3 briefly discusses how the denoising process is learned in practice from a dataset by
a procedure called denoising score matching. Furthermore, we provide two example data distributions
with a tractable score function.
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2.1. Noising Process
The noising process, that we denote by X = (Xt)

T
t=0, has the purpose of corrupting a clean data sample

X0 ∼ PX0
to a noisy state XT . Specifically, for some scalar functions ᾱ and σ̄, the process is governed

by the following SDE:

dXt = ᾱ(t)Xtdt+ σ̄(t)dB̄t, with X0 ∼ PX0 , (2.2)

where (B̄t)t>0 is a Rd-valued Brownian motion. For a general choice of ᾱ and σ̄, this process resembles
an Ornstein-Uhlenbeck process, with time-dependent parameters. Specifically, ᾱ : [0, T ] 7→ (−∞, 0]
represents the reversion rate of the process while σ̄ : [0, T ] 7→ (0,∞) represents the scalar diffusion coef-
ficient of the noising process. We emphasize the use of a barred notation of the coefficients ᾱ and σ̄,
as we refer to the related coefficients of the denoising process, that appear significantly more frequently
in our work, with the unbarred version α and σ. The noising process is chosen to resemble a class of
SDEs that at terminal time T have a marginal distribution that roughly matches our choice for PY0

, for
which a typical choice is to use N (0, T · Id×d) or N (0, Id×d).

For the remainder of this work, we assume that the scalar functions are chosen such that for all
t ∈ [0, T ]:

−∞ <

∫ t

0

ᾱ(s)ds <∞ and 0 <

∫ t

0

σ̄2(s)ds <∞.

Under this assumption, the following proposition gives the solution to the noising SDE.

Proposition 2.1 (Noising SDE). Let us consider the noising SDE in Equation 2.2. Then the following
holds:

1. The solution to the noising SDE is given by

Xt =
X0

ϕ̄(t)
+

∫ t

0

ϕ̄(r)

ϕ̄(t)
σ̄(r)dBr, where ϕ̄(t) = exp

(
−
∫ t

0

ᾱ(s)ds

)
. (2.3)

2. the marginal distribution of Xt conditioned on X0 is given by

Xt|X0 = x0 ∼ N
(
x0
ϕ̄(t)

, γ̄(t)Id×d

)
where γ̄(t) =

∫ t

0

(
ϕ̄(r)

ϕ̄(t)
σ̄(r)

)2

dr. (2.4)

Proof. Item 1. Consider the function f(t, x) = ϕ̄(t)x and observe that f ∈ C1,2([0, T ]×Rd). Therefore,
we can apply Itô’s formula [Øks03]:

d
(
ϕ̄(t)Xt

)
=

[
∂ϕ̄(t)

∂t
Xt + ϕ̄(t)ᾱ(t)Xt

]
dt+ ϕ̄(t)σ̄(t)dB̄t.

Now, observe that ϕ̄ solves the following ordinary differential equation

∂ϕ̄

∂t
(t) = −ᾱ(t)ϕ̄(t).

Then, we obtain
d
(
ϕ̄(t)Xt

)
= ϕ̄(t)σ̄(t)dB̄t,

for which the solution can be obtained by integrating both sides:

ϕ̄(t)Xt − ϕ̄(0)X0 =

∫ t

0

ϕ̄(r)σ̄(r)dBr.

Now, dividing both sides with ϕ̄(t) and observing that ϕ̄(0) = 1, gives us the desired result.
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Item 2. Now what remains is to show that the marginal distribution of Xt, conditioned on X0 is a
Gaussian. We can use the fundamental properties of the Itô integral (as given in e.g. [Øks03]). Because
the integrand in the stochastic integral in Equation 2.3 is deterministic, we know that the stochastic
integral is Gaussian distributed. Furthermore, the expectation of the stochastic integral is zero, and
therefore

E [Xt|X0] =
X0

ϕ̄(t)
.

At last, we know by Itô isometry that the covariance matrix is given by

E

[(∫ t

0

ϕ̄(r)σ̄(r)Id×ddBr

)(∫ t

0

ϕ̄(r)σ̄(r)Id×ddBr

)⊤]
= γ̄(t)Id×d

where on the left-hand side we have made explicit the fact that ϕ̄ and σ̄ are scalar functions and the
Brownian motion takes values in Rd. Combining the Gaussianity with the above-derived mean and
covariance gives us the desired result.

A few choices exist for the diffusion coefficient σ̄ and the reversion rate ᾱ, such that the distribution
can be obtained explicitly. First, we consider two simple examples of SDEs that are easy to understand
but rarely used in practice.

Definition 2.1 (Simple Noising SDEs). Two simple noising SDEs are

(Simple SDE-1) dXt = dB̄t,

(Simple SDE-2) dXt = −
1

2
Xtdt+ dB̄t.

Note that the first SDE in the above definition is a Brownian motion, obtained with ᾱ = 0 and
σ̄ = 1, and the second is a simple Ornstein-Uhlenbeck process, obtained with ᾱ = − 1

2 and σ̄ = 1.
An impractical aspect of generative diffusion with these noising SDEs, is that they do not efficiently
attribute the computational effort within the time span [0, T ]. One way to think of this is that when
we are noising the data, if we add the noise linearly, i.e., with a constant diffusion coefficient, the clean
sample would be quickly submerged under the noise, making it difficult to learn an approximation
neural network. Therefore, a common consideration is to use time-varying diffusion and reversion rate
parameters. In the context of generative diffusion, this is known as the noise schedule.

2.1.1. Noise Schedules
The adaptation of parameters σ̄ and ᾱ that tactically distribute the noise levels along a fixed time span
[0, T ] can be related to a time-change operation of the simple processes in Definition 2.1. This means
that if we sample the time-changed noising process X ′ at a uniform grid, it is identical in distribution
to sampling the Simple SDEs with a non-uniform grid. Precisely, we have for some strictly monotone
function β̄ : [0, T ]→ [0, T ] that a new process X ′ can be defined by

X ′
t

d
= Xβ̄(t).

We refer to the time changes as a noise schedule and derive two well-known noising SDEs: the variance-
exploding SDE and the variance-preserving SDE.

Definition 2.2 (Noise schedule). A noise schedule is defined as a continuous, differentiable, and
monotone function β̄ : [0, T ]→ (0,∞).

A typical example of a noise schedule, that we will employ in the experiments in this work, is
β̄(t) = βmin

(
1− t2

T 2

)
+ βmax

t2

T 2 for some 0 < βmin < βmax <∞
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Definition 2.3 (Variance Exploding (VE) SDE). If we set ᾱ(t) = 0 and σ̄(t) =

√
dβ̄(t)
dt , we have the

noising SDE that is known as variance exploding (VE) SDE, i.e.,

dXt =

√
dβ̄(t)

dt
dB̄t.

Definition 2.4 (Variance Preserving (VP) SDE). If we set ᾱ(t) = − 1
2
dβ̄(t)
dt and σ̄(t) =

√
dβ̄(t)
dt , we

have the noising SDE that is known as variance preserving (VP) SDE, i.e.,

dXt = −
1

2

dβ̄(t)

dt
Xtdt+

√
dβ̄(t)

dt
dB̄t.

In the following two Lemmas we describe how a time change of the simple SDEs leads to the VE
and VP SDE.

Proposition 2.2 (Time-changes for VE-SDE and VP-SDE). Let X1
t and X2

t be the solution to the
Simple SDE-1 and Simple SDE-2, respectively. Let us consider all of the below-described processes to
have a fixed initial position X0 = x0. Let β̄ : [0, T ]→ (0,∞) be a noise schedule. Then:

1. The solution to the variance exploding SDE, denoted by XVE, satisfies XVE
t

d
= X1

β̄(t)
.

2. The solution to the variance preserving SDE, denoted by XVP, satisfies XVP
t

d
= X2

β̄(t)
.

Proof. Item 1. We have that

X1
β̄(t) = X1

0 +

∫ β̄(t)

0

dBs and XVE = XVE
0 +

∫ t

0

√
dβ̄(s)

ds
dBs.

We can use the same line of reasoning as in the proof of Item 2 of Proposition 2.1. Specifically, we use
the properties of the Itô integral to obtain the Gaussianity and the associated mean and covariance. The
mean here is X0 and the covariance is β̄(t)Id×d, again making use of Itô isometry. Then, we can find
the same mean and covariance for X1

t . Therefore, the processes have the same marginal distributions
conditional on X0 = x0.

Item 2. We have, using similar techniques as in the proof of 2.1, that

X2
β̄(t) =

X2
0

exp
(
− 1

2 β̄(t)
) + ∫ β̄(t)

0

exp
(
− 1

2s
)

exp
(
− 1

2 β̄(t)
)dBs and XVE =

XVE
0

ϕ̄(β̄(t))
+

∫ t

0

ϕ̄(s)

ϕ̄(β̄(t))

√
dβ̄(s)

ds
dBs,

where

ϕ̄(t) = exp

(
−1

2

∫ t

0

dβ̄(s)

ds
ds

)
= exp

(
−1

2
β̄(t)

)
.

Furthermore, if we now consider u = β̄(s)⇒ du = dβ̄(s)
ds ds, then

E

∣∣∣∣∣
∣∣∣∣∣
∫ t

0

ϕ̄(s)

√
dβ̄(s)

ds
dBs

∣∣∣∣∣
∣∣∣∣∣
2
 Itô Iso.

=

∫ t

0

ϕ̄(s)2
dβ̄(s)

ds
ds

=

∫ β̄(t)

0

exp(−u)du Itô Iso.
= E

∣∣∣∣∣
∣∣∣∣∣
∫ β̄(t)

0

exp

(
−1

2
s

)
dBs

∣∣∣∣∣
∣∣∣∣∣
2
 .

Therefore, the variance of XVP
t |XVP

0 = X0 matches the variance of X2
β̄(t)
|X2

0 = X0, and both processes
also share the same mean. Hence, we conclude with similar reasoning as in Item 1.

Finally, these examples SDEs all lead to an explicit distribution of Xt conditioned on X0. We show
this in the following proposition by deriving the expression for γ̄, which remains the only unknown in
Equation 2.4.
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Proposition 2.3. Let X = (Xt)t≥0 be a process that is driven by a noising SDE of the form Equation 2.2
and let γ̄ be defined as in Equation 2.4, then:

1. If the driving SDE is a simple SDE-1 (Definition 2.1), we have that

γ̄(t) = t.

2. If the driving SDE is a simple SDE-2 (Definition 2.1), we have that

γ̄(t) =
1

2

(
1− e−t

)
.

3. If the driving SDE is a variance exploding SDE (Definition 2.3), we have

γ̄(t) = β̄(t).

4. If the driving SDE is a variance-preserving SDE (Definition 2.4), we have

γ̄(t) =
1

2

(
1− e−β̄(t)

)
.

Proof. Items 1 and 3 follow directly from the properties of the Itô Integral. Items 2 and 4 can be derived
by first noting that the processes are Ornstein-Uhlenbeck processes and are therefore solved by a form
that resembles Equation 2.3. Then, the result also follows from the properties of the Itô Integral.

2.2. Denoising Process
The fundamental theorem underlying generative diffusion models is a time-reversal theorem that An-
derson introduced in 1982 [And82]. For generative diffusion, the purpose is to find a denoising process,
denoted by Y , that specifies the reverse-time dynamics of the noising process X. Specifically, what
we mean by this is that YT−t

d
= Xt for all 0 ≤ t ≤ T , which says that the marginal distributions are

identical for all t. This is in contrast to the stricter statement that the joint distribution of the processes
is equal, i.e. {Xt}Tt=0

d
= {YT−t}Tt=0. The strength of the latter definition is not necessary for generative

diffusion models, as we are ultimately interested in modeling the marginal distribution of process Y at
time T .

In writing the denoising process, two possible formulations are possible. First, if we consider the
noising SDE from Equation 2.2, then it turns out that the corresponding reverse-time SDE can be
written as

d
←−
X t =

[
ᾱ(t)
←−
X t − σ̄2(t)∇ log pXt(

←−
X t)

]
dt+ σ̄(t)d

←−
B t,

←−
XT ∼ PXT

. (2.5)

This specifies a process where time runs from T to 0 as opposed to from 0 to T . Furthermore, ←−B
is a reverse-time Brownian motion. However, a second possibility, which we will adopt, is based on
constructing a different process Y that has the same distribution, but has the standard interpretation
of time running from 0 to T . Because, for the remainder of the work, we rarely consider the process X,
this formulation is favourable as it promotes clarity. The SDE that drives the process Y is written as

dYt = −
[
ᾱ(T − t)Yt − σ̄2(T − t)∇ log pXT−t

(Yt)
]
dt+ σ̄(T − t)dBt, Y0 ∼ PXT

(2.6)

for which it can be shown to that Xt
d
=
←−
XT−t = YT−t. This is because the Brownian increments

are symmetrically distributed, the dt term is negated, and occurrences of t are replaced with T − t.
The following theorem summarizes the above and gives the form of the denoising SDE that we use
throughout this work.
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Theorem 2.1 (Denoising Process (based on Anderson’s time reversal theorem [And82])). Consider X
to be the noising process driven by the SDE of Equation 2.2, and consider the associated denoising SDE
that is given by

dYt =
[
−α(t)Yt + σ2(t)∇ log pXT−t

(Yt)
]
dt+ σ(t)dBt, Y0 ∼ PXT

(2.7)

where pXt
specifies the marginal density of (Xt)t≥0 and

α(t) = ᾱ(T − t), and σ(t) = σ̄(T − t). (2.8)

(Equation 2.7 is obtained by using these new defined coefficients from Equation 2.8.) Furthermore,
assume that a unique strong solution Y = (Yt)

T
t=0 to the denoising SDE exists. Then

YT−t
d
= Xt for all 0 ≤ t ≤ T,

Proof. In the proof below, we derive the form of the reverse SDE. For a more formal derivation, the
reader is directed to [And82]. The proof is based on a connection between the SDE for the noising
process X and the Kolmogorov backward equation for the transition density pXs|Xt=x(y) with s > t.
Using this correspondence, we search for a similar equation for the transition pXs|Xt=x(y) with t > s
such that upon reversing time, this corresponds to the Kolmogorov backward equation (KBE) of the
reverse-time denoising process. Let b denote the drift of the process X. The Kolmogorov backward
equation for s > t is given by

−∂t pXs|Xt=x(y)
KBE
= −b(t, x)∇xpXs|Xt=x(y)−

1

2
σ2(t)∆xpXs|Xt=x(y),

where we use that the diffusion coefficient is scalar and state-independent, and the gradient operators
act on x and not on y. The Kolmogorov forward equation (KFE) is given by

−∂tpXt
(x)

KFE
= ∇ · (b(t, x)pXt

(x))− 1

2
σ2(t)∆pXt

(x),

where we can also uses that the diffusion coefficient is scalar and state-independent. We are now working
towards time derivative of the joint density of Xt and Xs, that we denote with pXs,Xt

(y, x). Note that
this can be written as

pXs|Xt=x(y) =
pXs,Xt(y, x)

pXt
(x)

. (2.9)

Then the partial derivative with respect to t is obtained as follows with a chain rule:

∂tpXs,Xt
(y, x)

Eq. 2.9
= ∂t(pXs|Xt=x(y)pXt

(x))
Prod. Rule

= pXt
(x)∂tpXs|Xt=x(y)︸ ︷︷ ︸

(I)

+ pXs|Xt=x(y)∂tpXt
(x)︸ ︷︷ ︸

(II)

.

By Lemma 2.1, we can write the above in a form that describes the Kolmogorov forward equation in
reverse time. The SDE in Equation 2.7 can be shown to be uniquely associated with Equation 2.10.

Lemma 2.1. Let X be a noising process that is driven by the following SDE

dXt = b(t,Xt) + σ(t)dBt.

Let pXs,Xt denote joint density of Xt and Xs, then

−∂tpXs,Xt
= ∇ · ((b− σ2∇ log pXt

)pXt,Xs
) +

1

2
σ2∆pXt,Xs

, (2.10)

where we have abbreviated the arguments of the functions.

Proof. The proof is found in Section A.1.
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2.2.1. Examples of Denoising Processes
Again, we consider the four variants of Section 2.1. The following proposition describes the denoising
processes associated with the respective noising process.
Proposition 2.4. Let X = (Xt)t≥0 be a process that is a driven by a noising SDE of the form in
Equation 2.2, then:

1. If the driving SDE is a simple SDE-1 (Definition 2.1), we have that

dYt =
1

2
∇ log pXT−t

(Yt)dt+ dBt.

2. If the driving SDE is a simple SDE-2 (Definition 2.1), we have that

dYt =

[
1

2
Yt +∇ log pXT−t

(Yt)

]
dt+ dBt.

3. If the driving SDE is a variance exploding SDE (Definition 2.3), we have

dYt =

[
dβ(t)

dt
∇ log pXT−t

(Yt)

]
dt+

√
dβ(t)

dt
dBt.

4. If the driving SDE is a variance preserving SDE (Definition 2.4), we have

dYt =

[
1

2

√
dβ(t)

dt
Yt +

dβ(t)

dt
∇ log pXT−t

(Yt)

]
dt+

√
dβ(t)

dt
dBt.

Proof. The proof follows directly by computing the coefficients of the denoising SDE in Equation 2.7
given the coefficients of the noising SDE in Equation 2.2.

2.3. Score Matching
The score function ∇ log pXT−t

that we use to describe the reverse process in Equation 2.7, is not known
in practice. We must construct an approximate function s, e.g., by a neural network, and minimize
the discrepancy between s and ∇ log pXt . Ideally, we would do this by minimizing the L2 error. This
procedure is called Explicit Score Matching (ESM). Specifically, we want to find a suitable function s,
such that for all t ∈ [0, T ], the following objective is small:

JESM (s) =
1

T

∫ T

0

E
[
||s(t,Xt)−∇ log pXt(Xt)||2

]
dt. (2.11)

Because we do not know ∇ log pXt
, it is impossible to compute the objective directly. Therefore, score

matching is done by using a trick introduced by Pascal Vincent in 2011 [Vin11] called Denoising Score
Matching (DSM). Utilizing the analytical properties of the noising process, we can separate the score
matching objective in terms of an expectation over the distribution of X0 ∼ Pdata and the conditional
distribution of Xt|X0 ∼ P(Xt ∈ ·|X0 = x0), which poses a useful form that can be used for practical
optimization:

JDSM (s) =
1

T

∫ T

0

E
[
E
[
||s(t,Xt)−∇ log pXt(Xt|X0)||2|X0

]]
dt. (2.12)

The inner expectation is taken over Xt|X0 and the outer expectation is taken over X0. The minimizer
of this objective minimizes the objective in Equation 2.11 under certain mild assumptions [Vin11] and
can be practically used by replacing the expectations with Monte Carlo estimates of X0 by drawing
from the data set, and Xt|X0, by simulating the noising processes.

The exact matching of scores can rarely be achieved. This results in what is referred to as the score
approximation error, i.e., the term in Equation 2.1. Obtaining an accurate score approximation is often
done using neural networks optimized with JDSM . However, to isolate this research on the conditioning
of generative diffusion from specific choices in neural network architectures, we rely on analytical score
functions. This can be precisely done by limiting our work to the following two examples. Our approach
can be applied directly to generative diffusion models and non-exact score approximations in a practical
setting. Still, the statistical performance can only be as good as the trained neural networks allow.
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2.3.1. Examples
In certain special cases of the data distribution PX0

, the distribution of Xt is known, such as those in
Example 2.1 and Example 2.2.

Example 2.1 (∇ log pXT−t
for Gaussian data). If X0 ∼ N (µ0,Σ0), and (Xt)t≥0 is driven by the SDE

defined in Equation 2.2, then

Xt ∼ N (µt,Σt),

where

µt =
1

ϕ̄(t)
µ0 and Σt =

1

ϕ̄(t)
Σ0 + γ̄(t)Id×d.

The associated reverse process is determined by

∇ log pXT−t
(x) = −Σ−1

T−t(x− µT−t). (2.13)

To see why this is the case, we know that the solution to the forward process is given by Equation 2.3.
From this, it follows that Xt|X0 = x0 ∼ N

(
x0

ϕ̄(t)
, γ̄(t)Id×d

)
. But then using the distribution of X0, we

find that

Xt ∼ N
(
µ0

ϕ̄(t)
,

1

ϕ̄(t)
Σ0 + γ̄(t)Id×d

)
.

The next example we consider is that of a Gaussian mixture model.

Example 2.2 (∇ log pXT−t
for Gaussian mixture data). If X0 ∼

∑K
k=1 wkN (µ

(k)
0 ,Σ

(k)
0 ) with (w1, . . . wk) ⊂

[0, 1]k such that
∑K

k=1 wk = 1, and the mean vector is µ(k)
0 and covariance matrix is Σ

(k)
0 , then

Xt ∼
K∑

k=1

wkN (µ
(k)
t ,Σ

(k)
t ), and pXt

(x) =

K∑
k=1

wkp
(k)
Xt

(x), where p(k)Xt
(x)

def
= N

(
x;µ

(k)
t ,Σ

(k)
t

)
.

where

µ
(k)
t =

1

ϕ̄(t)
µ
(k)
0 and Σ

(k)
t =

1

ϕ̄(t)
Σ

(k)
0 + γ̄(t)Id×d.

Then the associated reverse process is determined by the following term ∇ log pXT−t
(x) =

∇pXT−t
(x)

pXT−t
(x) ,

where we use the log derivative trick. Now, note that by the chain rule

∇p(k)XT−t
(x) = p

(k)
XT−t

(x)∇ log p
(k)
XT−t

(x).

From this, we find the following expression

∇ log pXT−t
(x) =

K∑
k=1

wkp
(k)
XT−t

(x)

pXT−t
(x)

∇ log p
(k)
XT−t

(x)︸ ︷︷ ︸
See Equation 2.13

. (2.14)

This essentially says that the function amounts to a weighted contribution of all the K Gaussian

distributions, where the contributions are determined by the factor
wkp

(k)
XT−t

(x)

pXT−t
(x) . Here wk represents the

prior probability of being drawn from the kth Gaussian, q(k)Tt
(x) is the probability of being drawn from

the kth Gaussian given x, while pXT−t
(x) is the probability of x.



3
Controlled Generative Diffusion

In this chapter, we discuss the control of conditioned paths of diffusion models to satisfy certain condi-
tions at time T with the purpose of generating from conditional data distributions. A naive approach
is to simulate paths of the denoising process and accept or reject paths based on whether their value at
time T actually satisfies our specified condition. However, as the conditions become rarer, which intrin-
sically happens as the state space is of high dimensionality, the probability of obtaining a satisfactory
sample vanishes.

Therefore, a form of guidance is required to steer the paths towards satisfying the condition at time
T . Typically, these approaches are inconsistent in the sense that the sampled paths do not resemble
paths from the true conditioned denoising process. We underline this discrepancy by studying the
derivation of an exact conditioned denoising process, as if we were to have access to the exact score
function of the noising process with an initial distribution that does satisfy the condition. Specifically,
this can be done by replacing the unconditional score function ∇ log pXT−t

in the standard denoising
SDE with a score function that is associated to the conditioned noising process, which we denote by

dY ∗
t =

[
α(t)Y ∗

t + σ2(t)∇ log pXT−t|LX0=v(Y
∗
t )
]
dt+ σ(t)dBt, with Y ∗

0 ∼ PXT
. (3.1)

Simply simulating this SDE is not possible due to the difficultly in approximating the conditional score
function

∇ log pXT−t|LX0=v(x),

without additional training with data sets that are specifically oriented around the condition. Further-
more, it turns out that we can relate the above SDE to an SDE that is obtained with Doob’s h-transform
(see e.g. [PR02]), i.e.,

dY ∗
t =

︸ ︷︷ ︸
b(t,Y ∗

t )

α(t)Y ∗
t +

σ2(t)∇ log pXT−t|LX0=v(Y
∗
t )︷ ︸︸ ︷

σ2(t)∇ log pXT−t
(Y ∗

t ) + σ2(t)∇ log h(t, Y ∗
t )

 dt+ σ(t)dBt, with Y ∗
0 ∼ PXT

. (3.2)

where h(t, x) is the density of P(LYT ∈ ·|Yt = x) evaluated at v, for some suitable m× d matrix L and
v ∈ Rd. Furthermore, b denotes the unconditional drift, and the decomposition of the conditional score
function will be elaborated on in the remainder of this chapter. The function h is based on the generally
intractable density of LYT given Yt. To circumvent the intractability, one often uses approximation
techniques. Typically, the approximate guidance is attached as a heuristic term to the drift coefficient
of the unconditional denoising process Y that steers the diffusion towards states that do satisfy the
condition at time T .

