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Editorial

We are happy to present the sixth volume in our se-
ries Selected Topics in Identification, Modelling and
Control, reporting on ongoing research in our Me-
chanical Engineering Systems and Control Group at
Delft University of Technology. The current issue
is the most voluminous one until now, containing
seventeen papers. Some of them are reprints of pa-
pers that have appeared at the 1993 IEEE Conf.
Decision and Control in San Antonio, Texas, or at
the 2nd European Control Conference in Groningen
last summer. Most of the material is only recently
developed and is submitted or under review else-
where.

Besides the people that regularly contribute to this
magazine, we would like to mention a couple of new-
COMETS.

First of all we would like to welcome Carsten
Scherer who recently has entered the group as a
new staff member. Carsten obtained the Ph.D.-
degree in 1991 from the University of Wirzburg,
Germany, with a thesis on Riccati inequalities in
‘H.. and robust control theory. We are happy that
we have been able to attract Carsten to come to
Delft. With this new staff position we intend to
intensify our activities in the area of robust control
theory and its applications. Carsten’s contribution
in the current issue is dealing with multiobjective
‘Hs/Hao control.

Raymond de Callafon is a Ph.D.-student in a re-
search project that is sponsored by the Dutch Sys-
tems and Control Theory Network. His topic is the
interplay between system identification and robust
control design, employing model representations in
terms of (normalized) coprime factorizations. The
paper with Paul Van den Hof and Maarten Stein-
buch that is incorporated in this issue, is a reflection
of his M.Sc.-project that he finished at the end of
1992.

Hans Détsch is a new Ph.D.-student in a research
project that is performed in cooperation with the
Philips Research Laboratories in Eindhoven. Hans

VI

will be involved in constructing appropriate mod-
els of the optical pick-up mechanism in CD-players,
taking into account the high performance demands
that are made on the control of this system, and the
fact that the pieces of equipment are being mass-
produced. His contribution in this issue is on a local
structural identifiability test, being the result of his
M.Sc.-project.

Gert van Schothorst is another new Ph.D.-student,
whose participation in this issue reflects his M.Sc.-
project, i.e. the modelling and control of an hy-
draulic rotary vane actuator. We expect to hear
more from him in the future about his new project
concerning motion control systems, which is per-
formed in cooperation with the Aerospace Engi-
neering Department.

Henk Huisman recently finished his Ph.D.-project
with a thesis on design and control of electrical
power converters. His present contribution is on
control of a series-resonant converter.

There are a couple of former M.Sc.-students that
contribute to this volume. Ilya Kraan, Taco Boer-
stra and Carel Ceton present the results of their
projects in papers co-authored by their respective
supervisors.

Finally we would like to mention our "external”
colleagues and some products of our fruitful coop-
eration. Samir Bennani and Bob Mulder of the De-
partment of Aerospace Engineering at Delft Uni-
versity; Maarten Steinbuch and Pepijn Wortelboer
of the Philips Research Laboratories in Eindhoven;
Peter Heuberger of the National Institue of Pub-
lic Health and Environmental Protection (RIVM),
and Jozsef Bokor of the Hungarian Academy of Sci-
ences.

If you would like to react to any of the papers in
this volume, please do not hesitate to contact us.

Okko Bosgra
Paul Van den Hof
Editors

bosgra@tudw(3.tudelft.nl
vdhof@tudw03.tudelft.nl
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Identification of normalized coprime plant factors for
iterative model and controller enhancement?

Paul Van den Hof, Ruud Schrama®, Okko Bosgra and Raymond de Callafon®

Mechanical Engineering Systems and Control Group
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Abstract. Recently introduced methods of iterative identification and control design
are directed towards the design of high performing and robust control systems. These
methods show the necessity of identifying approximate models from closed loop plant
experiments. In this paper a method is proposed to approximately identify normalized
coprime plant factors from closed loop data. The fact that normalized plant factors
are estimated gives specific advantages both from an identification and from a robust
control design point of view. It will be shown that the proposed method leads to identified
models that are specifically accurate around the bandwidth of the closed loop system.
The identification procedure fits very naturally into the iterative identification/control

design scheme as presented in Schrama (1992).

1 Introduction

Recently it has been motivated that the problem
of designing a high performance control system for
a plant with unknown dynamics through separate
stages of (approximate) identification and model
based control design requires iterative schemes to
solve the problem, Lee et al. (1992), Schrama
(1992a, 1992b), Zang et al. (1991). In these iter-
ative schemes each identification is based on new
data collected while the plant is controlled by the
latest compensator. Each new nominal model is
used to design an improved compensator, which re-
places the old compensator, in order to improve the
performance of the controlled plant.

A few iterative schemes proposed in literature have
been based on the prediction error identification
method, together with LQG control design, Zang
et al. (1991), Hakvoort et al. (1992). In Schrama
(1992a), Schrama and Van den Hof (1992) and Lee

!This paper is presented at the 32nd IEEE Conf.Decision
and Control, San Antonio, TX, December 15-17, 1993.
Copyright of this paper remains with IEEE.

¥Now with the Royal Dutch/Shell Company.

IThe work of Raymond de Callafon is sponsored by the
Dutch ”Systems and Control Theory Network”.

et al. (1992) iterative schemes have been worked
out, employing a Youla parametrization of the
plant, and thus dealing with coprime factorizations
in both identification and control design stage; as
control design methods a robustness optimization
procedure of McFarlane and Glover (1988), Bongers
and Bosgra (1990) is applied in Schrama (1992),
Schrama and Van den Hof (1992), while in Lee et al.
(1992) the IMC-design method is employed. For a
general background and a more extensive overview
and comparison of different iterative schemes the
reader is referred to Gevers (1993) and Bitmead
(1993).

One of the central aspects in almost all iterative
schemes is the fact that the identification of a
control-relevant plant model has to be performed
under closed loop experimental conditions. Stan-
dard identification methods have not been able to
provide satisfactory models for plants operating in
closed loop, except for the case that input/output
dynamics and noise characterictics can be modelled
exactly.

Recently introduced approaches to the closed loop
identification problem, Hansen (1989), Schrama
(1991), Lee et al. (1992), Schrama (1992a), Van den




Hof and Schrama (1993), show the possibility of
also identifying approximate models, where the ap-
proximation criterion (if the number of data tends
to infinity) becomes explicit, i.e. it becomes in-
dependent of the - unknown - noise disturbance on
the data. This has opened the possibility to identify
approximate models from closed loop data, where
the approximation criterion explicitly can be ”con-
trolled” by the user, despite a lack of knowledge
about the noise characteristics. In the correspond-
ing iterative schemes of identification and control
design this approximation criterion then is tuned
to generate a control-relevant plant model. The
identification methods considered in the iterative
procedures presented in Schrama (1992a), Schrama
and Van den Hof (1992), Lee et al (1992) employ
a plant representation in terms of a coprime factor-
ization P = ND™!, while in Schrama (1992) and
Schrama and Van den Hof (1992) the two plant fac-
tors N, D are separately identified from closed-loop
data.

Coprime factor plant descriptions play an impor-
tant role in control theory. The parametriza-
tion of the set of all controllers that stabilize a
given plant greatly facilitates the design of con-
trollers, Vidyasagar (1985). The special class of
normalized coprime factorizations has its applica-
tions in design methods (McFarlane and Glover,
1988; Bongers and Bosgra, 1990) and robustness
margins (Vidyasagar, 1984; Georgiou and Smith,
1990; Schrama and Bongers, 1991). If we have only
plant input-output data at our disposal, then a rel-
evant question becomes how to model the normal-
ized coprime plant factors as good as possible. In
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Fig. 1: Feedback configuration

this paper we will focus on the problem of identi-
fying normalized coprime plant factors on the basis
of closed loop experimental data.

As an experimental situation we will consider the
feedback configuration as depicted in Fig. 1, where
Py is an LTI-(linear time-invariant), possibly un-
stable plant, H; a stable LTI disturbance filter, eg
a sequence of identically distributed independent
random variables and C' an LTI-(possibly unstable)
controller. The external signals ry,r, can either be
considered as external reference (setpoint) signals,

2

or as (unmeasurable) disturbances. In general we
will assume to have available only measurements of
the input and output signals u and y, and knowl-
edge of the controller C that has been implemented.
We will also regularly refer to the artificial signal
r(t) := 71(t) + Cra(2).

First we will discuss some preliminaries about nor-
malized coprime factorizations and their relevance
in control design. In section 3 a generalized frame-
work is presented for closed loop identification of
coprime factorizations. Next we present a multi-
step algorithm for identification of normalized fac-
tors. In section 5 we briefly show the experimental
results that were obtained when applying the algo-
rithm to the radial servo-mechanism in a Compact
Disc player.

RH. will denote the set of real rational transfer
functions in H, analytic on and outside the unit
circle; IR[z7'] is the ring of (finite degree) polyno-
mials in the indeterminate z=! and g is the forward

shift operator: qu(t) = u(t + 1).

2 Normalized coprime factoriza-
tions

Consider a LTI system P, then P has a right co-
prime factorization (r.cf.) (N,D) over RH,, if
there exist U, V, N, D € RH,, such that

P(z) = N(2)D7'(z); UN+VD=1. (1)

In addition a right coprime factorization (N, D,)
of P is called normalized if it satisfies

NI(z7Y)Nu(2) + DL (27")Du(2) =1. (2)

Dual definitions exist for left coprime factorizations
1

One of the properties of normalized coprime factors
is that they form a decomposition of the system P
in minimal order (stable) factors. In other words,
if the plant has McMillan degree n,, then normal-
ized coprime factors of P will also have McMillan
degree n,'. Additionally there will always exist
polynomials a,b, f € IR[z"'] of degree n, such that
N, = flz=")=t0lz=") and D = Flz7) alz ),
In robust stability analysis normalized coprime fac-
tors play an important role, reflected in the follow-
ing robustness result (McFarlane and Glover, 1988;
Bongers and Bosgra 1990).

Let P be a plant model that is stabilized by the
controller C. Moreover let (N,,D,) be a normal-
ized r.f.c. of P, and let the real plant F, be such

'In the exceptional case that P contains all-pass factors,
(one of) the normalized coprime factors will have MeMillan
degree < np, see Tsai et al. (1992).




that there exist stable perturbations Ay, Ap such
that Py = (N, + AN)(_D,, + An)_l.

Then C stabilizes the plant P, for all Ay, Ap €
o vt B ~ if and only if v <
Ap

IT(P,Cp)l15, with

RHo satisfying

o0

T(P,c):z[f][ﬁcﬁ]*[c I].

This result shows that when we would have access
to the normalized coprime factors of the plant, to-
gether with an error bound on these (estimated)
factors (in the form of error bounds on the mis-
matches Ay and Ap), then immediate results fol-
low for the robust stability of the plant.

This result may not seem to be too striking, since
a similar situation can be reached by any hard-
bounded uncertainty on the system’s transfer func-
tion, and application of the small gain theorem.
However uncertainty decriptions in normalized co-
prime factor form have been shown to have some
specific advantages, as the ability to deal with un-
stable plants and their close connection with uncer-
tainty descriptions in the gap-metric, Georgiou and
Smith (1990).

The control design method of Bongers and Bosgra
(1990), McFarlane and Glover (1988) is directed to-
wards optimizing this same robustness margin as
discussed above. This control design method is em-
ployed in the iterative identification/control design
scheme of Schrama (1992a), Schrama and Van den
Hof (1992).

3 Closed loop identification of co-
prime factorizations

3.1 Closed loop identification

The closed loop identification problem is not
straighforwardly solvable in the case that one is not
sure that exact models of the plant and its distur-
bances can be obtained in the form of a consistent
estimate of F; and H,. What we would like to {ind
- based on signal measurements - is a model P of
the plant P, such that there exists an explicit ap-
proximation criterion J(Py, P) indicating the way
in which F; has been approximated (at least asymp-
totically in the number of data), while J(P, P) is
independent of the unknown noise disturbance on
the data.

Additionally one would like to be able to tune this
approximation criterion to get an approximation of
F, that is desirable in view of the control design

to be performed. This explicit tuning of the ap-
proximation criterion is possible within the classical
framework only when open-loop experiments can be
performed.

Let’s consider a few alternatives to deal with
this closed-loop approximate identification prob-
lem, assuming the signal r is available from
measurements?:

e If we know the controller €', we could do the
following:
Consider a parametrized model P(6), § € ©,
and identify # through:

P(6)
At ST
Y0 = rpagr e @)
by least squares minimization of the prediction
error &(t).

This first alternative leads to a complicatedly
parametrized model set, and as a result it is not
attractive, although it provides us with a con-
sistent estimate of P irrespective of the noise
modelling, and with an explicit approximation
criterion.

o Identify transfer functions

1

andH,; = i+ PC

P
i el o
. 1+ PC

as black box transfer functions fly,.,f[u,., then
an estimate of P can be obtained as P =
;0

This method shows a decomposition of the
problem in two parts, actually decomposing
the system into two separate (high) order
factors, sensitivity function and plant-times-
sensitivity function. In this setting it will be
hard to "control” the order of the model to be
identified, as the quotient of the two estimated
transfer functions I;’y,., 7. will generally not
cancel the common dynamics that are present
in both functions. As a result the model order
will become unnecessarily high.

¢ As a third alternative we can first identify H,,,
as a black box transfer function H,,, and con-
secutively identify P from:

y(t) = P(8)a,(t)+e(t) with @,(¢) := Hy,r(t).

This method is presented in Van den Hof and
Schrama (1993). It also uses a decomposition

2Similar results follow if either 7, or r; are available from
measurements.




of the plant P in two factors as in the pre-
vious method, now requiring a very accurate
estimate of H,, in the first step. An explicit
approximation criterion can be formulated.

If, as in the last two methods, the plant is rep-
resented as a quotient of two factors of which es-
timates can be obtained from data, it is advan-
tageous to let these factors have the minimal or-
der, thus avoiding the problem that the resulting
plant model has an excessive order, caused by non-
cancelling terms.

3.2 A generalized framework

We will now present a generalized framework for
identification of coprime plant factors from closed
loop data. It will be shown to have close connec-
tions to the Youla-parametrization, as employed in
the identification schemes as proposed in Hansen
(1989), Schrama (1991, 1992a), Lee et al. (1992).
Let us consider the notation®

So(z) = (I+C(2)Po(2)
Wo(z) = (I+ Po2)C(z)

Il

)" and  (4)
) ()

Then we can write the system’s equations as’

y(t) = Po(q)So(q)r(t) + Wo(g)Ho(g)eo(t) (6)
u(t) So(g)r(t) — C(Q)WU(Q)HU{‘I)%(‘)- (7)

Note also that

r(t) = r1(t) + C(g)ra(t) = u(t) + Clq)y(t)- (8)

Using knowledge of C(q), together with measure-
ments of  and y, we can simply "reconstruct” the
reference signal  in (8) So in stead of a measurable
signal 7, we can equally well deal with the situation
that y,u are measurable and C is known.

It can easily be verified from (6),(7) that the sig-
nal {u(t) + C(q)y(t)} is uncorrelated with {eo(t)}
provided that r is uncorrelated with es. This shows
with equations (6),(7) that the identification prob-
lem of identifying the transfer function from signal
7 to (y,u)" is an "open loop”-type of identifica-
tion problem, since 7 is uncorrelated with the noise
terms dependent on e;. The corresponding factor-
ization of P, that can be estimated in this way is
the factorization (PySo, So), i.e. Po = (FoSo) - et
as also employed in e.g. Zhu and Stoorvogel (1992).

Il

9The main part of the paper is directed towards multi-
variable systems, and so we distinguish between output and
input sensitivity.

4Note that we have employed the relations Wy Py = Py Sp
and S()C = CWD

However this is only one of the many factorizations
that can be identified from closed loop data in this
way. By introducing an auxiliary signal

z(t) := F(q)r(t) = F(q)(u(t) + Cla)y(t))  (9)

with F(z) a fixed stable rational transfer function,
we can rewrite the system’s relations as

PU(q]SU{q)F(Q)_IE(t) Al W;(q)Hu(q)eu(t)

(10)
w(t) = So(q)F(g) '=(t) — C(q)Wolg)Ho(q)eo(t),
(11)

and thus we have obtained another factorization of
P, in terms of the factors (PySoF ', SoF~'). Since
we can reconstruct the signal = from measurement
data, these factors can also be identified from data,
as in the sitnation considered above, provided of
course that the factors themselves are stable. We
will now characterize the freedom that is present in
choosing this filter F.

=

—
-

—
Il

Proposition 3.1 Consider a data generating sys-
tem according to (6),(7), such that C stabilizes P,
and let F(z) be a rational transfer function defining

2(t) = F(q)(u(t) + Cla)y(t). (12)

Let the controller C have a left coprime factoriza-
tion (D., N;). Then the following two exzpressions
are equivalent

a. the mappings col(rz,m) — ¢ and 2 — col(y,u)
are stable;

b. F(z) = WD, with W any stable and stably
invertible rational transfer function. m|

The proof of this Proposition is added in the ap-
pendix.

Note that stability of the mappings mentioned un-
der (a) is required in order to guarantee that we ob-
tain a bounded signal z as an input in our identifica-
tion procedure, and that the factors to be estimated
are stable, so we are able to apply the standard
(open-loop) prediction error methods and analysis
thereof.

Note that all factorizations of P, that are induced
by these different choices of F' reflect factorizations
of which the stable factors can be identified from
input /output data, cf. equations (10),(11).

The construction of the signal z is schematically de-
picted in Figure 2. Note that we have employed (8)

which clearly shows that z is uncorrelated with eg
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Fig. 2: Construction of auxiliary signal z from
closed loop data.

provided the external signals are also uncorrelated
with eg.

For any choice of F satisfying the conditions of
Proposition 3.1 the induced factorization of P, is
right coprime, as shown next.

Proposition 3.2 Consider the situation of Propo-
sition 8.1. For any choice of F = W D, with W sta-
ble and stably invertible, the induced factorization
of Py, given by (PiSoF ', SoF~") is right coprime.

Proof: Let (X,Y) be right Bezout factors of
(N,D), and denote [X; Yi] = W(D.D +
ﬁ’cN)[X Y]. Then by employing (A.1) it can sim-
ply be verified that X, ) are stable and are right
Bezout factors of (PySoF ™', SoF~1). O

We will employ the freedom in the filter F, in order
to tune the specific coprime factors that can be es-
timated from closed loop data. Similar to the Youla
parametrization, we will use an auxiliary model P,
that is required to be stabilized by C.

Proposition 3.3 Consider the situation of Propo-
sitions 8.1,3.2. Let P, be an auwiliary model with
r.c.f. (Ng,D.) that is stabihized by C, which has
Lef. (D.,N.). Then a valid choice of W_(satis-
fying (b) in Proposition 3.1) is given by (D.D: +
N.N.)~, and the induced right coprime factoriza-
tion of F, is given by

No = P(I+CP)'(I+CP,)D, (13)
Do = (I+CP) '(I+CPF.)D,. (14)

Proof: With Lemma A.1 it follows that D.D, +
N.N, is stable and stably invertible, and thus it
is an appropriate choice for W~'. The resulting
Ny and Dy follow by simple substitution of F =
WD, = (D.Ds+ N:N.)* D, = (D, +CN,)™. O

Note that for any given controller C', and any stable
and stably invertible W, there always exists an aux-
iliary model P, that satisfies (D.D, + ﬂch)" =
W. This implies that the freedom that is present

in W, as shown in Proposition 3.1, is not restricted
by the specific choice of W in Proposition 3.3.

The representation of F; in terms of the co-
prime factorization above, shows great resemblance
with the dual Youla-parametrization, i.e. the
parametrization of all plants that are stabilized by
a given controller. This connection is shown next.

Proposition 3.4 Schrama (1992). Let C be a con-
troller with r.c.f. (N, D.), and let P, with r.c.f.
(Nz, D) be any system that is stabilized by C. Then

(a) A system P, is stabilized by C if and only if
there exists a stable R satisfying

N.+D.R = Py(I+CPR)'(I+CP.)D,
(15)

(I+CPy)'(I + CP.)D;.
(16)

D. —N.R

Il

(8) The stable matriz R in (a) is uniquely deter-
maned by

R=D;'(I+ PRC) (P — P:)D,. (17)

The proposition shows that the dual Youla-
parametrization induces a set of coprime factoriza-
tions (15),(16) that have exactly the same structure
as the coprime factorizations that can be identified
from closed loop data, with an appropriate choice
of the data filter F'.

In the next section we will show how we can exploit
the freedom in choosing F, N, and D, in order to
arrive at an estimate of normalized coprime factors
of the plant.

4 An algorithm for identification of
normalized coprime factors

The idea of arriving at normalized coprime factor-
izations of Fj is based on the following observation.
Consider the coprime factors (13),(14) that are ac-
cessible from closed loop data as discussed before.
Suppose we can find an auxiliary model P, that is
an accurate (possibly high order) approximation of
the plant Py, and we construct a normalized r.c.f.
(Nn, Dy,) of P,. Using these normalized r.c.f.’s as
N; and D, in (13),(14), it follows with (15),(16)
that No = N, + D.R and Dy = D, — N.R. Em-
ploying P, ~ P, which leads to R ~ 0 then shows
that (No, Do) (approximately) equals a normalized
r.c.f. of Fy. This line of thought is formalized in
the following algorithm




1. Let there be available a nominal model P,,,,
of the plant Py, such that P,,,, is stabilized by
€. Set. Py = P, and constructia ricf Po=
N.D;'. Construct the data filter F' according
to Proposition 3.3:

F=D;'(I+CP,)! (18)
and use this data filter to construct an auxil-
iary signal z = F(u+ Cy). The corresponding
closed loop system equations become

y(t) N[}E(fn) + WgH[}Cn(t) (19)
u(t) Duz(t) — CWQI{QBU(t} (20]

with Ng, Dy given by (13),(14).

2. Use the signals (y,u,z) in a (least squares)
identification algorithm with a output error
model structure (Ljung, 1987):

wo=(10)-[ 58]0
)

considering (y,u) as output signals and z as
input signal.

Use this parametrization to identify the co-
prime factors Ny, Dy as accurately as possi-
ble through high-order modelling, e.g. by em-
ploying orthogonal basis functions in a linear
regression scheme, In this respect the new
method of constructing orthogonal basis func-
tions that contain system dynamics shows very
promissing results, see Heuberger et al. (1992),
as also applied for identification purposes in De

Callafon et al. (1993).

This step is comparable to the first step in the
so-called two-stage identifcation procedure in
Van den Hof and Schrama (1993). The identi-
fied coprime factors are denoted as N, D.

3. Denote P, := ND-' and construct a nor-
malized right coprime factorization (N,,D,)
such that P, = N,D;'. A procedure for con-
structing this normalized r.c.f. can be found
in Vidyasagar (1988), Bongers and Heuberger
(OG0 S etmn e P TN N — 1N e

4. Construct a new data filler F according to
(18) and generate a new auxiliary signal z =
F(u+ Cy). The corresponding system’s equa-
tions are again given by (19),(20).

Employing the results of Proposition 3.4 it fol-
lows that

Ng) = Nn -|' DCR (22)
D, — N.R, (23)

DU

while (17) shows that when P, approaches P,
then R will approach 0 and the above equa-
tions show that the coprime factors N;, D
that can be estimated from closed loop data
are "almost normalized”.

5. Now again identify coprime plant factors as in
Step 2, using measurement signals (y,u,z) and
an output error model structure (21) where
N(8#) and D(@) are parametrized as

N@) = f(a',0) 'b(g",0)  (24)
D) = f(g7',0) 'a(g™",6)  (25)

with a, b and f (matrix) polynomials of
specified degree, having coefficients that are
collected in the parameter vector #. This
parametrization, where N and D have a com-
mon denominator, guarantees that the McMil-
lan degree of the ultimately identified model is
equal to the McMillan degree of the estimated
coprime factors.

The parameter estimate is obtained by

=

fy = a.rgmg z (¢,0)es(t,8), (26)

with
e7(t,0) = Le(t,6), and L € R )Xt
decomposed as L = diag(L,, L,).

6. The result of the algorithm is composed of esti-
mated (almost normalized) right coprime plant
factors (N(fx), D(ﬂ;\ /)) and a resulting plant
model P(6y) = N(fx)D(0x)"

As shown in the previous section, the plant coprime
factorizations that are accessible from closed exper-
imental data are determined by the specific choice
of filter F' and signal z that are chosen. The co-
prime factorizations that can be obtained in tlis
way can be made exactly normalized only in the
situation that we have exact knowledge of the plant
P;. In the algorithm presented above, we have re-
placed this exact knowledge of P, by a (very) high
order accurate estimate of F;. This knowledge is
used to shape the specific set of coprime factors
that is accessible from data.

The nominal model P,,, that the algorithm is
started by, can be obtained from previous exper-
iments on the plant, or from the previous itera-
tion step in an iterative identification/control de-
sign procedure. Note that the order of the "high
order” estimate of Fj in step 2 may be strongly de-
pendent on the nominal model P,,,, that is used as




an auxiliary model in the first step. The more ac-
curate this auxiliary model, the more common dy-
namics is cancelled in the coprime factors (13),(14),
and consequently the easier Ny, Dy can be accu-
rately described by a model of limited order. This
motivates an iterative repetition of steps 1-3 in the
algorithm presented above, in which the high order
normalized r.c.f.’s in step 3 are used as auxiliary
factors again in step 1 of the procedure, thus gen-
erating a new signal z to be used again for identi-
fication. Such an iterative procedure has also been
applied in the application example discussed in the
next section.

In order to explicitly write down the asymptotic
identification criterion that has been minimized in
the last step, note that we can write

L(No — N(6))
e [Lu(own(en}”“”

4 [ _E,V{:“g‘}fu] eolt) (27)

with Ny, Dy given by (22),(23). As a result the
asymptotic parameter estimate ¢* = plim Oy
is characterized by

0" = argmin [ [INo(e) = N(e™, )1, (™)
+ |Do(e™) = (e, 6)*|Lu(e™) "] Ba(w)duw
(28)

with 2(t) = D;'(I + CP.) '[u(t) + C(q)y(t)] and
Ny, Dy given by (22),(23).

If the first identification step (Step 1) of identify-
ing (N, D) is accurately enough (P, — F,), then
N,, D, tend to be normalized right coprime fac-
torizations of the plant. Since P, = P,, apply-
ing (17) shows that R — 0, and the R-dependent
terms in (22),(23) will vanish. The resulting
frequency-domain expression shows that we obtain
a (frequency-weighted) LS-approximation of nor-
malized rcf’s of the plant. The type of frequency-
weighting can be influenced by designing the spec-
trum of the reference signal » and by appropriate
prefilter L.

Note that in this identification method there is no
additional problem if the plant and/or controller
are unstable.

N—=oo

5 Application to a mechanical ser-
vo system

We will illustrate the proposed identification algo-
rithm by applying it to data obtained from experi-
ments on the radial servo mechanism in a CD (com-
pact disc) player. For a more extensive description

of this servo mechanism we refer to Steinbuch et al.
(1992) and De Callafon et al. (1993). The radial
servo mechanism concerns an unstable system, due
to a double integrator. In the present configura-
tion the radial control loop has been realized by a
controller which consists of a lead-lag element and
proportional and integrating action.

This experimental set up is used to gather time se-
quences of u(t) and y(¢) in the radial control loop,
exciting the signal r,(¢). The signals were sampled
at 25kHz and the reference signal r,(t) was chosen
to be a bandlimited white noise signal in the fre-
quency domain of interest (100Hz-10kHz).

Results of applying the algorithm presented in sec-
tion 4 are shown in a couple of figures. Figure 3
shows the result of the estimated coprime factors N,
D at step 2 of the algorithm. This is the high-order
estimate, being the result of a number of iterations
over steps 1-3 as mentioned before. Order of the
models is 24. The results are compared with non-
parametric spectral estimates of the corresponding
plant factors,

Figure 4 shows the final result, estimated low-order
coprime factors, with model order 10. In Figure
5 it is checked whether the finally obtained esti-
mates N(f?;\;),D(éN] indeed are normalized. To
this end we have plotted the frequency response
of N(z7',8x5)N(z,0x)+ D" (2, 6x)D(2,6x) and
the same response of the high order (unnormalized)
estimates.

Note that the control-relevant frequency region, i.e.
the area of the cross-over frequency, is very well
represented in both normalized coprime factors. ILe.
the dynamics that is related to this frequency region
is relatively easy to be identified from these factors.

Conclusions

In this paper it is shown that it is possible to
identify (almost) normalized coprime plant factors
based on closed loop experiments. A general frame-
work is given for closed loop identification of co-
prime factorizations, and it is shown that the free-
dom that is present in generating appropriate sig-
nals for identification can be exploited to obtain (al-
most) normalized coprime plant factors from closed
loop data. The resulting multi-step algorithm is il-
lustrated with results that are obtained from closed
loop experiments on an open loop unstable mechan-
ical servo system.
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Appendix

Lemma A.1 Vidyasagar (1985). Consider ratio-
nal transfer functions Go(z) with right coprime fac-
torization (N, D) and C(z) with left coprime fac-

torization (D, N.). Then T(G,,C) = [ fj_u ] (I +

CGy)'|C I ] is stable if and only if D.D+ N.N

is stable and stably invertible. O

Proof of Proposition 3.1.

(a) = (b). By writing G | G (I +
So I

CGy)~! and substituting a right coprime factoriza-
tion (N, 12) for Gy, and a left coprime factoriza-
tion (D,, N..) for C' we get, after some manipulation,
that

GoSo | | N - = i
[ Sl‘) ] sy { D } (D.—D + N{.'N) D:_’ (A.l)
GuS{gF—l

and stability of [ 5, -1

] is equivalent with sta-

bility of [ g ] (I-JCD-i-I\}cN)-IﬁCF-I. Premultipli-

cation of the latter expression with the stable trans-
fer function (D.D + N.N)[ X Y |

with (X,Y)




right Bezout factors of (N, D) shows that D F-!
is implied to be stable. As a result, f),;F*l = W
with W any stable transfer function.

Now stability of F' and FC implies stability
of W™! [ D. N. ], which after postmultiplication
with the left Bezout factors of (Dc,ﬁfc) implies that
W' is stable. This proves that F' = W~'D, with
W a stable and stably invertible transfer function.
(b) = (a). Stability of F and FC is straightforward.
Stability of Sy F~! and G5, F~" follows from (A.1),
using the fact that (ﬁcD+ﬁcN)'l is stable (lemma
A.l). O
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Abstract. This paper discusses the control relevant parametric identification of a servo
system present in a Compact Disc player. In this application an approximate closed
loop identification problem is solved in order to come up with a linear multivariable
discrete time model, suitable for control design. This identification problem is handled
by a recently introduced two stage method. It yields an explicit and tunable expression
for the bias distribution of the model being estimated, clearly showing the dynamics of
the closed loop system in the (asymptotic) approximation criterion. This result will be
exploited to identify the model in a control relevant way by additional data filtering. The
recently introduced method in de Vries and Van den Hof (1993) for model uncertainty
quantification is used to construct an upper bound for the corresponding model error.

Keywords. compact disc player; closed loop identification; two stage method; control
relevant identification; model uncertainty.

1 Introduction

Compact Disc players use an optical decoding de-
vice to reproduce high quality audio from a dig-
itally coded signal, recorded as a spiral track on
a reflective disc, see also Bouwhuis et al. (1985).
An increasing amount of equivalent optical devices
will be used in portable applications, having severe
shock disturbances. The track following proper-
ties of a CD player, operating in these conditions,
could be improved by designing an enhanced mul-
tivariable controller. The intention of this paper is
to estimate a (nominal) multivariable FDLTI (Fi-
nite Dimensional Linear Time Invariant) dynami-
cal model, obtained from closed loop experiments,
which can be used for control design. Addition-
ally, the procedure presented in de Vries and Van
den Hof (1993) is used for a quantification of the re-
sulting model error by estimating a non-parametric

!This paper is presented at the 32nd IEEE Conference
on Decision and Control, San Antonio, TX, USA, December
15-17, 1993. Copyright of this paper remains with ITEEE,

$The work of Raymond de Callafon is sponsored by the
Dutch ”Systems and Control Theory Network”.

additive model uncertainty.

There is a growing interest in merging the prob-
lems of control design and identification. On the
one hand this is caused by the fact that from a ro-
bust control design point of view we require expres-
sions for model uncertainty that have to be used
in robust control design procedures. On the other
hand the (nominal) models used to design control
systems very often will have to be gathered by ex-
perimental methods.

Practically it is impossible to exactly character-
ize all phenomena that describe the dynamical be-
haviour of a physical system and the corresponding
models will necessarily be approximative. Further-
more, control design methods can get unmanage-
able if they are applied to models of high complex-
ity. Since the validity of any approximate model
hinges on its intended use, the identification pro-
cedure being applied will be subjected to several
requirements, in order to provide estimated models
that are suitable for control design. These consider-
ations have resulted in the statement that the best
model for control design cannot be derived from




open loop experiments alone, Bitmead et al. (1990),
Schrama (1990).

A control relevant identification requires that the
relevant dynamical behaviour of the system is esti-
mated while it operates in a closed loop configura-
tion with the controller to be designed. Since the
controller obtained from the control design is (yet)
unknown, this will generally lead to an iterative
scheme of identification and control design, using
the controller of step ¢ — 1 to estimate a model for
step 7. This has led to study several different types
of iterative schemes of identification and control de-
sign, see Hakvoort et al. (1992), Lee et al. (1992),
Liu and Skelton (1990), Schrama (1992), Schrama
and Van den Hof (1992), Zang et al. (1991).

In this paper we concentrate on one identifica-
tion step in such an iterative procedure. Within the
framework of prediction error identification (Ljung
(1987)) we will identify a multivariable control rel-
evant approximate model, employing a number of
recently introduced methods. An indirect (two-
stage) method (Van den Hof and Schrama (1993))
will be employed to perform the approximate closed
loop identification. The basic advantage of this ap-
proach is that an overall approximate identification
results, in which the asymptotic bias distribution
of the identified model becomes an explicit and
tunable expression that is independent of the (un-
known) noise disturbance on the data. Additional
data filtering is applied to tune the approximation
criterion to become a control relevant criterion.

The outline of this paper is as follows. First a
concise description of the Compact Disc pick-up
mechanism and the experimental set up is given in
section 2. Next some preliminary notation is dis-
cussed. In section 4 we pay attention to the specific
two-stage identification procedure, while in section
5 we discuss the use of orthonormal basis functions
that are employed in the first stage of the proce-
dure. Next, the control relevance of the identifica-
tion approach is given attention and in section 6 we
will present the experimental results.

2 Compact Disc Mechanism

The CD mechanism consists of a turn table DC-
motor for the rotation of the Compact Disc and
a radial arm in order to follow the track of the
disc. Furthermore, an OPU (Optical Pick-up Unit)
is mounted on the end of the balanced radial arm
to read the digitally coded signal, recorded on the
disc. Schematically the CD mechanism is given in
figure 1.

A diode generates a laser beam that passes
through a series of optical lenses in the OPU to give
a spot on the disc surface. The light reflected from
the disc is measured on an array of photo diodes,

DC-motor

photo diodes Optical Pick-up

Unit

Fig. 1: Schematic view of CD mechanism

mounted in the bottom of the OPU, yielding the
signals required for position error information of
the laser spot on the Compact Disc, see also Draijer
et al. (1992).

Following the track on the Compact Disc involves
basically two control loops. First a radial con-
trol loop using a permanent magnet/coil system
mounted on the radial arm, in order to position
the laser spot in the direction orthogonal to the
track. Secondly a focus control loop using an ob-
jective lens suspended by two parallel leaf springs
and a permanent magnet /coil system, with the coil
mounted in the top of the OPU to focus the laser
spot on the disc. In the present configuration, both
the radial and focus control loops have been real-
ized by a SISO (Single Input Single Output) con-
troller, which consists of a lead-lag element and
a proportional and integrating action. The closed
loop bandwidth is approximately 500 Hz, which is a
compromise between several conflicting factors, see
Draijer et al. (1992) and Steinbuch et al. (1992).

In figure 2 a block diagram of the two control
loops is shown. In here P,(g) denotes the trans-
fer function of radial and focus actuator, C,,, the
OPU, C(q) the controller and FPy(q) = —CopuPa(q).
The variable ¢ is the forward shift operator, yield-
ing z(t + 1) = ga(t)-

Fig. 2: Block diagram of the Compact Disc mech-
anism

The signals have the following interpretation.
The spot position error §(t), which is the difference
between the track position p(t) and actuator posi-




tion z(¢) in radial and focus direction, generates a
(disturbed) error signal y(¢) via C,,,. This error
signal y(t) is led into the controller C(q) and feeds
the system P,(q) with the input u(¢). The signal
v(t) reflects the disturbance on the error signal y(t).

The absolute track position p(t) and actuator po-
sition z(¢) cannot be measured directly and used for
identification. Only the error signal y(¢) and the in-
put u(t) are available. Therefore an additional and
known reference signal r(¢), uncorrelated with the
additive noise v(t) will be injected into the control
loops, as illustrated in figure 2.

3 Preliminaries

Given figure 2, the system Py(g) will be described
by the following FDLTT data generating system S
throughout this paper.

S: y(t) = Po(q]u(f) Ho(q)e(t)
u(t) = r(t) + C(q)y(t)

In (1) the disturbance v(¢) + C,,,p(t) is described
by a filtered white noise signal Hy(q)e(t). Using the
input sensitivity So(g) and output sensitivity Wo(q)
of the closed loop system

(1)

So(g) = [I—C(q)Po(q)]™ (2)
Wo(q) = [I — Po(q)C(q)]™
we can rewrite (1) into the following equations.
u(t) = Solg)r(t) + C(q)Wol(q)Ho(g)e(t) (3)
y(t) = Po(q)So(q)r(t) + Wolq)Ho(q)e(t) (4)

Throughout this paper we will consider model
sets M that are parametrized in an OE (Output
Error) structure, Ljung (1987). For a general in-
put/output system with input u and output y this
model structure is reflected by the equation:

y(t) = (5)

where (1) is the one step ahead prediction error.
The parameter p will be estimated by employing a
least squares criterion, see also Ljung (1987),

M: P(g,p)u(t) + (), p€ Dm

pi= argmin Vn(p, ZN), p€ Dum

N 1
2N z’“" {l(t,p)Qeilt,p)} (6)

t=0

eit,p) = L(q)e(t, p)

VN(!": ZN) =

where () is a symmetric weighting matrix, ZV re-
flects the observed data of length N and L(q) is an
additional filter on the prediction error £(¢, p).

4 Two Stage Method

The major problem arising from an approximate
identification using closed loop experiments, is the
correlation of the additive noise with the input of
the system, see also figure 2. Most important in
identification for control design is to estimate Py(q)
given in (1). Furthermore, an explicit expression
of the approximation of Fy(g) is needed, to tune
the bias distribution of the model P(q,pn) being
estimated in a feedback relevant way. The method
to handle the closed loop situation in this paper, is
based on the two stage identification method given
in Van den Hof and Schrama (1993). The two steps
are recapitulated in the following.

The external reference signal r(t) given in (3) is
uncorrelated with the additive noise v(t) acting on
the closed loop system. By using an OE model
structure, similar as in (5)

S(g@)r(t) + (1) (7)

and the least squares criterion given in (6) to es-
timate a, it is possible to identify the input sensi-
tivity So(¢) in an open loop way. In this step we
take L(g) = 1. This is the first step in the two
stage identification strategy. It is even possible to
consistently estimate Sp(g), provided a sufficiently
high model order has been selected.

Given the estimate S(q,ay) of the input sensi-
tivity So(g), a noise free input signal 1,(2) can be
simulated from the observations of the reference sig-
nal r(1).

u(t) =

(8)

which in the second step of the procedure is em-
ployed, again using an OE model structure

y(t) = P(q,p)i.(t) + &(t)

it (1) = S(q, an)r(t)

(9)

and the least squares criterion given in (6) to esti-
mate the parameter gy in P(q, pn).

A result for the asymptotic bias distribution of
the estimate P(g, py) in the SISO case is given in
the following theorem (Van den Hof and Schrama
(1993)):

Theorem 4.1 Consider the two-stage identifica-
tion discussed above, resulting in a parameter es-
timate py. Then, under weak conditions,

o(e™) — P(e, p)]-
Sole) + P(e, p)[So(e™) — S(e, )]
@, (w)|L(e™) ] dw, "w.p. 1 as N — oo

(10)




and

™

o™ = arg min % |So(e) — S(e“, a)|*®, (w) dw
" (11)

where L(q) denotes the filter on the prediction error
g(t), used in the second step and ®,(w) denotes the
(auto)spectrum of the reference signal r(t).

The frequency representation (10) in theorem 4.1
shows the influence of a model error in the esti-
mated sensitivity function on the final result of the
identification. If in the first step of the procedure a
very accurate (high order) model of the sensitivity
function is identified, then the second term in the
integrand expression in (10) will vanish. For the
multivariable case, this will result in the following
expression, where AP(e™, p) is used to denote the

difference Py(e) — P(e™, p).

p* = arg mpin é ¥ tr{L(e™™)TQL(e™)-
AP(c®, p)So(e)®, (w): 24
-So(e“)TAP(e™, p)"'} dw

Clearly, (12) is an explicit and tunable expression
for the bias distribution of the asymptotic model
P(q,p*). In this expression the prediction error fil-
ter L(g), the input spectrum ®,(w) and the weight-
ing matrix @) can been seen as design variables, see
also Hakvoort et al. (1992) and Wahlberg and Ljung
(1986). Therefore, we define the design variables D,

to be:
D. & {L(q), ¥, (w), Q). (13)

The usage of the design variables D, will be scruti-
nized in section 6.

5 Linear Regression using Ortho-
normal Basis Functions

In the first step of the identification procedure we
need an output error type algorithm in order to
arrive at the results as presented in theorem 4.1.
Moreover the identified sensitivity S(g,an) has to
be very accurate, which asks for high model orders
to be applied. Since OE model structures in gen-
eral require non-linear optimization algorithms to
solve the least squares identification problem given
in (6), high model orders are very unattractive from
a computational point of view. Moreover the oc-
currence of local minima in the optimization may
heavily influence the parameter estimate that is ob-
tained.

In our procedure we will apply a linear regression
identification that also has an output error struc-
ture, and that exploits the recently obtained re-
sults on system-based orthonormal basis functions

as presented in Heuberger (1990) and Heuberger
et al. (1992). This model structure is given by:

e(t,a) =u(t) = > Li(a)Va(g)r(t—1)  (14)

k=0

where {Li(a)}i=1,...n is a sequence of expansion co-
efficients of the parametrized model of the sensitiv-
ity function S(g,e) with respect to the basis func-
tions {Vi(z)}k=1,-.0- It is based on the fact that
any stable, strictly proper FDLTI system S(z) has
a unique expansion

S(z) =) LeVi(2) (15)
k=0
In the case Vi(2) = z7*, this model structure

matches a Finite Impulse Representation (FIR),
while in that case Ly represent the impulse response
coefficients of the model.

By choosing appropriate basis functions Vj(z),
the convergence rate of a series expansion as in (15)
can become very fast, which means that a very ac-
curate model can be identified by only incorporat-
ing a restricted number of coefficients Li(a).

In Heuberger (1990), Heuberger et al. (1992) it
is shown how dynamical systems themselves can in-
duce orthonormal basis functions Vi(z), pointing to
an iterative scheme of identifying expansion coeffi-
cients and rebuilding basis functions. In our ap-
plication we have iteratively constructed such basis
functions that were found from the estimated model
in the previous iteration step. For more details the
reader is referred to the references.

6 Control Relevant Identification
6.1 Finding the right weight

The validity of any approximate model hinges on its
intended use and therefore the identification proce-
dure being applied will be subjected to several re-
quirements to estimate a model suitable for control
design. Since the "quality” of a model actually is
dependent on the controller that is designed on the
basis of the model, this future controller actually
should be incorporated in a cortrol relevant identi-
fication criterion.

Since the controller obtained from the control de-
sign is (yet) unknown, a minimization of the model
error using the current feedback, provided by the
present controller, is generally used to estimate a
model for subsequent control design. In the liter-
ature a number of many techniques can be found
to perform such an identification, see for example
Bitmead et al. (1990), Hakvoort et al. (1992), Liu




and Skelton (1990), Schrama (1992). In this pa-
per a 2-norm minimization will be used, see (6),
which is related to a LQG control paradigm, see
also Hakvoort et al. (1992), Zang et al. (1991).

The (input) sensitivity Sp(g) given in (2) is found
to be of considerable importance in posing perfor-
mance requirements of the closed loop system. The
sensitivity, based on the (nominal) model P(q, pn)
being estimated will be denoted as

S(q,pn) = [I - C(q)P(q, pn)]™

Clearly, the difference between the sensitivities
So(q) and S(q, pn) reflects a feedback-relevant mis-
match, caused by the difference between the nomi-
nal model P(q, pn) and the system Py(g). Consider-
ing any norm or distance function ||-|| and applying
the triangle inequality to ||So(q) — S(q, pn)|| yields:

1So(@)ll < [15(g, An)Il + lISo(q) = S(gs An)Il - (17)
ISo()Il = [IIS(gs Aw)Il — IISo(g) — S(g, An)ll| (18)

From (17) and (18) we see that by posing the fol-
lowing requirement

[150(q) = (g, pn)ll < IS(g:An)l  (19)

similar performances of the controller C'(¢) applied
to the model P(q,pn) and the system Fy(g) can
be derived, see also (Schrama (1992)). Therefore,
minimizing the difference ||So(q) — S(g, p)|| on the
basis of measurement data can be seen as a control
relevant identification. By rewriting the difference
between Sp(q) and S(q, pn), omitting the use of the
forward shift operator ¢ for ease of notation, we may
write

(16)

Il = CPR]™* = [T = CP(p)] 7|l =
I[7 — CP(p)]='C[Po — P(p)] [T — CR]™'|

From (20) it can been seen that minimizing the
difference between So(q) and S(gq, pn) is equal to a
weighted norm applied to [Po(q) — P(q, p)], where
So(q) is used as input weighting and S(q, p)C(q)
as an output weighting. By replacing the norm
operator || - || in (20) by the H,-norm, see (Ma-
ciejowski (1989), pp. 99), the difference term in (20)
matches the following closed loop performance cri-

terion J.(A)

(20)

o g .

J () E = | IS, p)c(e )"
[S(e™, p)C(e)][Fo(e™) — P(e, p)]:
‘So(eiw)S[)(ﬁviu)T[Pu(E“iw) -t P(e“"“’,p)]T} dw

(21)
The way this minimization will be carried out for
the identification of the Compact Disc pick-up
mechanism, is discussed in the following section.

6.2 Prefiltering

The weighted minimization of ||Po(q) — P(q,p)||2
given in (21) can be accomplished during the identi-
fication, by modifying the design variables D, given
in (13). The prediction error filter L(g), the sym-
metric weighting matrix @ and the spectrum &,
can be exploited to ‘shape’ the model P(q, pn) be-
ing estimated in the approximate identification. To
achieve a minimization of the closed loop perfor-
mance criterion given in (21) the design variables
have to be chosen as follows.

Proposition 6.1 Given a consistent estimate of
the input sensitivity So(q) = [I — C(q)Po(q)]™" used
to simulale the noise free input 4.(t) given in (8),
then with the choice of the design variables,

L(g,p) = [I —C(q)P(q,p)"C(q)
D=1 &.(w) = &l
Q = CQI

where ¢, ¢y are arbitrarily chosen real constants,
the least squares criterion given in (6) will converge
to the closed loop performance criterion defined in
(21), under weak conditions as N — oo.

A proof of proposition 6.1 can be found in
Hakvoort et al. (1992), since basically an equiv-
alent closed loop performance criterion is used in
this paper. The choice of the design variables given
in proposition 6.1 can also be seen directly, by com-
paring a constant ¢;c; times the closed loop perfor-
mance criterion defined in (21) with the equivalent
frequency domain representation of the least square
identification algorithm given in (12).

Clearly, the consistent estimate of the input sen-
sitivity used to simulate the noise free input signal
i,(t), given in (8) can be a strong requirement. An
approximate identification of Sp(g) can lead to a
biased closed loop performance criterion, see theo-
rem 4.1. As stated before, linear regression models
using system based orthonormal functions are used
to model the input sensitivity and can be used to
substantially reduce this effect.

Furthermore, the following notes on proposi-
tion 6.1 should be given.

e Firstly, it should be noted that the input
weighting with the ‘real’ sensitivity So(q) can
only be achieved when performing closed loop
experiments. Note that this weighting factor
is already present in the asymptotic identifica-
tion criterion (12).

o Instead of L(q,p) = [I - C(q)P(q,p)]C(q)™
given in proposition 6.1, a fixed filter will gen-
erally be used to filter the prediction error,




as to avoid very complicatedly parametrized
nonlinear optimization problems. An iterative
scheme using the model P(q,pn) from step
2 — 1, for constructing a filter L(q, py) used
in step z to filter the prediction error can be
used to overcome this problem. The control
relevant model P(¢,pn) and the matching fil-
ter L(q, pn) will be found when the iterative
scheme converges.

e Finally it should be noted that the iterative
scheme mentioned above, is performed in a
SISO configuration. In this way the filtering
of the prediction error £(1) can be replaced by
filtering the input and output of the system to
be identified.

7 Application to the CD Player

7.1 Data acquisition

Measurements of the CD mechanism have been
obtained from an experimental set up of a Com-
pact Disc player at Philips’ Research Laboratories.
This experimental set up is used to gather time se-
quences of r(t), u(t) and y(t), see figure 2, in radial
and focus control loops simultaneously. Matching
software is used to control the sample frequency,
anti aliasing filter, data storage and input genera-
tion.

The signals have been sampled at 25 kHz and
the reference signal r(1) injected in the closed loop
was chosen to be a white noise signal, to fulfil the
choice of the second design variable ®,(w) given
in proposition 6.1. The white noise reference sig-
nal was chosen to be bandlimited in the frequency
domain of interest (100 Hz — 10 kHz). A 5" or-
der Butterworth filter, with a cut off frequency at
9.5 kHz was used to reduce the effects of aliasing.

The two-stage identification procedure previ-
ously discussed is applied to this experimental data.
Furthermore, a non parametric estimate of the in-
put sensitivity So(w) and the system Py(w) is ob-
tained by a spectral analysis (Priestly (1981)) and
given by

§T(w) = @r(w) ' bru(w), det{d,(w)} £O (22)
‘i’r

P (@) = $ru(w) 1 dry(w), det{®,.(w)} #0. (23)

Il

The estimates of the spectra in (22) and (23) have
been carried out by using 100 averages over 409600
time samnples. The results will be used only as a
(additional) validation tool for the parametric mod-
els S(q, ayn) and P(q, py) being estimated, which is
based only on 2000 time samples.
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7.2 Estimate of sensitivity function

As mentioned in section 5, a linear regression
scheme based on orthonormal functions has been
used. Firstly, a relatively rough (low order) esti-
mate 1s computed by a multivariable Output Er-
ror minimization using the DUMSI'-package. Sec-
ondly, an iterative scheme using the model from
step ¢—1 for constructing a set of orthonormal func-
tions Vi(z) used in step 7 will be utilized. The re-
sults of this identification procedure can be found in
figure 3 and 4. The model S(q, &y) is constructed
by estimating 4 coefficients Lr(a) based on an 12-
th order model inducing the basis functions. This
results in a model with state space dimension 48.
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Fig. 3: Amplitude of spectral estimate S'(u) (—)
and parametric model S(e", ay) (- -)

Figure 3 presents the amplitude plots of the
spectral estimate S(w) and the parametric model
S(e™,&n). The input sensitivity has been esti-
mated reasonably well, which has been emphasized
by comparing a part of the simulation of the input
U.(t) and the actual input u(¢) measured in closed
loop, given in figure 4. This data is taken from a
data set, not used for identification. Furthermore,
it can been seen from figure 4 that the amount of
noise on the input u(¢) in closed loop is relatively
small.

7.3 Towards a low order model

This section discusses the second step of the two
stage identification algorithm, where an approxi-
mate identification will be performed, using the re-
constructed input u,(¢) and output y(¢). For the
sake of completeness it should be mentioned that
the input @,(f) cannot be used directly. This is

'Delft University Multivariable System Identification
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Fig. 4: Measured input u(¢) (—) and simulated in-

put i.(t) (- -) of radial and focus loop

caused by the fact that the radial and focus actu-
ators act like double integrators in the frequency
domain of interest.

The properties of the prediction error methods,
like the results given in proposition 6.1, are valid
only for a stable prediction error mapping, see
Ljung (1987), Van den Hof and Schrama (1993).
Hence, identifying a double integrator will in-
evitably lead to undesirable results. In order to
omit the identification of the (known) double inte-
grator, the input ,(¢) will be put through a zero
order hold equivalent of a continues time double
integrator. In this way the remaining dynamics of
the system Py(g) has to be identified only.

As mentioned before, the iterative scheme of fil-
tering and identification, discussed in section 6.2, is
performed on the radial Pg1(¢) and focus Pg2:(q)
transfer functions in a SISO configuration. In this
way filtering of the prediction error £(¢) now can be
replaced by filtering of input @,(¢) and output y(¢)
of the system to be identified.

Finally, the filters Ly1(¢) and Ljz(g) arising from
the iterative scheme mentioned above, are used to
estimate a multivariable Output Error model, us-
ing the DUMSI-package. This multivariable model
has a 16" order (without the double integrators)
and is parametrized using a pseudo canonical (ob-
servability) form (Ljung (1987), pp. 119-123), with
structure indices (7,9). It should be mentioned that
the multivariable model being estimated now, will
not be optimal in the sense of the closed loop cri-
terion given in (21), since the choice of the filter
L(q,p) does not exactly meet the requirements of
proposition 6.1. However, the results of this con-
trol relevant scheme can be quite illuminating. The
results of the multivariable model being estimated

can be found in figure 5 and 6.
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Fig. 5: Amplitude of spectral estimate P(w) (—)
and parametric model P(e™, pn) (- -)

Figure 5 presents the amplitude Bode plots of the
spectral estimate P(w), see (23), and the model
P(e'™, pn) being estimated. It can be seen from
this figure that there is some parasitic dynamics in
the radial transfer function Pp;1(e™), around 0.9,
1.7, 4 and 6 kHz. Some of these parasitic dynamics
only have a small contribution in the open loop be-
haviour of the system and therefore should not have
to be estimated. On the other hand, in the closed
loop behaviour of the system these parasitic dy-
namics play an significant role. This is illustrated
in figure 3, where one can recognize peaks in the
sensitivity function. Clearly, this discussion illus-
trates the use of a control relevant identification
scheme. A part of the simulations, based on closed
loop data that has not been used for identification,
has been depicted in figure 6. It illustrates that the
model P(e™, pn) predicts the closed loop data very
well.

