
 
 

Delft University of Technology

Curve speed model for driver assistance based on driving style classification

Chu, Duanfeng; Deng, Zejian; He, Yi; Wu, Chaozhong; Sun, Chuan; Lu, Zhenji

DOI
10.1049/iet-its.2016.0294
Publication date
2017
Document Version
Final published version
Published in
IET Intelligent Transport Systems

Citation (APA)
Chu, D., Deng, Z., He, Y., Wu, C., Sun, C., & Lu, Z. (2017). Curve speed model for driver assistance based
on driving style classification. IET Intelligent Transport Systems, 11(8), 501-510. https://doi.org/10.1049/iet-
its.2016.0294

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1049/iet-its.2016.0294
https://doi.org/10.1049/iet-its.2016.0294
https://doi.org/10.1049/iet-its.2016.0294


IET Intelligent Transport Systems

Research Article

Curve speed model for driver assistance
based on driving style classification

ISSN 1751-956X
Received on 14th November 2016
Revised 11th May 2017
Accepted on 12th July 2017
E-First on 10th August 2017
doi: 10.1049/iet-its.2016.0294
www.ietdl.org

Duanfeng Chu1, Zejian Deng1, Yi He1, Chaozhong Wu1 , Chuan Sun1, Zhenji Lu2

1Intelligent Transport Systems Research Center, Wuhan University of Technology, Engineering Research Center of Transportation Safety,
Ministry of Education, Heping Avenue #1040, Wuchang District, Wuhan 430063, People's Republic of China
2Faculty of Mechanical, Maritime and Material Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

 E-mail: wucz@whut.edu.cn

Abstract: Inappropriate speed in negotiating curves is the primary cause of rollovers and sideslips. In this study, the authors
proposed an improved curve speed model considering driving styles, as well as vehicle and road factors. On the basis of a
vehicle–road interaction model, the driver behaviour factor was introduced to quantify driving styles of curve speed choices.
Firstly, the fuzzy synthetic evaluation method was utilised to classify the driving styles of 30 professional drivers into three
different types (i.e. cautious, moderate and aggressive). Secondly, the classification results using fuzzy synthetic evaluation
were compared to and verified with the K-means clustering method resulting over 60% the similarities. Finally, the proposed
curve speed model was built and compared with four existing models. The authors’ model has the following promising
advantages: (i) it reflects the speed preferences of three different types of drivers on the premise of driving safety on curves;
and (ii) it shows a stationary speed transition when the road adhesion coefficient exceeds 0.8, which indicates that rollover,
instead of sideslip, becomes the primary cause for lateral instability crashes on curves. Therefore, this proposed curve speed
model could be applied in a curve speed warning system to improve both driving safety and comfort.

1 Introduction
Over the past few years, both the amount and the severity of curve
accidents in China have been maintaining a high rate. There were
35,000 curve crashes in 2014, accounting for 17.8% in all crashes.
Moreover, the fatality rate in curve accidents reached up to 0.8, i.e.
0.8 people were killed in each curve incident, which was much
higher than 0.3 the average fatality rate among all crashes [1].

Curve crashes are caused by many factors, including road
conditions, vehicle dynamics and driver behaviours. Inappropriate
choice of driving speed is a major cause of curve accidents [2].
Vehicles in high speed are exposed to lateral instability hazards like
rollovers and sideslips. Naturally, the adjustment of the vehicle
speed during curve negotiation becomes one of the effective
solutions. A common method that has always been used for drivers
to adjust curve speed is to set roadside speed limit signs along
curves. The speed limits on roadside are mainly obtained using
standards and empirical data from the highway engineering. This
method, however, cannot rectify drivers’ inappropriate speed
effectively. First, the roadside speed limits cannot fully take into
account some dynamic and individual factors, such as vehicle
structural parameters and driver behaviors. Moreover, drivers may
ignore the speed limit signs intentionally because their values are
derived from the conservative conditions which are probably below
drivers’ expectations.

Curve speed warning (CSW) is an on-board driver assistance
system that can calculate appropriate speed based on the driver–
vehicle–road interactions and send warning signals if the driver
drives over the calculated speed limit. However, in a situation
where drivers lose the trust to the warning system, inappropriate
speed selection can occur and lead to more dangerous situation.
Therefore, it is important to improve the system to reduce wrong
warnings.