In Section 3.1, we discuss a primary perspective on controlled data generation that is more ac-
quainted in the context of generative diffusion, which is based on extracting the conditional score given
an unconditional one. In Section 3.2, we describe a formal procedure of conditioning diffusions in a more
traditional sense using Doob’s h-transform. In Section 3.3 we describe two known methods to approx-
imate the conditioned generative diffusion within our mathematical framework: replacement guidance
[Lug+22] and reconstruction guidance [SE20].
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3.1. Conditional Score Function
The conditional score function describes the underlying relation that is used for practically all training-
based and training-free controlled generative diffusion techniques. For the training-based methods, this
expression is used during training-time to learn the conditional score. For training-free methods, the
expression is used to obtain a heuristic approximation of the conditional score given the pre-trained
unconditional score.

We consider a data distribution of X0 conditioned on LX0 = v for some set v ∈ Rm and full rank
matrix L ∈ Rm×d with m < d. Note that for some V ⊆ Rd, we have that the by adopting the notation
of the density

P(LX0 ∈ V ) =

∫
V

(∫
Lx=v

pX0(x)dx

)
dv.

Because L is full rank, we may consider writing any x ∈ Rd as x = U1ξ1 + U2ξ2. where U1 is a d ×m
matrix where the m columns form an orthonormal basis of the column span of L and the d−m columns
of U2 form an orthonormal basis of the null space of L. Let us consider the set {x ∈ Rd : Lx = v}, then
specifically it holds that for all x that LU1ξ1 = v and LU2ξ2 = 0. Therefore the density of P(LX0 ∈ ·)
evaluates to

pLX0(v) =

∫
Lx=v

pX0(x)dx =

∫
Rd−m

pX0(U1ξ1 + U2ξ2)dξ2.

Then, using the above notation, we may also write the function h, evaluated at v as

h(t, x) =

∫
Rd−m

pYT |Yt=x (Uξ1 + Uξ2) dξ2, (3.3)

which is the density of the measure P(LYT ∈ ·|Yt = x).

We will consider the unconditional score that we denote by ∇ log pXT−t|LX0=v, and we arrive at a
conditioned denoising process by replacing ∇ log pXT−t

in Equation 2.7. It turns out that the process
obtained with the conditional score function resembles Doob’s h-transform under certain circumstances.
The following proposition shows that if we use the interpretation of the conditional score function
∇ log pXT−t|LX0=v, we obtain an identical conditioned denoising SDE as specified in Equation 3.2. The
proposition is based on the assumption that Y0 is exactly sampled from the distribution of the forward
process at time t. The fundamental difference in the derivations is that the starting point of the con-
ditional score derivation is by considering the distribution of X0, which then relies on the exactness of
the noising and denoising processes. In contrast, the derivation with Doob’s h-transform is solely based
on process Y , and requires no further assumptions about the exactness of the system.

Proposition 3.1. Assume that Y is a solution to the denoising SDE of Equation 2.7. Assume that the
initial distribution of Y is exactly that of XT , i.e., Y0 ∼ PXT

. Consider that we condition on LX0 = v,
or equivalently LYT = v. Then, the conditional score function is

∇ log pXT−t|LX0=v(x) = ∇ log pXT−t
(x) +∇ log h(t, x),

where h is defined as Equation 3.3

Proof. For some t ∈ [0, T ], we have by Bayes’ theorem that the score function of the marginal of the
process conditional on LX0 = v can be written as

∇ log pXT−t|LX0=v(x) = ∇ log
pXT−t,LX0

(x, v)

pLX0
(v)

= ∇ log pXT−t
(x) +∇ logP(LX0 ∈ V |XT−t = x),

where we have used that ∇ log pLX0(v) = 0 as the gradient is taken w.r.t x and we have adapted the
notation of pXT−t,LX0

(x, v) to denote a joint density of XT−t and LX0. Then if Y0 ∼ PXT
, we have

that YT ∼ PX0
by Theorem 2.1, so we have our result
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3.2. Doob's h-transform
Now, we connect the result of the previous section to a more general viewpoint. Specifically, Doob’s
h-transform is a technique that allows continuous-time Markov processes to be conditioned [PR02].
Consider the measure of the path Y given that YT satisfies some condition, i.e.

P(Y ∈ ·|LYT = v).

Doob’s h transform is a change of measure operation based on the function h. Specifically, we consider
the following (random) function:

Eh(t) =
h(t, Yt)

h(0, Y0)
.

In particular, for our specific choice of h, the process Eh(t) is a martingale and induces a likelihood
ratio process with which we can define a new probability measure P∗ by

dP∗|Ft
= Eh(t)dP|Ft

.

Furthermore, the process Y has under the law Ph as infinitesimal generator Lh
t that satisfies the following

relation with Lt:

(∂t + L∗
t )f =

1

h
(∂t + Lt)fh.

Because in our work, we only use a single form of h, we call P∗ def
= Ph and L∗

t
def
= Lh

t . In the remainder
of the section, we will discuss a few aspects of the technique that we described above. First, we will
address under which circumstances the function Eh(t) induces a change of measure and that it gives us
the transformed SDE of Equation 3.4. Then, we will address that the changed measure is actually the
conditioned measure, that we have defined as P∗(·) def

= P(·|LYT = v).

Before doing so, we show that Eh is indeed a martingale by studying the stochastic process (h(t, Yt))t≥0.

Proposition 3.2. Let h be as in Equation 3.3 and assume that it lies in the domain of the infinitesimal
generator. Let Y be the solution to the denoising SDE given in Equation 2.7, then the stochastic process
(h(t, Yt))t≥0 is a Martingale w.r.t. Ft.

Proof. First note that h(t, Yt) is measurable w.r.t. Ft because Yt is measurable w.r.t. Ft and h is a
continuous function, because we assume it lies in the domain of the infinitesimal generator. We show
that h(t, Yt) is a martingale with respect to the natural filtration {Ft}t≥0. Now, we pick any time s
such that T > s > t, then the property follows from

E [h(s, Ys)|Ft] =

∫
Rd

pYs|Yt
(y)

(∫
Rd−m

pYT |Ys=y (Uξ1 + Uξ2) dξ2

)
︸ ︷︷ ︸

h(s,y)

dy

=

∫
Rd−m

pYT |Yt
(Uξ1 + Uξ2) dξ2

= h(t, Yt),

where the second equality is due to Chapman-Kolmogorov.

From this result, a particularly useful property of h in relation to the infinitesimal generator follows.

Proposition 3.3 (Space-time harmonic h). Let Lt denote the infinitesimal generator of process Y and
assume that h in the domain of the infinitesimal generator, which it is if it is twice differentiable w.r.t
x and once differentiable with respect to t, then

∂th+ Lth = 0.

We refer to this property as h being space-time harmonic w.r.t. Lt.
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Proof. Because (h(t, Yt))
T
t=0 is a martingale (Lemma 3.2), we know that the SDE that drives the process

(h(t, Yt))t≥0 has zero drift. Furthermore, by Itô’s formula we have that the zero drift implies that

∂

∂t
h(t, x) + Lth(t, x) = 0.

Therefore, we recognize the definition of space-time harmonic property of h.

The above integral definition of h in Equation 3.3 is quite cumbersome and prevents us from com-
puting anything meaningful, such as ∇ log h. Fortunately, for a particular class of processes, i.e., those
with Gaussian transition densities, the transform reduces to a simple explicit form, which we show in
the following Lemma.

Lemma 3.1 (Gaussian transition density). Assume that we can write the transition density of process
Y as

pYT |Yt=x(y) = N (y;µT (t, x),ΣT (t)) ,

for some vector valued function µT : [0, T ] × Rd → Rd and positive definite matrix-valued function
ΣT : [0, T ] → Rd×d. Then if L is a m × d matrix such that LΣT (t)L

⊤ is invertible, the h function of
Equation 3.3 is given by

h(t, x) = N (v;LµT (t, x), LΣT (t)L
⊤).

Proof. To simplify our notation, we use the following notation µ := µT (t, x) and Σ := ΣT (t). If
Y ∼ N (µ,Σ), then Y can be written as Y = µ+Σ1/2Z where Z ∼ N (0, I) and Σ1/2 denotes the matrix
square root that is defined for positive definite matrices. Then, we have that LY = Lµ + LΣ1/2Z.
Therefore, if LΣL⊤ is invertible, we have that LY ∼ N (Lµ,LΣL⊤).

Now, we consider the following proposition, which describes the transformed SDE using a Girsanov
transformation and establishes the relation to Eh.

Theorem 3.1 (SDE under Doob’s h-transform). Assume that h is a space-time harmonic function with
respect to L. The transformed SDE that is induced by the change-of-measure Eh(t), is given by

dY ∗
t = [b(t, Y ∗

t ) + σ2(t)∇ log h(t, Y ∗
t )]︸ ︷︷ ︸

b∗(t,Y ∗
t )

dt+ σ(s)dB′
t, (3.4)

where B′ is a Brownian motion under P∗.

Proof. Our proof is based on an application of Girsanov’s theorem. We know that h(t, Yt) is a martingale
by Lemma 3.2. Specifically, we know that it is a solution to the following SDE

d(h(t, Yt)) = σ(t)∇h(t, Yt) · dBt,

where we use Itô’s formula and the fact that h is space-time harmonic w.r.t. Lt, which makes the drift
evaluate to zero. Now, consider that

dEh(t) =
1

h(0, Y0)
σ(t)∇h(t, Yt) · dBt = Eh(t)σ(t)∇ log h(t, Yt) · dBt,

where we use the identity h(t, Yt)∇ log h(t, Yt) = ∇h(t, Yt) in the last equality. By considering that the
stochastic exponential (Doléans-Dade exponential) solves the SDE, we obtain that

Eh(t) = exp

(∫ t

0

σ(s)∇ log h(s, Ys) · dBs −
1

2

∫ t

0

||σ(s)∇ log h(s, Ys)||22ds
)
.

Now, we note that by Girsanov’s theorem, we have that under the measure P∗ a new Brownian motion
B′

t is defined by

dB′
t = dBt − σ(t)∇ log h(t, Yt)dt.

Substituting dBt with the above identity into the denoising SDE Equation 2.7, gives us
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dYt = b(t, Yt)dt+ σ(t)dB′
t + σ2(t)∇ log h(t, Yt)dt.

This SDE specifies an Itô process under measure P∗ where (B′
t)t≥0 is a Brownian motion and thus gives

us the transformed SDE in Equation 3.4 that specifies the transformed Itô process, denoted by Y ∗.

The infinitesimal generators of the process Y under the two different measures are associated in the
following way. By the unique characterization of the generator, the following proposition completes the
goal of this section.
Proposition 3.4. Let us define the following infinitesimal generator L∗

t such that it satisfies

(∂t + L∗
t )f(t, x) = lim

s↓t

E [f(s, Ys)|Yt = x, LYT = v]− f(t, Yt)
s− t

.

Here, the expectation in Definition 1.2 is replaced with a conditional expectation. Then the following
holds:

1. (∂t + L∗
t )f = 1

h (∂t + Lt)fh

2. L∗
t is the infinitesimal generator of the conditioned SDE given in Equation 3.4.

Proof. The proof is found in Section A.2. The outline of the proof is as follows. Item 1 can be shown
by rewriting the conditional expectation, such that it resembles the desired form. Then, item 2 follows
simply by writing out the infinitesimal generators.

3.2.1. Examples
The examples we discuss below explicitly define conditioned stochastic processes. These examples are
rather specific cases. In particular, the h-transform can rarely be written explicitly because of the
unknown transition densities.
Example 3.1 (One-Dimensional Brownian Bridge). Let Bt be a d-dimensional standard Brownian
motion process and assume that we condition Bt = v. Then, h(t, x) is written as

h(t, x) = N (v;x, T − t) ∝ exp

(
−||v − x||

2

2(T − t)

)
,

where we make use of the Gaussian increments of standard Brownian motion. Therefore, the conditioned
process is driven by the following SDE

dB∗
t =

v −B∗
t

T − t
dt+ dBt.

This is seen by applying Theorem 3.1 and using the fact that

∇ log h(t, x) =
(v − x)
T − t

,

in combination with σ2(t) = 1.
Example 3.2 (Multi-Dimensional Brownian Motion with Linear Condition). Let Bt be a d-dimensional
standard Brownian motion process and assume we condition on LBT = v for some m× d matrix L for
which LL⊤ is invertible. Then, h(t, x) can written as

h(t, x) = N (v;Lx,LL⊤(T − t)).
Then this gives us

dB∗
t = L⊤(LL⊤)−1 v − LB∗

t

T − t
dt+ dBt.

This is seen by applying Theorem 3.1 and using the fact that

∇ log h(t, x) = L⊤(LL⊤)−1 (v − Lx)
T − t

,

again in combination with σ2(t) = 1.
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Remark 3.1 (Sampling Brownian bridges). The Brownian bridges in Figure 3.1 are sampled with a
shrinking discretization. This means that as t → T , the time steps become smaller. Specifically, we
use tj = (j/M)

1
2.5 for M = 1000. This shrinking discretization is required to ensure that the bridges

are sufficiently close to satisfying the condition, which is not guaranteed as we cannot sample exactly
at time T . This problem does not affect our methods with generative diffusion, specifically the variance
preserving with quadratic noise schedule (Definition 2.4), as this is designed to have a vanishing diffusion
coefficient for t approaching T . This vanishing discretization is already incorporated in the SDE, which
can be seen as a time change operation of a constant diffusion. We will therefore be able to use a
uniform discretization of [0, T ] without too many issues for the remainder of this work. Moreover, this
observation underlines the motivation of the time-changed SDE’s such as the variance preserving SDE
as opposed to the non-time changed SDE for controlling generative diffusion models.

0.0 0.5 1.0
t

−2

0

(B
∗ t
) 1

−2 0 2

(B ∗
t )2

−2 0 2

(B ∗
t )2

Figure 3.1: Illustration of Brownian Bridges. In the left panel we see one-dimensional Brownian bridges
conditioned to hit 0 at T = 1. In the right most panel, we see two-dimensional Brownian bridges conditioned to hit (0, 0)
at time T = 1. In the middle panel, we see two-dimensional Brownian motions conditioned to hit the set {(x, 0) : x ∈ R}.
The triangle indicates the starting positions of the particles at time T = 0 and the circles indicate the final positions at
time T = 1

3.3. Heuristic Approximations
Approximating the function h typically causes great difficulties. Therefore, the following forms of ap-
proximation are common, which we will refer to with ĝ. This approximation often induces a severe bias
that does not vanish with infinite computational effort. Therefore, the need for a more sophisticated
approach is evident, which is the topic for the remainder of this work. Before we turn our attention
there, we briefly describe a few approximations for ĝ in the formulation of our setting.

The overarching principle is that we use as a guidance term, the gradient of the error of the satisfaction
of the condition. Specifically, we use −γscale(t)||Lx̂− v̂||2 for some proxy values, x̂ that is a proxy for YT ,
and v̂ that is a proxy for v. The scaling is chosen in such a way that, closer to the terminal time T , the
error explodes and therefore the paths are drawn toward satisfying the condition at time T . Typically,
the guidance scales are heuristically determined with respect to the chosen noising SDE.

3.3.1. Replacement Guidance
One way of approximating h is to consider a proxy for v, that we denote by v̂ : [0, T ] → Rm, that is
based on the transformed process (Vt)t≥0, e.g. in our case Vt = LXt. Furthermore, we use the proxy
x̂ = x. Then, our approximation approach is to consider the following expression for the function ĝ

log ĝ(t, x) = −γscale(t)||Lx− v̂(t)||2

where v̂ = E [VT−t|V0 = v] and γscale(t) denotes a scaling factor that is determined heuristically, often
inspired by the noise level induced by the forward noising process at time t. Because we know the
dynamics of the noising process and the initial position of V , i.e., V0 = v, we can compute the expectation
of VT−t relatively easily above exactly.
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Figure 3.2: Illustration of replacement (left) and reconstruction guidance (right). The blue gradients
illustrate a bimodal distribution. The orange curves depict the condition subspace. The arrow denotes the unconditional
drift at (t, Y ◦

t ) and the dotted line indicates the guidance direction. The stochastic component of the system is ignored
for simplicity. Left: In the illustration of replacement guidance, the orange gradient around the orange curve depicts the
distribution of the transformed process at time t < T , i.e., the distribution of VT−t. The solid orange curve depicts
E [VT−t|V0 = v]. Right: In the illustration of the reconstruction guidance, the black dot at the end of the arrow
indicates the target prediction of the process at time T . The grey gradient indicates the uncertainty of this target
prediction.

3.3.2. Reconstruction Guidance
Another type of approximation is based on a reconstruction of the clean sample given a noisy state.
Specifically, reconstruction guidance is based on using Tweedie’s formula [Efr11] to obtain a proxy x̂,
that we denote by x̂ : [0, T ] × Rd → Rd. Then, the guidance term is determined by the following
approximation:

log ĝ(t, x) = −γscale(t)||Lx̂(t, x)− v||2,

where the proxy is given by

x̂(t, x) = ϕ̄(T − t)

(
x+

1√
γ̄(T − t)

∇ log pXT−t
, (x)

)
.

where the parameters ϕ̄ and γ̄ are described by the noising SDE as in Proposition 2.1. The justification
of Tweedie’s formula as a proxy for x is obtained from the fact that

∇ log pX(t,Xt; 0, X0) = −
1√
γ̄(t)

(
X0

ϕ̄(t)
−Xt

)
,

where the proxy is based upon the heuristic exchange of the transition density pX with a marginal
density pXt .

It is important to note that ∇ log ĥ should also take into account the gradient w.r.t. x̂(t, x). For
this reason, the gradient has the following form:

∇ log ĝ(t, x) = −(L∇x̂(t, x))⊤γscale(t)(Lx̂(t, x)− v),

which is due to an application if the chain rule. Such a propagation of the gradient is not required in
replacement guidance where the proxy v̂ does not depend on x.
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4
Pathwise Importance Sampling

In this chapter, we describe an approach to importance sampling on the space of continuous paths, ul-
timately intending to correct a bias caused by inconsistent training-free controlled generative diffusion
methods and ensure asymptotic consistency. In short, sample paths of a proposal process are sampled,
and importance weights are assigned to the paths. The weights are then used to resample with the
promise of resembling paths from the true conditioned process.

Importance sampling is typically used to obtain more efficient sampling procedures for computing
expectations of rare events. Our application is to generate samples that satisfy a (possibly rare) condi-
tion using a different proposal measure. We use a specific class of guided proposals that are guaranteed
to satisfy the conditions and have simple-to-derive expressions for the importance weights. These im-
portant weights enable the reweighing of proposal paths to make them resemble a set of paths as if they
were sampled from the target measure.

The behavior as t approaches T raises two questions. First, we must verify that ||LY ◦
t − v|| indeed

goes to zero as t → T , such that it is a satisfactory proposal process. If Y ◦ does not satisfy the con-
dition, using it as a proposal process is significantly less attractive. Second, the absolute continuity of
the proposal measure P◦ w.r.t. the conditioned measure P∗ at time T must be verified to justify using
importance sampling. While it is relatively easy to see that the measures are absolutely continuous
on [0, T ), extending to this [0, T ] is not trivial. To study these aspects, we may use a combination of
techniques as in [BMS20] and in [SMZ17]. However, we can not solely rely on their results because of
our slightly adjusted assumptions on the role of ∇µ̃T (t, x) as described in Section 1.3. Therefore, we
provide additional assumptions and lemmas to support the claims.

In Section 4.1, we describe the importance sampling technique and its favorable characteristics, such
as asymptotic consistency of the particle approximation and its convergence rate. Section 4.2 describes
how the exact (continuous-time) importance weights can be derived. In addition, as an intermezzo
to the buildup of our approach, we describe how an approximation of importance weights can be
computed given a discrete-time Euler-Maruyama approximation. In Section 4.3, we study a specific
class of guided proposals to derive a simplified form of Girsanov’s formula. In addition, we describe
how a scalar diffusion coefficient enables a simplified expression of the importance of weights in the
typical context of generative diffusion models. In Section 4.4, we discuss the validity of the guided
proposal. Specifically, we study the behavior of ||LY ◦

t − v|| as t ↑ T and the absolute continuity of the
continuous-time importance weight on the interval [0, T ].

4.1. Importance Sampling Technique
The canonical goal of importance sampling is to estimate expectations of functionals that are otherwise
difficult to compute. While the use case for conditional sampling with generative diffusion models is
slightly different, as we intend to draw samples, the underlying principles are the same. The idea behind
using importance sampling for the conditioning of diffusion models is to draw sample paths from the
proposal measure P◦

Y and compute importance weights for the sample paths, that can later be used to
weight the proposal samples such that expectations can be computed, or resample paths in its entirety
to approximately match the measure P∗

Y .
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Figure 4.1: Paths of (weighted) proposal process Y ◦, unconditioned Y process, and conditioned process
Y ∗. The leftmost panel shows sample paths of an unconditional Ornstein-Uhlenbeck process. The second panel from the
left shows paths of the proposal process, which is a Brownian bridge pinned down at 0 at time T = 1. The second panel
from the right shows the weighted proposal processes. The rightmost figure shows sample paths of a true conditioned
process.

Example 4.1. In this example, we are interested in an Ornstein-Uhlenbeck (OU) process Y that takes
values on R and is conditioned to hit 0 at time T = 1. The paths of the unconditioned OU process are
described in the leftmost panel of Figure 4.1 and the following SDE drives them

dYt = −2(Yt + 1)dt+ dBt.

To obtain an approximation of the measure of Y ∗, we sample paths from a Brownian bridge, driven by

dY ◦
t = − Y ◦

t

T − t
dt+ dBt.

Then, we compute the importance weights with Girsanov’s formula for sample paths from the Brownian
bridge, denoted by Y ◦. The weighted paths are displayed in the rightmost panel of Figure 4.1. In
Figure 4.2 we give an impression of how importance weights can be used to resample. Specifically, we
display the histograms of sampled values of Y ∗

0.5 (target), Y ◦
0.5 (proposal), and a reweighted set of samples.

Let us first consider a Y ∼ P∗
Y , a distribution from which we cannot sample. We wish to compute

the following expectation E∗ [f(Y )] for some bounded function f . The key idea is to choose P◦
Y such

that: P◦
Y is absolutely continuous w.r.t. P∗

Y , we can sample from P◦
Y , and we can compute the desired

Radon-Nikodym derivative. Then, one can approximate the expectation

E∗ [f(Y )] = E◦
[
f(Y )

dPY ∗

dPY ◦
(Y )

]
LLN
≈ 1

N

N∑
i=1

f(Y (i))
dPY ∗

dPY ◦
(Y (i)), (4.1)

where {Y (i)}Ni=1 are draw from the proposal distribution, i.e. Y (i) ∼ P◦
Y i.i.d. for all i ∈ {1, . . . , N}.

We denote E◦[Y ] by the expectation of Y w.r.t. P◦
Y . The approximation becomes almost surely exact

in the limit of large N , due to the law of large numbers, denoted by LLN in the approximation of
Equation 4.1. This Radon-Nikodym derivative is also referred to as the importance weight of a sample
Y , i.e.

