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”Er zijn twee stadia in de opleiding tot wetenschappelijk onderzoeker: een
eerste, waarin gepoogd wordt de juiste eenheden aan getallen toe te kennen
en een tweede, waarin geprobeerd wordt ze weer weg te halen door invoering
van dimensieloze kentallen.”

van der Westhuysen et al. (2015)





Abstract

Waves in coastal waters play a role in forecasting storm conditions, as boundary conditions for the
assessment of coastal risk and in coastal structure design. Assessment of their impact can be made
through numerical modeling. In a forecasting context, the CPU time of the wave model is decisive
in its suitability. Recent years wave model approaches have been to describe both linear and non-
linear generation, dissipation and transfer processes in the wave spectrum explicitly. This resulted
in computationally demanding tools. Such models are very suitable for research purposes or for
design and assessment if time is available, but are rather heavy tools for forecasting applications on
larger scales. Parametric models describe the wave spectrum through characteristics in a smaller
solution space compared to spectral models, which makes them potentially faster solvers. In this
thesis the suitability for forecasting of a spectrally integrated approach to the wave action balance
is investigated. The stationary wave drivers from the storm impact assessment model XBeach
were taken as a starting point. A second balance equation was identified to model the evolution
of the mean period. In estuaries and behind shoals, locally generated waves can be dominant over
offshore wave conditions. As part of the project, a wave generation mechanism is developed for
the modified wave drivers based on prediction relations for growth of wind-waves under fetch-
limited conditions. The two-equation approach was discretized and tested in a 1D Matlab model
and the solution was proven to converge towards the literature prescribed growth curves for total
wave energy and mean wave period. This approach was then implemented in the unstructured
Frequency Integrated wave drivers in D-Flow FM. The implementation has been verified through
semi-1D test cases and showed convergence behavior equal to the Matlab model. A hindcast of
a 1982 storm in the Haringvliet was performed to compare the model skill of the unstructured
frequency integrated model (FIM-FM) to the spectral wave model SWAN. In this hindcast the
model skill of FIM-FM is comparable to SWAN for significant wave height and mean wave period
for all locations apart from directly behind a shoal. Depth and wave height dependence of bottom
friction coefficients should be studied in more validation cases to improve the prediction of wave
steepening over shoals. Further research should also look into the iterative method in the solver
for stationary solutions of the model equations to realize faster CPU time of a stationary problem.
Although not established in this thesis, faster CPU time compared to a spectral model like SWAN
should be possible based on the reduction of the solution space.

Parametric wave growth in a frequency integrated wave model – M.A. van der Lugt i



ii Parametric wave growth in a frequency integrated wave model – M.A. van der Lugt



Preface

In the fall of 2013 I first came to Delft. I was halfway my BSc on a quest to find a study field
suiting me for a MSc program. Not in the least was this move motivated as well by joining
the training group of the rowing team which beat me in the development cup the year before.
For two years I juggled with courses in Delft, Utrecht, a small detour to Texel, while actually
putting all my energy into rowing practices and races. All this time I could not decide whether
I preferred the analytical but abstract path of physics courses or the social relevance inherent to
applications in civil engineering. The decision for the hydraulic engineering MSc track was made
eventually in 2015, but only during this research project did it become clear to me this was the
right choice. In this project I needed skills acquired in the field of physics and mathematics as well
as in engineering, allowing me to enjoy aspects from all my study fields.

In that light, I would like to thank Martin and Ap for proposing this thesis topic to me, listening
to the ups and downs in my progress and dropping hints along the way but letting me make my
own discoveries. Thanks go to Dano for being able to pinpoint in no more than 20 minutes why I
am stuck for weeks already, waving into the direction where to look afterwards. I owe a big thank
you to Johan, whom I have asked for advice on modeling or programming on numerous occasions,
at times feeling slightly distressed. After an extended coffee, I would have calmed down and seen
the better sights of life (and project) again. Thanks to Ad, who completed the thesis committee as
chair, enabling all of us to meet in his office such that I could practice my presentation skills in
front of this ensemble of wise men.

In a year’s time a lot can happen. I threw in the towel with my rowing career to focus with more
energy on my study track, only to find out that my mind and my body don’t share the same energy
resource but rather like to be used in parallel for me to function well. My graduation buddies at
Deltares (Anne, Bas, Bjarte, Cleo, Kamilla, Stef, Tim and Tim and of course all the others) will
confirm with you that coffee break chatter would be as often about my new mania cycling as well
as about frustration or epiphanies in our projects. Thanks for dragging my from my computer on
these very necessary breaks!

Working on my MSc thesis at Deltares meant being surrounded by a lot of experts on various
fields. I thank Alfons, Carolien, Mart en Sander for discussions which helped me to move forward
with my research.

Last but not least thanks go to my parents, friends and Sander in particular for the support at
moments that a nine month project appeared a bit daunting to me. You guys were right, of course
I was going to make it to the end!

Marlies van der Lugt
Delft, September 2017

Parametric wave growth in a frequency integrated wave model – M.A. van der Lugt iii



iv Parametric wave growth in a frequency integrated wave model – M.A. van der Lugt



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature survey on wave generation 7
2.1 Measurements of wave characteristics . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Wave growth per wave component . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Derivation of source term formulation 17
3.1 HISWA approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Evolution relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 The wave action balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Expanding the domain of applicability . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Depth limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Validation and properties in 1D 31
4.1 HISWA comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 1D convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Sink-Source balance in fully developed conditions . . . . . . . . . . . . . . . . . 36
4.4 Return rates to quasi-equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Implementation in 2D 45
5.1 Directional distribution of wind input . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Adaptations to frequency prescribed wave drivers . . . . . . . . . . . . . . . . . 46
5.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Validation cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Summarizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Field case 55
6.1 Haringvliet storm hindcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Parametric wave growth in a frequency integrated wave model – M.A. van der Lugt v



CONTENTS

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusion and Recommendations 63
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 List of Symbols 71

A Period evolution under bottom friction 75

B Calibration of friction coefficients 77

C Additional figures Haringvliet assessment 79

vi Parametric wave growth in a frequency integrated wave model – M.A. van der Lugt



1. Introduction

1.1 Motivation

Storms in coastal waters give rise to storm surge. High surge levels can cause significant flooding,
resulting in damage to property or ecosystems and possibly loss of life. Prediction of magnitude
and geographic extent of surge is critical for impact assessment and timely emergency measure
planning in case of forecasted storm conditions. Numerical modeling provides a means hereto.

Storm surge can be decomposed in set-up to the offshore water level induced by several pro-
cesses. Aside from the tidal component, wind-induced set-up is the primary contributor. The wind
induced set-up can be modeled in a hydrodynamic model. A second contributor is the wave cli-
mate in shallow water which generates stresses on the water column (Longuet-Higgins and Stew-
art (1964)). A decrease of radiation stresses in the surf-zone causes an additional set-up to the
surge level named the wave-induced set-up. The wave-induced set up can be numerically modeled
through a phase-averaged wave model which may or may not be coupled to a flow model. Wave
climates in shallow water depend highly on the complexity of the bathymetry (e.g. Holthuisen
(2007)). To resolve the breaking process, wave models require a finer computational grid than
hydrodynamic models do. Moreover, recent years wave model approach has been to describe both
linear and non-linear generation, dissipation and transfer processes in the wave spectrum explicitly
(Booij et al. (1999), Benoit et al. (1996), Tolman (1991), WAMDI Group (1988)). This approach
makes shallow water wave models very computationally demanding.

As storm surge is a natural hazard for coastal areas world wide, real-time forecasting of surge
levels is an active field of research. Many model approaches to assessment of the wave-induced
set-up have been investigated world wide. In the Netherlands the Storm Surge Warning Service
(SVSD) forecasts in cooperation with the KNMI through the hydrodynamic Dutch Continental
Shelf Model (DCSF), meanwhile assessing wave impact by means of wave models such as SWAN
(Verlaan et al. (2005)) locally. On a larger regional scale hurricane waves and storm surge are
jointly assessed for the US coast in coupled SWAN - ADCIRC models (Dietrich et al. (2011)).
Under the condition of sufficient availability of computational cores (i.e. a supercomputer), this
coupled flow-wave model can provide forecasts in real-time for the required domain.

If the scale is further increased, such as necessary to assess surge levels around the entire
Australian coast, model approaches tends to assess the hydrodynamic component of the surge
level numerically, while using location-calibrated stochastic models for the wave-induced set-up
(McInnes et al. (2016)). This approach has been shown to overestimate storm surge in areas with
complex bathymetry, possibly because bathymetry was not taken into account in the parametriza-
tion (O’Grady et al. (2015)).

As storms in open ocean affect several coastlines at once, present day storm surge models
attempt to asses surge levels on a scale no smaller then regional. The Global Tide and Surge
Model (GTSM, Verlaan et al. (2015)) is successful in real-time forecasting of the hydrodynamic
component of storm surge on a global scale. With an unstructured model approach refinement of
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the grid is only required in shallow water where the bathymetry prescribes the grid size. Implicit
time-integration allows coarse time steps such that one simulation day requires just seven min-
utes of computations on a normal computer (one i7 processor with 4 cores). The wave-induced
component however has not been included in the model yet. Wave modeling in a global model
faces the challenge of the disparity between the scale of the model and the scale at which the wave
processes in shallow water take place. This thesis investigates another wave model approach to
contribute to the feasibility of real-time wave forecasting in a global model.

1.2 Problem statement

Spectral wave modeling in third generation wave models are important tools in understanding
wave physics. If (computational) time is available they are also used for design and assessment
purposes as wave models are very computationally demanding. This computational complexity is
partly due to the numbers of dimensions used to describe a wave state in a full spectral model.

Dimensions of a wave field

The wave field in spectral wave models is expressed in five dimensions: time (t), 2D horizontal
location (x, y), frequency (f ) and propagation direction (θ). The solution space is hence five-
dimensional. In the case where stationary conditions are assumed, the time-dimension can be
eliminated and four dimensions of the solution space remain. In comparison, to model currents
on a similar domain only the 2D horizontal location (x, y) is strictly necessary. In some hydro-
dynamic models the distribution of the flow-profile over the depth is additionally included (z).
Suppose the spectral component of the solution space in the wave model is discretized: {fi}mi=1,
{θi}nj=1. The description of a wave state in comparison to a 2D flow state on the same discrete grid
{(xk, yl)|k = 1 . . .K, l = 1 . . . L} then requires a factor KL more computer memory. Addition-
ally, the systems of equations solved in the model is enlarged by the same factor. This increases
the demand on fast solution algorithms greatly.

Wave models generally describe a wave state at location (x, y) by a two dimensional wave
spectrum (θ, f ). Radiation stresses however, can be derived from frequency integrated parameters
(E(θ), n(θ)), where E is total wave energy and n is the ratio between group celerity and phase
celerity of the waves (Dingemans et al. (1987)). Both these variables are defined on propagation
space (x, t, θ). It is hypothesized that in the assessment of wave-induced set-up the distribution of
wave energy over the frequency domain f is not of direct importance.

Therefore, this thesis will focus on a spectrally-integrated approach to wave modeling by elim-
inating f from the solution space. A three-dimensional solution space (x, y, θ) remains. This
would make the model more appropriate for forecasting applications, because larger domains with
a relatively fine grid can be modeled with similar problem-size and need for computer memory
compared to spectral models.

Frequency integrated wave models

Commonly used phase averaged models are based on the wave energy or wave action balance.
Wave action is conserved during wave propagation under ambient currents while wave energy is
not (Bretherton and Garret (1969)). The wave action balance is given by:

dA

dt
+∇ · (v⃗A) = SA (1.1)
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1. Introduction

in which A = A(x, y, θ, σ) = E(x,y,θ,σ)
σ wave action density, ∇ is the three-dimensional differen-

tial operator over (x, y, θ)−space, v⃗ is three-dimensional rate of change vector v⃗ = (cg,x, cg,y, cθ)
T

and SA = SA(x, y, θ, σ) source terms. The group celerity is defined as cg =
∂ω

∂k
. The frequency

ω is related to the wave number through the dispersion relation:

ω2 = gk tanh(kh) (1.2)

with k the wave number and h the height of the water column. The refraction rate follows from
linear theory and consists of a bottom induced and a current induced refraction rate. Source terms
in spectral wave models generally consist of:

SA = Sin + SD + SNL (1.3)

With Sin generation of waves by wind, SD dissipation terms, which in deep water are dominated
by white-capping (Dwc) while in coastal regions by bottom friction (Df ), and depth induced break-
ing (Dbr). Transfer of action through the action spectrum is described by nonlinear wave-wave
interactions SNL.

An action density spectrum (σ,A) is reasonably represented by the bulk wave action and the
peak frequency in case the spectrum is narrow banded and single-peaked. Under this assumption
a frequency-integrated approach to the wave action balance is expressed as:

∂A∗

∂t
+∇ · (v⃗A∗) = S∗

A (1.4)

in which A∗ = A(x, y, θ) =
∑

σ E(x,y,θ,σ)
σ total wave action, S∗

A = SA(x, y, θ, σ) source terms
and σ a frequency representative for the spectrum. In this approach nonlinear wave-wave inter-
actions are only described implicitly in the evolution of σ such that the source terms reduce to
S∗
A = S∗

in + S∗
D.

Literature already describes some models with a frequency integrated approach. For example,
HISWA (Holthuijsen et al. (1989)), Mase (2001), and, disguised as a storm impact assessment
model XBeach (Roelvink et al. (2009)). The HISWA model solved a two-equation approxima-
tion to the wave action balance for the evolution of (σ,A∗) with a second generation process
description for wind input Sin and dissipation Df and Dbr. White-capping (Dwc) was included
implicitly in the wind input formulation. The second approximation equation to the wave action
balance describes the peak period variations throughout the domain. Although no description of
the nonlinear wave-wave interactions is available in HISWA, this second equation can be seen as a
rudimentary description of spectral shape evolution. This model was operational for a number of
years, but as the feasibility of spectral models for hindcasting purposes became greater through-
out the years with the increase of computational power of the computer, focus shifted towards
third generation wave models. HISWA-like generation mechanisms are still a process description
option within the SWAN model (Booij et al. (1999)), but the two-equation approximation was
completely abandoned there.

The XBeach model takes the narrow band assumption one step further. It assumes the at-
tempted model domain is short in the direction of propagation of waves. The wave state in the
interior of the domain is then dominated by the wave conditions provided on the offshore model
boundary. These assumptions allow to reduce the complexity of the model:

• The wave period in prescribed throughout the whole domain and equal to the boundary pre-
scribed value. This representative wave period can be either the moment-based mean period,
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or the peak period, corresponding to the period of the significant wave. This computed wave
period is assumed to be representative as wave period in the entire domain, hence acts as a
constant in the wave celerity computation and the dissipation processes.

• All wave energy in spectra on the model boundary is positioned on the representative period
and remains so when propagating into the domain.

• Because of the short travel time of waves in the interior of the domain, only dissipation
processes are described and modeled. Local wave growth in short domains is assumed to be
negligible.

XBeach-like wave drivers are currently also implemented as a wave-module in the unstructured
finite volume flow model DFlow-FM (Reyns et al. (2016)). This implementation will be referred
to as the Frequency Prescribed Model in FM (FPM-FM). An unstructured implementation has the
advantage that generation of grids for complex bathymetry is easier and possibly more accurate
with fewer grid cells as grid refinement can occur locally.

1.3 Approach

The approximation to the wave action balance in the HISWA model appears applicable to the
real-time forecasting of wave-induced set-up in a large scale model because it reduces the solution
space to propagation space: (x, y, θ) and the primary evolution processes are present. No cur-
rently operational implementation of the frequency integrated approach is available however. The
XBeach wave drivers are operational, but the absence of a wave generation mechanism prevents
its application to domains extending into water of intermediate depth and in regions sheltered from
offshore wave conditions such as behind barrier islands and shoals.

Its unstructured version, FPM-FM, is operational in beta-release and provides a means to re-
duce the model problem size in contrast to the structured version because it allows local grid
refinement. The additional advantage of D-Flow FM as the flow model coupled through wave-
current interaction to the wave model is that the global model is also a D-Flow FM model. This
makes the two models tightly coupled, which generally leads to a more efficient model (Dietrich
et al. (2013)).