Given the nominal model P(q,pn), the proce-
dure presented in de Vries and Van den Hof (1993)
can be used to quantify an additive model error.
Using a partly periodic input signal @,(¢) and addi-
tional information about the decay rate of the im-
pulse response of the system under consideration,
an additive model error can be estimated using an
Empirical Transfer Function Estimate, see de Vries
and Van den Hof (1993) for further details. The re-
sults of this procedure, applied to the radial transfer
function only, can be found in figure 7.

In figure 7 a part of the Nyquist contour of
C11(q) P11(q, pn) is depicted, based on the given
controller Cy;(q) of the radial servo loop and the
nominal model Pii(q,pn) of the radial transfer
function being estimated. Furthermore, the addi-
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Fig. 6: Measured output y(¢) (—) and simulated
output g(t) (- -) of radial and focus loop

tive error bounds on the nominal model are char-
acterized by circles in the complex plane for sev-
eral frequency points. From figure 7 it can also be
seen that the additive model error has been kept
small in the closed loop frequency domain of inter-
est (around the bandwidth).

8 Conclusions

In this paper a control relevant parametric iden-
tification scheme is applied to a Compact Disc
servo system, using the well known Prediction Er-
ror methods, wherein the problems of approximate
and closed loop identification have been merged.
This is done by using a two stage identification al-
gorithm, wherein a simulation of the input signal
is used to estimate the system. The two stage al-
gorithm requires an accurate estimate of the input
sensitivity of the closed loop system. This can be
achieved by employing a linear regression scheme
using system based orthonormal functions. The re-
sulting expression for the bias distribution of the
model being estimated, is tuned in a control rele-
vant way by choosing appropriate design variables.
Using closed loop time domain observations of a
Compact Disc pick—up mechanism, this has led to a
multivariable discrete time model that can be used
for designing an enhanced controller.
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Consistent parameter bounding identification for lin-
early parametrized model sets

Richard G. Hakvoort and Paul M.J. Van den Hof

Mechanical Engineering Systems and Control Group
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Abstract. In parameter bounding identification, a time-domain bound on the noise sig-
nal is the basic prior that determines the resulting feasible parameter set. One of the
properties of this approach is that no consistency occurs if the noise bound is chosen
conservative.

By introducing alternative bounds on the noise signal, it is shown that parameter bound-
ing identification methods result that under fairly general conditions exhibit the property
of consistency, i.e. asymptotically in the number of data samples the feasible parameter
set converges to the true parameter.

As alternative prior, a bound on the cross—covariance between the noise and some in-
strumental (input) signal is introduced. The noise bound is represented by a small
number of linear inequalities, which can be employed in parameter bounding by linear
programming. It is shown that consistency is achieved even when the bound is chosen
conservative. Additionally a procedure is presented to estimate the cross—covariance
bound from data.

Similar consistency results are shown for another type of noise prior: a bound on the
discrete Fourier transform of the noise, in combination with sinusoidal excitation.

Keywords. system identification, discrete time systems, linear programming, conver-
gence analysis, probability

1 Introduction N the number of samples. This linear regression
model can describe a large class of systems, includ-
ing multi input single output and nonlinear sys-
tems. The observations are assumed fo be gener-

ated by

y(t) = ¢ ()6 + eot), t=1,.. (1)

with {eo(t)} an unknown stochastic noise process.
It is emphasized that {ey(¢)} is not assumed to be

The literature on set membership, bounded error
or parameter bounding identification is quite exten-
sive by now. See Walter and Piet-Lahanier (1990)
and Milanese and Vicino (1991) for overviews on
this topic. The idea is to calculate a parameter set
of minimal size using measurement data and cer-
tain deterministic bounds on the noise. To clarify
the discussion consider the discrete-time linear re-

".IN!

gression model
y(t) = ¢7(t)0 + e(t), t =1,...,N,

where y(t) is the measured output at time ¢, ¢(2)
the n % 1 regression vector, 8 the n x 1 parame-
ter vector, e(t) the equation error or residual and
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white noise or uncorrelated to the regression vector
{#(t)}. Hence the data may be generated in closed
loop and the regression vector may contain samples
of the output signal {y(t)}. Basically {eo(t)} may
also account for undermodelling, however in this
paper undermodelling will not be considered.

In parameter bounding identification the param-




eter vector f is bounded on the basis of certain
bounds on {e(¢)}. The most common procedure
is to bound the amplitude of the residuals in the
time domain,

eit) < e(t) < eu(t), t=1,...,N, (2)

see e.g. Walter and Piet-Lahanier (1990). The fea-
sible parameter set is then defined as

On = {0 e(t) < y(t) - ¢"(1)8 < eu(t),

b=, A

Next an orthotopic outer bounding parameter set
can be constructed by calculating

Ll = o™ —
6" = min 6, 6" = maxy, (3)
for B = 1,...,n, which requires solving 2n linear

programming problems with n unknowns subject to
2N linear inequality constraints, see Milanese and
Belforte (1982) for details. If {eq(t)} also satisfies
the residual bounds (2), then the parameter vector
8y is guaranteed to be in the identified set.

Fogel and Huang (1982) and Veres and Norton
(1991) have shown that under certain conditions
the outer bounding parameter set converges to 6 if
N — oo, provided the noise {eq(2)} is at sufficiently
many time instants arbitrarily close to the specified
noise bounds, without exceeding them. However it
seems impossible to meet this requirement in many
practical situations. In practice the noise bounds
have to be chosen conservative in order to guarantee
their correctness. Therefore in general there is no
consistency in parameter bounding identification.
A similar situation is encountered in the field of ro-
bust identification in H,,, see e.g. Helmicki et al.
(1991) and Gu and Khargonekar (1992). There de-
terministic bounds on the noise are assumed, and
basically only consistency is established under the
condition that the noise level tends to zero. This
highlights the demerit of only using the bounds (2).
The explanation for this lack of consistency in the
presence of noise is that the noise is assumed to
be able to take a worst—case realization within the
noise bounds, i.e. heavily correlated with the input
signal.

For prediction error type of identification proce-
dures it is known that if the number of data samples
tends to infinity the parameter estimate converges
to the true parameter vector 6, under fairly general
conditions, also for nonzero noise, see e.g. Ljung
(1987). This is due to the fact that stochastic or
averaging properfies are present in this identifica-
tion setting. The objective of this paper is to adjust

the parameter bounding identification such that a
similar consistency property is obtained in the pres-
ence of noise. This is achieved by introducing alter-
native noise bounds, which have a stochastic inter-
pretation. A basic motivation for using the noise
bounds (2) is that for small data sets, N small,
stochastic assumptions on the noise may not be
justifiable. However if large data sets are available
stochastic noise assumptions often can be justified,
in which case the noise characterization (2) is overly
pessimistic.

Stochastics have already been introduced into
parameter bounding identification by Fogel and
Huang (1982), where basically a stochastic inter-
pretation is given for the noise bounds (2). In Veres
and Norton (1989) the situation is considered that
the noise has a bounded auto-covariance, or cross—
covariance with a specified signal, but only for the
purpose of model structure selection. Fogel (1979)
considers bounds on the energy of the noise, but
this neither leads to consistency.

In this paper a cross—covariance bound on the
noise is introduced into parameter bounding iden-
tification as an alternative for the standard time-
domain bound on the noise (2). The sample covari-
ance between the residuals and some given signal is
bounded. Typically this signal is chosen such that
it is correlated to the input signal, but uncorrelated
to the noise process. In an open loop experimental
situation the (filtered) input signal meets the spec-
ifications. In closed loop operation some external
reference signal can be taken. The cross—covariance
noise bounds can be represented by a small number
of linear inequalities, which can be used to calculate
an outer bounding parameter set by means of linear
programming, similar to (3). Sufficient conditions
are derived which make the feasible parameter re-
gion converge to the parameter vector 8;. These
conditions are very general, basically only persis-
tence of excitation is required, and it is not requirad
that the specified bounds are tight. A stochastic in-
terpretation is given of the cross—covariance bounds
on the noise. Also a procedure is presented fo esti-
mate correct bounds from measurement data.

Similar consistency results appear obtainable
with other types of noise bounds, which also
give rise to linear constraints usable in parame-
ter bounding identification with linear program-
ming techniques. A frequency-domain bound on
the noise is introduced into parameter bounding
identification. More specifically the amplitude of
the discrete Fourier transform of the residuals, the
square-roof of its periodogram, is bounded for a set
of specified frequencies. This bound is also utilized




in frequency—domain identification procedures, see
Lamaire et al. (1991) and De Vries and Van den
Hof (1992). As parameter bounding identification
adopts a time-domain setting, the bound requires
a translation into linear constraints in the time do-
main, which is presented in this paper. A stochastic
analysis of the noise bound is presented, as well as
sufficient conditions for consistency.

Finally similar results appear obtainable for a
time-domain bound on the noise in combination
with measurement averaging and periodic excita-
tion. However, due to space limitations this will not
be discussed in this paper. The interested reader is
referred to Hakvoort and Van den Hof (1993).

The outline of the paper is as follows. In Sec-
tion 2 the cross—covariance bound on the noise
is elaborated and consistency results are derived.
In Section 3 it is discussed how to estimate noise
bounds from data in a statistically reliable way. In
Section 4 the frequency-domain bound on the noise
is considered. In Section 5 a simulation example is
shown. Finally in Section 6 conclusions are drawn.

This paper is a version of Hakvoort et al. (1993).
Due to space limitations all proofs are omitted.
These can be found in Hakvoort and Van den Hof
(1993).

2 Cross—Covariance Constraints
on the Noise

First the cross—covariance constraints on the noise
are introduced into parameter bounding identifica-
tion. Consider the following linear constraints,

ZTP t) < CH{P] e By

(4)
yielding the feasible parameter set,
Z"'ﬂ

O {Nca(p - ¢(1)6) <

where c¢(p) and c,(p) are specified bounds, and
{r,(t)} is some specified signal, typically equal to
a delayed and/or filtered signal that is correlated
to the regression vector {¢(¢)} but uncorrelated to
the noise process {eo(t)}, as explained later. The
constraints (4) restrict the set of accepted residu-
als, and therefore the feasible parameter set. As
the constraints in (5) are linear in the parameter
vector 8 they can easily be included in the linear
programming problems (3).

Of course it is desirable to specify the bounds
ci(p) and cu(p) on the sample covariance of the
residuals with the signals {r,(¢)} such that they are
satisfied by the true noise process {ey(t)}. Anal-
ogously to the noise bounds (2) it is possible to
consider the bounds (4) as being entirely determin-
istic, which then does not require the noise being
looked upon as a stochastic process. However it
appears that a nice probabilistic interpretation of
the bounds (4) exists if the noise process {eo(t)}
has some stochastic properties, which can often be
justified in practical situations. In fact (4) then
boils down to the assumption that the noise pro-
cess {eg(t)} is uncorrelated to the signals {r,(¢)}.
For the analysis some technical assumptions on the
signals {eq(t)}, {rp(t)} and {¢(t)} are needed. The

assumptions about {eq(¢)} are:

Assumption 2.1 The noise process {ey(t)} 1s sta-
tionary, satisfying eg(t) = Hy(q)wo(t) for some sta-
ble Hy(q), and where {wo(t)} is a sequence of in-
dependent random variables with zero mean values,
vartances Ay, and bounded fourth moments.

The assumptions about {r,(¢)} are:

Assumption 2.2 Each signal {r,(t)} is quasi-
stationary, i.e. its auto-covariance function

1
R.(r)y= N_'m N Z Ery(t + 7)rp(t)
exists V7. Moreover {r,(t)} satisfies

rp(t) = 7p(t) + By(t, )75(2),

where {7,(t)} 25 a bounded deterministic signal,
{R,(t,9), t =1,2,...} is a uniformly stable family
of filters, and {7,(t)} is a sequence of independent
random variables with zero mean values, variances
Apty and bounded fourth moments.

The assumptions about {¢(¢)} are:

Assumption 2.3 Fach signal {¢i(t)}, this is el-
ement k of vector ¢(t), is quasi-stationary and it
satisfies

i(t) = i(t) + Sk(t, a)u(t),

where {Pi(t)} is a bounded deterministic signal,
{Sk(t,q), t = 1,2,...} is a uniformly stable family
of filters, and {¢x(t)} is a sequence of independent
random variables with zero mean values, variances
Pk, and bounded fourth moments.

And the assumptions about joint properties of

{rp(t)} and {gx(t)} are:




Assumption 2.4 For each p and k the signals
{rp(t)} and {¢i(t)} are jointly quasi-stationary,
1.e. they are both quasi—stationary, and the cross-—
covariance function

R, 4,(7) = lim —EE?p (t + 7)x(t)

N—ooco N

exists. Moreover the signal [ 1:,,(5) ] has covari-
bi(t)

ances Vpk, and bounded fourth moments.

Using these assumptions a stochastic interpretation
of the constraints (4) can be established. In this in-
terpretation the notion of uncorrelation is strength-
ened to independence.

Theorem 2.5 Suppose that {ey(t)} and {r,(t)}
are independent and that they satisfy the assump-
tions 2.1 and 2.2 respectively. Denote

2
1
A:}' =F (—Nzrp(t)eg(t)) .
=1
A, = lim AsG
and
1 N—|r|
(r) = Y. Ery(t)ro(t+ |7]),
# N i [ t=1
r=-N+1,...,N—-1.
Then
. N Ao, N = |Ti
@ A= Y —ZCRY(NRL(),
T=—N+1

@) Ap= 3 Rey(r)Beo(r),

T=—00

(iii) \/_Zr,, (t)eo(t) =3 N(0,4,),

where N'(0,A,) denotes the normal distribu-
tion with mean 0 and variance A,.

On the one hand the bound (4) is a hard or deter-
ministic bound, on the other hand a probabilistic
interpretation has been given in the above theo-
rem. Note that due to the normalization factor

lN in (iii) the asymptotic distribution is indepen-
ge_nt of N. For example asymptotically in N a
0.9995 probability region is obtained by choosing
cu(r) = —alr) = 3.5.\/1'17,,. The theorem also states

that A, can be evaluated by considering the sec-
ond order statistics of {r,(¢)} and {eo(t)} sepa-
rately. The second order statistics of the signals

{rp(t)} will generally be known exactly, the statis-
tics of the noise process {ey(t)} have to be esti-
mated from data. How to estimate these statistics
is the subject of Section 3. Note that the parts (ii)
and (iii) of Theorem 2.5 have been stated in Ljung
(1987, Pr. 16T.1) without proof.

The covariance bound (4) is especially useful if
{rp(t)} is a signal that is correlated to the regres-
sion vector sequence {¢(¢)}, but uncorrelated to the
noise {eg(t)}. This follows from the following con-
sistency result.

Theorem 2.6 Suppose that the signal {ey(t)}
salisfies the constraints (4) for given signals
{r:(t)}, 2= .y 8, and given and finite ¢;(p) and
cu(p). Suppose that {r,(t)} and {¢x(t)} satisfy the
assumptions 2.2, 2.8 and 2.4. If the matriz

erél(o) i Rfl.'vbn(o]
rR=| z
Rralﬁl (0] 3 Rr,én(o)

has full column rank, then the feasible parameter
region (5) converges to the true parameter vector

9[];

lim max [ — 6| = 0.

N—oo 0@y
This theorem thus provides a consistency result for
bounded error identification without requiring tight
error bounds. If the values c,(p) and ¢/(p) in (4) are
chosen too large, convergence will still take place.
The cross—covariance noise bounds possess a cerfain
averaging property which is not present in stan-
dard parameter bounding identification with time-
domain noise bounds.

Though the bounds may be chosen conservative,
they are required to be correct for the convergence
result to hold. Theorem 2.5 shows that the bounds
in (4) can be chosen such that they will be correct
with any prespecified probability. For this theo-
rem to be applicable it is necessary that the signels
{rp(t)} are independent of the noise {ey(¢)}. The
other conditions of Theorem 2.6 are not very re-
strictive. Generally the matrix R will have full col-
umn rank provided the signals {r,(¢)} have been
chosen suifably, i.e. correlated with the regression
vector {¢(t)}. If identification takes place in open
loop the (filtered and/or delayed) input signal is
a suitable choice. If identification takes place in
closed loop a (filtered and /or delayed) external ref-
erence signal has the desired properties. Moreover
a necessary condition for the matrix R to have
full column rank is that the identification experi-
ment was sufficiently informative. Note that no as-
sumptions on the distribution or colour of the noise




{eo(t)} have been made. However for Theorem 2.5
to be applicable it has to be stationary and inde-
pendent of the signal {r,(¢)}.

Remark 2.7 Note that the use of cross—covariance
bounds 1s closely related to the instrumental vari-
able identification method, see Soderstrém and Sto-
ica (1989, Ch. 8). In fact the signals {r,(t)} can be
regarded as instrumental variables. Also note the
close connection of the consistency result of The-
orem 2.6 to consistency for instrumental variable
identification techniques, see Ljung (1987, Ch. 8).
In the present parameter bounding tdentification
setting as well as the instrumental variable iden-
tification setling, consistency has been shown un-
der fairly general conditions. For ezample in both
cases there is still consistency if the input signal is
correlated to the noise process (closed loop identi-
fication), or in case the true system has an output
error structure whereas the model is parametrized
as a linear regression.

3 Estimating the Cross—
Covariance Bounds from Data

In bounded error identification an a priori specifi-
cation of noise bounds is required. In case time-
domain noise constraints (2) are used the bounds
ei(t) and e,(t) need to be specified. In case cross—
covariance noise constraints (4) are used the bounds
c(p) and ¢, (p) need to be specified. It may be possi-
ble that these bounds are known a priori, e.g. from
physical laws. However it is not at all imaginary
that this is not the case, and that measurement
data have to be used to establish the noise bounds.
Unfortunately, in the parameter bounding litera-
ture very little attention is paid to the problem of
estimating the noise bounds from data.

In this section the problem is considered of esti-
mating appropriate cross—covariance bounds from
data. Theorem 2.5 shows that this boils down to
estimating A", which is related to the second order
noise statistics. If knowledge of the noise statis-
tics is not available from physical contemplations
about the process, measurements have to be used
to estimate these. This is a valid procedure if the
noise is stationary, i.e. the statistical properties do
not change in time. In that case any measurement
sequence may be used to estimate the noise statis-
tics. The estimated statistics will then remain to
hold for the measurement sequence used in the pa-
rameter bounding identification procedure.

Notice that if an exact value for Ag’ is not obain-
able, an upper bound is still of use. If A/ is overes-

timated, the resulting noise bounds ¢)(p) and c,(p)
are conservative but correct (with a certain speci-
fied probability), and the resulting feasible param-
eter region will be correct, i.e. will contain the true
parameter vector. Even if the noise bounds are
chosen conservative, the consistency result given in
Theorem 2.6 remains valid.

Suppose that there is available a measurement se-
quence generated by (1). As mentioned above this
need not be the same measurement sequence as the
one used in the parameter bounding identification
procedure, it may be an independent data set. In
this section it is assumed that the regression process
{#(t)} is uncorrelated to the noise process {es(t)}.
This implies that measurements have to take place
in open loop and that the regression vector may
only contain filtered and/or delayed samples of the
input signal, as the output signal is disturbed by
noise. This does not necessarily imply a restric-
tion to FIR identification. Also identification with
Laguerre polynomials (Wahlberg, 1991), and iden-
tification with generalized orthonormal polynomi-
als (Heuberger and Bosgra, 1990; Heuberger et al.,
1992) fit in this setting. Let there be available a
nominal model #, which has been obtained inde-
pendently of the given data set, but for example by
physical modelling or identification based on an-
other dataset. The prediction or output error é(t)
for this nominal model 6 is given by

é(t) := y(t) — 6" (£) = (t) + ealt),  (6)

with

B(t) = 47 () (0 — )
The idea is to use this prediction error in order
to estimate the second order statistics of the noise

process. First some technical assumptions are made
with respect to the signal 7(t).

Assumption 3.1 The signal {(t)} is quasi-
stationary and it satisfies

Y(t) = 9(t) + P(t, g)y(2),

where {¥(t)} is a bounded deterministic signal,
{P(t,q), t = 1,2,...} is a uniformly stable fam-
ily of filters, and {{(t)} is a sequence of indepen-
dent random variables with zero mean values, vari-
ances p, and bounded fourth moments. Moreover
the auto-covariance function of the signal {1(t)} s
ezponentially decaying, i.e. Ry(t) < Mp”, V7, for
certain finite M and p < 1.

Next denote

1 N—|r| g :
T & e I,

RY(r) =




and consider the following estimate for A,

w(i)

A;\-’___ e c",('r] N

7:—&'()’\"]

= Il

R} (T)RY(7), (7)

where ¢,(7) is a window-function, similar to the
ones used in spectral analysis, see Ljung (1987,
Ch. 6). In the analysis use will be made of the
so—called Tukey-window (Brillinger, 1981, p. 55),
given by

Cm(T) ==

1, 0<|r| < fw(N)
5 + 3 cos (_f (ﬁﬁjﬂ - f)) » fw(N) < |r| < w(N)
0, |r] = w(N)
(8)
for some constants 0 < f <1 and 0 < w(N) < N,
such that

: w(N)

Ap_r.noc w(N) = oo, hh-f-noo e 0. (9)
Notice that the quantities Ri\;(-r) appearing in
the estimate f\?’ are assumed to be known pre-
cisely. This is a realistic situation, as the signals
{rp(t)} are generally user-determined. These sig-
nals may be deterministic, and completely known,
or stochastic, with known second order statistics,
or mixed deterministic-stochastic, with given auto-
covariance function. The following theorem states
that the given estimate A\ asymptotically over-
bounds AN.

Theorem 3.2 Consider A} as given in part (i) of
Theorem 2.5, and the estimate AY defined in (7)
with the window specified by (8) and (9). Sup-
pose that {eo(t)} satisfies assumption 2.1, {r,(t)}
assumption 2.2, and {3(t)} assumption 3.1. More-
over suppose that the regression process {¢(t)} is
uncorrelated to {ey(t)}, and that the estimate 8
used in (6) has been established independently of
the noise process {ey(t)}. Then,

(i) Aii_r.nmzAX:ZA,,—{- i R, (7)Ry(T),

with probability 1.

@) 3 R (r)Ry(r) 20,

T=—00

Hence, asymptotically correct cross—covariance
bounds ¢/(p) and ¢,(p) can be established as the
estimated variance AN is overbiased. The conser-
vatism decreases if the nominal model # becomes
a more accurate description of the true system 6.

In the special case that the system had not been
excited, implying ¢(t) to be equal to zero, the sig-
nal 9(t) vanishes, and é(t) equals ey(t), yielding
an asymptotically unbiased estimate for the noise
statistics.

Remark 3.3 For finite N the estimate f\; has a
nonzero variance as well. In fact it is a kind of
spectral estimate, for which it has been shown in
Ljung (1987, p. 160) that the variance is asymptot-
1cally linearly proportional to 9%"—{1, which tends to
zero. Hence the variance becomes negligible for N

large enough.

Remark 3.4 The most severe restriction in As-
sumption 3.1 ts that Ry(7) is ezponentially decay-
ing. This means that (t), and hence é(t), may
not contain undecaying deterministic components
such as sinusoids. If they are present in the predic-
tion error, they can be detected and removed from
the signal, e.g. by taking the DFT of the predic-
tion error, removing the peak-values, and taking
the inverse DFT of the remaining part. Notice that
asymptolically this will not influence the contribu-

tion of {eo(t)} to {&(t)}.

Remark 3.5 It is desirable to introduce as litlle
conservatism as possible when establishing the noise
bounds ¢(p) and c.(p), in order to avoid that un-
necessarily large parameter sets are identified in the
parameter bounding identification procedure. Part
(i) of Theorem 8.2 shows that asymptotically the
estimate AN upper bounds AlY. As mentioned only
in the speczaf case that e(f.) equals eo(t) the esti-
mate s unbiased, yielding minimal conservatism.
However there is another special situation where it
is possible lo derive a non—conservative estimate of
the noise statistics, with a procedure different from
the one described above. This is the case if a re-
peated ezperiment has been performed, i.e. if

Ht+1)=

for some period time T. If the regression vector
only contains (filtered) samples of the input, this is
realized by applying a periodic input signal. Now
consider the signal

e(t) = (Wt + T) —y()/V3, t=1,...,T,

which with (1) can be written as

€t) = (¢(t+T)—d(t))00/V2+(ea(t-+T) —eo(t))/ V2
= (eo(t + T) — eo(t))/ V2.




The signal e(t) actually appears to have second or-
der statistics identical to those of the noise process
eo(t) (in the asymptotic case T — o). Also if the
regression process is not perfectly periodic, e.g. due
to different initial conditions, the given signal e(t)
can still be used to estimate the second order noise
statistics of eg(t). Using an argument similar to the
one used in Theorem 3.2 it can be shown that the
estimate A,‘:" will then be overbiased, yielding correct
bounds ¢i(p) and c,(p).

4 Frequency—Domain Constraints
on the Noise

It appears that consistency results in parameter
bounding identification, similar to those of Theo-
rem 2.6, can be obtained with another type of noise
constraint. This concerns a frequency-domain
bound on the noise. Consider the function E(w;)
defined by

—IWJ

(10)

which for w; = 21r3/N, j=1,...,N,is the discrete
Fourier transform of the sequence {e(1),...,e(N)}.
With some abuse of terminology FE(w;) will be
called the discrete Fourier transform of the signal
{e(t)}, no matter what w; is, and keeping in mind
that it is dependent on N. By bounding its ampli-
tude, the square root of the so-called periodogram,
the residuals are bounded in the frequency domain.
Consider the constraints,

|B(w;)]| € f(w;), wj €[0,7), 7 =1,...,4,

for some specified bounds f(w;). This type of noise
constraint is also used in Lamaire et al. (1991) and
De Vries and Van den Hof (1992) in a frequency-
domain identification setting. Substituting e(t) =
y(t) — ¢7(t)8 gives the feasible parameter set,

s {‘” ‘ﬁ 3(u(t) — ¢ ()| < fle)

E(wj) :

Z

w; € [0,7], J = i,...,f,}-

If parameter outer bounding by linear programming
is carried out, linear constraints are required. How-
ever, the constraints given above are nonlinear due
to the fact that the DFT is a complex quantity. For-
tunately it appears possible to approximate each
nonlinear constraint by a number of linear con-
straints. Consider the following linear constraints,

N
fi(ws o) < %ge(z) cos(wjt — arr) < fulwj an),

(11)

27

w; € [0,7], 7= 1,...,1, ax € [0,7], k' = 1,...,m,

yielding the feasible parameter set,

o= {mﬁ(w,-,am <

W
f X conap= ) (u(e) = ¢ (8)8) <
f"(wi'!ak’)? w; € [01W]$ J = 1?”‘111

ap € [0,7], k' = 1,...,m}, (12)
where fi(wj,ar) and f,(w;,ap) are specified
bounds, w; specified frequencies and oy specified
phase shifts. As the constraints in (12) are linear in
the parameter vector # they can easily be included
in linear programming problems like the ones in (3).

The relation of the constraints (11) to the am-
plitude of the DFT of {e(¢)} is investigated. This

amplitude can be written as

|E(w;)| =

| .
‘W ; e(t)e"""i'

max Re (e"‘ —_—

a€l0,2x]

ge(t)e"“:“) -

eft)Re (¢~+2) =

ae[o 2] \/_ Z
— ag_‘fgj{w] TE E e(t) cos(wjt = O!),

which shows that the bound (11) approximates the
bound on |E(w;)|. The approximation improves if
more phase shifts . are used. This is formalized
in the next proposition.

Proposition 4.1 Let E(w;) be defined by (10) and
ay be given by ap = wk'/m, k' =1,...,m, then

ax \—WZe(t)

cos(wjt — ap)| < |E(w;)| <

e(t cos(w;t — o)

cos[ =y

Hence this proposition states that (11) bounds the
amplitude of the residuals {e(¢)} in the frequency
domain. This apparently boils down to excluding
the residuals to contain sinusoids with the specified
frequencies w;, 7 = 1,...,l. For w; = 0 (11) is a
bound on the mean value of the residuals.

The frequency-domain bounds on the noise are
especially useful if the system is excited by sinu-
soids. This follows from the following consistency
result.




Theorem 4.2 Suppose that the signal {ey(t)} sat-
isfies the constraints (11) for given and finite
filwj,aw) and fu(wj,aw), 7 = 1,...,0, ap =

mk'/m, k' = 1,...,m > 2. Suppose that {¢(t)}
satisfies assumption 2.3. Denote for each j and k,
N
Wil & Bt
If the matriz
[ Re(¥1(w1)) -+ Re(¥n(wn)) ]
g | Re(@ie) + Re(@o(er)
Im(‘I’l(wl)) # =D Im(\Iln(wl]]
| Im (¥, (w)) Im (¥,(w)) |

has full column rank, then the feasible parameter
region (12) converges to the true parameter vector
bo,

lim max [§ — 6| = 0.
N—+oo 0EO N

Again this is a consistency result for bounded error
identification without requiring tight error bounds.
If the values fij(w;, o) and f,(w,, ) are chosen
too large, convergence will still take place under the
conditions given.

Remark 4.3 In general ¥;(w;) is unequal to zero
if {¢x(t)} contains a sinusoid with frequency w;. A
sinusotd 5(t) = asin(w;t + ¢) namely has the well-
known property that its periodogram is unbounded,
as the following relation holds,
X S
=5l
;\rhf]m F E s(t)e " =

_ | 3(sin(®) — icos(e)), w; € (0,7),

| asin(é), w=0,m.

Hence the consistency result of Theorem 4.2 will
only hold if the system has been excited by a sum of
at least n/2 sinusoids. This type of excitation has
also been exploited by De Vries and Van den Hof
(1992) and Bayard (1992).

It is desirable to specify the bounds fi(w;, o)
and f,(w;, o) such that they are satisfied by the
true noise process {ey(t)}. The bounds (11) may be
regarded as entirely deterministic, which does not
require any stochastic assumptions about the noise.
However analogously to the bounds (4) a nice prob-
abilistic interpretation exists in case the noise has
some stochastic properties. In the following propo-
sition probabilistic properties of the periodogram of
the noise are evaluated.

Proposition 4.4 Suppose that {ey(t)} satisfies as-
sumption 2.1. Let Ey(w;) be the DFT of {eo(t)},
defined analogously to (10), then

1 2
y|2 =g 2 8eo (@ )x*(2), w; € (0,7),
|E0(WJ)| { q’cn(w;')x"’(l), w; = 0,7,

where ., (w;) denotes the auto~spectrum of the pro-
cess {eg(t)}, defined by

E RLU (T —:'.rl.u"1

T==—00

@, “’J

and x*(n) denotes the chi-squared distribution with
n degrees of freedom.

Proof: See Brillinger (1981, Theorem 5.2.6). O

Again note that the bound (11) is a hard or deter-
ministic bound, which however enables a probabilis-
tic interpretation. For example asymptotically in
N a 0.999 probability region is obtained by choos-
ing fu(wj,on) = —fi(wj,an) = €y P, (wj), k' =
1,...,m, with ¢ = 2.63 if w; # 0,7 and ¢ = 3.29 if

=0,

Remark 4.5 The information required to establish
the frequency-domain bounds on the noise consists
of ®.,(w;), see Proposition 4.4. Analogously to the
procedure of Section 3 it is possible to use the pre-
diction error to (conservatively) estimate the noise
spectrum. With the definitions and assumptions of
Section 8 it follows that

Pe(w;) = Py(w;) + Beol(w;) > Be, (w;),

where the latter inequality follows from the fact that
The spectrum of
the prediction error can be estimated with standard

techniques for spectral estimation, see Brillinger
(1981).

an auto-spectrum is nonnegative.

5 Example

Consider the data generating system

() = 86u(t) + 6 u(t — 1) + 6 u(t — 2) + eo(t),
85 =2, 6 =1, 6 = 0.6,

with the noise process given by

eo(t) = n(t)+0.8n(t — 1) +0.2n(t — 2) +0.1n(t — 3),

where {n(t)} is a white noise process uniformly dis-
tributed between —0.25 and 0.25. The input signal
{u(t)} is chosen to be

N = 800.

T.L(tJ = Si‘ =t . wt t f G’
n(%) +sin(F), t=1,...,
The following parameter bounding identification
procedures have been carried out.




1. Parameter bounding with bounds on the am-
plitude of the noise as in (2). As |ey(t)] <
0.25(1 + 0.8 + 0.2 + 0.1) = 0.525, the bounds
have been chosen e,(t) = —e/(t) = 0.525,V¢.
Altogether 6 linear programming problems had
to be solved each with 3 unknowns subject to
1600 inequality constraints.

2. Parameter bounding with bounds on the cross—
covariance of the noise as in (4). The sig-
nals {r,(t)} have been chosen r,(t) = u(t +
)y Tp =1—p, p=1,...,8, which with Theo-
rem 2.5 yields A, = 0.0388, p = 1,...,8. The
bounds ¢,(p) = —a(p) = 3,/Ap, p=1,...,8
have been chosen, hence each bound is satis-
fied with probability 0.997. Altogether 6 lin-
ear programming problems had to be solved
each with 3 unknowns and 16 constraints. Ac-
cording to the rule of Bonferroni (Manoukian,
1986) the resulting parameter region is cor-
rect with a probability larger than or equal to
1 —8(1—0.997) = 0.98.

3. Parameter bounding with bounds on the peri-
odogram of the noise as in (11). The frequen-
cies w; = /4 and w, = 7/2 were selected, and
ap = wk'/m, k' = 1,...,4. Straighforward
calculations show that ®.,(w;) = 0.2473 and
®,,(wz) = 0.1534. The bounds fu(wj,ar) =
—fl(wj:ak") = 2146'\} @tfn(wj.)l i=12 kK =
1,...,4 have been chosen, which corresponds
to a 0.99 confidence interval for each frequency
seperately. Hence 6 linear programming prob-
lems with each 3 unknowns subject to 16 con-
straints had to be solved. The resulting param-
eter region is correct with probability larger
than or equal to 1 — 2(1 — 0.99) = 0.98.

The resulting upper and lower bounds on the pa-
rameters are shown in Table 1. It is concluded

60 6@ 60 [e” a0 o™
Pr.1 | 1.890 | 2.117 | 0.862 | 1.127 | 0.468 | 0.707
Pr. 2 | 1.964 | 2.044 | 0.963 | 1.046 | 0.557 [ 0.637
Pr. 3 | 1.954 | 2.048 | 0.981 | 1.028 | 0.554 | 0.648

Table 1: Results parameter bounding identifica-

tion.

that for the first and third parameter the tight-
est bounds are obtained with the cross—covariance
bounds on the noise, for the second parameter this
is the case with the frequency-domain bounds on

the noise. The parameter uncertainty intervals esti-
mated with cross—covariance noise constraints, pro-
cedure 2, are a factor 3 smaller than the ones es-
timated with time-domain noise constraints, pro-
cedure 1. The uncertainty interval for the second
parameter estimated with the frequency-domain
noise constraints, procedure 3, is even a factor 5.7
smaller than the corresponding interval for proce-
dure 1. The new parameter bounding identification
methods 2 and 3 appear to outperform the stan-
dard parameter bounding identification procedure
1. Much smaller parameter uncertainty intervals
are estimated with these new methods compared
to the result of identification with bounds on the
amplifude of the noise in the time domain.

Remark 5.1 For simplicity ezact knowledge of the
second order noise stalistics has been used to es-
tablish the bounds on the noise. The procedure of
Section & may be used to estimate these statistics.
In particular the method indicated in Remark 8.5 is
applicable as the input is periodic.

6 Conclusions

Valuable alternatives have been presented for time—
domain bounds on the noise in parameter bounding
identification by linear programming. Especially
cross—covariance bounds on the noise are powerful
as consistency has been proven for an arbitrary per-
sistently exciting input signal. Frequency-domain
bounds on the noise are powerful if the input sig-
nal contains sinusoids, in which case consistency
has been proven as well. In both cases the number
of constraints does not increase with an increasing
number of measurements, hence the identification
problem remains tractable for large N. The ex-
ample showed a considerable reduction of parame-
ter uncertainty in case the new types of noise con-
straints are utilized.

A stochastic analysis has been presented of the
new types of noise bounds. The basic assumptions
needed to justify this analysis are that the number
of samples is large enough, and that the noise is sta-
tionary, i.e. its stochastic properties do not change
in time. The analysis showed that the bounds for
the noise can be specified such that they are cor-
rect with a certain probability. This means that a
parameter set estimate is calculated which contains
the true parameter vector with a certain probabil-
ity. It is emphasized that the probability density
function of the noise is arbitrary and need not be
known. Only knowledge of the second order statis-
tics of the noise process is required. A procedure




has been presented to estimate these statistics from
data.

In Hakvoort (1992, 1993a, 1993b) bounded error
identification with linear programming techniques
is applied to identification in #; and H,. The alter-
native noise bounds presented here can be fruitfully
applied in those settings. In those papers also the
problem of undermodelling is considered.
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Frequency domain curve fitting with maximum am-
plitude criterion and guaranteed stability *

Richard G. Hakvoort

Mechanical Engineering Systems and Control Group
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Abstract. The problem is considered of fitting a stable rational transfer function to com-
plex frequency response data minimizing a weighted maximum amplitude criterion. A
solution for this problem is provided in both discrete and continuous time by parametriz-
ing the transfer function and solving a nonlinear constrained optimization problem. The
denominator is parametrized as a product of first and second order polynomials. By
adding some linear constraints on the denominator parameters to the nonlinear pro-
gramming problem the poles of the curve fit model are restricted to the stability region
in the complex plane, i.e. the unit disc or the left half plane. To provide an initial es-
timate for the nonlinear optimization problem an iterative procedure is proposed where

in each step a linear programming problem has to be solved.

Keywords.
programming

1 Introduction

The problem is considered of fitting a discrete or
continuous time stable rational transfer function of
a specified order to a set of complex frequency re-
sponse data. In literature reasonable attention has
been paid to curve fit problems, however without
restricting the model set to the set of stable models.
Levy (1959) introduced a curve fit problem with a
sum of squares (£,) criterion function and provided
a solution for it. Sanathanan and Koerner (1963)
proposed an iterative weighting in order to improve
on the estimate. The asymptotic behaviour of this
and other iterative linear schemes has been inves-
tigated by Whitfield (1987). Payne (1970) already
noticed that if high order models are used in the
curve fit procedure, the resulting estimate tends to
be unstable.

Alternative criteria (other than £,) are used in

!This paper has also been presented at the 2nd European
Control Conference, Groningen, The Netherlands, June 28
— July 1, 1993.

curve fitting, frequency domain, £, —norm, stability, linear and nonlinear

Spanos (1991) and Sidman et al. (1991). In the
first paper an iteration of weighted least squares
problems is used to solve an unweighted least max-
imum amplitude (£, ) optimization problem. In the
latter paper the £,—criterion is adjusted such that it
is well suited for logarithmically spaced frequency
response data.

In the present paper a weighted £, —criterion is
considered. An advantage of an £, —criterion com-
pared to an {,—criterion is that in the £, -case
each frequency is basically equally important. The
frequency distribution (linearly or logarithmically,
etc.) does not influence the resulting estimate as
much as it does in the f;—case. Moreover the
weighting allows for an easy and effective shaping of
the model error. A final motivation for a maximum
amplitude criterion is that in many applications, for
example robust control design, it is desirable that
the maximum (weighted) distance between system
and model is minimal, in order fo have maximum
robustness.

The £—optimization problem is solved by trans-




forming it into a smooth nonlinear constrained op-
timization problem, which is a different approach
from the one followed by Spanos (1991). The
transfer function is guaranteed to be stable by
parametrizing the denominator as a product of first
and second order polynomials and adding certain
linear constraints on the denominator parameters
to the optimization problem. In fact in the discrete
time case a bound can be specified for the ampli-
tude of the transfer function poles. In the contin-
nous time case a bound can be specified for the
real part of the poles. The nonlinear programming
problem can be solved using standard software, but
requires the specification of a good initial estimate.
A procedure is presented to arrive at such an initial
estimate. It involves a Sanathanan-Koerner itera-
tion in £.—setting, where in each step one linear
programming problem has to be solved.

A completely different approach for frequency do-
main identification is taken in the field of identifi-
cation in H,., see e.g. Gu and Khargonekar (1992).
There the primary interest is in finding a stable
transfer function with some worst—case optimality
properties using frequency response data. For that
purpose standard curve fit procedures do not apply
as they do not guarantee stability of the resulting
estimate. However the algorithms for identification
in H, generally do not restrict the model order,
extremely high order nominal models may result.
The present curve fit procedure seems to be an at-
tractive alternative as both stability is guaranteed
and the model order is user—defined. Also note that
the maximum amplitude criterion is closely related
to the H_—norm.

The outline of the paper is as follows. In Sec-
tion 2 the curve fit problem is formulated and a so-
lution is derived in the form of a nonlinear program-
ming problem. In Section 3 a procedure is derived
to provide an initial estimate for the nonlinear pro-
gramming problem. Section 4 discussed some prac-
tical implementation aspects of the linear and non-
linear programming problems involved. Section 5
contains a simulation example which shows the ap-
plicability of the curve fit procedure. Finally in
Section 6 conclusions are drawn.

The present paper only treats the SISO case. Ex-
tensions of the curve fit procedure to the MIMO
case are presented in Hakvoort and Van den Hof
(1993).

2 The Curve Fit Procedure

Consider complex—valued frequency response data
G(w;), 7 =1,...,l and a positive real-valued fre-

quency dependent weight W(w;), j = 1,...,l. The
objective is to find a stable rational transfer func-
tion G(f) in a certain model set M that optimally
describes the frequency response data in a weighted
£ —sense,

G(¢) = arg min max |(G(w;) - G'(£(w;))) W (w;)]-
GleMI=1l

(1)
Following the notation in Bayard (1992) the com-
plex variable £ is used to present the continuous
and discrete time case in a unified way. Hence ¢
can be thought of as the Laplace operator s or the
z—transform operator z. And {(w) represents the
evaluation of the complex variable £ as a function
of frequency, hence {(w) = iw, é(w) = €™ respec-
tively.

For M the model set is chosen consisting of all
rational transfer functions with numerator and de-
nominator of specified degrees and the roots of the
denominator in some a priori specified (stability)
region R in the complex plane.

n(£) =

O 3 fe ek LY ¥ notk
M . G(&) d(E)) n{e) g] k£ ]
d—1
d(€) = ¢4+ Y di*, Lak €ER, k=1,...,d,
k=0

where £4x, k=1,...,d, are the roots of the polyno-
mial d(¢), i.e. all solutions to the equation d({) = 0.
In the discrete time case the region R is defined by
R =R, with

Ry = {bax s.t. [bax| < py k=1,...,d},

which corresponds to an upper bound p on the am-
plitude of the poles of the transfer function. In
the continuous time case this region is defined by

R = R, with
R, = {€ax s.t- Re(bap) <7, k=1,...,d},

which corresponds to an upper bound r on the real
part of the poles of the transfer function. Here p
and r are user—defined constants. The choice p = 1
corresponds to stability in the discrete time case.
The choice » = 0 corresponds to stability in the
continuous time case.

Now the objective (1) can be written as

min max |(G(w;) - G'(6(wy))) W(w;)| =
GremMI=ll
= min hy s.t.
hooG'EM

|(G(ws) = G/(€(ws))) W(w))| € hoos G =1,--41

2
oo Sibe

= min
heo n(€),d(€)




2
< hgos j: 1"":15

n(6@3))\ o
d(&(w))) wiws)
Eir ER, k=10 5d

=< mi 2

‘(G(%‘) "
—= in o Bebs
hoom(€),d(€)

W (w;) |G(w;)d(€(ws)) — n(€(w;))|® < hd,|d(&(w;))l?
J=hLivaly G ER, k=14 (2)

In order to cope with the region R for the roots of
the denominator polynomial in a computationally
attractive way an alternative parametrization is in-
troduced for the denominator by representing the
polynomial as a product of first and second order
polynomials.

d

—

2

(62 =h ak{ =t bk) 1

(d-1)/2
(+c) IT (& +awé+be), dodd
k=]

(3)
where the parameters a, by and c are real-valued.
Then the following Lemma gives necessary and suf-
ficient conditions for the location of the roots of
d(¢) by means of simple linear constraints on the

parameters.

d even

o
Il

d(¢) =

Lemma 2.1 Let £44, k= 1,...,d, be the roots of
d(¢), i.e. all solutions to d(§) = 0, then for any
p20, reR,

bk < p2s vk
wp <o +be VE
—Qrp < Pz iR bkv Vik
d odd

(i) [bakl < p, VE©
—p=c=p

(1) Re(fax) <7, VE &
b +axr +1220, VEk
ayp > —2r, Yk

c> —, d odd

Proof: (i) First notice that £+c = 0 has a solution

|¢| < p if and only if || < p. Next consider a
second order term &% + a€ + b.

(=) Assume ¢2+af+b = 0 has solutions &, &>
which satisfy [& 2] < p.
Case 1 gt =db =0 = {[,'z

e ‘}(%)2—31. Hence [é12] < p =
JE -5 <o = 2l 2

2
a 4 2 >

Var—4b = 4p® — 4pla| + a® > a® —
2
4b = |p* + b > pla|| AISOH < (%)

IA
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(P-\/(%‘)z—) <P}

Case2 a?—4b <0 = £ = —2 &
i/b— (3)". Hence [¢10] < p = (2)" +
b = (2)° <
pE=|b<p?| And |p? + b—|alp| > p? +

(2)" ~ lalo= (o - &)*|> 0|

(<) Assume that b < p?, p® + b > |alp.
Case 1 a® —4b > 0. Using the ga.ct that
—b < p? — lalp and p — 2l > 2= > o,

€1,2] < J%[+ (%)z—bﬁ “hy

this gives

Il
Il

Frp-ffl=
Case2 a®> —4b < 0 = ||&s]]| =

(ii) First notice that ¢ + ¢ = 0 has a solution
Re(¢) < r if and only if Re(c) = ¢ > —r.
Next consider a second order term ¢* + af + b.

(=) Assume ¢? + aé + b = 0 has solutions
&1, &, which satisfy Re(€;,) <.

Case1 a’ —4b > 0 = Re(&2) = —& o
V) -o<r=—g4y(5) b2 o
42> ﬂ(%)z—b:}rz+ar+(%)2 >

2
)" —b=>|1? +ar+b> 0] Also r42 >

ST

2
(%) —-b20=|a>—-2r|

Case2 a®—4b< 0 = Re(£),) = —% <

r = |a>—-2r| And|b+ar+r2| >

(5) +ar+r2=(3+7)°|20}

(«=) Assume that b+ar +12 >0, a > —2r.
Case 1 a® —4b > 0. Using the fact that
—b < ar +7* and § +r > 0, this yields

Re(b2)<|— 5 +/(8)" -6 < -2+

x/(%)2+ar+r2 = =31 (%—H")z =




Case2 a* —4b < 0 = |Re(é,)| =

o

Note that the first part of the Lemma has a
straightforward application in restricting the roots
of the denominator to the region R, by means of
simple linear parameter constraints. The second
part of the Lemma can obviously be applied in re-
stricting the roots of the denominator to the region
R, by means of simple linear parameter constraints.
The conditions given in Lemma 2.1 are necessary
and sufficient conditions, which implies that any
polynomial d(£) with roots in the specified regions
in the complex plane can be parametrized in such a
way that the parameter constraints of Lemma 2.1
are satisfied.

The opfimization problem (1) has been trans-
lated into a smooth nonlinear constrained opti-
mization problem (2) extended with some linear
constraints in order to restrict the location of the
roots of the denominator polynomial (Lemma 2.1).
This nonlinear optimization problem can be tackled
by applying standard software for nonlinear con-
strained optimization. In Section 4 some aspects of
the practical implementation will be discussed.

3 The Initial Estimate

In the previous Section the frequency domain curve
fitting problem with maximum absolute value ob-
jective function and guaranteed stability of the re-
sulting model has been translated into a nonlin-
ear constrained optimization problem. Such a non-
linear optimization problem can generally only be
solved satisfactorily if a good initial estimate is
available. Here an iterative procedure is proposed
using linear programming techniques to arrive at
such an initial estimate. The following model struc-
ture is considered,

M é’('f) . %?

n d—1
n(ﬁ) = Z nkeka d(&) == £d 1> Zd’keka

k=0 k=0

hence stability of the initial estimate is not re-
quired. For some positive, real valued weight

W (w;) the following optimization problem is con-
sidered,

min max [(G(w,)d(¢(w,) — n(€(w;) W (w,)],
(4)
or equivalently,
hoo 5.

0
|(G(w;)d(E(ws)) — n(€(w;))) W(w))| < (5)
S hooy J=1;...,1.

Before continuing first an auxiliary Lemma is pre-
sented.

Lemma 3.1 Consider the function f(z): € —
IR, defined by

Fle)s e, Meltaie)

with ¢y g = €° W' k=190 .l =03, where
Re(-) denotes the 'r'eaf part of -, then

(@)
(1) fme(z) <[z <
cos (ﬁ)

(i) Ym fu(z) = [e]-

Proof: For any = and any ¢ with |epmep| = 1,
Re(cm'.k"z) S |Cm’,k'w| S |cm*,k'|lz| o |EI, which
proves the left-hand inequality of (i). Further for
any z there exist an integer I’ and § € [— 5, %)

h m'? m
(2x ks +8)i

such that z = |z|e , yielding

RE{Cm;.kfx) = Re( 2 ;:lmle(Qw;—;-{-J]i) =

= |z|Re (e(z”k_r;xt"_J’a)‘) = |z|cos (2m 4L + §).

If ¥ = k* is chosen such that &* + I' = n'm’ for
some integer 7, this gives

Re (¢t jz) = |2| cos(2mn’ + §) = |z| cos(§) >
> ] cos (m/m') ¢ o] < Relomte2)
cos( %)

which proves the right-hand inequality of part (i).
Finally part (ii) immediately follows from part (i)
for m' — oo. o

Moreover it is easy to show that the bounds in (i)
are tight in the sense that there exists an = such
that the lower bound becomes equality, and there is
an z such that the upper bound becomes equality.
The Lemma in fact says that the amplitude of a




complex number can be calculated approximately
by checking a number of different directions in the
complex plane.

Using the ¢,,r 4+ defined in Lemma 3.1 the opti-
mization problem (5) can be approximated by the
optimization problem

min hs 5.t
hoo,n(€)d(€)

Re (e (G(w;)d((w;)) — n(€(w5)) W(w5) < b,
§ 20T B Yl
which is equivalent to the linear programming prob-

lem

min  fis ..
hoondk

W (w;) Re (e p Glw5)E4(w5)) +
+ 3 4 (5) Be (emp Gl @) + (6

— 3 ¥ (5) Be (cmae(@3)) — heo < 0,

k=0
T ISR e S
The following Theorem quantifies the accuracy of

the approximation.

Theorem 3.2 Denote the optimal solution of (4)
by k., n'(€), d'(€) and the optimal solution of (6)
by b, n"(€), d'(€), then
(i) ke < :
max [(Gw;)d (é(ws)) — 7'(6@)) W ()] <
=15

B

cos (;’7)
L) w(E)
) (o) ~ 2@

Proof: The second inequality in part (i) arises
from the definition of n'(€), d'(¢). Next it is no-
ticed that the optimal solution to problem (6) has
the property

B, =
max fm'

max, fru ((Glw;)d"(€(ws)) —n"(6(w)) W(ws))

which yields the third inequality by applying
Lemma 3.1. Finally optimality of of n”(£), d"(£)
implies that for some j’,

fur (Gl )/ (E(wsr)) = n/(E(wir))) W (wy1)) 2 hig,
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which yields the first inequality of part (i) by again
applying Lemma 3.1. For m’ — oo the right-hand
side in (i) converges to the left-hand side, which
proves part (ii). o

The optimization problem (6) can be solved exactly
using standard linear programming software avail-
able. See Luenberger (1984) for an extensive treat-
ment of the linear programming problem and algo-
rithms to solve it. According to Theorem 3.2 the
solution to the optimization problem (6) is an ar-
bitrarily good approximation to problem (4) for m'
sufficiently large.

Now to obtain a good initial estimate for the non-
linear programming problem (1) an iteration is pro-
posed analogously to the Sanathanan—Koerner iter-
ation for £,—curve fitting (Sanathanan and Koerner,
1963). In each iteration the weight W (w;) is chosen
such that

W(w;) = W(w;) ldpres (€(w3)) " 3 = 1,

where d..({) denotes the denominator that re-
sulted in the previous iteration. The idea is that
the optimization problem (4) more and more re-
sembles the nonlinear problem (1). It is emphasized
that on the one hand convergence of the iterative
procedure is not guaranteed and on the other hand
if it converges the ultimate outcome will generally
not be equal to the optimal result of the non-linear
problem (1). However Sanathanan and Koerner re-
ported good results obtained with this iteration in
an £y-setting and the simulation in Section 5 show
that the procedure also works adequately in the £.,—
setting adopted here, i.e. the resulting model is in
general a suitable initial estimate for the nonlin-
ear optimization problem. Finally it is mentioned
that the initial estimate need not be stable, as no
constraints of the kind of those in Lemma 2.1 are
imposed on the denominator.

o1y

4 Implementation Aspects

The curve fit problem (1) appears solvable by us-
ing linear and nonlinear programming routines. In
practice things like numerical accuracy play an im-
portant role. Therefore some modifications to the
programming problems (2) and (6) may be neces-
sary to get well-conditioned optimization problems.

From equation (2) it is apparent that in the con-
tinuous time case, {(w;) = iw;, the expressions on
the left— and right-hand side can be very large
if w; > 1. This may cause numerical problems.
The problem is dealt with by introducing a scaling




factor. A proper scaling is achieved by multiply-
ing all constraints corresponding to w; > 1 in the
continuous time case with the factor f*(w;) where

— max(n,d
flw;) = w; "0,
given by

FH(wi )W (w)) |Gw;)d(€(ws)) — n(€(w;))[* <
< B f(w))ld(é(w;)) [

Analogously the constraints in the linear program-
ming problem (6) need to be scaled. In the con-
tinuous time case for w; > 1 all terms appearing
in these constraints should be multiplied with the
factor f(w;) as given above. In the discrete time
case and in the continuous time case for frequencies
smaller than or equal to 1 no scaling is required.

A slight improvement of the nonlinear program-
ming problem (2) is obtained by replacing k% by a
new parameter h. . A consequence of this is that
the objective function becomes linear, which is in
general preferable to a nonlinear objective function.