W ∗(Y ) =
dP∗

Y

dP◦
Y

(Y ),

where P∗
Y is called the target measure and P◦

Y is called the proposal measure. A set-wise estimator for
P∗
Y , that is known as a particle approximation, can be obtained by

1

N

N∑
i=1

W ∗(Y (i))1A(Y
(i)). (4.2)

The particle approximation above is identical to the right-hand side of Equation 4.1 for an indicator
function. It is important to see that this particle approximation is a random counting measure, which
is a measure-valued random element. Therefore, to evaluate convergence results of the particle approx-
imation, we often consider convergence in mean or in mean square error.
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Figure 4.2: Histogram of samples of Y0.5 and (reweighted) samples Y ◦
0.5 from Example 4.1. The histograms

are shown as kernel density plots for enhanced visibility. The proposal histogram represents samples from Y ◦
0.5 and the

target histogram represents samples from Y0.5. The resampled histogram represents a resampled set of samples of Y ◦
0.5,

where the resample probabilities are obtained with the normalized importance weights. The large spikes in empirical
density of the resampled set is due to the few particles with the relatively high importance weights to have a
significantly larger presence, giving large spikes in the histogram. This weight imbalance is a common issue with
importance sampling in large systems, where numerically sampled naturally diffusing processes belong, even for small
state spaces, because of the dependency of the entire paths.

So far, we have shown that the particle approximation is unbiased. We now consider the variance
of the particle approximation of the probability of A under P∗

Y . The following lemma shows that for
any A, the term the variance can be bounded by a term independent of the choice of A that vanishes
for N →∞.

Lemma 4.1 (Importance Sampling). Let E◦ [W ∗(Y )2
]

denote the second moment of the importance
weight W ∗, which has mean 1 and assume E◦ [W ∗(Y )2

]
≲ 1. Then the following bound holds for any

measurable set A, such that the bound is independent of A

E◦

( 1

N

N∑
i=1

1A(Y )W ∗(Y )− P∗
Y (A)

)2
 ≤ 1

N
E◦ [(W ∗(Y ))2

]
= O

(
1

N

)
,

where the expectation is w.r.t. a set of N independent samples drawn from the proposal measure P◦
Y

Proof. The proof is found in Section A.3

It is, however, the case that we cannot compute W ∗, due to its dependency on the conditioned
probability measure P∗

Y . We can compute some other weight W that satisfies W ∝ W ∗, where the
proportionality is independent of the argument of W . This is fundamental to our approach, as will
become clear in the next sections. The weight W gives us a slightly different estimator for P∗

Y (A),
which is called the self-normalized particle approximation,

P ∗
N (A)

def
=

1
N

∑N
i=1W (Y (i))1A(Y

(i))
1
N

∑N
i=1W (Y (i))

. (4.3)

While it can be easily derived that this definition also converges to P∗
Y almost surely, the estimator with

finite particles is biased. No closed-form for the bias exists for the general case, however the induced
bias can be intuitively understood from the non-linearity of the summation in the denominator of the
above equation.

Proposition 4.1 (Self-Normalizing Importance Sampling). Let P ∗
N (A) be defined as in Equation 4.3

and assume E◦[(E◦[W ]−W )2]
(E◦[W ])2 ≲ 1. Then the following holds for all measurable A such that the bound is

independent of A:

E◦ [(P ∗
N (A)− P∗

Y (A))
2
]
= O

(
1

N

)
.

Proof. The proof is found in Section A.4
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4.2. Continuous-Time Importance Weights
For computing weights of a process on the entire time span [0, T ], we need to find an expression for the
following Radon-Nikodym derivative

W ∗
T :=

dP∗
Y

dP◦
Y

∣∣∣
FT

.

Before we turn our attention to computing these importance weights, we describe a decomposition of
the Radon-Nikodym derivative. Consider that the above, if it is defined, can be decomposed into the
product of two different Radon-Nikodym derivatives. Specifically, if Y0 = y0 ∈ Rd, then it follows from
the previous chapter that

W ∗
t =

dP∗
Y

dP◦
Y

∣∣∣
Ft

=
dP∗

Y

dPY

∣∣∣
Ft

dPY

dP◦
Y

∣∣∣
Ft

=
h(t, Yt)

h(0, y0)

dPY

dP◦
Y

∣∣∣
Ft

=
h(t, Yt)

h(0, y0)
Wt.

where

Wt :=
dPY

dP◦
Y

∣∣∣
Ft

.

If we choose the proposal processes to satisfy LY ◦
T = v, we have that h(T, x) = 1. Therefore, we can

write

W ∗
T =

1

h(0, y0)
WT ∝WT . (4.4)

If we fix y0, we can omit the term h(0, y0) in the importance sampler as it is identical for all weights
and is therefore canceled out with a simple weight normalization. This justifies the last proportional
relation in the above equation.

We use Girsanov’s theorem to derive the importance weight. Specifically, let b denote the drift of
the SDE that drives process Y and b◦ the drift of the SDE that drives our proposal Y ◦, then note that
the diffusion coefficient is a non-zero scalar function on [0, T ], and therefore, we may write

η(t, x) =
b◦(t, x)− b(t, x)

σ(t)

Then if η satisfies Novikov’s condition, the Radon-Nikodym derivative is given by

Wt =
dPY

dP◦
Y

Ft(Y
◦) = exp

(∫ t

0

η(s, Y ◦
s )

⊤dBs −
1

2

∫ t

0

||η(s, Y ◦
s )||2ds

)
(4.5)

and induces a change of measure between the proposal process Y ◦ and the unconditional process Y .
The formula in Equation 4.5 boils down to a convenient form if we consider the following proposal
processes.

dY ◦
t =

[
b(t, Y ◦

t ) + σ2(t)∇ log h̃(t, Y ◦
t )
]
dt+ σ(t)dBt, (4.6)

where h̃ is a tractable approximation of function in Equation 3.3. A beneficial aspect of this form of
proposals, is that they incorporate information about the unconditional process through the presence
of the unconditional drift term b. In fact, because of the way we have defined b◦, we can write

η(t, x) = σ(t)∇ log h̃(t, x) = σ(t)r̃(t, x),

where we use the notation r̃(t, x) := ∇ log h̃(t, x).
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4.2.1. Intermezzo: The Limit of Discretized Importance Weights
As an intermezzo of the buildup of our method, we elaborate on importance sampling with a discretiza-
tion of the processes instead. This is previously done in the context of generative diffusion in, for
example, [Wu+24]. Understanding such approaches is useful in underlining the conceptual differences
and similarities between our approach and some of the existing work.

Typically, the sample paths of diffusions are approximated at finite times, for example due to use of
an Euler-Maruyama (EM) approximation, that is defined using the following the following discretization
of [0, T ], 0 = t0 < · · · < tM = T , where ti = i TM . The density of a sampled discrete path {Ŷti}Mi=1 using
the EM approximation is given by

p̂({Ŷti}Mi=1) =

M∏
i=1

p̂(Ŷti ; Ŷti−1) where p̂(Ŷs; Ŷt) = N
(
Ŷs; Ŷt + b(t, Ŷt)(s− t), σ2(t)(s− t)

)
.

Now, the task at hand is to consider the weights that are accumulated by taking the product of M
ratios of approximated transition densities

Ŵ ∗ =

M∏
i=1

p̂∗(Ŷti ; Ŷti−1)

p̂◦(Ŷti ; Ŷti−1
)
. (4.7)

Here the transition densities are similarly defined as to p̂(ys; yt), but in coherence with the drift coef-
ficients b◦ and b∗ of the proposal and target (conditioned) SDEs that we defined in Chapter 3. Using
similar reasoning as for the continuous time weights, the discrete weight can be written in terms of the
approximate densities of the proposal process and the unconditional process, i.e.

Ŵ ∗ =
1

h(0, Ŷ0)

M∏
i=1

p̂(Ŷti ; Ŷti−1
)

p̂◦(Ŷti ; Ŷti−1
)
∝

M∏
i=1

p̂(Ŷti ; Ŷti−1
)

p̂◦(Ŷti ; Ŷti−1
)
= Ŵ . (4.8)

Because of the notation of Ŵ ∗ in Equation 4.7, the computation of the approximate (self-normalizing)
weights is possible. In particular, we understand the dynamics of the unconditioned and proposal pro-
cesses. The weights are no longer unbiased due to the bias induced by the Euler-Maruyama, which only
vanishes as the discretization becomes infinitely fine-grained, i.e., M →∞.

Asymptotic Behaviour of Discrete-time Importance Weights
To substantiate the intuition behind the continuous-time importance weight we discuss in the next
section, we can look into an illustrative derivation of the Girsanov formula as the convergence of the
discrete-time approximation from Equation 4.8.

Lemma 4.2. Consider Ŵ as defined in Equation 4.8, then

log Ŵ = −
M∑
i=1

1

2
||ηti−1 ||2

T

M
(ti − ti−1) +

M∑
i=1

ηti−1 · (Bti −Bti−1).

Proof. See Section A.5

Given that ηt = η(t, Yt), we have that under regularity conditions, log Ŵ from Section 4.2 converges to
the log Radon-Nikodym derivative as described in Equation 4.5,

logM→∞ log Ŵ = −1

2

∫ T

0

||ηt||2dt+
∫ T

0

ηt · dBt,

if we use the definition of the Riemann integral and the Itô integral.
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4.3. Auxiliary-Guided Proposal Process
The proposal processes in Equation 4.6 are based on a tractable approximation of the function h.
Specifically, they are evaluated for some auxiliary process Ỹ = (Ỹt)

T
t=0 that is designed such that we

can do the conditioning analytically. We start with the critical characterization of the auxiliary process
that enables this analytical tractability, and then in the next chapter, we will give some more concrete
examples. At an abstract level, the SDE that drives the auxiliary processes is of the following form:

dỸt = b̃(t, Ỹt)dt+ σ(t)dBt, (4.9)
for some value b̃(t, x) : [0, T ]×Rd → Rd and σ(t) the diffusion coefficient of the corresponding uncondi-
tional denoising SDE as given in Equation 2.7. The defining property of the auxiliary processes is given
below.

Definition 4.1 (Defining property of auxiliary processes). We refer to the processes of the form of
Equation 4.9 to belong to the class of auxiliary processes if

ỸT |Ỹt ∼ N (µ̃T (t, x), C̃T (t)),

where µ̃T : [0, T ]×Rd → Rd is a vector function that represents the conditional expectation of ỸT |Ỹt = x
and C̃T : [0, T ]→ Rd×d is a matrix-valued function that specifies the covariance.

From this point, we reserve the term auxiliary process for processes that satisfy the above property. For
these auxiliary processes, the gradient log term is explicitly expressed as a direct corollary of Lemma 3.1.

Corollary 4.1 (Auxiliary guidance). Assume that Ỹ is an auxiliary process and that h̃ is defined by

h̃(t, x) = P(LỸT ∈ dv|Ỹt = x)/dv

where we use the tilde to denote that we derived for an auxiliary process as opposed to a general process
Y with unknown transition densities, then for a full rank matrix L ∈ Rm×d with d > m, we have that

∇ log h̃(t, x) = ∇µ̃(t, x)L⊤(LC̃T (t)L
⊤)−1(Lµ̃T (t, x)− v) (4.10)

Note that in Equation 4.10, we have taken the gradient of µ̃(t, x) w.r.t. x, due to an application of
the chain rule. In many cases of the drift coefficient b̃ the gradient will evaluate to a trivial form, such
as a constant 1 if µ̃(t, x) = x that follows from a driftless auxiliary process. However, as will become
clear in the next chapter (Chapter 5), there is a subtlety in choosing an (adaptive) auxiliary drift, which
makes the gradient of µ̃(t, x) non-trivial.

Now, it turns out, as shown in [SMZ17], that this specific choice of proposals Y ◦, in combination with
the auxiliary process Ỹ , enables a simplified form of the continuous-time importance weights that re-
duces to an exponential of a Riemann-Stieltjes integral. This integral can consequently be approximated
with a Riemann sum on a discretized grid and yields an arguably more convenient form as it does not
involve a stochastic integral that may be more difficult to approximate numerically. The fundamental
difference between this discretization and the discretization depicted in the intermezzo of the previous
section is that here we first derive an exact weight and then discretize, as opposed to discretizing and
then deriving the inexact weights.

Proposition 4.2 (Radon-Nikodym derivative (adapted from [SMZ17])). Let h̃ be space-time harmonic
w.r.t. L̃ = {L̃t}Tt=0, where L̃ is the (time-dependent) infinitesimal generator of auxiliary process Ỹ .
Define the following function

ψ(t) = exp

(∫ t

0

G(s, Y ◦
s )ds

)
where G(t, x) = (b(t, x)− b̃(t, x)) · ∇ log h̃(t, x) (4.11)

Then for t ∈ [0, T ) the laws P|Ft ,P◦|Ft and P∗|Ft are equivalent and we have

dPY

dP◦
Y

(Y ◦)

∣∣∣∣∣
Ft

=
h̃(0, y0)

h̃(t, Y ◦
t )
ψ(t) (4.12)



4.3. Auxiliary-Guided Proposal Process 38

Proof. The proposition and the proof here are, in fact, a special case of (Proposition 1, [SMZ17]). For
completeness, we provide the derivation of the simplified formula, which is unique to our setting. Let us
define r̃s = r̃(s, Ys) = ∇ log h̃(s, Ys) and R̃s = R̃(s, Ys) = log h̃(s, Ys), such that ∇R̃s = r̃s. Furthermore,
we may write bt = b(t, Y ◦

t ), also for the drift coefficients b◦ and b̃. The infinitesimal generator of Y ◦

applied to R̃ evaluates to

L◦
t R̃t = LtR̃t + σ2(t)r̃t · r̃t.

This follows from the fact that the diffusion coefficients are identical and the drift of Y ◦ satisfies
b◦(t, x) = b(t, x) + σ2(t)r̃(t, x). Then

L◦
t R̃t = (bt + σ2(t)r̃t) · r̃t +

1

2
σ2(t)∆R̃t = bt · r̃t +

1

2
σ2(t)∆R̃t︸ ︷︷ ︸

LtR̃t

+σ2(t)r̃t · r̃t.

Then, we can apply Itô’s formula to obtain an expression for R̃(t, Yt), i.e.,

R̃t − R̃0 =

∫ t

0

(
∂

∂s
R̃s + LR̃s

)
ds+

∫ t

0

σ2(s)||r̃(s, Y ◦
s )||22ds+

∫ t

0

σ(s)r̃(s, Y ◦
s ) · dBs.

The Radon-Nikodym derivative in the left hand side of Equation 4.12 is obtained by the Girsanov
formula, with ηt = σ(t)−1(bt − b◦t ) = σ(t)r̃t. This gives us

log
dPY

dP◦
Y

∣∣∣∣∣
Ft

= −
∫ t

0

σ(s)r̃(s, Y ◦
s )dBs −

1

2

∫ t

0

σ2(s)||r̃(s, Y ◦
s )||22ds.

Therefore, comparing the two above equations, we can write the log Radon-Nikodym derivative without
stochastic integrals in the following way

log
dPY

dP◦
Y

∣∣∣∣∣
Ft

= −(R̃t − R̃0) +

∫ t

0

(
∂

∂s
R̃s + LtR̃s

)
ds+

1

2

∫ t

0

σ2(s)||r̃(s, Y ◦
s )||22ds.

Now, we consider that the function G can be written as

G(t, x) = (b(t, x)− b̃(t, x)) · r̃(t, x) = (Lt − L̃t)R̃t =
∂

∂t
R̃t + LtR̃t +

1

2
σ2(t)||r̃(s, Y ◦

s )||22

Here, in the second equality we have used the definitions of the infinitesimal generators L and L̃. In
the third equality, we have used that:

∂

∂t
R̃t + L̃tR̃t = −

1

2
σ2(t)||r̃(s, Y ◦

s )||22. (4.13)

This identity is due to using the log derivative trick and product rule to write

L̃tR̃t = b̃t · ∇R̃t + σ2(t)∆R̃t =
1

h̃t
b̃t · h̃t +

1

h̃t

1

2
σ2(t)∆h̃t −

1

2
σ2(t)r̃t · r̃t and ∂

∂t
R̃t =

1

h̃t

∂

∂t
h̃t.

Then because h̃ is space-time harmonic, the identity follows. Finally, the claim of the proposition follows
by noting that −(R̃t − R̃0) = − log h̃(t, x)/h̃(0, x0).

Remark 4.1 (Simplified form of ψ ). In [SMZ17], the function ψ is given in a different more expansive
form. In our case, we consider a scalar and state-independent diffusion coefficient of the SDE that
drives Y . This enables us to choose the identical diffusion coefficient among all processes Y, Ỹ , Y ◦,
which reduces their result to a simplified expression of Equation 4.11.
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4.4. Behavior at Terminal Time
At this point, we know how to derive the importance weights for any t < T . However, studying the
behavior of the proposal processes at the terminal time is important for two reasons. First, we study
whether the proposals Y ◦ satisfy that LY ◦

t approaches v as t ↑ T . Otherwise, the proportionality of
Equation 4.4 does not hold. Second, the absolute continuity of the laws of the process Y ∗ and Y ◦ still
needs to be established on [0, T ] because Proposition 4.2 only holds for [0, T ).

Our proofs differ from those in [BMS20], which studies hypoelliptic diffusions, in that we rely on
a different available technique due to the uniform ellipticity of the diffusions we study. In particular,
we take inspiration from the proof in [SMZ17]. The difference with their proof is that we focus on the
general case where L 6= I, whereas their work focuses on L = I. Furthermore, our assumptions are signif-
icantly different from those of both works, which are more appropriate for the adaptive setting we study
in the next chapter. Specifically, we explicitly consider the gradient w.r.t. µ̃T as described in Equa-
tion 4.10; the results of these existing works do not directly transfer. The idea of the proofs are similar,
however certain parts are easier in our setting because we do not have state dependent diffusion coeffi-
cients in our unconditional process Y , while other parts are harder due to the dependency on ∇µ̃T (t, x).

4.4.1. Condition Satisfaction of Y ◦
T

Before we start, we must make a few assumptions about the auxiliary process Ỹ , and in particular the
function µ̃T (t, x) and r̃.

Assumption 4.1 (Properties of auxiliary process). Let L be a full rank m×d matrix with d > m. Then
the auxiliary process Ỹ , that is driven by the SDE in Equation 4.9, is chosen such that the following
properties hold for all x ∈ Rd and t ∈ [0, T ]:

1. ∂t log h̃ and ∇ log h̃ are continuous.

2. The Jacobian of the auxiliary drift is bounded, i.e. ||∇b̃(t, x)|| ≲ 1.

3. The function µ̃T (t, x) approaches x, i.e., ||µ̃T (t, x)− x|| ≲ (T − t).

4. µ̃T has a bounded Jacobian ||∇µ̃T (t, x)|| ≲ 1.

5. Let R̃(t, x) := log h̃(t, x). Then, let us call

H(t, x) = ∇2R̃(t, x),

where ∇2 specifies the Hessian operator. We assume that ||H(t, x)|| ≲ (T − t)−1 and ||H(t, x) −
(T − t)−1I|| ≲ 1.

6. Let us define the matrix-valued function Q : [0, T ]× Rd → Rd×m by

Q(t, x) = (∇µ̃(t, x))⊤L⊤
(
LC̃T (t)L

⊤
)−1

such that

∇ log h̃(t, x) = (∇µ̃(t, x))⊤L⊤
(
LC̃T (t)L

⊤
)−1

(Lµ̃T (t, x)− v) = Q(t, x)(Lµ̃T (t, x)− v),

Then there exists a matrix-valued function Q+ : [0, T ]× Rd → Rm×d such that

Q+(t, x)Q(t, x) = Im×m.

Furthermore, ||Q+(t, x)|| ≲ (T − t) and ||Q(t, x)|| ≤ (T − t)−1.

A separate assumption that we make is about the combined behavior of the drift coefficients of the
auxiliary process and the unconditional process.
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Assumption 4.2. There exists an almost sure finite real random variable V1 such that

sup
t∈[0,T ]

||b(t, Y ◦
t )− b̃(t, Y ◦

t )|| < V1

This assumption requires that the proposal process Y ◦ is well behaved on the interval [0, T ]. Specifically,
consider that supt∈[0,T ] ||Y ◦

t || <∞ implies the assumption by making use of the linear growth of both of
these drift coefficients. However, it is not entirely obvious whether this assumption on Y ◦

t contradicts
any of the other assumptions or leads to circular reasoning of the to-be-proven claim, especially when
considering Gronwall inequalities.

The theorem below suggests that with the above assumptions, we can control the behavior of ||LY ◦
t −

v|| such that it vanishes as t ↑ T . The proof, which is given in Subsection 4.4.3, starts by noting that if
we want to minimize the quantity ||Lx− v||, we may study instead ||r̃(t, x)|| (Lemma 4.3). For this, we
derive an SDE that governs the stochastic process r̃(t, Y ◦

t ), that we denote by r̃t (Lemma 4.4). Then, we
rewrite the coefficients of the SDE to find a convenient expression, of which the norm must be bounded.
A problematic term is∇2R̃t, supposedly an explosive term as t→ T , illustrated in the following example.
For this reason, dealing with this term is not trivial and therefore takes some significant effort.

Example 4.2. Consider the setting of Theorem 4.1 and specifically, the case where µ̃T (t, x) = x and
C̃T (t) = T − t. Then the function r̃(t, x) is

r̃(t, x) = ∇ log h̃(t, x) = L⊤(LC̃T (t)L
⊤)−1(Lx− v).

Then, we have that the Hessian of R̃ is

||H(t, x)|| = ||L⊤(LC̃T (t)L
⊤)−1L|| ∝ (T − t)−1.

The right-hand side explodes as t→ T .

Theorem 4.1 (Condition Satisfaction of Y ◦). Let Assumption 4.1 and Assumption 4.2 hold. Then
there exists ϵ ∈ (0, 12 ) and an almost sure finite random variable V such that for all t ∈ [0, T ] it holds
that

||LY ◦
t − v|| ≤ V (T − t)1/2−ϵ.

4.4.2. Absolute Continuity on [0, T ]
The Radon-Nikoydm derivative in proposition 4.2 holds only on [0, T ). Therefore, to derive a well-
behaved method, we must verify that the formula can also be used near time T . This is, however, not
trivial, as the behavior of the proposal process near time T may hinder the equivalence of the measures
P∗ and P◦.

As in [BMS20], we must assume the transition density of the unconditioned process.

Assumption 4.3. Let pYs|Yt=x and pỸs|Ỹt=x denote the transition densities of Y and Ỹ , in that the
sense they specify the density of the state at time s conditioned on the state at time t being x. Then
there exists a constant C > 0 such that for all t, s ∈ [0, T ] and x, y ∈ Rd.

pYs|Yt=x(y) ≤ CpỸs|Ỹt=x(y)

Theorem 4.2. Let Assumption 4.1, Assumption 4.2 and Assumption 4.3 hold and fix Y0 = y0 ∈ Rd.
Then the laws of the bridges Y ∗ and Y ◦ are equivalent on [0, T ], the formula in Equation 4.12 holds for
all t ∈ [0, T ], and specifically

dP∗
Y

dP◦
Y

(Y )

∣∣∣∣∣
FT

=
h̃(0, y0)

h(0, y0)
ψ(T ).
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4.4.3. proof of Theorem 4.1
The proof that follows is quite tedious and relies on subtle tricks that are available by our assumptions.
For a deeper understanding of these tricks, it is advised to inspect the proofs in [BMS20] and in [SMZ17]
alongside the proofs here. In particular, we rely on Lemma 4.5 that is a combination of lemmas 14-16
from [SMZ17].

Proof. We know by Lemma 4.3 that ||LY ◦
t − v|| ≲ (T − t)(1 + ||r̃(t, Y ◦

t )||), so what remains is to find
an upper bound for the latter. Specifically, we verify that there exists ϵ ∈ (0, 1/2) and a finite random
variable V such that ||r̃(t, Y ◦

t )|| ≲ V (T − t)ϵ−1.

Preparation for Lemma 4.5. By Lemma 4.4, we that r̃(t, Y ◦
t ) is driven by the following SDE

dr̃(t, Y ◦
t ) =

[
−r̃(t, Y ◦

t ) · ∇b̃(t, Y ◦
t ) +H(t, Y ◦

t )(b̃(t, Y
◦
t )− b(t, Y ◦

t ))
]
dt+ σ(t)H(t, Y ◦

t )dBt.

Now, we are preparing to apply Lemma 4.5. To do this, we need to write the term −∇b̃ in a specific
way, i.e.,

K1(t, x) = I(T − t)−1

(
1− σ2(t)

σ2(T )

)
,

K2(t, x) =
(
H(t, x)− I(T − t)−1

)(
1− σ2(t)

σ2(T )

)
,

K3(t, x) = H(t, x)

(
σ2(t)

σ2(T )
− 1

)
−∇b̃(t, x).