To make the FPM wave drivers in DFlow-FM suitable for application to larger domains and
behind barrier islands, as is a requirement in regional modeling of storm surge, the objective of
this thesis is narrowed down to the development of a wave generation mechanism for this model.

1.4 Research objective

The development process of a wave generation mechanism for a frequency integrated wave model
can be divided into three parts: (1) Derivation of a source term formulation for wind input, (2)
Implementation of the source term into FPM-FM wave drivers and (3) Validation of the model
approach.

These are the research questions which follow from the objective:

1. (a) What should be the formulation of a wave generation mechanism in a frequency inte-
grated approach?

(b) How does the proposed source term relate to the wind input formulation in the HISWA
model?
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(c) How does the source term behave under wave states differing to the domain of wave
states in the derivation?

2. (d) What steps are necessary to guarantee model robustness?

(e) How does the wind input interact with other source terms in the wave action balance?

3. (e) How does the predictive skill of the model compare to a spectral wave model?

(f) Does the model show reduced CPU time in comparison to a spectral wave model?

1.5 Outline

The structure of this thesis is as follows. Chapter 2 discusses literature on the topic of wave
generation by wind. In Chapter 3 the derivation of a source term formulation is made. Convergence
under ideal 1D conditions and properties of the derived sourve term are described in Chapter 4.
The source term formulation is extended for implementation in a 2D model in Chapter 5. A
validation of the 2D implementation by means of a hindcast is described in Chapter 6. Chapter
7 then reports on the research conclusions and provides some recommendations towards further
research.
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2. Literature survey on wave generation

Two approaches can be identified in literature to describe wave growth. The first is based on
the description of evolution of integral characteristics. The second approach attempts to describe
the evolution of wave components within the wave spectrum. Although the latter approach is
geared towards spectral wave models while this thesis investigates a frequency integrated model
approach, it is worthwhile to study its theory as it is today’s state of the art. To that end this chapter
first discusses literature on measurements of integral wave characteristics and then reports on the
description of growth of wave components in Section 2.2. Section 2.3 discusses which properties
from the spectral description of wave growth are relevant in a frequency integrated model.

2.1 Measurements of wave characteristics

Integral wave characteristics of the wave spectrum can be defined in a multitude of ways. Often,
primary characteristics used are significant wave height and peak period (Hs, Tp), because visual
wave observations can be related to these spectral quantities. In case the integral characteristics are
derived from a measured signal, total wave energy and mean period (Etot, TM01) are preferable.
The first observations of wave growth under wind forcing come from Sverdrup and Munk (1946)
and Bretschneider (1952). They observed that wave characteristics respond similarly to wind
forcing when the growth rates were compared in dimensionless form by scaling appropriately
with a measure of the friction velocity and the gravitational constant. Measurements were taken
in conditions that approximate an idealized scenario. In this stationary scenario (the conditions
don’t change in time) the wind blows offshore over deep water where the waves do not experience
any bottom effects. This led to power law expressions as prediction relations for wind-generated
waves as:

Hs
∼

= a1F
∼b1

(2.1)

Tp
∼

= a2F
∼b2

(2.2)

The tilde indicates a dimensionless variable, ai, bi coefficients and F stands for fetch: the shore-
normal component of the distance from the measurement point towards the upwind coast along the
wind direction. The definitions of these dimensionless variables are given in Table 2.1. Strikingly,
such power laws still form the basis of today’s study of prediction relations, despite their basis on
highly idealized conditions.

Kitaigorodskii (1962) developed theoretical arguments on growth and spectral shape based on
self-similarity of integral characteristics of the spectrum. Pierson and Moskowitz (1964), using
this similarity theory, described universal limits for the growth of sea states. The dimensionless
wave energy in a fully developed sea state appeared constant due to a balance between generation
and dissipation. Intuitively, this upper limits matches wave conditions with a phase celerity equal
to the wind speed. Shear between the air- and sea layer diminishes and hence the energy transfer

Parametric wave growth in a frequency integrated wave model – M.A. van der Lugt 7



2. Literature survey on wave generation

Figure 2.1: Wave characteristics measurements from two field experiments on log-log scale.
Left:wave energy ϵ̃ against fetch x̃. Right: peak frequency ω̃p against fetch. All are made
dimensionless.

can’t take place through a shear mechanism anymore. Cut-off values for the above given growth
curves given as

H∞
∼

= c1 (2.3)

T∞
∼

= c2 (2.4)

Later, Hasselmann et al. (1973) analyzed field data of young sea states in the North Sea in a
project called JONSWAP. Young sea states have wave climates which have not yet reached fully
developed conditions and the energy transfer from air to sea is dominant over dissipation mecha-
nisms. The JONSWAP project identified self-similarity not only in the integral characteristics but
also in the shape of the young sea state wave variance spectrum. A universal shape of the spectrum
was parameterized where the shape parameters are wave age dependent.

Quantification of growth curve coefficients

More field experiments were performed in the years after, amongst others the Bothnian Sea
(Kahma (1981)), ARSLOE (Rottier and Vincent (1982)), Lake Ontario (Donelan et al. (1985)),
Lake Marken (Bouws (1986)). The prediction relations these studies resulted in, were translated
into prediction relations for the engineering community in for example the Shore Protection Man-
ual (1984).

Although in each field experiment a clear correlation between fetch and wave energy and
between fetch and wave period was observed, the quantification of coefficients in the best-fit
parametrization of the growth curves in each of these field studies continued to show discrep-
ancies. Growth curves with double steepness were observed in Kahma (1981) compared to Has-
selmann et al. (1973).This led Kahma and Calkoen (1992) to (re)analyze a joint set of wave studies
(JONSWAP, Bothnian Sea, Arsloe, Marken, Ontario and Qeii) in an attempt to identify the cause
to these discrepancies.

The main conclusion from the analysis of the collected database of observations was that
no single factor could explain the differences in growth curves observed at different sites. The
particularly large differences between growth curves between the JONSWAP experiment and lake
Ontario could be partially explained by assessing the state of stratification of the air-sea surface
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2. Literature survey on wave generation

Variable units scaling

Significant wave height [Hs]=m Hs
∼

=
gHs

u102

Bulk wave variance [m1]=m2/m2 m1
∼ =

g2m1

u104

Bulk wave energy [E]= J m−2 E
∼

=
gE

ρu104

Fetch [F ]=m F
∼

=
gF

u102

Period [Tp]=s Tp
∼

=
gTp

u10

Time [t]=s t
∼

=
gt

u10

Group celerity [cg]=m/s cg
∼ =

cg

u10

Wave action [A]=J s/m2 A
∼

=
g2A

ρu510

Table 2.1: Definitions of dimensionless variables. Conversion between the various variables
expressing energy: Hs = H1/3 ≈ Hm0 = 4.004...

√
m0 and E = ρ g m0.

temperature. They propose different coefficients for the fetch power laws in the case of stable and
unstable stratification in temperature between air and sea. Since not all field experiments reported
on temperature and the distinction did not remove the disparities completely, they also provided
a wave prediction relation for the composite dataset, the coefficients of which are given in Table
2.2. Equations (2.1) and (2.2) with coefficients given by Kahma and Calkoen (1992) are from here
on referred to as KC1992 curves.

A second conclusion drawn from their analysis is the difference in predictive power of the
scaling laws between wave energy and wave period. Correlations between dimensionless variables
on log-log scale can be partially addressed to the dependence of the dimensionless values on the
wind speed. This is especially the case when the measurement of the wind speed is inaccurate and
the range of the dimensionless quantity is small in comparison to the wide range of the independent
variable F

∼
, which is exactly the case for measurements of wave period. From this discussion they

concluded that most attention should be given to the prediction relation of wave energy, and less
to prediction of peak period, because spurious correlations have a smaller effect on the former.

Transition to fully developed sea states

The transition between fetch limited sea states and fully developed sea states has not been de-
scribed by Kahma and Calkoen. To that end, Young and Verhagen (1996) prescribe the use of
tanh-expressions that entail a continuous transition to fully developed sea states:

H
∼

= H
∼

∞

(
tanh(k1F

∼m1
)
)p

(2.5)

Tp
∼

= Tp
∼

∞

(
tanh(k2F

∼m2
)
)q

(2.6)

See Figure 2.2 for a comparison of Equations (2.1) - (2.6).
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Hs
∼

Tp
∼

a1 = 2.88× 10−3 a2 = 0.459
b1 = 0.45 b2 = 0.27
c1 = 0.24 c2 = 7.69

k1 = 4.41× 10−4 k2 = 2.77× 10−7

k3 = 0.343 k4 = 0.10
m1 = 0.79 m2 = 1.45
m3 = 1.14 m4 = 2.01
p = 0.572 q = 0.187

Table 2.2: The coefficients for (2.1), (2.2), (2.3), (2.4), (2.9) and (2.10) based on the compos-
ite dataset as proposed by Kahma and Calkoen (1992) and with fully developed sea states
described by coefficients of Pierson and Moskowitz (1964) as supported by Breugem and
Holthuijsen (2007)

Figure 2.2: The tanh fit of Young and Verhagen (1996) (full lines) to the Kahma and Calkoen
(1992) curves (dashed lines) and the fully developed limit from Pierson and Moskowitz (1964)
(dotted lines) on the growth curve for significant wave height (lower graphs) and peak period
(upper graphs) as a function of fetch on log-log scale. Definitions of dimensionless variables
can be found in Table 2.1.

Finite depth effects

Apart from describing the transition to fully developed wave conditions, in the same paper Young
and Verhagen (1996) acquired a new set of wave observations in lake George in Australia, in this
measurement campaign focusing on the effect of depth limitations on wave growth. They expected
the cut-off wave states in finite depth to scale with the water depth. This depth dependence was
confirmed in their study, see Figure 2.3. Although a large scatter can be observed, a depth depen-
dent upper bound was present in the data. Despite being slightly gentlier sloped, the relation for
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Figure 2.3: A scatter plot wave observations in finite depth taken from Young and Verhagen
(1996). The dimensionless wave energy ϵ is plotted against dimensionless depth δ. The upper-
envelope (solid line) and the Lake Okeechobe result (Bretschneider (1978)) (dashed line).

this upper bound is similar to a prediction relation already in 1978 by Bretschneider. The charac-
terization of the depth effect on the fully developed criteria by Young and Verhagen (1996) was
given by:

H∞
∼

= min

(
a3h
∼b3

, H∞
∼

deep water

)
(2.7)

T∞
∼

= min

(
a4h
∼b4

, T∞
∼

deep water

)
(2.8)

These relations are plotted for dimensional values in Figure 2.4. Young and Verhagen (1996)
provided the growth curves with an additional tanh- expression to describe the transition between
young sea states and fully developed sea states whilst also including a transition from shallow to
deep water in a continuous manner:

Hs
∼

= H∞
∼
[
tanh(k3h

∼m3
) tanh

(
k1F
∼m1

tanh(k3h
∼m3

)

)]p
(2.9)

Trep
∼

= T∞
∼
[
tanh(k4h

∼m4
) tanh

(
k2F
∼m2

tanh(k4h
∼m4

)

)]q
(2.10)

where

ki =

(
ai

H∞
∼

) 1
p

and mi =
bi
p

for i = 1, 3 (2.11)

kj =

(
aj

T∞
∼

) 1
q

and mj =
bj
q

for j = 2, 4 (2.12)

These relations are further referred to as YV1996. Breugem and Holthuijsen (2007) reanalyzed
the lake George dataset and excluded all observations that were made under wind conditions from
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Figure 2.4: The deep shallow water constraints on fully developed wave state as described by
Young and Verhagen (1996), modified by Breugem and Holthuijsen (2007). Left: significant
wave height against water depth. Right: wave peak period against water depth.

the south, because they concluded that the lateral coastlines were influencing the sea state at the
observation points for wind from this direction. They also re-examined the calculation of the fetch
and excluded all calculations based on inferred fetch (deducing the fetch from the current wave
state through an assumed relation). They replaced the inferred fetch calculations with the more
traditional geometric fetch (the measured length of the shore-normal component of the distance
towards the upwind shoreline). With the remaining observations they reconfirmed the Kahma and
Calkoen composite prediction relation for deep water waves and reformulated the coefficients from
Young and Verhagen (1996) for the depth-limited relations. See Table 2.2 for their quantification.

With these prediction relations, the interest in the quantification of fetch limited growth curves
altered. Further studies focus on the evolution of the spectral shape or at the directional spreading
of wind waves. For example, the wave spectrum in shallow water is observed to have a harmonic
at slightly less then twice the peak frequency (Young and Babanin (2006)). In this paper additional
shallow water wave measurements were included in the analysis, with which the shape parameters
of the growth curve relations can be slightly modified to enhance the fit. With the general form of
the prediction relations (2.9) and (2.10) in place, a starting point for the derivation of a source term
is in place, the approach of which will not be altered by minor changes in the growth coefficients.

Correct wind speed scaling

There has been discussion about the best variable to scale dimensional variables with to make
dimensionless ones. Kitaigorodskii et al. (1975) scaled the wave height, fetch and peak period
with u∞, the air velocity at the end of the boundary layer from where the wind field can be
assumed uninfluenced by the waves. Hasselmann et al. (1973) and Kahma and Calkoen (1992)
scaled the variables with the friction velocity u∗. This friction velocity is generally not measured
directly, but inferred from a wind speed measured at some height above the water level through

an assumed relation, the friction coefficient CD =
u∗2

u210
for example. The friction coefficient can
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include temperature stratification effects, wind speed, density differences, etc. One would expect
that through a more detailed description the predictive skill of the power laws should improve.
Young and Verhagen (1996) compared the use of u10 and u∗ through investigating the scatter of the
observations around the model line, and concluded that parametrization on u∗ did not significantly
decrease the amount of scatter. The latter does not prove that u10 would indeed be the best scaling
variable, but merely indicates that the indirect measurement techniques for the friction velocity
might not be adequate enough to show its effect, an argument also made by Yelland and Taylor
(1996). For this reason, most recent studies parameterizing power laws as (2.1) and (2.2), such as
Young and Verhagen (1996) and particularly Breugem and Holthuijsen (2007), scale directly with
u10.

The phase plane

The prediction relations for wave height and period are both explicit in fetch, which suggests that
through equating those relations, a relationship should exist between the two wave parameters as
well. A universal relation between dimensionless significant wave height and wave period was
already given by Toba (1972):

H
∼

= βTp
∼γ

(2.13)

In Toba’s argumentation γ = 3/2. With the Kahma and Calkoen expressions β = a1

(
1
a2

) b1
b2 =

0.0105 and γ = b1
b2

= 1.6667. This relation is plotted in the f,E phase plane in Figure 2.5.
Through variations in the wind speed, a local wave state may suddenly deviate from the equi-
librium relation between energy and period. Non-linear transfer processes are expected to steer
towards local equilibrium. This is in fact a quasi-equilibrium, since both wave energy and period
continue to grow or dissipate but are in equilibrium with each other as long as they move along
the equilibrium trajectory throughout phase space. Some of the first parametric wave prediction
models described exactly this evolution (e.g. Hasselmann et al. (1976), Günther (1981)). The
relaxation towards equilibrium as present in Hasselmann et al. (1976) is plotted as pointed trajec-
tories in Figure 2.5. This model behavior can serve as a means of validation of the forcing towards
quasi-equilibrium of the derived wind-input source term.

2.2 Wave growth per wave component

Besides wave observations in stationary conditions, there has been an extensive discussion in the
literature on development of a source term formulation for spectral wave models in non-stationary
problems. The development of wind induced waves on a flat water surface is first described by
Phillips (1957), based on the principle of resonance between surface pressure fields and the celerity
of free surface wave components. When some waves already exist, Miles (1957) concludes that
these waves modify the air flow in the boundary layer, thereby enhancing the energy transfer from
wind field to surface waves (Figure 2.6). Energy transfer takes place at the concave sea surface
from wind field to surface waves. Growth is a positive-feedback mechanism: the rate of change is
proportional to magnitude of present wave energy. Therefore:

∂E(x, y, σ, θ)

∂t
= γE(x, y, σ, θ) (2.14)
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Figure 2.5: The Hasselmann et al. (1976) quasi-equilibrium line in the ν, ϵ (dimensionless
(f,E) plane. Left of the vertical line wave states can be considered uninfluenced by wind forc-
ing (Swell). To the right trajectories from non-matching phases towards the quasi-equilibrium
are drawn. The three lines marked by cw indicate quasi-equilibria which would be find in case
the drag coefficient would heave been a factor 10 more or less, hence gives a qualitative range
for the likelihood of observing non-matching wave states. The three open dots connected by a
dashed line indicate the jump of a wave state in the dimensionless phase plane in case the wind
speed suddenly increases or drops by a factor 1.5.

in which γ is a growth rate.