For the simulation in Section 5 the sequential
quadratic programming method implemented in
the FORTRAN NAG-library has been used, see
Gill et al (1981) for details about this method.
This method requires the first partial derivatives
of the nonlinear constraints to the unknowns. To
compute these the fact can be used that for any
complex-valued function y(zi,...,2,) of the real
variables zi,...,e, the first (partial) derivative of
the squared magnitude is given by

Hence one such constraint is

By(z1s-+ -2 Oyl i, By _ff_yi o
Oz} ~ Oz il Ozp = Ozi”

. 8y Oy Y s
—ya_z_k_l.(yazk) %

~ 2R (y()a_y(a_))

where 3’ is the complex conjugate of y and Re(y)
is the real part of y. Then the first partial deriva-
tives of the constraints in (2) to the parameters
hoo2, Mk, @k, by and ¢ can straightforwardly be
computed. The results can be found in Hakvoort
and Van den Hof (1993).

It has already been noted that the initial esti-
mate resulting from the linear programming prob-
lem need not have all its poles in the specified region
R. If such a model is found it will not be a feasible
solution to the nonlinear programming problem, It
may then be advisable to first change the poles of
the initial model, for example by mirroring, in order
to ensure feasibility of the initial estimate, which
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will generally improve the performance of the non-
linear optimization algorithm.

Finally it is noticed that the parametrization (3)
is not unique as there is freedom in the ordering
of the second order terms. It depends on the spe-
cific nonlinear programming routine that is used if
this nonuniqueness in the solution space will cause
trouble. The routine applied for the simulation in
Section 5 has no difficulties with it. If a routine
is used that has difficulties with the nonunique-
ness, uniqueness may be enforced by specifying ad-
ditional constraints which correspond to ordering
the second order terms uniquely. These constraints
may for example be the following linear constraints,

ay >az > " > ap, p-——d/zorp‘——[d-i]/l

yielding a unique parametrization, which however
excludes the possibility of identical a-parameters in
two second order polynomials.

5 Example

For the simulation example consider the 5th order
discrete time SISO system given by

0.82° — 0.92" + 0.242% + 0.522% — 0.9z + 0.4

GEE 25 — 2.4721 + 2.892% — 1.982% 4 0.832 — 0.18’

from which noisy frequency response measure-
ments G(w;) have been taken at 100 frequencies
logarithmically distributed between 10! and .
At each frequency the noise was the sum of a real
and imaginary part which were realizations of in-
dependent gaussian stochastic processes with zero
mean and variance 0.1. The weighting W(w;) was
chosen to be equal to |W(es)|, with W(z) =
(z—0.4)/(z — 0.7).

Third order models have been estimated. The
initial estimate has been calculated using the pro-
cedure of Section 3 with m’ = 4. The iteration was
started with dprev(g) set to 1 and was stopped when
the maximum parameter change in both numerator
and denominator was smaller than 0.1. Altogether
6 iterations were sufficient to reach the final result.

The transfer function of the initial estimate is given
by

)= 0.8212° — 0.9142° 4+ 0.216z — 0.0723
init = z.‘j = 2.3022 B 2.04z — 0709 1

which happens to be stable. After this the nonlin-
ear problem was solved with p = 1. The result is
given by

0.865z° — 0.4782° + 0.345z — 0.199
23 —1.532% + 0.968z — 0.125

G'(z) =




which is also stable, as expected. In Fig. 1 a
Nyquist diagram is shown of the noisy frequency re-
sponse data, the fit of the initial-estimate and the fit
of the ultimate £,,~optimal model. In Fig. 2 an am-
plitude Bode diagram is presented of the frequency
dependent weighted fit error for the optimal model.
The maximum error is achieved 7 times. From this
plot it is very clear that the optimization objective
has been to minimize the maximum amplitude over
all frequencies.
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Fig. 1: Nyquist diagram frequency response data
G(w;) (solid), initial estimate Ginji(e'd)
(dashed) and £.-optimal model G(e“s)
(dash-dotted)
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6 Conclusions

A procedure has been developed to fit a discrete or
continuous time rational transfer function to a set
of frequency response data minimizing a weighted
£ —criterion. The procedure consists of two steps.
First an initial estimate is calculated using linear
programming techniques. Then the optimal model
is estimated by solving a smooth nonlinear con-
strained optimization problem. An important fea-
ture of the present curve fit procedure is that the

37

resulting nominal model has its poles in a user-
defined region in the complex plane. It is for exam-
ple straightforward to restrict the model set to the
set of stable models. The consequence of this then
is that the resulting curve fit model will always be
stable.

The example in the previous Section showed the
applicability of the proposed curve fit procedure.
The weighting W(w;) can be tuned in order to
shape the model error as a function of frequency.
The curve fit procedure can be used to construct
a parametric model from frequency response mea-
surements taken from some system. However this
is not the only application that one may think of.
Because of the close connection of the £..—norm and
the H,-norm the curve fit procedure may for ex-
ample also be applied to perform model reduction
in H.-norm. Moreover it can also be used to per-
form a transformation from discrete to continuous
time or vice versa in a weighted H,,—optimal way.
The only problem that remains in these cases is the
intersample behaviour of the curve fit model. As
only a finite number of frequencies is used in the
curve fit criterion function, the model may theoret-
ically be arbitrarily bad between two subsequent
frequencies. In Hakvoort (1992) some conditions
are given which guarantee that the intersample be-
haviour is not arbitrarily bad, but bounded. In
practice it is often a matter of taking enough fre-
quencies compared to the curve fit model order, and
afterwards checking if the frequency response of the
estimated model is satisfactory for all frequencies.
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Abstract. A least squares identification method is studied that estimates a finite num-
ber of expansion coefficients in the series expansion of a transfer function, where the
expansion is in terms of recently introduced generalized basis functions. The basis func-
tions are orthogonal in H; and generalize the pulse, Laguerre and Kautz bases. One of
their important properties is that when chosen properly they can substantially increase
the speed of convergence of the series expansion. This leads to accurate approximate
models with only few coefficients to be estimated. Explicit bounds are derived for the
bias and variance errors that occur in the parameter estimates as well as in the resulting
transfer function estimates.

Keywords. System identification, orthogonal basis functions, FIR models, linear regres-
sion, modelling errors, system approximation.

1 Introduction Recently a generalized set of orthonormal basis
functions has been developed that is generated by
inner (all pass) transfer functions of any precho-
sen order, Heuberger and Bosgra (1990), Heuberger
(1991), Heuberger et al (1992, 1993). This type of
basis functions generalizes the Laguerre and Kautz-
type bases, which actually occur as special cases
when choosing first order and second order inner
functions. Given any inner transfer function (with

any set of eigenvalues), an orthonormal basis for

The use of orthogonal basis functions in modelling
and identification of dynamical systems has a long
history. Recently, renewed attention has been given
to the problem of chosing basis functions that are
in some sense suitable for accurately modelling a
given dynamical system. The use of Laguerre func-
tions (King et al., 1979; Nurges and Yaaksoo, 1981;

Nurges, 1987; Wahlberg, 1991) shows the ability
to choose a scalar design variable in a range that
matches the dominating (first order) dynamics of
the process to be modelled. An optimal choice of
this design variable is given attention in Fu and
Dumont (1993). For moderately damped systems,
Kautz functions have been introduced, which actu-
ally are basis functions based on second order dy-
namics, see e.g. Kautz (1954), Wahlberg (1990,
1994).
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the signal space ¢; (and similarly for the operator
space H;) can be constructed.

Using basis functions that contain dynamics can
have important advantages in identification and
approximation problems. It has been shown in
Heuberger et al. (1992), that if the dynamics of
the basis generating system and the dynamics of
the system to be modelled approach each other,
the convergence rate of a series expansion of the




system becomes very fast. Needless to say that the
identification of expansion coefficients in a series ex-
pansion benefits very much from a fast convergence
rate; the number of coefficients to be determined to
accurately model the system becomes smaller.

In this paper, we will focus on the properties of the
identification scheme that estimates expansion co-
efficients in such series expansions, by using simple
(least squares) linear regression algorithms. In a
stochastic framework, similar to Ljung (1987), we
will derive expressions for bias and variance errors
that affect the (asymptotic) parameter and transfer
function estimates.

Concerning notation, a transfer function is called
inner if it is stable and it additionally satisfies
GT(z71)G(z) = 1. £,]0,00) is the space of squared
summable sequences on the time-interval ZN[0, cc).
H, is the Hilbert space of stable linear systems,
that are squared integrable on the unit circle. §(¢)
is the Kronecker delta function, i.e. §(t) =1, t = 0;
§(t)=0,t#0.

We consider the following problem set-up.

Let there be a data generating system:

y(t) = Golq)u(t) + v(t) (1)

with Go(z) = Yope, 9o(k)¢™* a scalar, stable and
strictly proper linear, time-invariant discrete-time
system; y(t¢) and u(t) scalar-valued output and in-
put signal; v a zero-mean stationary stochastic pro-
cess with rational spectral density, and ¢~! the de-
lay operator. We will write v(t) as

v(t) = Ho(g)eo(t) (2)
with ey a unit variance, zero mean white noise pro-
cess, and Hy a stable rational transfer function.
When given a sequence of orthonormal basis func-
tions {Vi(z)}x=0,...00, we will accordingly write:

Go(z) =2 3 Lo(K)V(2) (3)
k=0
Given data {u(t), y(t) }t=o,..; that is taken from ex-

periments on this system, a model will be identified
using a model structure

n—1
e(t,0) =y(t) = Y L(k,0)Vilq)u(t = 1)  (4)

k=0
with &(t,0) referring to the one-step-ahead predic-
tion error of the model given by parameter 0 (see
Ljung, 1987). The estimated parameter is deter-

mined by the least squares method:
| N

A il z
On = arg min N Z e(t,0)

i=1

(5)
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where 0 varies over some appropriate parameter
space.

2 Generalized orthonormal basis
functions

The basic result from Heuberger et al. (1992) con-
cerning generalized basis functions is reflected in
the following proposition.

Proposition 2.1 Let Gy(z) be a scalar inner func-
tion with McMillan degree ny, > 0, having a minimal
balanced realization (A, B,C, D).

Denote

Vi(2) := 2(21 — A) ' BGj(2) (6)

Then the sequence of scalar rational functions
{E?Vk(e’.‘”)};=|'.,"nb;k=o_...m forms an orthonormal
basis for the set Hy of all stable rational functions
that are squared integrable on the unit circle. O

As a result, for any such Vi(z), any strictly proper
transfer function G(z) € H; has a unique series
expansion
G(g)=q" ) L(k)Vi(g) (7
k=0
with L(k) € IR'*™,

Remark 2.2 Note that for specific choices of
Gy(z) well known classical basis functions can be
generated, such as the pulse functions Vi(z) = z*
which originate from Gy(z) = 271, and the Laguerre
Junctions

(1 —az)*

that originate from the inner function Gy(z) =
1 —az

Vi(z) = V1 —a?z (8)

, with some real-valued a, |a| < 1, and bal-

z T a - .
anced realization

(A,B,C,D) = (a,V1 —a? V1 — a? —a).

The Kautz functions (Kautz, 1954; Wahlberg,
1990,1994), can be shown to be generated by a
second order inner function, see Heuberger et al.

(1992).

This orthonormal basis for H; also induces a

similar basis for the signal space £3[0,00) of

squared summable sequences, through inverse z-

transformation to the signal-domain. Let
Vi(z) = du(0)2"* (9)

£=0
then {ef di(£)}i=1,. myik=0, 00 18 an orthonormal ba-
sis for the signal space £,[0, c0).




3 Orthogonal transformations of
signals and systems

The orthonormal basis for ¢, /H, induces a transfor-
mation of signals and systems to an "orthogonal”
domain. Next to the intrinsic importance of signal
and systems analysis in this transform-domain (for
some of these results see Heuberger (1991)), we can
fruitfully use these transformations in the analysis
of statistical properties of the identified models, as
well as in the derivation of bias and variance error
bounds.

Let {Vik(z)}k=0,..co be an orthonormal basis, as de-
fined in the previous section, and let {x(t)}i=0,..co
be as defined in (9), then for any signal z(t) € 7'
there exists a unique transformation

X (k)= du(t)2"(2) (10)

and we denote the corresponding A-transform of
X (k) as:

F(A) =) X(k)AF (11)
=0

We will refer to () as the Hambo-transform of the

signal z(#). Note that = € €', and &(\) € Hz**™.

Now consider a scalar system y({) = G(q)u(t) with

G € My with u,y signals in ;. Then there exists

a Hambo-transformed system G(A) € H3**™ such

that ’
3 = G)A(). (12)

In terms of the sequence of expansion coefficients,
this can also be writfen as

Y(k) = G(g)U(k) (13)

where the shift operator g operates on the sequence
index k. The construction of this transformed sys-
tem is given in the following proposition.

for all k

Proposition 3.1 Consider a scalar system G €
H, relating input and outpul signals according to
y(t) = G(q)u(t) with v,y € €, with G(z) =
Lo 9(k)z 75

Consider an orthonormal basis {Vi(z)}r=0,..co @s
defined in the previous section, generated by a scalar
inner lransfer function Gy(z) with input-balanced
realization (A, B,C, D).

Denote:

N()) ;= A+ B(AI - D)'C (14)

Then
(15)
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with

G(X) =) g(k)N(N)~. (16)
k=0

Proof: See Appendix. O

The interpretation of this proposition is that the
Hambo-transform of any system G can be obtained
by a simple variable-transfomation on the original
transfer function, where the variable transforma-
tion concerned is given by z=! = N(\).
Note that this result generalizes the situation of
a corresponding Laguerre transformation, where it
A+a
1+ al
(see also Wahlberg, 1991). However due to the fact
that the McMillan degree of the inner function gen-
erating the basis in this generalized case is ny > 1,
the Hambo-transformed system decription G in-
creases in input/output-dimension to G' € HZ**"™,
Note that G is scalar. N()) is an ny x ny ratio-
nal transfer function matrix of order 1 (since D is
scalar).
The previous Proposition considers scalar ¢, signals
and scalar systems. There exists a straightforward
extension of these results to a particularly struc-
tured multivariable system that will appear to be
fruitful in the sequel of this paper.

concerns the variable-transformation z =

Proposition 3.2 Consider a scalar transfer func-
tion G € Hy relating m-dimensional input and out-
pul signals y,u € €', according to '

y(t) = [G(z) Im]u(t) (17)

Then
7(A) = G(\)a(A) (18)
with G()\) as defined in (16). o

Proof: For m = 1 the result is shown in Proposi-
tion 3.1. If we write the relation between y and
u componentwise, i.e. yi(t) = G(2)u;(t) it fol-
lows from the mentioned Proposition that 7;(}) =
G(A)ai()), where g;,1; € R™*Y(X). Tt follows di-
rectly that

IN =) | |G =
= G | - | @) = GO)a(N).
(]}

One of the results that we will need in the analysis
of least squares related block Toeplitz matrices is
formulated in the following Proposition.

!Since G(2) is scalar we allow the notation G(2)1,,, which
more formally should be denoted as G(z) @ I,.




Proposition 3.3 Consider a scalar inner transfer
function Gy(z) generating an orthogonal basis as
discussed before. Then

Gy(A) = A7 . (19)

Proof: It can simply be verified that for all k&,
Gi(q)9(t) = dr4a(t). With Proposition 3.1 it foll-
lows that @r41(A) = Gb(A)Pk(A).

Since for each k, ¢x(A) = > op [n,0(2 — k)X~
follows that for all k,

T XS R Gl (20)

Since this holds for all k it follows that Gy()\) =
/=0, 0

The basis generating inner function transforms to
a simple shift in the Hambo-domain.

The following lemma relates quadratic signal prop-
erties to properties of the transformed signals.

Lemma 3.4 Let z;,z; € {3 and consider a
Hambo-transform induced by an orthonormal ba-
sis Vi(z) generated by an inner function Gy(z) with
MeMilland degree ny > 1. Then

PIEAGEAQ)

t=0

o0

3 X7 (k) (k) =
k=0

l ’r“' —IuJ !I.d
5 | (e )z (e ).

Proof: This Lemma is a direct consequence of the
fact that due to the fact that the basis is orthonor-
mal, it induces a transformation that is an isomor-
phism. ]

The transformation that is discussed in this section
refers to {;-signals and the corresponding transfor-
mation of systems actually concerns the transfor-
mation of the £;-behaviour of a dynamical system.
However, this same orthogonal basis for £; can also
be employed to induce a transformation of (quasi-
) stationary stochastic processes to an orthogonal
domain.

4 Orthogonal transformations and
stochastic processes

Let v be a scalar valued stochastic process or quasi-
stationary signal (Ljung, 1987), having a rational
spectral density ®,(w). Let H,(e™) be a stable
spectral factor of @,(w), and let h.,(k) be its £, im-
o (k) 2me,

pulse response, satisfying H,(z) =

Then
ho(t) = H(@)5(2) (21)

and consequently with Proposition 3.1

h, = Hé. (22)
Similarly, let w(t) = P,.(¢q)v(t) with P,, a stable
scalar transfer function, then

b = Puyhy (23)

with hy,h, € £3, the impulse responses of stable
spectral factors of ®,,(w), ®,(w), respectively.
Similarly to Lemma 3.4 we can now formulate some
properties of stochastic processes.

Lemma 4.1 Let w, z be m-dimensional sla-
tionary stochastic processes, satisfying w(t) =
> reo hu(k)e(t — k) and 2(t) = 302, ho(K)e(t — k),
with e a scalar-valued unit variance white noise pro-
cess. Then

Elw(t)2"(t %/ T (e~ )b, (e“)dw. (24)

Lemma 4.2 Letw, z, and v be m-dimensional sta-
tionary stochastic processes, satisfying

w(t) = Puu(q)lav(t) (25)
2(t) P..(g)Inv(t), (26)

Il

with Pyy, Py € Ha, and v(t) = Y 0o ho(K)e(t —
k), with e a scalar-valued unil variance white noise
process. Then

Ew(t)z T(i) -~
2]7 hT(e=*) BT, (=) Pyy(e™ ) hy (™) duw.

The previous two lemma’s can simply be shown
to hold also in the case of quasi-stationary sig-
nals. To this end we already used the operator

E := limN—ow % Yo B, where E stands for ex-
pectation.

5 Identification with linear regres-
sion models
As mentioned in the introduction, we will consider

a least squares identification scheme applied to the
model structure

e(t,0) = —q-‘ZL F)\Vil(gu(t),  (27)

k=0




where we will assume that the input signal u(t) is
a realization of some stationary stochastic process,
and we will denote

=[L(0)--- L(n—1)]T € R™™, (28)
We will further denote
zi(t) = ¢ ' Vilq)u(t) (29)
Zo(t)
T Ll (30)
zn—-l(t)
and consequently
e(t,0) = y(t) — 7 (1)0. (31)

Following Ljung (1987) under weak conditions the
parameter estimate x(n) (5) will converge with
probability 1 to the asymptotic estimate

0°(n) = R(n)™'F(n) (32)

with

R(n) = E4(t)y" (1) F(n) = Ep(t)y(t)

For the analysis of bias and variance errors of this
identification scheme, we will further use the fol-
lowing notation:

) (33)

Go(z) = 271 Lo(k)Vi(2)
O = [La(o)“'Lo(n—l)]T
0. = [Lo(n) Lo(n+1)-+:]"
Yelt) = [25(t) 2hga(t) "
Qu(e) = e[V (e¥) W (e¥) - Voa(e™)]
() =P () Ve i(e) "

leading to the following alternative description of
the data generating system:

y(t) = PT(t)0o+ P7(t)0. + v(t),
Go(e™) = QT(e“)o + Q7 (e)0..
We will further assume that the input signal u has

a rational spectral density function ®,(w), with a
stable spectral factor H,(e'“).

(34)
(35)

Il

6 Asymptotic analysis of bias and

variance errors
6.1 Introduction

First we will present a couple of results concerning
the properties of the block-Toeplitz matrix R(n).
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Lemma 6.1 The block-Toeplitz matriz R(n) de-
fined in (33) is the covariance matriz related to the
spectral density function

Bz, (w) = A, (€7)hay(e™),

where hz, (1) == ¢~ Vo(g)Hu(g)é(t).

Proof: The matrix R(n) has a block-Toeplitz
structure with the (j,€) block-element given by
Ez;(t)z](t). Since z;(t) = Gi(q)I, - zo(t) it fol-
lows with Lemma 4.2 that

Ez;(t)z; (t) =
%/ hz'o( —iw [GT( —-w ]J[G -u)]fh {c“")

With Proposition 3.3 it follows that

o, () = [ 0-00n ()i (0

with @z (w) 1= AT .(€ e™“Vh.,(e*), and this proves
the result. B

Lemma 6.2 Let H, be a stable spectral factor of
the spectral density function ®,(w). Then

&z, (w) = HT (e7) Hu(e™). (37)
Proof: Since zo(1) = ¢ 'Vo(q)u(t) we can write
hao(t) = ¢ 'Vo(q)H.(q)é(t). Since H, is scalar,
we can write kg () = H,(q)g WVa(q)é(t) =
Hy(q)hy(t), with hy,(t) the impulse response of the
transfer function ¢='V;(q).
Applying Proposition 3.1 now shows hz =H h',o =
H,. The latter equality follows from k = Ip,, as
the impulse response of ¢=*Vy(q) exa.ctly matches
the first n; basis functions in the Hambo-domain.
O

Remark 6.3 Note that in Wahlberg (1991) for
the (first order) Laguerre case, the corresponding
Toeplitz matriz is the covariance matriz related to
the spectral density

el'w +a :
1+ ae«’

P, ( (38)
This implies that in that case a variable transfor-

mation )
{ (77
w _, e +a

1+ ae™ (39)
is involved, or equivalently
—iw_, 14 ae"" .
e R (40)




Nole that in this Laguerre case we can write
l—az
Gi(z) = ;
z—a
the minimal balanced realization (A,B,C,D) =
(a, V1 —a? /1 —a? —a).
In the setting of this paper, the variable transfor-
mation involved is given by e™ — N(e™“), while
N has a minimal balanced realization

(D,C,B,A) =(—a,V1 —a?V1—a?a).

This directly leads to the variable transformation
(40).

which can be realized by

The following Proposition bounds the eigenvalues
of the Toeplitz matrix R(n).

Proposition 6.4 Let the Toeplitz matriz R(n) de-
fined in (33) have eigenvalues X;(R(n)). Then

(a) For all n, the eigenvalues of R(n) are bounded
by

ess inf ®,(w) < Aj(R(n)) < ess sup @, (w).

(b) lim, . max; A;(R(n)) = esssup, ®,(w).
Proof: See Appendix. O

6.2 Asymptotic bias error

We will analyse upper bounds for the asymptotic
bias errors 8* — 8 and |G(e™,0*) — Go(e™)|.
Combining equations (32),(33) and (34) shows that

0" — 0o = R(n) ' E[(t)0T(t)0.]  (41)

consequently

1 0°~6o ll2<ll Rm)™ la - Il B @BE@] ls 116z

(42)
where for a (matrix) operator T, ||T'||; refers to the
induced operator 2-norm. For simplicity of notation
we have skipped the dependence of #* (and 0;) on
n. This leads to the following result.

Proposition 6.5 Consider the identification set-
up as discussed in the previous section. Then

esssup,, @, (w)

0" — |2 < - |16 4

|| 0"2 - CSSinru @u(w] ” e"'2‘ ( 3)
where [[0clla = v/S5 L8 (F) La(R). :
The Proof of the Proposition is added in the Ap-

pendix.
For the bias in the transfer function estimate the
corresponding result is as follows.
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Proposition 6.6 Consider the identification set-
up as discussed in the previous section. Then

Part (a). For all w, € IR,

G(e*, %) — Go(e™)| <
< IVale™)lellifo = 7l + [10:11] <

ess sup,, Pu(w)

ess inf, @, (w) [16ell2+ [|6ell1}, (44)

IVo(e™* )loo{v/mem

where ||Vp(e*)||c is the £o-induced operator norm
of the matrix Vp(e!) € C™*! ie. the maximum
absolute value over the elements in Vp(e' ).

Part (b). The Hz-norm of the model error is
bounded by:

1G(2,6%) — Go(=)lIn, <
< /160 — 0°[13 + 18c]13,

esssup,, O, (w)
—— 2 H|0.||2-
essinf, @, (w) Hi0ell2

< {1+

The proof is added in the Appendix. O

Note that this latter bound on the bias in the trans-
fer function estimate as well as the previously de-
rived bound, are dependent on the basis functions
chosen.

Note that the factor ||0.]|3 is determined by the
convergence rate of the series expansion of Gy in
the generalized basis. The closer the dynamics of
the system Gy will be to the dynamics of the inner
transfer function G}, the faster the convergence rate
will be. Upper bounds for the convergence rate in
terms of the eigenvalues of Gy and G} are derived
in Heuberger et al. (1992).

The results in (43), (45) show that we achieve con-
sistency of the parameter and transfer function esti-
mates as n — oo provided that the input spectrum
is bounded away from 0 and ||f.||2 — 0 for n — oc.
The latter condition is guaranteed if Gy € H,.

For the FIR case, corresponding with Gj(z) = z7*,
we know that under specific experimental condi-
tions also the finite number of expansion coefficients
can be estimated consistently, irrespective of the
tail. This situation can also be formulated for the
generalized case.

Corollary 6.7 Consider the identification setup as
discussed in the previous section.

If Hy, is an inner transfer function, then for any
value of n, 0* = 0y and the transfer function error
bounds become

(a) |G(e™*,0%) — Go(e™")| < [[Vo(e™")llool|fe]ly,

for each wy;




(b) 1G(z,0%) = Go(2)ll, < |10c]I3-

Proof: Under the given condition it can simply be
verified that ®z,(w) = el,,,. This implies that the
block-Toeplitz matrix R(n) = I, and that for all
n > 1, Riz(n) = 0. Employing this relation in the
proofs of Propositions 6.5, 6.6 shows the results. O

Note that a special case of the situation of an inner
H, is obtained if the input signal u is uncorrelated
(white noise). In that situation H, =1 and conse-
quently H, = I,,, being inner.

6.3 Asymptotic variance error

For an analysis of the asymptotic variance of the
estimated transfer function, we can generalize the
results as obtained for the case of Laguerre func-
tions in Wahlberg (1991).

From classical analysis of prediction error identifi-
cation methods, Ljung (1987), we know that under
fairly weak conditions

VN(ly(n) —07) = N(0,Qn)

where N(0,Q,) denotes a Gaussian distribution
with zero mean and covariance matrix @,,. For out-
put error identification schemes, as applied in this
paper, the asymptotic covariance matrix satisfies:

Qn = [Eﬁi’(i)ml*T(f)]'l[EJ’U)d)T(i)][Eﬁb(f)wTU)ghl]
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with ¥(t) = 32, ho(2)¥(t + 7), and ho(7) the im-
pulse response of the corresponding transfer func-
tion Hp.

Note that according to Lemma 6.1, R(n) =
E(t)T(t) is a finite part of an infinite covari-
ance block-Toeplitz matrix with spectral density
®;,(w) = HT (e) Hy(e™).

For ease of notation we will introduce the following
transformed spectrum for any (quasi-stationary)
stochastic process s(f):

d,(w) := HT (™) H,(e“),

as N — oo, (45)

(47)

where H; is a stable spectral factor of the spectrum
of s. i

This notation implies that ®;,(w) = ®,(w).

In our evaluation of the asymptotic covariance ma-
trix (J,, this brings us to the following result for
the block-Toeplitz matrix P(n) = E¢(t)7(¢).

Lemma 6.8 The spectral density function related
to the block Toeplitz matriz P(n) = Ep(t)T(t) is
given by

®,(w) - By (w). (48)

Proof: The proof follows along similar lines as fol-
lowed in the proofs of Lemma’s 6.1 and 6.2. O

From the asymptotic covariance of the parameter
estimate, we can derive the expression for the trans-
fer function estimate:

N A a0 1 ; _
| con(G(e), G(e7)) = QT (e )Qula(e)
(49)
as N — oo, while cov(:,-) refers to the cross-
covariance matrix in the joint asymptotic distribu-
tion of

[G(e™, by) — G(e,6%),G(e"?, by ) — G(e™2,0%)).

Now we have the ingredients for formulating an ex-
pression for the asymptotic covariance (n — oo,
N — oo) of the estimated transfer functions.

Theorem 6.9 Assume the spectral density ®,(w)
to be bounded away from zero and sufficiently
smooth.

Then for N — oo and n — oo:

N ! o e
\/;cov(G(_e““‘ ,ON), G(e™?,0n)) —
0 Jor Gy(e™r) # Gy(e™?),

T ( iy \ N7 (=it _@u(w;)
Vo (e¥1)Vp(e=*) “¢u(w1)

for wy = w;y.

The proof is added in the Appendix.

Theorem 6.9 gives a closed form expression for the
asymptotic covariance. Note that it implies that
the variance of the transfer function estimate for a
specific w; is given by

D, (wy)

VDT eiwl VD e—iw; "
(") Va(e™™) )

(50)
which is the noise to input signal ratio weighted
with an additional weighting factor that is e
termined by the basis functions. This additional
weighting, which is not present in the case of FIR
estimation again generalizes the weighting that is
also present in the case of Laguerre basis functions,
see Wahlberg (1991). Since the frequency function
Vo(e*) has a low pass character, it ensures that
the variance will have a roll-off at high frequencies.
This is unlike the case of FIR estimation, where the
absolute variance generally increases with increas-
ing frequency.

The role of V4 in this variance expression clearly
shows that there is a design variable involved that
can be chosen also from a point of view of vari-
ance reduction. In that case V; has to be chosen




in such away that it reduces the effect of the noise
(®,(w)) in those frequency regions where the noise

1s dominating.

The result of the theorem also shows that - in
general - the transfer function estimates will be
asymptotically uncorrelated. An exception has to
be made for thoses frequencies w;, # w, for which
holds that Gy(e™!) = Gy(e™?). This situation will
occur in the situation that ny > 1, where it becomes
possible that the covariance of the two estimates
becomes unequal to zero.

Conclusions

In this paper we have analysed some asymptotic
properties of linear estimation schemes that iden-
tify a finite number of expansion coefficients in a
series expansion of a linear stable transfer function,
employing recently developed generalized orthogo-
nal basis functions. These basis functions general-
ize the well known pulse, Laguerre and Kautz basis
functions and are shown to provide flexible design
variables, that when properly chosen provide fast
convergence of the series expansion. In an identifi-
cation context this implies that only few coefficients
have to be estimated to obtain accurate estimates,
while simple linear regression schemes can be used.
Both bias and variance errors are analysed and er-
ror bounds are established.
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Appendix

Proof of Proposition 3.1.

Let us consider the situation for G(z) = z7'.
In this situation y(¢) = u(t — 1). Consequently
(k) =32 (b)) =T Oég(t Ju(t—1). From
Heuberger et al. (1992), we now that for each k € Z:

Bo(t) do(t —1)
¢1:(i) —_— ¢’1(t:' 1) (A1)
Px(1) or(t —1)
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with the matrix Ay € IR¥"***% given by

BC A 0.4 Guasl

AN L BBC GARBC fstacs xitirn
: : v 83 96

BD*?C BD*-'C ... BC A

(A.2)
Using this in the expression for Y(k) shows that

th (t—1) (A.3)
%U—l)
it nb]AHIZ éi(t—1) u(t —1)
¢k(i—1)
U(0)
U(l)
= [00 - In)Arn
U(k)

As a result, for each k,
Y(k) = AU(k)+ BCU(k—1)+ BDCU(k —2) +
+ -+ BD*'CU(0).
This immediately shows that
= [A+ B(A - D)~'CJa(N),

leading to G()\) = [A + B(A — D)~'C).
Putting several time delay transfer functions in cas-
cade, it follows straightforwardly that G(z) = z=*

(A.4)

leads to G((\) = N(A)¥, which proves the result. o
Proof of Proposition 6.4.
Part (a).
Denote the vector u(n) := [pd ui Ba s i
IR™. Then
n—1 n—1
u(n)TR(n Ju(n) = ZZ Wi Crefle (A.5)
k=0 £=0
with
1 BAEP : . :
che= 5 / Vi(¢“)VT () By (w)dw.  (A.6)
Denoting 5T (e™) := Ek_.o pt Vi(e™), it follows
that
1 .2 : :
W) Rmu() = 5 [ 07 ()0 (hn(em)do,
(A.T)




while the orthonormality of the basis functions im-
plies that

- / " nT (e )dw = u(n)u(n).  (AS)
Since

essinf, ®u(w) -« p(n)"u(n) < p(n)" R(n)u(n) <

< esssup, @, (w) - u(n)T pu(n), it follows that

cssigf@u(u) < ||R(n)||2 < esssup ®u(w). (A.9)

The latter equation can be verified by realizing
that, since R(n) is symmetric, there exists Q(n)
satisfying R(n) = Q(n)Q(n)T leading to

essinf @, (w) < ||Q(n)]|3 < esssup @, (w).

Part (b).
The Hermitian form T, := u”(n)R(n)u(n) can be
written as

T, = v7(n)diag{ A", -, A% Ju(n)

through unitary transformation preserving the
norm, i.e. ¥T(n)v(n) = p"(n)pu(n). Consequently

p()TR()p(n) _ o) A.10
WTma(n) — e )

which is known to be bounded by esssup,, ®,(w).
Since the Hermitian form T, is related to the
Toeplitz form (A.7), Theorem 5.2.1 in Grenander
and Szegd (1958) directly leads to the result that

lim max \™ = esssup @, (w).
—+00 1 w

Proof of Proposition 6.5.

With Proposition 6.4(a) it follows that
|R(n)7|2 < (essinf, ®.(w))™".

For constructing a bound on the second term on
the right hand side of (42), we first consider the
following notation.

Denote Ryz(n) := E[b(t)yI(t)]; then we can write

r= B YO | w0 v

= ey pum )

which is an infinite block-Toeplitz matrix, of which
R(n) is a finite part.

As Ryy(n)=[Iun O] R [ 0’“"}"""“ } it follows that

A

Onynxoo
[Ria(r)l < W s ORI | 7 | o
< |[R]fa. (A.11)
As a result

1Biz(n)l2 < Tim maxA;(R(n)),

which

by Proposition 6.4(b) is equal to esssup, ®,(w).

This proves the result. O

Proof of Proposition 6.6.

Writing

iw = i T iw Ty iw gr = GD

G(e,0%)~Go(e™) = [7(e*) 02(e)] |

(A.12)

it follows that for each w;:

|G(e™*,07) — Go(e*?)| <

< [ 97(e) aT(er) ] - | ["‘;ﬁ"" ] s

where || - ||; refers to the induced ¢; matrix norm
and the {;-norm, respectively. It follows from the
fact that G is inner that

|G(e™,0%) — Gy(e™ ) <
et

IVG" ()l - (116" = Bollx + 1G],
[Vo(€™*)lloo - [116% = Bollx + |[0c]l1]-(A-13)

Part (a) of the Proposition now follows by substi-
tuting the error bound obtained in Proposition 6.5,
and using the inequality [[6* — 0ol < \/rpn||0" —
2.

Because of the orthonornality of the basis functions
on the unit circle, it follows that

IA

Il

IG(2,60%) — Go(2)llne = |l [0-,;;3“] 2,

which together with Proposition 6.5 proves the re-

sult of (b). o

Proof of Theorem 6.9.
Using (49), and substituting ©,,(e") shows that

QT (c)Qufla(e ) =
Vo () V() -+ WLy ()] @n-

W () W(e™) V(eI

n=—




Note that this latter expression can be written as

Il Gy(e™) -
(['Gs(e™*) -~

Gy~ (c)] © T (¢))Qn
e o e,

and this equals

© Gy ()] S

Gyl ()T

%[1 Gi(e)
[1 Gs(e™2) -

where

Su = [In @ Vg (e“)|Qn[ln ® V' (e77)].  (A.14)

Since Gy is an inner function we can consider the
variable transformation

(A.15)

Employing this transformation in the derived ex-
pression for the covariance matrix provides:

%QZ(&“")Q,B,,((‘“"*) =

ei&:(n—-l)]Sﬂ[l c—i@; ; e—i&i;{n—l)]‘f.

= —l 1
??.[ 3

The convergence result of Hannan and Wahlberg
(1989) and Ljung and Yuan (1985) now show that

for n — oo, this expression converges to

0 if @y # @,,
A.16
S(Ql), if L:?] = (Dg. ( ]
where S(w) is the spectral density related to the
Toeplitz matrix S, in the limit as n — oo.
It can be verified that
S(w) = VI (1) - @, (w)®, (w)™" - Vo(e“?). (A.17)
However note that in (A.16) this spectrum has to be
evaluated under the variable transformation (A.15).
Consider the variable transformtion (A.15) applied
to H,(e*). Note that
H,(e®) = H,(Gy(e™)) = H,(e"™), (A.18)
the latter equality following from Proposition 3.1.
As a result, the expression in (A.16) becomes

§(@1) = Vg (1)@ (wi)®u(w1) ™ V(e ™),

which proves the result. o
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non-linearly parametrized state space models
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Abstract. When a model is to be determined by use of system identification where the
model parametrization is non-canonical, existence of a unique model (i.e. unique param-
eter values) not only depends on the excitation properties of the input signal but also
on the model parametrization. The latter is referred fo as structural identifiability of a
model parametrization. In this paper a method is proposed to investigate local structural
identifiability of high order state space models with non-linear parametrizations. The
method is based on rank evaluation of an information matrix. A gradient computation
algorithm, based on a dynamic programming formulation and normally used in an iden-
tification framework, enables computation of an analytical expression for the information
matrix.

Keywords. system identification, identifiability, state space model structures, gradient

computation

1 Introduction

The issue addressed in this paper concerns identi-
fiability of linear, time invariant model structures
where the parametrization is based on, for example,
physical a priori knowledge of the process. Since in
this case the model parametrization is determined
by physical laws, where the (yet unknown) parame-
ters have physical interpretations, the parametriza-
tion usually has a non-canonical form. Whereas a
canonical parametrization establishes a one-to-one
relation between the input-output behaviour of the
model and the parameters, this relation is not triv-
ial in case of a non-canonical form. Now if a mo-
del is to be determined using system identification,
the existence of a unique model (i.e. unique values
of the parameters) is imperative for the following
reasons. Firstly, if different parameter values cor-
respond to the same input-output behaviour, the
model parametrization is not capable of providing a
unique description of the process. Secondly, a non-
canonical model parametrization might result in an

49

ill-posed identification problem. For these reasons
investigation of the relation between input-output
behaviour of the model and uniqueness of the cor-
responding parameter values is a necessary exercise
before the actual parameter estimation procedure
is carried out. The problem of investigating this
relation is referred to as structural identifiability of
a model parametrization and is the subject of ths

paper.

In literature the topic of structural identifiabil-
ity has received an extensive amount of attention.
Bellman and Astrém (1970) stated the concept;
the subject has been thoroughly studied in the
field of biological and biochemical modelling (Ru-
binow and Winzer, 1971; Cobelli, Lepschy and Ro-
manin Jacur, 1978; Norton, 1980; Godfrey, 1983).
State space model parametrizations are analysed
by Glover and Willems (1974), Grewal and Glover
(1976) and Walter (1981). The problem has been
treated in a stochastic framework by Rothenberg
(1971) and Tse (1973). Structural identifiability of
models in terms of differential-algebraic expressions




has been investigated by Ljung and Glad (1991).

We focus on the case that a priori knowledge of
a process is available in the form of a large num-
ber of first order difference equations, where the
coefficients are expressed in terms of physically in-
terpretable parameters (e.g. volumes, masses, etc.).
This leads to formulation of a linear, time invariant
high order state space model where the model pa-
rameters usually are non-linear expressions of the
physical parameters.

Investigation of local structural identifiability us-
ing existing techniques has its limitations. Since
methods proposed in the field of biological model-
ling (Godfrey, 1983; Norton, 1980) are based on
compartmental models, they can only be applied
Meth-
ods based on non-linearly parametrized state space
models either require analytical expressions for par-
tial derivatives of e.g. Markov parameters (to be
calculated by hand) (Grewal and Glover, 1976) or
they lead to calculation of matrices with dimensions
equal to the square of the model order (Glover and
Willems, 1974).

In this paper a method is proposed for analy-
sis of local structural identifiability of non-linearly
parametrized, high order state space model repre-
sentations formulated in discrete time. The method
is based on rank evaluation of the information ma-
trix as formulated by Rothenberg (1971) and Tse
(1973). A problem in their work still is the compu-
tation of the information matrix. It will be shown
that use of an algorithm for gradient computation,
based on a dynamic programming formulation and
normally used in an identification framework, en-
ables calculation of an analytical expression for the
information matrix. The calculation requires ana-
lytical expressions for the partial derivatives of the
state space matrices with respect to the argument
parameters and shows very limited complexity.

Firstly we will briefly review the local structural
identifiability problem. Next the computational as-
pects of local structural analysis based on gradient
computation are elaborated in section III.

to this specific type of parametrization.

2 Local structural identifiability:
mathematical formulation

We consider a linear, time invariant single-input,
single-output discrete time state space model struc-
ture, parametrized in 6:

z(k+1) =
y(k) =

A(6)2(k) + b(8)u(k)

c(6)=(k) (1)
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where z(k) € IR", u(k) € IR, y(k) € IR and
€ ® C IR?. Thereis no direct feedthrough d(6).
The elements of A(8), b(8), c(#) are supposed to be
algebraic functions of the elements of 4.

For a definition of local structural identifiability
we adopt the formulation by Glover and Willems
(1974):

Definition 2.1 A model structure (1) s said to be
locally identifiable from the transfer function at the
point § € © if there exists € > 0 such that the
following conditions

1. )16 0| <e ||62—8| < e and

2. e(6;)(zI —
A(6,))~"5(6>)
for all z € C\{A(A(6,)),A(A(62))} where A(.)

indicates the eigenvalues of a matriz

A(61))7'6(8:) = e(8:)(2] —

imply that 8, = 6. O

In words, in a neighbourhood of 6 there are no
two models with distinct parameters which have the
same transfer function.

In definition 2.1 equality of the transfer func-
tions is related to equality of the parameters. To
mould this in a mathematical framework the follow-
ing lemma on injective maps is presented (Glover
and Willems, 1974):

Lemma 2.2 Let §) be an open set in IR” and f :
1 — IR™ be a k-times continuously differentiable
map with k > 1. Then if 8f(z)/0z has constant
rank r in a neighbourhood of &, f is locally injective
at & if and only if » = n.

Now definition 2.1 together with lemma 2.2 lead
to the following proposition (see also Grewal and
Glover, 1976, and Norton, 1980).

Proposition 2.3 Consider the map S : ©@ C
IR? — IR*" defined by:

5(0) := [h(1,68) h(2,6) ... h(2n,0)]" (2)

where h(k,0) = c(6)A*1(0)b(6) (k= 1,2,...,2n)
are the first 2n Markov parameters of the model.

Then the model (1) is locally structural identifiable
in 0 = 0y if rank(05/060) = q in 6 = 6,. O




So analysis of local structural identifiability of (1)
amounts to evaluation of the rank of

i 6‘.‘1{1! dh(1 dh(1) 7
a0, a0y a8,
dh(2
a8,
85(6)
69 ﬁ':ﬂg =

3h(2n) 8h(2n)

ay : i 96, J

=8y
(3)
with dimensions 2n x gq.

It is obvious that calculation of (3) is a non-
trivial, if not impossible exercise in case of a high or-
der, complex model parametrization. Nevertheless
it is possible to perform structural analysis by rank
evaluation using a specific algorithm for computa-
tion of the gradient of a quadratic loss-function;
in this algorithm explicit use is made of analytical
expressions for the partial derivatives of A(f),5(0)
and ¢(f) with respect to 8, (r = 1,...,q). This will
be shown in the next section.

3 Structural identifiability analysis
using gradient computation

In this section the relation between rank evaluation
of (3) and gradient computation in an identification
framework is established. Next it is shown how this
relation enables calculation of the rank of (3) using
a specific algorithm for gradient computation.

3.1 Gradient computation in identification

Consider the following identification problem.
Let there be given a linear, time invari-
ant system that generates input-output data

{u(k),y(k)}r=1,..n, determined by

Aoz(k) + bou(k)
coz(k) + e(k)

zZ(k+1) =
y(k) (4)

where state z(k) € IR", input u(k) € IR, out-
put y(k) € IR and {e(k)} a sequence of inde-
pendent, identically distributed random variables
(white noise) with unit variance.

When identifying a model on the basis of mea-
surement data obtained from this data generating
system, we consider a state space model structure

A(8)(k) + b(B)u(k)
y(k) — c(0)e(k) (5)

where A(f),b(0),c(6) is a parametrized state space
model with § € © C IR and e(k,6) the one-step-

Il

z(k+1) =
e(k,0) =
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ahead prediction error, (Ljung, 1987). The cor-
responding least squares identification criterion is
given by!

N
> €’(k,0). (6)
k=1

Minimizing Viy(#) over § € © generally will result
in a non-linear optimization procedure, for which it
may be important to have available an expression
for the gradient Vn(6)/86.

In Van Zee and Bosgra (1982) an algorithm
has been proposed that, based on measurements
{u(k),y(k)}k=1,..n and analytic expressions for the
partial derivatives Ei(g_,A(G)* Efg—rb(ﬁ) and 32-c(#) with
respect to 6, (r = 1,...,q), generates the gradient
OVn(6)/08, for a prechosen value of 6.

This algorithm that is based on a dynamic pro-
gramming formulation, is characterized by the fol-
lowing relations.

Given %;A(S), %b(ﬂ) and :2-¢(6), then

0.

Vn(6) =

B | =

BVN(9) =3
a6, kzz{:] 8, Hk(sz)!/\k«d—hg) (7)
8 )
where E‘ZH;, - —s(k,ﬂ)gg—rc(ﬁ]
Thaie G

algg-A@)e(k) + 55-H6)u(k)
h ' (8)
and Al = A A(8) — e(k)c(8), AL = 0. (9)

For a given value of 8, {\;}i—o,..n—1 is calculated
from the data by running backwards over the time-
interval (starting at k = N — 1), while the partial
derivative %H & 1s constructed by running forwards
over the data. A full elucidation of the dynamic
programming formulation is presented in appendix

A.

3.2 Rephrasing the identifiability problem

Now we raise the question whether we can em-
ploy the same dynamic programming mechanism
as present in this gradient algorithm of Van Zee
and Bosgra (1982) in order to obtain information
about (the rank of) the Jacobi matrix (3) of a
parametrized model structure (A(6),5(6),c(0)).

To this end the following Proposition will be
fruitful.

Proposition 3.1 Consider a parametrized model
structure (5), and any 6, € ©. Let a data gen-
erating system (A(6o),b(60),¢(60)) generate input-
output date with u(k) being a pulse signal, i.e.

'For reasons that will become clear later on, we will not
consider a factor ﬁ- in Vy(8).




w(k) = 1,k = 0, w(k) = 0,k # 0 and let e(k,0)

be a white noise with unit variance. Then

& (avg;)(a)) (avg,ﬂ(e))"'

with V3u(8) and 23) as defined in (6),(3).

=0y
as(0)

B0 (10)

Proof: In the case of a pulse-shaped input signal
with amplitude 1 the prediction error is expressed

as

e(k,0) = y(k) — h(k,0) (11)
where h(k,8) represents the k-th Markov parame-
ter of the model: h(k,6) = c(8)A(8)*'5(6). Then
Vy(8) becomes

s
Vi(8) = 5 Do (w(k) — h(k,6))* (12)
k=1
and the gradient dVn(0)/86 can be expressed as
N
7
aV" — S e(k a)ah(k 2 (13)

k=1
Now consider the information matrix (Ljung, 1987)
where (13) is substituted and E denotes the expec-
tation operator:

.
86 \ a6
=0
N h k
EZE(J:,HU 2 '9”)}: (1,80) (
=1

N T
s ZLM(;“E&“ Be(k,00)e(l, 80) (%U‘ED)) ;

FEE a6
(14)
Since g(k,0;) = e(k), i.e
Ee(k,00)e(l,60) = 1 k=1 (15)
— i 1 (16)

and setting N = 2n, we get the following result:

5 WVon (0Van 4 _iah(k,al,) Oh(k,8)\"
56 \ a8 = a6
o=, =
r (k) Oh(k)  Bh(k) Dh(K) Oh(k) Oh(k) T
a6, o6, a8, o6 °°° 90, ag,
all, a6,
Zn
» k=1
Bh(k) Bh(k) dh(k) Bh(k)
L a0, a6, o Se=ogy 4

5

2

ah(1 oh(2) dh(2n) 7
aby a0y afy
dh(1
a0y
= X
dh(1) dh(2n
| 30, ' P aly
[ 8h(1 8h(1 ah(1) 7
i 90, 90y
oh(2
a8,
dh(2n) ah(2n)
L a6, 5 a0,
_ (958 17
( a6 ) ae )
O=0n

O

Using the result of proposition 3.1 and the fact that

65(9))
i (__
36‘ A=y

o (220

enables us to rephrase the problem of local struc-
tural identifiability in terms of rank evaluation of
(3) as rank evaluation of the information matrix
under the experimental conditions as specified in
proposition 3.1.

In the next subsection it is shown that, using
the expression for the gradient according to the dy-
namic programming formulation (7), (8), (9) and
with complete knowledge of the experimental con-
ditions, it is possible to find an analytical expression
for the information matrix only requiring analytic|
expressions for :;‘:)A(ﬁ) (}95(9) and ﬁc(@)

@) (18)

o6

=My

3.3 An analytical expression for the infor-
mation matrix

If we consider the gradient expressions (7), (8) and
(9) and the experimental conditions as specified in
proposition 3.1,

1. u(k) is a pulse-signal with amplitude 1: u(0) =
1 and w(k) =0for k=1,...,

2. 2(k) =

2n;
AF-lpfor k=1,...,2n;

3. e(k)is a standard white noise, i.e. E e(i)e(j) =
1ifi=j and 0 if 7 # 7,




we arrive at the following expression for %@l (see
appendix B):

AV (6) Bc

AFTEE n—-2
36, g(2n — ]@9 Ak

Zn-—1 ab

= i n—1-31 7~
z (2n —2)cA 30,
2n-2 86 ool

- 3 elb)gg A

2n—-22n—-k-1

0A
n—k—1—1
— E E £(2n —12)cA 26,

el 3
(19)

The information matrix is calculated element-wise
by multiplying (19) with a similar expression for
%}h and taking the expectation. As a consequence
of the third experimental condition the terms of
this product containing F e(z)e(j) where 2 # j will
disappear. The exact elaboration is quite technical
and is presented in appendix B. Here we only state
the result.

Before we do so, some notational conventions are
introduced:

1. the extended controllability matrix W. is de-

fined as
W.:=[b Ab A% A2 5 (20)
2. the extended observability matrix W, is de-
fined as
, , ; 1z
AR A el

3. for i < j, B.(i,7) € R*™ " is defined as
the matrix that selects the i-th up to the j-th
column of a matrix with 2n — 1 columns by
post-multiplication:

O(i-1)x (j—i+1)

(22)

BE(i,7) = | Ij-i+n)x(i-i+1)

Ogan—1-j)x (i-i+1)
wherei,j = 1,...,2n—1. O,y denotes the (px

r) 0-matrix; I,x, denotes the (p x p) identity
matrix;

4. for i < j, B,(i,j) € R is defined
as the matrix that selects the i-th up to the
j-th row of a matrix with 2n — 1 rows by pre-
multiplication:

E,,(i,j) o= [0(j—i+l)x(i—l)
I isryxi-it1) Ogi-i+1)x(2n-1-j) ] (23)
2n — 1.

where 1,5 = 1,...,
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With these notational conventions we state the fol-
lowing result:

Proposition 3.2 Under the conditions stated in
proposition 3.1 and using the notational conven-
tions (20), (21), (22) and (23) the (r,s)-element

of the information matriz is ezpressed as:
av‘:én 6V2r: 2
E
(%) (52)
ab\" (. b 8b\" [ e
(aw) (o) + (%) (5%
ob\" (e \" [ éc oc . \"
() () + () () +
ab

2n-2 T
Y (Wuﬁ) El(k+1,2n —3) x

T
w’r;) o

k=1
E,(1,2n — )(W gg W)Ec(k,k)-|—
2n—2 ab T 3
) b (Woag) ET(k+1,2n — 3) x
k=1 L
Ea(1,2n—3—k)(Wg;1W) 2 (k, k) +
2n—2 a
2(3; ) r(k+12n—3]x

Ey(1,2n — 3 — k) (W o4

° 00,
2n-2 6C
e

k=1

Eo(1,2n — 3 — k) (wo

W, ) E.(k, k) +

Wc) EI(k+1,2n — 3) x

0A

a_erwc Er(k,k) aF

2n-2 k BA
EZE (ky k) | Wor- We ) x
=1 J=1 a'g

Eg"(l,zn—s—k) Ey(k—1+1,2n—-3-1) x
(W 8AW)E,( 0

ad
2n—-2 2n-2
S 3 EI(kK) (wﬁf*w) ’
k=1 [=k+1 a6

Ef(l—k+1,2n -3 —k)E,(1,2n— 3 — 1) x

(W g;iw) E(L). (24)

1]

Although the analytical expression (24) seems quite
elaborate, the calculation is straightforward. Note
that using the notation based on row- and column-
selection the (r,s)-element of the information ma-




trix contains the following expressions:

0A 0b de
(). (%) (722)

fori=r,s.

Computation of the partial derivatives of the
state space matrices (A(6),b(8),c(6)) with respect
to 8; (1 =1,...,q) for 8 = 8, is done by hand and
the extended controllability and observability ma-
trices are calculated straightforwardly. The expres-
sion (24) therefore states an attractive formulation
from a computational point of view, since the main
computation effort consists of calculation of sum-
marized matrix products of reasonable dimensions.
Another feature is that the expressions (25) state a
very nice intuitive result, since parameter identifi-
ability is expressed in terms of controllability and
observability properties of the model and the sen-

(25)

sitivity of the state space matrices with respect to
the elements of the argument parameter vector .

4 Conclusions

When a unique linear, time invariant model is to be
determined using system identification fechniques
and the model parametrization is based on physi-
cal a priori knowledge of the process, there is no
guarantee that a unique model exists as a result
of the model parametrization. Structural identifi-
ability should therefore be investigated before the
parameters are actually estimated.

In this paper a method is presented to analyse
local structural identifiability of SISO, non-linearly
parametrized state space models of high order. The
method implies rank evaluation of the information
matrix under specific experimental conditions. It is
shown that use of an algorithm for gradient compu-
tation, based on a dynamic programming formula-
tion as formulated by Van Zee and Bosgra (1982),
enables computation of an analytical expression for
the information matrix.