Observe that K := K1 +K2 +K3 = −∇b̃. Using this notation, we can derive the following:

• Bounding (T − t)|| · ||2K1 . For all t ∈ [0, T ) and z ∈ Rd, we have that there exists an ϵ ∈ (0, 1/2)
such that the following inequality holds

||z||2K1 = z⊤K1(t, Y ◦
t )z =

(
1− σ2(t)

σ2(T )

)
||z||2

T − t
≤ (1− ϵ)||z||2

T − t
,

where we use that there exist ϵ0, ϵ1, ϵ2 > 0 such that σ2(t) ≥ ϵ0 ≥ ϵ1, σ2(T ) ≤ ϵ2, and we pick ϵ1
small enough such that ϵ = ϵ1/ϵ2 ∈ (0, 1/2). For example ϵ1 = σ2(T )/4 and ϵ2 = σ2(T ) whenever
σ(T ) ≤ σ(t) for all t ∈ [0, T ].

• Bounding K2. By our assumption on H and the boundedness of |1− σ2(t)
σ2(T ) |, we know that

||K2(t, x)|| = ||
(
H(t, x)− I(T − t)−1

)(
1− σ2(t)

σ2(T )

)
|| ≲ 1.

• Bounding K3. Note that by our assumption ||∇b̃(t, x)|| is bounded. Therefore, by Lipschitz
continuity and boundedness of σ, we can write the following using our assumption on H

||K3(t, x)|| = ||H(t, x)

(
σ2(t)

σ2(T )
− 1

)
−∇b̃(t, x)||

≤ ||H(t, x)|| 1

σ(T )
|σ2(t)− σ(T )|+ ||∇b̃(t, x)||

≲ 1

T − t
(T − t) + 1.

Now, we use the following notation

W (t, x) = H(t, x)(b̃(t, Y ◦
t )− b(t, Y ◦

t )).

We can also derive the following:
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• Bounding (T − t)||W ||. By our assumption on ||b̃(t, Y ◦
t ) − b(t, Y ◦

t )|| and our assumption on H,
we have that there exists a finite random variable V1 such that

(T − t)||W (t, x)|| ≤ (T − t)||H(t, x)|| |V1| ≲ (T − t) 1

T − t
V1 = V1.

Now, we may write the SDE as

dr̃t =

(K1
t +K2

t +K3
t )︸ ︷︷ ︸

Kt

r̃t +Wt

 dt+ UtdBt, (4.14)

where Ut := σ(t)H(t, Y ◦
t ) that satisfies the following.

• Bounding (T − t)||Ut||. By using our assumption on H it directly follows that

(T − t)||Ut|| ≲ 1.

Applying Lemma 4.5. We consider the setting of Lemma 4.5. Let us adopt the following notation:

K23 = K2 +K3 and K = K1 +K23.

Then, we study the random linear system, described by the following linear ODE:

dΦ(t) = K(t, Y ◦
t )Φ(t)dt.

The matrix function Φ(t) exists uniquely because t→ K(t, Y ◦
t ) is continuous for each realization Y ◦ (we

use the same justification as in [SMZ17]). Furthermore, we have that for any z ∈ Rd that K1 satisfies

z⊤K1(t, Y ◦
t )z ≤

(1− ϵ)||z||2

T − t
and K2 is bounded. This allows us to use Lemma 4.5. Specifically, by item 2 of Lemma 4.5, we may
write

r̃(t, Y ◦
t ) = Φ(t)r̃(0, Y ◦

0 ) + Φ(t)

∫ t

0

Φ(s)−1W (s, Y ◦
s )ds− Φ(t)

∫ t

0

Φ(s)−1U(s)dBs.

From this, it follows that we must compute a bound for

||r̃(t, Y ◦
t )|| ≤ ||Φ(t)r̃(0, Y ◦

0 )||︸ ︷︷ ︸
(I)

+

∫ t

0

||Φ(t)Φ(s)−1|| ||W (s, Y ◦
s )||ds︸ ︷︷ ︸

(II)

+

∣∣∣∣∣
∣∣∣∣∣
∫ t

0

Φ(t)Φ(s)−1UsdBs

∣∣∣∣∣
∣∣∣∣∣︸ ︷︷ ︸

(III)

.

We now proceed with bounding each of the three terms above

1. (I): By item 1 of Lemma 4.5 and finiteness of ||Y ◦
0 || = ||y0||, we have that ||r̃(0, Y ◦

0 )|| ≲ 1. Then
we find that

(I) ≲ (T − t)ϵ−1.

2. (II): Here we use again use item 1 of Lemma 4.5 to obtain

||Φ(t)Φ(s)−1|| ||W 2(s, Y ◦
s )|| ≲

(
T − s
T − t

)1−ϵ
1

(T − s)
||W (s, Y ◦

s )(T − s)|| ≲ (T − t)ϵ−1
(T − s)−ϵV1.

Then, we obtain

(II) ≤
∫ T

0

V1 (T − t)ϵ−1(T − s)−ϵds ≲ V1(T − t)ϵ−1

∫ T

0

(T − s)−ϵds ≲ V1(T − t)ϵ−1
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3. (III): Here, we use item 3 of Lemma 4.5 with U(s) = σ(s)H(s, Y ◦
s ) to obtain an almost surely

finite random variable V2 such that

(III) =

∣∣∣∣∣
∣∣∣∣∣
∫ t

0

Φ(t)Φ(s)−1U(s)dBs

∣∣∣∣∣
∣∣∣∣∣ ≲ V2(T − t)ϵ−1.

Combining the results, we know that

||r̃(t, Y ◦
t )|| ≲ V (T − t)ϵ−1,

such that V = V1 + V2 is an almost sure finite random variable.

Lemmas for Theorem 4.1
Lemma 4.3. Let Assumption 4.1 hold, then

||Lx− v||
T − t

≲ 1 + ||r̃(t, x)||,

and

||r̃(t, x)|| ≲ 1 +
1

T − t
||Lx− v||.

Proof. Let us first consider writing Lx− v as follows:

Lx− v = Lµ̃T (t, x)− v − (Lµ̃T (t, x)− Lx).

Then, we can use that there exists a matrix-valued function Q+(t, x) such that

Q+(t, x)r̃(t, x) = Lµ̃T (t, x)− v.

Combining these statements, we obtain

Lx− v = Q+(t, x)r̃(t, x)− L(µ̃T (t, x)− x).

Then, we know that by Assumption 4.1 there exists a constant C > 0 such that

||µ̃T (t, x)− x|| < C(T − t).

Therefore,

||Lx− v|| ≤ ||Q+(t, x)|| ||r̃(t, x)||+ C(T − t).

Then using that ||Q+(t, x)|| ≲ (T − t) we have the desired result. Furthermore, we know that

||r̃(t, x)|| ≤ ||Q(t, x)|| ||Lµ̃T (t, x)− v|| ≤ ||Q(t, x)|| (||µ̃T (t, x)− x||+ ||Lx− v||)

≲ 1

T − t
((T − t) + ||Lx− v||) .

Lemma 4.4 (SDE of r̃t). Let Assumption 4.1 hold. Denote r̃t := r̃(t, Y ◦
t ) where r̃(t, x) = ∇ log h̃(t, x).

Furthermore let R̃t := R̃(t, Y ◦
t ) where R̃(t, x) = log h̃(t, x), such that ∇R̃ = r̃. Then the SDE that

governs the stochastic process (r̃t)
T
t=0

dr̃(t, Y ◦
t ) =

[
−r̃(t, Y ◦

t ) · ∇b̃(t, Y ◦
t ) +∇2R̃(t, Y ◦

t )(b̃(t, Y
◦
t )− b(t, Y ◦

t ))
]
dt+ σ(t)∇2R̃(t, Y ◦

t )dBt,

with r̃0 = r̃(0, Y ◦
0 ) for Y ◦

0 ∼ PY0
. Here ∇2 denotes the Hessian operator, such that ∇2R̃(t, x) is a d× d

matrix. Furthermore ∇b̃(t, x) denotes the Jacobian of the vector-valued function b̃.
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Proof. We apply Itô’s formula to derive the following

dr̃(t, Y ◦
t ) = [∂tr̃(t, Y

◦
t ) + L◦

t r̃(t, Y
◦
t )] dt+ σ(t)∇r̃(t, Y ◦

t )dBt,

where the generator L◦
t acts on the state argument of r̃. Now, we use that ∂tr̃t = ∂t∇R̃t = ∇∂tR̃t,

which is justified because the partial derivatives can be exchanged under the assumption that they are
continuous everywhere (Schwarz’s theorem). Using Equation 4.13, we have that that

∂tR̃t + L̃tR̃t = −
1

2
σ2(t)||r̃t||2.

Therefore, the drift term of the SDE can be written as

−∇L̃tR̃t︸ ︷︷ ︸
(I)

− 1

2
σ2(t)∇||r̃t||2︸ ︷︷ ︸

(II)

+L◦
t r̃t︸︷︷︸

(III)

.

The terms can be expressed as

(I) = ∇(b̃ · r̃t) +
1

2
σ2(t)∆r̃t,

(II) = σ2(t)r̃t∇r̃t,

(III) = bt · ∇r̃t + σ2r̃t∇r̃t +
1

2
σ2(t)∆r̃t.

Then, combining the terms gives us −(I) − (II) + (III) = −∇(b̃ · r̃t) + b · ∇r̃t. Using the product rule,
we obtain the claimed drift coefficient of the SDE that drives r̃t.

Lemma 4.5 (Adapted from Lemma 14, Lemma 15 and Lemma 16 in [SMZ17].). Let Assumptions 4.1
hold and let a K denote a continuous matrix-valued function that satisfies

dr̃t = [K(t, Y ◦
t )r̃t +W (t, Y ◦

t )] dt+ σ(t)∇r̃tdBt,

i.e., it establishes the form of Equation 4.14. Furthermore, assume K(t) = K1(t) + K23(t) with
||K23(t)|| ≲ 1 and assume that there exists ϵ ∈ (0, 1/2) and C0, C1, C2 > 0 such that

x⊤K1(t)x ≤
(
C0 +

1− ϵ
T − t

)
||x||2 and ||K(t)|| ≤ C1

1

T − t
+ C2.

If we consider the following random linear system,

dΦ(t) = K(t, Y ◦
t )Φ(t)dt,

such that Φ exists with Φ(0) = I, then we can make the following three claims:

1. (Lemma 14 in [SMZ17]) There exists a constant C such that for all 0 < s < t < T

||Φ(t)Φ(s)−1|| ≤ C
(
T − s
T − t

)1−ϵ

.

2. (Lemma 15 in [SMZ17]) then the solution r̃t can be represented as

Φ(t)r̃(0, u) + Φ(t)

∫ t

0

Φ(s)−1W (s, Y ◦
s )ds− Φ(t)

∫ t

0

Φ(s)−1σ(s)∇r̃(s, Y ◦
s )dBs,

in the sense that they are indistinguishable on [0, T ].

3. (Lemma 16 in [SMZ17]) Define Mt = Φ(t)
∫ t

0
Φ(s)−1U(s)dWs. Assume that (T − t)||U(t)|| ≲ 1

for all t ∈ [0, T ). Then there exists a finite real random variable V2 such that for all 0 ≤ t < T

||Mt|| ≤ V2(T − t)ϵ−1.

Proof. We direct the reader to the proofs in [SMZ17].
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4.4.4. Proof of Theorem 4.2
Proof. The outline of the proof is exactly that of [BMS20] with slight variations in the lemmas. To
show absolute continuity on [0, T ] we make use of the following stopping times, i.e.

τm(Y ) = T ∧ inf
t∈[0,T ]

{||LYt − v|| ≥ m(T − t)1/2−ϵ}. (4.15)

This stopping time concerns the first time when the process Y moves too far away from satisfying the
condition determined, relative to m. Let us adopt the following notation τ◦m = τm(Y ◦), τm = τm(Y )
and τ∗m = τm(Y ∗). Furthermore, note that by Theorem 4.1, we have that limm→∞ τ◦m = T . We will use
the stopping times to derive a convergence result with dominated convergence.

In particular, consider the event that T = τ◦m, which is equivalent to saying that for all t < T , we
have t < τ◦m. Then for t < τ◦m we have that |LY ◦

t − v|| ≤ m(T − t)1/2−ϵ. We want to show that
ψ(t) is bounded on this event, such that we can use a dominated convergence argument. In fact, by
Lemma 4.6, we have that there exists a finite random variable Km such that ψ(t)1{t ≤ τ◦m} ≤ exp(Km).
Furthermore, by Proposition 4.2 we know that for t < T

E

[
1{t ≤ τ◦m}

h̃(0, Y ◦
0 )

h(0, Y ◦
0 )
ψ(t)

]
= E

[
1{t ≤ τ∗m}

h̃(t, Y ∗
t )

h(t, Y ∗
t )

]
. (4.16)

The idea now is to take take m→∞ and t→ T on both sides.

First, we consider the left-hand side. Ny the dominated convergence theorem (DCT), we may write

lim
m→∞

lim
t↑T

E

 h̃(0, Y ◦
0 )

h(0, Y ◦
0 )

ψ(t)1{t ≤ τ◦m}︸ ︷︷ ︸
≤exp(Km)

 DCT
= lim

m→∞
E

[
h̃(0, Y ◦

0 )

h(0, Y ◦
0 )
ψ(T )1{T ≤ τ◦m}

]
.

Furthermore, we have that {T ≤ τ◦m} = {T = τ◦m}, and that 1{T = τ◦m} ↑ 1 as m→∞. Therefore, we
have that by monotone convergence

lim
m→∞

E

[
h̃(0, Y ◦

0 )

h(0, Y ◦
0 )
ψ(T )1{T ≤ τ◦m}

]
MCT
= E

[
h̃(0, Y ◦

0 )

h(0, Y ◦
0 )
ψ(T )

]
.

Now, we consider the right-hand side of Equation 4.16. Note that

E

[
1{t ≤ τ∗m}

h̃(t, Y ∗
t )

h(t, Y ∗
t )

]
= E

[
h̃(t, Y ∗

t )

h(t, Y ∗
t )

]
− E

[
1{t > τ∗m}

h̃(t, Y ∗
t )

h(t, Y ∗
t )

]
,

By Lemma 4.7 the first term on the right hand side tends to 1 as t ↑ T , when choosing g = 1. So what
remains is to show that the second term tends to 0. To show this, we can use the change of measure
between the conditioned measure P∗ and the unconditional measure P to write:

h(0, Y ∗
0 )E

[
1{t > τ∗m}

h̃(t, Y ∗
t )

h(t, Y ∗
t )

]
= E

[
1{t ≥ τm}h̃(t, Yt)

]
.

By Lemma 4.8, this term vanishes, and considering that Y ∗
0 = Y ◦

0 = Y0 is chosen to be deterministic,
we have the desired result. Specifically, we have that, we have that

lim
t↑T

E

[
h̃(0, Y ◦

0 )

h(0, Y ◦
0 )
ψ(t)

]
= 1.

By Scheffés lemma we have that ψ(t)→ ψ(T ) in L1. Hence, for any s < T we have that for any bounded
Fs measurable function g
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E

[
g(Y ◦)

h̃(0, Y ◦
0 )

h(0, Y ◦
0 )
ψ(T )

]
= lim

t→T
E

[
g(Y ◦)

h̃(t, Y ◦
t )

h(t, Y ◦
t )

(
h̃(0, Y ◦

0 )

h(0, Y ◦
0 )

h(t, Y ◦
t )

h̃(t, Y ◦
t )
ψ(t)

)]
Eq. 4.16

= lim
t→T

E

[
g(Y ∗)

h̃(t, Y ∗
t )

h(t, Y ∗
t )

]
.

Then again by Lemma 4.7, we have that this converges to E [g(Y ∗)], which gives us the desired result.

Lemmas for Theorem 4.2
Lemma 4.6. Let Assumption 4.1 and Assumption 4.2 hold, then there exists a random variable Km,
such that

ψ(t)1 {t ≤ τ◦m} ≤ exp(Km).

Proof. We use the definition of the function G and Cauchy-Schwarz to write

|G(t, x)| ≤ ||b(t, x)− b̃(t, x)|| ||r̃(t, x)||.
Then using Lemma 4.3, we find that

||r̃(t, x)|| ≲
(
1 +

1

T − t
||Lx− v||

)
and therefore,

|G(t, x)| ≲ ||b(t, x)− b̃(t, x)||
(
1 +

1

T − t
||Lx− v||

)
.

Then, we can use Assumption 4.2 to bound the drift difference, i.e., there exists an almost sure finite
random variable V1 such that

|G(t, Y ◦
t )| ≲ V1

(
1 +

1

T − t
||LY ◦

t − v||
)
.

Then, on the event {t ≤ τ◦m}, we have that for some ϵ ∈ (0, 1/2), i.e.,

||LY ◦
t − v|| ≲ m(T − t)1/2−ϵ.

Therefore,

|G(t, Y ◦
t )| ≲ V1

(
1 +

m

T − t
(T − t)1/2−ϵ

)
.

Because V1 is almost sure finite for ϵ ∈ (0, 1/2), the right-hand side is integrable on [0, T ] and the claim
follows.

Lemma 4.7 (Adapted from Lemma 6.4 in [BMS20]). Let Assumption 4.1, Assumption 4.2, and As-
sumption 4.3 hold, then and 0 < t1 < t2 < · · · < tn < t < T and g be a bounded continuous function on
Rnd, then

lim
t↑T

E

[
g(Y ∗

t1 , . . . Y
∗
tn)

h̃(t, Y ∗
t )

h(t, Y ∗
t )

]
= E

[
g(Y ∗

t1 , . . . Y
∗
tn)
]

Proof. The proof can be found in [BMS20]

Lemma 4.8 (Adapted from Lemma 6.5 in [BMS20]). Let Assumption 4.1, Assumption 4.2, and As-
sumption 4.3 hold, then

E
[
1{t ≥ τm}h̃(t, Yt)

]
→ 0

Proof. The proof can be found in [BMS20].



5
Practical Algorithm

In this chapter, we elaborate on a practical interpretation of the pathwise importance sampling tech-
nique. We use amenable auxiliary processes based on linearizations of the unconditional drift and
consequently have tractable transition densities. The fidelity of the linearized drift is hypothesized to
be an important factor for the efficiency of our sampling approach.

However, in practice, it is difficult to choose a reasonable linear approximation for the entire time
span [0, T ] such that the auxiliary process remains similar to the process (Yt)t≥0. Therefore, we update
the auxiliary process at multiple times throughout the simulation. This introduces two issues with the
approach so far that need to be addressed. First, the adaptation of the auxiliary processes must be con-
sidered when computing the Radon-Nikodym derivative of the paths. This requires a minor variation
of Proposition 4.2, which we address in this chapter. Second, in the simulation of (Y ◦

t )t≥0, we compute
gradients of the log h̃ at the points in the discretization grid. A naive approach of the adaptive constant
drift approximation leads to severe instabilities, therefore for a practical method, the gradients must
be propagated through the linearization of the drift. This specific aspect required us to perform the
additional theoretical validation of the approach in Section 4.4 due to the incorporation of non-trivial
expressions for ∇µ̃T (t, x).

Moreover, an important question is whether our approach is asymptotically consistent. In particu-
lar, the canonical results on importance sampling from the previous chapter and the exact formula for
the Radon-Nikodym derivative only partially translate to our approach. This is because we consider a
discretized version of the proposal process. Therefore, we show that our approach is still asymptotically
consistent by inspecting the expected squared error and studying its behavior for large N and large M
under various assumptions.

On the practical side, we describe the formal algorithm for conditional sampling with a pre-trained
denoising process using our approach. Additionally, we lay out a flexible framework that enables various
method configurations. In particular, the algorithm can be implemented with intermediate resampling,
a well-known tactic to increase the particle efficiency of importance sampling algorithms, and indepen-
dent particle pools, a technique to distribute the allocation of computational effort among independent
and dependent instances of the algorithm.

In Section 5.1 we study the auxiliary processes with linear approximations of the drift coefficients,
and their adaptive mechanism that enables dynamic updates of the auxiliary processes for more accurate
proposal processes. In Section 5.2, we discuss the asymptotic consistency of our approach in terms of
a vanishing mean squared error. In Section 5.3 we provide an overview of our practical algorithm and
the consistent adaptation of intermediate resampling steps. Section 5.4 elaborates on the zero drift
approximation and the constant drift approximation.

47
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5.1. Adaptive Auxiliaries
At this point, we recall the construction of the (non-adaptive) proposal process in Equation 4.6, where
we superimpose a guidance term ∇ log h̃ upon the unconditional drift b. This way, some of the dynamics
of the unconditional process are effectively carried over to the proposal process.

5.1.1. Local Drift Approximations
Due to the difficulty of choosing a single auxiliary process Ỹ that resembles Y , we simultaneously
consider multiple auxiliary processes that we exchange as time passes from 0 to T . Specifically, we
mean that for some integer k, we define the process Ỹ (k) to be driven by the following SDE:

dỸ (k) = b̃(k)(t, Y
(k)
t )dt+ σ(t)dBt.

By the defining property of the auxiliary processes (Definition 4.1), the transition densities of the
auxiliary process are Gaussian. Therefore, we have that for the auxiliary process, the guidance term
has the form of Equation 4.10. Specifically for some vector valued function µ̃(k)

T : [0, T ]×Rd → Rd that
represents the conditional expectation of Ỹ (k)

T given Ỹ (k)
t = x and a real valued function C̃(k)

T : [0, T ]→ R
that represents the variance of Ỹ (k)

T given Ỹ
(k)
t . Note that the covariance matrix is independent of the

state, following the state-independent diffusion coefficients. Then, consider any full rank m× d matrix
L such that LC̃T (t)L

⊤ is invertible. It follows that LỸ (k)
T given that Ỹ (k)

t = x is Gaussian distributed.
Akin to what we show in Lemma 3.1, we may write

h̃(k)(t, x) ∝ exp

(
−1

2
||v − Lµ̃(k)

T (t, x)||2
(LC̃

(k)
T (t)L⊤)−1

)
. (5.1)

We update the auxiliary process at each step of the discretization of the Euler-Maruyama approximation.
This means that the proposal process is adapted through the dynamic auxiliary guidance term. We can
formally describe this by the following SDE:

dY ◦
t =

[
b(t, Y ◦

t ) +∇ log h̃kt
(t, Y ◦

t )
]
dt+ σ(t)dBt, (5.2)

with kt = min{k ∈ {1, . . .M} : tk ≥ t}.

A practical sampling scheme is obtained given a current state Y ◦
t , we sample the new state Y ◦

s at
time s = t+M−1 according to the following (Euler-Maruyama) rule, i.e.

Ŷ ◦
s = Ŷ ◦

t + (b(t, Ŷ ◦
t ) +∇ log h̃kt(t, Ŷ

◦
t ))M

−1 + σ(t)
√
MZ, (5.3)

where Z ∼ N (0, 1).

Remark 5.1 (Condition Satisfaction of YT,M and ŶT,M ). Condition satisfaction of Y ◦
T,M follows from

the result of Section 4.4 for arbitrary M . Specifically, given that all of the intermediate auxiliary
processes independently satisfy the conditions of Theorem 4.1 and Theorem 4.2, the choice of which
auxiliary process is used and when should not matter for the result. In the numerical setting, however,
the discretized process Ŷ ◦

T,M will not satisfy the condition because we are limited to the last discretization
step before T . This is not as problematic because using noise schedules ensures that the diffusion
coefficients are small near T , as discussed in Chapter 2. Therefore, in the context of the conditioning
of the denoising process, the discretized sample paths of the proposal processes are likely to satisfy the
condition for times that are close to T .
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5.1.2. Adaptive Radon-Nikodym derivative
The use of the adaptive auxiliary process requires us to reconsider the use of the importance weights
obtained in Proposition 4.2.