Measurements, amongst others Snyder et al. (1981) and Hasselmann et al. (1973), showed un-
derestimation of wave growth with Miles’ mechanism. This contributed to theoretical arguments
stating that the mechanism as formulated by Miles oversimplifies the physics by assuming air flow
is inviscid and turbulence is unimportant apart from maintaining the shear flows of air and water
surface. Miles’ theory however still forms the basis of the wind generation mechanism present
in most of present days’ wave models. Janssen (1989, 1991), following a proposal from Snyder
et al. (1981), showed Miles’ mechanism explained the growth rate of old sea states (sea states with
fully developed wave spectra) reasonably well. He identified that the presence of waves not only
influences their own direct boundary layer, but also the lower atmosphere in which the boundary
layers of other waves lay. He argued the growth of young sea states can also be modeled through
a Miles’ like mechanism if the drag coefficient (a measure for the amount of friction between two
shearing layers) is made wave age dependent. This approach was backed by observations from
Donelan (1982) who found drag coefficients which were 50% higher for young sea states than for
old ones. Taylor and Yelland (2000) later quantified the dependence of the sea surface roughness
on the wave height and steepness.

The growth rate expression

The expression for the growth rate γ in Janssen’s variation on Miles’ mechanism is given by:

γ

ω
= ϵβ

(u∗
c

)2
cos2(θ) (2.15)
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Figure 2.6: Taken from Holthuisen (2007): The energy transfer mechanism at the concave sea
surface from wind field to surface waves.

with ω the wave frequency, ϵ the air-sea density ratio, u∗ the friction velocity, θ the angle of the
waves with the wave direction, c the wave celerity and β another growth rate provided by

β =
1.2

κ2
µ ln2(µ) (2.16)

Here, κ is the Von Kármán constant and µ a dimensionless critical height:

µ = k(zc + z1) (2.17)

This amounts to the addition of the critical height zc, at which the resonance condition (Uwind−c =
0) is met, and the roughness length z1 of the sea surface due to the presence and growth of short
capillary waves, made dimensionless by multiplication with the wave number k. Janssen assumes
that the wind profile is sufficiently described by a logarithmic profile, which enables him to rewrite
µ into an expression in terms of z0 (roughness length of the air flow) and z1 (roughness length of
the sea surface due to short capillary waves) instead of zc (critical height) and z1. This allows for
the application of Charnock’s relation:

z0 =
αu2∗
g

(2.18)

With α Charnock’s constant, g the gravitational acceleration. The dependence on z0 can then be
eliminated and only z1 remains. µ reduces to:

µ =
(u∗
κc

)2
Ωexp[

κc

u∗ cos(θ)
] , Ω = g(

αu2∗
g

+ z1)
κ2

u2∗
(2.19)

Because of the implicit nature of the set of equations, they are solved for through the iterative
procedure of Mastenbroek et al. (1992) in the most advanced wave models, (e.g. SWAN) .

2.3 Discussion

The theoretical work of above authors is the most accurate description currently available, thereby
a logical candidate for a framework to develop a source term for the frequency integrated wave
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drives. A major disadvantage is that the theory applies to the generation of wave-components of a
sea state. This lends itself particularly well when the full wave spectrum is being discretized and
modeled and only afterwards the integral wave properties are derived from the calculated wave
spectra. As no information on the spectral shape is available in a frequency integrated model, the
effect of growth of single wave components on the integral wave properties should be incorporated
in the theory.

One approach would be to assume all spectra in a frequency integrated model to have a per-
fect JONSWAP shape. This way both integral wave parameters significant wave height and peak
period of the spectrum could be back-engineered on which the wind input is calculated through
the above described generation mechanism. Afterwards these calculated spectra can be converted
back to integral wave parameters. Aside from the large amount of computations necessary in one
source term update, does the wind input also rely heavily on non-linear wave-wave interactions
to redistribute the wave energy input over the frequency range. Parameterizing the joint effect of
these redistribution mechanisms with the growth mechanism from the state-of-the-art description
of the mechanisms would come down to disguising a spectral model as a frequency integrated one.

The description of fetch-limited stationary wave states, however, takes the nonlinear transfers
into account implicitly by describing the evolution of integral characteristics. Some information
on the energy transfer is however lost. Integral characteristics of wave spectra are only appropriate
measures if the spectrum is unimodal (e.g. well described by just one peak). Moreover, tempera-
ture or density stratification effects are ignored in the joined description of growth curves through
(2.1) and (2.2). Last, the stationary solution as prescribed by the growth curves does not directly
describe a growth rate. A growth rate description still needs to be derived. Janssen’s formulation
can then be used to prescribe some properties which a wind input formulation should conform to.
In reference to (2.15):

• Growth of total wave energy is a positive feedback mechanism.

• The growth rate is wave age dependent.

• When the phase speed develops towards the wind speed, the energy transfer should diminish.

• The integral growth rate for bulk energy is dependent on the integral wave frequency.

• The directional distribution of wind input is described by cos2(θ − θwind).

As a concluding remark, it should be noted that the amount of scatter around all model lines
through observations of integral wave characteristics is considerable. Some of the scatter can
be attributed to the limited capability to measure the friction velocity, but this certainly does not
explain all. Site specific influences remain unidentified. Using the prediction relations, the scatter
around the model lines should always be kept in mind. A model which perfectly reproduces such
growth curves does by no means have to exactly reproduce measurements at a new location.
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3. Derivation of source term formulation

This chapter describes the derivation of a source term formulation for a frequency integrated wave
model. First the available description from the HISWA model is discussed. In the section there-
after a different approach was adopted and described. Incorporation of wave growth in the wave
action balance is discussed in Section 3.3. The domain of applicability is expanded in Section 3.4.
Section 3.6 then summarizes the derived set of equations.

3.1 HISWA approach

Wave growth for a frequency integrated wave model was present in HISWA. Booij et al. (1999)
presents dimensionless growth curves expressed as a function of time for the total wave energy E

∼
1

and the moment based mean frequency Ω
∼

:

E
∼

1 = a tanh(b t
∼c

)d (3.1)

Ω
∼

1 = eE
∼d

(3.2)

Where a − f are mentioned to be model constants equal to a = 3.6 × 10−3, b = 0.21 × 10−21,
c = 4.667, d = 0.3, e = 0.04 and f = 0.283. These coefficients were chosen to match the deep
water wave growth of the prediction relations in the Shore Protection Manual of 1973 as closely
as possible. The fitting method was not reported on. The SPM relations are:

H
∼

s = 1.6 · 10−3 F
∼1/2

(3.3)

T
∼

p = 2.857 · 10−1 F
∼1/3

(3.4)

which are equal in shape to (3.7) (3.8), with slightly different coefficients. Booij suggests taking
a time derivative of (3.1) and (3.2) to obtain expressions for the source term for energy and wave
period in terms of dimensionless time. (3.1) and (3.2) are then substituted in the expressions for
the derivative in order to relate the rate of change of energy and frequency to their local value. In
case a wave state does not conform to (3.2), the source term for the wave period is multiplied with
a relaxation parameter:

C =
Ω
∼(

eE
∼d
)m (3.5)
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Figure 3.1: The equivalent time derived from the local wave energy according to (3.1).

In which m is a tuning parameter to influence the return rate of the model to (3.2). C returns the
ratio between ideal wave period (i.e. following (3.2)) and the actual wave period observed:

C(E
∼
, Trep
∼

) =
fE−ω(E

∼
)

ω∼


= 1 wave state positioned on growth curve
> 1 energy further developed than period
< 1 period further developed than energy

(3.6)

where fE−Ω is the inverse of (3.2). In HISWA the relaxation is tuned to match Günther (1981) (as
cited in Holthuijsen et al. (1989)), see Figure 2.5 or Section 2.1.

Some comments can be made regarding this wind input formulation:

• The wave energy and the representative period are not coupled by themselves in Booij’s for-
mulation. It requires a tuned relaxation factor to force growth towards a quasi-equilibrium
(3.2).

• In Booij’s wind input formulation, only the value of the local wave energy is included in the
formulation while no spatial gradients of the wave state are taken into account. Therefore,
the source term is not able to distinguish between fetch limited and time limited wave states.

• The fully developed mean wave frequency is equal to 0.1966 s−1 ( mean period of 5.09 s).
In Holthuijsen et al. (1989) a conversion factor of 1.2 between the peak period and the mean
period is mentioned to be used in comparing Booij’s growth curve to the SPM relations (3.3)
and (3.4), which implies a peak frequency of Trep

∼
= 6.1 s. This does not equal any of the

fully developed sea states described in literature (only approximates 2π, the value of wave
period at which the group celerity is equal to the wind speed).

• The inverse of (3.1), is used to compute a rate of change corresponding to the current wave
state. The inverse function is not defined at fully developed wave states, see Figure 3.1. Be-
cause of this, a value of the wind input term seizes to exist at wave states at fully developed
or over-developed wave states. Booij does not address how to deal with these wave states.
Alfons Smale and Mart Borsboom addressed source term behavior towards fully developed
conditions by applying a limiter function to the value of the local energy to obtain finite rates
of change on the entire domain (Smale and Borsboom (2016), personal communication).

A wind input formulation for the FIM-FM model should at least address these concerns.
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3.2 Evolution relations

In this section, a slightly different approach to development of growth rate epxressions is adopted
to circumvent fitting a duration-fetch relation to (Brettschneider-like) curves, because these are
already empirical fits by nature. The growth curves described by Kahma and Calkoen (1992)
with upper bounds described by Pierson and Moskowitz (1964) and depth limitations described
by Breugem and Holthuijsen (2007) after Young and Verhagen (1996) in terms of significant wave
height and peak period form the basis of this derivation. Repeating (2.1) and (2.2):

Hs
∼

= a1F
∼b1

(3.7)

Tp
∼

= a2F
∼b2

(3.8)

with quantification of coefficients a1 = 2.88 × 10−3, a2 = 0.459, b1 = 0.45 and b2 = 0.27.
These growth prediction relations hold initially only in deep water and fetch limited conditions.
Extension of their applicability towards these ranges is discussed in later sections. For now deep
water wave conditions, non fully developed wave conditions and a one-dimensional scenario are
assumed.

(3.7) and (3.8) can be rewritten explicitly in fetch:(
16E

∼

a12

)1/2b1

= F
∼

(3.9)

(
Tp
∼

a2

)1/b2

= F
∼

(3.10)

The conventional definition of fetch is generally the distance to the upwind shore, e.g. a geometric
fetch. The fetch equivalent of a finite storm duration in case the geometric fetch is infinite is equal
to the integral over the group celerity from the time wind starts blowing to the current time:

F
∼

eq ≡
t
∼∫
0

cg
∼(n, Tp

∼
, k
∼
) dt∗ (3.11)

The equivalent fetch can be interpreted as the fetch which would have lead to a stationary solution
with an amount of energy equal to the energy currently present at given location under the idealized
condition that wind has been blowing infinitely. Differentiating with respect to t

∼
, the local rate of

change of the equivalent fetch is then given as:

dF
∼

d t
∼ = cg

∼ (3.12)

Therefore, when taking the time derivative of (3.9) and (3.10):

d

d t
∼

(16E
∼

a12

)1/2b1
 = cg

∼ (3.13)

d

d t
∼

( Tp
∼

a22

)1/b2
 = cg

∼ (3.14)
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These can be rewritten as:

f1(E
∼
)
dE
∼

d t
∼ = cg

∼ (3.15)

f2(Tp
∼
)
dTp
∼

d t
∼ = cg

∼ (3.16)

in which the functions f1 and f2 are given as:

f1(E
∼
) =

16

2a12b1

(
16E

∼

a12

)1/2b1−1

(3.17)

f2(Tp
∼
) =

1

a2b2

(
Tp
∼

a2

)1/b2−1

(3.18)

Two coupled growth rates for dimensionless wave energy and peak period are then expressed as:

dE
∼

d t
∼ = cg

∼/f1(E
∼
) (3.19)

dTp
∼

d t
∼ = cg

∼/f2(Tp
∼
) (3.20)

These two equations entail 3 unknown variables (E
∼
, T
∼

p, c∼g). The dispersion relationship fd es-
tablishes another relation between wave celerity and wave period:

cg
∼ = fd(n, Tp

∼
, k
∼
) (3.21)

n = f(h, k), and k = fd(Tp) and wherefd is given bt (1.2).
Therefore, the wind input is given by the three relations (3.19), (3.20) and (3.21) in the three

unknown variables E
∼

, Tp
∼

and cg
∼ given the local flow information: water height h, and flow veloc-

ity u⃗.

3.3 The wave action balance

In this section (3.19) and (3.20) are converted to source terms for the wave action balance in
one dimension. The total derivative of dimensionless wave action in 1D can be expressed in the
derivatives of dimensionless energy and frequency as:

dA
∼

d t
∼ =

d

d t
∼(

E
∼

σ∼
) =

1

σ∼
dE
∼

d t
∼ − E

∼

σ∼2

dσ∼

d t
∼ (3.22)

Under the assumption that any ambient currents are stationary in space and time, the rate of change
of intrinsic frequency is assumed to be similar to the rate of change of absolute frequency:

dσ

dt
≈ dω

dt
(3.23)

Therefore the rate of change of wave action can be written as:

dA
∼

d t
∼ =

1

σ∼
dE
∼

d t
∼ + 2π

E
∼

σ∼2
Tp
∼2

dTp
∼

d t
∼ (3.24)
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The rate of change of wave action is governed by the rates of change of wave energy (3.19) and
wave period (3.20). The dimensionless formulation must be converted to a dimensional source
term. This conversion is given by:

dA

dt
=

ρu10
4

g

dA
∼

dt
≡ f

A
∼

−A
(A
∼
) (3.25)

Here and in the following, the projection function from dimensionless to dimensional quantities
is named as fQ̃=Q(Q). The wave action balance is in conservative form, i.e. wave action is
conserved in any arbitrary control volume when no sink or source terms are present. The total rate
of change of wave action is equal to the sum of source terms:

∂A

∂t
+

∂

∂x

(
cgA

)
= S(A, t, x, . . .) (3.26)

The evolution of wave action as described in (3.25) however, is expressed in nonconservative form:

d

dt
=

∂

∂t
+

dx

dt

∂

∂x
≡ ∂

∂t
+ cg

∂

∂x
(3.27)

Therefore, the cross-component of the gradient of cgA needs to be added to the source term. The
wave action balance with wind-input as the only source term, is then given as:

∂A

∂t
+

∂

∂x

(
cgA

)
=

dA

dt
+A

∂cg

∂x
(3.28)

in which dA
dt is according to (3.25) with (3.30), cg

∼ from (3.21) and E
∼

, Trep
∼

follow from Table 2.1.
The first term on the right hand side of (3.28) will be nonzero in each local wave state below the
fully developed wave conditions. In an infinite domain with uniform wave field, these are the
duration-limited wave states. The second term, the gradient of the group celerity, is only non-zero
in those wave states in which spatial differences are present. In an ideal scenario of a constant
wind blowing over a domain, this term will only be non-zero for fetch-limited wave states, since
those wave states lie on the curves (3.7) and (3.8).

When a wave state under consideration is forced to always comply with the wave prediction
relations (3.7) and (3.8), the wave period is a property of the total energy (or vice versa). Equating
(3.9) and (3.10), Trep

∼
can be expressed in terms of E

∼
along the growth curve:

Tp
∼

= a2

(
16E

∼

a21

)b2/2b1

= fE−Tp(E
∼
) (3.29)

See also Section 2.1. The group celerity then follows from the wave period and wave number
(obtained through the dispersion relationship). Also the group celerity therefore is a property of
the wave energy along the growth curve. Hence, to study the evolution of the action balance as an
initial condition problem matching (3.29), it is sufficient to assess just the action balance and let
the period be a property of the total wave energy through (3.29).