Appendix A

Here the algorithm for gradient computation ac-
cording to the dynamic programming formulation
as formulated by Van Zee and Bosgra (1982) is
elucidated. Consider a SISO state space model,
parametrized in 6,

z(k+1)
y(k)

Il

A(8)z(k) + b(6)u(k)
c(8)z(k) + e(k)

(26)
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then the parameter vector § is found as the mini-
mizing argument of

Vn(0) = (27)

b3 | =

I'\F

> €'(k,0)

K=1

in which e(k, ) is the prediction error y(k) — g(k).
A one-step ahead prediction y(k) is obtained as:

z(k+1) = Az(k)+ bu(k)
(k) = ci(k)

The prediction error £(k) can then be expressed as:

(28)

i:(k 3 l] =
e(k)

Ai(k) + bu(k)
—cé(k) + y(k)

(29)

Dynamic programming formulation is based on def-
inition of a partial criterion function:

(30)

and derivation of the partial derivatives of
Vi(2(1), 8) to £(z) and @ on the given trajectory 2(z),
where V;(&(i),0) is expressed as
1,
Vi(#(0),0) = 56°0) + Vi (i + 1),6).  (31)

This leads to

o} a7 ey
M%(z[l):g) = 53&(3')5 (2)
5} (305 02(i+ 1)
taar ) e+ =5
d
= —e(3)e(0) + m‘f.“(m@ +1),0)A(6);
(32)
0 ;
% '(3(1’]18) =
1L 0 - dz(i + 1)
558° W)+ m"iw(m(‘ +1),6)— 57—
+%V.-+1(a‘:(£ + 1), 6). (33)
Adopting the following notations:
a
I'= ——Vi(2@

%Ez(i) + M [A%(3) + bu(s)]
(35)

Hi((i), Mg, 0)

1]

calculation of the gradient Vi () is carried out in
the following two steps.




1. Aiy1 is computed for : = 0,1,..., N — 1 from

N =ML A0) —e(i)e(8), Ay = 0. (36)
This implies a backward run on the error-
sequence &(1);

2 H, is calculated for k = 0,...,N—1as

t'?ﬂ

0

—Hk —- —e(i}ic(9)+

0 .
N s AO)() + a6

where 2 A(f), 2b(6) and Zc(6) are deter-
miried analytically.
The gradient M is finally found as:

V() _ 3~ aH (2(k), Aes1, 6). (38)
69 Eﬂ 89 k k413
Appendix B

The analytical expression of the information matrix
(14) as stated in proposition 3.2 is elaborated using
the results of the dynamic programming formula-
tion algorithm as described in appendix A. Nota-
tions used are adopted from appendix A and the
argument parameter 6 is left out for brevity.

First an explicit expression is derived for Al
which follows from (9) in a straightforward way:
2n—| )
S e(2n - i)cAInI-
i=1
where [ = 1,...,2n — 1 and A7, = 0.

In the elaborat:on of expression (38) the following
experimental conditions are taken into account:

1. u(k)is a pulse-signal with amplitude 1: u(0) =
1 and u(k) = 0 for k = Dsan o 2008

A1pfor k=1,...,2n;

N o=- (39)

2. a(k)=
3. e(k) is a standard white noise, i.e. Ee(i)e(j) =
1ifi=jand 0ifisj.
Substitution of the conditions 1, 2 and the explicit
(38] gives expression (19):

expression for A/

a%ﬂ n—-2
= — nes b
T AU -1 T
2n—1 ; ab
: 2n=1—i ~
- ; e(2n —i)cA 36,
-%fg(k)a A
k=1 69
2n-2 2n—k-1
- z €(2n —i)cA? T+ g‘;A"‘ 'b.

k=1
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As stated in subsection 3.3 calculation of the in-
formation matrix (14) is carried out element-wise;
multiplying % an and ’?‘;f‘“ expressed as (19) and
taking the cxpecta.tmn, where all terms containing
Ee(i)e(j) for i # 7 become 0 as a consequence of
condition 3, the (r,s)-element of (14) is found as

the sum of the following expressions:

el b b
2n—i—-1 2n—i—1
2 ( T ) ( A )

=1

, Ob dc
A2n-v2 2n-2
(c 69r) (39 A b) (41)

zgz (m*-z ;; ) ( ;"; Ak "'b) (42)
( A= ?g;) (g; A2 25) (43)
)y o
(;;Az" *b) (g;sA% %) (45)
2;?;‘12 ( 59; A 25) (g; AF 25) (46)

2n—2 2n—k-1

X3

k=l =1

db
A2n 1—1
o Ik

(CAZR—A:A:' lgAAk lb) [47)

2n-22n-k-1
., Ob
n—-1-1
2 X (CA ae,.)x

k=1
., 0A
A?n—knr-l_ k=1
(c BQ,A b) (48)

(2 ) i)
-2 (2n=2 / g. ¥
=1 {pgl;-: (63r ) g

(cA"“ 'ng‘ ’b)} (50)
z:z; (%A?"—ﬂb) (cAzn—k egiAk 'b) (51)
2n—2 [ 2n-2
=5 Gy

(cAP—* ‘g;lA* ‘b)} (52)

2n—22n-2 [ 2n—1-maz(k,l) S 5 A 4
TS T 3 (A T b)

k=1 'I=1 =1




X (cAz"_f““%A"'b) }(53)

To gain a better insight in these expressions the
summations are reordered and rewritten in a matrix
notation as follows.

Expression (40) and the summations of (41) and
(42), (43) and (44), (45) and (46) give the first 4
terms of (24), using the notational conventions for
the extended controllability and extended observ-
ability matrix. Expression (47) can be written as:

2n-2 6b

AT (A )k+| T .
kz::i ae. [(
c
cA 24
ATyt | et % == A*1p. (54)
cAZn'—k—i‘

Similar expressions are found for (48), the summa-
tion of expressions (49) and (50) and the summa-
tion of expressions (51) and (52). This results in
terms 5 up to 8 in (24).

Expression (53) requires more elaboration. The
two summation signs are rewritten as follows:

Splitting up (53) according to this summation ex-
pression gives the following expression:

aA\"
k-1
(6&) :

Ak—!
yniy il Ak I+1
[CJ Af'cf' . (A )2:1-& 2 I] E %
Az::—l—i!
A
ge A Ib} +
2n—2 2n-2

T
b (ATYE (3‘4) X
k=1 I=k+1 06,

)
(AT)Zn-k—?.c'I‘] %

[(AT)I—!:CT (A'r)t—u\c;r' o

c

A

. SA A-1p 4 (55)
cA?r:—.‘—-z

Using the notational conventions (20), (21), (22)
and (23) this results in the last two terms of (24).
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Application of estimated error bounds in robust con-
trol of a wind energy conversion system
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Abstract. In this paper a robust controller will be designed to reduce fatigue load in
variable speed wind energy conversion systems. The applied design methodology consist
of the following steps, which will be discussed in this paper. First a model has been
estimated using measured data. Based on this nominal model a stable controller has
been designed such that the rotor shaft torque variations, quantifying fatigue loading,
are minimized. Using a bound on the model error, estimated on the measured data, it is
shown that the controller will at least robustly stabilize the real system. Experimental
verification of these results showed the same amount of reduction of rotor shaft torque

variations for the experimental closed loop, as for the designed closed loop.

Keywords.
tem.

1 Introduction

In times of growing environmental concern the need
for clean and renewable energy sources is increas-
ing. Wind power plants, being a renewable energy
source, have become an acceptable alternative for
electrical energy generation by fossile or nuclear
power plants. In order to make wind turbine sys-
tems economically more attractive they have to be
designed and controlled in a proper way. The design
of well controlled flexible wind turbines seems to
be attractive for commercial applications because
lighter and less costly construction elements can
be used, a more efficient energy conversion can be
achieved, and a longer lifetime can be obtained.

In this paper we will focus on the role of control
system design. The purpose of a control system is
to increase the efficiency of energy conversion and
reduce the dynamic loading, implying a longer life
time.

On a simulation level, a number of results on con-

S

estimated error bounds, control design & implementation, wind turbine sys-

trol design for variable speed wind turbines are
obtained. In Steinbuch (1989) a controller has
been designed to reduce the rotor shaft torque for
a rigid wind turbine, using the Linear Quadratic
Output Feedback method (LQOFB, see Maikila
and Toivonen (1987)). Robustness of the controller
against model uncertainties (sensor noise, actua-
tor dynamics, non-linearities) is checked using a
complex p analysis (see Doyle (1982,1984)). In
Bongers and Dijkstra (1988,1992) and Bongers and
Schrama (1991) LQ design methods, both LQG as
well as LQOFB, are applied to flexible wind tur-
bines. In that work the controller requirements are
increased from not only rotor shaft torque reduc-
tion but also blade load reduction. At the applica-
tion side little has been done. Although in Bongers
el al. (1989) experimental results are presented,
rotor shaft torque reduction is not obtained, due to
limitations in the control computer.

In this paper we will design a robust controller for
a laboratory set-up of a wind turbine system (the
IRFLET fest-rig, see Engelen et al. (1993)) op-

erating in full load conditions. The main control




objective is the reduction of rotor shaft torque vari-
ations, even under the existence of model uncer-
tainties. In the design of mechanical components a
load factor, larger than one, multiplying the design
stresses is used fo determine the admissible strain
of the component. For the transmission, the load
factor is mainly determined by the damping of the
mechanical resonance frequencies. Therefore it is
natural to apply an H,, control design method, by
reasoning that reduction of the Hy-norm will in-
crease the damping of the resonance frequencies.
Thereby a smaller load factor allows a reduction in
the construction costs.

In order to design a high performance controller a
model of the complete test-rig is necessary. In this
model all dynamics of the test-rig in the frequency
range of interest have to be described quite accu-
rately. To this end a model of the test-rig will be
derived out of the measured data using standard
system identification techniques.

Furthermore, besides a nominal model, an upper
bound on the modelling error for the estimated
transfer function is needed. This error bound will
be obtained from the measured data.

Facing the task to estimate an upper bound on
the modelling error arising in the IRFLET test-rig
models we find ourselves posing the following ques-
tion: is it possible to specify a realistic bound on
the model uncertainty in a situation where under-
modelling seems inevitable, and where colored noise
with an unknown distribution acts on the system ?
The classical identification literature, see e.g. the
accounts given by Ljung (1987), Soderstrom
and Stoica (1989), Brillinger (1981) and Priestley
(1981), does not provide a satisfactory answer to
the above question. These methods fall short in
two important aspects:

Bias. In parametric identification a bias error due
to undermodelling seems inevitable: the sys-
tem will in general be far too complex to be
modelled exactly. In spectral analysis a bias
error is introduced due to windowing. More-
over, the best results are obtained in system
identification when the bias and variance er-
rors are approximately of the same size. This
implies that the bias error can be considerable,
and is as important as the variance contribu-
tion to the identification error. However, the
available expressions for the bias error are im-
plicit or require knowledge of the true system.
In addition, these expressions are asymptotic
in the number of data points.
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Variance. Reliable confidence intervals for the
variance error of the estimated fransfer func-
tion cannot be provided. The variance expres-
sions are asymptotic in both the number of
data points, as well as the model order or the
inverse window width. Furthermore, they con-
tain the unknown true spectrum of the noise.

Regarding the recent literature on model uncer-
tainty estimation, see the Special Issue on System
[dentification for Robust Control Design (1992) of
the IEEE Transactions on Automatic Control, we
have the following remarks. We are of the opinion
that in an amazingly large number of cases the noise
really is "noisy”. That is, the noise can and should
be modelled as a stochastic process. The unknown-
but-bounded noise approach, which has recently be-
come popular in model uncertainty estimation, will,
as a rule, introduce considerable conservatism when
the noise is random. On the other hand, the bias
due to undermodelling is by definition a determin-
istic quantity. The combination of stochastic (aver-
aging) noise with a deterministic (worst case) bias
due to undermodelling does however not appear in
the literature on model uncertainty estimation, al-
though this setting is quite common in the classi-
cal identification literature, see e.g. Ljung (1987)
and Brillinger (1981). We will apply a model un-
certainty estimation procedure which does employ
this combination, and which solves the problems
outlined above for the classical identification tech-
niques. A further discussion on these issues, and a
detailed description of the proposed model uncer-
tainty estimation techniques, can be found in (De
Vries and Van den Hof (1993), De Vries (1994)).

This paper is organized as follows: The nomiaal
modeling procedure will be described in Section 2.
Secondly, based upon this nominal model, a con-
troller has to be designed such that the controlled
test-rig satisfies the control objectives. As argued
before an H., control design method will be used,
this procedure is discussed in Section 3. The data
used to determine the control design model is also
used to estimate additive model error bounds. This
procedure is outlined in Section 4. After the ver-
ification that the controller will stabilize the true
system, the designed controller will be used on the
test-rig. In Section 5 the experimental results are
given and compared with the nominal model pre-
dictions.
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Fig. 1: IRFLET test-rig (Engelen et al. (1993))

2 Wind Energy Conversion System

The layout of the wind energy conversion system
under consideration is given in Fig. 1. The con-
trolled DC-machine on the left part of Fig. 1 emu-
lates the rotor part of a small wind turbine. This
enables experimentations under user definable con-
ditions.

The test-rig (Fig. 1) is schematically represented in
Fig. 2, including the input and output variables:

sl s
Vo —
2 i J"'5,1'
Gt |
Rt Wsm
Fig. 22 Wind turbine
with!
vw V,  wind velocity [m/s)
alf a, delay angle rectifier [rad]
Mas M,, rotor shaft torque [Nm]
Ide I,  direct current [ A]
omg Wy, generator speed [rpm]

In order to derive a model of this test-rig, stan-
dard system identification techniques (see Ljung
and Soderstrom (1983), Ljung (1987)) are used on
measured data to calculate parametric models.

Experimental results

Experiments are carried out in one operating con-
dition of the test-rig, where the following operating

"The symbols in the first column refer to the labels used
in the figures.
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condition has been chosen:

wind velocity 12 m/s
field excitation voltage 22 Vv
delay angle rectifier 0.47 rad

In Figs. (3,4,5) the transfer functions of the indi-
vidual channels are shown. For each channel the
empirical transfer function estimate (ETFE, see
Ljung (1987)) and the estimated parametric model
is given. A discussion on how the parametric mod-

els have been obtained can be found in Bongers
(1993) and Bongers et al. (1993).
102 vw > Mas 108 alf—:Mas_
2 '_E 10 3
i $ '
102
§ I, !
2 q00f
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i i
103 107 100 10010t qpe 10 1ee 101 16
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Fig. 3: Transfer functions rotor shaft torque, (—)
parametric model, (- -) ETFE

[t can be seen in the figures (3,4,5) that there exists
a close resemblance between the parametric models
and the ETFE. This holds for both the amplitude

as well as the phase.
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3 Control design

In this section the applied control design method,
together with the specific choices to be made, will
be discussed. First let us rephrase the control ob-
jectives (in sequence of priority):

e small rotor shaft torque variations, even under
considerable measurement noise.

o the feedback system has to be robust against
uncertainties in the wind turbine model.

e the controller itself has to be stable, to make
the implementation of the controller accept-
able for future industrial users.

e small control effort.

e constant amount of produced electrical energy,
in order to prevent off-design loads.

The control objectives are conflicting, for exam-
ple it is impossible to independently achieve com-
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plete load reduction and constant energy produc-
tion. However it is possible to achieve load re-
duction at the expense of small variations in the
amount of energy production. This means that
in the control design a trade-off between the dif-
ferent control objectives is necessary. In order to
achieve such a trade-off all design specifications are
weighted in one single criterion. A different trade-
off will be achieved by changing the specific weights.
Consider for a moment the feedback configuration

of Fig. 6:

)u'.)

(5

Fig. 6: Feedback configuration

with

P wind turbine w
' controller z

exogenous inputs =V,
controlled outputs = M,
u  control inputs =

|

y measured outputs —( fy )
wb'ﬂl

The scheme of Fig. 6 can be written as:

Z s !) w
Y u
P Py
- with Pl
Py Py |’ i
having the appropriate dimensions. The closed loop
transfer function from w to z will be written as a

lower linear fractional transformation on the plant
and controller:

where P is partitioned as {

Fi(P,C) = Py + PiaC (I — PC)™" Py

The H, optimal control problem is to find a
controller C', such that F(P,C) is stable and
|Fi(P,C)||, is minimal. Note that ||F(P,C)].,
is a scalar criterion representing the trade-off of all
control specifications.

In Doyle et al. (1989) and Glover and Doyle (1988)
it is shown that two Riccati equations need to be
solved, in order to calculate the central controller.
The order of the controller equals the order of
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Fig. 7: Weighted wind turbine model

the plant, including the order of possible weight-
ing functions.

In order to design a controller for the test-rig, such
that the control objectives are satisfied, we need to
translate the control objectives to properties that
can be used in the He-controller design. For this
purpose the wind turbine model is extended with
weightings, exogenous inputs and controlled out-
puts to obtain a standard plant suited for the con-
trol design, see Fig. 7.

All weighting functions W in Fig. T are designed in
such a way that the controllers will satisfy the ob-
jectives. For example the transfer function w; — 2
is the weighted rotor shaft torque due to filtered
wind velocity disturbances. A more detailed dis-
cussion on the design of the weighting functions can
be found in Bongers (1993,1993a).

Based on this extended model, a controller has
been calculated using MATLAB MUSYN tool-
box (Balas et al. (1991)), the controller has 37
states. The process computer constrains the max-
imum allowable size of the controller to 25 states.
Using a standard Hankel norm reduction technique
(see Glover (1984)) a 25'" order controller has been
obtained.

As an example of the designed closed loop, in Fig. 8
the rotor shaft torque reduction is given. It can be
seen that the first control objective has been met.

4 Error bound Estimation

The aim of this section is to find a realistic reflection
of the uncertainty about the model — as a descrip-
tion of the system — which is present in the data,
considering the situation where the available data
about the system is incomplete and corrupt. That
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Fig. 8: Transfer functions, (—) open loop, (- -)

designed closed loop

is, we want to find a description of the set of all
models which are not highly unlikely to have gen-
erated the measured data. More specifically, we will
provide error bounds which hold with a guaranteed
level of probability (probability bounded from be-
low). We give a short, conceptual, discussion of a
procedure to estimate realistic confidence intervals
for the true transfer function from the measured
data; details can be found in De Vries (1994). This
procedure subsequently will be used to specify con-
fidence intervals for the IRFLET test-rig.

Outline of the approach

Because of the decisive role played by the assump-
tions and prior information in model uncertainty
estimation, we will start by listing the ones that we
use. Next, we will shortly discuss the main points
of the estimation procedure.

It is assumed that the plant, and the measurement
data that is obtained from this plant, allow a de-
scription

y(t) = Po(q)u(t) + v(t) (1)




with y(t) the output signal, u(f) a bounded de-
terministic input signal, v(¢) an additive noise, ¢
the shift operator, and P, the proper transfer func-
tion of the system, being scalar, finite-dimensional,
time-invariant and exponentially stable. 1In the
closed loop configuration of Fig. 6 only one con-
trol input is used. Therefore error bounds can be
calculated on the scalar subsystems. The transfer
function can be written as

Po(z) =) po(k)z"*

k=0

(2)

with p,(k) the impulse response of the plant. Using
the system based orthonormal basis functions intro-
duced by Heuberger (1991) and Heuberger et al.
(1993) the transfer function can also be written as

Py(2) =D+ LVi(2)

k=0

(3)

where L € R'™™ k = 0,1,---,00, are the or-
thonormal expansion coefficients, and where the
sequence of rational functions Vi(z) € R™(z),
k = 0,1,--,00, forms an orthonormal basis for
the set H, of all stable rational functions that are
squared integrable on the unit circle. Employing
system based orthonormal basis functions has the
important advantage that prior knowledge, which
may be inaccurate or approximate (e.g. resulting
from identification or physical modelling), can be
taken into account, so that a good low order ap-
prozimation of the system can be obtained.

The output disturbance v(t) is represented as

v(t) = H,(q)e(t) (4)

where e(t) is a sequence of independent identically
distributed random variables, of which all moments
exist, with zero mean values and variance o2, and
where I, is a stable proper transfer function.

We assume to have available the following a prior
information on the past input signal and the sys-
tem.

Assumption 4.1 We have as a priori information
that

i. there erists a finite and known @ € IR, such
that |u(t)| < @? for allt <0

ii, there exist finite and known M,p € IR, with
p > 1, such that |p,(k)| < Mp~*, for all k €
IN.

iii. there erist finite and known K € R ™ g €
R, with n < 1, such that |Li| < Kn¥, for all
k e IN.
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The a priori information M, p, K and 5 need not
be tight in first instance. These priors can be im-
proved using the measurement data, see De Vries
(1994). The a priori information on @” is given by
the actuator constraints.

The procedure which we will apply to bound the
model uncertainty can be summarized as follows.
A periodic input signal is applied to the system, so
that a repetition of experiments is obtained. This
offers the possibility to mutually compare the in-
formation arising from the different data segments,
and consequently to formulate the stafistics of the
estimated transfer function. A stochastic setting
for the noise will be used, whereas the errors due
to undermodelling and unknown initial conditions
will be considered to be deterministic.

More specifically, let the input signal contain r peri-
ods of length N,. A frequency domain least squares
estimate of a finite number of orthonormal expan-
sion coefficients L, is made over each period of the
input signal

N{J

- W
g: = argmin —
i = argt NOE

where P,(e#“¥) is the ETFE (see Ljung (1987))
over the ¢-th data segment, and

x 2
Pei) — g )p|” i=1,-,r

8, = [D Lo Tgeals
dle) = [L V5(e™) - Vis(e™)]
2wk

W = k=0,1,---,N,—1

This results in a set of transfer function estimates
Pi(e’“) of the system P,(e’*)
P‘-(ejw) = rﬁ(e-f“’)ég

=

Taking the average now gives the final estimate
s .
Pl == Pi(ev
() =50 Pife)

The variance of this final estimate can be esti-
mated directly from the set of estimates P:(e’¥),
t =1, e

.
> [P(e™) = Pife™)P

72 Pled?)) = :
FHP(E) = 5
Due to the periodicity of the input signal the es-
timates P;(e?) are, asymptotically in the period
length of the input signal, independent and identi-
cally normally distributed, which enables us to for-
mulate a confidence interval for P,(e’*). In formu-
lating this confidence interval, we adopt the follow-
ing notation

Fa(n,d) = {Plz < a], = € F(n,d)}




meaning that F,(n,d) is the probability that a ran-
dom variable z, which is distributed as F'(n,d), is
smaller than a, where F(n,d) denotes the F distri-
bution with n degrees of freedom in the numerator
and d degrees of freedom in the denominator.

Theorem 4.2 (De Vries (1994)) Let the inpul
signal be periodic with period N,, and let r > 1.
Then, asymplotically in N,, there holds for all
w € [0,2m)

[Re{P,(e’*) — P(e)}|

< Bi(w) + a7 (62(Re{P(e"*)}) + Ba(w))
with probability > Fu(1,7—1)

Lo

where the bias terms Bj(w) and Ba(w) can be
bounded with hard error bounds using the prior in-
formation of Assumption 4.1.

The error bound of Theorem 4.2 consist of a hard
bound on the bias contributions (due to undermod-
elling and unknown initial conditions), and a con-
fidence interval for the error due to the noise. In
establishing the confidence interval due account is
taken of the fact that the variance is estimated.
Similarly, a confidence interval for the imaginary
part of the error can be established. The probabil-
ity that P,(e’) is contained in the rectangle in the
complex plane which is obtained by combining the
two confidence intervals, now can be bounded from
below using the inequality

Pley < en, 22 < 0
>1—(1=Pley <)) — (1 = Plzz < a3))

The important features of the procedure are the
following:

o Reliable and tight error bounds can be ob-
tained, while using only minor a priori infor-
mation.

o Separate error bounds for the different sources
of uncertainty (undermodelling, noise, un-
known initial conditions) are obtained. This
is important when the error bound is too large
for the intended use of the model (robust con-
trol design). The error sources that provide
a major contribution to the error bound can
be isolated, so that it is known how to effec-
tively improve the error bound. An explicit
bias-variance trade-off can be made, e.g. by
selecting the model order.

o A control relevant model can be used to gen-
erate the orthonormal basis functions, so that
the model with respect to which the confidence
interval is specified is suited for robust control

design.
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e Although the results are asymptotic in the pe-
riod length of the input signal, simulations dis-
play an excellent nonasymptotic performance.

Estimated bounds

In figure 9 and 10 the Nyquist plots of the esti-
mated parametric models, using system based or-
thonormal basis functions, and the estimated error
bounds (at a.99 % confidence level) are given for
the transfer functions from a, to I, and a, to w,,,
respectively.

Nyquist plot with Uncertainty Bounds

Fig. 9: Nyquist plot of the estimated transfer func-
tion alf -> idc, and the error bound.

Nyquist plot with Uncertainty Bounds

Fig. 10: Nyquist plot of the estimated trans-
fer function alf -> omg, and the error
bound.

Robust stability

The above estimated error bounds can be repre-
sented by an additive uncertainty model A, around
the estimated nominal wind turbine model P:

P&=P+Au




where A, < |P, — P| from the previous sections.
Neglecting the external signals w,z of Fig. 6 and
adding the uncertainty description, the feedback
configuration is drawn in Fig. 11.

Aq

et

Fig. 11: Additive uncertainty representation

According to the small gain theorem (see Zames
(1963)), the closed loop of Fig. 11 is stable, pro-
vided: :

o((I-CP)'CA,) <1
Where & denotes the maximum singular value. For
the estimated (SIMO) model of the wind turbine,
the plant can be decomposed as

(5)-1&]=

the controller as

Ly
ay;=[C C?](d)
wo

while the uncertainty is

s [ Arde }

Aumy

The transfer function (I —C P)~'C can be rewritten
as

[(1=CP)"'Cy (1-CP)'Cy ]

The closed loop remains stable provided:
5({1 = C-‘P}-ICIALIc) ‘+‘7(“ i C"PJ_ICE‘Aomg) <l

Note that in this step conservativeness can be in-
troduced. The estimated error bound, as measure
of the perturbation, contains no phase information.
Therefore the following stability condition need to
be checked (without adding conservativeness to the
previous step):

a ((l — CP)"CI) a(Agac)
+3((1=CP)'Cy)5(Bomg) <1 (5)

The graphical representation of the above stability
condition is given in Fig. 12. Both Py, Py, 6(Agmg).
7(Ayp4.) are taken from Figs. (9,10).
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Fig. 12: Stability result w.r.t. additive uncertainty
(—) &= CP)1C1 A1)+ ((1 = CP)1C2Amy)
(--) a((1-CP)"'Cy)a(Arae)
(-) ((1= CP)'C5) #(Aomg)

Qi

It can be seen in Fig. 12 that the stability condition
of (5) is fulfilled. Therefore, given the estimated
error bounds, the real system will be stabilized by
the controller.

Based on this result, we proceed by the actual im-
plementation of the controller.

5 Controller implementation

In this section the predicted results of Section 3 will
be verified with measurements on the test-rig. For
this purpose the controller has been implemented
and used to control the fest-rig. The same wind
velocity signal as in Section 2 has been applied.
In Fig. 13 the experimentally determined closed
loop transfer functions, using an ETFE, and the
predicted closed loop transfer functions are given.
Compared to Fig. 3 or Fig. 8 it can be seen that
the maximum amplitude of rotor shaft torque vari-
ations are reduced by a factor of 10 in the frequesicy
domain. For the resonance frequency of the rotor
shaft, interpreted as a second order system, the con-
troller increases the damping from less than 0.05 to
more than 0.5. The figure also shows that the other
signals: DC-current and generator speed are behav-
ing well, the input used remains small.

It can be seen in Fig. 13 that the design model
shows some spikes, which are absent in the ETFE.
The reason for this is the following: in each of
the individual estimated transfer functions the fre-
quency of the resonance is calculated. This fre-
quency differs slightly between the transfer func-
tions. However physically it is one phenomenon.
The designed controller acts on the resonance fre-
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Fig. 13: Amplitude part of closed loop transfer
functions, (—) designed, (--) ETFE

quency in the V,, — M,, transfer function, which
differs from the other transfer functions. Therefore
the spikes occur in the designed transfer functions.

6 Conclusions

It has been shown that it is possible to calculate a
model of the test-rig based on measured data.
Based on this model a stable robust controller has
been designed such that the controlled model has
small rotor shaft torque variations, without exces-
sive variations in DC-current, generator speed or
delay angle.

Additionally, uncertainty bounds are calculated
with a 99% confidence interval using the measured
data. Before implementing the controller, the un-
certainty bounds are used to verify that the con-
troller will stabilize the system. When the con-
troller is applied to the test-rig it has been shown
that the rotor shaft torque variations are reduced
by a factor of 10, This shows that sufficient ro-
bustness is obtained by the controller, and that the
actual performance is satisfactory.
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Abstract.

In this paper first results of controller design and implementation applied to

the UNIWEX wind turbine system are presented. Identification experiments have been
designed such that all relevant dynamics are excited. Experiments on a real life wind
turbine have been carried out. Using prediction error methods experimental models with
Box-Jenkins structure have been identified. Experimental models have been compared
to physical models of the test turbine. Based on normalized coprime factorization of one
experimental model a controller has been designed such that it robustly stabilizes all
models. The implemented controller has been evaluated by means of measurements on
the UNIWEX wind turbine and has proven to satisfy the design objective.

Keywords.

1 Introduction

The last few years wind power plants have become
an acceptable alternative for electrical energy gen-
eration by fossile or nuclear power plants. In times
of growing environmental conscience a clean and
renewable energy source deserves more attention.

[n order to make wind turbine systems more cost-
effective they have to be designed and controlled in
a proper way. The design of well controlled flexi-
ble wind turbines seems to be attractive for com-
mercial applications because lighter and less costly
construction elements can be used.

It is straightforward that an accurate mathemat-
ical dynamic model of the wind turbine system is
necessary to achieve a wind turbine design that
meets these high requirements. Mathematical mod-
els (such as presented Bongers et al. (1990) ) need
to be validated in practice. First results associat-
ed with this approach can be found in Bongers and
van Baars (1991) .

'This research was supported by the CEC under grant
JOUR-0110 and the Netherlands agency for energy and en-
vironment under grant 40.35-001.10
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Robust control, system identification, wind power plants

In this paper emphasis lies on control of the wind
turbine system. To be able to design an adequate
control system for existing wind turbines also a
dynamical model is needed. This model may be
obtained both by mathematical and experimental
modelling. This paper is involved with the exper-
imental approach. Obviously experimental mod-
elling requires real life measurement data.

The procedure to be exploited is as follows : I-
dentification experiments are designed such that all
relevant dynamics are excited. Experiments on a
real life wind turbine are caried out. Using pre-
diction error methods, experimental models with
Box-Jenkins structure are identified. Experimental
models are compared to the physical model of the
test turbine. Based on normalized coprime factor-
ization of one experimental model a controller will
be designed such that it robustly stabilizes all mod-
els. The implemented controller will be evaluated
by means of measurements on the wind turbine.

The power of this procedure lies in the fact that
in principle it is applicable to any wind turbine sys-
tem, and normal operation can proceed during the
identification experiment. As such the application




of this procedure shows no serious practical draw-
backs and can be realized within a relatively short
time span.

A wind energy conversion system usually con-
sists of a roter, which absorbs the energy present in
the wind, a transmission to gear up the rotation-
al speed of the shaft, an electrical conversion sys-
tem which feeds the electrical power into the public
grid, and a control system to control the overall be-
haviour. The expected dynamic behaviour consists
of a mix of aecrodynamic phenomena, structural dy-
namics due to flexibilities in different construction
elements, and dynamics related to the electrical en-
ergy conversion. The amount of energy absorbed by
the rotor depends on the local wind speed as felt
by the rotor blades and the angle of attack. Wind
shear, wake of the wind turbine and the velocity of
the blades determine the local wind velocity.

The operational region of a wind turbine system
can be devided into two parts: partial load where
the wind speed is below rated wind speed and power
output is maximized, full load where wind speed
is above rated but below cut-out wind speed, and
power has to be limited to a fixed value. In addition
to this power control the aim is also to minimize
fatigue loads. In combination with the expected
wind regime, this characteristic of operation and
control objectives determines the design criteria for
a complete wind turbine system.

An interesting feature of wind energy conversion
is that a stochastic process, namely the wind speed,
determines the point of operation. The wind speed
simply determines the available amount of energy
that can be converted into electrical power. The
wind can only be measured in a few points but is not
known over the complete rotor plane, and even if it
were known it cannot be controlled. In other word-
s the system is driven by noise, which makes wind
turbine systems essentially different from most oth-
er systems.

As a consequence it may not be expected that
operational conditions of the identification experi-
ment and controller evaluation are the same. This
motivates the need for robust controller design.

The procedure mentioned above is applied to the
UNIWEX test facility situated in Stuttgart, Ger-
many. The UNIWEX set up offers the possibili-
ty to emulate a wide range of (flexible) wind tur-
bine configurations without any hardware changes
(Miiller (1989)) . This means, for example, that the
rotor, which consists of hinged blades with comput-
er controlled hydraulics, can be operated in such a
way that it behaves like a rotor with flexible or rigid
blades just by changes at software level. This set-
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up saves the time and effort needed to mount and
dismount different rotor systems.

The layout of the paper is as follows: Section 2 in-
troduces a modular structured mathematical mod-
el which will be used to describe the UNIWEX
turbine. Section 3 discusses the experimental mod-
elling. Section 4 and Section 5 present the main
contribution of this paper. Section 4 describes a
controller design method and some robustness as-
pects. The controller synthesis and actual design
are presented. Finally some implementation as-
pects are mentioned and results of controller ex-
periments are presented in Section 5. The paper is
closed with conclusions in Section 6.

2 Wind turbine system description

An overview of the UNIWEX ftest facility is given
in Fig. 1.

u
ey 11 1 -

Fig. 1: Overview of UNIWEX turbine

In order to describe the wind turbine dynan.ic-
s and their interactions a mathematical model has
been developed (Bongers et al. (1990)) . The com-
plete model consists of a description of each of the
wind turbine parts and their mutual connections by
interaction variables. Using this structure it is easy
to describe different wind turbine configurations by
connecting different submodels that are available
(Bongers et al. (1990) and Bongers et al. (1989)) .

We will apply this approach to describe the dy-
namic behaviour of the UNIWEX turbine in par-
ticular. The mathematical model of this wind tur-
bine consists of the interconnection of submodels
having the following characteristics (more details
can be found in Bongers and van Baars (1991) and




Miiller (1989) : The rotor has two blades, with-
out flexibility in the joints. Only pitch angle move-
ments were allowed by the controller. In the aero-
dynamical model each blade is divided into 10 sec-
tions, each section has its own corde, mass, twist
and profile. Based on the local wind speed and an-
gle of attack of each section the aerodynamic loads
are calculated.
The tower is considered to be rigid.
The transmission is described by the first torsional
mode of the rotor shaft.
The hydraulic generator will be described by a
spring characteristic.

The complete wind turbine system has the fol-
lowing input and output signals.
input signals: As mentioned in Section 1 the wind
speed V,, as felt by the rotor is considered to be a
stochastic input. The counter torque M, generated
by the hydraulic generator can be adjusted by ma-
nipulating the valve position x, which is the first
deterministic input. The blade pitch angle @ can
be seen as the second deterministic input because
it directly influences the angle of attack.
output signals: In order to gain insight in the dy-
namic behaviour of the wind turbine the following
outputs are measured: the rotor shaft speed w,, the
rotor shaft torque M, and blade root bending mo-
ments which form an indication for the structural

loads.

3 Experimental modelling

To estimate experimental models we apply system
identification methods of the well known prediction
error method type (Ljung (1987)) . In previous s-
tudies on rigid wind turbines around one operating
point (van Baars (1991), Bongers and van Baars
(1991), Bongers et al. (1989)) this technique has
shown to be successful. The application of a Box-
Jenkins model structure is necessary to obtain satis-
factory results. This necessity can be supported by
reasoning that the influence of wind on the turbine
behaviour is likely to be significantly different from
the influence of deterministic inputs on the system.
Therefore it can only be covered by a model struc-
ture with independently parametrized deterministic
and stochastic part.

We are interested in modelling the transfer func-
tion from blade pitch angle to rotor speed and rotor
shaft torque, because this transfer function offers
the most direct opportunity to design and imple-
ment a controller.

During the experiments the blade pitch angle
of both blades runs through a pseudo random se-
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quence of stepwise changes between 3 and 7 degrees.
An example of such a data set is given in Fig. 2. In

&0 identification ex;

iment

0 20 40 60 # 100 120 40 160 180 2w
t [sec]
8
6_
B
o)
g * 1
‘B
o
0 0 40 60 ® 100 120 140 160 180 200
t [sec]
Fig. 2: experimental data identification experi-

ment: lower part showing applied input
pitch angle, upper part showing rotor speed
output response

this figure it can be seen that there is no clear im-
pact on the rotor speed due to the applied pitch
steps. Therefore it is possible to apply this proce-
dure without aborting normal operation because no
rigorous excursions from the initial point of opera-
tion are introduced.

The measured signals are sampled with a sam-
pling frequency of 50 Hz which implies that dynam-
ics up to 25 Hz can be identified. This should be
enough to cover the relevant dynamics particularly
because this transfer function covers aerodynamic
features which are, by nature, rather slow. Because
of the ever present fluctuations in wind speed one
can not expect the conditions to be constant for a
long period of time. Therefore experiments have to
be inspected in order to select intervals of relative
constant operational conditions.

3.1 Identification results

After the data selection the experimental trans-
fer functions from blade pitch angle to rotor shaft
speed, rotor shaft torque and flap moment are esti-
mated. Different choices of model orders have been
investigated, both for the deterministic part and
the stochastic part.

For deterministic orders larger than 3 and s-
tochastic orders larger than 8 both the loss function
(sum of squared residuals) and unit step responses
show no significant improvement, they only differ
slightly. Hence we may assume that all significan-
t linear relations in the data are explained by the




model. Residual analysis supported this conclusion.

As shown in the upper part of Fig. 3, the identi-
fication technique succeeded in finding a clear cut
deterministic relation between pitch angle and ro-
tor speed. The solid line represents the contribution
of the deterministic part of the estimated model to
the data. The dashed line presents the measured
rotor speed which is result of both deterministic
and stochastic phenomena. This is rather surpris-
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102 identification result frequency domam
100 k .
M 100 !
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frequency [Hz]

Fig. 3: Identification result time (upper part: de-
terministic contribution vs. data) and fre-
quency (lower part: summed deterministic
and stochastic part vs data spectrum) do-
main

ing because the identification data set did not show
an evident correlation between pitch steps and ro-
tor speed response. With a simple interpretation of
aerodynamic behaviour in mind the deterministic
response to the pitch steps seems realistic.

The accuracy of the stochastic part of the identi-
fied models cannot be judged properly in time do-
main. In order to investigate the validity of the
stochastic part we apply the following procedure
in the frequency domain. First an autospectrum
of the rotor speed signal has been produced. Next
the frequency response of the deterministic (G/(6)u)
and stochastic part (H(0)e) of the estimated model
have been calculated. For the model to be reliable
the sum of these frequency domain functions should
correspond to the spectrum of the output signal (y).
The lower part of Fig. 3 shows the result. Clearly
there is no perfect match but no essential dynam-
ic behaviour is missing in the experimental model
so we can be quite confident about the accuracy of
both the deterministic and stochastic part of the
model.
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4 Controller design and implemen-
tation

In this section the controller design and implemen-
tation will be discussed. A more thorough descrip-
tion of the applied control design method can be
found in Bongers (fo appear) and Bongers (1992) .
The control design objective pursued in this pa-
per is to maintain the rotor speed as constant
as possible by means of blade pitch movements.
Therefore the controller has to achieve a good
servo-behaviour. In general the operational condi-
tions during the identification experiments and the
controller experiments will not be the same. There-
fore the wind turbine system will be approximated
with a set of linear models representing the vari-
ations in operational conditions under which the
controller should be able to achieve satisfactory be-
haviour. These models are the models estimated
with the procedure described in Section 3 and the
available theoretical model. The controller must
not only achieve the desired servo-behaviour for the
design model but also for the set of linear models.
Even deviations of the designed controller have to
be allowed in order to implement the controller suc-
cessfully. For UNIWEX the main source of devia-
tions in the controller is the limitations introduced
by integer arithmetics of the control computer.
In this paper we will employ a controller design
method based on coprime factorizations of the wind
turbine model in order to achieve the desired objec-
tives. First we need some definitions that will be
used in the sequel.

Only finite dimensional linear time-invariant sys-
tems are considered. Let P be a multi-input multi-
output transfer function.

Definition 4.1 (factorizations) (Vidyasagar et
al. (1982))

A system P has a right (left) fractional represen-
tation if there exist stable N, M(N,M) such
that:

> = NM~ (= M'N)

The pair M, N(M, N) is right (left) coprime frac-
tional representation (ref or Icf ) if it is a right
(left) fractional representation and there exist
stable U, V(U,V) such that:

UN+VM=1I (NU+MV=1I)
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Fig. 4: Feedback configuration
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The pair M,N(M,N) is called normalized right
(left) coprime fractional representation (nrcf or
nlcf ) if it is a coprime fractional representation
and:

M*M +N*N =1 (MM*+ NN*=1)
with M* = M7 (—s).

According to Meyer (1988) the graph Hankel singu-

lar values o ( P) are defined as the Hankel singular
M

values of the nrcf of P off( N )

Definition 4.2 (Gap distance measure) (El-

Sakkary (1985) and Zames and El-Sakkary (1980))

Suppose P, Pa are two plants with nrcf (N, M),
(Na, Ma) respectively.

The gap metric distance 6( P, Pa) between the two
plant is defined as

§(P,Ps) = max{6(P, Pa),é(Pa,P)}
> s e M| | Ma
6P, Fa) = q.:;lafbfe [ N ] { Na ]Q”m

The feedback system considered in the sequel is
given in Fig. 4, where P is the wind turbine and
C' the controller. The closed loop transfer function
T(P,C) representing the mapping between (ey, e3)
and (u,y) is:

5 , /i -1

.I(P,C»)z[P](f+C'P) 7 /] SN
The (2,2)-element of the T'(P,C') transfer function
is closely related to the servo-behaviour, the (1,1)-
element is the sensitivity function. Therefore the
function T'(P, C) represents all closed loop proper-
ties to be considered.

In the next theorem a sufficient condition for sta-

bility of the closed loop is given when uncertainties
in both plant and controller are present.
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Theorem 4.3 (robustness aspects) (Georgiou
and Smith (1990)) )

Suppose T(P,C) is stable, and thalt both plan-
t and controller are perturbed to Pa,Ca respective-
ly. Then T'(Pa,Ca) is stable if

1

§(P, Pa) +6(C,Ca) < 1oy
(B Fa) +6(C,Ca) < rrE i

To obtain as much robustness as possible the con-
troller C' should induce the smallest ||T(P,C)||..
For the implementation in existing hardware the
order of the controller should also be as low as pos-
sible.

Theorem 4.4 (control synthesis) (Bongers
and Bosgra (1990))

For a given plant P, of ordern with distinct o%(P,)
there exists a controller C, of order r, with r < n,
such that T(P,,C,) is stable and the closed loop
transfer function satisfies:

T(Pa,Co)ll, < 1 _
V1= (0F + Th 0002

Actual design

On three independent data sets experimental mod-
els have been calculated. These models are de-
noted by s644, s668, s669, selected from the
original measurement file with corresponding ex-
periment number. The theoretical model is also
available as sT. In Fig. 5 the amplitude part of
the frequency response of all these models is giv-
en. It can be seen that around the cross-over fre-
quency these models are quite different. First a
nominal model needs to be chosen. According to
Theorem 4.3 we choose as nominal model, that
model which generates the smallest gap (Defini-
tion 4.2) with the other models within the mod-
el set. The model P :=s669 is selected to be
the nominal model. The gaps between this ncm-
inal model and the other models in the model
set are: 6(8669,5644) = 0.5512, §(s669,5668) =
0.3309, 6(s669,sT) = 0.219. This means that if the
controller induces ||T'(P,C)|, < 1.81, all models
are stabilized if there are no controller perturba-
tions.

The design bandwidth of the servo-loop will be cho-
sen to be 1Hz. If a bandwidth larger than 0.5 Hz
is achieved, the designed controller will be an im-
provement compared to an existing controller, A
PI pre-compensator is used to obtain a zero track-
ing error at low frequencies. This pre-compensator
can be incorporated in the nominal model to ac-
t as a weighting function (McFarlane and Glover
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Fig. 5: Frequency response of the models in the
set. (—) s644, (- -) $668, (...) 5669,
(-.-) ST horizontal solid line denotes 0dB
(1989)).  Using the controller synthesis of The-

orem 4.4 a first order controller for the weighted
plant has been designed. The final controller '
is composed of the controller of Theorem 4.4 and
the pre-compensator. For the controller C' and the
nominal plant P, ||T(P,C)|,, = 1.5462 and gener-
ates a robustness margin of 0.6467 which is large
enough to incorporate the given perturbations. In
Fig. 6 the amplitude plot of the frequency response
of the design model with Pl-pre-compensator is
given, together with the obtained sensitivity and
complementary sensitivity. It can be seen that the
achieved bandwidth for the design model is about
0.7 Hz, hence the nominal controller design objec-
tive is satisfied. The designed controller is imple-
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Fig, 6: Frequency response closed loop system, (—
) weighted 669, (- -) Complementary Sen-
sitivity, (...) Sensitivity

mented in assembler code on a PDP 11 process
computer. The available software constrains the
implemented controller (CIMPL) coefficients to be
integers. This implies that we have to approximate
our designed controller and have to allow controller
perturbations. The approximation consists of a se-
quence of binary shifts and converting floating point
numbers to integers. The number of shifts is quite
ad hoc.

In Fig. 7 the amplitude plot of the frequency re-
sponse of the theoretical controller, approximated
controller and the additive error between the two
controllers is given. It can be seen that the devia-
tions are mainly at low frequencies, where they are
of approximately the same amplitude as the con-
troller. If the open loop response of both controllers
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Fig. 7: Frequency response controller. (—) C, (-

-) CimPL, (...) C-CIMPL

are compared, the implemented one can easily be
rejected, see Fig. 7. The gap between the two con-
trollers is §(C,CiMPL) = 0.008, which is surprising-
ly small. According to the robustness test of Theo-
rem 4.3: max (6(P, P;)) = 0.5512 + §(C,CIMPL) =
0.008 is smaller than the allowed robustness margin
of 0.6467, hence the whole model set is stabilized
by CiMmPL, therefore this controller will be imple-
mented.

5 Results

After implementation a number of experiments was
performed with the implemented controller. Dur-
ing these experiments the wind speed was smaller
than during the identification experiments, which
implies that the operational conditions are likely
to differ significantly. As a consequence a certain
performance degradation compared to the designed
closed loop performance can be expected.




The first experiment shows the difference be-
tween Lhe controlled and uncontrolled wind turbine
behaviour. In Fig. 8 a clear difference in behaviour
can be seen before and after t=39s, the moment the
controller is switched on. As the figure shows the
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[Fig. 8:

rotor speed is controlled within a tight bound. The
applied control action (the pitching of the blades)
is not excessive and stays in an acceptable range.
Comparing the behaviour of the rotor speed at con-
stant pitch (no control) and active pitch (control) it
is clear that the rotational speed variations due to
variations of wind speed can be reduced sufficiently
by this controller.

The second controller experiment investigates
the tracking performance. Fig. 9 shows that the
controlled system responds accurately to stepwise
changes in the desired rotor speed. Considering the
Jarge rotor inertia the time span to reach the new
set point (2 a 3 sec) is quite an improvement com-
pared to previously applied controllers. The time
constant of the controlled wind turbine is approxi-
mately .7 s, which implies that the designed band-
width (1 Hz) has not been achieved. Nevertheless
there is great confidence that the designed band-
width will be achieved if the controller will be e-
valuated under operational conditions closer to the
oprational conditions the controller has been de-
signed for. The control actions stay within a rea-
sonable area.

A remark has to be made concerning a large step-
wise increase of desired rotor speed. This may im-
ply that the pitch angle is steered towards nega-
tive values. This makes no sense from aerodynamic
point of view and can lead to unstable behaviour.

73

19 controller experunent

rolor speed [rpm]

160 165 170 175 180 185 190

tume [s]
12 ‘ . ;
=3 10
: (s Ay | oy
iy
=
§ ¢
3
B 4R
2 ; :
160 165 170 175 180 185 150
tme [s]
Fig. 9: servo behaviour: set point changes of de-

sired rotor speed at { = 165,184 (upper
part) and pitch angle controller action (low-

er part)

In order to avoid this the pitch angle must be re-
stricted to nonegative values. The consequence of
this is that such rigourous setpoint changes can not
be followed as fast as desired.

The final controller experiment is the most dras-
tic one. It evaluates the performance of the con-
troller under stepwise changes in the absorbed
torque by the generator system. This can be seen
as abrupt disturbances that influence the system
in addition to the fluctuating wind speed. In fac-
t there are two kinds of disturbances acting on
the system: the wind stochastics which are always
present and the deterministic induced variations of
the counter torque. As shown in Fig. 10, the con-
troller acts satisfactory patricularly for these dras-
tic disturbances (the torque is doubled). The speed
remains in a range of approximately .5 rpm.

6 Conclusions

A procedure consisting of identification, robust con-
troller design and implementation has been succes-
fully applied to a real life wind turbine system.

An advantage of this approach is that normal op-
eration needs not fo be aborted during the iden-
tification experiments, and in principle it can be
applied to almost any wind turbine system.

Since one can not expect the operational con-
ditions during identification and controller experi-
ments to be the same more than one experimental
model has to be estimated.

A robust controller has been designed which sta-
bilizes this set of all these experimental models. Be-
cause of implementation restrictions the designed
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Fig. 10: response to disturbances : controlled ro-
tor speed (upper part) and changes of ab-
sorbed rotor torque (lower part)

controller needs to be approximated and therefore
controller perturbations are taken into account.

Implementation of the controller showed satisfac-
tory behaviour with respect to the design objective
both for setpoint changes and stepwise disturbances
of absorbed torque.

Further research will focus on application of this
procedure to more flexible wind turbine configura-
tions.
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Control of a wind turbine using several linear robust
controllers

Ilya Kraan and Peter M.M. Bongers

Mechanical Engineering Systems and Control Group
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Abstract. A way to control a wind turbine over a wide range of wind velocities is
presented in this paper. Because of the strong non-linearity of a wind turbine along the
wind velocity range several linear robust controllers are applied. Each linear controller
has been designed to meet the specifications of a controlled wind turbine for the part
of the wind velocity range a controller belongs to. Dependent on the wind velocity the
appropriate controller is scheduled. Special attention is given to avoiding the harmful
transients which arise after switching between controllers. This has been done by con-
ditioning the linear controllers which are not in the control loop. Together with some
additional specific actions a control has been synthesized which satisfies the specifications
of a controlled wind turbine well for the whole range of wind velocities.

Keywords. variable speedswind turbines, robust control, controllers switching, condi-
tioning technique

1 Introduction implies lower costs of the produced energy.
It is evident that each of these points more or less

The most important underlying motivation of re- independently reduce the costs of the generated
search for large scale energy production using wind electrical energy.
energy conversion systems is the aim to reduce the The optimal energy production for wind turbines
economic costs of produced electrical energy. is schematically represented in Fig. 1. Below cut-
One single, cost effective, wind energy conversion
system will then have: Sl i e
(i) low construction costs. Low construc- B e >

tion costs can be achieved by using lighter, i [

and thereby more flexible, components. Al- 8

lowing more flexibility in the components also L

introduces the possibility of reducing internal s

stresses. However the dynamics of each com- E

ponent should be designed more carefully oth- 3

erwise the internal stresses are magnified. e I To
(ii) long lifetime. Fatigue loads have to be kept Bai W VARG DAL

within acceptable margins in order to guaran-

tee a long lifetime and thereby achieve an eco- Fig. 1: Power curve

nomic attractive system.
(iii) efficient energy conversion. Higher energy in wind velocity Viy—in the maximum amount of

production out of the same amount of wind generated energy is less than the energy dissipation
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due to [riction, consequently the turbine will not be
operated below the cut-in wind velocity. Starting
from Viun to the "rated” wind velocity V,,iq the
turbine is operating in partial load. In this area
the produced electrical energy can be optimized by
controlling the rotor speed proportional to the wind
velocity (optimal tip-speed ratio). It is noted that
the presented power curve is only achievable if the
wind turbine can operate with a variable rotational
speed. Above the rated wind velocity the turbine
is operating under full load conditions where the
generated power has to maintain a constant level.
This can be achieved by controlling the produced
cutrent. Above cut-out wind velocity Vi, the
turbine is taken out of operation, to prevent ex-
tremely high loads. The cut-out wind velocity is
determined in a trade-off between produced energy
and the loads on the construction.

The non-linear behavior of a wind turbine is explic-
itly shown in Fig. 2, where for a number of mean
wind velocities linear model where calculated.

10° g T Trr T

alfa -> lde

? . 102 104 e ”:" 102
freq [rad/s]
Fig. 2: Amplitude part frequency response for dif-

ferent wind velocities

In order to achieve an optimal low cost wind tur-
bine, first these properties are translated to objec-
tives that can be used to synthesize controllers:

The first property (i) is assumed to be given. This
implies that the control synthesis is not part of the
wind turbine design, but has to modify the behav-
ior of already designed turbines. Property (ii) can
be achieved if the controller is able to increase the
damping of flexible wind turbine structure over the
whole operating envelope. In order to achieve ob-
jective (iii) by a controller, the control objective can
be formulated in partial load as a tracking problem
on the unmeasurable wind velocity; in full load this
will change to a disturbance attenuation problem.
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Around one operating condition it has been shown
by (Steinbuch (1989), Bongers and Dijkstra (1992))
that linear controllers can be applied to achieve
objectives (ii) and (iii), experimental results can
be found in (Baars and Bongers (1992), Bongers
(1993)) .
Due to the variation in system behavior, with re-
spect to the mean wind velocity, one linear con-
troller is not able to achieve objectives (ii) and (iii)
over the whole operating envelope.
In this paper, several linear controllers will be used
to control the non-linear wind turbine model. For
a number of appropriate wind velocities linear con-
troller will be designed. Switching between the con-
trollers will cause the appropriate controller to be
active at the corresponding wind velocity. Accord-
ing to (Campo el al(1989), Hanus et al(1987))
a conditioning technique will be used to obtain
a smooth transfer between the active and inac-
tive controllers. This technique has been success-
fully applied in aerospace engineering by Hyde and
Glover (1990) , whereas more details about wind
turbine application can be found in Kraan (1992) .
The layout of this paper is as follows: In Section 2
the wind turbine system to be controlled is de-
scribed. Backgrounds and an outline of the control
design procedure are given in Section 3. The con-
trol design will be covered in Section 4. Simulation
results of the controlled wind turbine will be shown
in Section 5. We will end with some conclusions
and recommendations in Section 6.