This paper proposes an improved curve speed model for
calculating the safe speed during curve negotiation by combining
multiple factors from drivers, vehicles and roads. Specifically, the
influence of driving behaviour is described by driver behaviour
factor which can vary as driving styles differ. Several indices are
selected to make the classification according to their properties of

reflecting driving style. The simulation studies show that the
vehicle would be out of sideslip and rollover risks if a driver drives
at a speed within the improved curve speed model proposed.
Furthermore, it is substantiated that the improved curve speed
model not only meets the safety requirements, but also adapt to the
drivers’ expected speed on a curve.

2 Literature review
The vehicle lateral instability crashes, such as rollovers and
sideslips, are always related to road surface conditions, road
geometry features, vehicle dynamics and so on. Some previous
studies have focused on road and environment impacts on the
driving safety on curves [3–5].

As drivers characteristics vary, the curve negotiation speed
preferences would be distributed around a range of values.
Therefore, the analysis of driver behaviours is indispensable to
avoid inaccurate predictions of curve speeds. MacAdam [6]
identified human driver as the primary control element within the
long-established driver–vehicle system. Driver models including
human traits were proved to be useful in predicting the
performance of the combined driver–vehicle system. Salvucci [7]
developed a rigorous computational model of driver behaviour in a
cognitive architecture that incorporate basic properties and
limitations of human, which could be applied to predict and
recognise driver behaviour and distraction.

Most existing curve speed models were established based on the
analysis of vehicle–road interactions. Glaser et al. [8, 9] proposed a
more comprehensive model than previous ones. The road geometry
was fully used. Chen et al. [10] proposed a BP neural network-
based model to represent the motion states of vehicles on curves.
Unfortunately, these models neglected driver behaviours which
could largely influence the curve negotiating process.

Some researchers intended to introduce human factors to
conventional curve speed models. Bosetti et al. [11] concluded that
one important aspect of the curve driving was the driver speed
choices. Zhang et al. [12] concluded that the curve speed was
related to the drivers’ preferred velocity and the initial velocity on
a curved road. Lee et al. [13, 14] added three different gain factors
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associated with vehicles, roads and drivers to the curve speed
model to represent how these factors affect the curve speed.
However, the process of determining the appropriate gain values
was carried out without any on-field experiment for further
verification.

Currently, curve speed models mainly consider the coupling
effects of vehicles and roads with little efforts on the quantitative
analysis of the driver behaviour characteristics. As drivers have
different expectations and preferences of the curve speed, it is
necessary to obtain appropriate curve safety speed with the
consideration of individual differences, otherwise drivers would
lose the trust to CSW system, which might increase the risks of
traffic crashes.

3 Curve speed model based on driving style
clustering
3.1 Improved curve speed model considering driver
behaviours

For light vehicles, the critical value of the curve safety speed
should focus on the prevention of sideslips because they are more
likely to skid than overturn on the same curve conditions due to
their lower centre of gravity compared to heavy trucks. However,
rollover risks of heavy trucks should not be neglected in the
analysis of the curve safety speed. Therefore, the curve safety
speed is defined as the minimum value vsr between the critical
sideslip speed vs and the critical rollover speed vr, which is stated
in [15]

vsr = min vs, vr (1)

where

vs = μ + iy
1 − μiy

⋅ gR, vr = B + 2hiy
2h − Biy

⋅ gR (2)

where B and h are the vehicle track width and the height of centre
of gravity, respectively. g denotes the gravity, R, μ and iy are the
curve radius, the road adhesion coefficient and the superelevation,
respectively.

The above model contains the factors of road conditions and
vehicle states. However, driver behaviours, which can significantly
influence the adaptation of the curve speed to different drivers,
have not been included. Therefore, the curve speed model should
be improved through the introduction of the influence of driver
behaviours which is represented by the following factor kd.

vsafe = kd ⋅ vsr (3)

where kd represents the influence factor of driver behaviours.

In (3), kd describes drivers’ impact on speed choices
quantitatively and is related to driving skills, speed preferences and
even driving mood. Though driver behaviours are difficult to
describe through a mathematical model, their driving styles
normally stay steady for a long time, which provides a novel idea
by adding a constant coefficient to the theoretical speed. As
changing the coefficient for each driver behaviour is difficult to
implement, it is more practical to classify the drivers according to
their driving styles. In this way, the appropriate values of kd to
indicate the accurate curve speed that fits drivers themselves can be
derived. Moreover, the results of driving style classifications
directly influence the accuracy of curve safety speed.