Generally speaking however, a boundary value problem in shallow water has boundary wave
states which do not necessary match (3.29). It is incorrect to overwrite the boundary conditions
and force the peak period to match the young sea state energy through (3.29). At the same time, the
win input within the domain is such that it forces a wave state to (3.29). To correctly resolve both
processes, an additional evolution relation for the wave period is necessary where the advection
scheme correctly combines the wave periods of adjacent cells.
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3. Derivation of source term formulation

In absence of ambient currents

Although the derivation of the wind source term describes the evolution of peak period (Tp), the
spectral mean period (TM−1,0) is a more appropriate period as propagation of wave period es-
sentially comes down to an energy averaging of the wave period in two neighboring grid cells.
Therefore, the representative period (Trep) describes the spectral mean period instead of the spec-
tral peak period from here onwards.

If ambient currents are absent, (3.22) reduces to:

dA
∼

d t
∼ =

1

2π

(
Trep
∼ dE

∼

d t
∼ + E

∼dTrep
∼

d t
∼

)
=

1

2π

(
Trep
∼

cg
∼

f1(E
∼
)
+

E
∼
cg
∼

f2(Trep
∼

)

)
(3.30)

Although (3.20) gives an explicit source term for the wave period, wave period by itself is not a
conserved quantity and hence can’t be advected in the same manner as total wave action throughout
the domain. For this reason, a complementary evolution relation must be solved for. Moments of
the wave action spectrum provide a means hereto. The n-th moment of the wave action spectrum
is defined as:

mA
n =

∞∫
0

ωnA(ω) dω (3.31)

In the absence of background currents the relative and absolute frequency are equal: σ=ω, and
hence a mean wave period in terms of wave action spectral moments can be derived from the more

well known expressions in terms of wave energy spectral moments (mE
n =

∞∫
0

ωnE(ω) dω):

TrepME
−1,0

=
2π

ωME
−1,0

≡ 2π
mE

−1

mE
0

= 2π

∞∫
0

E
ω dω

∞∫
0

E dω

= 2π

∞∫
0

Adω

∞∫
0

ωA dω

= 2π
mA

0

mA
1

≡ TrepMA
01

(3.32)

From here onwards a spectral moment is taken from the wave-action spectrum and the superscript
A is dropped, unless otherwise specified. The total wave action is equal to the first order moment
of the wave action spectrum, and in absence of currents the first spectral moment is equal to the
total wave energy. Therefore the wave action balance (3.28) is complemented with a wave energy
balance:

∂E

∂t
+

∂

∂x

(
cgE

)
=

dE

dt
+ E

∂cg

∂x
(3.33)

in which:

dE

dt
=

u10
3

ρ

dE
∼

d t
∼ (3.34)

where dE
∼

d t
∼ according to (3.19), E

∼
and cg

∼ follow from Table 2.1. The representative period is then

calculated from 2πA
E .

Further on, reference is made to the Frequency Prescribed Model (FPM) in case the wave
period is prescribed thus constant (the XBeach approach) while Frequency Integrated Model (FIM)
refers to the derived two-balances approach in which the wave period evolves.
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3. Derivation of source term formulation

Ambient currents

This section investigates to what extent the presence of ambient currents affects the derived source
term. In the presence of background currents, a distinction arises between the absolute wave
frequency, as would be observed by a fixed observer, and the relative frequency, which is measured
by an observer moving with the background current. The wave periods that follow from the
prediction relations are absolute, since they are best-fit curves through a scatter of wave height and
period observations (which are generally made on a fixed location). This has consequences for the
above derivation.

First, the first order moment of the wave-action spectrum does no longer equal total wave
energy, since it gets multiplied by the ratio between mean absolute and mean relative frequency:
m1 = ω

σ · E, where σ = ω − k⃗ · u⃗ . The stronger the current, the larger the deviation from
total wave energy. Hence it would better to refrain from naming the first order moment total wave
energy but rather refer to it simply as the first spectral moment in case ambient currents are taken
into account.

The measure of mean period which is obtained from dividing the zeroth spectral moment by
the first is no longer identical to TrepM−1,0

. The relation only holds in zeroth order approximation:

Trep
A
M01

= 2π
mA

0

mA
1

=

∫
Adω∫
ωAdω

=

∫
1

ω−k⃗·u⃗
dω∫

ω

ω−k⃗·u⃗
E dω

=

∫
E
ω

(
1 + k⃗·u⃗

ω + ( k⃗·u⃗ω )2 + . . .
)
dω∫

E
(
1 + k⃗·u⃗

ω + ( k⃗·u⃗ω )2 + . . .
)
dω

(3.35)

It does however still produce a measure of mean absolute period, but because of the weighting by
the action spectrum instead of the energy spectrum it can not be linked to the conventional energy
weighted measure. Before the two-equation approach is adopted in ambient-current problems,
the validity of the approach should be investigated further. One recommendation is made for
this situation. The mechanism of energy exchange through the boundary layer on the water-air
interface is believed to be driven on velocity gradients between the wind speed and the wave
speeds. When a background current is present, the wave speeds are dependent on the relative
frequency, such that the wave speed is either greater or smaller than in the absence of a background
current. Therefore, the magnitude of wind speed should be corrected with the parallel component
of the background current when used to calculate the wind input.

3.4 Expanding the domain of applicability

So far, the derived growth rates (3.19) and (3.20) are able to describe wave growth in deep water
for young sea states. To expand the range of applicability of the source term, the transition to
fully developed conditions is described and two approaches to deal with finite-depth effects are
suggested in this section.
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3. Derivation of source term formulation

Figure 3.2: The behavior of the tapering function χE (3.36) for energy as a function of dimen-
sionless wave energy.

Transition to fully developed conditions

Fully developed wave conditions are physically very rarely realized, because of the extremely large
lengths of aligned, open water necessary to obtain the required dimensionless fetch. Only when
the wind speed suddenly drops, thereby increasing the dimensionless value of the fetch, would
fully developed conditions be encountered in a nearshore model. With this scenario in mind, it
is important to also describe the behavior of the source term on the transition to fully developed
conditions (2.7) and (2.8). Hence the solution of an idealized set-up of the model should converge
to (2.5) and (2.6) in deep water. This can be realized by multiplying the source term with a tapering
function:

χi(Q
∼

i) = max

[
tanh

(
faci

Q
∼

i,∞ −Q
∼

i

Q
∼

∞

)
, 0

]
(3.36)

Where i ∈ {E, Trep} and Q dummies either for E or Trep . This tapering function ensures that in
fully developed wave states the total wave energy and the representative wave period do not grow
further, while for wave states close to fully developed wave conditions the amount of wind input
is reduced to zero continuously for stability reasons. With the tuning factors faci it is possible to
mimic the smoothened behavior of (2.5) and (2.6) in the transition region (Figure 2.2). See Figure
3.2 for the behavior of χE for different values of the tuning factor. For energy values larger than
the fully developed criterion the taper function is always equal to zero.

The best-fit parameters for faci were found by minimalizing the mean relative error on 4 loca-
tions in the transition region between the model output and the relations (2.5) and (2.6), see figure
Figure 3.3. The best fit was found for facE = 2.0 and facT = 8.5.

Range of the source term

Robustness of the system of equations regardless of the initial conditions it is provided with is
important. This section investigates the range (co-domain) of growth rates (3.19) and (3.20) as a
function of its domain. Since the mapping from dimensionless to dimensional variables is strictly
monotone, it is sufficient to asses any asymptotic behavior in dimensionless space to cover the
entire domain of energy, wave period and wind speed.
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3. Derivation of source term formulation

Figure 3.3: Bisection of a surface plot of the mean relative error on four locations in the
transition region towards fully developed wave conditions (2.9) and (2.10) against the tuning
factors facE and facT. Left: mean relative error in growth curve of wave period, Right: mean
relative error in growth curve of wave energy.

First, in Figure 3.4, the magnitude of the source terms in case the wave energy and wave period
match the quasi-equilibrium (3.29) as suggested by the growth curves is displayed for both growth
to the Kahma and Calkoen (1992) curves (top panels) as well as tapered growth to the Young and
Verhagen (1996) curves. Differentiation is made between a duration-limited scenario in which no
spatial gradients are present (displayed in blue circles) and a scenario in which the spatial gradients
in the group celerity are equal to those along an ideal growth curve, i.e. a fetch limited scenario
(red circles). The additional growth in a fetch limited scenario is considerable at around 20% of
the local rate of change. When stronger gradients in the group celerity are present, this increase

in growth rate can be even larger and without limiter could tend to infinity (
dE

dt
∝ ∂cg

∂x
therefore

lim
∂cg
∂x

→∞
(
dE

dt
) → ∞). A numerical implementation of the generation mechanism should limit this

behavior. More on proposed limiters is described in Section 5.3.

Asymptotic behavior potentially occurring in regions of the phase space far away from the
quasi-equilibrium relation between energy and period, (2.13) and the white dashed lines in Figure
3.5, needs to be addressed. Figure 3.5 plots the magnitude of (3.19) and (3.20) in the absence of
spatial gradients in the complete domain of wave energy and period. Paneling is similar to Figure
3.4. In the left column of the figure the tapering of the source term to the Young and Verhagen
(1996) curves is shown to remove the discontinuity in the source term around the fully developed
wave energy cut-off. The rate of change of the period (right column) shows asymptotes around
E
∼

= 0 and T
∼

= 0. In a numerical model with integration through an arbitrary time step such
as the quasi-time stepping approach to the stationary iterative solver, such as the FPM-FM, the
change of action per time step needs to be bounded. Again, more on a proposed upper bound is
given in Section 5.3.
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3. Derivation of source term formulation

Figure 3.4: The dimensionless magnitude of the derived source terms for both the action
balance (right panels) and the energy balance (left panels). The top row shows the magnitude
of the source term from the derivation from Kahma and Calkoen (1992) curves, while the
bottom row shows the magnitudes for the source terms that have been tapered towards Young
and Verhagen (1996) curves through (3.36) with facE = 2 and facT = 8.5. The red diamond
marked line includes the spatial gradient term in (3.28) and (3.33) while the blue circle marked
line assumes a spatially uniform wave field where no spatial gradients in group celerity are
present. Since the evolution of action and energy is a coupled system of equations through
the group celerity, the wave energy and wave period comply to the quasi-equilibrium that is
suggested by the growth curves in producing these figures to eliminate a degree of freedom.

3.5 Depth limitations

Wind waves on water with finite depth develop to smaller heights than on deep water. Physically,
this height limitation will be due to dissipation or friction processes. The shallow water measure-
ments on which the depth limited growth curves from literature are fitted however, entail all field
generation and dissipation processes available. Up until this point, the wave balance with just one
source term was discussed:

∂A

∂t
+∇ · (v⃗A) = SA (3.37)

SA was formulated to correctly reproduce wave growth in deep water. In growth scenarios the
shallow water effect can be incorporated by evaluating at each cell the depth restricted fully de-
veloped wave conditions described in (2.7) and (2.8) and substituting these for Q

∼
in (3.36). Thus

avoiding a need for explicit description of any dissipation processes and being able to match the
shallow water curves from literature exactly. The influence of these depth limitations on the mag-
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Figure 3.5: the dimensionless magnitude of the derived source term for both the action balance
(right panels) and the energy balance (left panels) in the absence of spatial gradients, that is,
an infinite uniform domain. The top row shows the magnitude of the source term from the
derivation from Kahma and Calkoen (1992) curves, while the bottom row shows the magni-
tudes for the source terms that have been tapered towards Young and Verhagen (1996) curves
though (3.36) with facE = 2 and facT = 8.5. Generally speaking the wave energy and pe-
riod need not comply to the quasi-equilibrium suggested by the growth curves (dashed white
lines), hence these contour plots show the behavior in the entire dimensionless phase space.

nitude of the growth term are drawn in Figure 3.6. Implicitly, the effect of bottom friction (Df ) is
then incorporated in Sin. This approach prevents locally generated wave energy from overdevel-
oping. However, as Sin is strictly positive, it can’t dissipate wave energy which is overdeveloped
compared to the water depth. To do that, an explicit description of bottom friction is necessary.

Suppose that the wind input tapered to correct depth is simply added to the FPM-FM energy
balance:

SA(u10, d, E, T ) = Df (d,E, T ) +Dbr(d,E, T ) + Sin(u10, d, A,E) (3.38)

As Sin decreases with decreasing water depth and Df increases with decreasing water depth,
finite depth effects are counted double in the effective source term SA. The growth rate of waves
in shallow water is hence under predicted. Therefore, the description of wave generation and depth
effects is ideally decoupled by removing the depth dependence from the wind input term:

SA(u10, d, E, T ) = Df (d,E, T ) +Dbr(d,E, T ) + Sin(u10, A,E) (3.39)

As the FPM-FM model keeps the wave period constant and equal to the boundary provided value,
no evolution of period under dissipation is currently present. Finite depth affects both the fully
developed value of wave energy as well as the magnitude of its corresponding wave period. There-
fore, if depth effects are to be taken out of the source term formulation in FIM-FM, an evolution
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3. Derivation of source term formulation

Figure 3.6: The dimensionless magnitude of the source term in shallow water as a function of
dimensionless wave energy and different water depths (left) and as a function of dimensionless
wave action and various water depths (right).

mechanism for the wave period under dissipation processes must be incorporated. Eldeberky
(1996) observed that the general shape of the wave spectrum remains constant under depth in-
duced breaking such that the breaking-induced dissipation can be distributed over the frequencies
in proportion to the local spectral energy. The representative period can thus be assumed con-
stant under wave breaking. What remains is the coupling of wave period evolution under bottom
friction. The representative wave period Trep changes under bottom friction because waves with
large periods undergo more dissipation than waves with smaller periods. As evolution of Trep is
thus essentially a result of dissipation of waves energy, the change of Trep can be coupled to the
magnitude of Df .

Parameterizations of bottom friction

FPM-FM currently models bottom friction on the bulk wave energy after Roelvink and Stive
(1989):

Df =
2

3π
ρfw

(
πHrms

Tm01 sinh(kh)

)3

(3.40)

In which Tm01 is a mean wave period based on the zeroth and first moment of the energy spectrum,
Hrms the root mean square wave height and fw a friction coefficient (which is a measure of
the bottom roughness). A description of evolution of wave period under dissipation is presented
in Booij et al. (1999), and repeated for completeness in Appendix A. The obtained relationship
between Df and evolution of wave period (DT ) is given by:(

∂T

∂t

)
= CT

T 2

2π(1− n)
cgkp

1

E

(
∂E

∂t

)
(3.41)

With shape parameter n = 3 in the derivation by Booij, which means that the high wave number
tail of the wave number-variance spectrum is described there by E ∝ k−3. Introducing the coeffi-
cient CT , the evolution of Trep can be tuned to account for varying shapes of the spectral tail. The
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Figure 3.7: Dimensionless rates of change of wave energy (left) and wave period (right) as-
suming energy and period are related through quasi-equilibrium (Section 4.4). Deep water
solution in solid black line. Dimensionless rates of change in colored solid lines. Dimension-

less bottom friction scaled with the friction coefficient
Df

fw
in dashed colored lines for varying

wind speed. Figure drawn for d = 5m.

coupling between dissipation of wave energy and wave period is two-way. Because Df depends
negatively on Tm01 the wave energy dissipation mechanism is coupled back to the wave period
field.

Balance of Sin and Df

A balance between Sin and Df can only hold if both reach similar order of magnitude at the
appropriate shallow water upper limits. Qualitatively, this is investigated in Figure 3.7.

Here, the magnitude of the wind input without depth effects is plotted as black thick solid lines
in dimensionless variables, in case the wave energy and period match the quasi-equilibrium (2.13).
When finite depth effects are included in the source term formulation by assuming a finite depth
(in this particular figure d = 5m), the rates of change become wind speed dependent (the marked
colored sold lines). This is due to a varying dimensionless water depth, such that fully developed
conditions are met at lower dimensionless wave energy for higher wind speeds1.

The dashed lines, in color corresponding to the various wind speeds, represent the dimension-

less bottom friction dissipation rate
D̃f

fw
(left) and

D̃T

fw
(right). Although the match is not exact, the

dissipation mechanisms obtain non-negligible values at a range of wave energy and period where
the depth limited wind-input starts to deviate from the depth-independent wind input. From these
wave states onwards, the dissipation mechanisms grow more relevant and eventually dominate
over the wind input. Identifying the correct friction coefficients, a balance between the dissipation
and depth-independent source term should account to correct depth limited growth curves. It is

1 Note this leads to larger rates of change for higher wind speeds in the dimensional world, something that is not
directly obvious from the dimensionless figure! The smaller waves [small wind speeds] are influenced by bottom effects
in shallower water than large waves [large wind speeds] are, which is why in this dimensionless plot the lower wind
speeds deviate at larger dimensionless wave energy from the depth-independent wind input
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further investigated which magnitude of fw is necessary to reach a balance between Sin and Df

at the literature described upper limits in Section 4.3.