2 Description of the system

The experimental set-up is the IRFLET test-rig
(Engelen et al.(1993)) , which is located at the
Netherlands Energy Research Foundation, Pet-
ten, The Netherlands.
mechanical part of a wind turbine can be stud-
ied under predefined conditions.

schematically represented in Fig. 3.
The test-rig consists of the following components:

- a controlled DC-motor which physically rep-
resents the torque effects created by the wind
velocity acting on the rotor, In contrast to real
wind turbine systems, the wind velocity can be
specified.

- a flexible shalt, and a transmission for increas-
ing the angular speed of this shaft up to a value
which is appropriate for the generator;

- asynchronous generator with rectifier, DC-link
and invertor which enables variable speed op-

In this set-up the electro-

The test-rig is

eration independently of the grid frequency.




ROTOR SIMULATOR

brushless synchronous machine

INTEGRAL CONTROL SYSTEM

Fig. 3: IRFLET test-rig (Engelen et al.(1993))

The torque generated by the DC-motor represents a
wind turbine configuration with a rigid tower and a
rigid rotor. This permits us to direct our attention
to the electro-mechanical part.

Controllable inputs are:

- the delay angle o, of the thyristors in the rec-
tifier, which has to be kept at a low constant
value when not participating in control actions;

- the field voltage Uy, of the generator.

Measurable outputs are:

- the direct current I, in the DC-link;

- the generator speed wyp,.

A non-linear model of this test-rig is available in
the DUWECS wind turbine simulation package
(Bongers (1993a)) .

3 Backgrounds and outline of the
control design method.

As argued, the aim is to control the wind turbine
over the whole operating envelope by a number of
linear controllers. Consequently two aspects in the
control design we can be recognized:

Design of multiple linear robust controllers: Each
linear controller has to satisfy the objectives (ii)
and (iii) for a part of the operating envelope. The
controlled wind turbine has to be robust with re-
spect to the non-linearities involved in this part.
The used design tools to achieve this will be eluci-
dated in Section 3.1.

Minimization of switching phenomena: When a
new linear controller has to substitute the one in the
loop, the states and outputs of this controller are
not “prepared” to the situation in the loop, which
can cause very disadvantageous effects on the sys-
tem. A conditioning technique used in this study to
prepare the “stand-by” controllers will be explained
in Section 3.2
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3.1 H.. controller design

Each linear robust controller will be designed us-
ing an H,., design method based on coprime factor
plant description (Bongers and Bosgra (1990), Mec-
Farlane and Glover (1989)) . Advantages of this
design method are:

- The nominal plant P and the perturbed plant
Pa are allowed to have a different number of
unstable poles.

- The possibility to trade-off the order of the
controller with robustness.

- Due to the existence of explicit solutions,
fast MATLAB-compatible algorithms exist
(Bongers (1993)) .

The following feedback configuration will be stud-
ied (Fig. 4), where the wind turbine model P is
controlled by a controller C. The closed loop trans-

14 1— U P Y

C —

Fig. 4: controller C' and wind turbine P in closed
loop.

fer function T'(P,C) mapping the external inputs
(r1,72) onto the outputs (u,y) is given by:

T(P,C) = [ H(Hcp)-‘ LE G S )

where det(I + CP) # 0. For bounded exogenous
inputs (ry, ), stability of the closed loop, i.e. the
controller C' internally stabilizes the plant P, is
guaranteed if and only if T (P, C) is stable.

The purpose of the designed controller is not only
to stabilize the nominal plant, but also to stabilize
plants which are slightly different. To this end an




uncertainty description is used. For a given con-
troller, the maximum allowable size of this uncer-
tainty description is provided by the following the-
orem.

Theorem 3.1 Let 6(P, Pa) be the distance between
two linear systems P and P as formulated in the
gap-metric (Georgiou (1988)) . Suppose the con-
troller C is designed for the nominal model P such
that the feedback system T(P,C) is stable. Then all
Px € {Pa | 6(P, Pa) < €} are stabilized if

1
IT(P.O)ll < -

Proof: (Georgiou and Smith (1990), Bongers and
Bosgra (1990)) o

The control problem concerns the minimization of
|Z7(P, C)||.., over stabilizing C, which implies max-
imizing robustness e¢. Because the four transfer
functions in T(P,C) represent robustness as well
as performance properties, the minimization estab-
lishes a certain performance also. Control design
specifications can be incorporated, using loop shap-
ing, by means of a pre-compensator W; and a post-
compensator W, (Fig. 5). Then we have the control
problem of minimizing ||T'(Pr,C)||., over stabiliz-
ing C', where Pr = W, PW;. The controller which
to be implemented becomes Cy = WiCW,.
For a more detailed treatment of influencing the
achieved performance and robustness in this way
can be found in McFarlane and Glover (1989) .

has

precom- ostcom-
pensator %ensator
“V] P H"’g

Fig. 5: manipulation of the control design by a pre-
compensator W, and a post-compensator
H”g.

3.2 Controller conditioning

Given a number of linear robust controllers, de-
signed according to the previous section, the next
step is to describe how the individual linear con-
trollers cooperate. If one would just switch from
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one confroller to the next controller, this next con-
troller can experience a large initial response. This
in turn can cause undesirable behavior of the con-
trolled system. In order to avoid these effects, the
next controller to be active in the control loop has
to be prepared for its task. In the sequel of this sec-
tion, the preparation of controllers using a condi-
tioning technique (Astrom and Wittenmark (1984),
Hanus and Kinneart (1989)) will be explained.

The controlled configuration with one controller
stand-by to control the wind turbine is given in
in line

Fig. 6.
controller|

L. K d
stand-by| 9
controller|

turbine

Fig. 6: Observer approach to controller condition-
ing

Let the state-space description of the stand-by con-
troller be given by

ul = Exx+ Dy + St -

By feeding back the difference between the outputs
of the in-line and the stand-by controller u; — u?,
using a gain K, the state equation can be written
as:

Tre1 = Az + By + Rry + K(ugp — uf)
Using (2) we have:
Zpp1 = (A=K E)ay+(B—KD)yp+(R— K S)ri+Kuy

The stand-by controller states converge to a steady-
state if the the eigenvalues of A— K E are inside the
unit disk. In this steady-state condition, the differ-
ence Uy — uf will be zero. Thereby, if the stand-
by controller is switched into the control loop, no
initial controller response will occur and a smooth
transition from one controller to the next controller
has been achieved.

The combination of the feed-back matrix K and
the stand-by controller can be considered as an ob-
server, which explains the name of the method, al-
though the aim is not estimation of the in-line con-
troller states, but conditioning the stand-by con-
troller states. Calculation of K can be done with




methods which are related to those for state estima-
tion. In this study the optimal K is calculated in
a way corresponding to Kalman filter design (An-
derson and Moore (1979)) , so we can specify a
fast convergence of the stand-by controller states
with low noise amplification. The maximum rate
of convergence depends on how fast the operating
conditions of the wind turbine are changing. If the
alowable time to condition the stand-by controller
not sufficient, the controller will show an initial re-
sponse when it is switched in-line with the wind
turbine.

This frame-work to condition controllers can also
be applied in the case:

- Two consecutive controller may have a differ-
ent structure or have a different state dimen-
sion. This will occur when the wind turbine
operation shifts from partial load to full load
and vice versa.

- An unstable controller, desired to enhance the
performance of the system can be conditioned
by a stable low performance controller.

The switching mechanism between conditioned con-
trollers is illustrated in the block-scheme of Fig. 7.
The vector v, consisting of variables which repre-

v switehing
logic

Fig. 7: blockscheme of the total control.

sent the non-linearity of the system (in this case
an estimation of the wind velocity), passes a block,
called ‘switching logic'. This non-linear block con-
tains several logic rules for determining the appro-
priate moment of linear controller transfer in de-
pendence of the values in v. An example of such
a rule is the hysteresis in the switching moment to
avold oscillations between linear controllers when
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v is noisy. Other rules for good controller transfer
are typically related to the wind turbine and will
be discussed in Section 4

4 Controller design

In this section the control design method of Sec-
tion 3 will be applied to the wind turbine model.
Assume that the wind turbine is bound to operate
on the optimal power curve of Fig. 1, then the op-
erating condition is completely determined by the
mean wind velocity. Consequently we can approxi-
mate the non-linear model, by a set of linear models
parametrized by the mean wind velocity. Since one
controller is not able to satisfy the desired objec-
tives for all wind velocities, we have to determine
the range of wind velocity such that one controller
is able to satisfy the objectives. For this purpose
the distance in gap-metric sense between the lin-
earized models is determined. In Fig. 8 these dis-
tances between the linear models in partial load,
corresponding with wind velocities between 3 and 9
m/s are represented. Fig. 9 represent the distances
in full load (wind velocity from 10 to 24 m/s). In
Fig. 8, for example, the dash-dotted line represents
the distance between the wind turbine model lin-
earized at 6 m/s mean wind velocity and the other
linear wind turbine models. It can be seen that the
distance between the two models will become larger
if the wind velocities around which the models are
linearized become larger.

0.7

eap ]

wind velecity corresponding models

Fig. 8: Distances between linear systems corre-
sponding to wind velocities in partial load

The determination of the wind velocity range for
which the linear controllers have to be robust have
to happen in an iterative way. This is caused by the
fact that the controller, to be designed, determines
the size of the allowable perturbations. The itera-




gap [-]

wind velocity corresponding models

Fig. 9: Distances between linear systems corre-
sponding to wind velocities in full load

tive character of the design procedure is illustrated
by the flow diagram of Fig. 10.

Essential trade-offs, concerning the number of con-
{rollers and the robustness of each controller, are:
much controllers cover non-linearity well, but
above a certain number of controllers, perfor-
mance won’t be improved remarkably. Besides,
enough robustness has to be left against (re-
maining) switching phenomena.

few controllers imply less switching, but non-
linearity is also covered less, so more robust-
ness may be necessary and performance could

getl worse.
For partial load, the following weighting functions
are used in the H,, control design:

- Integrator at the output wsy, for tracking of
the rotor speed setpoint to maintain optimal
tip-speed ratio.

- First order low pass filter at input Uy, and sec-
ond order high pass filter at input a, to trade-
off the control actions by field voltage and de-
lay angle in the right way: the field voltage for
low frequency control actions and the delay an-
gle for high frequency control actions.

- Static gains for all inputs and outputs, for ad-
justing bandwidth and robustness.

Based on observation of Fig. 8 and simulation re-
sults obtained with the controllers, it has been de-
cided that three linear controllers are sufficient in
the partial load range to cover non-linearity while
maintaining performance. Remarkably, just the
well performing controllers provide also a lot of ro-
bustness in the closed loop (e &~ 0.6). Three cor-
responding gains K; have been designed for condi-
tioning of the stand-by controllers. The Kalman
gain design is based on balanced state-space de-
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D e

Multiple linear controller design

Distances = robustness margins

Simulation, linear analysis.

Ready

Iig. 10: flow diagram of the control design proce-
dure. <© means an evaluation of design
criteria, 0 means a design step.

scriptions of the controllers, where the weighting
matrices are chosen such that a fast convergence
of stand-by controller states is achieved with a low
noise amplification. For each controller, the op-
erating range is depicted in Fig. 8 by the vertical
lines, whereas the minimum robustness margin is
depicted by the horizontal lines.

To meet full load control objectives, following
weighting functions were used:
- Integrators at output [, and input o, for
tracking the set points of both signals.
- Static gains for all inputs and outputs, for ad-
justing bandwidth and robustness.
According to Fig. 9 and simulation results one con-
troller for the less non-linear full load range pre-
serves high performance while providing enough ro-
bustness (e > 0.4, as required by Fig. 9).

The difference between the control aims, and hence
the controllers, corresponding to partial load and
full load is so substantial that switching between a
partial load controller and a full load controller will
cause very strong and harmful effects, in spite of
the controller conditioning,

To motivate the remaining control design steps, the
problem with switching between partial and full




load will be considered more detail. In fact the
dilference between partial load and full load con-
trol aims may imply sudden changes in reference
signals. For instance, let us consider a firm wind
gust starting at 6 m/s (stationary value of direct
current: 11 Ampere) and ending at any value be-
longing to the full load range ( > 9.7m/s, station-
ary value of direct current: 45 Ampere). Because
time is needed for acceleration of the rotating parts
and consequently for reaching the stationary values
of angular speed, direct current and torques, direct
current will be about only 20 Ampere when switch-
ing to full load controller and control aims. This
implies a sudden reference step of 45 — 20 = 25
Ampere. In combination with tight controllers and
a limited range of inputs this will be disastrous for
the wind turbine. Consequently, in addition to the
wind velocity, also the direct current is necessary to
determine the appropriate way of switching. In or-
der to obtain a smooth transition from partial load
to full load conditions some new conditions are built
in the controller. In case of switching from partial
to full load:

- The difference in actual direct current and ref-
erence direct current will pass a first order fil-
ter in order to prevent a large initial controller
response.

- First a highly robust (eg. low gain) controller
is switched in-line. This controller is designed
to achieve as much robustness as possible, at
the expense of performance deterioration.

- If the measured current is sufficiently close to
its setpoint value, a high performance con-
troller will be switched in-line. This controller
is designed to achieve performance, at the ex-
pense of less (but sufficient) robustness.

5 Simulation results of the con-
trolled system

To start with, the difference between switching of
controllers and switching between conditioned con-
trollers is shown in Fig. 11.

It is obvious from Fig. 11 switching between con-
ditioned controllers results in better system be-
havior in comparison with switching between non-
conditioned controllers. In this special case, where
the wind velocity is hardly changing and knowing
that it won’t, switching between controllers is not
very sensible. One could easily design one controller
for this operating envelope. The smooth transition
between the conditioned controllers also holds if the
wind velocity varies of a larger range.
Conditioning of the partial load controllers always
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happened well. Although the off-line controller con-
ditioning is robust, sometimes low frequency and
even static errors happened in case of conditioning
of full load controllers. By adding some integral ac-
tion to K and an extra rule in the logic block for
activating these dynamics only in case of full load
controller conditioning these errors disappeared.

Next the wind turbine behavior on a wind gust from
6 m /s to 14 m/s is shown in Fig. 12. The controlled
wind furbine behavior is in accordance with the ob-
jectives (ii) and (iii), as mentioned in Section 1.

6 Conclusions

It has been shown that satisfactory control of a
wind turbine over a wide range of wind velocities
can be obtained.

For covering the non-linearities well, the overall
control has been realized by switching between five
H., controllers, which have been appropriately con-
ditioned by means of an observer approach.

In case the wind velocity appeared to be insuffi-
cient to represent the wind turbine behavior for
appropriate switching; the value of the direct cur-
rent, besides some additional logic and dynamics
for smoothing the effects of controller transfer and
change of control aims, was needed to switch from
partial to full load control in a proper way.

Further research

The application of one schedule variable has not
been sufficient. Therefore the use of more schedule
variables, for example wind speed and direct cur-
rent, need to be investigated.

The proposed control scheme has shown good be-
havior on the simulation model, the next step has
to be applied on the experimental test-rig.
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Abstract.

For a linear time invariant system with several disturbance input and con-

trolled output channels defining several closed-loop transfer matrices, we show how fo
minimize the Hj-norm of one of these transfer matrices while keeping the Hj-norm or
the H.-norm of the others below certain levels. This may be interpreted as minimizing
the nominal performance of a system while keeping the H,-norm or H..-norm perfor-
mance bounded or the closed-loop system robustly stable. We show how sequences of
finite dimensional convex optimization problems allow to compute the optimal value, to
numerically detect the existence of a rational optimal controller, to determine its order,
and to design nearly optimal rational controllers of the same order.

Keywords.

Multiobjective H;/H,, control, H; optimal control, H optimal control,

minimal nominal performance, robust stabilization, constrained H, optimization.

Notation

Hr*4/HP*? denote the Banach/Hilbert spaces
of C?9%valued maps F which are analytic
in the open right half-plane H and satisfy
[Flle = supeuIF(s)ll < oof |IFllz :=
SUPso [0, trace(F(t 4 it)"F(t + ir)) dr < oo. For
any set S of functions defined on C, RS denotes the
real rational elements in S. For @ € RHZX7 let the
(infinite) nonincreasing sequence 01(Q) = 02(Q) =
-+ - denote the Hankel singular values (HSVs) of the
strictly proper part of () and recall o;(Q) > 0 if j
is not larger than the McMillan degree of @ and
a;(Q) = 0 for all other indices. Finally in any
normed space (X, |.||) we write z, —> z meaning
that z, converges exponentially to z, if there exist
constants K > 0 and p > 1 with ||z —z,|| < Kp™
for all indices v.

!This work is very much inspired by the helpful discus-
sions with Prof. P.P. Khargonekar whom I would like to
thank for his great hospitality during my half year visit of
the University of Michigan (USA) in 1992. In addition, I
would like to thank Dr. F. Allgower from the University
of Stuttgart (Germany) for stimulating conversations about
the motivations for Ha/H, control.

1 The Multiobjective Hy;/H,, Con-
trol Problem

Suppose that the underlying system admits the
state-space description

Az + Bu+ Gd,
Cz + Dd,
Hz + Fu + Fd,

with u as the control input, d as the disturbance
input, y as the measured output, and z as the con-
trolled output. A stabilizing controller C is any sys-
tem v = Kv + Ly, u = Mv + Ny which yields
cr( " +L?:,NC B}?f) C-. If d and z are
partitioned as d¥ = ((d°)T (d")T --- (d*)T) and
2T = ((297 (21T --- (2F)T), we denote by

T5(C) € By

the real rational transfer matrix from d? to z* which
is defined by the closed-loop system.
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Given k positive real numbers 41, ..., 7 and some
integer [ with 1 < [ < k, the aim of this paper is
to provide a solution technique for the optimization
problem

inf
T3 (C)l2Sy i =1edy 1T35(C)lleaSy i =l sy

%@l
(1)
where the infimum is taken over all stabilizing con-
trollers C. Just for notational simplicity we restrict
the attention to the case £k = 2 and [ = 1. As a
first step we use the Youla parameterization to rep-
resent the set of all achievable closed-loop transfer
matrices from d to z with the free @ € RH?*? as

R] * * Rg
* .SI| * - .5'-3 Q( Ra, 53 2"1 )
£ % T T

where R;, S;, T;, 7 = 1,2, 3, are easily determined
real rational stable matrices. As a slight abuse of
notation we call, from now on, the Youla parameter
() itself the controller. With this representation, (1)
hence reads (for some 3,7 > 0) as

| Ry + RaQRsll2 (2)

inf
(1914852 QSa[2<8, ||T1+T2QT3][co <

with the infimum taken over () € RHE".

The main control theoretic motivation for this prob-
lern has been extensively discussed recently (Bern-
stein and Haddad (1989), Rotea and Khargonekar
(1991), Khargonekar and Rotea (1991)) and may be
briefly summarized as follows: The Hj-norm of the
transfer matrix Zop(C) is viewed as a measure for
the (nominal) performance of the system. Instead
of just optimizing the performance, the controller
is also required to keep bounds on the Hj-norm of
T1,(C) and on the H.,-norm of 73,(C) satisfied. The
channel d° — z° constitutes the most important
performance objective, whereas the normbounds for
the channel d# — 2/ for j = 1,2 may be viewed as
performance constraints for less important channels
expressed in the H; or in the H,, norm and result-
ing e.g. in desired disturbance quenching. Most
importantly, however, the H_,-norm constraints for
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J = 2 can be interpreted as keeping the system
robustly stable: | 722(C)|l < 7
closed-loop system remains internally stable under

implies that the

the action of any uncertainty d* = Az? where A is
an arbitrary perturbation (of suitable dimension)
in the closed H_.-ball of radius strictly larger than
% (or even a certain finite-gain stable nonlinear-
ity). Hence (1) describes problems in which the
nominal H,-performance is optimized while keep
ing other performance objectives in the [;-norm
or H.-norm bounded and while keeping up robust
stability against a broad class of model uncertain-
ties. In this setup we clearly assume that any re-
quired or desired frequency dependent weights are
Most
importantly, our approach does not restrict the

incorporated into the system description.

choice or even the number of the input/output
channels in the system description and thus one
can use different weightings for performance and ro-
bustness requirements in different channels. Note
that (1) is formulated solely in terms of the diag-
onal blocks 7;;(C) whereas the antidiagonal blocks
T;(C), © # j, are neglected (which is no restriction
since bounds on such antidiagonal blocks can obvi-
ously be included by adding additional channels).
This problem formulation hence reflects structural
requirements in the design procedure as impossible
in standard H, or H,, theory.

Let us briefly summarize important developments
in multiobjective or mixed H,;/H., control prob-
lems. In the seminal paper by Bernstein and Had-
dad (1989), where this problem is actually intro-
duced, the authors replace the infimization of the
H;-norm by optimizing an upper bound of it -
a problem which has been called mized H,/H.,
control (Rotea and Khargonekar (1991a,b), Khar-
gonekar and Rotea (1991)). The definition of the
upper bound requires that the two disturbance in-
put channels are identical. Under these modifica-
tions and restrictions, the paper by Bernstein and
Haddad (1989) contains the derivation of neces-
sary conditions for the existence of eptimal con-
trollers of an (a priori) fixed size. Although the
solvability of the resulting system of highly cou-
pled algebraic Riccati equations has shown to be
sufficient for the existence of an optimal controller
(Yeh et. al. (1990)), to date no reliable numerical
method can handle this validation problem (Richter
(1987)). Without a priori restrictions on the con-
troller size, a major theoretical progress by Khar-
gonekar and Rotea (1991) reveals that suboptimal
controllers (arbitrarily close to the optimum) can
be chosen of the same order as the plant. Indeed
this is the basis for reformulating the inherently




infinite dimensional suboptimality problem to a fi-
nite dimensional conver validation problem, which
is amenable to reliable numerical algorithms. A
dual (Yeh. al. (1990)) situation with iden-
tical controlled output variables but possibly dif-
ferent disturbance inputs is discussed by Doyle et.
al. (1990) and Zhou et. al. (1990). Most interest-
ingly, this series of papers also provides system the-
oretic signal based motivations for mixed H,/H.-
design. We note that for the genuine multiobjective
H,/H -problem (not to speak of (1) with multi-
ple constraints), no helpful theoretical insights are
available: There are no a priori bounds on the con-
troller order (although simple cases might lead to
the conjecture that the double plant order is a good
candidate) neither does there exist any analytical
solution. An interesting paper by Rotea and Khar-
gonekar (1991b) provides sufficient conditions for
the existence of a solution in the state-feedback
case, again by considering an auxiliary problem
which is analytically solvable - as a side-result it
is shown that, although the whole state is avail-
able for control, the use of dynamic state-feedback
cannot generally be avoided. The numerical case
studies by Ridgely et. al. (1992) indicate as well
the need of using dynamic controllers whose orders
are larger than that of the plant. For alternative
formulations of mixed H,/H ., control problems we
refer to Steinbuch and Bosgra (1991a.b).

et.

Our approach is based on an approximation of a
subset of all controllers by finite dimensional sub-
spaces what has been generally proposed by Boyd
and Barrat (1991). Finally, Sznaier and Sideris
(1991) used approximations by truncated Laurent
series to compute the optimal value of a certain
multiobjective control problem (for a single input
single output system in discrete time) by solving a
sequence of finite dimensional convex optimization
problems - this work very much inspired the present
paper.

Roughly outlined, the purpose of this paper is
threefold. First we slightly generalize in Section 2
scalar n-width results for unit disk function spaces
as discussed by Pinkus (1985) to matrix-valued re-
sults for the open left half-plane and describe their
main implication for the real rational setting as re-
quired here: The possibility to approximate (com-
pact) sets by finite dimensional subspaces where
the error bound decreases ezponentially with the
dimension of the subspaces considered. In Sec-
tion 3 we briefly discuss how this allows to nu-
merically check whether the constraint set of (1)
is nonempty. In Section 4 we investigate how to
compute the optimal value for (1) by a sequence
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of finite dimensional convex optimization problems
(FCOPs). For the remaining considerations we as-
sume the existence of a rational optimal controller
and slightly restrict the system description to guar-
antee its uniqueness. We then describe a modifica-
tion which forces the minimizers of each resulting
FCOP to converge in the H.-norm to the opti-
mal controller. This allows to determine the or-
der, say n., of the optimal controller and a certain
compact set in which it is guaranteed to be con-
tained in. In a final step we introduce a further
sequence of FOCPs in which, as an essential and
to our knowledge new ingredient, the trace norm
of the Youla parameter is minimized. Given the
corresponding sequence of optima, the n.-th order
Hankel norm approximations of these optimal con-
trollers (which are all computable) then indeed con-
verge in the H.-norm to the optimal controller.
Hence this technique allows to numerically design
nearly optimal controllers (arbitrarily close to opti-
mality) whose orders equal n.. Finally, we point out
how this procedure leads to numerically verifiable
necessary and sufficient conditions for the existence
of a rational optimal controller.

In summary, we present an algorithm to compute
the optimal value, to detect the existence of a ratio-
nal optimal controller, to compute its order n., and
to design arbitrarily close to optimal controllers of
the same order n.. This could constitute the start-
ing point for numerical studies which may indicate
bounds on the order of optimal controllers and, as
our final hope, may further stimulate theoretical
work related to this nice and interesting problem.

2 Results
Theory

from Approximation

This section is devoted to transforming scalar n-
width results on disks to matrix versions on half
planes.

Let D be any open set in C and denote by HZ*Y(D)
those p x g-matrix valued functions which are an-
alytic and bounded in D. HPX(D) equipped
with the standard norm ||F|p = sup..p || F(2)]
is a Banach space. As usual we denote the ball
with radius R around 0 as BpHPX(D) := {I' €
HZX(D) | ||Fllp < R}.

For any f = (fi --+ f,) € H% (D) let us define the
complex subspace

8(f):==D_Aifi | AjeC™}  (3)
i=1

of H2*?(D) of dimension not greater than vpg. For




any open set £ C C containing D we are inter-
ested in the error if trying to uniformly approximate
BrH?*1(E) by subspaces of the form &(f) in the
HPX9(D)-norm. Indeed, a given F' € BrHEX(E)
can be approximated by some element in S(f) up
to the error infxes(s) | X — F||p. The worst pos-
sible error for F € BrHP*'(E), usually called the
deviation, is hence given as

inf [|X - F)

Xes(f)

sup D- (4)

FeBrHEM(E)

For specific choices of D and £, our aim is to find
a sequence fi, f2, fa,...such that (4) converges to
zero for v — oco. Since we are looking for an effi-
cient way of achieving this convergence and we even
require exponential decay, it is of considerable in-
terest to determine the least achievable deviation

defined by

inf sup inf ||X — F|p-

feHY (D) FEBRHEXI(E) XeS(f)

[n analogy to the scalar situation we call this quan-
tity the v-width of BpHPX(E) in HEX'(D).
Remark. Note that this is a slight abuse of no-
tation since we only consider particular subspaces
of the form (3) and not arbitrary subspaces of
dimension wpg with different basis functions for
each entry. The present version, however, consider-
ably simplifies the derivation of very explicit results
which suffice for our purposes.

It is most surprising and very satisfactory that the
v-width can be explicitly computed if specializing
D to the unit disk and £ to »D (r 2 1), the disk
with radius » around 0: The v-width is then given
by &. It is even possible to show that the functions
() = ,
deviation for this choice is best possible and equals
& Forr > 1, we infer that B HZX(rD) is compact
as a subset of H2X?(D). The scalar version of this
result (p = ¢ = 1) for R = 1 is proved by Pinkus
(1985) (Theorem 2.1 in Chapter VIII) and it is not
difficult to extend the proof to the matrix valued
setting for R # 1 as discussed here.

Using the linear fractional transformation

27% for g = 1, .0 v are optimal: The

1+ 2z
1 —

S =

s+ o

o(s) = with inverse ¥(z) = «

L3}

for some fixed a > 0, we can easily translate these
results from the open unit disk D to the half-plane
H = {s | Re(s) > 0} = ¢(D). It is natural to
choose F as H, := 1(rD) which is the complement
of the closed disk in the open left half-plane around
a]—l‘t_-‘!—r%z- with radius (.1"_2221‘
following result.

Then we arrive at the
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Theorem 1 Forr > 1 and R > 0, the v-width of
BrH?X(H,) in HEX? is given as

R
inf || X — Fllee = —-
Tq['

inf sup
TeHE peppurxah,) X €5(/)
] i ; :
Moreover, [*(s) := ((%ﬁ-)"‘ )j=1,..0 ts oplimal in
the sense of
; y i
sup inf ||X — Fle = =
=

FEBH!‘!K:‘”H’;-] XES[!‘}

Finally, if r > 1 then BprHP*(H,)
subset of HEX?.

is a compact

For our purposes the most relevant consequence for
an arbitrary F' in BpHZ*%(H,) may be formulated
as

inf 1K — Flfs < 2

Xes(f*) i
In our applications, however, F" is even real ratio-
It is not difficult to see that we can hence

(5)

nal.
restrict the attention to real linear combinations of
fiy.- ., fs and, nevertheless, obtain the same upper
bound on the approximation error. With the real
subspaces

w=1

Su == {Z j‘}@? I "‘J c RJ):"]‘}
3=0

for » = 1,2,... we obtain the following easily

proved corollary.

Corollary 2 For arbitrary real rational () in
BrHP*(H,) one gels
R

min [|X — Q| < .

(6)
Apart from this approximation property of S, the
discussion in this section should indicate a certain
efficiency if using these subspaces for reducing the
original multiobjective H,/H.., problem to a finite
dimensional one.

As a final observation we point out that each real
rational stable ) is contained in B HP*?(H, ) if r is
sufficiently close to 1 and R is chosen large enough.

3 Testing the Constraints

Let us define for any @ € HEX? the functions
a(Q) == ||B1 + ReQRsllz, B(Q) := || S1 + S2Q8a]|2,
and v(Q) := ||Th + T2QTs||«: Since a(.) and
B(.) should be finite we assume throughout that
Ri(c0) = 0, Si(c0) = 0 as well as Ry(o0) = 0 or
Rs(o0) = 0, S2(cc) = 0 or S3(co0) = 0. It is easy
to see that all maps satisfy a Lipschitz condition
with constants that are easily computed from the
underlying data matrices.




Lemma 3

For Q1,Qz € HZX one has |f(@1) — f(Q2)] <
Li|@Q1 — Qzllss for [ = a, B,y with the Lipschitz
constants L, = min{||Rz|2|| Ral|co, || R2l|ee || Rall2},
Ly = min{[SalalISslles ISellooliSollz}, Ly o=
172l oo || T3 oo -

This Lemma together with Corollary 2 lead to the
following conclusion: For any Q € RBrH!*(H,)
there exists a P € S, with
Pk : R o
[(P) S @) +Lympy f=aufy. (1)
For given # > 0 and v > 0 our aim is to decide

numerically whether there exists a real rational Q) €
HZX? with

BQ)< B and (Q) <. (8)

Although the constraints in (2) are nonstrict, our
approach requires the strict inequalities being ful-
filled for some controller - the constraint set should
have interior points.

If defining

inf (@),

Yo 1=
QERHE

v clearly has to satisfy v > .. Since this is just
the by now standard suboptimality validation prob-
lem in H.. theory, there exist (good) techniques to
check the inequality and to even design a real ra-
tional Fy with (/) < 7. As pointed out at the

end of Section 2, one can find Ry > 0, ro > 1 with
Py € Br,HEX(H,,). Let us fix Py, Ry and ro. We

conclude that, for large v, there exists a Q@ € S, °

with (@) < 7 - indeed this is guaranteed for

55 In(L,Fo) — In(y — 7(!’9)).
Y In(rg)
To determine the restrictions on f# if @ satisfies

(@) < 7, one has to solve the optimization prob-
lem

(9)

inf B(Q).
[QERHET": 4(Q) <y}
We reduce this problem to a sequence of FCOPs by
replacing the constraint set with {Q € §, : (Q) <
v}, a subset of the finite dimensional subspace S,.
This leads to

B(7) =

B(Q)- (10)

Aata)i= {QES.,!TEVEQKW}
For all large v (with a guarantee if v satisfies (9))
the optimal value of (10) is finite. Moreover, the
obvious properties 3, > f,4; = B. imply the con-
vergence of 3, to some (finite) value 8. > B.. It is
not. difficult to show that . coincides with £,.
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V=00

Theorem 4 3, > 3,4, — p..

Therefore one can compute a v. and, by solving a
sequence of FCOPs, a bounding function 3.(.) with
the following property: There exists a () € RHZ*1
with (8) if and only if

T<7 and B.(y) < B.

For certain fixed v and  with these properties it is
then possible to construct a P; € §, (for some large
v)with B(P;) < fand v(P;) < v and one easily de-
termines vy > 1, By > 0 with P, € Bp HEX(H,, ).

4 Detection and Approximation of
Optimal Controllers

In this section we first describe how to compute
the optimal value for the multiobjective Hy/H... -
problem considered. We proceed by showing how to
numerically detect the existence of a rational (small
order) optimal controller and how fo design approx-
imations which define nearly optimal controllers of
the same order as the optimal one. The proposal is
based on the following idea: Suppose there exists
an optimal controller which is, under certain stan-
dard properties of the plant, unique. We design
a sequence of convex optimization problems whose
minimizers converge to the optimal controller in the
Ho-norm. If the optimal controller has order n.,
a well-known estimation for Hankel singular values
(HSVs) implies that all the HSVs of these mini-
mizers with index greater than n. converge to zero.
This allows to detect the order of the optimal con-
troller. To construct an n.-th order approximation
of the optimal controller one is lead to find the best
Hankel norm approximant of each minimizer where
the H.-error is known to be bounded by the sum
of all HSVs with index greater than n.. The aim is
to achieve the convergence of this sum to zero such
that the constructed sequence of n.-th order con-
trollers indeed converges to the optimal controller.
The trick to enforce the convergence of the model
reduction error to zero is the main new observa-
tion in this paper: One has to minimize the trace
norm (the sum of all HSVs) of the controllers over
a suitably defined set of constraints.

Let us use again the functions o(.), 8(.), 7(.) from
Section 3. We assume that, for given v > 0 and
B > 0, we have found r;, Ry and a real rational
Py, € Bp, H?*(H,,) with B(P) < fand y(P) < 7.
The nonempty constraint set

Q:={Q e HY" | B(Q) < B, (@) <~} (1)




hence has interior points and is a closed subset

of HP*7. We now return to the multiobjective
Hy [ H -problem

o= anfialQ) 12

jnf a(Q) (12)

As earlier this is reduced to a sequence of FCOPs

by replacing @ with S, N @ such that we arrive at

inf _a(@).

QeS.NE

Rpr= (13)
As for Theorem 4 one easily proves that a, indeed
converges to . - this constitutes a procedure to
compute the optimal value of (12).

=—+00
Theorem 5 @, > @41 —F Q..

Remark. Just for numerical reasons we show that
we can replace (13) by

inf a(Q)

. (14)
{QES,: B(Q)<B, ¥RQ)<}

whose optimal values coincides with ¢,,. Note that
the strict constraint inequalities are numerically
easier to handle.

For ease of reference we recall for a slightly more
general situation that one can replace a convex con-
straint set by its interior without changing the op-
timal value.

Lemma 6 Let M be a conver subsel of the finite
dimensional subspace F of HPX?, and let the inte-
rior int(M) relative to F be nonempty. Then

Jnf a(Q) = a(Q)-

inf
Qeint(M)

Let us now assume that there exists a rational op-
timal controller for (12), i.e., a Q. € RHPX? with

a(Q.) = a., Q) < B, 7(Q.) = 7.

Define r, > 1, R. > 0, n., s. with

Q-]

Heo < Ry 1ia = otder of @y, 0= Y 05(Q.):
3=1
(15)
Without the knowledge of Q. we will discuss in the
sequel how to determine n. and some r., R, numer-
ically. Let us first guarantee the uniqueness of Q.
by assuming that

R,/ R3 have full normal column/row rank.

We summarize the general consequences of these
assumptions in the following lemma.
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Lemma 7 If M is a nonempty convex subsel of
HP2X9, there is at most one optimal controller for
the problem

inf a(Q). 16

Jnt a(@) (16)
If M is, in addition, either compact in HEX? or a
closed subsel of a finite dimensional subspace F of
HPX4, the infimum is attained and there exists a
unique optimal controller Q. In the latter case if
the interior int(M) relative to F is nonempty and
if Q, is an infimal sequence of

inf «a(Q) (17)
Qeiny(M)

then ||Qu — Qllec — 0.

We infer that. for each v with a, < oo, there exists
a unique @, attaining the optimum in (13). How-
ever, the optimality of @, for (13) does not assure
that Q, converges in the H.,-norm, not to speak of
convergence to Q..

We intend to redefine (13) in order fo guarantee
that the resulting optima actually converge to (..
The trick is to restrict the attention to the compact
subsets

B(r,R) := BRHE " (H,)

of HP*? for R > 0 and r > 1. Lemma 7 reveals that

(TR = inf

o(@)) =z a.
QenB(r,R) ( 2) -

(18)
is attained by a unique

Q.«(r,R) € B(r, R).
The reduction to a sequence of FCOPs leads to

(19)

inf

o B.r) =
o ) QeS,.n@nB(r,R)

a(Q) Z aur, R)

with a unique optimal
Qu(r,R) € B(r, R).
In the sequel we restrict the choice of (r, ) to

rm=>r>1and R> K. (20)

Then ||Pi||n, < R where we increased R to have
a strict inequality. Hence Py is admissible for (18)
which implies a.(r, B) < co. Moreover, one can
compute a bound wo(r, R) such that we have S, N
QN B(r,R) # 0 and thus a,(r,R) < oo for v >
vo(r, R).

Now we can not only show that, as earlier, (7, R)
converges to a.(r, R) but, as desired, Q.(r, R) in-
deed converges to Q.(r, ) in the [ -norm. There




is an additional and essential benefit of consider-
ing this modified problem. We know that the op-
timal (). is contained in B(r., R.) for some r. > 1
and R. > 0 but there is presently no way to de-
termine 7, or R, theoretically. For later purposes,
however, we require to know one such pair (r., R.).
Indeed, (18) or (19) actually allow to decide nu-
merically whether or not . is contained in B(r, R)
for the particular pair (r, R): Just look whether
a.(r, R) = a. equals o, or not.
Theorem 8 Forr > 1 and R > 0, a,(r,R) — ey
a.(r, R) and ||Q.(r, R) = Q.(r, R)||cc — 0. If the
optimal Q. is (:antrn'nc'd in B(r, R) then a.(r, R) =
m and Q.(r,R) = Q.. If Q. is not contained in
(r, R) Hu."n a.(r, R) > (e

Without knowing ()., this second procedure hence
allows to find (e.g. by bisection) and fix r. > 1 and
R. >0 asin (15).

(?-,]1) ) one hf}&. n”(?.‘! R,) I’r—-_c.;

H- — Qal|eo = 0.

Corollary 9 Fo
a. and ||Qu(r

Remark. Again, for numerical reasons it is advan-
tageous to replace (19) with

a(Q) (21)

inf
{QES: Q)< Q)< ||Q|ln, <R}

whose optimal value equals a,(r; R) (Lemma 6) and
thus still allows to determine (r., R.). Moreover, if
Q. € S, is £,-suboptimal for this problem (i.e. it
satisfies ,'3(6,},} < B, Q) < v, |Qullr. < R and
a(@,) < a,(r,R) + _,,) then the choice g, == 0
still implies [|Qy — Qu(rs B)|loo = 0.

For the multiobjective problem (12) no theoretical
bounds on the order of the optimal controller Q.
are known yet. Since the order of Q,(r., R.) grows
polynomially in » to infinity, it is strongly desirable
to find criteria which allow to determine the order
of @). out of the computable sequence Q) (r., H.).
Indeed, Corollary 9 leads to a numerically verifi-
able necessary condition for the existence of Q. of
order n.: The (n.+ 1)-st Hankel singular value of
@Qu(r., R.) converges to 0. This is obvious by the
following well-known estimate foer Hankel singular
values in terms of the H.,-norm.

Lemma 10 For strictly proper real rational P,Q €
HZX and all § = 1,2,... one has |o;(Q) —o;( P)| <
|Q = Pllce.

Theorem 11 Let n. be the order of the optimal
controller Q. and let @, be any sequence with
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Q. = Qullse == 0. Then n, is the smallest non-
negative integer k with or41(Qy) == 0. More-
over 0;(Q,) = 0;(Q.) forj = 1,... 0.

thus En:] ai(Q,) = e If Q, € 8, salisfies
Q. — Qulle — =50 then z}in.-i-l ai(Q.) =

— 0
and thus Y02, 0i(Q,) = s..

and

If applied to the particular sequence @, (.., K. ), this
result allows to numerically determine the order n.
of the optimal controller @)..

Although @, (r., R.) converges to (J. and the order
of @. is known, this seems not sufficient to deter-
mine a sequence of n,-th order controllers which
approach @. and could thus be used as small order
nearly optimal solutions of (12). Indeed, it is natu-
ral to design such a sequence by performing a n.-th
order model reduction on each @,(r., f.). By us-
ing Hankel norm approximation and adjusting the
direct feedthrough matrix, one can design in this
way an approximant P, of @, (r., B.) up to an H .-
norm error which is bounded by the (finite) sum of
the remaining HSVs (Glover (1984)), i.e.,

o0

P

J=ne+1

= ||Qu—Qu(7as R)|| oo we

“QIJ(?'—-R—) = Pu“rx. S

ai(Q.(r

With the abbreviation §,

infer from ||Qs — P, |loc < 6, + ||Qu(74, R.) — Pl
that
1Qs = Plle 6.+ D oi(Qu(ra, Ra)).  (22)

J=n«+1

Hence if Y322 ., 0;(Qu(re, R.)) =% 0 then P,
indeed constitutes a sequence of n.-th order con-
trollers which approach Q.. In general, however,
the convergence of the individual Hankel singular
values does not imply the convergence of their sum
since the order of @, (r., R.) and hence the number
of nonzero summands (potentially) increase with
v. However, if @,(r., R.) converged exponentially
to @., Lemma 11 would yield the exponential con-
vergence of this error bound to zero. Although it
seems not possible to prove the fast convergence of
Q.(r., R.), this idea points into the right direction.
Indeed, (2) and (15) reveal that there exists a (from
now on fixed) sequence @, € S, with

!? o
1Qull,, < Re and [|Qy = Qulle < —+. (23)
Since @), converges exponentially to ()., we infer
(Lemma 11)
> o5(Qu) =5 s (24)
=1




Our aim is to define a new sequence of FCOPs
whose optimizers 0, have the following two essen-
tial properties:

”Qu — Q*”‘c v_‘ []: {25)
Y a(Q) =30 (26)

Jj=ne+1

We try to achieve (26) by relating Q. to Q, and
hence we require (), being admissible for the prob-
lem to be defined. Since #(@Q,) and ¥(Q),) converge
to but may be larger than B and v, there is no
guarantee that (), is contained in Q. If we relax

Q) < [ to f(Q) < f+ [ with

foi= Lf% for f = a, 8,7,

(27)

we infer from (23) and Lemma 3 that @, indeed
satisfies f(Q,) < f + f,. This motivates to intro-
duce the open convex constraint set Q,, as all those
@ € H?*? which satisfy

a(Q) < owta,, BQ)< B+ 1Q) <y+

and

HQH”, S 1 {4

Then @, € Q, is one sequence in S, converging to
Q.. Literally as for Theorem 8 one shows that any
other sequence satisfying the constraints has this
property as well.

Lemma 12 If Q, € S, N Q, for all v, then ||Q,, -
Qullcc = 0.

Hence for any such sequence (), we get from Lemma
11 that

Y 0i(@) 25 s (28)
=1
Finally, the cost functional of the optimization
problem to be defined should allow to relate
Tenei1 (@) to 3532 14 05(Qy) in order to en-
force (26). Optimizing this sum, however, is not
feasible since it is not convex in Q. Instead, the
relation

S 0(0) <Y 0(@))

J=1 i=l
indeed guarantees (26) by (24) and (28). Hence we
are lead to use the trace norm ||Q||r := T:l oi(Q)
as the convexr cost functional. We end up with the
sequence of FCOPs

s,:= inf |@Q|T

Sy

o0 =]

(29)

where the trace norm of @ is minimized over an
open convex set in a finite dimensional space. This
leads us to the central result of this paper.

—oo 0 with €, —

Theorem 13 Suppose (12) admils the real ratio-
nal optimal controller Q.. Delermine o, (r., R.)
and n. numerically. For some error sequence

V=00

S~

0 let Q,, denote any controller in

S"’ N Q]’ H‘Tith ”Q”T < Sy + Ere I‘J‘N."T?
Q. — Qullee =50 and >~ 0,(Q.) =0
I=ne+1

(30)
If P, denotes an n.-th order Hankel norm approx-
imant of Q, with |Q — Pulle < 300,41 75 (Q0)
then |P, = Qull.e = 0. Hence o(P) = au,
Wmyles B(E:) = Bhant imp e v(E) < 9
that, for large v,
optimal solution of problem (12).

imply

), 18 a n.-th ovder approzimately

Let us summarize the steps required for a practi-
cal implementation of the algorithm without any a
priori knowledge. Most importantly, this discussion
results in numerically verifiable necessary and suf-
ficient conditions for the existence of the optimal
controller Q..

e Compute the optimal value o, of (13) and the
limit of e, for ¥ — oo which equals ..

e If a, is infinite for all » then STOP: The in-
tersection §, N Q is empty for all v.

e Choose (r, R). Compute e, (r, R) according to
(19) or (21) and its limit ew(r, i) for v — occ.
If a.(r,R) is larger than a., decrease r > |
and increase f2 > 0 (e.g. take the half of » and
double R) and repeat this step. If a.(r, ) >
a, holds for all » > 1 and R > 0 then STOP
since a rational (). does not exist.

e If a.(r, R) = ., determine the smallest integer
n. such that oy, 41(Q,(r, R)) == 0. If n. does
not exist then STOP since Q). does not exist.
Otherwise fix (r., R.) with » > . > 1 and
R. > R.

Y00

o Choose &, > 0 with &, — 0. Determine
@y which is admissible for (29) and satishes
1Qullt < su+ep. I 37, 11 0i(Qu) does not
converge to zero then STOP since @, does nol
exist.

¢ Otherwise compute P,; the n.-th order Hankel
norm approximant of ¢, as in Theorem 13.
It is possible to show that P, converges fo a
real rational stable matrix which is optimal for
(1). Hence we can conclude that (). exists and
that, a posteriori, P, converges to (). in the
H-norm.




One can think of several variations of this principal
procedure which are not discussed in detail. One
variant might be of some interest: If one wishes
to keep the poles of approximate solutions staying
away from the imaginary axis and to have the con-
trollers bounded, one may a priorily restrict the at-
tention to (18) for some parameters r, R which are
chosen by the designer. Then it is only required to
determine c.(r, ) and one can immediately pro-
ceed with (29) in order to detect the existence of
rational optimal controllers for this problem. This
considerably reduces the numerical complexity.

5 Reduced Order
Control

Multiobjective

Instead of letting the algorithm detect possible
small order optimal controllers we could as well try
to include an a priori constraint & on the controller
order and consider, with fixed g > 0, v > 0 the
problem

inf

{QERHET™: Q has order < k, A(Q)<0, 4(Q)<}

a(@). (31)

If, for any e > 0, it were possible to test whether

Q)< [ for f=a,p,7}

contains an element of order at most k and to con-
struct such a @ if existing, one could clearly de-
termine the optimal value of (31) by bisection and
design a suboptimal ¢ arbitrarily close to optimal-
ity. The following result shows how this validation
problem could be approached by a sequence of finite
dimensional optimization problems. The constraint
sets of these problems will turn out to be open and
convex. The cost function, however, is given by

Q:={Q € RHY}":

o0

Y (@)

i=k+1

1\(@) ==
and thus, in contrast to what has been done earlier,
not conver.

Theorem 14 Fiz o, 8,7 > 0 and some nonnega-
live integer k and define the sequence g, by

C—L Wy L el 1 !
QEIELHQ R(Q)

m

If there exists a Q € Q of order at most k then
£, —> 0. On the other hand, suppose e, — 0 and
choose an arbilrarily small e > 0. Then there exists
av withe, <e and a @ € §,N Q with T,(Q) < €.
A k-th order Hankel norm approzimant P of Q) with
|Q — Pllec < Ti(Q) then satisfies f(P) < f(Q) +
Lge for f = o, B,7.
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This may be viewed as a suboptimality approach
to optimization problems with reduced order con
trollers and constitutes an alternative to those tech-
niques in which the existence of an optimal con-
troller has to be assumed (Bernstein and Haddad
(1989)).
globally solve the nonconvex optimization problems
involved which once again exhibits the inherent dif-

However, it is presently unclear how to

ficulties in reduced order optimal control problems.
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Abstract.

This paper demonstrates the use of H,, and p-synthesis methods to develop

control laws for the longitudinal motion of an aircraft. The objective is to design a
controller that provides independent control of altitude and speed, while maintaining
stability and performance robustness throughout different flight conditions.

Keywords.
choice.

1 Introduction

A preliminary study towards the application of
robust controller synthesis techniques, such as
p—synthesis, for the design of an integrated
autopilot-autothrottle of the laboratory aircraft of
Delft University of Technology is presented. Follow-
ing on this study, the results developped by these
techniques are to be used in the very near future
in the fly-by-wire configured Cessna Citation II of
the Delft University of Technology and the Dutch
National Aerospace Laboratory (NLR). A two de-
gree of freedom controller as proposed by Kaminer
(1990) is shown in Fig. 1. The feedback loop con-
sists of a p-synthesis controller to comply with the
feedback requirements, while the feedforward loop
consists of an ideal command response model, re-
flecting the desired flying quality requirements.

The desired commands that can be generated from
the pilots inputs are actually the aircraft’s speed

*The authors would like to thank Isaac Kaminer, Paul
Lambrechts and the reviewers for their suggestions and crit-
ical comments. The real-complex p calculations have been
made possible thanks to John Doyle, Andy Packard and
Gary Balas. Further, we would like to thank the Dutch Na-
tional Aerospace Laboratory NLR for the financial support
of this research.
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H ., and p controller synthesis, uncertainty modelling and weighting function

Pilot rdant

Inputs Model

Elevator N Cutput
tient.onb fo errors
Airpla +

Throttle i

Feedback
Controller

Fig. 1: The two loop control structure.

and altitude. These modes can be engaged simulta-
neously, giving rise to a multivariable control prob-
lem. The actuators used are the aircraft elevator
and engine which have to provide coordinated com-
mands similar to the way a pilot would fly a pre-
scribed trajectory. Besides the multivariable char-
acter of the problem it is important to notice that
the open loop aircraft has a strong interaction in
speed command response and altitude command
response. This can be ratified from an energetical
viewpoint of the aircraft motion. Roughly speaking,
a demand in speed causes a demand in the kinetic
enery level, which has to be furnished by the avail-




able potential energy if the total system’s energy is
supposed to remain constant. Finally, the aerody-
namics vary over the operational flight conditions,
in our case both velocity and altitude are allowed
to vary substantially.

These two considerations about the aircraft’s dy-
namics over a wide range of operational conditions
give rise to the formulation of three design goals
that are to be met by the feedback controller.

1. achieve decoupled error free tracking of the
pilot’s commands of speed and altitude; this
objective is be called the nominal perfor-
mance specification and is related to one design
model.

2. ensure stability robustness in presence of mod-
elling uncertainty and varying operational con-
ditions; this objective represents the robust sta-
bility specification.

3. ensure decoupled error free tracking of altitude
and speed commands in presence of a set of
possible linear time invariant models that cap-
ture the model variations for varying flight con-
ditions; this objective forms the robust perfor-
mance objective.

The performance formulation as proposed here is
derived from Jackson & Enns (1990) and is general
enough to handle a large class of autopilot config-
urations while fitting into the framework proposed
by Stein & Doyle (1990)

To achieve well behaved and balanced design objec-
tives the stability and performance objectives were
scaled over frequency such that overal robust per-
formance requirement could be met. For an excel-
lent reference on how optimality trade-offs have to
be made we refer to Boyd & Barrat (1991). This
is the hardest part of the design, having achieved
this point it is not difficult to push the design in
the direction of more performance or more sta-
bility robustness to find the required robust per-
formance level. Nevertheless, in order to play this
game in a behaved way the whole problem formu-
lation as stated above has to be absorbed into a
special structure, the general interconnection struc-
ture as proposed by Stein & Doyle (1990), having
the feature that with some key results on matrix
norms it provides the designer information about
the closeness to the proposed stability and perfor-
mance objectives. These analysis results together
with some synthesis results are shortly reviewed in
section in section 2. Then, in section 3 the set of
design models together with the specifications as
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initially given are presented. In section 4 the re-
quirements are translated into a suitable form, this
consist in real uncertainty modelling in order o ob-
tain a state space representation for a set of mod-
els that describe the various operational flight con-
dition and the choice of weighting functions rep-
resenting the desired performance characteristics.
Next, are given in section 5 the analysis consider-
ations that provided clear design guidelines during
the controller synthesis phase described in section
6. We conclude with a brief discussion of the results
and review the experience obtained in applying the
method.

2 u-Synthesis Methodology in a

General Framework

A general controller synthesis and analysis problem
description as proposed by Stein & Doyle (1990) is
shown in Fig. 2. Associated to this representation

z )

ER——— A =

Y i
K

Fig. 2: General Analysis and Synthesis framework.
of the problem description is a suitable measure of
magnitude for matrix transfer functions and some
key analysis and synthesis results, these define a
framework for controller synthesis and analysis.
The problem description consists of a generalized
system P with three pairs of input/output vari-
ables. The first pair consists of the measured out-
puts y(), and control inputs u(¢). The second pair
consists of performance variables e(1), and external
input signals d(¢), and the third pair consists of out-
put signals z(t), and v(%) through which unit-ncrm
perturbations are fed back into the system.

Any linear interconnection of inputs, outputs and
commands along with the perturbations and a con-
troller can be viewed in this context and can be
rearranged to match this diagram so that P can
be chosen to reflect many different problem specifi-
cations.