3.2 Classifications of driving styles

The study divides the driving styles into three typical types:
cautious driving, moderate driving and aggressive driving. A
cautious driver would drive more carefully and avoid high speed
and hard acceleration. In contrast, aggressive drivers prefer
exciting driving experiences. Moderate drivers would drive
vehicles with relative steady motions that are neither too cautious
nor too aggressive.

3.2.1 On-field test for driving style classifications: A driving
behaviour experiment was carried out. Before recruitment of
participants, a sample of taxi drivers were surveyed through
interview and questionnaires. It was found that more than 85% of
them were male and their ages ranged from 30 to 60 years old.
Based on the survey, 30 professional drivers were recruited to
complete the experiment. Their driving experiences ranged from 3
to 27 years (mean = 15.8, STD = 6.2) with ages ranging from 34 to
55 years old (mean = 46.3, STD = 6.6). Also, the gender ratio was
controlled around 85% (see Table 1). 

The experiment was conducted on the Hanshi Freeway from
Wuhan to Xiangyang and the total distance was about 600 km, as
shown in Fig. 1. It took each driver 5–7 h to finish the whole
experiment. However, there is a service area in Suizhou
(approximately in the half section of Hanshi Freeway), as shown in
Fig. 1. Before the experiment, each participant took a trial drive
through the experimental route in order to get used to the road
conditions. Besides, all subjects were not allowed to start
experimenting until they were reported to get used to on-board
driving assistance devices so that they could drive in a naturalistic
way. During the experiment, all participants were asked to drive
with a safe and comfortable speed that reflected their real driving
style. 

Data acquisition equipment includes vehicle-mounted CAN
bus, Mobileye C2–270 system, smartphones, angle sensors and HD
video cameras. The information about the collected experimental
data is listed in Table 2. Steering wheel angle data was acquired

Table 1 General information of 30 studied drivers
Driver number Gender Age Driving years Driver number Gender Age Driving years
D01 male 52 23 D16 male 42 16
D02 male 53 16 D17 male 48 22
D03 male 33 6 D18 male 48 18
D04 male 50 16 D19 male 57 21
D05 male 36 15 D20 male 34 3
D06 male 55 21 D21 male 35 8
D07 male 52 16 D22 male 50 12
D08 male 47 20 D23 male 53 9
D09 male 47 16 D24 female 51 17
D10 male 52 27 D25 male 37 6
D11 male 46 9 D26 male 49 17
D12 female 49 17 D27 male 49 20
D13 male 42 10 D28 male 43 17
D14 female 49 25 D29 male 48 26
D15 female 36 10 D30 male 47 14
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using angular transducer. Smartphones were used to collect
dynamic data such as vehicle speeds and accelerations. 

Mobileye C2–270 is an image processing product provided by
the company Mobileye. It could sense moving or fixed objects and
determine positions between host vehicles and surrounding traffic
signs. A camera and a display screen are included in the system.
The camera is used to collect the traffic information, like lane lines
and relative time headway. In this experiment, Mobileye C2–270
system was used to collect time headways (within 2.5 s) and lane
departure displacements. This device has been used to collect
vehicle motion states for the research of driving behaviour in many
researches [16, 17].

3.2.2 Driving style classification using fuzzy synthetic
evaluation: Fuzzy-logic based mechanism has been utilised to
identify driving styles for evaluating energy-saving performance
[18] and driver profiling [19]. In this paper, fuzzy synthetic
evaluation is applied to classify the driving styles by analysing the
evaluation indexes reflecting each driver's characteristic. The
chosen indices include the following driving parameters.

Mean speed (v̄) differs when driving style changes. Aggressive
drivers prefer to drive faster to reach the destination while the
cautious ones would choose lower speed with more safety
concerns. In this field experiment, participants drove their vehicles
in freeway, where driving style was hardly influenced by traffic
flow, therefore, driving speed could reflect their driving styles in a
large extent.

Speeding is a kind of common driving behaviour especially
when driving in wide road. Aggressive drivers are inclined to drive
over the speed limits to shorten travel time, leading to higher
speeding frequency than cautious drivers. The number of speeding
(ns) is selected as an indicator for classification of driving style. In
this experiment, speeding is defined when driving speed is over
120 km/h which is the speed limit in Chinese freeway.

Acceleration is an indirect measure of the acceleration pedal
position and it can reflect the driving smoothness. Aggressive
drivers tend to depress acceleration pedal harder to get higher
speed during a short period, resulting in higher acceleration.
Therefore, maximum positive acceleration (amax

+ ) is selected as a
parameter for fuzzy evaluation.