3.6 Summarizing

In the above derivation, a source term for the wave action balance was formulated that should
match the prediction relations by Kahma and Calkoen (1992), or, when a smooth transition to
fully developed conditions is preferred, the relations described by Young and Verhagen (1996).
Because the group celerity varies along these growth curves, it became apparent that a second
evolution relation was necessary to solve the evolution of the mean wave period over the domain.
The evolution of the first order moment of the wave action spectrum, complementary to the zeroth
order moment, was found able to provide a measure for the wave period. In the absence of ambient
currents, this first order moment can be interpreted as the bulk wave energy, and the ratio between
action and energy is then equal to the commonly known Trep

E
M−1,0

. In this and other scenario’s, the
ratio between action and energy will be referred to as Trep. Correct upper limits on depth-limited
growth curves are achieved through an explicit balance between the wind source term and bottom
friction or, in local growth-dominated scenario’s, by taking the dissipation effects into account
implicitly in the source term formulation.

Including all the aspects above, the evolution relations of spectral bulk properties in 1D are
given by:

∂A

∂t
+

∂

∂x

(
cgA

)
= SA(Trep, E, cg) +DA(x, t) (3.42)

∂E

∂t
+

∂

∂x

(
cgE

)
= SE(E, cg) +DE(x, t) (3.43)

DA and DA entail bottom friction and breaking sink terms and:

SA =
1

2π
f
A
∼

−A

χE(E
∼
)
Trep
∼

cg
∼

f1(E
∼
)
+ χTrep(Trep

∼
)

E
∼
cg
∼

f2

(
fE−Trep(E

∼
)
)
+ χE(E

∼
)A

∂cg

∂x
(3.44)

SE = f
E
∼

−E

(
χE(E

∼
)

cg
∼

f1(E
∼
)

)
+ χE(E

∼
)E

∂cg

∂x
(3.45)

f
A
∼

−A
, f
E
∼

−E
, f1, f2 and χi are defined in (3.25), (3.34), (3.15), (3.16) and (3.36) respectively. E

∼

and Trep
∼

follow from E and Trep according to Table 2.1 and Trep = 2πA
E .

30 Parametric wave growth in a frequency integrated wave model – M.A. van der Lugt



4. Validation and properties in 1D

The validity of the derived source term formulation in 1D tests is described in this chapter. First
the derived source term is compared with the HISWA source term in Section 4.1. Section 4.2
shows convergence of the system of equations to the correct growth curves. Calibration of a
correct sink source term balance in depth limited conditions is described in Section 4.3. Section
4.4 assesses the strength of the return to quasi-equilibrium is. The chapter closes with a summary
of the properties of the derived source term formulation that were investigated.

4.1 HISWA comparison

Booij’s source term formulation provides a means of validation for the derived source term. To
properly compare the behavior of the derived wind input formulation and Booij’s formulation,
only time limited wave states (no spatial gradients) can be addressed since Booij’s source term can
not distinguish between time and space limitations. Therefore, the assumption of a time limited
wave state must also made for the derived source term. Furthermore, the comparison is only made
for values of the wave energy and wave period that match the wave steepness prescribed by the
respective growth curves: (3.2) for Booij, (3.29) for the derived growth rates. This means that at
all times, the wave period can be expressed in terms of wave energy and vice versa through the
prediction relations.

A duration-limited wave state has no spatial gradients. Therefore the derived source term for
wave energy and period are (as compared to (3.44) and (3.45)):

SE,time limited = f
E
∼

−E

(
χE(E

∼
)

cg
∼

f1(E
∼
)

)
(4.1)

STrep,time limited = f
Trep
∼

−Trep

(
χTrep(Trep

∼
)

cg
∼

f2(Trep
∼

)

)
(4.2)

The rates of change of wave energy and period compared to Booij’s formulation are plotted in
Figure 4.1. First the left panel is analyzed. The rate of change of the derived source term at
small wave energies is larger than Booij’s source term. This results in a quicker growth of very
young sea states. In time limited conditions, Booij’s rate of change increases more strongly for
more developed wave states. Both source terms vanish at the same condition for fully developed
wave energy. In the right panel, again the rate of change of wave period for the derived source
term is larger than for Booij’s source term. This difference in rate of change reduces for more
developed wave states, but Booij’s rate of change never takes over. Because for this comparison
it was chosen to express the value of the wave period in terms of wave energy, the wave period
never quite reaches fully developed conditions, since the steepness relation is only valid for wave
energies below fully developed conditions. To that end does the rate of change of period never
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(a) Rate of change of bulk energy (b) Rate of change of peak period

Figure 4.1: The dimensionless rates of change of wave energy and representative period as a
function of local dimensionless energy and period. Booij et al. (in blue) and the derived growth
rates (in orange), in case of a duration limited wave field.

completely reach zero. It is clear that the asymptotic behavior of Booij’s source term and the
derived source term do not occur at the same wave energy.

The growth curve expressed as a function of time based on the KC curves in a time limited
wave state (i.e. the evolution of the wave energy and period at a fixed point in an infinite open
domain) is given by the system of equations:

E
∼′

( t
∼
)− SE,time limited(E

∼
( t
∼
), Trep

∼
( t
∼
)) = 0 (4.3)

Trep
∼ ′

( t
∼
)− STrep,time limited(Trep

∼
( t
∼
)) = 0 (4.4)

These can be numerically integrated to obtain an explicit relation for E
∼

, Trep
∼

as a function of t
∼

.
The integration constant was chosen such that the resulting curve matched Booij’s curve at t = 1
s. The result is plotted in Figure 4.2. Several differences between the two growth curves can be
observed.

First, it can be concluded that both formulations converge to the same value for dimensionless
fully developed wave energy (3.6 × 10−3). Booij’s formulation however, arrives there slightly
faster (approximately 1.4 hours earlier). The rate of change of energy in the first hour in the KC
derivation is faster than in Booij’s growth curve. At later moments, the rate of change in Booij’s
formulation overtakes the KC derivation slightly.

The peak period for Booij’s growth curve was obtained by multiplying the relation for the
moment based mean period by a factor 1.2. This does not remove the discrepancy between the
two fully developed wave periods. The derived growth curve continuous to grow further where
Booij’s growth curve levels off. Similar to wave energy, the wave period grows faster in the derived
formulation than in Booij’s formulation in young sea states, and again, at later moments, the rate
of change in Booij’s formulation catches up with the derived rates of change.

Developing fetch-limited wave conditions

In a half-infinite domain with on upwind side a land boundary, fetch-limited wave conditions are
expected to develop. The derived source term included a term dependent on the gradient of the
group celerity. This term is zero in any infinite domain with translation invariant wave conditions,
but is positive when spatial gradients in group celerity are present. This results in a nett increase
of the local rate of change of wave energy (See Figure 3.4). The difference between Booij’s source
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(a) Bulk energy (b) Peak period

Figure 4.2: The duration limited growth curve from the KC derivation compared to Booij’s
growth curve relations. Booij et al. (in blue) and the derivation from KC curves (in red). The
peak period for Booij’s growth curves was obtained by multiplying the relation for the moment
based mean period by a factor 1.2

(a) Rate of change of bulk energy (b) Rate of change of peak period

Figure 4.3: The dimensionless rates of change of wave energy and representative period as a
function of local dimensionless energy and period in case wave field is fetch-limited: spatial
gradients on the growth curve are present. Booij et al. (in blue) and the derived growth rate (in
red).
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term and the fetch-limited values of the derived source term are plotted in Figure 4.3. In the left
panel the rate of change of energy in the derived source term is seen to stay larger than Booij’s
source term over the entire domain. Likewise, the rate of change of period in the derived source is
larger over the entire domain.

The derived growth rates can thus distinguish between fetch- and duration limited scenario’s.
The rates of change in young sea states is greater than Booij’s formulation. As the source terms
differ quantitatively from the HISWA source terms, it should be validated whether the derived
source term does in fact reproduce the growth curves it was based on.

4.2 1D convergence

A 1D model is set up to study the behavior of a numerical model which solves the evolution
of the zeroth and first order moment of the wave action balance with the derived wind input
term. A 1D model allows for an extensive analysis of the performance of the source term in
non-ideal conditions without complications from the flow model, before further investigating two-
dimensional behavior.

Discretization

The formulations (3.28) and (3.33) are supplemented with a first order upwind discretization for
advection in the absence of dissipation terms. The time integration method used is explicit Euler.
Discretization is performed in anticipation of the staggered grid approach in FM:

Qn+1
i = Qn

i + L(cg,Q) + SQ(cg,Q) (4.5)
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where indicator function I distinguishes the upwind from downwind direction: Iji = 1 if cg
j
i ≥ 0

and Iji = 0 if cg
j
i < 0. The wind input formulation for energy and action is discretized as:
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Figure 4.4: 1D Matlab model output for a deep water growth curve. Advected variables E
(top left corner) and A (bottom right corner). Their rate of change in the center row. Growth
curve for T in top right corner, with the resulting evolution of cg bottom left.

Deep water solution

To confirm that the formulations in Section 4.2 indeed converge to growth curves (3.7) and (3.8)
in the absence of sink terms and background current, the deep water solution was assessed in a
test model. In the absence of a current, ω=σ. Therefore, the deep water group celerity in the test
model is given by:

cg =
1

2

gTrep

2π
(4.9)

which can be made dimensionless using Table 2.1:

cg
∼ =

1

2

Trep
∼

2π
(4.10)

1D space is discretized uniformly: ∆x = C, xi = x0 + (i− 1) ·∆x, i = 1 . . .M while time
is discretized not necessarily uniform: tn = t0 +

∑n
1 ∆t(n), n = 1 . . . N , where ∆t(n) =

tfac · ∆x
cg(i,n)

. tfac is a constant strictly smaller than 1 in order to comply to the CFL condition arising
from an explicit time integration.
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The first test entails convergence in the case of ideal boundary- and initial conditions. At x1 a

Dirichlet boundary condition is specified: E
∼t

1 =
a21
16x0

2b1 , t = 1 . . . N and at xn a homogeneous

Neumann boundary condition:
(
E
∼

,x

)t
M

= 0, t = 1 . . . N . The initial condition is chosen to
match the Dirichlet condition at x1:

E
∼0
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i = fE−Trep(E
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1)
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∼

1)

with fE−T] and fE−cg according to (3.29) and (4.10).
When N is chosen sufficiently large, the 1D-model output indeed appears to model the growth

curves on which the source term formulation was based correctly. Graphically, this is confirmed
in Figure 4.4. The stationary solution as well as several intermediate time steps have been plotted.
In the top row the growth curves for wave energy (left) and period (right) against fetch. Auxiliary
model output plotted in the windows below. The stationary solution for wave energy is reached
faster than the stationary solution for wave period, approximately in 3.5 and 8.3 simulated hours
respectively, because the fully developed conditions are met at shorter fetch. The source term, as
plotted in the center row windows, grows as a function of time and is tapered abruptly to zero as
the local wave state approximates fully developed conditions. The rate of change of wave action
shows a two-step jump to zero input at fully developed conditions. The first step can be associated
to the fetch at which the wave energy reaches fully developed conditions. The second, more gentle
step corresponds to the fetch at which the wave period becomes fully developed.

The actually convergence of the model-solution to the real growth curves is expected to be
linear in ∆x and ∆t, since the upwind scheme for advection and explicit Euler for time integration
are of first order. This has been confirmed when the model was run for several spatial step sizes,
and the relative error is plotted against the step size, see Figure 4.5.

Hasselmann et al. (1976) distinguishes between fetch- and duration-limited growth rates in his
model. In the intermediate output of the 1D matlab model of Figure 4.4, time-space equivalence,
which formed the basis of the derivation, is confirmed. The wave state for the intermediate time
steps shows to be time limited. The equivalent fetch (3.11), is graphically found by tracing the
energy along the fetch-axis back to the geometrical growth curve.

4.3 Sink-Source balance in fully developed conditions

Upper limits on growth curves in shallow water are established through a balance between wind
input and dissipation, as described in Section 3.5. Appropriate values for the bottom friction co-
efficient fw are addressed in this section for varying wind speed and water depths. As the depth
limited growth curves as described in literature are upper envelopes to many wave state observa-
tions, the friction coefficients required to reproduce these upper bounds act as lower bounds for
application in field cases. There can be other factors, such as a rough bottom as on coral reefs,
or highly evolving sand bars, which influence the actual calibration of the friction coefficients.
Choosing greater coefficients as the ones described in this section is no problem, but choosing
smaller friction coefficients could lead to over-development of literature described fully developed
conditions.

Two calibrating parameters are identified: the friction coefficient fw in (3.40) and the multi-
plication coefficient for the magnitude of period evolution CT in (3.41). Both serve different roles
and are explained on the basis of Figure 4.6. In this figure the depth limited literature prescribed
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Figure 4.5: The convergence behavior of the first order upwind advection of action and energy
with source term for wind input The errors in energy ϵE and in period ϵT were measured at
a dimensionless fetch of F = 200m and F = 2km, and the time step was reduced together
with the spatial step by choosing the time step according to certainly match the CFL condition:
∆t = 0.5 · ∆x

c̃g

growth curves for energy and period are plotted as black solid lines, while the colored, marked
lines are growth curves obtained through a 1D model in which depth-independent wave growth is
balanced by bottom friction. Each marked line represent another configuration of the calibration
parameters fw and CT . Since both the dissipation of wave energy and wave period are directly
related to fw, fw can be used to steer both growth curves towards higher or lower upper bounds.
These are the lines marked with ◃, � and ▹. Increasing the friction coefficient lowers the upper
bounds of both wave energy and period.

Fine-tuning can then happen through CT since this parameter has the opposite effect on both
growth curves. Increasing CT increases dissipation of wave period, which results in a decrease of
the upper bound of wave period, compare the lines marked by ◦, ⋄ and �. Since the wave energy
dissipation mechanism is effected by CT only through an inverse dependence on the representative
wave period, a lower upper limit for wave period results in a higher upper limit for wave energy.

Figure 4.7 show computed growth curves at four wind speeds for one arbitrary depth. In black,
the literature prescribed growth curves are plotted. The marked lines are model output. As this
comprises a local growth test on a bottom of constant depth (of 5 meters), no wave breaking was
present. For all wind speeds, it was possible to approximate the correct fully developed conditions
through a balance of bottom friction and wind input. However, the friction coefficient had to be
varied. A doubling of the wind speed requires the friction coefficient to be reduced by two.

More growth curves for a range of wind speeds and water depths were assessed. For each, fw
and CT were varied and the distance of the computed upper bounds to the shallow water growth
curves was computed. This distance is minimized in the best calibrated model. See Appendix
B for a graphical assessment. The following trends were identified in the required calibration
parameters regarding water depth and wind speed:
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Figure 4.6: Effect of calibration parameters on upper bounds wave energy (left) and period
(right) at a depth d = 5m and wind speed u10 = 12 m/s.

Depth dependence

In the range of water depths from 3-18 m, fw ranges 0.02-0.07 and CT ranges 0.9-1.3. In linear
approximation the friction coefficient fw increases by 0.008 (↑) for an increase of water depth of
1 meter (↑). CT on the other hand decreases (↓) for increasing water depth (↓). This depth de-
pendence of the friction coefficients will inevitably lead to less propagation of offshore boundary
conditions into the breaker zone, as these dissipate more. This increase of bottom friction corre-
sponds to prescribing a constant Nikuradse roughness ks throughout the domain while the friction
coefficient is modeled after Soulsby (1997):

fw = 1.39

(
uorb
ωz0

)−0.52

(4.11)

with uorb wave orbital velocity and bed roughness z0 = ks
33 in which ks is the Nikuradse roughness.

This is a modeling approach not uncommonly adopted in simple models (Roelvink and Reniers
(2011)).

Wind speed dependence

In the range of wind speeds from 8-20 m/s, fw equally ranges 0.02-0.07 and CT ranges 1-1.2. On
the investigated domain, the required fw halves (↓) when the wind speed doubles (↑). CT decreases
slightly (↓) for increasing wind speed (↑). As the wind speed increases, the surface wave amplitude
increases and hence also the orbital velocity at the bottom. If the friction coefficient would be
modeled after (4.11), an inverse relationship between the friction coefficient and the wind speed is
then also expected.