2.1 Analysis Review

Within this framework a non-conservative neces-
sary and sufficient condition for robust performance
can be formulated (Stein & Doyle (1990)). To ob-
tain this condition the compensator feedback-loop




in Fig. 2 has to be closed to get the loop in Fig. 3.
The system M (P, K) in this figure has a 2x2 block-
structured transfer function M(s) whose blocks are
defined in terms of the original 3 x 3 partition of
P(s) as follows:

A
z v

e —— M

===

Fig. 3: Analysis General interconnection

structure

part

M;i(s) = Py(s)+ Pa(s)[I — K(s)Psa(s)]
K(s)Ps;(s) 2,3 = 1,2

(1)
(1) represents a linear fractional transformation of
the system P through K , therefore the notation
M(P,K).
When this system is stable, then the following re-
sults apply (Stein & Doyle (1990)):

|. Nominal performance is satisfied if and
only if
| Ma2(jw)]oo < 1 (2)
2. Robust stability is satisfied if and only
if
|Mii(jw)ls < 1 (3)
3. Robust performance is satisfied if and
only if

pM(jw)] <1 Vw (4)

where p is a function to be defined shortly.

Robust performance is equivalent to robust stabil-
ity in presence of two perturbations A and A,
connected around the system M(P, K). The lat-
ter stability is assured, if and only if the function
det(/ —diag(A,A,)M(jw)) remains nonzero along
the imaginary axis.

This observation gives rise to the function p. This
function was defined in Doyle (1982) to test this
kind of determinant conditions.

Its full definition for complex matrices is the follow-

ing:
-1
plM] £ [min {c for some X = diag{&q,...,Am) }} (5)
with |4, llce <1 ,for all &

In words, p is the reciprocal of the smallest value of
scalar € which makes the matrix /—eXM singular
for some X in a block-diagonal perturbation set.
If no such ¢ exists, p is taken to be zero.

det[l — ¢XM] =0
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This is a tight condition for robust stability with re-
spect to two perturbation blocks, and equivalently
a tight condition for robust performance. Note that
the definition is not limited to 2 x 2 block struc-
tures, so that it can be used to test stability with
respect to any number of diagonal blocks. This per-
mits to establish robust stability with respect to
plant sets characterized by several unstructured per-
turbations, and simultaneously, to establish robust
performance.

For practical use, the function pu[M] has to
be evaluated. This is done across frequency, pro-
viding a Bode-like plot to analyze robust stabil-
ity /performance of any given design. It should be
clear from the argument of the function g which
kind of test is carried out.

2.2 Synthesis Review - H., Optimization

For the purpose of synthesis, the perturbation can
be normalized properly to unity so that the normal-
izing factor can be absorbed into P. This results in
the synthesis problem as shown in Fig. 4. The syn-
thesis problem involves finding a controller K such
that performance requirements are satisfied under
prescribed uncertainties. The interconnection struc-
ture P can be partitioned so that the input-output

v z
map from [ d] to { J can also be expressed as
€

the following lower linear fractional transformation
denoted F;:

P

=M
=

K
Fig. 4: Synthesis part General interconnection
structure

1 3 i/ oI e v
[J:m(ﬁ,m[d] :M(!,h)[d]

For the H,, optimal problem, the objective is fo
find a stabilizing controller K which minimizes
[|Fi(P,K)||eo . Thus find a controller K such that

(P, K)o < (6)

where 1 is the minimum norm of the perturbation
that destabilizes the closed-loop system. An excel-
lent reference on this matter is Francis (1987), while
the algorithms used to obtain H. controllers come
from Doyle, Glover, Khargonekar & Francis (1988)
and are implemented in the pu-Analysis and Syn-
thesis Toolbox by Balas, Doyle, Glover, Packard &
Smith (1990).




2.3 p-Synthesis Methodology

The p-synthesis methodology emerges as a practical
approach for the design of control systems with ro-
bust performance objectives. This technique essen-
tially integrates two powerfull theories for synthesis
and analysis into a systematic design technique in-
volving H,. optimization methods for synthesis and
the structured singular value p for analysis. The
problem of robust controller design becomes that of
finding a stabilizing controller K and scaling ma-
trix [ such that the quantity || DF)(P,K)D™! ||s
is minimized.

One approach for solving this problem is that of
alternaly minimizing the above expression for ei-
ther K or D while holding the other constant.
For fixed D, it becomes an H. optimal control
problem and can be solved using the well-known
state-space method of Doyle, Glover, Khargonekar
& Francis (1988). On the other hand, with fixed
I, the above quantity can be minimized at each
frequency as a convex optimization in In(D) . The
resulting data of D can be fit with an invertible,
stable, minimum-phase, real-rational transfer func-
tion, This proces is carried on until a satisfactory
controller is constructed. For a deaper treatement
of this procedure, the reader is refered to Stein &
Doyle (1990) and Balas, Doyle, Glover, Packard &
Smith (1990).

3 The Design Model

The design model used in this paper consists of
longitudinal aircraft model in cruise configuration
as given in Tjee & Mulder (1988). From the full
non-linear aircraft model linear models for trimmed
cruise configuration are generated in varying oper-
ating conditions. The velocity is allowed to vary

Flight Condition | Airspeed [m/s] | Altitude [ft]

40, 45, 50, 55, 60 2000
40, 45, 50, 55, 60 4000
CRUISE 40, 45, 50, 55, 60 6000

40, 45, 50, 55, 60 8000
40, 45, 50, 55, 60 10000

Table 1: The set of design points

between 40 and 60 m/s while altitude may vary be-
tween 2000 and 10000 ft.

In addition to the aircraft model, we assume that
the elevator and engine dynamics are not well de-
fined to some extend.

To reflect handling quality requirements, two sec-
ond order ideal command response models for the
altitude and the speed are included. The filters have
a natural frequency of w, = 0.3 rad/sec and damp-
ing ¢ = 0.7.

Output errors due to command signals have to be
small. The objective is to achieve a rejection factor
of 100 steady-state for both channels.

Further design requirements were stated in the fol-
lowing way:

1. All eigenvalues should have relative damping
better than 0.4.

2. Phugoid eigenvalues should have relative
damping better than 0.7.

3. Loop gain should satisfy 10dB gain margin and
45 deg phase margin.

4, The closed loop bandwidth frequency for the
altitude and speed loop should be about
1 rad/see. High frequency loop gain should be
less than 10 dB at 10 rad/sec rolling off at a
rate of —40 dB/dec beyond 10 rad/sec.

5. The commanded throttle values for the man-
ifold pressure should be less than +5" Hg
around trim value.

6. The maximum elevator deflection has to re-
main within 5 deg around trim.

=1

The maximum elevator deflection rate should

be less that 30 deg/sec.

and should hold for the set of prescribed models.

4 Application of p-Synthesis to a
Flight Control System design.

4.1 Introduction

This section deals with the application of the in
section 2 presented theory for the synthesis of a
flight control system (FCS). To make practical de-
sign possible all design models as given in section
3 and objectives have to be absorbed into the gen-
eral interconnection structure presented in section
2. First a description of the linear aircraft model
is given which represents the longitudinal part of
the dynamical motion of a rigid body aircraft. To
capture a whole set of models describing the air-
craft motion in cruise configuration for the range of
operating conditions as given in section 3 the mod-
elling principle following Morton (1985) is adopted.
Then the set of objectives as presented in section




1 and section 3 are translated into suitable weight-
ing functions. Together the last two steps are com-
bined to form the general interconnection structure
for this design problem.

4.2 Description of the aircraft model

A linear time invariant model for the longitudi-
nal aircraft motion as described in Tjee & Mulder
(1988). is considered. The plant can be represented
in state space form as:

Il

Az + Bu

Cz + Du (7)

¥
where z represents state vector, u the input vector
and y the output vector (it should be clear from

the context when is refered to the control vector or
the forward speed).

u | (m/s) forward speed
a | (rad) angle of attack
g = () (rad)  attitude angle
q (rad/s) pitch rate
| A | (m) altitude
s [ 5 ] (Pa) manifold pressure
“ 4 (rad) elevator deflection
[ 4] (m/s) forward speed
h | (m) altitude
y = | @& | (m/s*) forward acceleration
h (m/s) climb rate
L (deg/s) pitch rate

Having defined the states, inputs and available
measurements, the modelling of the variations of
this model throughout different operating condi-
tions is in first instance carried out. Further the
selection of the weights is presented, for a clear
treatment of this subject we refer to Maciejowsky
(1989).

4.3 Uncertainty modelling and choice of
weighting functions
In the following a motivation for the choice of the

distinet design variables will be given.

1. Variation aerodynamic coefficients.

To reflect the variation of the aerodynamic
model through the flight envelope, linear un-
certainty modelling following Morton has been
adopted.

Starting from the fact that the set of linearized
aircraft models over the whole flight envelope
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for the cruise configuration can be modelled by
the following uncertain equation:

z = A+ Zf:] §;Aix+ B+ Zle 6; Biu
y = C+¥5,6Ca+D+Y5, 6D
(8)
where the nominal system description is given
by (A,B,C,D) and the pertubed part is
parametrized by k uncertain parameters where
é;, corresponds in this case to speed and al-
titude variations §, and &, that occur over
the different operating conditions. The infor-
mation of model variation is contained in the
2 scalar operators 4, and 6, which are assumed
to be LTI operators.

For purpose of synthesis and analysis the per-
tubed model is required to be formulated in
such a way that the variations enter the model
in a linear fractional way. This can be done in
the following way:

T Az + Bu + Byv

= Cz 4 Du -+ Dysv (9)
= = Cox + Dayu + Dagv

v = Az = diag (8ulyu, 6nlsn)2

where additional inputs » and outputs z will be
defined. Flll't.ht‘l'. B'g, C‘g, Dlg, D'},[. 1)22 have di-
mensions according to qu and gh representing
the dimension of the pertubation block. Clos-
ing the loop with A yields the transfer function
relating u to y:

My + My AT — My A My (10)

In this case the uncertainty is modelled such
that it affects the plant in an affine manner
such that My, = 0. This assumption permits
to obtain in a simple way by singular value
decomposition the uncertainty that affects the
model in a linear fractional way. Therefore, Vi
with, 1 < ¢ < F, let ¢; denote the rank of the

malrix :
A; B;
P.--[C‘ D,—] (11)

with P; € R(ntny)x(ntnu)

Then P; can be writen as:

T
wllzl e

Where, L; € R™%, R; € R™%, W; € R™w*%,
Z; € Rruxai,




- - o
6P, = {: W, ] [ 6ilyi ] [ A ] (13)

And therefore Myy + My, /A My which is,

A+ Y% 86A B+YE 6B
C + Ef:] 5£Ci D =+ 2?:[ 6‘-D'.

and looks in fact like:

[ ;;,k][".’.f' % H’“T Z_=T]

: & Sl Ry 5T

Therefore the matrices Ba, Ci, Dya, Doy
and D, are given by: By = [Ly,---, L),
CIZ = [Rl}.--$Rkl\ Dl? = IH’;‘ls"'a Wk]a D?l =
[Zy,-++,Zi], and Dy = 0. The uncertainty
is confained in the block diagonal matrix A.
Define the block structure associated with the
system as :

A = {diag [6.1pu 641,4] & € R}  (14)

and,

BA = {A € A witho(A) <1} (15)
which is the set of allowable perturbations.

To model speed and altitude perturbations
around the nominal condition of up = 50 m/s
and ho = 6000 ft the perturbation matrices
for speed and altitude variations P, and Py
are first calculated.

By performing a singular value decomposi-
tion on P, and Py, a rank 4 perturbation has
been adopted for the effect of speed variations
A,y € R*™* and rank 3 perturbation for the al-
titude variations Ayz € R3*3, In this way the
desired matrices B2, C'2, D12, D21 and D22
as in (9), of rank according to the dimension
of the perturbation are obtained. We refer to
Packard (1988) for a complete outline of the
paramteric uncertainty modelling procedure.

2. Multiplicative uncertainty models.

Both actuators, the engine as well as the el-
evator models are not adequately known. In
this study an input multiplicative uncertainty
model has been adopted to capture the uncer-
tainty in both systems. The set of models de-
cribed by this type of uncertainty modelling is
represented by:

GIME(SJ - Guctu(-‘;)(l + H"',‘(SJAC(S))

(16)

100

where W, (s) is a stable transfer function rep-
resenting the relative variation of the system
around nominal G, (s). Generally this type
of uncertainty arises from unmodelled high fre-
quency dynamics and therefore W, (s) is chosen
to be small at low frequencies while increasing
at high frequencies. The technical reason for
this particular choice comes from the fact that
this filter forces the closed loop system to roll
off at a high frequencies, see Doyle Francis &
Tannenbaum (1992) for a complete discussion.
The shape of this filter is given by:

as+ 3
a -
Y5+ 0

Wal(s) = (17)
and has been obtained by iteratively tuning up
the design. Commonly this weighting function
is taken to represent a 50% relative uncertainty
level and was chosen in the initial design where
the parametric uncertainty has be left out as
shown in Fig. 5. In a refined design the rela-
tive uncertainty level was allowed to be only
10 % at low frequencies, because the real per-
turbations due to varying operating conditions
already introduce the remaining uncertainty in
this frequency region.

Wy (5) performance weight

|: W, (s) uncertainly weight
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Fig. 5: Actuator uncertainty and tracking error

weights.

3. Tracking error weighting functions

To reflect the requirement to keep tracking er-
rors to commands less than 1%, W,(s) has been
chosen as a first order lag-lead filter insisting
on reducing errors in the lower frequencies:

il ha5+ﬁi’

W,(s) = i (18)




r

.

The error rejection bandwidth as shown in
Fig. 5 is kept small because the command sig-
nals are low frequent and to allow the con-
troller maintaining the required performance
level over large set of operating conditions.

Command filter

The command filter reflects the ideal model

response to speed and altitude commands,
L:'{—(’f] and :‘:(3:} respectively. These filters re-
main fixed for the design. The shape for the
command filter is dictated by flying quality re-
quirements and is shown in Fig. 6. It has been
modelled as a second order filter:

a2 . ('32+'2Cw13+w2}(u7)
"1!6(8] = dla,g [mﬁ—)'
{32+2Cu13+w7}(w7]]
(] g]

wy ) (8% +2Cwo s+wy

(19)

where wy = 0.3 rad/sec, wy = 10 rad/sec and
¢ = .T. This filter is chosen to flatten out at
10rad/sec with a second order numerator poly-
nomial.

We(e) Command filter
we L—————

Whe = W‘N A

10-1k

—— Wny

10-3 10-1 108 1! 10% 102

Fig. 6: Command and noise filters

Choice of the sensor noise filters.

Most measurements are not noise free and be-
come sensitive to high frequency noise. The
measurement noise is taken to be dynamical
as a lead-lag filter. Furthermore, these filters
have to be introduced to satisfy the H., con-
trol problem rank conditions given in Doyle,
Glover, Khargonekar & Francis (1988). As can
be seen in Fig. 6 the noise filters bring in ev-
idence the noise activity at high frequencies.
Choosing the noise level to be small led to
conditioning problems of the interconnection
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structure. These filters also permit to shape
the input sensitivity of the system.

I"Vﬂ = d]'a'g (u(.nmn 1'1;:1 ehs ian ”J'm'h n"ul}- u‘,! ke n'?u q

where Wyue = Wope = Wiy = Wiy, = 228204
are the noise weights for respectively the speed

and altitude error and the speed and altitude

signals, Wy = W,;, = 55231 for their deriva-
tives and W, = 10% for the pitch rate sig-
nal.

6. Control activity weights.

Additionally to the fact that tracking errors
have to be small, control activity has to remain
within prescribed limits in order to prevent ac-
tuator saturation. Therefore elevator defelec-
tion, rotational rate and acceleration are lim-
ited by constant weighting function. In the
same way pitch rate and forward speed were
required to remain limited. The filter that lim-
its the amplitude of all these signals is given

by w.;; = diag (4, 2/100, 1/1000, 1/1000, 1/500).
eff

4.4 The design model

demd = [Uemd hemal We

ers(3)

noise(7T) —-l Wn

meas(2) = [ue he)

u(2) = [fev Spav]

K

qeas(s) = [uhiuhgl

Fig. 7: Design Model.

The aforementionend considerations are stacked to-
gether leading to the design model which describes
the whole set of models for which the defined per-
formance specifications have to be met. Fig. 7 gives
the block diagram of the design structure. The de-
sign model still has the same two loop control struc-
ture as Fig 1., besides the fact that uncertainties
are added to the airframe to reflect the set of flight
conditions and the weihgting functions to reflect the
desired closed loop performance. The filter W, rep-
resents the requirement to keep errors between the
commanded signals, d..4(2) = (u, h) shaped by W.




to Fig. 9 is given by the following equation:

z (@) O W, v
ew | = | WoG | W, W, | W, G o,
Y G —W. G u

(20)
Applying (1) on the open loop matrix P, the closed
loop transfer function matrix M is obtained:

WL, | W.SiKW, ]

M =
6 [ ~W,GS, | —W, 5, W, (21)

W, O i ST I,
o ]les % o w e

0 -Ww,

where S;, S,, T; and T, are respectively in-
put /output sensitivity and complementary sensitiv-
ity transfer functions. The matrix M, represents
the robust stability block and reflects how the un-
certainty described by W, affects the closed loop
system T}. Scaling this block by a factor v scales
the robust stability level that we want to keep in
the sense of a norm less than one. In the initial de-
sign the robust stability block M), was scaled to
a level of 50 % at low frequencies and becoming
of increasing importance at higher frequencies. The
My, block representing the performance block of
the closed loop system was also scaled to be about
50 %. It corresponds to the frequency responses of
the closed loop sensitivity from the 2 command sig-
nals to the 2 output errors and is given by the fol-
lowing expression:

" =l W,
)"-}'22 = [ u’pi I/VP? ] l u_i‘r:‘_d h—i'rz [ "V: ]
Uerndd hema €

This expression reveals that the diagonal elements
of M, correspond to classical sensistivity transfer
functions. It is from this structure with the robust
stability and nominal performance considerations
that we were able to design and shape the weights
W, and W,. At this stage it was decided to de-
sign a robust control system for the whole flight
envelope by taking into account the parametric un-
certainty of the airframe due to speed and altitude
variations. This uncertainty acts mainly at low fre-
quencies so that the complex uncertainty weighting
was reduced at low frequencies such that the sum
of all uncertainties remains at a level of 50 %.

6 Control Design and Results

In first instance it is required to achieve robust
stability, this is done by appropriately scaling the
uncertainty level of the system after a first H.
trial design. In this example the uncertainty level
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for the speed block was initially chosen to be too
large. Therefore the uncertainty level has been re-
duced by a factor 7 for the speed block and 7,
for the altitude block. Roughly speaking the phi-
losophy adopted here was to scale the system in
such a way that the nominal performance block
and the robust stability block contribute in a bal-
anced way and in the same order of magnitude to
the robust performance index, in such a way that
roughly the sum of the infinity norm of both indexes
is about (and not larger than) 3 to 5 for the initial
design. In this design, the problem frequencies for
the nominal performance block are in the low fre-
quency range which is due to the large parametric
uncertainty level in this frequency range. The ro-
bust stability block gave problems in the higher
frequency range starting around 10 rad/s this is
where sensor noise and unmodelled high frequency
dynamics have large influence on the stability of
the system. It has been experienced that when the
choice of sensor noise level was static and/or too
small this led to badly conditioned controllers such
that the results were numerically not reliable any
more leading to 4’'s that pop up during a D — K-
iteration. By this we mean, that a sucessive v iter-
ation on the scaled system could not be started at
the previous achieved gamma level, but had to be
initiated at a higher v level. Once weighting matri-
ces selection and system scaling are properly done,
controller synthesis can be carried out. In the first
iteration the optimal v achieved was v = 11.75.
However if the robust performance level p(M) is
computed, the maximum of px is only pimaee = 1.9
around w = 15 rad/s as can be detected from the
upper curve in Fig. 10. The gap indicates plenty
of design freedom and reveals the large conserva-
tiveness of the singular value as as performance in-
dicator. Performing a constant D scaling and re-
doing a v-iteration brings the robust performance
level down to v, = 1.0566. The procedure is once
more applied leading to v3 = 1.0246. At this st
further iteration has no more sense and calculat-
ing the real-complex robust performance level ..,
shows that for this design robust performance is
achieved over the whole frequency range, this cor-
responds to the lower curve in Fig. 10. Remark,
that constant DD—scalings are not a limiting factor
for this design. Fig. 10 summarises the robust per-
formance levels that are achieved during three three
iterations. A closer look to the finally achieved sys-
tem characteristics is given in Fig. 11. The upper
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and lower bound for the robust performance level
p(M)as predicted by the real-complex p calcula-
tion is given by the p..(M) curves in the plot. The




and the plant G its outputs v and A, small (num-
ber between parenthesis designate the dimension of
the vector signal). These are, as shown in Fig. 7 the
weighted errors e,(2). The filter W, imposes roll-
ofl on the controller. The filters W, represent the
requirement to keep the amplitude of actuator sig-
nals e.;s(3+2) = (6., d:, 6., u, q) below some level,
while W, describes the noise spectrum acting on
the measurements meas(2 + 5). The controller K
then has to provide two controls, w(2) = (8evy 6p20),
these are commaded voltages resulting in an effec-
tive actuation from G, i.e. elevator deflection &,
and effective manifold pressure pz on the engine.
Finally, to reflect airframe variations in speed and
altitude over a set of flight conditions and actuator
uncertainty, respectively real and complex uncer-
tainties are introduced by A, and A..

However, this structure is yet not suitable for the
purpose of controller synthesis and analysis. It is
now the task to reorder the signals in such a way
that uncertainty and performance become struc-
tured at system level permitting the application of
the analysis and synthesis results of section 2. In
the next section we discuss the transformation pro-
cess from Fig. 7 into the general interconnection
structure P.

5 Getting the problem into the
General Interconnection Struc-
ture

To transform the design model of Fig. 7 into the
general interconnection structure, loops at the per-
turbations blocks and the controller have to be
opened. The inputs of the perturbations blocks are
viewed as outputs of the system P, while outputs
of the perturbations are viewed as input of the sys-
tem P. In this way the first pair of signals for P
are defined, perturbations that are unstructured at
component level become structured at system level.
The so obtained perturbation structure is given by,
A = diag(Ar, A:) = diag(A,, Ak, A, A, ), where
Ay, € R¥™, Ap, € R¥ and A, € C re
spectively represent the unit norm bounded pertur-
bation blocks for respectively the speed, altitude
and actuator uncertainty. The second pair of sig-
nals that are grouped together represent the perfor-
mance variables that we want to keep small. At the
input of P sensor noises are firstly grouped together
and at the output the actuator activity, further we
want speed and pitch rate to remain small. Secondly
the commanded signals are taken at the input of P.
To these inputs we associate the weighted output
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errors that have to remain small. Finally, the third
pair of signals is for purpose of controller synthe-
sis and are obtained by breaking the loop at the
compensator,

Once the open loop interconnection structure P for
the complete design problem as shown in Fig. 8 is
set up, controller synthesis can be carried out with
in mind to achieve the prescribed robust perfor-
mance level. The complete interconnection struc-

Uru}" — — ruf‘l]
ey ld — —e z,,(3)
vel2 —_— ——e £c(2)
donisal? —_— —— ey y(5)
3::.;}1; — # ——  ew(2)
u(2) —— — wiT)

Fig. 8: Interconnection structure for the complete
problem.

ture is of dimension 23 x 20. Closing the structure
P with the controller K gives the analysis structure
M. The robust stability block corresponding to My,
is 9 x 9, respectively corresponding to a four di-
mensional real speed block, three dimensional real
altitude block and a two dimensional complex rela-
tive uncertainty block on fthe actuators. The perfor-
mance block Mj; is of dimension 7 x 9, where the
upper 5 x 7 block corresponds to a measurement
disturbance rejection block while the 2 x 2 lower
subblock corresponds to the tracking error block.
A simplified version of the open loop interconnec-
tion structure P is shown in Fig. 9. One can view
this structure as the system representation at one
design point within the flight envelope. It was actu-
ally this structure on which the initial designs were
performed and allowed us to make proper choices
for the weighting functions.

¥

Fig. 9: Open loop interconnection structure P.

The input /output relation for P that corresponds
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Fig. 10: Robust Performance

nominal performance level is given by a(Mz;) be-
comes critical at low frequencies, by this we mean
it tends to unity. The remaining two curves repre-
sent the upper and lower bound real complex robust
stability level u(Mi;) which is critical at higher fre-
quercies.
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Fig. 11: Perfor-

g Robust Performance, Nominal

mance and Robust Stability

Fig. 12 is a further zoom into the robust stability
block (M) which is built up of the speed block
jta,, (Myy) represented by the upper two curves, the
altitude block pa,,(Mi1) given by the lowest two
curves and the complex uncertainty block pa (M)
given by the curves in between. For each block there
is an upper and a lower line respectively related to
the initial design and the final design. Initially the
problem frequency for all three blocks was around
10 rad/s. The peaks at this frequency have been
succesfully eliminated for all three blocks. While the
peak has been flattened out on this frequency, the
complex block pops up at high frequencies. On the

104

other hand this phenomenon gave freedom to the
performance block to be reduced around 1 rad/s.

Badtl
Ha, 73

S
10-* 109 1ot o 1

Fig. 12: Robust Stability Contributions

Zooming in at the lower 2 x 2 performance block,
we have in Fig. 13 a Bode plot representation of
the absolute tracking and interaction performance
levels imposed by the upper curves. These are the
boundaries imposed on the tracking error given by
the diagonal terms which correspond to the classical
sensitivity functions and have been imposed by the
filters W, and W,,.

Log Mg
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Fig. 13: Sensitivity and Interaction

Finally, in Fig. 14 command responses for both the
altitude and speed channel are shown. The off diag-
onal plots show the interaction in the response. The
plots represent command responses to the nominal
system as well as all the extreme perturbed flight
conditions. Remark that the interaction level does
not degrade over all flight conditions. This con-
cludes our exercise in obtaining a robustly decou-
pled command response to speed and altitfude de-
mands.
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Fig. 14: Command responses, over whole flight en-
velope

7 Conclusion

Using p-synthesis, a linear control law for the au-
tothrottle/autopilot has been developed. From the
time responses it can be seen that this configuration
maintains the desired performance level within all
operating conditions meaning that no gain schedul-
ing is required. However, we should not be too op-
timistic about the results, since the time domain
responses are not indicators for robustness. Recall
that we have scaled the uncertainty level down by
a factor 7y, which physically means that we have
shrunk the flight enveloppe by this factor. This
means that the achieved robustness design design
is restricted to a fourth of the initial perturbation
set. So even time responses are satisfactory over the
whole initial enveloppe, robustness guarantees are
excluded for a wide operating range, which means
that a switching or gain scheduling scheme for this
control system is still required. The primary conclu-
sion is that p-synthesis has been succesfully applied
for the development of controllers in achieving a de-
sired robust performance level. The general frame-
work gives the possibility to treat problems of sig-
nificant complexity, where a variety of performance
goals for a large set of systems can be treated in a
straightforward manner. In fact, the design method
within the general framework provides the designer
with all information that is needed for insight in
which direction the several components of the sta-
bility and performance blocks have to be tuned such
that the final requirements can be met. This feature
is primarly due to the fact that the performance
and stability blocks themselves, and with respect
to each other, become structured when viewed in
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the general interconnection structure. Further, ap-
plying the structured singular value g with respect
to different quantities, provides a non conservative
measure for analysis. Actually, our design was set
up in two stages. The first stage was the a robust
performance design for one flight condition which
provided insight in the choice of the filters W, and
W,. This structure was the starting point for the
robustification of the design over a wide set of op-
erating conditions. This has been done by incorpo-
rating in the design a whole set of analysis points
through real uncertainty modelling to reflect the
flight envelope for this configuration. The uncer-
tainty block was scaled in such a way that the ini-
tial performance level is maintained. By means of
D — K iteration a controller to achieving robust
performance has been obtained. Future research
will be conducted towards the development of a ro-
bust integrated autothrottle/autpilot design for the
Cessna Citation II Laboratory Aircraft of the Delft
University of Technology and the Dutch National
Aerospace Laboratory NLR.
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Abstract. Recent developments in both control theory and electronical hardware pro-
vide new approaches for the solution of mechanical servo problems. The so-called ‘stan-
dard plant’ approach combined with H, optimization theory is a method to find linear
controllers that are robust and multivariable and may be used for many specific problems.
However, using a detailed linear plant model, especially in combination with frequency
dependent weight functions, will result in high order controllers. Implementing such con-
trollers puts high demands on the controller hardware: mechanical servo systems often
exhibit non-neglectable high frequency effects, that necessitate high sampling rates for
digital controller implementation to be possible. This combination of controller complex-
ity and high sampling rates, combined with the need for fast multivariable communication
with the plant (for instance A/D and D/A conversions for measurement signals and actu-
ator commands) can be attained by making use of a Digital Signal Processor (DSP). This
paper describes the use of the TMS320C25-based control implementation environment
produced by dSPACE GmbH for implementation of Hy, controllers on two experimental
setups available at the Delft Mechanical Engineering Systems and Control Group; the
inverted pendulum and the three-degrees-of-freedom hydraulic positioning table. It is
shown that the combination of powerful control theory and a fast, user-friendly imple-
mentation environment enables the control engineer to design high performance robust
controllers.

1 Introduction modes that should be suppressed. This then im-
plies that controllers must be accurate up to rel-
atively high frequencies, such that high sampling
rates are necessary. [Hardware solutions are mostly
possible, but until the development of flexible and
powerful processors like the Digital Signal Proces-
sor, or DSP, it was very hard to design and tune
complex controllers.

Two main problems in the practical application of
modern control techniques are robustness of the
closed loop system and implementation of complex
controllers. The robustness problem appeared as a
result of letting the controller rely on more complex
plant models without accounting for the fact that
even the most complex model is only an approxima-

tion of reality. Furthermore, the state-space, time-
domain approach of modern control theory seemed
incompatible with known ‘classical’ results based
on frequency domain considerations (like gain and
phase margins). The implementation problem was
especially apparent in mechanical servo systems:
although models are usually reasonably accurate,
they often contain badly damped high frequency
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The introduction of Hy, control theory by Zames
in 1981 was done from a highly theoretical and
mathematical point of view, and it took sev-
eral years to find that this concept connects very
well with classical frequency domain considerations.
The interpretation of frequency dependent singn-
lar values as a multivariable equivalent of gain was
already known, and H,., theory provides a means




to shape this gain according to the wishes of the
control designer: this makes it possible to improve
robustness using gain margins. The first solutions
to H,, control problems were based on an opera-
tor theoretic approach, as for instance explained
by Francis (1987). They had the practical dis-
advantages of a complex numerical calculation and
resulted in controllers of an extremely high order
(ten times the order of the plant was no excep-
tion). Recently it was found that H., problems can
be solved as a modified LQG problem, resulting
in a much simpler, more reliable numerical calcu-
lation and controllers that have the same order as
the plant (Doyle and Glover, 1989). This then fo-
cuses the attention on problem formulation rather
than on solution: using a general ‘standard plant’
framework the control designer should specify the
desired result. This mostly involves the selection
and/or definition of disturbance inputs, control ob-
jective functions (error signals) and weight func-
tions, which provides a multivariable way to tune
the resulting controller.

The process of tuning a multivariable controller
implies that it is necessary to have a very short
design-implementation cycle: based on the actual
performance of the controller, the weight functions
must be adjusted, after which a new controller can
be calculated and implemented. Besides making
use of a fast and flexible processor, it is therefore
also desirable to have an implementation environ-
ment in which this entire cycle can be performed
quickly and user-friendly. Although many imple-
mentation environments for DSPs are now commer-
cially available, they are usually aimed at produc-
ing efficient code for maximal speed and necessitate
low-level programming,

As we are interested in the possibilities of appli-
cation of H,, control theory on the experimental se-
tups available at our laboratory, for instance the in-
verted pendulum and the hydraulic positioning sys-
tem discussed in this paper, and because for most
mechanical servo problems the calculation speed of
the DSP is more than sufficient, we chose the im-
plementation environment produced by dSPACE.
This provides very high-level programming possi-
bilities, such as a direct link to PCMatLab, which
enable design-implementation cycles of less than 15
minutes (for specification of new weight functions,
calculation of H, controller and implementation).

The next section will give a very short introdne-
tion to the standard plant approach, the interpre-
tation of weight functions and H theory. After
that, a description of the main properties of the
dSPACE implementation environment will follow
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in section 3. Some of the results obtained by appli-
cation of H,, controllers on the inverted pendulum
setup are in section 4, followed by the results of the
hydraulic positioning system in section 5. Finally
some conclusions will be given in section 6.

2 The standard plant approach
and H, theory

The general framework used in H, theory is given
in figure 1. Here P is the standard plant, con-

w zZ

—

(i (] P
i ; 1 v
K Y 2

Fig. 1: The general framework for H.. control sys-
tem design

taining the combination of a model of the system
to be controlled and several weight functions, K is
the controller, =
usually error signals—that are to be minimized, y
is a vector of measurement signals, w a vector of

is a vector of control objectives—

external disturbances and u a vector of control in-
puts. The auxiliary signals v, and v, are added to
be able to test internal stability of the closed loop
system: if for any bounded vy, v, and w the signals
u,y and z remain bounded, the closed loop system
is said to be internally stable.

Many control problems can be brought into this
form; the control objective is to find a controller K
that minimizes the transfer from w to z in some
sense. We will assume that P and K are linear
time invariant (LTT) systems that can be described
by a finite dimensional state-space model or a real-
rational transfer function matrix. A specific control
design problem can be accommodated by extend-
ing the model of the physical system to be con-
trolled, available in P, with structural properties
and weight functions. The choice of this structure
and the weight functions greatly influences the re-
sult of H,, analysis and synthesis and should there-
fore be set up by the control engineer who has a
thorough knowledge of the control problem at hand.

In standard H., problems the transfer from w to
z is minimized in the sense of the infinity-norm,
when searching over all allowable (i.e. internally
stabilizing and real-rational) controllers:
1Pz + Puz(I = K Puy) ™' K Py oo

min
K allowable

(1)




with
1P lo

sup,, o(P(jw))
= LSup;; \/,\(P(jw)P(jw)")

o(P(jw)) denotes the largest singular value of
P(jw) and \(P(jw)) denotes its largest eigenvalue;
P(jw)* denotes the complex conjugate transpose
of P(jw). In the case that w and z are scalar,
the infinity-norm can be interpreted as a maximum
power amplification factor for sinusoid signals (i.e.
the peak value of the frequency response or Bode-
magnitude plot), and can thus be related to the
classical concept of gain.

The importance of the selection of weight func-
tions has already been mentioned. The nature of
the H., design is such that a controller is synthe-
sized in one single calculation, resulting in a trade-
off between all specified signals and weight func-
tions. It is therefore important that all available
signals are made comparable with each other, for in-
stance by scaling them in such a way that their val-
ues are expected to be between -1 and 1. The scal-
ing factors necessary for this can be seen as weights
and can be modified to put more or less emphasis
on the effect of a particular signal on the result-
ing controller. By making these factors frequency
dependent it is also possible to put emphasis on a
specific frequency range of a signal: for instance
if a disturbance signal has a known spectrum it is
possible to use a real-rational approximation of this
spectrum as a weight function. Examples of the use
of weight functions can be found in sections 4 and 5.

(2)

3 The dSPACE implementation
environment

As mentioned before, our intention to design and
implement H., controllers makes it very desirable
to have an implementation environment that al-
lows controllers calculated with PC MatLab or sim-
ilar high level matrix calculation tools to be imple-
mented quickly and efficiently without having to
write low-level programming code. One of the very
few DSP-based commercially available solutions for
this is produced by dSPACE Gmbll as the ‘DSP-
CITpro Control Implementation Tool’. The hard-
ware is supplied as add-on cards for the IBM com-
patible PC and is built around a DSP of the Texas
Instruments TMS320 line.

The main processor board (dSPACE type nr.
DS1001) that was used for the experimental setups
discussed in the next two paragraphs contains a
fixed-point 40MHz TMS320C25 DSP with a 100ns
cycle time and a 16 x 16 bit hardware multiplier
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for single cycle multiplication and accumulation.
Communication with this processor is possible from
the PC (acting as host system) via the 16-bit AT
bus of the PC; programs can be downloaded to the
DSP and during program execution 4K words of 16-
bit true dual-port RAM is available for monitoring
key variables (simultaneous DSP- and host-access).
Further memory available to the DSP is 64K words
of program memory and 59K words of data mem-
ory, both accessible with zero wait states and with
DSP- and host-access arbitration.

The interaction with the experimental setup is
performed by means of A/D and D/A converters:
two DS2001 boards containing 5 A/D converters
each and one DS2101 board with 5 D/A converters.
Communication between processor board and inter-
face boards is performed via the PHS-bus (Periph-
eral High Speed bus), a 32-bit synchronous 1/0-bus
with 13.3 MB/s peak transfer rate; this allows the
digital controller to run completely independent of
the PC. The DS2001 A/D boards each contain 5
fully parallel 16-bit A/D converters with 5us con-
version time, 14-bit linearity (typical) and Sample
and Hold circuits (tracking and hold); A/D conver-
sions can be started separately or simultaneously
and ADC ready may be signalled via interrupt or
flag. The DS2101 board contains 5 12-bit D/A con-
verters with 3us full scale settling time to 0.01%.

Equally essential to the usefulness of this con-
trol implementation environment is the implemen-
tation software package IMPAC, consisting of the
Implementation Expert module IMPEX combined
with the high level programming language DSPL.
IMPEX is a menu-driven programming tool, inde-
pendent of specific target hardware, allowing the
setting up of any linear {ime-invariant controller.
The controller parameters should be available in
state-space form and given in an ASCII-file accord-
ing to a prespecified format. Utilities to interface
with PC MatLab are available to automatically cre-
ate this file, such that any control design algoritim
implemented in MatLab can be used to create a
state-space controller and prepare it for IMPEX.

In general, such a controller will be continuous
time and in an arbitrary state-space realization;
IMPEX provides tools to convert this into a de-
scription suitable for implementation in the dig-
ital fixed-point TMS320C25 processor. First the
controller may be discretized either step-invariant,
ramp-invariant or bilinear, according to specific re-
quirements. Next a transformation may be per-
formed to reduce the number of controller pa-
rameters, the number of calculations and—most
importantly—the coefficient sensitivity for instance




with respect to quantization effects. Thirdly it
is possible to perform automatic or user-specified
scaling of variables (input, output and state vari-
ables) to user-defined ranges; because the standard-
plant approach usually makes sure that inputs and
outputs are correctly scaled, this is especially im-
portant for (internal) state variables when using a
fixed-point processor. The final step then is au-
tomatic code generation based on this discretized,
transformed and scaled state-space model, first set-
ting up the high level language code DSPL, fol-
lowed by the compilation into TMS320C25 target
processor assembly source code; after that, assem-
bling and down-loading of object code will complete
the automated implementation procedure.

Disadvantages of such a highly automated imple-
mentation procedure are of course restrictiveness of
useable hardware (dSPACE products) and imple-
mentable controllers (linear time-invariant). How-
ever, it is possible to extend IMPEX with templates
and drivers for user defined interface hardware or
even completely different TMS320C25-based pro-
cessor boards. Furthermore, IMPEX provides very
well documented ASCII files of the DSPL-code and
the assembly source code generated. These files can
then be used as shell-files that allow a program-
mer to add non-linear relations, limitations, gain
scheduling, start up sequences, etc. Clearly this
implies a large programming effort of the user; in
most cases it is sufficient to make changes to the
DSPL-code, which can be seen as a high-level pro-
gramming language that was failor-made for every
TMS320 processor. Only if time optimality is nec-
essary, it may be useful to get into programming
assembly code: to give an impression, a 12th or-
der, 9 inputs, 3 outputs state-space controller for
the hydraulic positioning system was automatically
implemented with a calculation time of T5us, giv-
ing a processor load of only 7.5% at the more than
sufficient sampling rate of 1kIz.

This then sums up the most essential parts of the
implementation environment used to obtain the re-
sults in the following sections. The extremely fast
developments in this area of hardware and software,
however, have already surpassed this in several re-
spects.

e TMS320C30 and TMS320C40-based processor
boards provide single-cycle floating-point mul-
tiplication/accumulation and many other im-
provements.

e Instead of DSPL-code it is possible to use C,
which can be written by the user or automat-
ically generated from several block oriented
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simulation languages: there is a direct col-

laboration between the manufacturers of Mat-
Lab/SimuLink and dSPACE to develop a fully
automated procedure for implementation of
non-linear controllers.

e Options for multiprocessing with DSPs are be-
ing developed, etc.

4 The inverted pendulum

The main parts of the inverted pendulum setup are
shown in figure 2. The pendulum itself is a hollow
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Fig. 2: The inverted pendulum setup
steel bar, weighing about 0.6 kg; it is 57 cm long,
measured from rotationpoint to tip. The pendulum
is connected to a cart by low friction roller bear-
ings, giving the pendulum one degree of freedom,
i.e. one rotation in the vertical plane. By means
of two rubber cylinders the angular deviation from
the vertical direction is limited to 15 degrees on
each side. The aluminium cart can move along solid
steel guiding-bars, also using roller bearings. 1 he
effective range of the cart is limited to about 1 me-
ter. A toothed belt connected to the bottom side of
the cart provides slip-free traction. The drive train
consists of this toothed belt, two toothed wheels
and a servomotor. The toothed belt is very stiff in
longitudinal direction, but not in transversal direc-
tion. This implies that by adjusting the internal
tension of the belt a trade-off must be found be-
tween the occurrence of low frequency vibrations
in transversal direction and friction at the toothed
wheels and the cart bearings.

This trade-off resulted in a considerable amount
of (dry) friction in cart bearings and drive train,




which must be considered in the controller design.
The control problem therefore was to design a con-
troller that stabilizes the pendulum, tracks a refer-
ence signal for the cart position, attenuates torque
disturbances on the pendulum and is robust against
the occurrence of friction. To solve this problem the
standard plant given in figure 3 was set up. The ac-

Fig. 3: Standard plant for inverted pendulum con-
troller design

tual plant model is given as G: the combination of
Gy, the transfer from control input u to measured
variables y, and G, the transfer from disturbance
inputs v to y. The vector v consists of two signals:
one representing a torque disturbance on the pen-
dulum, the other a disturbance force on the cart;
the latter can be used to account for the dry friction
effect in the drive train (see van der Linden (1991),
and van der Linden and Lambrechts (1992,1993)).
The measured variables are pendulum angle, cart
position and cart velocity; all these signals are af-
fected by measurement noise represented by n with
weight function N and result in measurements y;
that are available to the controller. Disturbance d,
with weight function D, represent a reference sig-
nal for the cart position to accommodate the track-
ing demand; disturbance d; with weight function
D; determines the effect of v on the design. The
error signals € with weight function @ are to be
minimized in combination with the actuator effort
u with weight function R. In comparison with fig-
ure 1 we thus find:

Pu: Py
e {Pwy Puy}
(3)
0 QDD QGUDI' QGu
= g9
N UpRuGD; | G,

With this standard plant we are now able to com-
pletely specify a trade-off between the various con-
trol design objectives mentioned before. For in-
stance we may design a controller without taking
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the effect of dry friction into account by specifying
a small value for the appropriate entry of D;. Al-
though the resulting controller performed very well
on a linear model in simulations, a limit-cycle with
an amplitude of 10 cm occurs when dry friction in
the cart bearings is taken into account (figure 4)
and the actual implementation appeared to be un-
stable. This implies that it is indeed necessary to
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Fig. 4: Slmu]ated llm1t~cycle of inverted pendulum
with non-robust controller

specify a larger, more realistic value for the dry fric-
tion effect, which resulted in a controller with good
performance in all respects and a limit-cycle with
an amplitude of 1 mm in non-linear simulations and
of 5 mm in actual implementation (figure 5): the
remaining difference is probably due to unmodelled
dry friction and backlash in the pendulum bearings.
Note that we thus have found a lmear conlrol]er 1s-
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Fig. 5: Measured limit-cycle of inverted pendulum
with robust controller

ing a linear control design method that is able to
effectively attenuate the effect of a highly non-linear
disturbance. For more information on these results
see van der Linden (1991) and van der Linden and
Lambrechts (1992,1993).

5 The hydraulic positioning
system

The hydraulic positioning system is given in fig-
ure 9; it consists of a steel block weighing 48 kg,
supported by an air bearing on a steel table. The
air bearing permits frictionless motion in the hor-
izontal plane, allowing three degrees of freedom.
Three asymmetrical hydraulic motors are attached
to block and table according to the diagram in fig-
ure 6. Each motor is fitted with a linear displace-
ment potentiometer and a piezoresistive pressure
transducer (absolute pressure in first compartment
of motor). The motors are actuated by means of
two-stage electro-hydraulic servo valves based on a
dry torque motor and a nozzle-flapper pilot stage.
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Fig. 6: Schematic representation of the hydraulic
positioning system

The control problem for this setup was to find
a controller with an (Il-) optimal trade-off be-
tween tracking performance, actuator effort, mea-
surement noise and actuator noise. In comparison
with the inverted pendulum design, also asymptotic
tracking of position reference signals was desired.
The standard plant that can be set up for this is
given in figure 7. G denotes the actual plant, with

Fig. 7: Standard plant for hydraulic system con-
troller design

control input vector u that is disturbed by actu-
ator noise d; acting through weight function D;.
The tracking objective is again accommodated by
adding disturbance d, and weight function D,; mea-
surement noise is given as n with weight function
N. Objective functions to be minimized are the
three position error signals given in € and weighted
by @ and the three actuator efforts u after appli-
cation of R. The measurement signals available to
the controller are the three position error signals
and the three pressure signals. The resulting stan-
dard plant can thus be given as:
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As in the case of the inverted pendulum, it is now
possible to find a trade-off between the aforemen-
tioned control design objectives by adjusting the
appropriate weight functions. A remarkable prop-
erty of H,, optimization appeared to be that no
combination of constant weight functions can be
found such that the asymptotic tracking objective
is obtained, while the integral action inherent to
hydraulic motors ensure that simple proportional
feedback is already sufficient for this. To obtain
asymptotic tracking it is necessary to include inte-
gral action in weight function D,, such that steady
state errors result in constantly growing errors in
¢ (see Lambrechts and Bosgra (1991) for the gen-
eral solution of this problem). With this restric-
tion it again appeared to be possible to adjust the
properties of the controlled system by means of the
available weight functions. The z-direction step re-
sponse of a solution with bandwidth above the hy-
draulic frequency, reasonable damping and asymp-
totic tracking is given in figure 8; step responses in

other directions are similar. For a more extensive
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Fig. 8: z-direction step response of the hydraulic
positioning system

discussion of these results see de Bruyne (1992).

6 Conclusions

Digital Signal Processor based control implemen-
tation hardware is suitable for implementation of
sophisticated complex controllers for most mechan-
ical servo control problems at sampling rates that




are extremely high. Especially for the design of
multivariable controllers a single-processor solution
is preferable; considering the performance of DSPs
it is often unnecessary to resort to multiprocessing
When one is interested in control de-
sign rather than control implementation environ-
ment design, it is not only necessary to obtain ap-
propriately specified hardware, but also to have a
software environment that removes most of the bur-
den of actual controller implementation. The envi-
ronment described in this paper shows that this is
possible without loosing flexibility and without in-
creasing calculation times to unacceptable levels.
Recent developments in this area show that flexi-
bility and speed are still growing fast: the intro-
duction of floating point DSPs open possibilities to
perform fully automated implementation for non-
linear controllers.

The advantage of automated controller imple-
mentation becomes especially clear when looking
at the design examples. Modern control theory
that only recently has reached the level of numerical
solvability (matlabability) can quickly be tested on
its practical use. Instead of bothering with hard-
ware issues and programming low-level code, it is
possible to concentrate on the setting up of a stan-
dard plant and the selection of weight functions: the
implementation cycle time becomes short enough
to tune the controller on the actual plant. On the
other hand it is also possible to develop new meth-
ods or even theoretical concepts using an actual test
setup instead of simulations.

solutions.
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Abstract.

In some high performance robot applications, the use of hydraulic rotary

vane actuators is preferred. The use of such (industrial) actuators mostly involves the

introduction of Coulomb friction due to seals.

Besides that, the connections between

the actuators and the loads are often flexible. Paying attention to these phenomena
during the modeling of such an actuator, results in reliable linear and nonlinear models,
which are very useful for control design (linear model) and for testing of the designed
controllers (nonlinear model). Implementation of the designed controllers in practice
proves the validity of the followed approach.

Keywords.
flexible load connection.

1 Introduction

Contrary to electrical actuators, hydraulic actu-
ators are not very common in high performance
robotic applications. However, especially in ap-
plications where big loads have to be handled and
where available space for construction is rare, hy-
draulic actuators are favorable due to their excel-
lent rate of dimension to delivered torque. This
makes hydraulic servo actuators also very suit-
able for direct drive applications, especially when
they are provided with hydrostatic bearings, so
that Coulomb friction is eliminated (Viersma, T.J.
(1990)). For linear actuators, this bearing tech-
nique is widely used, but rotary actuators are not
industrially available with such bearings, which im-
plies that they contain a considerable amount of
Coulomb friction. Furthermore implies the appli-
cation of a rotary actuator the use of a connec-
tion shaft to the load, which in general can not be

YThis paper is also presented at the 32nd IEEE Con-
ference on Decision and Control, San Antonio, Texas, USA,
December 15-17, 1993. Copyright of this paper remains with
IEEE.
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hydraulic rotary servo system, modeling, control design, Coulomb friction,

expected to be stiff, contrary to applications with
linear actuators. The above mentioned phenom-
ena (Coulomb friction and flexible shaft) have been
observed from some rotary actuators, applied in a
SCARA bricklaying robot as designed and devel-
oped in our laboratory (Paap, V.W. (1990)). As
it is expected that the overall performance of this
robot highly depends on the performance of the sin-
gle actuators, we will focus on one such a rotary
actuator.

The objective is to realize a controller for a hy-
draulic rotary vane actuator, by which a high per-
formance is achieved, with regard to the band-
width as well as to the positioning accuracy at low
frequencies. We present an integral approach of
modeling an actuator, model based control design,
closed loop analysis on simulation level and exper-
imental evaluation of results. Besides the standard
actuator dynamics, we are especially focussing on
the influence of Coulomb friction and flexible load
connection onto the controlled system behavior.

Hydraulic components have been studied already
for many years, also in view of control design
or evaluation. A standard linearized third order




structure for an actuator is widely spread (Merrit,
H.E. (1967), Viersma, T.J. (1990), Walters, R.B.
(1991)). Known extensions include: two extra or-
ders for the valve dynamics (e.g. Feuser, A. Von
(1984), Kockemann, A., Konertz, J. and Lausch,
H. (1991)); the flexible connection between actua-
tor and load (Wierschem, T. Von (1981), Neumann,
R., Engelke, W. and Moritz, W. (1991a), Neumann,
R., Engelke, W. and Moritz, W. (1991b), Izawa, K.
and Nakayama, Y. (1991)); and the incorporation
of Coulomb friction (Kéckemann, A., Konertz, J.
and Lausch, H. (1991), Yun, J.S. and Cho, H.S.
(1991)). In most of these studies, an experimental
validation of the theoretical model is incorporated.
Another way to obtain usable models is the appli-
cation of standard system identification techniques
(Shih, M.-C. and Chen, C.-K. (1991)).

The step which is often neglected, is to address
the flexible load connection and the Coulomb fric-
tion explicitly in the system identification proce-
dure and in the control design and analysis.

In section 2 we present an on physical rela-
tionships based model and the subsequently lin-
earized state space model. Correct parameters for
the model have been found by means of identifica-
tion techniques applied on experimentally obtained
data, as is shortly addressed in section 3. In section
4 the control design based on the linear model and
the closed loop analysis with the use of the nonlin-
ear model is discussed. Results of the application
of the designed controllers in practice are given in
section 5.

2 The modeling of a hydraulic ac-
tuator

In principle, a hydraulic actuator consists of two
oil compartments, separated by a movable part. In
the case of the rotary actuator, this part is the vane,
which is connected to the output shaft. See figure 1.
The oil flows into and out of the compartments are
provided by a valve, which is the regulating ele-
ment. A constant valve opening will result in a
constant oil flow which will generate a rotation of
constant speed. This explains the basic integrating
behavior of a hydraulic actuator. Because the oil
in the two compartments is compressible, the two
oil columns will act as two springs. Via the vane
the load is clamped between these ‘springs’. This
causes the second order behavior, which is always
found in series with the integrating character of a
hydraulic actuator.

We will examine a symmetrical rotary actuator
with a symmetrical critical-center valve. For this

V. :7.38e—6 ma/rad

S :4.88rad

P; : 1.4e7 N/m?
C:2.52—6mi/Av/Ns

Natural frequency aétuator: =~ 7 Hz
Bandwidth valve: =~ 200 Hz

E :~ 6e8 N/m?
Ji: 1 kg.m?

T.:4 Nm

¢t : 1.3ed Nm/rad

Fig. 1: Schematic drawing of a rotary vane actua-
tor with 4-way valve.

actuator, the above-mentioned dynamics are de-
scribed by a number of theoretical relations.

The equations of continuity for both the com-
partments are:

- 4 ¢|—¢“|_q‘u‘lr
P E"r(;"'+qg+SL|)

: — 34y, +4aV;
P = E ¢2+ & a¥r
2= OV ($-ga+SLa)

with: P;  pressure in compartment j [N/m?],
the dot means the time derivative
E  bulkmodulus of oil [N/m?]
®; oil flow to compartment j [m?/s]
®;, leakage flow across the vane [m?/s]
g.  actuator position [rad]
V. actuator volume per radian [m3/rad]
S total stroke [rad]
SL; ineffective stroke of

compartment j [rad]

Because the bandwidth of the valve is well be-
yond that of the actuator, the valve dynamics were
neglected. Furthermore assuming turbulent flow
through the valve, the oil flows can be described




by:
8, = HHlCyP=F + SlovP;
(2)
o, = SloyP = F + Hicyp,
with: 2  control signal [A] (valve steering current)

(' valve constant [m“/A\/Ns]
P, supply pressure [N/m?]

For the leakage across the vane a laminar flow is
assumed, giving the equation:

$, = LPV (P, — P,) (3)
with LPV the leakage parameter [m®/Ns].