Proposition 5.1 (Adaptive Auxiliary Process). We consider the proposal of the form Equation 5.2
and denote the measure with P◦

Y . Then, the Radon-Nikodym derivative is

dPY

dP◦
Y

∣∣∣∣∣
FT

(Y ) =WT,M =

M∏
k=1

h̃k(tk+1, Y
◦
tk+1

)

h̃k(tk, Y ◦
tk
)

exp

(∫ tk+1

tk

Gk(s, Y
◦
s )ds

)
. (5.4)

Incidentally, we may use the following notation,

ρk =
h̃k(tk+1, Y

◦
tk+1

)

h̃k(tk, Y ◦
tk
)

and

ψk(t) = exp

(∫ t

0

Gk(s, Y
◦
s )ds

)
.

Furthermore, using the notation above, we may refer to the following quantity Ψk = ψk(tk+1)/ψk(tk).
This way we can write the weight of Equation 5.4 as

WT,M =

M∏
k=1

ρkΨk (5.5)

Proof. By Girsanov’s formula, we know that the following expression is the specified Radon-Nikodym
derivative

exp

(
−
∫ t

0

r̃s,ks
σ(s)W s −

1

2

∫ t

0

σ(s)r̃s,ks
· r̃s,ks

ds

)
,

where r̃s,ks
denotes ∇ log h̃ks

(s, Y ◦
s ). Now, we break this exponential up into a product of M exponen-

tials, i.e.

M∏
k=1

exp

(
−
∫ tk+1

tk

r̃s,kσ(s)W s −
1

2

∫ tk+1

tk

σ(s)r̃s,k · r̃s,kds
)
,

which allows us to conveniently write the terms r̃k instead of r̃ks
. Then, we can follow a similar derivation

as in Proposition 4.2, by treating all M auxiliary processes Ỹ (k) independently. This way, we arrive at
the desired result.

To obtain a practical approximation of the importance weight, we must deal with the integral in
Equation 5.4. To do this, we make use of a right Riemann sum approximation. This cannot be a left
Riemann sum. Otherwise, the term Gk can be degenerately reduced to zero for certain variations of Ỹ ,
e.g., the constant drift approximation that we describe in Section 5.4.

Definition 5.1 (Practical Importance Weight). Given a set of pairs of samples of {(Ŷ ◦
tk
, Ŷ ◦

tk+1
)}M−1

k=0

obtained as described in Equation 5.3, then we define the practical weight as

ŴT,M =

M∏
k=1

h̃k(tk+1, Ŷ
◦
tk+1

)

h̃k(tk, Ŷ ◦
tk
)

exp
(
Gk(tk+1, Ŷ

◦
tk+1

)(tk+1 − tk)
)
. (5.6)

and

Ŵt,M =

M∏
k=1,tk≤t

h̃k(tk+1, Ŷ
◦
tk+1

)

h̃k(tk, Ŷ ◦
tk
)

exp
(
Gk(tk+1, Ŷ

◦
tk+1

)(tk+1 − tk)
)
.

Furthermore, we may use ρ̂k to denote the practical equivalent of ρk
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5.2. Asymptotic Consistency
Now, we work towwards understanding the consistency of our approach. In particular, we discuss the
squared error of an approximate conditional probability, denoted by P̂ ∗

N,M (A), compared to the true
conditional probability P∗

YT
(A), for some measurable set A. We define the following

P̂ ∗
N,M (A) =

∑N
i=1 1A(Ŷ

◦
T,M )ŴT,M∑N

i=1 ŴT,M

, (5.7)

where ŴT,M is the practical importance weight and Ŷ ◦
T,M is the terminal value of an Euler-Maruyama

approximation of Y ◦ as discussed in the previous section. The idea of this section is to show that under
certain assumptions on the chosen auxiliary processes, the associated weight function, and the set A,
the squared error can be bounded by a sum of two vanishing functions of M and N , i.e.

E
[
|P̂ ∗

N,M (A)− P∗
YT

(A)|2
]
≲ 1

M
+

1

N
.

In particular, we show how the left-hand side of the above term can be decomposed into a term that
vanishes for large N as a result of the particle approximation and a different term that vanishes due to
the convergence of an Euler-Maruyama discretization. The latter is non-trivial because the discretiza-
tion also affects the frequency of updating the auxiliary process. Therefore, the main component of this
section is showing that for a fixed N , the particle approximation obtained with the discretized version
P̂ ∗
N,M (A) converges to the continuous-time particle approximation P ∗

N,M (A) as M grows large.

We make the following assumptions that may appear relatively abstract. This is necessary as it
is generally hard to make conclusions about the importance weight without explicitly knowing the
auxiliary drift b̃ or making assumptions about the unconditional drift b.

Assumption 5.1 (Properties of importance weights). Let us consider the importance weights WT,M as
defined in Equation 5.5 and the practical importance weights as defined in Equation 5.6. Furthermore,
we denote the reciprocal sum of the (practical) importance weights as

ZN,M =

N∑
i=1

W
(i)
T,M and ẐN,M =

N∑
i=1

Ŵ
(i)
T,M

and for R ⊆ {1, . . . , N}

ZN,M,−R =

N∑
i=1,i/∈R

W
(i)
T,M and ẐN,M,−R =

N∑
i=1,i/∈R

Ŵ
(i)
T,M .

We assume the following properties:

1. The (practical) importance weights are almost surely positive, i.e.

WT,M > 0 and ŴT,M > 0.

2. The fourth moment of the (practical) importance weight is bounded, i.e.

E
[
Ŵ 4

T,M

]
= O(1) and E

[
W 4

T,M

]
= O(1).

3. The fourth moment of the reciprocal sum of (practical) importance weights satisfies

E
[
Ẑ−4

N,M,−R

]
= O

(
1

(N − |R|)4

)
and E

[
Z−4

N,M,−R

]
= O

(
1

(N − |R|)4

)
,

for any R ⊆ {1, . . . , N} with |R| < 3.
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4. Consider the following notation:

Ik =

∫ tk+M−1

tk

Gk(t, Y
◦
t )dt and Îk = Gk(tk +M−1, Y ◦

tk+M−1)M−1.

Then, the following bounds hold

E

( M∏
k=1

ρk

)8
 = O(1) and E

( M∏
k=1

ρ̂k

)8
 = O(1)

and

E

exp( M∑
k=1

Ik

)8
 = O(1) and E

exp( M∑
k=1

Îk

)8
 = O(1)

A second assumption we make about the importance weights is slightly less explicit. Specifically, we
make an assumption about the function Gk.

Assumption 5.2. Let Y ◦ denote the proposal process and Ŷ ◦ its Euler-Maruyama approximation. The
function Gk as defined in Proposition 5.1 satisfies the following properties for M > 1 and 1 ≤ k < M :

1. We have that

sup
t∈[tk,tk+M−1]

|Gk(t, Y
◦
t )−Gk(t, Y

◦
tk+M−1)| ≲M−1 + sup

t∈[tk,tk+M−1]

||Y ◦
t − Y ◦

tk+M−1 ||, (5.8)

and there exists a finite random variable V such that

||Y ◦
t − Y ◦

tk+M−1 || ≤ VM−1.

2. We have that for all valid M and k

|Gk(tk +M−1, Y ◦
tk+M−1)−Gk(tk +M−1, Ŷ ◦

tk+M−1)| ≲ ||Y ◦
tk+M−1 − Ŷ ◦

tk+M−1 ||. (5.9)

The last assumption we make concerns the set A. Specifically, we want the sets A to be chosen such
that the behavior of the (discretized) proposal process around the boundary is sufficiently regular.

Assumption 5.3. Let Ŷ ◦
T,M denote an Euler-Maruyama approximate of Y ◦

T,M , specifically such that(
E
[
||Ŷ ◦

T,M − Y ◦
T,M ||p

])1/p
≲ 1√

M
.

This is, for example, shown under certain mild conditions in [AKK18]. Then, then A satisfies for all
M > 1

E
[
|1{Ŷ ◦(i)

T,M ∈ A} − 1{Y ◦(i)
T,M ∈ A}|

]
≲M−2

The purpose of these assumptions is to control the behavior of the proposal process and the discretiza-
tion at the boundaries of sets on which we evaluate the square error. Specifically, we do this by limiting
the sets to have a convenient behavior that limits the interplay between the error induced by the dis-
cretization and the set’s boundary. This is important, as highly irregular set boundaries may limit
the guarantee that the discrepancies between the discretized process and the exact process vanish suffi-
ciently fast for bounding the square error.



5.2. Asymptotic Consistency 52

Now we are ready to state the main theoretical result of this section, of which the main part of the
proof is then addressed in the remainder of this section.

Theorem 5.1 (Asymptotic Consistency P̂ ∗
N,M ). Let the denoising process Y satisfy the standard setting,

specifically the conditions on the driving SDE for uniqueness and existence of the solution. Let the
following assumptions hold for all k ∈ {1, . . . ,M} for all M > 1:

• the auxiliary process Ỹ (k) satisfies Assumption 4.1

• the drift of Y and the drift of Ỹ evaluated on Y ◦ satisfies Assumption 4.2.

• the unconditional denoising process Y and the auxiliary process Ỹ satisfy Assumption 4.3,

• the (practical) importance weights satisfy Assumption 5.1,

• the functions Gk (as defined in Proposition 5.1) satisfy Assumption 5.2,

• the set A satisfies Assumption 5.3.

Then, for N > 2

E
[
(P̂ ∗

N,M (A)− P∗
YT

(A))2
]
≲ 1

M
+

1

N
.

Proof. We use the fact that (x+ y)2 ≤ 2x2 + 2y2, to decompose the squared error into

1

2
(P̂ ∗

N,M (A)− P∗
YT

(A))2 ≤ (P̂ ∗
N,M (A)− P ∗

N,M (A))2 + (P ∗
N,M (A)− P∗

YT
(A))2,

where we denote

P ∗
N,M (A) =

∑N
i=1 1A(Y

◦
T,M )WT,M∑N

i=1WT,M

,

which does depend on M , but not on the discretization. Specifically, Y ◦
T,M is the exact terminal value

of the process with the M different auxiliary guidance terms, and WT,M is the exact importance weight.
Then, from Assumption 5.1, it follows that the second moments of the weights are bounded, so we can
use Proposition 4.1 to bound the second term. Now, we use Lemma 5.2 to bound the first term, which
gives us the desired result.

The proof of this theorem is outlined above and can be primarily decomposed into two separately stud-
ied Lemmas that are given throughout the remainder of this section. The error term described in the
above equation can be decomposed into an error induced by the discretization and an error induced
by the particle approximation. The former requires some explicit effort, because the specific form does
not frequently appear in literature. The latter error is more standard, as is portrayed in Section 4.1,
specifically Proposition 4.1.

As a final remark, Theorem 5.1 leads to a simple corollary on vanishing bias.

Corollary 5.1 (Vanishing bias). Under the setting of Theorem 5.1, as N →∞ and M →∞, we have
that

|E
[
P̂ ∗
N,M (A)

]
− P∗

YT
(A)| → 0.

Proof. Convergence in L2 implies convergence in L1 by Hölder’s Inequality and because

|E
[
P̂ ∗
N,M (A)

]
− P∗

YT
(A)| ≤ E

[
|P̂ ∗

N,M (A)− P∗
YT

(A)|
]
,

the claim follows.
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Remark 5.2 (Relation to a total variation(-like) metric). To study the relation of Theorem 5.1 with
an actual metric for probability distributions, we may consider that a restricted version of the total
variation. Specifically, between the expectation of the random measure P̂ ∗

N,M and the true measure P∗
YT

.
It converges to zero due to the vanishing bias, i.e., let R denote the restriction to those sets that satisfy
Assumption 5.3

sup
A∈R

∣∣∣∣∣E [P̂ ∗
N,M (A)

]
− P∗

YT
(A)

∣∣∣∣∣→ 0.

Clearly, the above expression is only a lower bound on the actual total variation TV(P̂ ∗
N,M ,P∗

YT
), which

makes it less meaningfull. This is for two reasons, first being that taking the supremum over the entire
σ-algebra F gives

sup
A∈R
|E
[
P̂ ∗
N,M (A)

]
− P∗

YT
(A)| ≤ sup

A∈F
|E
[
P̂ ∗
N,M (A)

]
− P∗

YT
(A)|

and second, considering the random counting measure itself instead of its expectation gives

sup
A∈R
|E
[
P̂ ∗
N,M (A)

]
− P∗

YT
(A)| ≤ sup

A∈R
|P̂ ∗

N,M (A)− P∗
YT

(A)|.

Therefore, because it is difficult to say something meaningful about the actual total variation, we leave
these considerations in this direction for future research.

5.2.1. Lemmas of Theorem 5.1
To show the convergence of (P̂ ∗

N,M (A)− P ∗
N,M (A))2 ( Lemma 5.2), we can make use of the definitions

and a useful rewriting, such that most of the terms in our expression the assumptions directly result
into a bound on the expectation. First, we inspect the behavior of (ŴT,M −WT,M ).

Lemma 5.1 (Square error of ŴT,M ). Let Assumption 5.1 and Assumption 5.2 hold for ŴT,M and
WT,M , then

E
[
(ŴT,M −WT,M )2

]
≲ 1

M
.

Proof. Writing out the expression gives us the following:

(ŴT,M−WT,M )2 =

(
M∏
k=1

ρ̂k exp

(
M∑
k=1

Gk(tk+1, Ŷ
◦
tk+1

)M−1

)
−

M∏
k=1

ρk exp

(
M∑
k=1

∫ tk+M−1

tk

Gk(t, Y
◦
t )dt

))2

.

We use the notation of Assumption 5.1 and bound it by

max

{
M∏
k=1

ρ2k,

M∏
k=1

ρ̂2k

}(
exp

(
M∑
k=1

Îk

)
− exp

(
M∑
k=1

Ik

))2

.

The premise of the proof is based on applying the mean value theorem to the squared difference of the
exponential functions. specifically, we consider the that for a, b ∈ R there exists a value c ∈ (a, b) such
that

(ea − eb) = (a− b)ec,

where is a value c ∈ (a, b). Then

(ea − eb)2 = e2c(a− b)2 ≤ (a− b)2 · max
c∈(a,b)

e2c,

where the latter equality is due to the monotonicity of the exponential function. we can now to derive
the following upper bound:
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(ŴT,M −WT,M )2 ≤ max

{
M∏
k=1

ρ2k,

M∏
k=1

ρ̂2k

}
exp

(
max

{
2

M∑
k=1

Ik, 2

M∑
k=1

Îk

})(
M∑
k=1

(Ik − Îk)

)2

.

Then, we consider a Taylor approximation of Ik can be made at (tk +M−1, Y ◦
tk+M−1). Specifically,

note that for some integral of a real-valued function, we have that by Taylor’s theorem that

F (t) =

∫ a

t

f(s)ds = F (a) + F ′(a)(t− a) + 1

2
F ′′(a)(t− a)2 + · · ·+ F (n) 1

n!
(t− a)n + . . .

=

∫ a

a

f(s)ds− f(a)(t− a) +R1(t)

= −f(a)(t− a) +R1(t),

such that |R1(t)| ∝ h1(t)(t−a) with h1 vanishing as t→ a faster than t−a. Applying Taylor’s theorem
with random functions is not trivial, because the remainder term is generally not guaranteed to be
controllable without making significant assumptions. Here, using our assumption on the functions Gk,
we can control the behavior of the random-valued remainder term. To show this, we proceed with some
additional care. Consider using the above writing the integral Ik as a function of t (and of ω ∈ Ω to
avoid a certain level of ambiguity), to obtain

Ik(t, ω)
def
=

∫ tk+M−1

t

Gk(t, Y
◦
t (ω))dt

=

∫ tk+M−1

tk+M−1

Gk(t, Y
◦
t (ω))dt

−Gk(tk +M−1, Y ◦
tk+M−1(ω)) · (t− (tk +M−1)) +R1(t, ω).

Then again, the first integral on the right-hand side evaluates to zero. Therefore, we have that

Ik(ω) = Ik(tk, ω)) = Gk(tk +M−1, Y ◦
tk+M−1(ω))M−1 −R1(tk, ω).

Now, we consider that

R1(t, ω) = Ik −Gk(tk +M−1, Y ◦
tk+M−1(ω))M−1

≤M−1 sup
t∈[tk,tk+M−1]

Gk(t, Y
◦
t (ω))−Gk(tk +M−1, Y ◦

tk+M−1(ω))M−1

≤M−1

(
sup

t∈[tk,tk+M−1]

Gk(t, Y
◦
t (ω))−Gk(tk +M−1, Y ◦

tk+M−1(ω))

)
.

We obtain by Assumption 5.2 that |R1(t, ω)| = O(M−2). Now that we have arrived at the above bound,
which is no longer ambiguous with respect to the remainder term of the Taylor expansion, we drop the
dependency on ω in our notation again.

The Taylor expansion conveniently aligns with using the right Riemann sum in the discretization
scheme. Therefore,

(Ik − Îk)2 ≲ (Gk(tk +M−1, Y ◦
tk+M−1)M−1 +O(M−2)−Gk(tk +M−1, Ŷ ◦

tk+M−1)M−1)2.

Then, again using our assumptions about Gk, we have that

(Ik − Îk)2 ≲
(
O(M−1)||Ŷ ◦

tk+M−1 − Y ◦
tk+M−1 ||+O(M−2)

)2
.
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We can use this inequality to bound(
M∑
k=1

Ik − Îk

)2
CS
≤ M

M∑
k=1

(Ik − Îk)2 ≲ ||Ŷ ◦
tk+M−1 − Y ◦

tk+M−1 ||2 +O(M−2),

where the inequalities are due to Cauchy-Schwarz inequality, the canceling of M2 with M−2 and
(a+ b)2 ≤ 2a2 + 2b2.

Summarizing what we have so far gives us the following bound:

(ŴT,M −WT,M )2 ≤ max

{
M∏
k=1

ρ2k,

M∏
k=1

ρ̂2k

}
exp

(
max

{
2

M∑
k=1

Ik, 2

M∑
k=1

Îk

})
· (||Ŷ ◦

tk
− Y ◦

tk
||2 +O(M−2)).

Now, we consider taking the expectation and use Cauchy-Schwarz to derive

(
E

[
max

{
M∏
k=1

ρ2k,

M∏
k=1

ρ̂2k

}
exp

(
max

{
2

M∑
k=1

Ik, 2

M∑
k=1

Îk

})
· (||Ŷ ◦

tk
− Y ◦

tk
||2 +O(M−2))

])2

CS
≤ E

[
max

{
M∏
k=1

ρ4k,

M∏
k=1

ρ̂4k

}
exp

(
max

{
4

M∑
k=1

Ik, 4

M∑
k=1

Îk

})]
· E
[
(||Ŷ ◦

tk
− Y ◦

tk
||2 +O(M−2))2

]
.

Now, by the fourth item of Assumption 5.1 we know that the first term is bounded, indeed by Cauchy-
Schwarz

E

[
max

{
M∏
k=1

ρ4k,

M∏
k=1

ρ̂4k

}
exp

(
max

{
4

M∑
k=1

Ik, 4

M∑
k=1

Îk

})]2

≤ E

[
max

{
M∏
k=1

ρ8k,

M∏
k=1

ρ̂8k

}]
E

[
exp

(
max

{
8

M∑
k=1

Ik, 8

M∑
k=1

Îk

})]
= O(1),

which gives us that

E
[
(ŴT,M −WT,M )2

]
≲
√(

E
[
||Ŷ ◦

tk
− Y ◦

tk
||4
]
+ 2O(M−2)E

[
(||Ŷ ◦

tk
− Y ◦

tk
||2
]
+O(M−4)

)
.

Now, we use the convergence rate of the Euler-Maruyama approximation as assumed in Assump-
tion 5.3, i.e., (

E
[
||Ŷ ◦

tk
− Y ◦

tk
||p
])1/p

≲ 1√
M
.

Therefore, we know that(
E
[
||Ŷ ◦

tk
− Y ◦

tk
||4
])

= O(M−2) and
(
E
[
||Ŷ ◦

tk
− Y ◦

tk
||2
])

= O(M−1).

Using this in the inequality above, we obtain

E
[
(ŴT,M −WT,M )2

]
≲
√
O(M−2) +O(M−3) +O(M−4) = O(M−1).

which results from concavity of the mapping · → ·1/2, Jensen’s inequality and the fact that the M−2

dominate M−3 and M−4 as M →∞.
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Finishing the proof
Now, we use the above-determined Lemma to demonstrate the behavior of P̂ ∗

N,M as M → ∞. We do
this by showing a bound on the mean squared error between P̂ ∗

N,M and P ∗
N , which is the approximation

with exact continuous samples of the proposal process.

Lemma 5.2 (Square error of P̂ ∗
N,M (A)). Let Assumption 5.1 and Assumption 5.3 hold, then for N > 2

E
[
(P̂ ∗

N,M (A)− P ∗
N (A))2

]
≲M−1.

Proof. The idea of this proof is to split the error with the following inequality using that (a + b)2 ≤
2a2 + 2b2

1

2
(P ∗

N (A)− P̂ ∗
N,M (A))2 ≤

(
P̂ ∗
N,M (A)− 1

ẐN,M

N∑
i=1

1{Y ◦(i)
T ∈ A}W (i)

T,M

)2

︸ ︷︷ ︸
(I)

+

(
1

ẐN,M

N∑
i=1

1{Y ◦(i)
T ∈ A}W (i)

T,M − P
∗
N (A)

)2

︸ ︷︷ ︸
(II)

.

Then note that the first term is written as

(I) =

(
P̂ ∗
N,M (A)− 1

ẐN,M

N∑
i=1

1{Y ◦(i)
T ∈ A}W (i)

T,M

)2

=
1

Ẑ2
N,M

(
N∑
i=1

(1{Y ◦(i)
T,M ∈ A} − 1{Y ◦(i)

T ∈ A})W (i)
T,M

)2

,

and the second term can be written as

(II) =

(
1

ẐN,M

N∑
i=1

1{Y ◦(i)
T ∈ A}W (i)

T,M−P
∗
N (A)

)2

=

(
N∑
i=1

1{Y ◦(i)
T ∈ A}

(
1

ẐN,M

Ŵ
(i)
T,M −

1

ZN,M
W

(i)
T,M

))2

.

First term. Using Cauchy-Schwarz inequality, we have that

(I) ≤ 1

Ẑ2
N,M

(
N∑
i=1

(1{Y ◦(i)
T,M ∈ A} − 1{Y ◦(i)

T ∈ A})2
)(

N∑
i=1

(
W

(i)
T,M

)2)

=

(
N∑
i=1

1

ẐN,M

(1{Y ◦(i)
T,M ∈ A} − 1{Y ◦(i)

T ∈ A})2
)(

N∑
i=1

1

ẐN,M

(
W

(i)
T,M

)2)

≤

(
N∑
i=1

1

ẐN,M,−{i}
(1{Y ◦(i)

T,M ∈ A} − 1{Y ◦(i)
T ∈ A})2

)(
N∑
i=1

1

ẐN,M,−{i}

(
W

(i)
T,M

)2)
.

The latter inequality is due to the fact that ẐN,M,−{i} < ẐN,M and ZN,M,−{i} < ZN,M , because of the
positivity of the importance weights. Then again, applying Cauchy-Schwarz gives us:
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E [(I)]
2 CS
≤ E

( N∑
i=1

1

ẐN,M,−{i}
(1{Y ◦(i)

T,M ∈ A} − 1{Y ◦(i)
T ∈ A})2

)2
E

( N∑
i=1

1

ẐN,M,−{i}

(
W

(i)
T,M

)2)2


CS
≤ E

[
N

N∑
i=1

1

Ẑ2
N,M−{i}

(1{Y ◦(i)
T,M ∈ A} − 1{Y ◦(i)

T ∈ A})4
]
E

[
N

N∑
i=1

1

Ẑ2
N,−{i}

(
W

(i)
T,M

)4]

Lin. & Indep.
= N

N∑
i=1

E

[
1

Ẑ2
N,M−{i}

]
E
[
(1{Y ◦(i)

T,M ∈ A} − 1{Y ◦(i)
T ∈ A})4

]
N

N∑
i=1

E

[
1

Ẑ2
N,M,−{i}

]
E
[(
W

(i)
T,M

)4]
Ident.
= N4E

[
1

Ẑ2
N−1,M

]2
E
[
(1{Y ◦

T,M ∈ A} − 1{Y ◦(1)
T ∈ A})4

]
E
[
(WT,M )

4
]
.