Standard deviation of speed (vstd) represents the stability of
driving speed, which is able to reflect the fluctuation of driver's
operations. Aggressive drivers generally keep their speed at a high
level and reduce it under complex traffic environment, which,
inevitably, leads to a wide range of driving speed. Thus, standard
deviation of speed differs between aggressive and cautious drivers.

Driving style reflects comprehensive performance of
longitudinal and lateral control to the vehicle. Steering angle and
driving speed are important parameters in two directions.
Generally, drivers will slow down the vehicle when making a turn
in case of unstable lateral accidents. However, aggressive drivers
are likely to take risks pursuing high speed. Based on this
assumption, we define maximum product of the steering wheel
angle and vehicle speed (kmax) as a new parameter.

Besides, many literatures are based on the parameters
mentioned above to study the modelling and classification of
personal driving style [20–22].

The following four steps are used to determine a driver's driving
style:

Step 1: Define appropriate membership functions for the five
chosen indices. In fuzzy mathematics, membership function of a
research is first roughly obtained from subjective knowledge and
then determined according to distributions of the experiment data.
In this study, drivers’ temperament test which psychologically
reflects their driving styles is combined with on-field tests to
determine membership functions.

In [23], Chen proposed a ‘60 questions’ temperament test to
help people to understand their temperament types. The
temperament test consisting of 60 questions is very popular, and it
has been widely used in various fields in China, such as education,
medicine and sports. The research divided the personality into four
types: choleric, sanguineous, phlegmatic and melancholic
temperaments.

Human behaviours are directly influenced by their
psychological characteristics. Drivers’ driving styles are
psychologically related to the intrinsic temperament types of their
own. For example, as displayed in Fig. 2, the average speed
profiles show apparent differences as personal characteristics
change of recruited drivers who did temperament test [23]. 

Fig. 1  Driving route for the experiment
 

Table 2 Some data collected during the field experiment
Parameter types On-board equipment Sampling frequency, Hz
speed, km h−1 Smartphone 16

steering wheel angle, deg. Angular transducer 77

acceleration, ms−2 Smartphone 16

lane departure, m Mobileye C2–270 5–15
 

IET Intell. Transp. Syst., 2017, Vol. 11 Iss. 8, pp. 501-510
© The Institution of Engineering and Technology 2017

503



The cumulative probability distributions of vehicle speeds were
presented to indicate the speed preferences of drivers with different
personal characteristics and then determine the interval points in
the membership functions of the fuzzy synthetic evaluation, i.e. ai,
bi and ci in Fig. 3. The conclusions could be drawn from the
changes of slopes. 

For example, as speed points of melancholic temperament
drivers are mainly distributed in the low speed interval, the driver
is more likely to be melancholic temperament if the driving speed
is <83 km/h. For phlegmatic drivers, their speed points are almost
linearly distributed from 80 to 95 km/h, so it is reasonable to set
the starting and terminal points as 80 and 95, respectively, in the
speed membership function. Those driving at higher speed (i.e.
>89 km/h) are more likely to be choleric or sanguineous, so the
membership function of aggressive drivers could be determined.
These turning points indicate the speed preferences of drivers with

different personal characteristics and could help to determine the
interval points in the membership functions of the fuzzy synthetic
evaluation. Interval points of other four indices have been
determined in the same way. Based on the analysis of the
relationship between driving style and driver characteristics, we
can get the membership functions for five selected driving
parameters of three driving types as presented in Fig. 3.

There is a reason for combining choleric and sanguineous
temperaments as one group. In [23], Chen made a correlation
analysis of the number of people with four different temperaments.
The result showed that there was no significant variation ONLY
between people of choleric and sanguineous temperaments, which
indicates that these two kinds of people are very similar in
personality. Besides, driving styles are usually divided into three
categories in many previous literatures [24, 25], which is also an
important reason for our decisions.