When the shaft which connects the load to the
actuator is modeled as a torsional spring, the fol-
lowing two equations of motion for the ‘load system’
(one for the load and one for the actuator shaft) are
obtained:

= Ct
= e f = 4
@ =7 (% — ) (4)
- V. w . c i s
Ga = :}:(Pl —FB) - T~ J—: (92 — @) + T (5)
with: ¢ position of the load [rad|

Ji  inertia of the load [kgm?|

J, inertia of the actuator shaft [kgm?]

¢; torsion stiffness of the connection
shaft [Nm/rad)

w  viscous friction coefficient [Nns]

T. Coulomb friction and/or stiction
torque [Nm]

The friction torque 7. is modeled as a constant
torque during movement (opposing the movement),
and a varying ‘stiction torque’ during standstill,
similar as described in e.g. Southward, S.C., Rad-
cliffe, C.J. and MacCluer, C.R. (1991).

Linearizing the nonlinear model

To be able to apply linear control design techniques,
we have to linearize the model. Under the assump-
tion that the mean pressure in each compartment is
3 Ps, only the pressure difference A, across the vane
is required to describe the dynamics of the pres-
sures (P, and P, do not constitute two independent
states). This leads to the reduction of the model
order by one state, and moreover it implies that
only a pressure difference transducer is required for
the identification of the system dynamics from the
experimental setup (section 3), instead of two abso-
lute pressure transducers. Noting furthermore that
besides the pressure difference transducer, a posi-
tion transducer is mounted to the actuator shaft
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(so the position of the actuator and not that of the
load is measured) in the given experimental setup,
the equations (1) - (5) can be brought into a fifth
order state space model of the following structure:

@ 0 0L 00 @ 0
f}‘f —91 0 9] 0 0 l‘j‘f 0
T =1 0 0010 g. |+10 ¢
Ga 0, 0 —0; 05 0, a 0
A, R L 7 Y e
(6)
qi
&N (oo oeg
A, ) " loaoor]] %
Ga
A

P

This model has a (2x1) transfer function vector
ga(jw)

G (jw), in which the two transfer functions

t{jw)
and %ﬁ{%’ are uniquely determined by the seven

parameters fy,...,0;. Note that the dynamics of
the flexible shaft, together with the chosen output,
introduce an imaginary pair of zeros in the open
loop position transfer function %‘-’f}l, as can be de-
duced from (6).

It should be remarked, that the parameters in
this model in principle represent nonlinear effects,
as they may vary with signal amplitudes and/or
operation positions of the actuator. Three nonlin-
earities are incorporated in this structure.

First, there is the position dependence: the pa-
rameters 05 g 7 vary with the position of the actua-
tor. At some position as an operation point, these
parameters are considered to be independent of the
position.

Next, the parameters 05 and g vary with the sig-
nal amplitude in the frequency domain. Paramcter
5 represents the friction, which includes the non-
linear (amplitude dependent) effect of the Coulomb
friction. When Coulomb friction is neglected this
parameter is constant. Parameter fg represents the
leakage, which includes the dependence of the valve
flow on the pressure difference. Assuming that the
valve flow only depends on the valve steering cur-
rent #, this (amplitude dependent) nonlinearity is
canceled.

Taking the constant parameters as mentioned
here, a linear model with model structure (6) is
obtained. For a more detailed treatment of the the-
oretical model and the linearization procedure we
refer to Schothorst, G. van (1992).
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[ig. 2: Schematic drawing of the experimental

setup.

Given this linear model structure, the model pa-
rameters can be estimated from experimental data
by means of system identification techniques, as
treated in the next section.

3 Experimental setup, parameter
estimation and model validation

The experimental data, required for the parameter
estimation and the model validation, were obtained
with an experimental setup, which is schematically
depicted in figure 2. With the use of a Hewlett
Packard 3562A Dynamic Signal Analyzer, the open
loop frequency response vector Gy, (jw) of this sys-
tem was measured at several working points.

From one such a frequency measurement one pa-
rameter set 0;,...,07 of model (6) was estimated
by minimizing criterion (7):

(Gn Ger) -G Gn) ()

with: G (jws) estimated response at frequency
point jwy
number of frequency points in

Gm (.?W)

N

The idea is to convert the estimated parameter
set 0y,...,07 back to the ‘physical parameters’ of
the nonlinear model, given by equations (1) - (5).
Due to the nonlinear properties of this model it is
not possible to deduce all the physical parameters
at once from one estimated parameter set.

Measurements and estimations at 3 different ac-
tuator positions ¢, appeared to be imperative to

118

T T L

Amplitude

——— nl-modal
e MOGSURSd

T T TTTIT
=
3
£

Fraquency [Hz]

Phass

L " 1 ] L
1 10
Fraquency [Hz)

Fig. 3: Frequency response of the experimental ac-
tuator, the linear and nonlinear model,

open loop transfer %’:“;1

discriminate between S, SL; and SL,. For the fric-
tion parameter @ there was a considerable ampli-
tude dependency, while for #g this dependency ap-
peared to be negligible. Although it might be pos-
sible to separate the effects of viscous and Coulomb
friction by studying the amplitude dependency, it
appeared to be more accurate to estimate the fric-
tion parameters from time domain measurements,
as Coulomb friction is a typical time domain phe-
nomenon.

In figure 3 the frequency response of the linear
and the nonlinear model and the measured ‘re-
quency response of the open loop actuator (transfer
"".“Uﬁ‘;}) are compared. The typical dip in these re-
sponses at &~ 17 Hz, which is characteristic for the
imaginary pair of zeros in the transfer, was also very
well observable during the measurement in practice:
while the load oscillated at that frequency, the actu-
ator did not move. Especially in the low frequency
region the nonlinear model is a better description
of the hydraulic actuator, due to the correct in-
clusion of the Coulomb friction. This observation
was clearly confirmed by the model validation of
time responses and of the phase plot of the open
loop frequency response of the transfer 2204 See

i(7w)
Schothorst, G. van (1992) for a further examination




of this topic.

At this moment we can state that a satisfac-
tory similarity between experimental and model
responses is obtained, and that a reliable nonlin-
ear model is available. The model allows physical
interpretation of observed phenomena, which pro-
vides extra confidence in the model. Via a linear
model structure and with standard optimization
techniques, an effective procedure for the estima-
tion of the parameters of the nonlinear model is
developed. As a consequence, the linear model can
be assumed to be a good approximation of the non-
linear system and will be suitable for linear control
design techniques.

4 Control design

In common practice, the control of a hydraulic servo
actuator consists of a position feedback for tracking,
and mostly a pressure feedback to alter the amount
of damping. However, this control is rather sen-
sitive to Coulomb friction (causing tracking errors
and static offset) due to the pressure feedback loop.
Moreover, only a bandwidth of at most 7 Hz can be
achieved, while a bandwidth of 12 Hz is desired. In
order to achieve a higher performance we will de-
sign full order state feedback controllers, based on
model (6).

The parameters used in this model are those es-
timated in section 3, except for one: the torsion
stiffness of the flexible shaft is chosen somewhat
smaller. In this way, the frequency of the zero of
the system is in the same range as the desired band-
width, so that the effect of the dynamics of the
flexible shaft on the performance of the controlled
system can be made clear.

From equation (6) it is clear that only A, and
¢a are being measured. To be able to feed back
all states, a full order state estimator has been de-
signed with the linear Kalman filter technique. The
state and output noise intensity matrices which are
required in this design procedure, acted as design
parameters. Assuming the output noise on the A,-
signal to be large with respect to the ¢,-signal, and
assuming the state noise intensities to be related to
the input noise resulted in a reasonable fast state
estimator.

In order to realize the desired closed loop band-
width, a pole-placement controller was designed.
Hereby, we placed the three dominant ‘actuator
poles’ on a circle of radius 75 in the complex plane.
The remaining pair of almost imaginary poles due
to the flexible shaft needed just some extra damp-
ing. For the theory of state estimation and state
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Fig. 4: Frequency response of nonlinear model,
controlled by the fifth order, third order

and classical controller, transfer qq“';{;‘-’i}.

feedback respectively, see e.g. Chen, C.-T. (1984)
and Anderson, B.D.O. and Moore, J.B. (1989).

Having obtained a satisfactory controller for the
linearized model, we applied it to our nonlinear
model. TFrom these simulations we noted that:
1] the gained dynamic performance in terms of
closed loop bandwidth is not disturbed by the non-
linearities of the model, and 2] the nonlinearities
highly destroy the low-frequency tracking perfor-
mance: instead of an amplitude gain of 1 in the
linear case, a gain of c.a. 0.9 is found with the
nonlinear model.

In order to investigate the benefit of full order
state feedback, we designed a classical controller
(feedback of g, and A,) and a partial state feed-
back plus estimator (feedback of ¢,, ¢, and Ap),
based upon a model neglecting the flexible shaft
dynamics. The closed loop frequency responses of
the nonlinear model (transfer % ), controlled by
the classical, the third order and the original fifth
order controller are given in figure 4. Note that the
dip in the amplitude plot is now located at ~ 12 Hz
instead of at ~ 17 Hz. The following two remarks
can be made:

o With respect to classical feedback, there is a
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considerable improvement of the bandwidth by
means of state feedback. However, the aimed
bandwidth of 12 Hz has not been achieved.

o The fifth order controller gives a higher band-
width than the third order controller,

The fact that the required bandwidth is not
achieved, despite the poles were placed on their de-
sired locations, is clearly caused by the location of
the zeros: they are limiting the achievable band-
width in the transfer a%:j—‘{;%i However, while one
is often interested in the positioning of the load, it
may be better to look at the transfer % It
can be seen from the linear model that no zeros
are present in this transfer. And indeed, the closed
loop frequency responses of the third and fifth order
controlled nonlinear model (transfer qf:f:?:wl) in fig-
ure 3, show that the bandwidth of 12 Hz has been
reached. Moreover, the fifth order controller ap-
pears to give better results in terms of bandwidth
once more, which justifies the inclusion of the flex-
ibility in the model®.

LAt the investigation of an equivalent system in Tzawa, K.
and Nakayama, Y. (1991) (without Coulomb friction), the
transfer q‘%(%i has been used. Although they validated
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transfer

Although a good performance is achieved with re-
gard to the bandwidth by the designed controllers,
this is not the case for the low frequency track-
ing behavior cq. positioning accuracy. This ap-
pears to be caused by the Coulomb friction; this
strongly nonlinear phenomenon highly disturbs the
A,-signal at low frequencies. This again disturbs
the linear state estimation of the Kalman filter at
low frequencies. So disturbed estimated states are
fed back by the control law, which results in bad
tracking performance. In order to reduce the last
effect, an integrator has been included in the es-
timator feedback path of the estimated position-
state. Thus, the estimated pressure state may dif-
fer from the measured, disturbed A,-signal at low
frequencies, but the position-state estimation error
is reduced at low frequencies by the integrator. In
this way, the low frequency tracking behavior has
been improved at simulation level as shown in fig-
ure 6.

An experimental verification of the control de-

the model and showed the influence of the shaft stiffness
and load inertia on the behavior, it became not clear how
this would affect the choice of a specific control structure
and the accompanying performance results,
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sign. will be the final subject of this paper in section

-

e

5 Experimental results

As the simulation model was build in exactly the
ssame configuration as the experimental setup, in-
cluding scaling factors et cetera, the designed con-
troller which was tested on the simulation model
(with the correct parameter for the torsion stiffness
of the flexible shaft), could be used directly for im-
plementation in practice. After an automated dis-
cretization with a sample time interval At = 1 ms
by Matrix,, the controller was implemented auto-
matically in the AC-100 digital controller (figure 2).

For different designed controllers, the responses
were measured in practice and compared with the
simulated responses. A representative response is
given in figure 7. In this figure, the simulated
as well as the measured closed loop frequency re-

sponses (transfer 22040} are given for the fifth or-
‘Fr:!(}“‘)

der dynamic compensator (without integrator in
the estimator). The given responses show a good
agreement between simulated and measured re-
sponse, especially at two points:

e the achieved bandwidth is predicted correctly
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by the simulation model

o the disturbing effect of the Coulomb friction
on the tracking behavior at low frequencies is
clear in both responses.

These results were confirmed by simulated and
measured responses in the time domain. The state
feedback controller resulted in very fast step re-
sponses indeed, although the static positioning ac-
curacy was moderate. These experimental results
can be seen as a further validation of the nonlinear
model.

6 Conclusions

In this article we have discussed the modeling and
control of an industrial hydraulic rotary vane actu-
ator. The considered dynamics in the model have
been selected upon practical relevance. Special at-
tention is paid to the flexibility between actuator
and load, and to the Coulomb friction. A linearized
version of the nonlinear model is used for parame-
ter estimation on the basis of measured data, and
for control design. The results of practical appli-
cation of the designed controllers were conform the
expectation from simulation studies. Model based
control design proved to be capable of achieving
high performance specifications for the controlled
system. Specifically the following three items be-
came clear:

e Via a linear model structure and standard op-
timization techniques, one can effectively es-
timate the parameters of the nonlinear model
description.

o If the frequency of a zero, caused by the dy-
namics of a flexible connection between the
actuator and the load, approaches the desired
bandwidth, it is essential to include the con-
cerned dynamics in the model used for control
design.

e The closed loop behavior of a state feedback
controlled system (including a state estimator)
is considerably affected by Coulomb friction,
with regard to tracking behavior at low fre-
quencies and to static positioning accuracy.

As these type of rotary vane actuators have been
used in an experimental SCARA-type robot build
in our laboratory, above mentioned results will be
important issues in the modeling and control re-
search of the complete robot.




References

Merrit, ILE. (1967). Hydraulic conirol systems.
John Wiley & Sons, Inc.

Viersma, T.J. (1990). Analysis, Synthesis and De-
sign of Hydraulic Servosystems and Pipelines.
Delft University of Technology, Faculty of Me-
chanical Engineering, 2nd edition.

Walters, R.B. (1991).  Hydraulic and electro-
hydraulic control systems. Elsevier applied sci-
ence,

Paap, V.W. (1990). Modeling and design of an in-
dustrial robot. (Dutch). Mechanical Engineering
Systems and Control Group, Delft University of
Technology, report number A-552.

Chen, C.-T. (1984). Linear System Theory and De-
sign. Holt-Saunders International Editions.

Anderson, B.D.O. and Moore, J.B. (1989). Optimal
Control, linear quadratic methods. Prentice-Hall
International, Inc.

Schothorst, G. van (1992). Modeling and control
of a hydraulic rotary vane actuator. Mechanical
Engineering Systems and Control Group, Delft
University of Technology, report number A-575.

Southward, S.C., Radcliffe, C.J. and MacCluer,
C.R. (1991). Robust nonlinear stick-slip fric-
tion compensation. Journal of Dynamic Sys-
tems, Measurement, and Conlrol, Transactions
of the ASME, vol. 113, 639-645.

Wierschem, T. Von (1981). Position control of
weakly-damped drives by state feedback. (Ger-
man). Regelungstechnik 29, Heft 1, 11-19.

Feuser, A. Von (1984). Design of state controllers
in the time and frequency domain for position
control of a valve-controlled servo-hydraulic lin-
ear drive. (German). Regelungstechnik 32, Heft
9, 309-316.

Kockemann, A., Konertz, J. and Lausch, H. (1991).
Control algorithms for electro-hydraulic servo
drives based on industrial marginal conditions.
(German). Automatisierungstechnik 39, Nr. 6,
187-196.

Neumann, R., Engelke, W. and Moritz, W. (1991a).
Digital path control for a hydraulic portal robot.
(German). O+P »Olhydraulik und Pneumatike
35, Nr. 3, 206-216.

Neumann, R., Engelke, W. and Moritz, W. (1991b).
Robust simultaneous controller/observer design
by paramefer optimization for a hydraulic portal
robot. (German). Automatisierungstechnik 39,
Nr. 5, 151-157.

Izawa, K. and Nakayama, Y. (1991). Matching be-
tween servo drive and load structure of a servo
system. Third Triennial International Sympo-

sium on Fluid Control Measurement and Visu-
alization, ASME.

Shih, M.-C. and Chen, C.-K. (1991).
hydraulic servo valve controlled rotary actuator.
(German). O+P »Olhydraulik und Pneumatike
35, Nr. 1, 39-42.

Yun, J.S. and Cho, H.S. (1991). Application
of an adaptive model following control tech-
nique to a hydraulic servo system subject to un-
known disturbances. Journal of Dynamic Sys-

Electro-

tems, Measurement, and Control, Transactions

of the ASME, vol. 113, 479-486.




©1993 Delft University Press Selected Topics in Identification, Modelling and Control

Val. 6, December 1993

Design and experimental evaluation of a state esti-
mator for a continuous crystallization process

R.A. Eek, S.T. Boerstra and Sj. Dijkstra

Mechanical Engineering Systems and Control Group

Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Abstract. The development of a state estimator for a crystallization process, equipped
with a sensor for the crystal size distribution (CSD), is discussed. The estimator is
designed on the basis of an infinite dimensional non-linear process model, which describes
both the dynamics of the crystal size distribution and the output of the sensor as a
function of the CSD. The process model is lumped to a set of non-linear first order
differential equations, which are linearized leading to a high order state-space model.
The process state is augmented with a single term to correct for background errors of
the sensor and a possible model deficit in the small crystal size range. With this model
a constant error feedback gain is designed using Kalman filter theory. Estimates are
used for the measurement and process noise covariance matrices. The designed gain
is implemented in the non-linear lumped process model. The resulting state estimator
is customised with raw data from a pilot crystallizer, equipped with an on-line CSD
sensor. For different sets of output data the designed estimator is able to track the
process output signal trend, while reconstructing the CSD, the supersaturation level, and
a set of related variables. The estimator designed at one specific steady-state process
condition has sufficient performance at other conditions. Moreover sufficient, robustness
is demonstrated for sensor failure, an unfitted initial state and process disturbances.

Keywords. process control; crystallization; observability; state estimation; distributed
parameter system

1 Introduction an important parameter since it strongly influences
crystal nucleation and growth kinetics which deter-

- . : Y ! : mine the crystal size, the purity and morphology of
[he dynamic behaviour of continuous industrial & * PR PROIoEY

crystallizers is often characterized by badly damp-
ened or even oscillatory behaviour in time (Eek,
1993). The performance of a suspension crystallizer
is mainly determined by the size, the purity and
the morphology of the produced crystals. Although
crystal purity and morphology aspects are rela-
tively new and active areas of present academic and

particles.

In industrial practice undesired dynamics of the
CSD and supersaturation limit the marketability
and transportability of crystals and put a constraint
on the performance of the downstream crystal han-
dling processes like thickeners, centrifuges and dry-
ers. Therefore a demand exists for control systems

industrial research, the size of crystals expressed by
the crystal size distribution (CSD) is often consid-
ered as the most important process parameter to
be optimized. Subsequently the supersaturation of
the solution which enables crystal growth is seen as

which increase the overall performance of crystal-
lizers and downstream processes.

A basic requirement for the implementation of a
control system is the availability of accurate and re-
liable information on the relevant process dynamics.




For on-line measurement of the CSD and supersat-
uration in crystallizers different sensors have been
developed which, however, still have severe short-
comings for application. On-line measurement of
supersaturation is usually extremely difficult as the
relative level of supersaturation is often not more
than 1 percent. CSD measurement is difficult as
most CSD sensors are indirect, i.e. reconstruction
scheme’s are required to obtain a proper estimate
of the CSD based on the output of the sensor. So-
lutions which are often applied to this estimation
problem are direct inversion algorithms which es-
timate the CSD based on the estimated inverse of
the sensor model. This inversion procedure is how-
ever ill conditioned and as a consequence sensitive
to measurement noise. In addition, the resolution
is limited and the inversion algorithms do not take
into account the evolution in time of the measured
signal trend which is governed by the process dy-
namics.

Another approach to the CSD estimation problem
is the use of dynamic process information to re-
construct the distributions, This can be achieved
with state estimators and observers, which were in-
troduced in the 1960’s by Kalman and Luenberger.
State estimators and observers are derived from a
process model which is used to estimate the state
of a process from available (limited) input and out-
put measurements. Basically a state estimator is a
dynamic system, which runs on a computer and op-
erates sequentially on the raw sensor data as they
become available. An optimal designed estimator
will give the best compromise between sensitivity
for measurement noise and rapid convergence to
the real process. In contrast with state estima-
tors, observers are mostly designed for determinis-
tic systems with insignificant process or sensor dis-
turbances.

The purpose of this article is to present a practical
state estimator for a crystallization process, based
on a first principles process model. This estima-
tor should primarily reconstruct the CSD and the
supersaturation level for control purposes, and sec-
ondly serve as a process monitor to facilitate the
operator task in making decisions with respect to
manual control actions.

Most observer applications reported in the liter-
ature deal with space systems or navigation sys-
tems. Unfortunately the number of applications in
the chemical process industry is still limited, due
to severe modelling limitations and sometimes to
the absence of accurate and robust on-line measure-
ment systems. Some successful implementations in
polymerization reactors are reported by Dimitratos
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(1989) and in monitoring for hazardous conditions
by Gilles (1981). Applications of state estimation
techniques in the field of industrial crystallization
are reported by Cooper (1986), Hashemi (1982),
Myerson(1987) and Tsuruoka (1987). Most of these
applications lack robust on-line process sensors and
are often based on simple (MSMPR) process mod-
els.

In this paper an experimental 970 litre pilot crystal-
lizer equipped with a robust CSD sensor was used
to generate process data. The CSD measurement
system comprises a continuous slurry diluter and a
sensor based on forward light scattering. The esti-
mator is based on a lumped version of a non-linear
distributed parameter model of the CSD dynam-
ics. This lumped model is chosen instead of the
distributed model as it strongly facilitates the fil-
ter design and implementation (Anderson & Moore,
1979). A detailed description of the process model
and the estimation of unknown model parameters
is given by Eek (1993). Step response analysis,
based on a linearized version of the model around
its steady-state, indicates that the crystallizer can
be considered as a sufficiently linear process. For
this reason we applied linear Kalman filter theory
to design the constant Kalman gain matrix. The
resulting filter is tuned and evaluated on experi-
mental data obtained from the pilot crystallizer.
Several robustness features like sensitivity of the es-
timator for sensor failure and process disturbances
are outlined.

The approach we follow is applicable to other crys-
tallization processes equipped with different sensors
provided that sufficient accurate models for their
behaviour are available,

2 Process description

The crystallizer studied here is an evaporative
isothermal continuous draft-tube baffled crystal-
lizer equipped with an annular zone around the
crystallizer vessel in which classified removal of the
fine particles is established.

An elementary process flow sheet with the process
inputs, outputs and the constant controlled internal
variables is depicted in Fig, 1.

PI control loops are present to maintain the slurry
temperature (7'), the pressure in the crystallizer
(Pr), the crystallizer volume (V), the fines (Q;)
and product (@Q,) removal flows, the temperature
of the dissolved fines (7)) and the total heat in-
put (P), at prescribed set-point values. Effective
actuators for the process dynamics are the fines re-
moval rate, the total heat input to the system de-




Fig. 1: Schematic drawing of an evaporative Draft
tube baffled crystallizer, equipped with a
fines removal system.

fined by: Pyt = Pin + P.. and the product removal
rate. CSD measurements are performed at sample
location SL (Fig. 1), where the CSD of unclassified
removed product crystals is measured.

The CSD is characterised by the population density
function n(z,t), defined by:

AN(z,t
(et £ Jim, 2720,

(1)

with N(z,t) the cumulative number function de-
scribing the number of crystals per unit volume,
with a size equal or lower than z.

3 Process modelling

A widely accepted framework for the modelling
of crystallization processes is a population balance
model in which CSD dynamics are described by a
first order hyperbolic partial differential equation:

on(z,t)
o
0G.(z,)n(z,t) _ Qplt) + hylz,)Qu(1)
~F Oz % 7 n(xst)s (2)

with a boundary condition n(z = zo,t) and an ini-
tial condition: n,(z,t = to).

With this equation CSD dynamics are described by
crystal growth and birth rates and fines and prod-

product

article flow
P } lens detector

expander |

He-Ne laser

Fig. 2: Principle of forward light scattering.

uct crystal removal. The crystal birth rate is in-
cluded in the model as a boundary condition. The
crystal growth rate, G., is determined by the su-
persaturation which is described by:

=2 = fac(ult) (a.). ®)
With u(t) the input vector which is given by: u(t) =
{Qp(1), Q4(t), Pist(t)}, and the infinite process state
z, given by: z(z,t) = {n(2,t),AC(t)}. Empirical
relations for the crystal growth and birth kinetics,
the separation efficiency of fine and product crystal
removal systems and the initial state are included.
The crystal birth rate B is assumed to be dependent
on the supersaturation level and the presence of
other crystals:

B(t) = fo(n(z,t), AC(2)). (4)

The empirical relationships contain a set of un-
known parameters 6, which are estimated from pro-
cess data resulting in optimal parameter values 6.
A detailed description of the population balance
model is given by Eek (1993) and de Wolf (1990).
The crystallizer model is extended with a sensor
model to describe the output of a Malvern™ par-
ticle sizer as a function of the CSD that passes
through an optical cell. The working principle is
outlined in Fig. 2. Measurement of particle size
distributions with light scattering techniques is well
known and often applied (Hecht, 1987). The main
advantages are the relatively wide range of crystal
sizes that is covered, the speed of performance and
the good detectibility of error sources. Fraunhofer
theory was used to develop a model for the parti-
cle sizer. The discretized version of this model is
written as:

y = H(a)n, ()

with H the sensor model matrix, y the light inten-
sity vector measured on the detector rings and n a
discrete population density function.

Inversion of the model given by Eqn. 5 can be used
to calculate the size distribution from an averaged




intensity vector y. Boxman (1992) presented a pro-
gram that estimates the CSD from:

iy = (HTWH)"H"Wy, #,>0. (6)
The resulting CSD: 7, (2, ), denotes a discrete crys-
tal volume distribution based on a grid with loga-
rithmically equidistant size classes. From this dis-
tribution characterizing quantities like a median or
spread can be calculated. The non-negativity con-
straint is added to avoid physically impossible solu-
tions. The weighting matrix W is the noise covari-
ance matrix that corresponds to the averaged light
intensity vector y. We will compare the outcome
of this direct inversion approach with the observer
approach.

4 Model lumping and linearization

The process model is lumped to a finite non-linear
state space model. For this purpose a second or-
der accurate method-of-lines scheme is used (de
Wolf, 1990). Subsequently the model equations
are linearized by considering small disturbances
around the stationary solution. The steady-state
solution is calculated from the right hand side of
Eqns. 2 and 3 and the expression for the boundary
condition from Eqn. 4. As these equations do not
represent an explicit solution, an iteration scheme
is applied to find the stationary solution.
The linearized equations constitute a high order lin-
ear state-space structured model which is given by:
Az = FAz+ GAu,

20 = 24

A= BNz

where A denotes a small perturbation around the
stationary solution. To improve the numerical con-
dition, this model is scaled by transforming the pro-
cess state with a diagonal transformation matrix,
which has the inverse of the stationary process state
on its diagonal. The transformed linear state-space
model has 99 states and is used for further analysis
of the process behaviour and the design of a filter.
In Fig. 3 the step response of the linear model on
a positive step of 10 percent in the product re-
moval rate was compared to the positive and in-
verse negative non-linear model response. For a
model with negligible non-linearities the positive re-
sponse should equal the inverse negative response.
The product removal flow induces a proportional
change in the main dynamic response time period.
Disturbing the product removal rate can be consid-
ered as a worst case, because the responses on fines

n(z2)

n(40)

n{BD)

" : " L " L Pl L
o 1 2 3 4 5 -] 7 a 9 10 11

time [hours]

Fig. 3: comparison of linear (dashed) and non-
linear response of three state elements n(2),
n(40) and n(80) on a step in the product re-
moval rate,

and heat input disturbances were found to be quasi-
linear. Therefore it is asumed that the popula-
tion balance model has only limited non-linearities
which can be approximated by linear models with
sufficient accuracy,

5 Process observability

The state space model {F, G, H} enables the esti-
mation of observability properties. An important
tool to study observability properties of a process
is the observability Gramian @ which is defined as:

a= / " HHT eFdt, (7)

0

An interpretation of the observability Gramian can
be given in terms of energy. The amount of energy
measured at output of the system from ¢t = 0 to

t = oo due to an initial condition zg at ¢ = 0 with
zero inputs is:

JCRTO 2 ®)
0

If Q is singular an unobservable initial condition
will exist that will not contribute to the output sig-
nal energy. In addition @ will provide information
about well or weakly observable states.

6 Kalman filter design

With Kalman filtering theory a state estimator can
be devised which takes into account the stochastic
nature of model and process information in a sys-
tematic way. The working principle of a Kalman
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Fig. 4: Schematic drawing of a continuous Kalman
filter.

filter is depicted in Fig. 4. The error € between the
actual process output y and the model output § is
calculated and amplified with the so called Kalman
gain K. This results in a correction signal which
is used as an additional input that forces the model
in a way that the estimated state converges to the
real process state.

For linear time-invariant state-space models the so-
lution for the optimal filter gain is given by the so-
lution of an algebraic Ricatti equation (Anderson
& Moore, 1979). Extending the model described
by Eqn. 7 with uncorrelated random process and
sensor noise inputs gives:

by.
—

o
——

Il

Fz(t) + Gu + w(t),

y(t) = (9)

The corresponding covariance matrices for the sen-
sor and process noise are given by:

Hz(t) + v(t).

E{vTv} =V, (10)

E{wTw} = W. (11)

Based on this model the filter gain matrix K is
given by:
Ky = PeHYV Y, (12)

where P; satisfies an algebraic Riccati equation:

PiFT + FP; — PLHTVIHP, + W =0.  (13)

This solution indicates that an accurate process and
sensor model and good estimates for the covariance
matrices for the different noise sources play a deci-
sive role in the filter design procedure. This can be
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208
b D)z 210/
Fig. 5: Experimental time response of scaled light
intensity on first 20 detector rings (fines re-
moval rate 1.0 1/s).

seen as a disadvantage as it is often difficult or even
impossible to obtain a sufficiently accurate model
representation of the process and the corresponding
noise sources. However in many practical situations
it suffices to treat the noise covariance matrices as
free design parameters that are adapted to achieve
a satisfactory filter response based on an imperfect
model.

T Results

The results of two free-run experiments (described
by Eek, 1993), measured on the product output
(SL in Fig. 1) of the pilot plant, at different pro-
cess conditions, were used to optimize and evaluate
the designed state estimator. Figs. 5 and 6 show
the raw light intensity patterns measured on the
inner 20 detector rings of the Malvern instrument,
over 30 hours for a fines removal rate of 1.0 1/s and
3.4 1/s respectively. The measured signal trends
are corrected for outliers by linear interpolation.
In Fig. 7 the corresponding experimental time
response is given for the median crystal size X;g
which was obtained from volume based distribu-
tions calculated by direct inversion (Eqn, 6). In this
plot all outliers caused by tube blockage or other
process disturbances are present.
From inspection of the singular values of the observ-
ability Gramians, depicted in Fig. 8, it is concluded
that the system is weakly observable. Because only
a limited number of modes (< 6) are well observ-
able, a lot of redundancy is present in the 31 pro-
cess outputs. To improved the numerical condition
and to reduce the influence of measurement noise
the measurements and the model output matrix H
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Fig. 9: Columns of the optimal feedback gain K/
scaled by the stationary crystal size distri-
bution.

are transformed by a matrix U,,. This matrix is
obtained from the singular value decomposition of
the output matrix given by: H = U,E,VT, where
¥, contains the 31 singular values of H and U, and
V, are unitary matrices containing the right and left
singular vectors. The matrix U,, now contains the
first n, left singular vectors corresponding to the
largest singular values. The reduced output matrix
H, is now calculated with: H, = UTH. Good re-
sults are obtained when only three modes (n, = 3)
are taken into account.

The Kalman filter gain is calculated from the so-
lution of the Ricatti Equation 13 for the model
{F,G, H,,V,W}. Diagonal structured matrices are
used for the noise covariance matrices V and W,
The matrix W could easily be estimated from noise
present in the experimental data. A rough esti-
mate of the process noise covariance matrix V was
obtained by first perturbing the physical parame-
ters 8 of the model randomly within their estimated
confidence bounds and calculating the correspond-
ing stationary crystal size distributions. From the
resulting large set of stationary crystal size distri-
butions an estimate is obtained for the variance of
each state variable.

The calculated Kalman gain is implemented to the
non-linear model as depicted in Fig, 4. Fig. 9 shows
the columns of the (scaled) optimal gain K;. The
final filter is adapted to achieve a satisfactory filter
response by amplifying the designed filter gain by
a constant factor ay. To reduce the sensitivity of
the filter for outliers the gain Ky is reduced to zero
when strong signal outliers occur. Further the state
to be estimated is augmented with one element to
correct for model deficit in the small crystal size




range (Eek, 1993).

In Figs. 10 and 11 the filtered and measured light
intensity on the rings {5,10} of the detector are de-
picted for the cases of small and large fines removal
flows, respectively.

These results indicate that the filtering capabilities
of the designed state-estimator are good. The sen-
sitivity for outliers is low and a significant noise
level reduction is achieved without introduction of
a significant bias. Further the model error causing
a strong deviation in the open-loop model response,
which is further explained by Eek (1993), for a large
fines flow is corrected by the observer.

The capability of the estimator to reconstruct ad-
ditional process information which is relevant for
operators or engineers is depicted in Fig. 12 which
shows reconstructed trends of the median crystal
size Xs0, the nucleation rate B and the supersat-
uration AC corresponding to plant start-up condi-
tions with a low fines removal rate. The median
crystal size obtained from the direct inversion ap-
proach is added as a dotted line in the first strip of
these plots.

In Fig. 13 the same trends are depicted but the
estimator reconstruction is deliberately biased by
selecting the steady-state CSD as the initial CSD.
In addition it is assumed that sensor measurements
were not available between 6 and 11 hours after
start-up. In this period the estimator generates an
uncorrected open-loop estimate of the process state
variables. It appears that although these large dis-
turbances bias the estimates the model still follows
the signal trends reasonably well.

In Fig. 14 the observer reconstruction of a certain
relative volume distribution at four different time
instants corresponding to the time points of the
trends depicted in Fig, 12 are given. In Fig. 15
the same distributions obtained from direct inver-
sion are depicted. It can be seen that the resolution
of the estimated CSD is much larger then the res-
olution of the CSD obtained by direct inversion. It
should be noted, however, that the error between
the model and the measured output signals, as can
be seen in Figs. 10 and 11, is not uncorrelated white
noise. Because no strong process disturbances have
ocured this indicates that a model error exist which
bias the estimates.

8 Discussion and conclusions

With the application of a state estimator dynamic
process information stored implicitly in a dynamic
model is combined with on-line process information
to reconstruct quantities that cannot be measured
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directly. The strong advantages of this approach
compared to a direct sensor inversion approach, in
which only static sensor model knowledge is used,
are:

¢ Since the correlation in time of the measured
signal trends is used, the variance of the es-
timated state is lower as compared to direct
inversion techniques.

®» When process data are not available for a lim-
ited period of time, due to sensor failure, an
open-loop model prediction of the process out-
put signal trend can be used. This will prevent
a controller from undesired upsets.

e Physical quantities like the supersaturation,
the crystal birth rate and the crystal growth
rate, that cannot be measured directly, are re-
constructed to support operators and engineers
to gain knowledge on the process physics.

It should be noted that the state estimator is a dy-
namic system which will respond, with a certain
response time, to setpoint changes. When unmod-
elled process disturbances occur, the trend of the
observer state should be corrected solely on the ba-
sis of the reconstruction error, which will introduce
a bias in the estimated state.

As described a good model and covariance matrices
for the different noise sources play a decisive role in
the filter gain design procedure. This can be seen as
a disadvantage as it is often difficult or even impos-
sible to obtain sufficiently accurate representations
of the nominal model and the corresponding noise
models. However when a model is available it will
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enhance the quality of reconstructed distributions
as compared to the direct inversion approach.

This paper has indicated how a state estimator for
a crystallization process that is based on an simpli-
fied high order model can be applied for reconstruc-
tion of the CSD and related quantities from raw
plant data. This approach forms a good basis for
observer applications for industrial crystallization.
Future work will be focused on the topic of observer
robustness and the search for simple dynamic mod-
els which still enhance the quality of reconstructed
process states as compared to direct inversion,
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Abstract. A recent extension of balanced reduction to a specific frequency-weighted
closed-loop configuration is reformulated to fit into the more general controller synthesis
configuration using linear fractional transformations. Both system and controller are
written in a feedback loop of an interconnection system of which the performance is
specified. The order-reduction scheme is as simple as balanced reduction and facilitates
interactive step-by-step solution of the low-order controller design problem. High-order
models encountered in structural dynamics control can be reduced safely within a few it-
erations. New properties of the method are derived and two examples show the efficiency
of the method.

Keywords. order-reduction, controller design, balancing, linear fractional transforma-
fions, structural dynamics, computer-aided design.

1 Introduction Model reduction is often the only way to start the

[n high-performance control of mechanical servo
systems, one of the hardest problems is to find an
appropriate linear model of the system to be con-
trolled. A model of the mechanical part is often de-
rived using finite element techniques. These mod-
els of the structural dynamics can only be accurate
for a bounded set of input and disturbance signals.
Knowlegde about the control signal(s) however is
very limited in the early stage of servo-system de-
sign. This forces one to model in great detail which
leads to high-order models. The servo-controllers
are preferred as simple as possible in practice. Since
the controller complexity roughly equals the com-
plexity of the controller design model, order reduc-
tion of either the system model or the controller
is indispensable. If the model of the mechanical
system is of very high order, the controller synthe-
sis will generally fail to generate reliable results.

8

controller design process. The evaluation of the fi-
nal performance of any controller should always be
done using the most accurate (high-order) model
of the mechanics. For mechanical servo-systems we
can say that high performance with low-order con-
trollers requires some type of iteration: in each step
a better understanding of the essential system dy-
namics can be obtained and the impact of the per-
formance wishes on the controller complexity be-
comes clearer. In the light of this it is important to
have easy manageable reduction schemes for reduc-
tion 'in-the-loop’ that apply both to the mechanical
model and the controller.

To make things more clear, let G represent the
mechanical model, K a controller, and M a collec-
tion of frequency weighting functions that are in-
volved in the performance specification of the servo-
system. The iteration can be performed at different
levels




I model structural dynamics

— high-order model (7., (A)
2 define performance

— criterion for the attenuation of

I[ M, (;m y l'l\’tmknnwn) (B)

3 reduce model

— reduced model @, (C)
4 make controller synthesis configuration

=3 I{ M, ("u s -I\r::umpul.abl(‘.} ( D)
5 compute controller

— controller i, (E)
6 reduce controller

— implementable controller K, (F)
7 evaluate performance

— I(M,G,, K;) OK, or go back (G)

The convergence is better if we take advantage of
the knowledge gained in previous steps. For step
3 this means that the unknown controller may be
replaced by a preliminary one to reflect the closed-
loop in which (7,, operates better. The order re-
ductions in step 3 and 6 should be performed in
such a way that convergence of the iteration does
not break down. The reduction method for step 3
should be very efficient and robust to aveid numer-
ical problems. Iterative controller design requires
many steps of adjusting weighting functions, order
reduction, and controller synthesis.

This paper focusses on order reduction within
The strategy is to use bal-
anced reduction in a closed-loop configuration (Ce-
ton, Wortelboer & Bosgra, 1993) which is relatively
simple, and to adjust the results if necessary by
introducing frequency weighting functions; these
can be created efficiently based on the frequency-
dependent reduction error (Wortelboer & Bosgra,
1992).

Balanced reduction in closed-loop can be applied
to model and controller. It only requires the closed-
loop system fo be stable. It is a straightforward
extension of balanced reduction to systems in a
feedback connection in the same way as frequency-

the above scheme.

weighted balanced reduction is an extension of bal-
anced reduction to systems in a series connection
(Enns, 1984a, 1984b). Frequency-weighted bal-
anced reduction can be used for reduction in closed-
loop systems as Enns showed, but system and con-
troller have to be stable. The creation of closed-
loop relevant weighting functions may be difficult
and high-order functions may be needed to empha-
size specific [requency regions.

Other reduction techniques that take the con-

trolled system into account are LQG-balanced re-
duction (Jonckheere & Silverman, 1983), and H_.-
balanced reduction (Mustafa 1989). The implicit
assumption in these methods is that a normalized
full-order LQG (or H,..) controller closes the loop.
These controllers can be computed and reduced in
the same manner. Considering the scheme above,
these methods are situated in steps 5 and 6 pro-
vided we have an unweighted performance specifi-
cation in LQG or H., sense. For fixed-order LQG
controller design, Hyland & Bernstein (1984) for-
mulated the optimal projection equations to satisfy
the first-order necessary conditions for quadratic
optimality. Due to the numerical complexity of the
equations, this method cannot (yet) be applied di-
rectly after step 2 in the above scheme.

Once a controller has been computed, controller
reduction can be applied. Closed-loop controller
reduction can and has to take full advantage of
the knowledge of the full-order closed-loop system.
Many strong results have been reported on this is-
The factorization theory largely stimulated
these results: see Anderson & Liu (1989) for an

Sue.

overview. Fractional balanced reduction, an exten-
sion of balanced reduction to possibly unstable sys-
tems is closely related to LQG-balanced reduction;
see Meyer (1988). Bongers & Bosgra (1991) pro-
pose frequency-weighted optimal Hankel-norm re-
duction with weightings based on the factors of the
system and the full-order controller, and they de-
rive an a priori controller order that is sufficient
for closed-loop stability. De Villemagne and Skel-
ton (1988) proposed a controller reduction method
based on “controller canonical correlation coordi-
nates” to force reduced-order stability while retain-
ing important closed-loop system parameters.

This paper describes an alternative approach
that tries to perform closed-loop relevant reduction
in a configuration that is also used for controller
synthesis. The incorporation of frequency weight-
ing functions is given special attention. It is shown
how simple extensions of the famous balance and
truncate procedure can be used to achieve fast and
accurate order reduction within a general controller
design configuration. lterations on the modelling
method or the controller design method are not dis-
cussed. We concentrate on continuous time linear
systems with performance specifications in the fre-
quency domain. The organisation of this paper is
as follows.

First the general controller synthesis configura-
tion (CSC) will be introduced and adopted for com-
bined system and controller reduction. Secondly
the principles of balanced reduction will be formu-




lated in terms that opens up the way for the ex-
tension of balanced reduction of a system intercon-
nected with any set of other systems. Frequency-
weighted and closed-loop balanced reduction are
special cases. Finally the effectiveness of the pro-
posed method is shown in a standard example in-
troduced by Enns (1984), and in CD-player model
reduction.

2 A general feedback structure

In order to be able to do system and controller
reduction in any stage of design, the system and
controller have to be isolated from the controller
design configuration. The general interconnection
structure proposed is given in Fig. 1. This infer-
connection structure was first used to define the ro-
bust controller design problem (Doyle, 1982). The
performance is the attenuation that is achieved be-
tween signals w and z. ( is the system model,
and K is the controller. M will be referred to as
the connector system or connector and incorporates
any selection of weighting functions.

G

Uy

U g

K

2 =7I(M,G, K)w,

Fig. 1: Interconnection with weights in M and sys-
tem G and controller K in feedback loops
2.1 Open-loop frequency-weighted model

reduction

In the early stage of design we only have a very
high-order model and some idea of the required
performance specification. Sometimes a prelimi-
nary controller is available. Here we assume we
do not know any controller that achieves closed-
loop stability. We discern two different approaches
in adapting the general controller design configu-
ration. 1) the controller is set to zero, and i) the
controller is omittted.

This means
the controller inputs and outputs are assumed to
contribute only weakly. The equivalent feedback
scheme then is

i: 'The controller is set to zero.

3

n

Ug

& ——

Yo

po— 1

M

z=1I(M,G,0)w

21: The controller is empty: K = []. This means
the controller input channels are considered rele-
vant outputs in the model reduction step, and the
controller output channels are used for inputs in
model reduction. The equivalent feedback scheme

then is
T Y

G

uG!

S e M p— W
e |&]=zone [ 2]
2.2 Controller Synthesis Configuration

(CSC)

In the controller synthesis step, the model is al-
ready of an order amenable to controller synthesis.
The aim is to find a controller K(s) that achieves
sufficient attenuaftion of the following system

=

U (

Fig. 2: Controller synthesis configuration

N

w

Yr

K

z=F(N, K)w
N = Fu(M, Q)

The model used in controller synthesis is of lim-
ited order n.

2.3 Controller reduction configuration

The controller reduction configuration is the same
as the controller synthesis configuration with the
difference that the model behind N might be of the
original order m.

3 Reduction based on Transform &
Truncate

Continuous-time finite-dimensional time-invariant
linear systems can be written in state-space as

Az + Bu

S Czr+ Du




(i is a specific realization, and it will be abbreviated

as
._[A|B
B [r D]

T'~'z other realizations can be defined
for the same input-output system:

Using & =

T-*AT% + T 'Bu

CTax+ Du
i {T"AT|T—IB] _|A|B
ez il (7 clp

and (& are two realizations of the same transfer ma-
trix G(s) = G(s) = C(sI-A)7'B + D. A state
transformation on G will be denoted by

& =

y:

G

G = Rip-#11(G) &

A subscript n as in (G,(s) means that the transfer
matrix has McMillan degree n. G, is an n'"-order
realization. In the sequel n will always be the full
order, 7 is the reduced-order, and { = n — r repre-
sents the reduction in order. State-space matrices
of the full-order system are partitioned as follows

ool i ol
e ey

!l'
Let I', = | o | with O € IR™" a zero matrix, then
the truncation of realization &, to order r is:

i [FE‘AF, FE"B}

A,

fl:r

An

A

C'=

G,

Rirz ra(Gn) = oT D

Ar Br def
- 7= (;N
215 ] e

Il

Note that this formulation is consistent with (1).
Order reduction of (+,, by Transform & Truncate
discerns two steps:

G = Rip-n,11(Gr)
G, = Ryrr r,)(Gn)

merged into the equivalent
projection-based operation

and this can be

Gr = RiL, r,)(Gn)
with
R. =TT, , L =TT,

satisfying LH R, = I,. This means L, and R, form
a projection matrix I1, = R, L of rank r.
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4 Balanced reduction

Balanced reduction is the truncation of a balanced
realization (Moore, 1981). Transformation to a bal-
anced realization hinges on the controllability and
observability Gramians (P and @) of the original
realization. For (7, (s) stable with realization

sl d)B
Cas [(.' | D]

P and @ are solved from

AP+ PAY + BBH )
APQ+QA+CHC = O

and these Lyapunov equations have unique posi-
tive definite solutions denoted by P(G,), Q(G,.).
P and @ are realization-dependent: for A
Rir-u 11(Gn) we have

P(G,) =T'P(G)TH, Q(G,)=THQG.)T

Balancing is the transformation to a realization

for which P(G) = Q(Q) = diaglo), with ¢ =
VA(PQ) a vector with n Hankel Singular Values
(HSVs) satisfying

g(l) 2 a(2) = 2 T(n) Z 0

The balancing transformation for a given realiza-
tion G, is not strictly unique. In the sequel we
will use a pair of matrices to describe the balancing
operation;

[T-2. 0 B [L Bal =
T(P,Q) =T (P(Gy),QGx))
We call also write [L,, R.] = T(G,).

With B, = Ti.1.y, Lr = [T~7](.1.r), the balanced
reduction can be formulated as:

(;'T = Rr—n((!:ﬂ) - R[K.,ﬂ‘.f]((;n) = balR,—(Gr)

5 Balanced reduction in the gen-
eral feedback interconnection

To define balanced reduction within a general in-
terconnection structure we need to analyse the re-
alizations of the interconnected system Z(M, G, K).
From linear fractional transformation theory (Doyle
et al., 1991, Zhou et al., 1993) we know that

I(M, G, K)=F(Fu(M,G), K) = Fu(F(M, K),G)




The key point for our scheme is that we make a re-
alization of Z(M, GG, K') with a state vector that is
built from G-states, M-states, and A -states in that
=it oot ] Balanced re-
duction of G within T follows the standard balanced
reduction procedure with the difference that in-
stead of P, @ parts of the Gramians of Z(M, G, K)

are used. The scheme for GG reduction then is:

precise order: x

Ps = P(T(M, Gy, K)) & [P(Z(M, Gy K))1:n1:m)
Qo = Q(T(M, Gy, K)) € [Q(T(M, Gr, K))|(1m1:m)
[L,T,Rn] =TI Gc)

Gr = balR, _n(Z(M, Gy, K)) € Ryz, p1(Ga)

For K reduction we have

K, = balR,_.(T(M, G, Ky))

Order reduction of both the system and controller
can be performed, the weightings involved remain
unreduced.

Remark 5.1 ( Frequency-weighted balanced
reduction ) In frequency-weighted reduction the
aim is to minimize |W(s)(Grn — G,)V(s)||. This is
equivalent with minimizing

IZ(M(s), G, O) — T(M(s), G, O)]|

for
=0 T 0 Vi
Ms) = [ Wis)y O ]

Proposition 5.2 ( Stability of reduced-
order configuration ) Let (G, be stabilized in
I(My, G, Ko) by a constant controller Ky and let
My be constant too. Then model reduction within

I{ jq-fg, (1.",,_._. j\'o}

(r’,- = 1’)-?[17?”-—)1(1-[ :’“"‘If(}._ &’ f\-ﬂ)) = ‘R[Lr.ﬂr]((;n) (2)
yields a stable Z( My, G, Ko)

Proof: Since My and Ky have order zero,

Py = P(Z(My, Gyn, Ko))
Qs = Q(I(Mo, Gy, Ko))

P(Z.)
Q(In)

Il

and

[Ls Rul = T(Ps» Q)

balances both the closed-loop system Z and G,
within Z( My, G,,, Ky). Next we prove that

Ir == R[Lr‘ﬂr]{Iﬂ.) xve I(MO': GI’: I\’G) (3_}
Let

J\"D — ﬂ(ﬁ{f(ﬂq l(\‘[l) — [ Nﬂ_q Nt]u]

Nﬂw Nﬂe

and
S = [I —DNgg]*, 8 =[I— No,D]"

then we can write the full-order closed-loop system
as

I,

I( -'l'l'jﬂa (;ﬂ\ ‘J\'D)) = -}_u(f\'fl)a (."n)
A 4 BNo,SC BS Ny,
NowSC | Now + NowDENo,

The reduced-order closed-loop system is
I"’ = R[Lr-RrI(Iﬂ) =
LEAR, + LEBN,,SCR, L7 BSNo,

Nﬂw-—q‘CRr | N(Je -+ !\;{Jmi}ﬁr NLI:-
= Fu(-'lvf.h ér) = IL""’-’D, G,-._. I\’U)

Since Z, is the balanced approximation of Z,, which
is stable, Z, is also stable. Note that G, need not
be stable. O

For dynamic controllers, the procedure still lacks
a priori stability conditions, but using generalized
frequency-weighted balanced reduction (Wortel-
boer & Bosgra, 1992) in an iterative fashion, a good
trade-off can be found between the controller order
and the performance in most cases. This will be
discussed in the next Section.

6 Balanced reduction with piece-
wise quadratic frequency weights

The full procedure consists of closed-loop bal-
anced reduction with inputs w and/or outputs =z
weighted by scalar interval-based frequency func-
tions (Wortelboer & Bosgra, 1992). These fre-
quency functions can be interpreted as filters on
the inputs w or on the outputs z, and are very ef-
fective in emphasizing specific frequency regions in
which a better fit is required compared to the urit-
weighted case. Let #(w) be a positive symmetric
frequency function which built from interval parts
with quadratic weighting
(m+ mlw|+ rfw?) nw, [w, @] ad

m— mw+ mw* for w € [-@,-w]

m+ mw + mw? for w € [w,D|

and from pulse parts
8w, [O]) & m(6(—&) + 6@))
The frequency pulse §(w, [©]) originates from

lim n(w, [w,@])/(@ — w)




Fach input or output can be weighted individually
by such interval-based scalar frequency functions.
A direct solution exists for the 1, (w)-weighted con-
trollability of a system Z, and the 3.(w)-weighted
observability of Z. We simply write P(Z - #,,) and
Q(1). - I). The computation involves the standard
Lyapunov equation solution and the computation
of matrix logarithms. The parts of the [requency
weighted Gramians P(Z - 1,,) and Q(%. - ) that
are due to the states of G, are used to transform
and truncate the system:

Gy = balR, _n(t; - T(M, Gy, K) - thu)

The same can be defined for controller reduction.
The fruitful use of the method heavily depends on
an adequate implementation. The result of order
reduction should be visualized in relevant perfor-
mance terms. In the current MATLAB4 imple-
mentation these are attenuation measures (Hy, H.,)
and frequency-magnitude plots. These plots are the
clue to making scalar frequency functions (mouse
driven) that can improve the approximation for cer-
tain frequency ranges while allowing worse fits out-
side these ranges.

7 Examples

The proposed procedure will be illustrated by ap-
plying it to two controller design problems. The
first is the four-disk problem of Enns (1984b). This
example is often used in literature to illustrate the
effectiveness of new controller reduction methods.
We do the same.

The second example focusses on the reduction of
a 120"-order model of a CD-player servo-system for
controller design purposes.