A bound can be obtained from using Assumption 5.3, combined with moment bounds on the weights
and normalization that are given in Assumption 5.1, respectively. The bound is as follows:

E [(I)′] ≲ N2 1

M

√
E
[
(WT,M )

4
]√√√√E

[
1

Ẑ4
N−1,M

]
= N2 1

M
O(1)

√
1

(N − 1)4
≲ 1

M
.

Second term. Now for the term (II), we use again a Cauchy-Schwarz inequality

(II)
CS
≤

(
N∑
i=1

1{Y ◦(i)
T ∈ A}

) N∑
i=1

(
1

ẐN,M

Ŵ
(i)
T,M −

1

ZN,M
W

(i)
T,M

)2
 = (II)′.

This can be bounded by

(II)′
CS
≤ N

N∑
i=1

(
1

ẐN,M,−{i}
Ŵ

(i)
T,M −

1

ZN,M,−{i}
W

(i)
T,M

)2

. (5.10)

We now consider the following decomposition for some positive constant C, using (a+ b+ c)2 ≤ 3a2 +
3b2 + 3c2, i.e.,

1

3
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ẐN,M
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W

(i)
T,M
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=
1

3
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(i)
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)
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(i)
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)
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1
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Ŵ
(i)
T,M − C · Ŵ

(i)
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+ C2 · (Ŵ (i)
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(i)
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C ·W (i)
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(i)
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≤ (Ŵ
(i)
T,M )2

(
1
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+ (W
(i)
T,M )2

(
1

ZN,M
− C

)2

+ C2 · (Ŵ (i)
T,M −W

(i)
T,M )2.

Specifically, we choose C = 1

ẐN,M
, such that we have

(
1

ẐN,M

Ŵ
(i)
T,M −

1

ZN,M
W

(i)
T,M

)2

≤ (W
(i)
T,M )2

(
1

Z N,M
− 1

ẐN,M
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1

Ẑ2
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(i)
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This enables us to write
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1
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(i)
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Then, because of the independence, identical distribution and linearity, we can write the expectation of
Equation 5.10 as

N2E

( 1

ẐN−1,M

ŴT,M −
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WT
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W 2
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 (5.11)

+N2E

[
1

Ẑ2
N−1,M
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E
[
(ŴT,M −WT,M )2

]
. (5.12)

By Lemma 5.1 the last term is O(M−1]) and we know that by our assumptions
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What remains is to use a−1 − b−1 ≤ (a− b)max{a−2, b−2} to derive
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 .

Then the expectation can be bounded in the following way
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Lin. & Indep.
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{
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(ŴT,M −WT,M )2
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1
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where the last inequality is due to our assumptions and Lemma 5.1. Using this bound in Equation 5.11
shows that term (II) is also O(M−1)/ Then combining all our derived bounds, we find that both terms
(I) and (II) are O(M−1) and independent of N for N > 2, so we have our desired result.
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5.3. Algorithmic Details
In Algorithm 1, we give a formal description of the practical algorithm that is contributed in this work.
Before we describe it, we introduce two practical aspects that enable a more efficient usage of the
importance sampling technique.

5.3.1. Intermediate Resampling
A well-known phenomenon of importance sampling is the degeneracy of importance weights. In the
context of stochastic processes, this degeneracy is driven by both the number of time steps and the
dimensionality of the state space. The collapse is caused by almost all particles having low weights, while
only a few particles do not. A commonly made adjustment is the intermediate resampling technique,
which, combined with the importance sampling procedures, is also known as sequential Monte Carlo.
The idea of intermediate resampling is that we refresh the particles at intermediate times by resampling
proportional to the computed importance weights. Therefore, the hope is that at time T , more high
quality particles are available. The intermediate resampling at time t is done by drawing resampled
indices, denoted by I(i), from the following multinomial distribution, i.e.,

I(i) ∼ Cat

{ (Ŵtk,M )(i)∑N
m=1(Ŵtk,M )(m)

}N

i=1

 for i ∈ {1, . . . , N}. (5.13)

Using these sampled indices, it can be seen that the multinomial resampling operation is unbiased. Here,
I(i) is the index of the resampled particle replacing particle i, drawn from a categorical distribution
defined by the normalized weights.

To see this, let {I(i)}Ni=1 be a set of i.i.d. random variables distributed according to Equation 5.13,
then

E
[
(Y ◦

t )
(I(i))|{Y (i)

t }i=1

]
=

N∑
i=1

Y
◦(i)
t

(Ŵt,M )(i)∑N
m=1(Ŵt,M )(m)

,

where the expectation is taken w.r.t. the sample index set. The identity can be derived by evaluating
the expectation of the discrete categorical probability distribution.

5.3.2. Independent Particle Pools
Furthermore, we propose to consider parameterizing the method configuration with a number K, that
divides N , and represents the number of independent pools of particles. One independent pool is a
set of N/K particles that start at the same initial state, among which the weights are normalized and
resampled if necessary. This simple addition provides an intuitive way to flexibly allocate resources to-
wards diversity and quality, even when the dimensionality of the state space is so high that the weights
collapse onto a single particle with and without intermediate resampling.

We may now choose different initial positions for the different pools. However, because we only
normalize weights within each pool, the consistency of the importance sampling procedure is not broken.
Formally, we write this resampling operation as follows. For particle index i ∈ {1, . . . , N} consider
Pl ⊆ {1, . . . , N} that denotes the indices corresponding to the l-th pool. Then, for each pool Pl, the
resampling operation is performed independently, i.e., for all l

I(i) ∼ Cat

{ (Ŵt,M )(j)∑
m∈Pl

(Ŵt,M )(m)

}
j∈Pl

 , for i ∈ Pl. (5.14)

Here, again I(i) is the index of the resampled particle replacing particle i, drawn from a categorical
distribution defined by the normalized weights within its pool.
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5.3.3. Algorithm Overview
The outline of the algorithm is as follows. First, in the initial step, an initial state is sampled for each K
independent particle pool. Second, in the sample step, R consecutive steps are sampled for all particles.
Third, the weights are computed according to Equation 5.6. Fourth, the weights are used to resample
the particles. Then, if the number of sampled steps is not at the discretization level M , we go back to
step 2. Otherwise, the particles return. If the index is omitted, the procedure is identical for all indices.

In the previous section, we assume that in the algorithm configuration, no intermediate resampling
is used, i.e., R = M , and there is a single pool of particles, i.e., K = 1. However, it should not be
difficult to extend the results for the different configurations. First, K > 1 amounts to changing N to
N/K in the results below. Second, choosing R < M amounts to partitioning the complete time span
[0, T ], and considering the results locally within the time spans.

Algorithm 1.
Input: Discretization level M , Number of particles N , Number of pools K, Number of steps between
resample times R.
Output: {Y (i)}Ni=1 ⊂ Rd

1. (Initial step) Sample K initial states {y(l)0 }Kl=1 from the initial distribution PY0
and set

(Ŷ ◦
0 )

(i) = y
(l)
0 for i ∈ Pl,

where {Pl}Kl=1 partitions {1, . . . , N} into K evenly sized sets.

2. (Sample step) Sample Y ◦
tj , . . . , Y

◦
tj+R

as is described in Equation 5.3

3. (Weight step) Compute practical incremental weights from time j to j + R according to Equa-
tion 5.6, specifically

Ŵtj ,M =

j+R∏
k=j

h̃k(tk+1, Ŷ
◦
tk+1

)

h̃k(tk, Ŷ ◦
tk
)

exp
(
Gk(tk+1, Ŷ

◦
tk+1

)(tk+1 − tk)
)
.

4. (Resample step) sample new indices according to Equation 5.14, update j = j +R and set

(Ŷ ◦
tj )

(i) = (Ŷ ◦
tj )

(I)(i) .

if j < M go to step 2 otherwise stop and return {(Ŷ ◦
tM )(i)}Ni=1.

Remark 5.3 (Typical configurations). The following configurations of Algorithm 1 are associated for
choices of K and R

• Proposal K = N , R free.

• IS K = 1, R =M

• SMC K = 1, R = 1

If we choose K = N , we use no importance sampling, and in this case, the output is not changed by
resampling, so R is free. If we choose R = M and K = 1, we have the standard path-wise importance
resampling method. If we choose K = 1 and R = 1, we have a canonical sequential Monte Carlo method
that resamples at every step.
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Figure 5.1: Illustration of unconditioned process and auxiliary processes. The leftmost panels display the
ZDA auxiliary process. The middle three figures display three instances of the constant drift approximation auxiliaries
with different update times. The rightmost figure displays the unconditional process. The vertical lines represent the
update times of the constant drift, i.e., the different values for t0.

5.4. Concrete Auxiliaries
The simplest auxiliary process we choose is a time-inhomogeneous Brownian motion, the zero-drift
approximation. Because the adaptive framework does not affect the zero-drift approximation, the
algorithm and theory is significantly simplified in this case.

Definition 5.2 (Zero-Drift Approximation (ZDA)). The auxiliary process with zero drift is driven by
the following SDE

dỸt = σ(t)dBt,

where σ is the same scalar diffusion coefficient as in the unconditional denoising process Y (Equa-
tion 2.7).

To compute h̃(t, x), we observe that the transition distribution of Ỹ is given by

ỸT |Ỹt ∼ N

(
Ỹt,

∫ T

t

σ2(r)drId×d

)
.

Here, we recognize the functions

C̃T (t) = Id×d

∫ T

t

σ2(r)dr, and µ̃T (t, x) = x,

as in the context of Lemma 3.1. Making use of the fact that σ is a scalar function, we can easily write
out the gradient log term in Equation 4.6 as follows

∇ log h̃(t, x) =

(∫ T

t

σ2(r)dr

)−1

L⊤(LL⊤)−1 (v − Lx) ,

with L ∈ Rm×d, such that (LL⊤)−1 exists. The practical incremental importance weights, defined in
Equation 5.6, for the ZDA proposal amount to

Gk(t, x) = b(t, x) · ∇ log h̃(t, x).

It is important to note that ∇µ̃T (t, x) = Id×d.
The constant drift auxiliary process is based on a constant approximation of the drift b(t, x) at

(t0, x0). Using this constant approximation, we can obtain an auxiliary process (Ỹt)
T
t=t0 .

Definition 5.3 ((G)CDA Auxiliary process). Let t0 ∈ [0, T ). Then the auxiliary process based on a
constant drift approximation is driven by the following SDE for t ≥ t0,

dỸt = b(t0, x0)dt+ σ(t)dBt, Ỹt0 = x0,

where σ is the same scalar diffusion coefficient as in the unconditional denoising process Y (Equa-
tion 2.7).
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To compute the h̃(t, x), as in Equation 5.1 for some t > t0, we observe that the transition distribution
of Ỹ is given by

ỸT |Ỹt = x ∼ N

(
x+ b(t0, x0)(T − t),

∫ T

t

σ2(s)ds

)
Note that this approximation resembles an Euler-Maruyama approximation, without approximating the
diffusion coefficient.

C̃T (t) = I

∫ T

t

σ2(r)dr and µ̃T (t, x) = x+ b(t0, x0)(T − t),

where I is the d× d identity matrix.

An important realization when employing the conditioning based on auxiliary SDEs is that the
chosen constant drift depends on the values of the auxiliary process at t0. In the zero drift processes
we described earlier, this aspect does not play a role, because µ̃T (t, x) = x and therefore ∇µ̃(t, x) = 1.
However, severe instabilities may occur if the gradient is not propagated in the case that ∇µ̃(t, x) 6= 1.

At this point, it is essential to recall that the linear drift of the auxiliary processes (Ỹt)t≥0, ensures
that

log h̃(t, x) ∝ ||Lµ̃T (t, x)− v||2(LC̃T (t)L⊤)−1

where the function µ̃T (t, x) represents the conditional expectation of ỸT given Ỹt = x. If we compute
a gradient of log h̃ at (t0, x0), it is important to consider that the log h̃ depends on x0 (through µ̃T ).
Therefore, the instabilities may be resolved by propagating the gradients at the expansion points (t0, x0)
through µ̃T . To be precise, this means that the gradient of the log of h̃ of CDA
and therefore

∇µ̃T (t, x) =

{
1 + (T − t)∇b(t, x) if (t, x) = (t0, x0),

1 otherwise.

We refer to this gradient propagation strategy is as GCDA, which is an acronym for Gradient propa-
gated Constant Drift Approximation.
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6
Empirical Analysis

In this chapter, we evaluate the performance of our methods in settings with finite computational effort
through an empirical analysis. Our analysis primarily concerns the statistical performance of the differ-
ent variants of our method, and how it improves for increased computational effort. Following this, we
analyze the effect of slightly varied method configurations, i.e., with intermediate resampling and/or
pooled particles..

The theory of importance sampling promises a strictly increasing performance as the number of
particles grows. However, the steepness of the performance increase may heavily depend on the spe-
cific data distributions and method configurations. Therefore, we choose a variety of experiments to
investigate the performance. The choice of auxiliary process primarily distinguishes the method config-
urations we evaluate. In particular, we consider the zero drift approximation (ZDA, Definition 5.2) and
the gradient propagated constant drift approximation (GCDA, Definition 5.3). Furthermore, we use a
variance-preserving diffusion model with a quadratic noise schedule (Definition 2.4).

The primary goal of this chapter is to measure the statistical performance, i.e., the ability to ap-
proximate the conditional distribution, in a variety of ways. The overarching principle is to quantify a
discrepancy between the approximate conditional (empirical) distribution that we obtain from samples
of our approach and an (pseudo-)exact conditional (empirical) distribution that we obtain from samples
of an exact conditioned model. Here, we make use of the exact conditioned model that is available in
our simplistic experimental setting. Partially, our findings align with the intuition behind importance
sampling. However, they also convey some surprising behavior within GCDA that does not have an
increasing performance in low-dimensional state spaces.

A secondary goal is to evaluate the effective sample size, a typical quantification of the efficiency
of the proposal distributions in the context of importance sampling, of our approaches for varying the
number of dimensions. To be precise, we study the nature of the statistical computational tradeoff that
importance sampling induces. The canonical effect of dimensionality on importance sampling results in
the well-known weight degeneracy phenomenon, which refers to the collapse of a diverse set of particles
into a single unique one. Here, we find that this phenomenon is practically insurmountable, due to the
exponential decay of the weights being driven by both the dimensionality of the problem as well as the
number of time steps used to sample the denoising process. To this end, we experiment with the use
of intermediate resampling and the allocation of computational resources among different independent
pools to demonstrate how the efficiency of our approach can be partially preserved.
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Name symbol
Approximate KL Divergence D̂KL

Mean Square Error (of the conditional expectation) MSE
Kolmogorov Smirnov Statistic DKS

Wasserstein 2 Distance W2

Sliced Wasserstein Distance SWD

Table 6.1: Table containing statistical performance metrics. The Kolmogorov-Smirnov Statistic and the
Wasserstein 2 distance are computed with the Python package Scikit-learn. The sliced Wasserstein distance is
computed with the Python package pythonot. The approximate KL divergence and the mean square error can be
computed directly with sample means and variances.

In Section 6.1, we study the performance of the core method configurations. Specifically, we mea-
sure the statistical performance of the method for different configurations under a highly simplified,
low-dimensional setting. Here, we primarily focus on varying the number of particles used in the ap-
proach, the dimensionality of the problems, and the number of time discretization steps. In Section 6.2,
we empirically study the interplay between the dimensionality and the statistical performance. In Sec-
tion 6.3, we inspect the behaviour of the different proposal processes. Specifically, we study the effective
sample sizes and associated weight degeneracy. Furthermore, we observe how intermediate resampling,
which is commonly used as a remedy for the weight degeneracy problem, only offers a partial mitigation
in our setting. Finally, in Section 6.4, we study the particle allocation problem to independent particle
pools.

For notational clarity, we now drop the dependency on time from the random variables as we are
only interested in the value of Y at time T , i.e., if we write Y := YT . We compute the performance
based on two sample sets, one set of samples of a ground-truth conditional distribution Y = {Y (i)}Ni=1,
that is approximately distributed by P∗

X0
, and one set obtained with our approach Ŷ = {Ŷ (i)}Ni=1 as

obtained by Alg. 1, where the distribution above implicitly depends also on the number of particle pools
K, the intermediate resampling time step R, and the choice of the proposal process (ZDA or GCDA).

6.1. Empirical Convergence Rates
We first study the empirical convergence rates in small problems, such that the low-dimensional intu-
ition of importance sampling is demonstrated. Specifically, we compute the statistical performance for
various configurations according to some of the performance metrics described in Table 6.1.

Specifically, we use a Kolmogorov-Smirnov test statistic to determine whether the empirical cu-
mulative distribution function (CDF) of a sample obtained with the generative diffusion significantly
resembles the true CDF. The quantity DKS represents the largest absolute difference between two CDFs
and thus quantifies the worst-case deviation. Therefore, the rate of improvement is expected to be rel-
atively slow as we increase the number of particles.

Furthermore, given the simplicity of our examples, we can also use an approximate KL divergence.
Assuming that the underlying distributions are approximately Gaussian, the approximate KL divergence
provides a useful scalar performance metric for quantifying the discrepancy. Let m and a denote the
sample average and variance of {Y (i)}Ni=1 and the sample variance and let m̂ and â denote the sample
average and variance of {Ŷ (i)}Ni=1 then the approximate KL-divergence is denoted by

D̂KL(Y, Ŷ)
def
= DKL(N (m, a) ‖ N (m̂, â)) (6.1)

This is a very simplified estimator and is strictly limited to the one-dimensional case, where such an
approximation is plausible.

A different way to measure the statistical performance is the Wasserstein-2 distance W2. This is
an actual metric on the space of distributions that is sensitive to the overall shape of the distribution,
rather than just the centers or most extreme absolute difference between CDFs, and provides valuable
information about the discrepancy between two distributions.
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Figure 6.1: Illustration of experimental settings. (Left) The scatter plots indicate samples of the
two-dimensional distribution described in Example 6.2 and Example 6.1. The grey shaded area indicates the density of
the distributions, and the red ellipses display the covariance of the individual Gaussians. The vertical blue line indicates
the conditioning of the horizontal dimension. The vertical marginal of the conditional distributions are displayed in the
plots besides the respective scatter plots. (Right) The panels show samples of 16 dimensional multivariate samples from
Example 6.3 in the left columns and Example 6.4 in the right column. The top row shows samples of the unconditional
distributions, and the bottom row shows samples from the ground truth conditional distributions.

6.1.1. Effect of Number of Particles
The following two examples describe the data models and conditions we use in the two-dimensional
examples. In Figure 6.1a, we see samples of the example data models.

Example 6.1 (Bivariate). Consider the following bivariate Gaussian model

PX0
= N

((
0
0

)
,

(
1 0.9
0.9 1

))
. (6.2)

The condition we consider is based on a matrix L =
(
1 0

)
and a vector v = 1. Note that a ground

truth model can be (informally) described by having the following mean and covariance matrix(
1
0.9

)
and

(
0 0
0 0.19

)
, (6.3)

which are computed as described in Section 2.3 of [Bis06]. The zero variance indicates that the value
is deterministic. This is therefore not a true covariance matrix that defines a Gaussian distribution.
Therefore, in practice, we may add Iϵ to the covariance matrix for a negligible ϵ > 0 (ϵ = 10−6),
such that we can easily sample from the Gaussian distribution. We adopt this practical aspect for the
remainder of the conditioned distributions.

Example 6.2 (Bivariate Bimodal Mixture). Consider the following bivariate bimodal model

PX0
=

1

2
N (−1,Σ) + 1

2
N (1,Σ) , where Σ =

(
0.2 0
0 0.2

)
(6.4)

The condition in this example is identical to that of Example 6.1. The ground-truth conditional distri-
bution is approximated by N (1,Σ), which is justifiable as the contribution of the Gaussian centered at
−1 is negligible to the conditional data distribution due to the variances being chosen small enough.

In Figure 6.2, we depict statistical performance measures of different method configurations for the
contexts of Example 6.1 and Example 6.2. The red lines indicate the configuration with no importance
sampling because the number of particle pools K equals the number of particles, i.e., every particle
is independent. The blue lines indicate importance sampling with a single particle pool, i.e., K = 1.
Comparing the method’s behavior with the proposals ZDA and GCDA gives us two observations.

For the ZDA approach in both experimental settings, all performance metrics appear to decrease as
N grows, albeit at different rates. This aligns with the theory of importance sampling, as discussed in
Section 4.1. In particular, W 2

2 appears to follow roughly O(1/N), for both the mixture and bivariate.
The quantities D̂KL and DKS also decrease at a relatively constant rate on a logarithmic scale. In these
experiments, all performance metrics possibly converge to a value that is dominated by the discretiza-
tion error induced by the fixed choice for M .
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Figure 6.2: Statistical performance with bivariate data models. The horizontal axis shows the number of
particles, and the vertical axis shows the statistical discrepancy (lower is better). The red line indicates the performance
of N independent particles (K = N) and the blue line indicates the performance of a single particle pool (K = 1) where
we use importance sampling. The shaded areas indicate the standard error of the mean, which is computed from 10
independent runs. Both the horizontal and vertical axes are on a logarithmic scale. The three figures show four panels
for different combinations of the two bivariate models (Example 6.1 and Example 6.2) and the two proposal processes
(ZDA; Definition 5.2, GCDA; Definition 5.3). The leftmost figure shows the approximate KL Divergence, the middle
figure shows the squared Wasserstein-2 distance, and the rightmost figure shows the Kolmogorov-Smirnov statistic.

Surprisingly, GCDA does not show such a significant increase in statistical performance. In fact,
for all performance metrics, the statistical performance remains constant for increased computational
effort. A possible explanation is that the proposals obtained with GCDA are practically always far
from a good candidate sample for the true conditional distribution. Therefore, even for larger numbers
of particles (e.g. N = 104), the importance sampling procedure provides no improvement.

In Figure 6.3a we find the weighted paths of the GCDA proposal processes in a 2-dimensional
bimodal example (Example 6.2). In the top panel, we see the paths along the first dimension, i.e.,
the dimension that we condition to end up at 1, and in the lower panel, we see the paths along the
second dimension. In the right panel, we see a scatter plot of the unconditional distribution in black
and the resulting (weighted) samples of the GCDA proposal. Because of the bimodal nature of the data
distribution, the unconditional paths have a bifurcation. In the top panel, we see that the paths that
would otherwise lead to samples close to the mode of (−1,−1) are drawn back to the other mode, i.e.
see the time span from 0.4, where the bifurcation starts, and 0.9 where the branches are merged again.
These are unrealistic paths for the unconditional process, and one would expect that these paths are
weighted relatively low. However, it turns out that this does not happen. A possible explanation is
that along the entire path, which is used to compute the importance weight, the undesirable shape at
the end of the path can be negligible.

Now that we have a better understanding of the behavior of GCDA, we look into the effect of minor
variations of our approach to see whether these can improve the method. As a first attempt to enhance
the approach for combating the failure, we use intermediate resampling as described in Section 5.3.
Intermediate resampling would resample particles at multiple points in the time span [0, T ) instead of
just at time T . This appears promising, as it supposedly could remove low-weight particles before they
become too problematic, and replace them with high-weight particles. This way, phenomena like the
bifurcation may not happen in the first place. In Figure 6.3b, we see this variation in action. The
vertical dashed lines indicate the intermediate resampling times. Here, we find that the problematic
paths are eliminated and the conditional sample at time T matches the true conditional distribution
better than the naive GCDA proposals.
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Figure 6.3: In-depth display of failure and fixes of GCDA in bivariate mixture data. The two figures display
sample paths of our GCDA method, without intermediate resampling (left) and with intermediate resampling (right).
The dashed vertical lines in the right figure indicate the intermediate resampling times. The setting is Example 6.2.

6.2. Dimensional Scalability
Now, we address the effect of the dimensionality of the problem. To achieve this, we must consider
a different set of statistical performance metrics. First, the Kolmogorov-Smirnov statistic is difficult
to compute for multivariate distributions. Second, the approximate KL-divergence becomes unreliable
as estimating the sample covariance is increasingly more difficult in higher dimensions. Finally, the
Wasserstein-distance, despite being well-defined in multivariate settings, becomes challenging due to
the increased computational complexity.