Fig. 2  Probability and cumulative probability distributions of vehicle speeds for the divers with different temperaments
 

Fig. 3  Membership functions for five indices of three driving styles
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Step 2: Determine weighing values of assessment indices. If the
five indices equally affected by driving behaviours, we can set the
weight values for all of them as 0.2 averagely. However, the impact
of driving behaviour on these indicators is comparatively different.
The reasons for the weighting values are based on their relations
with driving style. If the index is affected more by driving style
than traffic environment, the weighting will be higher than the
average one. For example, average speed v̄ and standard deviation
of speed vstd are more vulnerable to the traffic condition because
drivers have to keep speed in a reasonable range considering
driving safety. Other indicators such as maximum positive
acceleration amax

+ , as well as the maximum product of the steering
wheel angle and vehicle speed kmax are easier to be affected by
driver behaviours because drivers are free to depress the
accelerator pedal intensely or gently. Therefore, we decrease the
weight values of v̄ and vstd by 25%, then conversely increase those
of amax

+  and kmax by 25% from the average. Finally, based on
comprehensive comparisons of the five indices, we determine the
weighting value of v̄, vstd, ns, amax

+  and kmax as 0.15, 0.15, 0.2, 0.25
and 0.25, respectively.

If the weighting is made differently, the membership degree BDi
in Step 3 will change and the classification results will also vary.
However, it is impossible to determine the exact weighting value of
each index because fuzzy evaluation method is a kind of subjective
system based on human experience in most cases. All we can do is
setting appropriate range of weighting values through reasonable
demonstrations.

Step 3: Calculate membership degree values of each driver.
First, we calculate the values of five indices for each driver during
the whole drive cycle on the freeway, as presented in Table 3. 

As the membership function is described in the form of graphs,
the membership degree could be determined by substituting the
average values of evaluation indices into the abscissa. For example,
if one index value of a driver is x, the corresponding membership
degree will be qj1, qj2 and qj3 which reflect the driver's tendencies
of cautious, moderate and aggressive styles, respectively, as shown
in Fig. 3. Therefore, the membership degree qjk of the above five

indices v̄, vstd, ns, amax
+  and kmax in turn could also be determined,

where j = 1, 2, …, 5 and k = 1, 2, 3. The evaluation matrix Q is then
defined to describe the fuzzy relationship consisting of qjk, where

Q =
q11 ⋯ q13

⋮ ⋱ ⋮
q51 ⋯ q53

(4)

Then the relation matrix can be calculated in terms of Q. Finally,
each driver's membership degree BDi is calculated through the
following equation:

BDi = w ⋅ Q, i = 01, 02, … , 30 (5)

where ∑ j = 1
5 wj = 1, and w = [0.15, 0.15, 0.2, 0.25, 0.25], which is

described in Step 2.
After the normalised processing of membership values, the

result of membership degree of 30 drivers described by BDi* is
shown in Table 4. 

Step 4: Determine driving styles according to the principle of
the maximum membership degree. As the principle describes,
though each object gets three membership degrees, the maximum
one determines which group the object belongs to. Therefore, the
final classification results are shown in Table 5. 

3.2.3 Driving style verification using K-means
clustering: Fuzzy synthetic evaluation is often used to describe the
ambiguous things in nature, like driving styles in this case. In fact,
it is hard to accurately distinguish the boundaries of different
driving styles. Therefore, we use K-means clustering with different
evaluation indexes to classify drivers’ driving styles. This method
is further used to verify the above classification results of fuzzy
synthetic evaluation.

K-means clustering is often used in clustering analysis of large
amounts of data. In this study, we choose three driving parameters
for clustering analysis which reflect the differences of driving
styles.

Table 3 Statistics of driving styles indices
Driver no. Indices

v̄, km·h−1 vstd, km·h−1 ns amax
+ , m·s−2 kmax, °·km·h−1

D01 93.6 25.64 80 1.58 1050.4
D02 82.74 37.28 33 2.09 3274.8
… … … … … …
D30 91.49 20.34 1 1.78 2017.2

 

Table 4 Membership degree of 30 studied drivers
Membership degree Cautious Moderate Aggressive Membership degree Cautious Moderate Aggressive
B*D01 0.147 0.463 0.39 B*D16 0.37 0.329 0.301
B*D02 0.098 0.35 0.552 B*D17 0.375 0.522 0.103
B*D03 0.314 0.344 0.342 B*D18 0.116 0.382 0.502
B*D04 0.15 0 0.85 B*D19 0.345 0.504 0.151
B*D05 0.238 0.452 0.31 B*D20 0.508 0.283 0.209
B*D06 0.098 0.506 0.396 B*D21 0.174 0.598 0.228
B*D07 0.036 0.52 0.444 B*D22 0.471 0.412 0.117
B*D08 0.07 0.477 0.453 B*D23 0.254 0.447 0.299
B*D09 0.053 0.497 0.45 B*D24 0.313 0.456 0.232
B*D10 0.253 0.395 0.352 B*D25 0.261 0.516 0.223
B*D11 0.292 0.409 0.299 B*D26 0.584 0.324 0.092
B*D12 0.305 0.249 0.299 B*D27 0.54 0.404 0.056
B*D13 0.544 0.222 0.525 B*D28 0.641 0.31 0.049
B*D14 0.243 0.232 0.525 B*D29 0.359 0.567 0.074
B*D15 0.367 0.451 0.182 B*D30 0.374 0.213 0.413
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The first parameter, represented by η, is the proportion of time
when the driving speed is over 80% of the limited speed.
Aggressive drivers usually tend to drive faster. In contrast, the ratio
when the speed is at high level is lower for cautious drivers. Hence,
the proportion η reflects the speeding tendency of drivers with
different driving style. Due to the choice of highway traffic
situation, 80% of the limited speed is 96 km/h.