7.1 4-disk system

Enns (1984b) treats the problem of controlling the
angle of a disk that is mounted with three other
disks on a flexible shaft. The actuation is on the
third disk (Fig. 3). All parameters (disk inertia,

J =
R
CRR

» .
angle output torque input

Fig. 3: Four disk system

spring constants) are equal to one. Two poles are in
the origin. The vibration modes are damped by in-
troducing 2% modal damping. This non-collocated

configuration leads fo a non-minimum phase sys-
tem. The system is described by the following equa-
tions

Az
Cz

T = + Bu

Hip 3=

+ Uy
+ w

with white noise disturbance signals v, and w hav-
ing intensities

]ljm = *7253”
Vw: =

and the performance objective is to minimize

= fxl(:zr” R,z + uf! Ryu) di
(1]

with
M g= 01
Ry.= »fy
= [ 0000055 11 1.32 18.0 ]* 10=3

for specific values of ¢, and for small controller or-
ders. The matrices A, B, C, D are taken from Gree-
ley & Hyland (1988)

i [ 450
0.161
) 0]
6.004 o
0.0064
o 0.00235
A= | 7P "'”]. p=199835 |, B=| -7
0 0 i 0.0713
0.4073 ! i
8% 0.1045
0 Ph
- | 0.9955 |
C=[10000000], D=0
By setting
= re

i3 =

i Vg2 Bv

we have
& = Az + B(u+./gv)
Yy = C':L‘ + w
L= A

with »,w unit intensity white noise, and the per-
formance index

J = f (3”2-}-1&”1.{) dt = /N [ ol B ] [ '::. ] di
0 0 -

We introduce a new input variable:

Ug = U+ /qav




v Ug T z

(sI—A)"'B r

(4
K(s) xJ)

u u w

Fig. 4: controller synthesis configuration

Figure 4 gives the controller synthesis configura-
tion. To state the general H, control problem in
terms of the interconnection I(M, G, K), we have
to define G(s) such that it has no direct connection
to the ‘world’, i.e. the regulation variable z has to
be fed back to M(s):

[3’ < "”] = [f ] (GEA)IB (/a0 = Cldus

resulting in a non-square system transfer matrix
G/(s). M is non-square too, it only contains the
weighting parameter ¢, and thus has no dynamics
of its own:

Ug 0 0 V2 0 1 Yy —w
) 00 0 0 1 i .'n‘ e
2z =il 0 0 0 !
Yy 1 0 0 1 0 b4

The purpose is to minimize |

G

I(M,G,K)|2 over

wh
i

] K u

Ug

M

Fig. 5: Signals in the four-disk problem

K (s) for different values of ¢; and for different con-
troller orders. For the full-order case optimal so-
lutions exist that can be computed by solving Ric-
cati equations. These controllers will be denoted by
Ky (they depend on ¢;). Greeley & Hyland have
shown that the difficulty with obtaining reduced-
order controllers that yield a stable closed-loop sys-
tem can be resolved by directly synthesizing a low-
order controller using the optimal projection equa-
tions. They compared their method in 42 cases

with indirect methods that first design a full-order
optimal controller and then reduce this controller
by a specific method. 7 values for the disturbance
noise intensity parameter g, were examined:

0:01 01 1 10 100 1000 2000
and the controller order r was fixed to:
250 SN Eienh Gl

The original method of Enns only failed to give
stable closed-loop systems in 4 cases, as did the
fractional balanced reduction method of Liu & An-
derson (1986). Closed-loop balanced controller re-
duction as developed in this paper yields 6 un-
stable cases as shown in Table 1. Three of them
are due to an almost hidden unstable pole in the
controller, and the stable part of the controller
achieved closed-loop stability. The remaining three
cases are clearly the most critical ones: the dis-
turbance levels are high and the controller order
is limited to 2. The advantage of closed-loop bal-

Enns (1984d)

[ JoorJoxT 1 T 1o T 1oo J1o0o] 2000

7
6
5
4 -
3
2 =] = =
Liu & Anderson (1986)
[ JTooorJox ] 1 T 10 T too [ 10002000 ]
7
(i} m
5 6=
4
3 - -
2
balR(Z(M, G, Kg))
L Jfoor[or ] 1 T 10 100100072000 ]
Ty
6
5 =
4
3 = =
2 ] =i =]

|:|: stable, [EI: unstable, E] : stable with stable part

of unstable controller

‘able 1: Stability of Z(M, G, K, ) for different g» '
(horiz.) and r (vert.)

anced controller reduction is that it is extremely




simple and that the results can be manipulated af-
terwards by adding scalar frequency functions. It
proved to be relatively simple to force stabilily by
adding frequency functions in regions where unsta-
ble poles occured. Also it was revealed that bet-
ter performance was possible by highlighting the
frequency regions that contribute most to the H,
norm of the closed-loop system. Thereto we com-
pare normalized Hj-norms. Since Greeley & Hy-
land only give the controllers of 9 cases we only
treat those cases. For q; < 1 the reduction re-
sults are almost the same which means that by a
simple method as closed-loop balanced controller
reduction, controller states that are spurious can
be discarded. For g, > 1 differences occur espe-
cially for small r. Figure 6 compares the optimal
|Z(M, G, K3)|l2/ /@2 with ||Z(M, G, K3)||2/+/q2 for
K, either from optimal projection, fractional bal-
anced reduction, or frequency weighted closed-loop
balanced controller reduction. The frequency func-

Hs-norms of closed-loop system divided by
/2 for different values of ¢

T T

=+
a) K, by optimal projection
b) K, by fractional balanced reduction
c) balR_g(tfy:(w) - I(M, G, Kg) - hu,(w))
d) optimal controller K&

Fig. 6: Performance degradation with second-

order controller

tions used to achieve the reduction in performance
degradation are very simple: each channel has a
unit weight over all frequencies and pulses and/or
intervals are added to both inputs and/or both out-
puts. For the ¢, = 100 case the frequency functions
were

1 +0.05 8w, [0.05])
1 + 1000 é(w, [0.246])

tj‘v,w{w )

Py, =(w)

For g2 = 10 it was sufficient to use one additional

frequency pulse:

H".:,.,,(W) - l
Yup@) = 1435 8w,[0.17])
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It can be concluded that the frequency weighting
functions are very effective in obtaining a small per-
formance degradation. The results are even better
than the optimal projection results which can be
explained by convergence problems with the algo-
rithm used in Greeley & Hyland: in a later article
(Hyland & Richter, 1990) a homotopy algorithm
is used and results for ¢ = 2000, » = 2 are very
close to the optimal full-order result as is shown
in Table 2). Hyland & Richter do not provide

(LAl a2 [6b] <
8 15.60
41]16.2[16.99 | 30.10 |

Py = 1+12.796(w, [0.0917])
Pu: = 1475.238(w, [0.0637])+
(-9.875+40.01w—18.33w? ) (w, [0.6804,1.4953])
21/16.8]30.02 [ 42.36 | 18.06
Py = 142500 (w, [0.0003,0.03])

Yu,: = 14607 (w, [0.03,0.6])

16.92

A) K, as in Hyland & Richter (1990)

a) K, as in Greeley & Hyland (1988)

b) K, by fractional balanced reduction

c) balR, s (¥ :(w) - T(M, G, K3) - thy,w(w))

Table 2: H; norms of closed-loop system for the
g2 = 2000 case

reduced-order controller data for the other values of
g2 Other solutions for Finally it should be noticed
that Anderson & Liu (1989) achieved stability in
all cases by introducing a scalar weighting param-
eter. They did not give reduced-order controllers
nor performance measures. The same holds for

7.2 CD-player model reduction

The next example shows the approach in reducing
high-order models of mechanical servo-mechanisms.

From finite element analysis a linear model of or-
der 120 has been derived for the servo-mechanism of
a CD-player. It has inputs for in-plane tracking and
out-of-plane focussing. The outputs are the track-
ing and focussing errors. The vibration modes are
lightly damped. Balanced reduction is appropriate
for r > 32. For smaller r balanced reduction yields
bad results in the desired cross-over frequency
range. Ceton (1993) compares a number of meth-
ods to do closed-loop relevant reduction to 14
These includes LQG-balanced reduction,
H..-balanced reduction, the open-loop frequency-
interval balanced reduction balRq4—120(10(w) - Giago -

order.




th(w)), the unweighted closed-loop balanced reduc-
tion using a simple preliminary (stabilizing) con-
troller Ky, balRis—120(Z(M, G120, K4)), and the
frequency-interval closed-loop balanced reduction
balRy4-120(3(w)- I (M, G120, K4)-pw)). The conclu-
sion was that all methods did achieve closed-loop
relevant reduction, but the first two only at the cost
of solving 120%-order Riccati equations. The fre-
quency interval weighting 1 (w) was applied at all
channels simultaneously. Here we focus on open-
loop reduction with only input shaping to empha-
size the cross-over frequency region in which nor-
mal balanced reduction failed to fit the mechanical
modes. Figure 7 compares unweighted balanced re-
duction balRy4_120(G120) with interval-balanced re-
duction baIRH_wo(Glgg = wu,[u)) with

(1.5616 — 7.5825/10%|w| + 1.8790/10%w?)-
nw, [10%,310%]))

Till’u.- w) =

balanced reduction: 120 -> 14

1
0.8
g {
=
06
k!
éﬂﬁ
“o2
UD 1 2 3 4 5
frequency [rad/s] « 10"
frequency interval weighted balanced reduction: 120 -> 14
1 - : — .
R =
i el
= I (]
306 : |
8 i )
§0.4 [
“02 : !
T I
(1] i
(4] 1 2 3 4 5
frequency [rad/s] 10"
—: order 120, ——: order 14, - - -: difference

Fig. 7: Improved accuracy in cross-over frequency
region using a single interval

8 Conclusion

Simple extensions of frequency weighted balanced
reduction are very suitable for application of or-
der reduction within controlled systems. Model and
controller reduction can be used in conjunction with
model-based control design, since the same config-
uration is used. Flexible computer implementation
using MATLAB4 facilitates the interactive design
of systems with relatively low-order controllers.
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Abstract.

In this paper it is shown that modal reduction and balanced reduction each

have difficulties with specific reduction problems, whereas a combination of both can
solve these reduction problems. High-order models with lightly damped and/or closely
spaced eigenvalues are well-known examples of difficult reduction problems and require
a reduction strategy based on such a combination. It is shown that a minor adjustment
of the reduction algorithm is sufficient to preserve gains both at w = 0 and for w — co.

Keywords.
mode clusters; steady-state match.

1 Introduction

Although model reduction is not an isolated prob-
lem in systems analysis and design (Balas (1982),
Bernstein & Hyland (1988)), this paper focusses
on difficulties in open-loop model reduction appli-
cations as encountered in the structural dynamics
field. Examples of these are large-space-structure
models that exhibit many vibration modes of ex-
tremely low damping and little frequency separa-
tion, and fast mechanical servo systems of which
many high-frequency modes may deteriorate the
closed-loop behaviour,

Models of such systems are often in modal
form. In specific applications not all vibration
modes are equally important: the placement of ac-
tuators and sensors determines an input-output-
importance ranking of the vibration modes that
may deviate from the natural frequency ranking of
the vibration modes. Irrespective of their natural
frequency, vibration modes may be almost hidden,
and exfraction of these modes from the mechanical
model (often called modal reduction) is a straight-
forward procedure to obtain a lower-order and ac-
curate input-ouput description of the mechanical
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! Other order reduction techniques, such

system.
as balanced reduction and optimal Hankel-norm re-
duction (Glover, 1984), that are designed for re-
ducing input-output systems, are not used much in
structural dynamics modelling: they are more elab-
orate and tend to minimize the frequency response
mismatch over all frequencies, while in mechanical
systems it is often more appropriate to minimize
the relative frequency response mismatch due to the
inherent roll-off. The reason for using other meth-
ods than modal reduction, is that modal reduction
of systems with closely-spaced eigenvalues can be
very difficult. Balanced reduction can be apphed
to high-order models if all modes are damped. It
will be shown that balanced reduction sometimes
outperforms modal reduction and that modal re-
duction handles almost cancelling modes much bet-
ter than balanced reduction. This paper sketches
a reduction strategy including modal and balanced
reduction, that can safely solve reduction problems
in structural dynamics.

Besides, a general procedure is developed to mod-

! Note that modal reduction in system theory is based on
the assumption that some modes with the highest frequen-
cies are infinitely fast and can be described statically by a
singular perturbation approach.




ify the reduction such that the steady state gain
is preserved. This is important in mechanical sys-
tems in case the static deformation due to external
forces has to be described accurately. The common
approach to achieving a perfect match at zero fre-
quency is residualization. The advantage of the new
method is that it does not introduce (or change) the
direct feedthrongh term D).

Af-

ter some preliminaries the modelling approach in

The organisation of this paper is as follows.

structural dynamics is explained, then the reduc-
tion principle behind modal and balanced reduction
is described and modal and balanced reduction are
reviewed in an ‘algorithmic’ way. Some illustrative
difficult reduction problems are introduced to show
the weaknesses of balanced and modal reduction.
The reduction strategy to solve these problems is
exposed thereafter. Finally the modification for
matching the steady state is developed and applied
to one of the examples.

2 Preliminaries

The systems discussed in this paper are linear time-
invariant and finite-dimensional. A system of order
n with n, inputs and n, outputs is represented in
state-space coordinates as follows:

+ Bu(t)
+  Du(h)

Az(t)
C'z(t)

x(t)
y(t)

G

Il

zit) € R™, u(t) € R™*', and y(t) € R™*'. Ma-
trices A, B, C. D have compatible sizes.

. /1|b’
=
: {(" D]

is a specific realization of the transfer matrix G(s) =

C(sl — A)'B+ D.

} T € IR "non-singular

represents other realizations of Gi(s) = Gl(s).

System norms that are frequently used to measure
the reduction error (. — (&, are the infinity norm
defl

“!;‘”.N—_, SIIP_ '\-m::x(F(jw)) (l)

wE i“.

with ¢(A) the singular values of a constant matrix
A, and the two-norm

I

de! l Far 1 . NP s
e — [t [PAGw)P () do  (2)

3 Structural dynamics and
modal reduction

In structural dynamics (see Bathe (1982), and Ar-
gyris (1991)) it is common practice to model me-
chanical systems using finite-element techniques:
the distributed inertia of each element is lumped to
its nodal points (corners of the element), and the
(distributed) flexibility is translated to flexibilities
between nodal points.
stiffness matrix (M and K) together state the un-
damped eigendynamics of the mechanical system:

A= |

To model all vibration modes with an nundamped
frequency below a specific threshold frequency ac-
curately, it may be necessary o use many elements
and this leads to high-dimensional A matrices. The
highest-frequency vibration modes are less accu-

The resulting inertia and

(0) [
-M'K O

rate than the lower-frequency vibration modes and
therefore only the lower-frequency modes are actu-
ally computed. To model a specific input-output
behaviour only the structural points on which ac-
tuation forces or disturbances enter, and structural
points of which the motion is measured (controlled),
are relevant: they state the input matrix B and
output matrix C. Damping is hard to quantify,
but very small in most cases. This explains why
it is often neglected in the finite-element-modelling
stage and specified afterwards by adding a small
modal damping factor fo the modes. Next we look
at the modal system description from a more gen-
eral point of view. Recall that each linear system
has a partial fraction expansion (see Skelton, 1988)
of which most fractions are of the r/(s — A)-form,
with 7 the residue and A the eigenvalue or pole. In
case A is complex, we often write

A= —I{),WU =t I,"Ii-&‘ﬂ \/ 1— 3

with wy the undamped frequency and 3 the damp-
ing ratio.
second-order modal fraction with real parameters

In this case it is convenient to build a

by taking the complex conjugate pair of first-order
fractions together:

- Re(r) s + Re(rA)
5% — 2Re(A) s + AA
, Re(r) s + Re(r))
T s2 4 2Bwp s +wi

T P

.s~A+.s—/\

In structural dynamics, a ‘mode’ means a vibra-

tion mode, and deleting a mode means neglecting a




second-order modal fraction. Candidates for dele-
tion are modes with large g and wy and small |r|.
The problem is that modes may have strong interac-
tion. One often resorts to frequency-response-based
mode selection; if the poles are lightly damped and
well separated, the contribution of each mode to
the frequency response of the system can be eas-
ily traced back, but in case modes have poles that
are well-damped or close to each other, the selec-
tion process is less obvious and reduction is often
hardly possible.

In modal reduction it is possible to make approxi-
mations that are better in one frequency range than
in the other.

4 Reduction by projection

First we define a projection matrix (Villemagne &
Skelton, 1987)

Definition 4.1 ( Projection matrix ) A pro-
Jjeetion matriz 11, is a square matriz (n x n), that
can be written as

I, = R,.L!
with R,, L, € IR™" satisfying
MR =T

[1, has the following properties: II? = II,,
rank(Il,) = r, it has r eigenvalues equal to 1 and
t = n — r eigenvalues equal to 0, and there exist
Ry, L, € R™* such that II; = BRLY = I, — 11, is a
projection matrix of rank ¢. If Il, = III the projec-
tion is called ‘orthogonal’, otherwise it is ‘oblique’.
A subspace S C IR" is often characterized by an
orthogonal projection matrix (Golub & van Loan,
1989): S = range(Il,), and for the distance between
two subspaces S and T' we have

dist(S, T) = ||TI, — Ll

where II,, I1; are orthogonal projections onto S and
T respectively.

Next we analyse the role of projections in model
reduction. In the sequel a subscript as in G, means
that the realization is of order r. The original model
is of order n, but we often write GG instead of G,,.
Order reduction is basically achieved by neglect-
ing states with the highest index: this amounts to

I
truncafing a state-space realization. Let I, = [ 0 ]
with O € IR"™" a zero matrix, then the truncation
of realization G,, to order r is:

PIAF, F’{B &t ‘4[1:r.1:r) B{l:r,:)
&4 i D

T

=

(3)

C'l[:.l:r] D

In the projection of dynamics formulation, the trun-
cation is induced by the projection matrix

It I‘T - [ lr,— (@) ]

I, =T.T; 0 0

4.1 Modal reduction

The type of realization prior to truncation states
the reduction type. Modal reduction is the trun-
cation of a modal realization. The ordering of the
modal states in a modal realization is free and the
procedure for modal reduction then is:

1) compute modal realization
2) arrange modal states in decreasing order of
importance
3) truncate the new modal realization
In case of vibration modes, the complex conju-
gate pairs of modal states should be kept together.
As all truncation methods modal reduction pre-
serves the transfer matrix ‘at infinity’: D does not
change. The steady-state however changes in gen-
eral. Residualization of the least important modal

fractions:
i b r

_}—-
s— A

- (4)

restores the steady-state gain, but the new con-
stants of (4) add to the D-term.

4.2 Balanced reduction

Balanced reduction was first described by Moore
(1981). A short summary is given in terms
of the balancing algorithm for a stable linear
finite-dimensional system. First the controllability
Gramian P and observability Gramian () are solved
from two Lyapunov equations

AP + PAH 4+ BBH
ABQ + QA+ CHC = 0.

Il
(=}

o = JA(PQ) are realization independent Han-
kel singular values (HSVs) arranged in decreasing
order. Relatively small HSVs point to the exis-
tence of states that contribute little to the input-
output behaviour of the system. These states can
be found be applying a balancing transformation 7
that achieves equal and diagonal Gramians of the
transformed (balanced) realization
o l/j B
cC\D

"

cr D

4 [i"‘—lAf“ T"B]

with

T'PT-H =THQT =% = diag(o)




Balanced reduction is the truncation of a balanced

realization. After

partitioning of 7',

0.61072 + 1.56996,

i b Sp 20 B oy (B T
T—# = [! E,]

we can write

The balanced approximation is still stable and bal-
anced. The steady-state changes in general. Simi-
larly as a modal realization the balanced realization
can be truncated and residualized. The balanced
residualization leads to preservation of the steady-
state gain and to a change in the D-term.

The choice of the order r is based on the HSVs:
as shown by Enns (1984), and Glover (1984), we
can derive an a priori H reduction error bound
based on the HSVs associated with the truncated
balanced states

1Ga(ie) = e (j0)llso < Aoty + -+ o)

Balanced reduction is not optimal in H..-norm nor
in Hy-norm, but the experience is that balanced
reduction is a nice compromise between H.-norm
and f;-norm optimal reduction in most cases (see
Hakvoort (1993) for computation of the H.-norm
optimal reduction).

Remark 4.2 The link between modal and bal-
anced reduction that has been established for lightly
damped systems disappears for systems with closely
spaced eigenvalues (Gregory, 1984).

5 Difficult reduction problems
Here we consider a siso system with some lightly
damped and close eigenvalues.
4]
Grals) = Y Gpi(s)
=
Grils) = Guls) 4 conj(Gyls)) s

Fach second-order real-valued modal fraction G;(s)
is completely defined by a complex-valued first-
order modal fraction:

7.62080 + 0.045987

(Jll_-l(ﬁ) = ey
s+ 10.000 — 0.0829607
3 —92.01979 + 1.13666
(.J,_-z(.‘i? . P Qe
s +0.0015324 — 0.314136)
4 2.00633 — 1.13571]
(.IC;;[S: =

s+ 0.0015243 — 0.314140;

G.als) = : .
(&) = 0.0098736 — 0.999430;
b —0.69828 — 155806
Crc.r,(sl : = ey
s + 0.0100070 — 0.999930;
: —8.92875 — 6.55249]
Gls) =

5+ 3.0000 — 9.5392007

Inspection reveals that Gpa and (i3 almost cancel
each other, and modal reduction to order 8 seems
natural:

Ga(8) = Gp1(8) + Gpa(8) + Gps(8) + G
The approximation is visualized in I'ig. 1. The fre-

quency response plots of the full-order and reduced-
order model lie on top of the other. Next the 8-

Maximum singular value

10 ; . .
10” } —
original
o 1 reduced
difference |
10%} ' |
-3
10 : : : ; -
10° 10® 10" 10° 10’ 10°

frequency [rad/s]

Fig. 1: Modal reduction of 13 to order 8 by trun-
cating almost cancelling modes: G'g

order balanced approximation G is shown in Fig. 2.
[t is clear that balanced reduction suffers from these

Maximum singular value

10 ' ' ;
”—.._ _._h \n“.-\\ ;r(\
5 ST f, ...I' '_‘w ey
- - I
10 "% - ]
107k original
————— reduced
b, i difference
-2
10 : : :
10° 10° 10" 10’ 10’ 10

frequency [rad/s]
Fig. 2: Balanced reduction of Gy to order 8: Ga

nearly cancelling modes. This is a common phe-
nomenon in mechanical systems, and shows that
modal reduction can help in avoiding unpredictable
reduction results.




The second example is meant to stress that bal-
anced reduction ean cope with modes of nearly
equal eigenfrequencies. Consider

f\’u = (7’;-,1 — (:'pg = {-:p:} + (;,,4 - Cr'px; -+ C:'pa
and let
Rs Sk Rp:} + ﬁ'pd i f{'ps -+ f\ll?]ﬁ

be the 8"-order balanced approximation (Fig. 3).
The frequency function of the reduction error does
not show any peaks which is confirmed by ||/ —
f(’g“.x = 0.4001. Loosely speaking, the G, dynam-
ics is lost, and —(,; and (,3 are substituted by a
new ﬁ'?,g with poles —0.0015291 + 0.0314145 very
close to the original pairs. Modal reduction can-

Maximum singular value

10* : ; : P
original
- — - -reduced
10% | - difference

10 A A
10" 10° 10’ 10
frequency [rad/s]

10

Fig. 3: Balanced reduction of Kj; to order 8: 1':'3

not merge —G,, and Gjp3, we have to select one of
them or both. If we choose both we can approxi-
mate the main peak very well, but only at the cost
of less accuracy at other frequencies.

Ky = —Gpa + Gpa + Gps + Gps

The reduction error, ||Kiz — Ksllw = [|Gp +
Gglleo = 3.0985, is clearly larger than 0.4001. This

Maximum singular value

10" : ; ,
original
- - = — reduced
2
107 difference
10°
-2
10 ' - : :
10° 10° 10™ 10° 10' 10°

frequency [rad/s]

Fig. 4: Modal reduction of K, to order 8: f\'s
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is shown in Fig. 4. Truncating G,y — G o, Gpy + G,
Gp2+Gps, or Gz + G all yield extremely bad H..-
norm errors (> 1500).

Next we summarize the strong and weak points
of modal reduction:

+ computationally straightforward

+ recursive

+ direct frequency dependent approximation
— restricted for strongly coupled modes

- iterations required

and balanced reduction

+ computationally straightforward

+ recursive

- restricted for nearly cancelling modes

~ no direct frequency dependent approximation
+ only iterations on order required

[t seems that depending on the type of coupling
between modes, either modal or balanced reduction
is required.

6 Reduction strategy using both
modal and balanced reduction

Starting point is a modal realization as mechani-
cal system analysis usually provides. Frequency re-
sponse calculations are extremely simple, even for
very large models. This enables fast graphical eval-
uation in the frequency domain.

The main idea is to use clusters of modes, Modes
within a cluster have eigenvalues close to each
other, but clearly different from the eigenvalues of
all modes out of the cluster. Each cluster can be
reduced separately by balanced reduction. This
includes truncating the entire cluster in case the
modes in the cluster are nearly cancelling each
other. Each time we reduce, we compare the result-
ing model with the full-order model by inspecting
both frequency responses. If the reduction error in-
creases dramatically, we go one step back and try
less severe reduction within the cluster. It may well
be necessary to keep the cluster entirely. Having
found a satisfactory cluster approximation, we pro-
ceed with another cluster. The procedure assumes
that a system can be divided in parallel subsys-
tems that have little coupling seen from input to
output. Instead of balanced reduction other reduc-
tion methods can be applied to the clusters too.
The freedom in clustering and in choosing the re-
duced order per cluster, can be exploited to force
the approximation to be more accurate in specific
frequency regions than in others. A drawback is
that many choices are to be made which makes com-




puter graphics indispensable.

A priori error bounds cannot be given in gen-
eral. In case we reduce each cluster only once, an
H.,-norm error bound can be derived straighfor-
wardly and the method is recursive in this special
case. The procedure unifies modal reduction and
balanced reduction. Summarizing:

+ computationally straightforward

+ direct frequency dependent approximation

+ no problems with strongly coupled modes

+ modal and balanced reduction are special cases
— iterations on cluster selection required

— iterations on order required

The next example was used by Hung & Muzlifah
(1990) to illustrate their optimal Hankel-norm re-
duction method that can retain specific poles. The
purpose was to force a good approximation near
specific resonant poles.

Example 6.1 ( Hung & Muzlifah, 1990 ) Let

Ggls) = HRa(s) + Ia(s) + Jals)
y R.4693 8.7211
!"l,;;(.‘.-'] = : — :
s+1 s+ 1.5
I 0000014 = DN556C
AR Tl R
A 5-4.3278
Ja(s) = 0.25380 —

s2+3s4 100

The purpose is to reduce Gg from order 6 to or-
der | while retaining the poles of Jy. In Hung &
Muzlifah (1990) the optimal Hankel-norm solution
s given. This

g 20010,
2+ 3s+ 100
s —6.7534

s2+4+2.9131 s 4+ 1.8241
+ 0.0336

f{,;f.ﬁ‘) =

— 0.6937

is compared with

a) Modal reduction: Gals) = Rol8) + Jo(s)

b) Balanced reduction: G4(s)

¢) Cluster-based balanced reduction: (.1',1(.5'} =
Fa(s) + Ja(s) with ﬁ“zf.‘i] the second-order bal-

~ anced approzimation of Fy(s) = Ra(s) + Iz(s)
i.e.

A 4.3278
" s24+ 354100
s — 16.341
5%+ 2.5092 s + 1.5153
From Figures 5, 6, 7, 8 it can be concluded that the
high-frequency approzimation of balanced reduction
and optimal Hankel-norm reduction with fized poles

(;’.;[esl =

— 0.2457

is worse than the high-frequency approzimation of
modal reduction and cluster-based balanced reduc-
tion.
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Fig. 5: Optimal Hankel-norm reduction of Gg to
order 4 with fixed poles: H,
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7 Matching the steady-state

Here a projection-based modification is worked out
to ensure that the steady-state response remains
the same after reduction. From Villemagne & Skel-
ton (1987) we have the following result.

Proposition 7.1 ( Projection of dynamics for

steady-state matching )  Let
: A|B
G =
3t

and the projection matriz I, = R.LY such that

WA~ B=AB (5)
then
AR, |- FEPAR | 188
el CR, | D

has the same steady-state response as G.

Proof:

D= CpA B,
D—-C.A'LHAAB

G.(0) =

® p-_C A LFARIFA'B
= D-C.LHA'B

= D-CR,ILTA'B

(5)

> D—CA™'B =G

O

Without loss of generality we only consider reduc-
tion by truncation. It is the purpose to adjust the
truncation process such that G,(0) = G,(U). The
truncation is governed by L# = R¥ =[I. 0], i.e.
an orthogonal projection. The idea is to apply a
minor adjustment to the projection to satisfy (5).
The solution will be an oblique projection.

Proposition 7.2 ( ‘Oblique truncation’ ) Let

Ar Arr 'Br
(';n:[?' f_’;]: A 8B (={g i]
Bl C. C.|D "

be the full-order and truncated model respectively.

Let
N

span the null space of [A~'B]":

N= | (6)

N¥A'B=0¢ (

-]
—
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and define the orthogonal projection matriz 11, =
NN#. Let

X = —(N.NY*N,N"

- %], - [4]

define a projection to an r'"-order realization
C“; = Ar F -’qﬂ:)’f Br
i Cr + CX ’ D

with Go(0) = G,(0)

then

Proof:
50
=% o]
and
I; = L -1, =RI¥
L: = NNE
0
RE = [[NgN,H]_I]

Condition (5) is identical to IILA™' B = 0, and this
follows from

LFA-'B=NN"A"BZ0
a

For A, = O stability of G,(s) implies stability of
G(s). Thus the modification can be applied to any
modal realization without the risk of destabilizing
the model.

A similar result can be derived
CA™'I, = CA~'. Matching of the steady-state
gain requires r to be larger than or equal to
min(n,,ny).

based on

Example 7.3 ( Hung’s example cont’d ) The
steady-state modification is applied to Hung’s exam-
ple. The ‘oblique truncation’ of the balanced real-
ization yields a fourth-order model (8) that approz-
wmates the full-order system better than the nor-
mal balanced approzimation for most frequencies,
see Fig. 9. In Fig. 10 a similar improvement is
shown for the modification of the cluster-based bal-
anced reduction (9).

s+ 2.4213

5% 4 3.7962 s + 6.0786
s+ 0.01283

§2 4+ 0.7775 s + 0.009842
s +4.3283

s24+3s4 100
s —16.1962

s% 4+ 2.5289 s + 1.5202

G5(s) = —2.7972

+ 2.9004

(8)
0.2538

10
74(3] =

— 0.2493

(9)
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Fig. 9: balanced reduction of Gg fo order 4 with
steady-state match: §(s)

8 Conclusion

Both modal reduction and balanced reduction can
have difficulties with reducing systems that have
modes with close eigenvalues. A reduction strategy
based on iterative reduction of separate mode clus-
ters is proposed. On a number of example prob-
lems the new method shows best results. A new
method for exact matching of the steady state re-
sponse has been introduced, that can be applied
to all truncation-based reduction methods such as
modal and balanced reduction.
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Control of a series-resonant converter with a new
topology and a reduced number of thyristors
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Abstract. Multiphase series-resonant (SR) power converters provide a flexible way to
transform power between a utility grid and a multiphase load or source. The current
implementations all suffer from a high component count, which makes the use of these
converters unattractive from an economical point of view.

A new topology for multiphase SR converters has been proposed in De Beer, 1991 in
a simulation context. This topology uses half the number of power semiconductors
compared to the existing multiphase SR converters.

The present paper addresses the implementation of the new topology in a prototype
converter. Simulation data and measured waveforms are shown, and a comparison is
made between the new and the existing topologies. It is shown that the reduction in
component count is offset by a lower power rating.

Keywords. Power electronics; Control systems; inverters; series resonant converters;
three-phase; AC-to-AC power converter; reversible power flow; thyristors; reactive power
generation

1 Introduction weight,

Series-resonant (SR) L(%Ci']l]iquCS have been used for ® COommon grounds for inPUtS and Ou[,p”ts__ thus

a long time to attain low switching losses in DC-DC
power converters. The low switching losses make
it possible to use high switching frequencies while
keeping, at the same time, the conversion efficiency
high.

During the last decade the use of series-resonant
(SR) techniques has spread out into the field
of multiphase applications (Schwarz,1979; Huis-
man,1985:1988b;1992). The converters which have
been presented in the literature feature several in-
teresting properties, including;:

e Smooth input- and output voltages and -
currents,

e adjustable power factor at the input of the con-
verter, including unity,

e absence of low-frequency filters, thus reducing
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reducing high-frequency interference, and fa-
cilitating ‘clean’ measurements,

e casy parallel operation of multiple modules,
and

e expandability to any number of inputs or out-
puts.

In these applications one resonant L-C tank is time-
shared between the input- and output terminals of
the converter. The topology of the power circuit
which is often used makes it necessary to connect
both sides of the resonant tank to the terminals
of the converter. For AC operation, we need to
achieve current flow in two directions, and therefore
the number of semiconductor switches needed for
multiphase AC applications equals four times the

total number of terminals. For a three-phase fo




three-phase converter 24 switches would be needed.
Clearly,
of active devices which is needed t
bridge.

this number compares badly to the number

to build a PWM

In this paper we will present a modified multi-
phase series-resonant converter topology, in which
only one side of the resonant circuit can, by means
of a switch matrix, be connected to the input- and
output terminals of the converter. The other side of
the resonant tank is connected to a common neu-
tral. The number of active semiconductors (SCR
thyristors in our case) in this topology reduces to
12, which clearly is an advantage as compared to
the 24-thyristor alternative.

In section 2 we will introduce both the ‘classic’
and the ‘new’ power circuit topology. The follow-
ing section discusses the intended operation of the
new circuit. The resonant circuit is grounded at
one side. It is shown that this topology severely re-
stricts the freedom to choose active terminals. This
topic is further dealt with in section 4.

Before committing our ideas to hardware, a sim-
ulation was set up. In section 5 the simulated con-
verter is shown to be running smoothly. Section
6 shows measurement results of a prototype con-
verter.

2 Circuit topologies

The
derived from the ‘classic’ topology which has been
presented in (Huisman,1988a;1988b). Simplified
schematics of both the ‘old” and the new power cir-
cuit topology have been depicted in figure 1

‘new’ circuit topology can be thought to be

figure 1 every switch represents the com-
bination of two antiparallel thyristors and their
The operafion of the cir-
cuit in figure la has been verified in (Huis-
man,1987;1988a;1988b;1992). A slightly different
version of the circuit in figure 1b has been presented
in a simulation context in (De Beer,1991).

snubber circuits.

The symmetry of the circuits in both figures la
and 1b gives rise to two classes of power converters
with these two basic topologies.
indication of possible applications of converters for

Table 1 gives an

different numbers of terminals.

& I
| ]
= Lires] 1
input output
(H\ o——
Jilait]
aboslawe of — o] L
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input output
‘Ffs i o
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Pig. 1: lopologieb of two power circuils

a: (left) The ‘old’ circuit
b: (right) The new circuit

3 Operation during one
resonant pulse

3.1 State-plane description

The operation of the power circuit of figure 1b is
most easily demonstrated starting from the situa-
tion where the voltage across the resonant capaci-
tor (V) is at its maximum value. We will assume
that the magnitude of this peak capacitor voltage
is larger than any of the input- or output voltages.
Furthermore we will assume that the value of the fil-
ter capacitors (C',) is much larger than the value of
('ress which implies that the source and load of the
converter can be modeled as ideal voltage sources.

Current flow in the circuit starts with the closing
of one of the six switches. With the assumptions
above, the direction of the resonant current is dic-
tated by the sign of Vi, i.e. I;¢s will become posi-
tive if Vo was negative and vice versa. For brevity,
we will only consider the case of a negative initial
value for Vi in the following. The case for positive
Ve can be treated in a completely analogous way.

Without further intervention, the resonant cur-
rent Ires will develop as a positive sinewave. At
the moment this current becomes zero again, the
thyristor switch will turn off; and Vi will have been
mirrored in the voltage of the terminal whose switch
has been closed.

Figures 2 a) and b) show the development of the
resonant current ([ye5) and capacitor voltage (Vi)
against time. When these two variables are plot-

ted against each other in the so-called state-plane




I N | applications

3 | One-phase DC-DC converter
(see Tilgenkamp(87))

Three-phase reactive power
controller (see Melse(88))

4 | idem with starpoint connection
DC-DC to DC/DC converter

5 | Three-phase to DC (+/-) converter
or vice-versa

6 | Three-phase to three-phase converter
7 | idem with neutral connection

9 | Three-phase in, three-phase out
uninterruptible power supply
with +/ — /0 battery connection

Table 1: Applications of SR converters for a num-
ber N of terminals

(Oruganti,1985) the trajectory shows up as an el-
lipse, or, with proper scaling, as a circle, This circle
has been depicted in fig. 2e. The centre of this cir-
cle is located at (Vge,0), where Vie indicates the
voltage applied to the resonant circuit. Geomet-
rically the “mirroring” of the capacitor voltage in
Vie is quite obvious.

3.2 Energy considerations

For continuous operation of a multiphase resonant
converter, it has been argued in (Huisman,1987)
that Vi should be exactly inverted after every res-
onant half cycle. In this way it is guaranteed that
the initial conditions for the next resonant half cy-
cle are (apart from a trivial inversion) identical to
those of the cycle which has just been finished.

If the capacitor voltage is exactly inverted after
every resonant half cycle, the net energy supplied
to the resonant circuit needs to be zero. This im-
plies that we need to apply two voltages of opposite
polarity in sequence to the resonant circuit. The
reader may want to compare this need to the situa-
tion in the well-known buck-boost converter, where
two voltage polarities are used to constrain the en-
ergy in the main inductance.

The moment of turnover (¢;) from the ‘first’ to
the ‘second’ terminal voltage serves to control the
final value of V. If the two terminal voltages in-
volved satisfy some auxiliary constraints, the reach-
able range for Vi al [;¢s = 0 includes the inverse
of the initial value of Vp. Figure 3 shows the in-

fluence of a varying moment of turnover from the

Ined]
t
P;:,!_
{
lfr‘c‘sl'
Ve
Fig. 2: Signal shapes for one resonant sine wave

a: (left) Ires: Current through Lpes
b: (middle) Vio: Voltage across Chres
c: (right) Ires vs. Ve

first to the second current segment on the shape of
the resonant current (fig. 3a) and on the capacitor
voltage (fig. 3b). The state-plane portrait of the
operation of the converter for this case has been
drawn in figure 3c.

The trajectories in fig. 3c are each composed
of two circle segments. The first circle is cen-
tred around the first voltage (Vic1) applied to the
resonant tank, and the second segment is centred
around Vpgo. If the values for Voo, Vo, Vici, and
Viea are supplied, the construction of the trajec-
tory is straightforward. Clearly, the proper moment
for turnover is indicated by the intersection of the
two circles.

3.3 Predictor circuit

For the real-time control of the peak capacitor volt-
age (Ve2) we need to determine the instant in time
where the two circles of the state plane trajectory
intersect. In this converter we have used the fol-
lowing method.

The value of the capacitor voltage at the in-
stant of turnover (Vi) can be derived analytically
from the equations describing the circuit behaviour.
Skipping the derivation, which can be found in




fml: /@

Fig. 3: Signal shapes for a resonant sine wave
composed of two current segments for
varying turnover time ¢,

a: (left) Ipes: Current through Lyes

b: (middle) Ve: Voltage across Cires

e (I‘Igl]t) !r@g VS. ‘f:f,'

(Huisman,1992), this value is given by:

_ VealVes = 2Vica) = VoolVeo = 2Vicr) ()

Vo :
o 2(Veer — Vier)

where Vi equals the initial value of the capacitor
voltage, and Viey and Vieq indicate the voltages
applied to the resonant circuit during the first and
second current segment, respectively. Note that if
no disturbances are present. then

Voo + Vea =0 (2)

which simplifies equation 1 somewhat. However,
we have used the complete equation for our control
setup.

The value of Vi in equation 1 can be computed
in real-time, and compared to the actual (mea-
sured) value of the capacitor voltage. As soon as
the latter crosses the value of Vg, the turnover to
the second current segment is initiated.

3.4 Commutation

For the duration of one resonant half cycle, the
active part of the circuit of figure 1b can be drawn
as in figure 4.

For convenience, in figure 4 the

t1y
gAY

I}
[x

l TES
L res

J
+<) Ve % o Cﬂy Vi

Jrhi rJ'_”.r'l.'g

Vie

Fig. 4: The part of the power circuit of figure 1
which is active during one resonant half cy-
cle

first voltage (Vic1) applied to the resonant circuit
has been drawn at the left, and the second volt-
age (Vieo) at the right. However, these voltages
can correspond to any of the terminals (inpuf or
output) in figure 1b.

If SCR thyristors are used for the power semi-
conductors, the sequence of voltages applied to the
resonant circuit is subject to the laws which gov-
ern the commutation of current from one thyristor
(Thy in figure 4) to the other (T'hz). Inspection of
the circuit shows that if [pes is positive, Vies needs
to be more positive than Viei, in order to be able
to turn off T'hy.

An example of the currents in the circuit
branches of figure 4 has been depicted in figure 5.

hf //’#FTJ
;1}
B e :

Fig. 5: Currents in the branches of figure 4

The currents in the two voltage sources show in-
finitely steep transients at the instant of turnover.
For physical thyristors, these steep current slopes
would lead to high turn-on and turn-off losses.
Also, high levels of EMI (electromagnetic interfer-
ence) may be expected. Therefore, in the real cir-
cuit commutation inductances are placed in series
with the thyristors in order to smoothen the cur-
rent transients somewhat. It needs to be noted that




these inductances have not been incorporated in the
circuit model on which the predictor operation has
been based. As a consequence, deviations in the
peak capacitor voltage can occur.

3.5 Current control

The signals in figure 5 show that the currents in
both voltage sources (with the sign conventions of
figure 4) flow in the same direction as [r¢s. Clearly,
during the next resonant half cycle s will flow
in the opposite direction. This implies that at least
two (other) terminals should be available which can
handle this direction of current flow. We will come
back to that matter in the following section.

Figure 5 shows that a finife amount of charge
has been transported to two out of the six termi-
nals of the converter. For the next current pulse
other terminals can be chosen, which implies that
in time every terminal can be supplied with the de-
sired amount of charge. A control loop is needed to
adjust the charge transfer process in order to arrive
at the desired current flow in every terminal.

The control system which we have used con-
sists of a modified ASDTIC controller (Schwarz,1969;
Huisman,1985) for every terminal of the power cir-
cuit. In this controller, every terminal is associated
with an ASDTIC error signal which is defined as fol-
lows:

Brr = /{-.i — Gpeg )l (3)
The sum of the rectified ASDTIC errors, which can
be interpreted as an overall error signal, is used to
trigger the generation of a new current pulse.
Some signals in the modified ASDTIC control sys-
tem have been shown in figure 6. The upper traces
show the currents in the two voltage sources of fig.
4. The lower traces show the corresponding ASDTIC
error signals. The figure shows that due to the dis-
placed charge of the current pulse the two ASDTIC
signals are restored to a position closer to zero.

4 Selection of terminals

The flow of current in the resonant circuit is initi-
ated when the overall error signal, composed from
the individual terminal error signals, crosses a cer-
tain bound. However, in which terminals the cur-
rent is going to flow is still to be decided. From the
previous discussion two items are of special impor-
tance here:

e The currents in both terminals which will be
serviced during this particular resonant current
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Fig. 6: Signals in the control system

pulse will flow in the same direction as the res-
onant current, and

e In order to be able to keep the peak capacitor
voltage at a predictable level, the voltages on
these two terminals need to oppose each other.

Of course, the charge transported by a resonant cur-
rent pulse needs to be used to lower the overall error
signal. Therefore a selection of terminals according
to the sign and magnitude of their individual error
signals is appropriate.

4.1 Strict polarity check

For the situation depicted in figure 6, it obviously
would be wise to service those terminals with the
most negative error signal first.

If we were to adhere strictly to this polarity cri-
terion, the minimum number of terminals for a con-
verter would appear to be 4. Two out of these
terminals would operate with positive current flow,
and be serviced during the positive resonant half
cycles, and the other two would be serviced during
the negative half cycles.




Closer inspection of the circuit operation would
indicate that proper operation of a 4-terminal con-
verter would hardly be feasible. Due to the exact
inversion of the capacitor voltage the net energy
consumption of the converter over a resonant half
cycle is zero. Therefore both the two ‘positive’ and
the two ‘negative’ terminals are subject to an en-
ergy constraint, which for the ‘positive’ pair can be
formulated as follows:

(4)

and similarly for the ‘negative’ pair. [; here de-
notes the current in the first ‘positive’ terminal, etc.

Furthermore, due to Kirchhoff’s current law the
sum of the currents flowing into the converter over

1’+[ X {;—i—l . .!’+2 X {."'.1.2 =

one complete resonant cycle needs to be zero. Con-
sequently, this also applies to the average current
over any time span:

‘!+]_|_',7+2+!_1+‘f_2:0 (:))

Three constraints applied to four currents implies
that only one current can be chosen freely in this
situation: the other three can then be found using
the constraining equations.

In the (more interesting) case of a three-phase
to three-phase converter, we would expect to have
three degrees of freedom (six terminals - three con-
straints). These three degrees can be used to select
the wave shapes of the three output currents, the
input currents would then be defined by the con-
straints. It follows that in this situation we are
not able to select the shape of the input currents:
the system has too many constraints to achieve
this. This conclusion was confirmed by a simula-
tion of this system: although the output currents
conformed reasonably well to their prescribed (sine)
wave shapes, the input currents showed a ragged
appearance. [The reader may want to compare
this result with the simulation data given in (De
Beer,1991, fig. 7).

4.2 Loose polarity check

Inspection of the operation of the simulated con-
verter revealed that as a consequence of the strict
polarity check the control system spent a large per-
centage of time waiting for one of the terminal volt-
ages or -current references to pass through zero. For
the controller with a strict polarity check, a signal
being at +1 or -1mV makes a large difference. How-
ever, a human observer would interpret both values
to be ‘close to zero'.

Trying to mimic this observation in the control
system, it was decided to loosen the polarity check.
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For example, for a positive half wave of the res-
onant current, we would first select the terminal
with the most negative or least positive error sig-
nal. Then, on the remaining terminals with oppo-
site polarity of the voltage, we would again perform
a similar selection. In some instances this schedule
could for example lead to positive current flow in a
terminal with an already positive error signal, thus
in fact worsening the situation for this individual
terminal. However, for the complete converter sys-
tem the total error is still lowered. Contrary to the
setup with a strict polarity check, the operation of
the complete system does not stall any more be-
cause we might for example have only one terminal
with positive current flow. Simulation of this setup
showed superior performance. It was even shown to
be possible to operate a three-terminal converter in
this way.

4.3 Algorithm

Similarly to the system which has been discussed
in (Huisman.1992), we have used a sequential two-
pass selection circuit here. During the first pass, the
terminal with the most positive (least negative) or
most negative (least positive) error signal, depend-
ing on the direction of the resonant current (polar-
ity of Vi), is selected. The second pass is used to
select a second terminal from the remaining termi-
nals with an opposing voliage.

After the selection process, the thyristor which is
going to conduct during the first current segment
can be fired. Turnover to the second current seg-
ment is initiated when the Vepeak-predictor circuit
indicates that the cross-over point between the two
trajectories of figure 3 has been reached. The sec-
ond current segment is terminated when the reso-
nant current again reaches zero. After an appropri-
ate turn-off time, the circuit is ready for the next
current pulse.

5 Simulation

In order to test the intended operation of the power
circuit and its control, a simulation needed to be
set up. Due to the similarity of the ‘new’ circuit
to its ‘old’ counterpart, it was decided to re-use
the software which had been written for that cir-
cuit (Huisman,1992). It was found that only minor
modifications were needed in the analog sections of
the simulation. However, the new selection algo-
rithm made it necessary to reprogram the digital
part of the circuit.
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Fig. 7: Simulated operation of the terminal selec-

tor and start of current flow.

Figure 7 shows the algorithm for the ferminal
selection doing its job. For clarity, the left-hand
part of the figure is plotted with a stretched time
scale. During a first pass, indicated by the second
step on the staircase-like signal L8, all six terminals
(R,s,T,U,v,W) are checked in order to find the one
with the worst error signal. The signal WR indicates
whether a terminal has been temporarily selected.
The last terminal for which signal WR is high, is
included in the final selection. In the figure, this
is terminal W. Also, during the first pass, the sign
of the voltage on the selected ferminal is stored for
use during the second pass.

In the second pass, indicated by the fourth
step on signal LS, the remaining five terminals are
checked for the proper polarity of their voltages. If
more candidates are available, the one with (again)
the worst error signal is taken. Figure 7 shows that
finally terminal S remains selected in this pass.

The right-hand part of figure 7 shows the devel-
opment in time of the currents in the resonant cir-
cuit and in two of the six terminals of the power cir-
cuit on a much longer time scale. The current flow
is initiated in terminal W, because during the first
current segment energy needs to be transported out
of the converter.

On a much larger time scale, the operation of the
circuit starting at zero inifial condifions has been
depicted in figure 8. In figure 8, the converter is
configured as a three-phase reactive current com-
pensator. The upper traces show the current pulses
flowing in the three input terminals and the associ-
ated voltages. The current pulses show a typical 90
deg. phase shift when compared to the correspond-
ing voltage.

Figure 8 shows that around the ‘zero crossings’
the currents are composed of alternating positive
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Fig. 8 Simulation of the operation of the new cir-
cuit configured as a reactive current com-
pensator.

Upper traces: unfiltered current and volt-
age in terminal R, S, and T respectively,
Lower trace: current in the resonant tank.
The simulated time span is 20 ms.
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and negative pulses. This kind of behaviour would
not be compatible with a strict polarity check.

Figure 9 shows the operation of the system con-
figured as a three-phase to three-phase converter.
The simulated input frequency is 35 Hz, the fre-
quency of the output voltages is 50 Hz. The traces
in figure 9 show the division of resonant current
pulses over the input (R, S, T') and output (U, V, W)
terminals. Due to the larger number of degrees of
freedom, the alternating pulse pattern which was
shown in figure 8 is practically absent here.

In the simulation, the converter is loaded with
3 resistors of 7502 in a star configuration. Through
simulation experiments it was found that this is ap-
proximately the maximum resistive load which can
be powered for this configuration. At a rated line
voltage of 380 V (rms), this corresponds to an out-
put power P of:

_ 3807

?‘f’

]

P = 1925W.

16)

It is interesting to note that the ‘old’ power circuit
configuration (see figure la) was able to power a
threefold load (25§ in star, see (Huisman,1992)).
The main reason for this difference is rooted in the
fact that in the new power circuit only one side
of the resonant tank is used to supply current to
the terminals. Another reason lies in the handling
of reactive output power. The old power circuit
was able to transfer power between two terminals
and supply current to the third in one resonant half
cycle. The new circuit needs a complete resonant
cycle to accomplish the same.




N 0111 1 e o o B —— |
T—FI—T—L__L'I:'[

|

——— Tl 'TT‘i I

IS" ot e—— 1

—HATIIOT T 1T T OOOETi—— -

AT T 1 |||'I'ﬂTI1rrl'lI

T

U “}“.“H]I—“T”'” m— L] HIIJIIJIJII[J|Jm||:|||. 1

T

—HHE

Vim— AU L, et BB (NI AR

17 AL T o i e —— BiT= 8| W] L1y

Tres AR A A R

Fig. 9: Simulation of the operation of the new
circuit, configured as a three-phase AC to
three-phase AC converfor.

Upper traces: unfiltered current and volt-
age in terminals f2, S, and T (inputs) and
U, V, and W (outputs) respectively,
Lower trace: current in the resonant tank.
The simulated time span is 20 ms

6 Measurements

For the experimental verification of the new con-
cept, a prototype converter needed to be con-
structed. The primary goal of the experiments be-
ing to show the operation of the new control sys-
tem on real hardware, it was decided to recuperate
an existing circuit. The prototype circuit therefore
does not feature the highest possible efficiency for
this configuration, but in our assessment this is not
a serious drawback.

Table 2 lists

the prototype circuit.

the most important parameters of

Lres 148 pH
Chres 2 uF
C, 90 uF
L, 20 pH
thyristors | SKFT60/12DT

Table 2:

Parameters of the prototype circuit

As has been discussed in section 3.4, commuta-
tion inductances (L.) were placed in series with the
thyristors in order to limit the dz/dt values applied
to these components. A more thorough descrip-

tion of the power circuit can be found in (Huis-
man,1992).

In order to convert the old into the new topology,
two major changes were called for:

e The two lower rails in figure la needed to be
connected together, and

e it needed to be made sure that the lower row
of switches would never be activated.

The digital part of the control electronics was
implemented using programmable logic devices

(EPLD’s), which made the latter change rather
straightforward.  With these, and some minor

changes in the analog control electronics, we ob-
tained a configuration according to the topology of

figure 1b.

6.1 Three-phase operation

Figure 10 shows the operation of the prototype con-
verter configured as a three-phase reactive current
compensator.
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Fig. 10: Currents in the prototype of the new cir-
cuit operated as a reactive current com-
pensator
Upper trace: current in the resonant tank.
Lower traces:
nal 7', S, and R respectively.

The full range of every trace is -52.4 to
52.4 A.

The time scale covers 20 ms.

unfiltered currents in termi-

The measured signals in figure 10 show good
agreement to the simulation results in figure 8. Dif-
ferences lie mainly in fast transient effects, which
were not modeled in the simulation which yielded
figure 8. Figure 11 shows a detail of figure 10.

The currents in figure 11 show the gradual
takeover of alternating current pulses from phase
R to phase T. On this stretched time scale, the
presence of reverse recovery spikes, which were not
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Fig. 11: Traces as in figure 10. The time scale cov-
ers 2 ms

included in the simulation model, is visible. Fur-
thermore, it cani be seen that, due to the commu-
tation inductances, the slope of the current pulses

is limited.

6.2 Three-phase to three-phase op-
eration

Figure 12 depicts the system operating as a three-
phase AC to AC converter. The input frequency is
50 Hz, the converter generates an output waveform
at 25 Hz.

7 Conclusions

The operation of a prototype of series-resonant con-
verter with a new topology has been presented,
both in a simulation context and in a prototype
circuit.

The converter is based on a six-phase switch ma-
trix. Half of the matrix is used for the three input
terminals, the other half caters to the three out-
puts. Due to the resonant circuit, commutation of
the thyristors in the matrix is guaranteed.

Inputs and outputs of the converter are all capaci-
tively shorted to a common ground. Therefore mea-
surements of input- and output voltages can be per-
formed with relative ease.

The new topology uses only half the number of
thyristors compared to older topologies. There-
fore the new converter is an attractive candidate
for the development of new, flexible power conver-
sion equipment.

The converter topology can be applied as a flexi-
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Fig. 12: The prototype of the new circuit operated
as a three-phase AC to AC converter.
Traces (from high to low):
U,: voltage on input terminal R
U,: voltage on output terminal U/

b |

I,: current through input terminal R (un-
filtered)

[,: current in output terminal U/ (unfil-
tered)

The full range of the voltage traces is -240
to 240 V, the current traces range from
-52.4 to 52.4 A.

The time scale covers 40 ms.

ble interface between any two multiphase grids, in-
cluding DC. In the three-phase to three-phase con-
figuration, the converter is capable to generate or
consume reactive power at both input and output
ports, including homopolar currents.

The state of the resonant circuit is tightly controlled
with a new Vepeak control circuit. This new con-
troller uses only voltages to determine the instant
for switch-over, and is therefore less sensitive to
scaling errors than the older circuit, which uses cur-
rent measurements as well.

The new topology shows a relatively low power han-
dling capacity.
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