For this reason, we consider different performance metrics, which are also described in Table 6.1.
Specifically, in the multivariate case, a useful simplification of the approximated KL divergence can
be made by only comparing the mean squared error (MSE) of the empirical conditional expectations,
that is, MSE(Y, Ŷ) = 1

d ||m − m̂||
2
2, where d is the dimensionality. This approach is effective because

the average statistic (i.e., the mean) can still be estimated with relatively high accuracy even if the
full covariance structure is difficult to capture. As a replacement for the Wasserstein distance, we
rely on the sliced Wasserstein distance, which is computed by projecting the high-dimensional samples
onto random one-dimensional subspaces, computing the one-dimensional Wasserstein distance for each
projection, and averaging the results [Bon+15].

6.2.1. Interplay between number of particles and dimensionality
To study the effect of dimensionality, we use the following two examples. Samples from these (condi-
tional) distributions are displayed in Figure 6.1b.

Example 6.3 (Multivariate). The multivariate distributions we consider are defined by

PX0
= N (0,Σ(l)) where Σij(l) = exp

(
−||i− j||

2

d2l

)
. (6.5)

Specifically, we choose l = 0.1. Furthermore the condition we consider is obtained with L ∈ {0, 1}⌊d/2⌋,d,
such that Lij = 1 if i = j and 0 otherwise, for i ∈ {1, . . . , bd/2c} and j ∈ {1, . . . , d}. The vector v is
defined by vi = 2 · (i · bd/2c)2 − 1, for i ∈ {1, . . . , bd/2c}. This corresponds to a quadratic slope from
-1 to 1 for the first half of the dimensions. The ground-truth conditional distribution is obtained via
[Bis06]

N (µ+ΣL⊤(LΣL⊤)1(v − LΣ),Σ− ΣL⊤(LΣL⊤)−1LΣ+ ϵI),

where we write Σ := Σ(l) for brevity and ϵ > 0 is negligible (ϵ = 10−6).

Example 6.4 (Bimodal Mixture). The bimodal distribution we consider is defined as follows

PX0 =
1

2
N (1,Σ(l)) +

1

2
N (−1,Σ(l)),

where Σ(l) is defined as in Equation 6.5. Again, we pick l = 0.1. The matrix L in the condition we
study in this setting is identical to that of Example 6.3, and the vector v is a vector of ones. The true
conditional distribution here is again assumed to be N (1,Σ(l)).
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Figure 6.4: Statistical performance in higher-dimensional data models.The horizontal axis shows the number
of particles, and the vertical axis shows the statistical discrepancy (lower is better). The number of independent particle
pools is fixed to K = 64 for all experiments. The colored lines indicate the settings with a varying number of dimensions.
The shaded areas indicate the standard error of the mean, which is computed from 5 independent runs. Both the
horizontal and vertical axes are on a logarithmic scale. The two figures show four panels for different combinations of
the two multivariate models (Multivariate; Example 6.3, Multivariate Mixture; Example 6.4) and the two proposal
processes (ZDA; Definition 5.2, GCDA; Definition 5.3). The left figure shows the mean squared error of the conditional
expectation and the right figure shows the sliced Wasserstein distance. Our approach to computing the analytical score
in the context of Gaussian mixture data suffers from numerical issues that appear in high dimensions. Therefore, we
have omitted these results for d > 8.

In Figure 6.4 the statistical performance of our approach is displayed for Example 6.3 and Exam-
ple 6.4. We adopt a slightly different interpretation of the horizontal axis. In particular, we choose to
use a value K = 64 and vary N , such that the ratio N/K spans values from 1 to 32. This means that
N/K = 1 is identical to the setting where no importance sampling is used, and N/K = 32 suggests
that we use 32 particles in each of the K = 64 particle pools to obtain our final set of samples. The
different colors indicate different dimensionalities of the state space, spanning values from d = 4 to
d = 16. It is expected that the dimensionality makes the approach more difficult, as is recognized by a
vertical translation of the performance slope, associated with the dimensionality of the problem. Again,
we consider the cases of ZDA and GCDA separately.

First, when considering ZDA as a proposal, we find that the dimensionality greatly affects the uni-
modal setting, but not so much on the multimodal one. Most of the slopes tend to overlap for both
performance quantities. This can be partially explained by the somewhat easier conditioning problem
of Example 6.4, as opposed to Example 6.3. In the latter, the curvature of the data, as displayed in the
bottom left panel of Figure 6.1b, is an important characteristic of the conditional distribution. On the
contrary, in the bottom right panel of the figure, the curvature plays less of a role. In this sense, it can
be hypothesized that finding conditional distributions that are primarily characterized by their mean (as
in Example 6.2) is easy compared to ones that are primarily characterized by their covariance structure
( as in Example 6.3), in which the dimensionality plays a multiplicative role with respect to the difficulty.

Second, when considering the GCDA proposals, we find that for higher values of d, in contrast to
small dimensional problems, there is a significantly increased performance. Specifically, we see that for
d = 12 and d = 16, the statistical performance in the setting of Example 6.3 has a similar slope as the
ones of the ZDA proposal. This effect can be explained by the benefits of having a theoretically more
accurate proposal, starting to outweigh the unresolved failure modes, even to the extent that using
GCDA appears to outperform ZDA, which is a reassuring observation that aligns better with the initial
hypothesis that GCDA is a better proposal than ZDA as it inherently establishes more fidelity to the
unconditioned denoising process by updating the drift.
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Figure 6.5: Effective sample size for varying dimensionality and method configurations. The horizontal
axis depicts the dimensionality of the data, and the vertical axes show the effective sample size, denoted by ÊSS. The
experiments are performed in the setting of the multivariate data model (Example 6.3). Each of the nine panels show
the results of experiments that are ran with different values for the number of discretization time steps M and the steps
between intermediate resampling R as described in Section 5.3, where R = 1 corresponds to resampling every step and
R = M corresponds to resampling only at the end. The blue line indicates the effective sample size of ZDA
(Definition 5.2) and the red line that of GCDA (Definition 5.3). The vertical axis is in logarithmic scale with base 10,
and the horizontal axis is in logarithmic scale with base 2.

6.3. Particle Efficiency
Now, we study the effectiveness of the two proposal processes in terms of their effective sample size
(ESS). The ESS is related to the second moment of the (practical) importance weight, here abstractly
referred to with W . In particular, ESS and its approximation are defined as

ESS = N
E [W ]

2

E [W 2]
and ÊSS = N

(
N−1

∑N
i=1 Ŵ

(i)
)2

N−1
∑N

i=1(Ŵ
(i))2

=

(∑N
i=1 Ŵ

(i)
)2

∑N
i=1(Ŵ

(i))2
(6.6)

It takes values from 1 to N , where an ÊSS close to 1 suggests that a single weight is close to 1 while
the remaining weights are close to zero, and an ÊSS close to N means that all importance weights are
roughly the same. Generally, for larger dimensional problems, the importance sampling procedures are
likely to exhibit effective sample sizes that are close to 1, a concept known as weight degeneracy. In
our case, the measurement of the diffusion processes at M intermediate steps brings us into this regime
almost immediately, even when the dimensionality of the state space is only moderately high.

In Figure 6.5, we display ÊSS for different method configurations and a varying dimensionality from
2 to 16 in the context of Example 6.3. We first focus on the bottom row, which displays the ÊSS of sam-
ples obtained with the standard method configuration we have considered so far, without intermediate
resampling (R = M). Interestingly, we see a large discrepancy between the GCDA approach and the
ZDA approach, where ZDA has a rapidly vanishing ÊSS, especially for a larger number of discretization
steps (M = 400). In the context of importance sampling, such a display of the ÊSS typically suggests
that the proposal with a larger ÊSS is more efficient. In our case, this is only partially true. Although
GCDA seems significantly more effective here in this multivariate example (Example 6.3), it still has a
vanishing ÊSS when dimensionality of the data is moderately high (d = 16).
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Figure 6.6: Comparison of collapsing particle pools with and without resampling. Both figures display
samples of Example 6.3 in different dimensionalities for different method configurations. The top figure displays the
samples obtained with M = R = 100 and the bottom figure with M = 400 and R = 1. These configurations correspond
to the bottom left and the top right panel of Figure 6.5, respectively. The number labeled by #part. depicts the number
of unique samples out of the 64 generated samples.

A small effective sample size typically results in the collapse of an entire pool of particles into only a
few unique particles. More unique particles are favorable in our context as they provide more samples
for the same computational power. Unfortunately, we see in Figure 6.5 that the ÊSS of both the ZDA
and GCDA approaches vanish for high dimensions, albeit at different rates.

Now, we study this effect by displaying unique samples obtained from our method with a single
pool of particles (N = 64,K = 1) for increasing dimensions. In Figure 6.6a we display individual
samples obtained with both GDDA and ZDA approaches for different dimensionalities in the context
of Example 6.3. We see the vanishing effective particle size reflected in the vanishing number of unique
particles. The ZDA approach appears less efficient, as it only produces 3 unique particles for d = 4,
while GCDA still produces 28. Notably, both approaches have only a single unique particle for d = 16,
which suggests that for large-dimensional problems, both approaches are equally (in)efficient.
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A candidate solution to the problem of weight degeneracy is to use an intermediate resampling
procedure as outlined in Algorithm 1. In Figure 6.5, the top and the middle row show the effective
sample sizes obtained with intermediate resampling, i.e., method configurations deviate from the stan-
dard version where (R =M). Specifically, in the top row, we see the results for choosing R = 1, which
essentially refers to resampling at every sample step. In the middle row, the results are shown when
every R = M/10 steps, a resampling operation is performed. The ÊSS obtained with GCDA is not
affected too much by intermediate resampling. On the other hand, the ÊSS obtained with ZDA is
affected when R = 1, making the methods appear equally efficient as GCDA.

In Figure 6.6b, we see that the number of unique particles is higher, which corresponds with the
expectation given the higher ÊSS. However, the particles are not independent and are nearly identical.
This observation underlines that in moderately high dimensions, a pool of N particles reduces to a sin-
gle sample, even when using intermediate resampling. This is in contrast to from the low-dimensional
intuition of importance sampling, where obtaining a diverse set of samples from a pool of N particles
may be possible, as seen in the leftmost column of Figure 6.6a.

6.4. Particle Allocation
The purpose of using independent particle pools is to enhance the effectiveness of our approach without
attempting to improve the ÊSS by efficiently allocating the N particles to K independent runs of our
algorithm. In Figure 6.7, we show the results of an experiment that computes the statistical perfor-
mance of our method in the context of Example 6.3 with d = 16. We fix N = 1028 and vary K from
1 to N , corresponding to a configuration with a single particle pool and a configuration without any
importance sampling, respecitvely. We find a minimum for both variants (ZDA and GCDA) located at
around K = 64. This observation aligns with our hypothesis that efficiently allocating resources among
independent pools can significantly improve the statistical performance.

We briefly focus our attention on understanding this phenomenon by considering the following
simplistic proxy of the problem. Assume that we fix N and that the statistical performance of an
oracle approach, e.g. by sampling from the exact conditional distribution, improves the performance
with O(1/K). We make this assumption for two reasons. First, it aligns with the rate at which many
estimators converge to the true value, e.g., a sample average. Second, we pick O(1/K) and not O(1/N),
because we know that with K independent pools we get K independent samples instead of N , due to
collapsing particle pools. Now, we know that our approach converges to the exact oracle approach with
rate O((N/K)−1), i.e., O(K), as a result of the convergence of importance sampling. Therefore, under
these assumptions, the statistical performance of our approach may be related to O(1/K) + O(K),
which corresponds to the slopes we find in the figures.
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Figure 6.7: Effect of varying number of particle pools. The horizontal axis displays the number of independent
particle pools ranging from K = 1, referring to a single particle pool to K = N = 1024, referring to N independent
particles. The vertical axis shows the statistical performance metric. The data model used in the experiment is
Example 6.3 with d = 16.



7
Application to Scenario Generation

In this chapter, we turn our attention to an application of conditioned generative diffusion in the con-
text of scenario generation. We assume the existence of a pre-trained generative diffusion model that is
able to generate unconditional scenarios accurately. The task is to generate scenarios within a specific
region of interest, that is, sample from a conditional distribution. This can enhance decision-making
by allowing flexible ways to explore risks in various contexts such as finance, economics, meteorology,
and climate research. As the focus lies on purely demonstrating the application to scenario generation,
we again rely on simplistic Gaussian distributions for the unconditional data. For the same reason, we
limit the study to the standard ZDA proposal.

For the performance evaluation, we use a sliced Wasserstein distance and an MSE between the con-
ditional means. In Table 7.1, we depict an overview of the evaluation of the approach in a few examples
described throughout this chapter. In most cases, using our approach improves the performance com-
pared to using the pure proposals, even with a relatively small number of particles. However, we also
find a counterexample of this, which sheds light on a nuance exhibited by our experimental framework.

In Section 7.1, we study the application of a mask condition in multivariate scenarios. In Sec-
tion 7.2, we describe conditions on the frequency domain of the scenarios that can be obtained with a
discrete cosine transform. In Section 7.3, we describe how our approach can be (heuristically) applied
to inequalities.

(N,K) Example 7.1 Example 7.2 Example 7.3 Example 7.3 Example 7.5
(64, 64) 0.8261 (0.0686) 0.2972 (0.0458) 0.0375 (0.0085) 0.5066 (0.0451) 0.6947 (0.0715)

SWD (64, 2048) 0.3370 (0.0366) 0.3676 (0.0624) 0.0246 (0.0058) 0.3836 (0.0546) 0.1692 (0.0348)
(2048, 2048) 0.8152 (0.0326) 0.2873 (0.0143) 0.0143 (0.0034) 0.4972 (0.0333) 0.6275 (0.0359)
(64, 64) 22.6485 (3.7419) 0.2177 (0.1941) 0.0043 (0.0038) 1.3319 (0.5223) 5.4471 (1.5212)

MSE (64, 2048) 1.1378 (0.4946) 0.8151 (0.5462) 0.0018 (0.0018) 0.4581 (0.2437) 0.0904 ( 0.0473)
(2048, 2048) 21.5198 (0.6581) 0.1430 (0.0548) 0.0004 (0.0007) 1.2477 (0.1762) 4.6359 (0.2124)

Table 7.1: Result of an application to scenario generation. The quantities are averaged over 10 independent
runs. The value in the parentheses gives the standard deviation of the value. Bold-italic entries specify the best
performance in terms of that metric.
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Figure 7.1: Illustration of Example 7.1. (Left): the covariance matrix described in Equation 7.1. The image shows
4 by 4 submatrices that specify the covariances of the distribution of the different variables. Bright colors represent
(positive) covariance, and dark colors represent negative covariance. (Right): an exact sample of the multivariate
scenario distribution. The black dots indicate the mask on which the scenarios are conditioned.
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7.1. Multivariate Mask Conditions
To model a k-variate scenario measured at p observation times, we consider a pk-dimensional distribu-
tion. Specifically, the tractable Gaussian model relies on two matrices: one p× p matrix that produces
the temporal covariance structures and one k × k matrix that produces the cross-variate covariance.

Example 7.1 (Multivariate Mask). The example we consider has k = 4 variates and p = 12 obser-
vations. The mask condition we consider is based on conditioning on a few observations of one of the
variables. Let Σ(l) represent a 12 × 12 covariance matrix specified by Equation 6.5 from Example 6.3,
where we again pick l = 0.1. Then in this example, we define a 48×48 covariance matrix by a Kronecker
product between two matrices, i.e.

Σ =


1 0.8 −0.8 0
0.8 1 −0.64 0
−0.8 0.64 1 0
0 0 0 1

⊗ Σ(l), (7.1)

where the left matrix indicates the cross-variable correlations. In Figure 7.1a, the covariance matrix
Σ is displayed. The condition we consider is obtained with a matrix L ∈ {0, 1}6×48 that has all
elements set to zero except for {(1, 1), (2, 4), (3, 10), (4, 13), (5, 25), (6, 37)}. Furthermore, we choose
v =

(
0,−2, 2, 0, 0, 0

)⊤. This condition specifies that all 4 variables start at zero and variable 1 is
conditioned to hit -2 at time 4 and to hit 2 at time 10. We use the same technique as in Example 6.3
to obtain a ground-truth conditioned distribution.
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Figure 7.2: Samples of Example 7.1 obtained with different method configurations. The rows of the figure
indicate the 4 different variables and the columns represent the 4 different sampling methods. The left most column
displays a sample obtained from the exact conditioned distribution akin to Figure 7.1b. The remaining three columns
indicate three method configurations for the number of particles N and the number of particle pools K. In the second
and fourth column from the left N is equal to K, which means that no importance sampling is used. In the third column,
we have N > K, which indicates that importance sampling is used within the independent particle pools that have 32
particles each. All experiments are run with the ZDA (Definition 5.2) proposal and M = 200 discretization time steps.
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Figure 7.3: Conditioning on zeroth frequency. The panels display scenarios conditioned on the zeroth frequency
as described in Example 7.2. The leftmost figure shows a sample of scenarios drawn from the exact conditional
distribution. The remaining panels illustrate samples of our approach. The solid black line depicts the ground truth
mean, obtained from the exact sample. The dotted line depicts the sample mean obtained from the methods. The
dashed line indicates v̄ as described in the example.

In Figure 7.2, we find samples of the conditional scenarios specified in Example 7.1, with three dif-
ferent combinations of number of particles N and number of independent particle pools K. The rows
represent the 4 different variables, and the columns represent four different approaches that are used
to sample the scenarios. In Table 7.1, we find the associated statistical performance metrics.

In the leftmost column, we find a ground truth sample, akin to Figure 7.1b. In the second-to-right
column, a pure proposal sample is given with N = 64 and K = 64. Here, we find that the sample
mean obtained with this approach, depicted by the dotted black line, differs from the sample mean
of the ground truth, indicated by the solid black line. If we switch to using our importance sampling
approach, by increasing the number of particles N to 2048, and keeping the number of independent
particle pools at K = 64, we find that the sample means are much closer to the ground truth means.
On the other hand, if we do increase the particles N = 2048 and increase the number of particle pools
to K = 2048, as in the right-most column, such that we obtain an approach that has roughly the same
computational requirements as the N = 2048,K = 64 setting, but the procedure draws purely proposal
samples, we see that the sample means are not closer to the ground truths. In Table 7.1, we see a
significant performance increase when using importance sampling for the masked scenario generation
example.

7.2. Frequency Domain Conditions
A condition in the frequency domain can be obtained through using a discrete cosine transform (DCT),
which can be described by the following

DCT(x)i = 2

d−1∑
j

xj cos

(
πi(2j + 1)

2d

)
.

Applying this operation to the rows of the identity matrix Id ∈ Rd×d yields the DCT matrix UDCT ∈
Rd×d, whose i-th row corresponds to the DCT basis vector of frequency i:

(UDCT)ij = 2 cos

(
πi(2j + 1)

2d

)
, for i, j = 0, . . . , d− 1.

Thus, the DCT transform can be expressed compactly in matrix form as

DCT(x) = UDCTx.

Conditioning in the frequency domain can be done using this matrix. Specifically, we can select a
number m < d and retain only the first m frequencies, i.e., the first m rows of UDCT. For simplicity,
we refer to the i-th frequency component of x as:

fi = DCT(x)i = (L)ix.

This perspective allows for various interpretations of conditioning. For all examples below, we consider
the unconditional Gaussian data distribution of Example 6.3.
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Figure 7.4: Conditioning on low-frequency components. The leftmost panel shows a sample of 200 scenarios
drawn from the exact conditional distribution. The remaining figures specify samples of different method configurations.
The solid black line depicts the ground truth mean, obtained from the exact sample. The dotted line depicts the sample
mean obtained from the methods. The dashed line indicates the low-pass scenarios. The solid line and the dashed and
dotted lines overlap in each method configuration, suggesting that our approach does not have a clear benefit. The
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Figure 7.5: Conditioning on mid-frequency components The leftmost panels show 200 scenarios drawn from the
exact conditional distribution. The remaining figures specify samples of different method configurations. The solid black
line depicts the ground truth mean, obtained from the exact sample. The dotted line depicts the sample mean obtained
from the methods. The dashed line indicates the band-passed scenarios.

Example 7.2 (Conditioning on the mean (zeroth frequency)). If we choose only the first row of the
DCT matrix (i.e., i = 0), then we are effectively conditioning on the mean of the signal. Since the
zeroth DCT basis vector is constant, we have: L =

(
2 2 . . . 2

)
. If we then choose v = v̄/(2d), the

condition format Lx = v enforces the sample mean of x to be v̄. The results of this example are given
in Figure 7.3

Example 7.3 (Conditioning on low-frequency components). We condition the low-frequency compo-
nents, i.e. on f0, f1, f2, f3. This corresponds to conditioning on a low-pass filtering of the scenarios,
which preserves trend structures and ignores high-frequency information.

Example 7.4 (Conditioning on mid-frequency components). We condition on mid-frequency compo-
nents, i.e. on f4, f5, f6, f7. This corresponds to conditioning on a band-pass filtering of the scenarios.

In Table 7.1, we see a performance increase when using importance sampling for only some of the
frequency domain conditioning examples. In particular, those that are associated with the conditioning
on low-frequency components (Example 7.2 and Example 7.3) are not affected by importance sampling.
This suggests that the conditioning on trends is easy enough in this case, and the proposals are already
close enough. On the other hand, using our approach for conditioning on mid-frequency components
(Example 7.4) does show a significant performance increase.

7.3. Inequality Conditions
We have postponed the introduction of conditioning on inequalities, as it is fundamentally different to
the approach so far. This is because, in principle, we cannot describe an exact auxiliary guidance term
h̃ that is similar to the ones we discuss in Chapter 4. Therefore, we make a different approximation
of the guidance term, which fundamentally breaks the line of reasoning we use to achieve asymptotic
consistency up to this point. Nevertheless, because of our interest towards generalizing beyond single-
ton conditions, we do provide some illustrative experimental results that explore how the importance
sampling behaves for proposals that stretch beyond our theoretically well-understood setting.
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Figure 7.6: Conditioning on inequalities. The leftmost panel shows a sample scenario drawn from the
unconditional distribution that satisfies the condition. The remaining figures specify samples of different method
configurations. The solid lines indicate the mean of the exact conditioned distribution, and the dashed lines indicate the
mean of the approximated conditioned distribution.

For conditions of the form LYT ∈ V ⊆ Rm, a guidance term does exist that exactly establishes a
conditioned SDE. Specifically, we can make use of

h̃(t, x;V ) =

∫
V

h̃(t, x; v)dv,

where h̃(t, x; v) is the auxiliary guidance term for the condition LỸt = v. Unfortunately, this quantity
is difficult to compute. Therefore, we use a heuristic method that is based on our approach and can be
extended to conditions of the above type by considering the following guidance term,

h̃approx(t, x) = h̃(t, x; v̂x) where v̂x = argmin
v∈V
||v − Lµ̃T (t, x)||. (7.2)

The intuition here is that we determine a singleton value v̂x to derive an equality condition dependent
on the prediction of ỸT given Ỹt = x. It is an open question how the theory relates to choosing such an
approximate method.

Example 7.5. Let us consider the Gaussian data distribution of Example 6.3. Let L ∈ {0, 1}⌊d/4⌋×d

defined by

Lij =

{
1 if i = j + bd/4c,
0 otherwise.

This corresponds to a mask on the middle part of the scenario. Now, we consider V = {v ∈ Rm : vi ≤
−1 for all i ∈}. This essentially corresponds to an inequality condition of the form LYt ≤ −1, where 1
is a m-dimensional vector of ones. In this case, we have that Equation 7.2 is solved by

(v̂x)i =

{
−1 if Lµ̃T (t, x) ≥ −1,
Lµ̃T (t, x) otherwise.