4.4 Return rates to quasi-equilibrium

So far this chapter discussed properties of the wind input formulation which assumed the wave
energy and representative period to math the quasi-equilibrium (2.13), either in deep water (Sec-
tion 4.2) or in shallow water (Section 4.3). A violation of the quasi-equilibrium (2.13) can arise
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Figure 4.7: Calibration of growth curves through a balance of wind input and bottom friction
for a limited depth of d = 6m and varying wind speed at constant CT = 1. Top row: Energy
(left) and period(right) against fetch. In black solid line the Kahma and Calkoen curve with
finite depth effect, colored marked line the model result. Bottom row, source terms for energy
(left) and period (right) as a function of fetch.

through numerous processes. Mere wave propagation, wave breaking, other interactions with the
bottom profile or non-matching boundary conditions imposed on the model boundary are all po-
tential causes for non-matching sets of wave energy and period on local points in the interior of
the domain.

Two out-of-equilibrium scenario’s are identified that provide insight in the rate at which the
source term forces a return to the quasi-equilibrium. First, the dimensionless deep water growth
curves with on the upwind model boundary not an infinite coast but out-of-equilibrium boundary
condition. Secondly, an infinite domain responding in unison to spatially uniform wind forcing.

Last, it is pointed out that the above described method removes the need for a tapering function
on Sin to account for finite depth effects. The taper function (3.36) should however remain present
to account for fully developed conditions in deep water as bottom friction is negligible in deep
water. In absence of a white capping dissipation mechanism, the wind input should diminish
when fully developed wave conditions are approached.

Spatial return to quasi-equilibrium

This test comprises of a 1D matlab model which has nonzero Dirichlet boundary conditions on
the upwind coast that deviate from quasi-equilibrium. While propagating into the domain, these
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wave conditions develop and the wave state develops. Figure 4.8 plots the wave state evolution
for three sets of wave conditions: matching, underdeveloped and overdeveloped wave energy and
wave period. In Subfigure (a) the wave energy is varied around matching boundary conditions
while in Subfigure (b) the wave period is altered.

The growth rate of the wave energy is positively influenced by an overdeveloped wave period,
as a natural outcome of the linear dependence of (3.19) on group celerity thereby dependence
on T. The group celerity actings as a coupling mechanism in the source term for the two wave
properties.

The growth rate of the representative wave period is independent of the available wave energy,
as a natural result of the absence of wave energy in (3.20). The small deviations that are visible in
the graph can be explained by the means of advection of representative wave period as a function
of two orders of moment of the wave action spectrum: total wave action and total wave energy.

For each of the energy or period under- or over development, the return to the growth curve
occurs asymptotically. Only at fully developed wave states at far fetch do the trajectories with
different boundary conditions meet completely. To quantify the rate of return to quasi-equilibrium
a so called relaxation length could be defined; the distance required to reduce the deviation from
equilibrium by e.g. one half. To the best of the author’s knowledge, there is little literature
available on an appropriate relaxation length to describe the rate of return in the spatial dimension.
Several early wave models have reported on rates of return in their presentation papers, be it in
the time dimension instead of the spatial dimension. To allow comparison with these sources, the
dynamical system is also analyzed in the time domain in the next section.

Time to return to quasi-equilibrium in infinite domain

As a second test a 1D model is set up with a uniform domain and a Neumann upwind boundary in
order to mimic an infinite domain. The domain is provided with matching initial conditions and
with overdeveloped and underdeveloped wave energy (Subfigure (a) in Figure 4.9) or representa-
tive wave period (Subfigure (b) in Figure 4.9).

In the time evolution test similar behavior is observed as in the fetch limited test; deviations
from quasi-equilibrium in the initial wave period influences the growth curve of the period as
well as of wave energy. Deviations in initially present wave energy only influence the energy
growth curve. When the wave energy is underdeveloped in comparison with the wave period the
wind input for wave energy is increased compared to matching initial conditions and vice versa
(Subfigure (a)). The evolution of wave energy when the wave period is still underdeveloped lacks
behind compared to the matching initial conditions case (Subfigure (b)).

The rates of return for various trajectories from non-matching initial conditions is compared
to the rate of return in the HISWA model, which in its turn is calibrated on return rates described
by Günther (1981), see Figure 4.10. In the bottom figure taken from Holthuijsen et al. (1989),

the equilibrium relation is represented by E
∼

= 6.45× 10−6 f
∼

p
−10/3

which is a predecessor of the
Kahma and Calkoen growth curve based on Hasselmann et al. (1973). The equilibrium relation for
the derived model (top figure), is (2.9) and (2.10) generated with equal fetch. Qualitatively these
two descriptions of quasi-equilibrium don’t differ, only the transition towards the fully developed
wave state shows disparities. Similar initial conditions have been chosen to set out trajectories
towards the quasi-equilibrium.

The rate of return in the HISWA model is significantly stronger then through the derived wind
input, which can be seen in the curvature of the trajectories. In the HISWA model the rate of return
in the model is calibrated towards such a strong response through (3.6) based on wave steepness in
the absence of any other coupling mechanism. In the derived rates of change coupling is already
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(a) Wave energy deviates from quasi-
equilibrium

(b) Wave period deviates from quasi-
equilibrium

Figure 4.8: Two test cases that display the propagation and evolution of non-matching bound-
ary conditions into a 1D domain. In (a) the wave energy is varied by constant wave period
boundary conditions while in (b) the wave period is varied for constant wave energy at the
boundary. The top rows show the variables of interest wave energy E and representative period
T , the center row show the magnitude of the source terms in the wave action and wave energy
balance and on the bottom row the wave action is displayed, as this is the principle variable in
the dynamical system.

present through the group celerity. Clearly, this does present different return rates. Both Günther
(1981) and Hasselmann et al. (1985), which together formed the basis of the return rates in the
HISWA model, do not base their return rates on data. Therefore it was decided that no additional
relaxation coefficient is currently implemented in the derived wind input formulation. In case this
is felt necessary on the basis of measurements or on a theoretical basis, it is possible to do so in
the future.

4.5 Summarizing

In this chapter, the derived rates of change due to wind input were shown to be qualitatively
similar to the HISWA rates of change, but differ quantitatively at very young sea states and towards
fully developed conditions. HISWA wind input does not distinguish between duration limited and
fetch limited conditions as it has no dependence on spatial gradients in the wave field, which
the derived source term does. The convergence of the derived wind input formulation to the
deep water Kahma ad Calkoen growth curves gives confidence in the validity of the approach.
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(a) Wave energy deviates from quasi-
equilibrium

(b) Wave period deviates from quasi-
equilibrium

Figure 4.9: Two test cases that display the evolution in time of a uniform wave state with
varying initial conditions. In (a) the initial wave energy is varied by constant wave period
while in (b) the initial wave period is varied for constant wave energy. the top rows show
the variables of interest wave energy E and wave period T while the bottom rows show the
magnitude of the source terms both as a function of time. Both test were carried out in a model
with a depth of 200 meter and wind speed of 20 m/s.

The range of applicability of the source terms can be extended into shallow water by a correct
balance of wind input and bottom friction. The required bottom friction coefficients fw and CT to
obtain correct fully developed conditions are not constant for varying wind speed or water depth.
The friction coefficients required in this calibration lie within a physically feasible range 0 − 0.1
(Roelvink et al. (2016)). The friction coefficients presented here as calibration parameters can
serve as lower bounds. In case the bottom is found to be rougher than the upper limit described in
literature, stronger dissipation is defensible with lower upper bound values on energy and period
as a consequence.

A mechanism is present in the derived system of equations to force growth trajectories in f,E
space towards the quasi-equilibrium relation between E and T . This mechanism is driven by the
shared linear dependence of the source term on the group celerity. The rate of return in the derived
dynamical system is much weaker than can be found in wave models of Gunther and Rosenthal
(1979) and Holthuijsen et al. (1989), which have wave steepness as the driving mechanism to
return to equilibrium and calibrated towards strong convergence. Until convincing arguments
become available that require such strong rates of return, the currently present mechanism through
group celerity is assumed to be sufficient.
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Figure 4.10: Trajectories in the dimensionless f,E plane. Top: The trajectories in the de-
rived model for wave growth of scenario’s with initial conditions deviating from the quasi-
equilibrium path suggested by the Young and Verhagen growth curves. Bottom: Return trajec-
tories in the HISWA model as presented in Holthuijsen et al. (1989). All time stamps are in
dimensionless minutes (i.e. scaled according to Table 2.1).
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5. Implementation in 2D

So far, only 1D growth curves have been discussed in parallel to 1D balances. In 2D the gener-
alized action balance solved by the dynamical system in the absence of ambient currents is given
by

∂A

∂t
+∇(c⃗gA) =

dA

dt
+max(A∇c⃗g ·

u⃗10
||u⃗10||

, 0) (5.1)

∂E

∂t
+∇(c⃗gE) =

dE

dt
+max(E∇c⃗g ·

u⃗10
||u⃗10||

, 0) (5.2)

with a three dimensional differential operator: ∇ = ( ∂
∂x ,

∂
∂x ,

∂
∂θ )

T . Here the growth rate enhanc-
ing term Q∇c⃗g is only accounted for when positive and acts only in the wind direction. The
directional distribution of the wave action density is discretized. Since x, y space as well as the
directional spreading θ are discretized in a 2D implementation, a distribution mechanism of the
wave energy over θ−space must be developed. Section 5.1 discusses approaches to distribute
wind input over the action density directional distribution. Further sections in this chapter de-
scribe changes that were implemented in the XBeach wave drivers to include a wave generation
process. To allow evolution of wave period throughout the model domain, Section 5.2 describes
the adaptation of the advection mechanismin FPM-FM. The additional robustness measures for the
two-equation approach is described in Section 5.3. In Section 5.4 a qualitative argument is made
for the suitability of this approach. The conclusions from the 2D implementation are summarized
in Section 5.5.

5.1 Directional distribution of wind input

Young sea states have a wide directional distribution, but its shape is not well known. Often it is
theorized to be

Dideal = A cosn (θ − θwind) (5.3)

with n = 2 after Pierson et al. (1964), a relation which for frequencies not too far away from the
peak frequency is also found in wave observations (Ewans (1998)).

The wave generation mechanism is derived in one dimension, in which all wave energy has
a propagation direction aligned with the wind direction. There, the wind input is based on the
total wave energy available at location (x, y). In a two dimensional energy density spectrum in
which frequency space is parametrized by a representative period, total energy at a location (x, y)
is the integral of the energy density over θ−space. In the HISWA model the wind input is made
θ−dependent on the basis of a directional decoupling (Holthuijsen et al. (1989)). This approach
is described in Section 5.1. Another approach is described in Section 5.1, in which the wind input
in varying direction is coupled.
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HISWA decoupling of wave directions

The wind input for each propagation direction is calculated independently from other directions
(Holthuijsen et al. (1989)). A fixed directional distribution is assumed (Dideal = A cosn(θ−θwind)
with A a normalization function, θ the propagation direction of interest and θwind the mean wind
direction. For young sea states n = 2). The energy density at θ: ee(θ) is then converted to an
equivalent total wave energy through division by Dideal. The wave period in the HISWA model
generally is θ−dependent. In computing the wind input however, a moment based average wave
period over θ−space is used as equivalent wave period. This equivalent wave energy E∗(θ) and
T (θ) then serve as input for the wave generation mechanism, after which the amount of energy
input dE∗(θ) is multiplied with Dideal to find the contribution to ee(θ) and dT is distributed over
directional space with the energy density ee(θ) to contribute to T (θ).

Nodal approach

An alternative to the HISWA approach is suggested, which couples the evolution of wave energy
and period in θ−space for evolution of a two dimensional energy density. In analogy with the
one dimensional formulation, the wind input at a location (x, y) is based on the integral of wave
energy over θ−space. The amount of generated energy is distributed over the respective propa-
gation directions through (5.3). The shape of the locally generated wave field is thus prescribed.
Accordingly, the wave generation mechanism acts as a restoring force towards the ideal direc-
tional distribution. Continuing the notation as used in Section 5.1; the wind input is computed
based on E∗ and T ∗ independent of propagation direction at each (x, y) with E∗ =

∫
ee(θ) dθ

and T ∗ = T (θ). The computed energy input is distributed over the propagation directions through
multiplication with the spreading function Dideal: dE(θ) = Dideal × dE∗. Rate of change of
wave period per propagation direction: dT (θ) = dT ∗.

Although both approaches have been implemented as options in the FIM-FM wave drivers, the
nodal approach has been given preference. Two main arguments support this choice.

First, coupling of evolution of wave energy in θ−space is present in the frequency prescribed
wave drivers through the formulations of the dissipation mechanisms of bottom friction and wave
breaking. Both dissipation rates are described in terms of total wave energy and wave period at
location (x, y) since wave breaking is determined by the total wave height. In case a directional
decoupled approach is believed to be more correct, the decoupling should be present in all source
term formulations in the frequency integrated model. The only coupling mechanism would then
be refraction. A directionally decoupled model is only viable when this directional decoupling is
possible in each of the source terms.

Secondly, as wave observations confirm the shape of the directional distribution Dideal, par-
ticularly in fetch limited conditions (Ewans (1998)), a restoring mechanism should be present in
dynamical system. When decoupling the wind input in θ−space, such a mechanism is absent.

5.2 Adaptations to frequency prescribed wave drivers

The derived wind-wave generation mechanism is implemented in the frequency prescribed wave
drivers in FM. Aside from the implementation of a subroutine which computes wave generation,
Chapter 3 also identified the need to solve a second evolution relation to reproduce correct growth
curves through (3.44) and (3.45). Therefore the model has been extended considerably and several
subroutines were amended to change the model into a frequency integrated approach.
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Varying wave period

frequency
prescribed

frequency
integrated

action
ee(x, y, θ)

σ(x, y)
aa(x, y, θ)

energy ee(x, y, θ) m1 = (σ × aa) (x, y, θ)

wave period TBC T (x, y, θ)

relative frequency σ(x, y) σ(x, y, θ)

wave number k(x, y) k(x, y, θ)

wave celerity c(x, y) c(x, y, θ)

refraction celerity cθ(x, y) cθ(x, y)

Table 5.1: Effect of varying wave period on dimensions of variables in XBeach wave drivers

In the frequency prescribed wave drivers in FM (FPM-FM) the wave period is a constant but
is no longer the case in the two-equation approach (FIM-FM). The solution space for several
variables was increased. For an overview of these variables, see Table 5.1. The wave dissipation
mechanisms were revised to replace dependence on wave characteristics which used to be direction
independent, by direction averaged wave characteristics:

f ({Qi(x, y)}) −→ f
({

Qi(θ)(x, y)
})

(5.4)

where f dummies a dissipation mechanism and Q dummies for wave period, relative frequency,
wave number or (group)celerity.

Advection of wave period

FPM-FM discretizes time integration into an advection step followed by an Euler step that eval-
uates the source terms. Wave energy density is scaled with relative frequency before applying
the advection step. Wave action is converted back to wave energy before applying the Euler step,
because the dissipation mechanisms are expressed in terms of energy. After the combined time
integration step, the wave celerities are updated.

In the FIM wave drivers, the two step approach to time integration is maintained. Before
applying the advection step, wave action density is computed by scaling wave energy density
with relative frequency. In the advection step both wave energy density as well as wave action
density are propagated. The relative frequency and wave period are updated by a scaling of wave
energy density by wave action density, after which the wave celerities are updated. The wave
period distribution and wave energy density form the principle variables of the Euler step. After
evaluation of this second step the wave celerities need to be updated again, because the wave
period will have changed.
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5.3 Robustness

Complex bathymetry in shallow water requires a robust model. After first implementation, it was
found that the following steps were necessary to perform stable model runs which are (more or
less) invariant under initial conditions.

1. Each time step, at least one division of energy density by action density or vice versa has
to be done. To prevent floating-point overflow, a minimum energy density and wave period
need to be present. The values of which can be communicated to the model by the user
through the params.txt file, but are default set at eemin =0.1 J/rad/m2 and Tmin =0.1 s. ee
refers to the total energy in a directional bin. This ensures there is always enough available
energy to initiate some growth. Furthermore, an option is included to calculate the minimum
amount of wave energy and wave period on the basis of the grid coarseness and the wind
speed such that it matches the growth curve at a fetch equal to the grid coarseness.