The results of this example are found in Figure 7.6. To obtain a ground truth, in this example, we draw
106 samples from the unconditional distribution and only keep the samples that satisfy the condition.
Note that this is only possible for non-rare conditions, such as the one we use here. If the condition
is too rare, we can no longer easily obtain a sample from the ground truth conditioned distribution. In
Table 7.1, we find a significant performance improvement when using our approach.
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8
Discussion

In this chapter, we summarize our main results and how they relate to recommendations for future
work. The goal of this study is to sample the denoising process of a generative diffusion model condi-
tioned on additional information without additional retraining of neural networks. To this end, we have
taken inspiration from an existing simulation approach for diffusion bridges by [SMZ17] and [BMS20],
which uses tractable guided proposal processes in combination with importance sampling techniques to
guarantee asymptotic consistency.

Our theoretical findings distinguish themselves from those surrounding this fundamental approach
due to the incorporation of an adaptive auxiliary framework. In particular, the propagation of gra-
dients makes our work different and requires additional work to validate the condition satisfaction of
the proposals and the absolute continuity in Chapter 4. Our core theoretical result is the asymptotic
consistency of Chapter 5. It is important to note that this only expresses the asymptotic behavior, as
the constant factors in the proportional upper bound have not been determined in this work, and are
only known to be independent of the number of particles N and the number of discretization time steps
M . It is well-known that the constant that determines the convergence upper bound of importance
sampling exponentially depends on the dimensionality problem [Aga+17]. This fact will likely play a
significant role in our asymptotic consistency result.

For evaluating the behavior of our approach with finite computational effort, we make use of an
empirical study of the statistical performance in Chapter 6. In particular, our approach generally be-
haves intuitively: using more particles often results in an increased performance. Furthermore, as is
also expected, a larger number of dimensions requires more and more computational effort to satisfy
the same level of statistical performance. Nevertheless, our approach can significantly improve the sta-
tistical performance even for a small number of particles, as demonstrated in the context of conditional
scenario generation in Chapter 7. For certain specific conditions, the effect of using importance sam-
pling is negligible. This means that the unweighted proposals are already approximately distributed as
the true conditioned distribution, which may be due to the simplistic nature of our experimental settings.

Finally, in Section 7.3, we have provided an appetizer of an extension of our approach. In particular,
we experimented with inequality conditions and found positive results. However, it is not entirely clear
how severe the consistency is broken when we choose our guidance term in such a heuristic way. This di-
rection is left for future research, along with conditions based on non-linear transformations of the data.
A direct application of the theoretical guarantees derived in this work is unlikely to withstand these
generalized contexts. From a practical perspective, these extensions would make our approach more in
line with the work in [Wu+24; Tri+23], where the conditioning of generative diffusion is not limited to
linear conditions and therefore utilizes the entire flexibility of the generative diffusion guidance methods.

In Section 8.1, we discuss our assumptions for our theoretical results. In Section 8.2, we briefly
discuss our findings related to the choice of the proposals, and more importantly, how future work can
be directed towards improving our approach. In Section 8.3, we discuss an outlook and motivation for
the future development of conditioned generative diffusion models.
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8.1. Assumptions
A caveat of our theoretical results is that they rely on relatively abstract assumptions, some of which
are obtained as substitutes for hard-to-prove, but natural, claims. For future work, it is advised to lift
some of these assumptions or make them more concrete, such that their verification is easier. Here,
we briefly discuss our assumptions from Chapter 4 and Chapter 5, why they are chosen, and how they
might be lifted.

Assumption 4.1 is put in place to be a replacement for the core assumptions that are made about
the proposal and auxiliary processes in [BMS20] and [SMZ17]. Assumption 4.1 at first glance, purely
relates to the choice of the auxiliary process Ỹ . However, as described in the context of (G)CDA
(Proposition ??), the function µ̃T (t, x) may also depend on the unconditional drift, and therefore the
learned denoising neural network. In practice, it may hence not be easy to verify claims on µ̃T (t, x)
and µ̃T (t, x). To further develop the theoretical understanding, deepening the relationship between the
properties of neural networks and the properties required for the assumption is recommended.

Assumption 4.2, is needed to fill in a gap that arises when extending the outline of the proof of
[SMZ17] to conditions on linear transformations. It essentially imposes some relatively mild assump-
tions about the combined behavior of the unconditional drift, the auxiliary drift, and the proposal
process Y ◦ on a finite time interval. It, for example, will directly follow if both drifts have bounded
norms, or if Y ◦ has a bounded norm and the drifts have linear growth. Applying proof techniques of
[BMS20] may help lift the assumption, but this is left for future research.

Assumption 4.3 is taken from [BMS20] and specifies some relation between the unconditional and
auxiliary transition densities. It is required to use Lemma 4.6 in the proof of Theorem 4.2. It is generally
challenging to verify this assumption, given that it depends on the unknown unconditional transition
density.

Assumption 5.1 describes the bounds that are required on the moments of the importance weights
and the practical importance weights. These are required for proof of Theorem 5.1. Making assumptions
on the moments of the importance weights is relatively standard in importance sampling convergence
results and in the context of conditioning generative diffusion, e.g. in [Wu+24]. Note that from Propo-
sition 4.1, we know that importance sampling convergence only requires a bound on the second moment
of the importance weights. This may invite the idea that a relaxation of the assumption above is pos-
sible. However, because we need to deal with the discretization additionally, the current derivation of
the converging upper bound of the squared error relies on a bounded fourth moment. The assumption
may be lifted by specifying alternative assumptions on the unconditional process Y and the proposal
process Y ◦ instead. However, this may lead to even stricter requirements and is therefore beyond the
scope of this research.

Assumption 5.2 is implicitly about the importance weights by assuming a certain behavior of the
function Gk in Equation 5.6. The assumption is satisfied if Gk is a Lipschitz continuous function, which
it is when (b̃ − b) · ∇ log h̃k is Lipschitz continuous. This follows, for example, if b̃ and b are bounded
and Lipschitz continuous and ∇ log h̃ is Lipschitz continuous. These specific properties seem relatively
strict, so future research is required to lift the assumption.

Assumption 5.3 specifies the behavior of the Euler-Maruyama approximation of Y ◦
T at the boundary

of the set A. In the proof of Theorem 5.1, it is difficult to remove this assumption. However, conceptually
it aligns with the convergence of the Euler-Maruyama approximation and therefore is not a strict
assumption if A is not chosen in an adversarial way.
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8.2. Improved Auxiliaries
Our choices regarding the simple auxiliaries call for concrete recommendations on research directions
that focus on improving the proposal processes we have introduced in this thesis. The proposals we
introduced are based on an auxiliary process for which we can tractably compute the conditioned process.
As we have hinted at before in Section 5.3, in many cases it is possible to exactly condition processes with
linear (in the state) drift coefficients, due to the presence of an explicit transition normal distribution.
Up to this point, we have mainly focused on auxiliary processes that have at most a constant drift,
despite being adapted at every discretization. Therefore, it is promising to study auxiliaries with a
linear approximation of the drift instead of a constant. However, this work does not include such a
(first-order) approximation because the computational and mathematical tractability can suffer greatly
from the additional layer of complexity. Here, we lay out a few initial suggestions that may be discussed
and whether they are worth considering for future work.

8.2.1. First order expansion of drift
A natural improvement is to use a (gradient propagated) linear drift approximation, abbreviated to
(G)LDA, of the form:

b̃(t, x) = b(t0, x0) + Jb(t0, x0) · (x− x0), (8.1)

where Jb is the Jacobian matrix of the unconditional drift b. This is, in principle, a first-order Taylor
expansion of b w.r.t. the state argument at x0. The associated SDE drives a multivariate time-dependent
Ornstein-Uhlenbeck process, and it utilizes the full capacity of the technique of [SMZ17]. Therefore,
conditioning the auxiliary process relies on the function Φ(t), which is the solution to the following
matrix ODE:

dΦ(t)

dt
= Jb(t0, x0)Φ(t), (8.2)

for which details on solving linear SDEs can be found in e.g. [Mao11b]. Solving Φ can be (computa-
tionally) difficult. While on its own, the computational effort seems dominated by the many matrix
multiplications in the passes of neural networks, the repeated use of such an operation poses a significant
bottleneck.

8.2.2. Expansions with respect to time
An additional improvement of the proposals is to take the time parameter of the drift function into
account. Unfortunately, simply replacing t0 with t in (G)CDA as given by Definition 5.3, or (G)LDA
as given by Equation 8.1, is not tractable, because of the time-dependency of the neural network that is
used to approximate the score function. A workaround is to additionally consider the drift approximated
as taking the Taylor expansion with respect to the time argument instead of just the state argument.
This leads to the following two auxiliary drift coefficients:

b̃(t, x) = b(t0, x0) + ∂tb(t0, x0) (t− t0), (8.3)

in correspondence to the (G)CDA, and

b̃(t, x) = b(t0, x0) + Jb(t0, x0)(x− x0) + ∂tb(t0, x0) (t− t0), (8.4)

in correspondence to (G)LDA. It is unclear how much of an improvement these proposals may be over
their respective counterparts. The hypothesized subtlety of this improvement, combined with the added
complexity to the method, has reserved this improvement for future work.
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8.2.3. Reconstruction SDE as an Auxiliary Process
As it turns out, another approximation with a linear drift promises to be beneficial and does not require
an eigenvalue decomposition. In particular, the approximation considers the known part of the drift
α(t)x, which depends on x, but not the score function. This is then achieved by choosing the auxiliary
drift to be

b̃(t, x) = α(t)x+ σ2(t)∇ log qT−t0(x0). (8.5)

This drift term considers part of the dynamics of the unconditional process in a linear approximation and
part of the dynamics in a constant way. There is an interesting link between this linear approximation
and reconstruction guidance as introduced in [SE20]. For simplicity, we assume a generative diffusion
model with α(t) = 0, e.g., a variance exploding model. In that case, the solution of the auxiliary process
at time T is

ỸT = x0 +∇ log qT−t0(x0)

∫ T

t0

σ2(s)ds+

∫ T

t0

σ(s)dBs. (8.6)

Taking the expectation shares great resemblance with Tweedie’s formula ([Efr11]), and hence the recon-
struction principle as described in Section 3.3. This line of research would probably give a more accurate
auxiliary process than (G)CDA, with less computational effort than the (G)LDA from Equation 8.1.

8.3. Outlook
The debated limitations of deep generative models [TD25], particularly in capturing rare events or tail
behavior, present a bleak outlook for their use in domains requiring reliable modeling of risk and uncer-
tainty. While there are attempts to generalize generative diffusion models from Itô processes to Levy
processes to capture heavy-tailed distributions [SSD24], it is far from a solved problem.

However, these limitations also motivate the further development of the conditioned generative diffu-
sion technique, particularly the consistent ones. Specifically, here the deep generative model is leveraged
not as a complete solution to a statistical task, but rather as a flexible prior from which we sample
under constraints as a form of rare-event simulation. This perspective shifts the focus from learning an
accurate generative model to designing more effective biased sampling mechanisms, i.e., guided propos-
als, and correction mechanisms, i.e., importance sampling methods. This practical approach is valuable
in domains where rare events are of central interest.

To make this more concrete, we consider a setting inspired by risk management. For example, we
consider some (non-linear) function φ : Rd → R that maps high-dimensional realized scenarios to a
scalar outcome that specifies an associated reward, such as risk metrics, risk-adjusted portfolio returns,
or operational profits. If the reward function evaluated on the random data (or scenario) exhibits sig-
nificant heavy tail behavior, i.e., there, it is unlikely that generative diffusion will be able to learn the
correct distribution. Instead, due to the simple range of the reward function, we can choose a value v
and attempt to simulate data with our approach that satisfies φ(YT ) ≤ v.

More broadly, this viewpoint offers a principled way to explore risk-sensitive regions of the data space.
However, to fully capitalize on the technique, significant extensions from the work at hand are needed.
In particular, the extension to non-linear conditions and non-singleton observations is a recommended
research direction. Within these extended approaches, the impact on the theoretical aspects will likely
pose significant difficulties.



9
Conclusion

The greater scope of this work is to understand how recent impressive empirically performing generative
diffusion models can be used for distribution-sensitive application areas, underlining the need for an
appreciation for the safety of the rapidly developing research field. Our main objective within this scope
has been to use the flexible controlled generative diffusion techniques fundamental in many statistical
tasks, such as scenario-based risk assessment.

Existing approaches to controlling generative diffusion either rely on computationally inefficient re-
training of the systems or on heuristics that provide little to no guarantees about the quality of the
generated data. We have utilized importance sampling methods from a broader area of continuous-time
stochastic processes to ensure that we obtain theoretical guarantees about the consistency of the condi-
tioned generative diffusion models. By adjusting these existing theoretical frameworks to the context
of generative diffusion models, we were able to bridge the gap between the theoretically consistent ap-
proaches and the practical field of generative diffusion. In doing so, we obtained theoretical validation of
the method, a derivation of its asymptotic consistency, and numerical demonstrations of the statistical
performance.

Aside from theory, our numerical results cover data generation problems in a theoretically convenient
setting, where experiments with low-dimensional and high-dimensional tasks give us insight into the
empirical performance of our approach. The approach incites a tradeoff between computational effort
and statistical accuracy. In practice, the performance may depend on the specific allocation of resources
between the number of particles and the number of desired unique samples. Yet, it is not entirely clear
how the interplay between the amount of computational effort and the dimensionality of the problem
affects the result, and to what extent our results apply to real-world applications of generative diffusion.

This work promotes generative diffusion models as a practical statistical tool for distribution-
sensitive applications. While our method offers promising results, questions remain concerning dimen-
sionality scalability, computational efficiency, and robustness in real-world environments. Continued
research and development are needed to unlock the potential of generative modeling in safety-critical
domains.
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A
Additional Lemmas and Proofs

A.1. Proof of Lemma 2.1
Proof. Consider that

∂tpXs,Xt(y, x) = pXt(x)∂tpXs|Xt=x(y)︸ ︷︷ ︸
(I)

+ pXs|Xt=x(y)∂tpXt(x)︸ ︷︷ ︸
(II)

. (A.1)

We may use the Kolmogorov Backward Equation to write

∂tpXs|Xt=x(y)
KBE
= −LtpXs|Xt=x(y) = −b(t, x) · ∇pXs|Xt=x(y)−

σ2(y)

2
∆pXs|Xt=x(y). (A.2)

Here the operator acts on x and not on the y. Then, we use the following computations that

∇pXs|Xt=x =
1

pXt

∇pXt,Xs
+ pXt,Xs

∇ 1

pXt

∆pXs|Xt=x =
1

pXt

∆pXt,Xs
+ 2∇ 1

pXt

· ∇pXt,Xs
+ pXt,Xs

∆
1

pXt

∇ 1

pXt

= − 1

p2Xt

∇pXt

∆
1

pXt

=
1

p3Xt

∇pXt
· ∇pXt

− 1

p2Xt

∆pXt

we may write

(I) = −b ·
(
∇pXt,Xs

− pXs,Xt

∇pXt

pXt

)
− σ2

2

(
∆pXt,Xs − 2

∇pXt

pXt

· ∇pXt,Xs +

(
pXt,Xs

∇pXt

pXt

· ∇pXt

pXt

− pXt,Xs

pXt

∆pXt

))
= −b · ∇pXt,Xs + pXs,Xtb ·

∇pXt

pXt

− σ2

2
∆pXt,Xs + σ2∇pXt

pXt

· ∇pXt,Xs −
σ2

2
pXt,Xs

∇pXt

pXt

· ∇pXt

pXt

+
σ2

2

pXt,Xs

pXt

∆pXt

Now, we use the KFE to write

(II) = pXs|Xt=x∂tpXt
= −pXt,Xs

pXt

pXt
∇ · b− pXt,Xs

pXt

b · ∇pXt
+
pXt,Xs

pXt

σ2

2
∆pXt

Combining all terms gives us
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(I) + (II) = −b · ∇pXt,Xs + pXs,Xtb ·
∇pXt

pXt

− σ2

2
∆pXt,Xs + σ2∇pXt

pXt

· ∇pXt,Xs −
σ2

2
pXt,Xs

∇pXt

pXt

· ∇pXt

pXt

+
σ2

2

pXt,Xs

pXt

∆pXt

− pXt,Xs

pXt

pXt∇ · b−
pXt,Xs

pXt

b · ∇pXt +
pXt,Xs

pXt

σ2

2
∆pXt

= −b · ∇pXt,Xs
− pXt,Xs

pXt

pXt
∇ · b+ σ2∇pXt

pXt

· ∇pXt,Xs

+ σ2 pXt,Xs

pXt

∆pXt
− σ2

2
pXt,Xs

∇pXt

pXt

· ∇pXt

pXt

− σ2

2
∆pXt,Xs

Then, consider

∇ · ((b− σ2∇ log pXt
)pXt,Xs

) = b · ∇pXt,Xs
+ pXt,Xs

∇ · b− σ2∇ log pXt
· ∇pXt,Xs

− pXt,Xs
σ2∆log pXt

where we can recognize all terms but the last. For this, we write

∆log pXt
= ∇ · ∇pXt

pXt

=
1

pXt

∆pXt
− 1

p2Xt

∇pXt
· ∇pXt

Now, combining the terms, we obtain the desired expression.

A.2. Proof of Proposition 3.4
Let f ∈ C1,2([0, T ]×Rd). Item 1. The first part of the proof is adapted from Appendix D. in [BMS20].
By Chapman-Kolmogorov, we have that

E [f(s, Ys)|Yt = x, LYT = v] =

∫
f(s, y)pYs|Yt=x(y)

h(s, y)

h(t, x)
dy

We use that for some infinitesimal generator Lt and function f ∈ C1,2([0, T ]× Rd), we have that

(∂t + Lt)f(t, x) = lim
s↓t

E [f(s, Ys)|Yt = x]− f(t, Yt)
s− t

(A.3)

Therefore,

(∂t + L∗
t )f(t, x) = lim

s↓t

1

h(t, x)

E [f(s, Ys)h(t, Yt)|Yt = x, LYT = v]− f(t, Yt)h(t, Yt)
s− t

= lim
s↓t

1

h(t, x)

∫
f(s, y)pYs|Yt=x(y)h(s, y)dy − f(t, Yt)h(t, Yt)

s− t

= lim
s↓t

1

h(t, x)

E [f(s, Ys)h(s, Ys)|Yt = x]− f(t, Yt)h(t, Yt)
s− t

=
1

h(t, x)
((∂t + Lt)fh)(t, x)

Item 2. We know that by the product rule
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Ltfh = hb · ∇f + fb · ∇h+
σ2

2
∆fh

= hb · ∇f + fb · ∇h+
σ2

2
f∆h+ σ2∇f · ∇h+ h

σ2

2
∆f

Then

1

h
(∂t + Lt)fh = ∂tf +

f

h
∂th+ b · ∇f +

f

h
b · ∇h+

f

h

σ2

2
∆h+

σ2

h
∇f · ∇h+

σ2

2
∆f

= ∂tf +
f

h
(∂th+ Lth) + b · ∇f +

σ2

h
∇f · ∇h+

σ2

2
∆f.

Then using that h is space-time harmonic, we may write

1

h
(∂t + Lt)fh = ∂tf + b · ∇f +

σ2

h
∇f · ∇h+

σ2

2
∆f

= ∂tf + (b+ σ2∇ log h) · ∇f +
σ2

2
∆f.

From this, we recognize the coefficients of the conditioned SDE in Equation 3.4.

A.3. Proof of Lemma 4.1
Proof. Let us temporarily denote

P ∗
N (A) =

1

N

N∑
i=1

W ∗(Y (i))1A(Y
(i)).

Writing out the variance gives us

E◦ [(P ∗
N (A))2

]
− 2E◦ [P ∗

N (A)]P∗
Y (A) + (P∗

Y (A))
2 = E◦ [(P ∗

N (A))2
]
− (P∗

Y (A))
2.

Then (P ∗
N (A))2 can be evaluated to be

1

N2

N∑
i=1

(
W ∗(Y (i))

)2
1A(Y

(i)) +
1

N2

N∑
i=1

N∑
j=1,i ̸=j

(
W ∗(Y (i))

)
1A(Y

(i))
(
W ∗(Y (j))

)
1A(Y

(j)).

Because Y (i) and Y (j) are independent draws of P◦
Y , we have that the expectation of the above amounts

to

1

N
E◦
[(
W ∗(Y (1))

)2
1A(Y

(1))

]
+
N − 1

N
E◦
[(
W ∗(Y (1))

)
1A(Y

(1))
]2
.

Using the fact that W ∗ is the Radon-Nikodym derivative, we can write the above as the first term of the
left hand side of the inequality below. Then, the inequality follows from the non-negativity of P∗

Y (A)
and the fact that 1A ≤ 1.

(
1

N
E◦
[(
W ∗(Y (1))

)2
1A(Y

(1))

]
+
N − 1

N
(P∗

Y (A))
2

)
− (P∗

Y (A))
2 ≤ 1

N
E◦
[(
W ∗(Y (1))

)2]
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A.4. Proof of Proposition 4.1
Proof. The proof roughly follows that of [Aga+17]. Let us adopt the notation of 1A = 1A(Y ) and
W =W (Y ) and consider that

P∗
Y (A) =

E [1AW ]

E [W ]
.

Now, we consider the following rewriting:

P ∗
N (A)− P∗

Y (A) =

(
1
N

∑N
i=1W

(i)1
(i)
A

1
N

∑N
i=1W

(i)
− E◦ [1AW ]

E◦ [W ]

)

=

(
1

1
N

∑N
i=1W

(i)
− 1

E◦ [W ]

)
1

N

N∑
i=1

W (i)1
(i)
A −

1

E◦ [W ]

(
1

N

N∑
i=1

W (i)1
(i)
A − E◦ [1AW ]

)

=
1

E◦[W ]

((
E◦ [W ]− 1

N

N∑
i=1

W (i)

)
P ∗
N (A)−

(
1

N

N∑
i=1

W (i)1
(i)
A − E◦ [1AW ]

))

Then we use (x− y)2 ≤ 2(x2 + y2), P ∗
N (A) ≤ 1, and 1A ≤ 1 to bound the expectation

E◦ [(P ∗
N (A)− P∗

Y (A))
2
]
≲ 1

(E◦[W ])2
E◦

(E◦ [W ]− 1

N

N∑
i=1

W (i)

)2
 .

From this it is not hard to see that

E◦ [(P ∗
N (A)− P∗

Y (A))
2
]
≲ 1

N

E◦
[
(E◦ [W ]−W )

2
]

(E◦[W ])2
≲ 1

N
.

A.5. Proof of Lemma 4.2
Let us consider the ratio between the two known Gaussian transition densities, i.e.

p̂(ys; yt)

p̂◦(ys; yt)
=
N
(
ys; yt + b(t, yt)M

−1, σ2(t)M−1
)

N (ys; yt + b◦(t, yt)M−1, σ2(t)M−1)
.

where we use that

ys = yt + b◦tM
−1 + (Bs −Bt)σt for (Bs −Bt) ∼ N (0, I(s− t))

This gives us that

||ys − yt − b◦tM−1||2 = ||(yt + b◦tM
−1 + (Bs −Bt)σt)− yt − b◦tM−1||2 = ||(Bs −Bt)σt||2

and

||ys − yt − btM−1||2 = ||(yt + b◦tM
−1 + (Bs −Bt)σt)− yt − btM−1||2 = ||b◦tM−1 − btM−1 + (Bs −Bt)σt||2

Decomposing the product, we obtain

M−12||b◦t − bt||2 + 2M−1(b◦t − bt) · ((Bs −Bt)σt) + ||(Bs −Bt)σt||2
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Let us now consider writing η = bt − b◦t

M−12σ2
t ||ηt||2 − 2M−1σ2

t ηt · (Bs −Bt) + ||(Bs −Bt)σt||2

Then, the log of the weight defined in equation (4.8), can be written as

log Ŵ =
∑

(t,s)∈G

||(Bs −Bt)σ
2
t ||2(2M−1σ2

t )
−1 − ||b◦t − bt + (Bs −Bt)σ

2
t ||2(2M−1σ2

t )
−1

=
∑

(t,s)∈G

−M−2σ2
t ||ηt||2(2M−1σ2

t )
−1 + 2M−1σ2

t ηt · (Bs −Bt)(2M
−1σ2

t )
−1

= −
∑

(t,s)∈G

1

2
||ηt||2M−1 +

∑
(t,s)∈G

ηt · (Bs −Bt),

which gives us the desired result.
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