2. A limiter on change in energy density and period per computational step was included.
Similar to Hersbach and Janssen (1998), this limiter is dependent on the time step such that
it will remain part of the source term when the limit ∆t → 0 is taken. The need for this
limiter is particularly noticable for coarse grid resolution for which the Courant criterium
allows large time steps. Because of the highly non-linear behavior of the wave period source
term for really short waves the limiter prevents overshoot. The limiter has been set to
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The severeness of this limiter, or other forms of limiters, remain to be investigated apart
from some qualitative test cases which were for successful at very young sea states and
showed no effect in other scenario’s (which is the desired behavior of the limiter).

3. Already in the FPM-FM model a limiter was present for the amount of wave energy through
gammax in limited depth on physical grounds. The root mean square wave height is cut of
at twice the water depth. All excess wave energy is removed. The underlying assumption
of this limiter is that the bathymetry is too coarse in some cases to model the dissipation
processes correctly.

In a test case in which waves approached a spatially non-uniform beach, the need for a
similar limiter on wave period became apparent. As wave period is an advected property in
the new approach, it bunched against the beach but could not propagate further (nor back
seawards, since θ−space is often only discretized in the directions with a positive normal
component to wind direction or shore).

4. Wave celerity varies much more strongly throughout the model domain in the new approach
where wave period varies throughout the model domain. The front of wave energy propa-
gating from the model boundary into a domain where waves are nearly completely absent,
carries energy density as well as information on its own propagation speed. In case the
advection of wave period lags the propagation of wave energy, bunching of energy at the
propagation front can occur.
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Figure 5.1: The propagation of waves energy from the boundary into a wave-less domain in
a semi-1D FIM-FM model with first order upwind discretization of advection. Top row: wave
period T (left), total wave energy E (center) and wave action A (right), all against distance
(F ). Bottom row: group celerity cg and wave number k against distance.

In an unstructured approach a higher order discretization of the advection mechanism is not
straightforward, because each node only has information on the location and connectivity to
its direct neighbors. The default discretization in FPM-FM is therefore first order upwind.
There are however higher order approximations available that make use of limiter types
from the D-Flow FM flow module (Deltares (2016)). Their use triggered dispersion on the
propagation front. Further research on the cause of the latter type of dispersive peaks is
necessary before use of any limiter types other than limptypw = 0.

5.4 Validation cases

Propagation of period from boundary

Propagation of boundary conditions into the domain with the 2-equation under various higher
order approximations of the discretization of the advection term was investigated, as described in
Section 5.3. In Figure 5.1 the first time steps of propagating wave front are shown for limiter type
0 (no higher order approximation). The wave period front (top left panel) leads the wave energy
front (top center panel), thereby ensuring the entire energy front propagates with the same celerity.

Next, the propagation of boundary conditions is combined with wave growth. As displayed in
Figure 5.2, the wave front appears very dispersive. This unphysical peak at the wave front does
propagate through the domain after which the trailing growth curve appears correct. Spin-up time
of this model is hence equal to the time necessary for the boundary waves to travel throughout the
entire domain to enter at the outflow boundary. In case the wave growth needs to be studied in an
instationary setting, the source term, parallel to the boundary condition for wave energy, can be
linearly tapered from zero at the start of the computation to its true value.
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Figure 5.2: Propagation of waves energy from the boundary into a wave-less domain in a
semi-1D XBeach D-Flow FM model with first order upwind discretization of advection and
wind input.

Propagation around an Island

A 2D model for propagation around an island has been set up to compare FIM-FM to FPM-FM.
No local wave generation is considered. See Figure 5.3 for a plot of the resulting (Hs, T ) fields.
The wave period field in the frequency prescribed version is off course constant and equal to the
boundary prescribed value. In the modified version, the field shows sheltering behind the island.
Moreover, since this model was run with a relatively coarse directional discretization, streaks
of the influence lines of boundary conditions are visible in this sheltering area, while these are
not present in the wave height field. An explanation to this could be that directional distribution
of total wave energy occurs at the Dirichlet boundary, while the wave period prescribed at the
Dirichlet boundary is constant in wave direction. Therefore streaks in the wave period field are
much stronger than in the wave height field, because the angles away from mean propagation
direction weight equally to the mean propagation direction.

Furthermore, the island appears to provide much less sheltering in the frequency integrated
model in comparison to the frequency prescribed model, a result which is obtained through the
modified wave celerity field as a result of the altered wave period field. Because wave energy
travels more slowly trough the sheltering area in the modified model, more wave energy is present
at a given time.

1D growth curves

A 1D test similar to the 1D Matlab test of Section 4.2 is performed on the FIM-FM wave drivers.
This test is performed on a semi-1D grid (3x750) at a finite depth of 20 meters under a wind speed
of u10 = 20m/s. The tapering of the source terms to Young and Verhagen (1996) growth curves
as described in Section 3.4 is also included. Dissipation processes are turned off. The stationary
solution as well as output at some intermediate time steps is plotted in Figure 5.4 on log-log
scale. The slight deviation of the wave period growth curve from the literature prescribed curve
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Figure 5.3: A comparison of the refraction pattern around an island between FIM-FM ap-
proach (left) and FPM-FM approach (right). The top row plots significant wave height Hs, the
bottom row plots representative period T .

is attributed to the relatively coarse grid. The taper on the source term toward fully developed
conditions correctly reproduces the tanh-transition as proposed by Young and Verhagen (1996).

5.5 Summarizing

The wave generation mechanism derived in Chapter 3 was implemented in the unstructured XBeach-
like wave drivers in D-Flow FM (FPM-FM). To that end the formulation of the source term had
to be generalized to two dimensions and a distribution mechanism of the wave input over the
propagation directions was identified. Because wave observations suggest a distribution of wave
energy over the propagation directions by Dideal = A cosn(θ−θwind) (Ewans (1998)), a direction-
integrated approach (the nodal approach) was adopted. Some limiters had to be imposed on the
behavior of the wave period in very shallow water and on the time integration step for very young
sea states on coarse grids. From the described test cases three recommendations can be given on
the use of the two-equation propagation model:

1. The effect of higher order approximations to the discretization of advection need to be in-
vestigated further before used.

2. The spin-up time of an instationary solution is equal to the travel time of the wave front on
the inflow boundary to the outflow boundary. During this spin-up time the model output is
unphysical and should not be taken into account.
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3. The discretization in θ− space needs to be fine to reduce the presence of streaks of wave
period in sheltered areas of the domain. The number of bins is dependent on the interest
in the wave field in the sheltered area. Roelvink et al. (2016) suggests discretizing the
direction-domain with a resolution of at least one bin per 20 degrees and this is thought to
be sufficient.
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Figure 5.4: semi-1D FIM-FM output for wave growth due to a constant wind speed of 20m/s
on a grid with a resolution of 80m. Top left: wave energy, top right: wave period, center left:
local rate of change of wave energy, defined by the group celerity, period and wave energy at
beginning of time step, center right: local rate of change of wave action, bottom left: wave
action. In each graph, the final equilibrium solution is shown as well as the output as interme-
diate time steps, see the legend. Both the prediction relations for wave energy and wave period
from Young and Verhagen (1996), corrected by Breugem and Holthuijsen (2007) are matched
by the final solution.

.
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6. Field case

So far, only idealized test cases were analyzed. In this chapter the interaction of the wave gener-
ation mechanism with the other source terms is challenged on a real discretization of a physical
bathymetry, modeling a historic storm. A hindcast provides also a means to test correct behavior
of the wave boundary conditions in the two-equation approach for advection. In the derivation
of a source term formulation, it was already mentioned that reproduction of the literature de-
scribed growth curves would not be exact in the case currents are present. The implementation
of frequency prescibed wave drivers into D-Flow FM is still work in progress, and wave-current
interaction is not operational as of yet. Therefore it was not possible at this stage to evaluate the
effect of currents on the computed growth curves. To that end, a field case was chosen which has
been used in a validation study of SWAN before, in which currents were assumed to be absent.
This provides a means to compare model skill between the two wave models. The chapter starts
with introduction of the field case. The validation method is discussed thereafter. Section 6.3
reports on the results from the validation. Section 6.4 raises some discussion points with regard to
the model method and the relevance of various wave processes.

6.1 Haringvliet storm hindcast

The inlet of the Harinvliet, a Rhine-estuary between Westvoorne and Goeree-Overflakkee in South-
Holland is separated from the Rhine-branch by sluices. On the sea-side of the sluices lies a shoal
named the Hinderplaat. The Haringvliet is relatively shallow, and the area behind the shoal is
partly sheltered from offshore boundary conditions such that local generation of waves becomes
relevant. Because of the presence of the sluices, currents are largely absent. See Figure 6.1 left
panel for a contourplot of the bathymetry of the domain. A measurement campaign on wave
conditions was performed in 1982 by Rijkswaterstaat (Andorka Gal (1982)). The measurement
set is obtained through the SWIVT database. The database includes a BOTKAR network of the
bathymetry of the Haringvliet in 1982 with a resolution of 250x250 m. These measurements have
served already other model validation purposes (Dingemans (1983), van der Westhuysen et al.
(2012)). As such, a performance comparison of FIM-FM against SWAN can be made.

The measurement campaign reports on wave spectra at eight locations during four hours of
storm conditions on 14-10-1982. These locations are marked in Figure 6.1. The storm duration
was split by hour, after which hourly average wave spectra were reported. See Table 6.1 for an
overview of the physical parameters in the four cases. The normalized wave spectra (normalized
variance density against frequency) of the first storm hour are plotted in the right panel of Figure
6.1. The shape of the wave spectra at the first four locations shows a clear spectral peak and
approximates the JONSWAP shape. The spectral shapes at locations five to seven are all in some
degree affected by the sheltering effect of the Hinderplaat. The spectra are wider and the spectral
peak is less defined. Especially the wave spectrum right behind the shoal at location five is very
wide and all energy at the spectral peak has dissipated. At location eight a distinct second peak can
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Figure 6.1: LEft panel: Contour plot of bathymetry of the Haringvliet with eight measure-
ment locations in white. Right panel: Shapes of the wave spectra(normalized variance density
against frequency) during the first storm hour at the eight locations.

be distinguished in the spectrum at much higher frequency. At this location the locally generated
waves are present and noticeable.

6.2 Method

Each of the four hours of storm was simulated with stationary boundary conditions. In the wave
generation mechanism, bottom friction is assumed to account for finite-depth effects. Wave break-
ing is modeled through Baldock et al. (1998). The significant wave height Hs and mean period
Tm01 from location one were used as wave boundary conditions on the entire offshore boundary.

The spectral characteristics of location two and three in the second model case were used to
calibrate the friction coefficient fw in the bottom friction formulation (Equation (3.40)) to fw =
0.03 and CT (in Equation (3.41)) to 7. The second model case is more representative for the
other cases in comparison to case 001 because of the increasing water level throughout the four
hours of storm. This friction coefficient was assumed constant for the entire domain in absence of
information on bottom roughness.

Model skill at the seven remaining locations is assessed by looking at the difference from
computed wave height and period to the imposed boundary conditions. As such, measurement
locations far away from the model boundary are plotted far away from the origin of the scatter plot
in Figure 6.2. This matches the intuition that a numerical model has better skill if it models the
evolution of boundary condition well, rather than it merely advecting these wave boundary condi-
tions unaltered through the domain. The two measurements of most interest for the regeneration
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Table 6.1: Physical parameters in Andorka Gal (1982). wind speed and direction according to
nautical convention. Time in UTC. The Author acknowledges the use of the SWIVT database,
kindly provided by Deltares through http://swivt.deltares.nl

Case nr. Time [hh:mm] Water level
[m]

Wind (U10) [m/s] Direction
[◦]

001 21.00 hrs +0.30 12 330
002 22.00 hrs +0.90 17 330
003 23.00 hrs +1.70 14 330
004 24.00 hrs +2.10 15 330

of waves within the domain, locations five and eight, are then located furthest away of the origin
of the scatter plot.

The model skill is quantified through the evaluation of the scatter index (SCI), the relative bias
and the Brier skill score (BSS). Reference is made to Van Dongeren et al. (2003) for a summary on
their computation. These performance indicators only become significant when sufficient data is
available. Since there are just seven stations modeled in a total of 4 model cases, these performance
indicators provide a means to quantify the model fit to the data, but the superiority of one model
over the other can’t be concluded from their values through statistical rejection.

6.3 Results

The performance of FIM-FM in simulating the wave conditions at the eight measurement locations
is plotted in Figure 6.2 along with its skill scores. Positive relative bias indicates a general over
prediction of wave characteristics, a negative relative bias an under prediction. A higher scatter
index suggests a wider scatter around the bias line. A skill score of 1 would imply perfect model
skill. Positive skill scores imply that the model performs better than the no-model alternative
(assuming boundary conditions everywhere in the model domain).

Appendix C gives an overview of the wave field and source term magnitudes for the reader
interested in the greater picture of the wave field apart from the quantification at the measurement
stations.

The model skill of FIM-FM is compared to simulations performed with SWAN 41.10. The
process description and model parameters for SWAN were taken from the SWIVT database. For
the calculation of the SWAN skill scores, stations two to eight from all four storm cases were
included. For the FIM-FM skill scores, the second and third station of case 002 were additionally
excluded as these were used in the calibration of the friction coefficient.

Most noticeable is the difference in relative bias in the wave period between FIM-FM and
SWAN. SWAN tends to systematically under predict the mean period, where the frequency inte-
grated model over predicts the mean period. Both models have very little bias in predicting the
significant wave height, but the scatter around the perfect model skill line is in both models is
still significant. Both models have problems in predicting the change in wave conditions between
location three and four. Although the measurements suggest differently, both models predict a
similar wave state at the two locations. This could possibly be explained by the relatively coarse
grid of the BOTKAR network. A local variation in the bottom profile could induce refraction or
dissipation. On a coarse grid, this could go unnoticed.

It must be kept in mind that the skill scores are based on only 26 data pairs (for FIM-FM, 28
for SWAN).
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Figure 6.2: The model skill of the FIM-FM (top row) in comparison to SWAN (bottom row) for
significant wave height (left column) and mean period (right column). Scatter plot of deviation
of computed wave height and period from the imposed boundary condition against deviation
of measured wave height and period from wave state at measurement location one. The black
solid line indicates perfect model skill. Skill scores computed combining computations from
all four storm cases.
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Table 6.2: Skill scores for storm case 001 for three model runs assessing the influence of three
processes: dissipation of wave energy, dissipation of wave period and generation of both wave
energy and period.

Processes SCI Rel. Bias BSS
Hs TM01 Hs TM01 Hs TM01

Wave breaking (Br) 0.24 0.71 -0.08 0.51 0.74 0.43
Br + bottom friction (Df) 0.45 0.38 -0.30 -0.02 0.43 0.67
Br + Df + wind input 0.19 0.48 -0.05 0.25 0.83 0.60
Br + depth limited wind input 0.17 0.77 0.02 -0.59 0.85 0.42
SWAN 0.18 0.39 0.07 -0.28 0.86 0.83

6.4 Discussion

To identify which process is dominant in describing the wave field, the effect of different processes
(Figure 6.3) is compared with complete process description (Figure 6.2). Wave dissipation by
depth induced breaking was present in all model runs. The skill scores are summarized in Table
6.2. As the combined skill scores for wave energy and representative period suggest, the wave field
is best reproduced when all three processes are included in the simulation. To further understand
the roles of the respective processes, some comparisons between model runs are discussed below.

First, the effect of bottom friction on the propagation of offshore boundary conditions is ex-
emplified by Figure 6.3: Subfigure (a) (only wave breaking) and Subfigure (b) (wave breaking
and bottom friction). Both the wave energy as well as wave period are significantly lower in the
domain of (b). The wave energy shows a trend of under prediction in the absence of local wave
generation. The wave period however shows very little bias towards under- or over prediction.
This suggests that the evolution under bottom friction, which was calibrated on case 002 for two
relatively offshore points, might not be strong enough in the rest of the domain.

This is confirmed when Subfigure (b) is compared with Figure 6.2 (top row) (complete process
description). The wave period is overestimated when dissipation and local growth are combined.
This is especially the case for location 5 right behind the Hinderplaat. Either the evolution of
period under bottom friction over the shoal is too little or the local growth is too strong. The
wave energy however, improves its predictive skill greatly by combining bottom friction and local
generation.

Next, the model skill behind the Hinderplaat is closer inspected. In Figure 6.2 (top row) as
well as Figure 6.3 Subfigure (b) the performance of the model at position 5 (right behind the
Hinderplaat) for case 002-004 is very different from case 001, as the wave period in cases 002-004
is much over predicted. The water depth on top of the Hinderplaat varies strongly between the four
model cases, from a few decimeters in case 001 to 2.5 meter in case 004. The measurements show
that propagation over the shoal steepens waves more strongly than wave energy is dissipated, but
this behavior is not reproduced by FIM-FM. In the model, either the advection of wave period over
the shoal is too strong, the local generation of wave period is too strong (wave period grows most
strongly in very young sea states), or the prescribed wave steepness with fixed friction coefficients
through the evolution relation after Booij is unable to predict the steepening. Arguments can be
made to point to the last of these potential causes.

When the performance of the four model cases in predicting wave period are inspected indi-
vidually, each of them accounts to a different bias compared to the perfect-model-skill-line. Case
001 generally just under predicts wave periods at the measurement locations. In cases 002-003
the bias changes to an over prediction. This over prediction is then strongest in case 004. Since

Parametric wave growth in a frequency integrated wave model – M.A. van der Lugt 59



6. Field case

(a) Wave breaking
(BR)

(b) Br + Bottom fric-
tion

(c) Br and Depth-
limited growth

Figure 6.3: Scatter plots of the computed wave heights (top row) and period (bottom row)
against the measurements. In (a) bottom friction and local generation was turned off, only
depth-induced breaking is included. In (b) bottom friction was included next to depth induced
breaking. Subfigure (c) shows the alternative approach in which bottom friction is neglected
and the growth rate is depth-dependent (Section 3.5)
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Figure 6.4: Dimensionless measured significant wave height against dimensionless mean fre-
quency (markers with label of the measurement location) for all four storm cases. In black solid
line the Young and Verhagen growth curves for dimensionless water depths corresponding to
d=5m, d=10m. The red colored zones indicate overdeveloped conditions for deep water (dark
red) d=10m, (lighter red) and d=5m (lightest red).

the model cases differ the most from each other in the mean water level, this suggests that friction
coefficients should be depth-dependently prescribed. This approach is not further pursued in this
field case since enough data points should remain for validation purposes after eliminating some
data points for calibration. Only 26 data points were available for validation purposes in this field
case.

The alternative option regarding depth limitations on the model approach, were bottom friction
is only incorporated implicitly through limiting the local growth, was tested on the Haringvliet as
well, in Figure 6.3 Subfigure (c). In comparison to full process description (Figure 6.2 (left)) the
wave energy is predicted really well, but mean wave periods are severely overestimated. It is very
clear from these results that some sort of evolution of wave period for offshore wave conditions is
necessary to obtain reasonable local periods.

This arguments is supported in a further study of the measured wave spectra in the dataset.
In the analyzed storm scenario’s the wind speed varied from 12 m/s to 17 m/s. With these wind
speeds, a dimensionless water depth of d̃ = 1 equals dimensional water depths in the range d =
20.0 m to d = 29.5 m. The measurement stations two to eight all lie in relatively shallow water
where the water depth does not exceed 15 meters. In Figure 6.4 the measured significant wave
height and mean frequency are made dimensionless and plotted on the f̃ , H̃s phase plane. The
equilibrium trajectories described by Young and Verhagen (Equations (2.9) and (2.9)) are plotted
as well for three dimensional water depths. An infinite dimensionless depth accounts to deep
water conditions. All wave observations lie around equilibrium trajectories with d̃ = 2 and even
d̃ = ∞. Since the water depth in the Haringvliet typically accounts to dimensionless water depths
well below d̃ = 1, the measured waves heights are overdeveloped with respect to the literature
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described fully developed conditions in shallow water. Hence the joined contribution of bottom
friction with local wave generation should have a nett sink effect, and an explicit bottom friction
mechanism is really necessary to allow sink terms for wave period.

FIM-FM shows promising results in predicting the significant wave height throughout the
Haringvliet hindcast through an accurate balance between generation of waves and dissipation.
Location 5 directly behind the Hinderplaat strongly reduces the model skill of predicting wave
period. In the model cases in which the remaining water depth on top of the shoal was >1 meter,
the wave period is extremely over predicted. It appears that the steepening of waves in the model
is not sufficient to describe the steepening occurring in the measurements. Either the evolution
under bottom friction after Booij is not appropriate in this case, or the friction coefficients should
be made depth dependent. Since wave steepening in case 001 was modeled correctly, the latter
approach is recommended for further research in a hind cast where more data is available for
calibration.
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In this chapter the main results of this project are summarized and the research questions from
Section 1.4 are addressed (Section 7.1) Conclusions were written separately for the three parts
in which the development process was divided. Recommendations for further steps towards an
operational shallow water wave forecasting model are given (Section 7.2).

7.1 Conclusion

Derivation of a spectrally integrated wave generation mechanism
Literature describes power laws relating total wave energy and period to fetch. These power
laws are expressed in dimensionless variables. Dimensionless description of wave charac-
teristics generalizes wave observations, as it renders the power laws independent of the wind
speed. These power laws form the basis of the derived source term. Fetch and duration serve
an equivalent role in describing the degree to which waves can develop. With this insight,
wave growth rates can be related to local group celerity and wave energy. Evolution of
wave energy over time and space is described by the wave action balance. As wave period
determines to a large extent the group celerity, it needs to evolve too in a dynamical model
that describes the energy growth curve. Wave period is not a conserved quantity under wave
propagation. As such, it must be advected in a wave model by an auxiliary wave quantity.
This quantity was identified as the first moment of the action density spectrum: wave en-
ergy. With two balance relations in place, one for wave action and one for wave energy, the
evolution of wave energy is indirectly coupled to the evolution of wave period through the
wind input. The coupling is such that ideal wave steepness is achieved both over time and
after propagation in the spatial dimension.

Implementation
The additional evolution relation as well as the wind input term were extended to apply
in two dimensions and concurrently implemented in frequency prescribed wave drivers in
D-Flow FM. Limiters, some of which were already present for wave action, were intro-
duced for wave energy. The interaction of the wind input formulation with bottom friction
in limited water depth was furthermore studied. The conventional bottom friction formu-
lation present in XBeach only dissipates wave energy. A coupling of the evolution of the
representative period to dissipation of wave energy was additionally implemented. Growth
curves for varying water depths and wind speeds were reproduced by a balance of wind
input and bottom friction. The required bottom friction coefficients to obtain correct fully
developed conditions are not constant for varying wind speed or water depth, but do vary
in a physically correct range. In case bottom friction is not explicitly incorporated in the
process description, the wind input can be tapered to prevent over development of shallow
water growth curves.
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Validation
The model approach was validated both through highly idealized 1D test cases as well as a
hindcast study. Convergence with decreasing grid size towards idealized growth curves was
established in test cases without dissipation processes. A hindcast study of the Haringvliet
compared the model skill of the frequency integrated approach to the spectral model SWAN.
The frequency integrated FM model shows a bias towards higher wave periods, whereas
SWAN is generally biased towards lower wave periods. Model skill similar to SWAN was
reported in the prediction of significant wave height. The evolution of wave period under
bottom friction behind the shoal (Hinderplaat) in the model prediction was not sufficient to
model the increase of wave steepness present in the wave observations in case the remaining
height of the water column above the shoal was more than one meter. For the other mea-
surement stations scatter around perfect model line for the frequency integrated model was
of similar magnitude to SWAN.

7.2 Recommendations

Recommendations can be given regarding two aspects. Further development of process description
in the model is discussed first, after which some recommendations for further steps towards an
operational shallow water wave forecasting model are given.

Process description

In the derivation of the source term the validity of the two-equation approach to propagate wave
period throughout the model domain in absence of ambient currents was discussed. As pointed
out, the effect of currents on the propagation pattern of wave period needs to be investigated. It is
therefore recommended that this effect is assessed numerically as soon as wave-current interaction
becomes operational in the frequency prescribed wave drivers in D-Flow FM.

A second aspect of the derived source term in a complex model is the gradient of the group
celerity. As Section 3.4 showed, 20% of the growth rate on the growth curve is attributed to the
term A · ∇c⃗g. In principle there is no bound on the gradient of the group celerity, and hence the
growth rate could take on unphysical high values. In the current implementation the contribution
of the gradient in group celerity on the growth rate was bound to 0.5 of the total growth rate. The
upper bound for its contribution to the growth rate should be investigated.

Another aspect of the process description which requires more validation cases is the depth
and wave height dependence of friction coefficients to account for depth limitations in the growth
rates. In the discussed field case the friction coefficients were chosen constant throughout the
model domain and throughout all model cases. Soulsby (1997) describes a dependency of the
friction coefficient on wave orbital velocity and frequency. This approach should be tested in
other field cases.

As the hindcast of the Haringvliet turned out to validate the propagation of offshore wave con-
ditions which were aligned with the wind direction, an additional validation study could provide
more confidence in the growth of waves in directions at an angle with boundary conditions. More-
over, as the global model aims to forecast globally on all types of coastal zones, model skill on
varying types of foreshores need to be assessed.

Towards operational forecasting

The prospective wave forecaster finds solutions to stationary model problems. The spectrally
integrated approach to the stationary problem should be faster than the full spectral description
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of the stationary problem. This was, at the green light stage of this thesis, not confirmed yet as
the wave drivers were only implemented in the instationary solver for study purposes. Although
this implementations is step one towards a faster solver, a recommendation on a second step is
also made. The stationary solver for the XBeach wave drivers in D-Flow FM is iterative, and
uses a pseudo-time step to move from one iteration to the next. As such, the semi-discretized
model problem (the stationary wave action balance) is described similarly to the fully discretized
problem (non stationary wave action balance). This means that the two-step approach to the time-
integration step (Section 5.2) is also present at each iteration of the stationary solver. In one
iteration step two systems of equations are solved. With the introduction of a second evolution
relation as proposed in this thesis, a third system of equations is introduced in one iteration step.
Incorporating the three systems of equations in one larger system reduces the calls to the solver
within one iteration step from three to one. Although solutions to larger systems require more
computational time, the convergence behavior could potentially increase as non-linear behavior of
the source terms around the breaker zone could be captured better.
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8. List of Symbols

Roman alphabet

Symbol Description Unit

a Wave amplitude [m]
A Wave action density [J s m−2]
c phase celerity [m s−1]
cg group celerity [m s−1]
C Wave steepness [-]
CT Bottom friction coefficient [-]
d Water depth [m]
DA Sink terms in action balance [W m−2]
Dbr Dissipation by depth induced breaking [W m−2]
DE Sink terms in energy balance [W m−2]
Df Dissipation by bottom friction [W m−2]
ee Directional energy density [J m−2rad−1]
E Energy density [J m−2]
f frequency [Hz]
fw Bottom friction coefficient [-]
F Fetch [m]
Feq Equivalent fetch [m]
g Gravitational acceleration [m s2]
H Wave height [m]
HRMS Root mean square wave height [m]
Hs Significant wave height [m]
k Wave number [m−1]
L Wave length [m]
m Relaxation parameter [-]
mi i-th moment of the wave action spectrum [varies]
n Ratio group- and phase celerity [-]
Q Dummy for conservative quantities [varies]
SA Source term in action balance [W m−2]
t Time [s]
Tp wave peak period [s]
Trep Representative wave period [s]
TMi,j Spectral mean period based on Mi and Mj [s]
u Flow velocity [m s−1]
u10 Wind speed 10 meters above water level [m s−1]
u∗ Friction velocity [m s−1]
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Greek alphabet

Symbol Description Unit

ϵ Relative error [-]
ρ (Water) density [kg m−3]
σ relative or intrinsic frequency [Hz]
ω absolute frequency [Hz]
Ω spectral mean frequency [Hz]

Sub- superscript

Sub- Superscript Interpretation

Q̃ Dimensionless variable
Q∞ Fully developed wave characteristic
Q⃗ multidimensional variable
Q averaged variable
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A. Period evolution under bottom fric-
tion

Booij et al. (1999) derived a coupling between dissipation of peak wave frequency and bulk wave
energy. Because this approach is not well known, its derivation is repeated below while rewritten
to a coupling between representative wave period and energy. In establishing a general relation
between dissipation of E and Trep, we assume conservation of the shape of the high frequency tail
of the spectrum and a universal shape of the spectrum in general. The assumed spectral shape is
given by:

E(k) = αk−n (A.1)

With n a free parameter defined by balance arguments, assigned a value below. From here, it is
assumed that all energy is present in the part of the spectrum with wave numbers greater than kp:

E = α

∞∫
kp

k−ndk =
α

n
k−n+1
p (A.2)

Based on wave steepness, the smallest wave numbers can carry higher waves which will experi-
ence the influence of bottom friction more severely. Through that reasoning, it is assumed that
all dissipation then takes place in the low-wave number side of the spectrum such that the wave
number with maximum energy (kp) moves towards greater values through this process.(

dE

dt

)
bottom

=
E

kp
(1− n)

(
dkp
dt

)
bottom

(A.3)

Assuming linear wave theory, the wave number and the wave period are related to each other
through the dispersion relationship:(

dkp
dt

)
=

(
∂kp
∂ω

)(
∂ω

∂T

)(
∂T

∂t

)
= − 1

cg

2π

T 2

(
∂T

∂t

)
(A.4)

Rewriting and substituting gives:(
∂T

∂t

)
= −T 2

2π
cgkp

1

(1− n)

1

E

(
∂E

∂t

)
= −T 2

2π
cgkp
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(1− n)

1

E

(
∂E

∂t

)
(A.5)

Booij suggests n = 3 ( based on scaling arguments in Kitaigorodskii et al. (1975)). This leads
then towards:(

∂T

∂t

)
=

T 2

4π
cgkp

1

E

(
∂E

∂t

)
(A.6)

This evolution mechanism forces the wave steepness Hs
Lp

towards a deterministic ratio, given the
amount of wave energy.
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B. Calibration of friction coefficients

This chapter describes the calibration of friction coefficients fw and CT in obtaining a balance
between wind input Sin and bottom friction {Df , DT }. Three depths d={3,6,12} and four differ-
ent wave speeds u10 = {8, 12, 16, 20} are assessed. For each of the twelve cases, fw was varied
ranging 0.02-0.07 and CT was varied ranging 0.9-1.4. The differences between the literature de-
scribed fully developed conditions (Equations (2.7) and (2.8)) and the computed upper bounds
were calculated. These differences were then normalized by the literature prescribed values:

ϵE =

√
(Ecomp.

∞ − E∞)2

E∞
(B.1)

ϵT =

√
(T comp.

∞ − T∞)2

T∞
(B.2)

Contour plots of these normalized differences are given in Figure B.1. In case only one of
the growth curves for energy or period needs to match, both CT and fw could be calibrated with
the other parameter fixed. If both parameters are varied, the figure suggests a relation between fw
and CT to describe the minimum error. For the wave energy, CT depends positively on fw for
miminum differences, while the dependence is negative for the reproduction of the wave period
upper bound. The growth curves for both wave energy and period should however be correctly
reproduced. Therefore, there is only one unique set of fw, CT that describes the minimum error.

The following can be concluded for dependence of fw and CT on water depth and wind speed:

depth dependence

In the range of water depths from 3-18 m, fw ranges 0.02-0.07 and CT ranges 0.9-1.3. In linear
approximation the friction coefficient fw increases by 0.08 for an increase of water depth of 1
meter. CT on the other hand decreases for increasing water depth.

wind speed dependence

In the range of wind speeds from 8-20 m/s, fw equally ranges 0.02-0.07 and CT ranges 1-1.2.
On the investigated domain, The required fw halves when the wind speed doubles. CT decreases
slightly for increasing wind speed.
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B. Calibration of friction coefficients

(a) wave energy

(b) wave period

Figure B.1: For three water depths and 4 wind speeds the effect of the calibration parameters
fw and CT was investigated. The contourplots show the normalized difference between the
computed upper bound on wave energy (top) and wave period (bottom). Minima are marked
dark and lighter shades indicate a greater normalized difference.
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C. Additional figures Haringvliet assess-
ment

Model output for the relevant wave characteristics in storm case 002 has been plotted in Figure
C.1.
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