Standard deviation of the positive acceleration as
+ is the second

chosen parameter. Acceleration reflects the control of the
accelerator pedal and the brake pedal, while standard deviation of
the acceleration reflects the discrete degree of acceleration.
Positive acceleration results from the control of the accelerator
pedal and is closely related to the traffic and driving behaviour
characteristics. For aggressive drivers, positive acceleration often
shows the driving characteristics that include opening or closing
level of the accelerator and sudden changes of acceleration and
deceleration.

The third parameter is minimum time headway thead. Time
headway refers to the time interval that two consecutive vehicles in
the same lane need to go through a section. It reflects the risk of
collision between two vehicles. Under car-following scenarios,
aggressive drivers tend to maintain high-speed state, and look for
the chances for overtaking which usually result in small values of
the time headway. Therefore, time headway could be the index of
driving style characterisation.

As shown in Fig. 4, 30 participants are divided into three types.
For each type, there is a centroid which represents the average
characteristics of the corresponding cluster. Compared with Cluster
II (56.9, 1.41, 0.77) and Cluster III (75.1, 2.02, 0.23), the centroid
of Cluster I (42.5, 1.21, 1.6) has much lower η ( = 42.5) and as

+ ( = 
1.21), as well as higher thead ( = 1.6), which conforms to the
characteristics of the group of cautious drivers. Similarly, it could
be seen that Clusters II and III represent moderate and aggressive
drivers separately according to the locations of their centroids. 

Comparison of driving style results classified by fuzzy synthetic
evaluation and K-means clustering is shown in Table 5. When
comparing the cautious type with Cluster I, six drivers (i.e. D13,
D16, D20, D22, D26, D30 which are the underlined bold texts in
Table 5) always belong to the same classification analysed by both

two methods. Hence, the similarity is calculated on 66.7% (i.e. six
drivers in common divided by nine drivers in total). Similarly, the
similarities are 87.5 and 60% for the other two types. The
resemblances are all over 60% through the verification of K-means
clustering analysis indicating that the fuzzy synthetic evaluation
can be used for the driving styles classification.

3.2.4 Driving style impact on curve speed model: To calibrate
the influence factor of driver behaviors kd for different drivers in
the curve speed model, vehicle speeds of entering the exit ramps on
the freeway are sampled because curve radius in those conditions
are small enough to reveal drivers’ styles classified by the above
fuzzy synthetic evaluation. The statistical results are listed in
Table 6. 

The scatter diagram in Fig. 5 shows the actual speed vsafe
chosen by drivers and the theoretical velocity vsr calculated by (1).
The driver behaviours influence factor can be obtained by
calculating the slopes of each driver presented in (3). In this way,
we obtain the mean value of kd in three driving styles, where
kd_cautious = 0.475 (STD = 0.065), kd_moderate = 0.554 (STD = 0.123)
and kd_aggressive = 0.636 (STD = 0.152). 

Obviously, the more aggressive a driver is, the greater the value
of kd would be. This kind of tendency suggests that aggressive
drivers would drive faster than those who drive cautiously when
entering segment of a curve.

3.3 Numerical study of the improved curve speed model

To evaluate the proposed curve speed model, we designed a series
of simulation tests in TruckSim and MATLAB/Simulink, and we
detected the lateral stability indices that could reflect the safety
performance of the vehicle. Lateral load transfer ratio (LTR) is an
evaluating indicator that estimates the risk of rollover. Generally,
the vehicle could be in a safe state if its LTR is under 0.6 [26].
Another indicator sideslip gradient (SSG) is used to evaluate the
risk of sideslips. If SSG > 0, the vehicle is in the understeering
state; and if SSG < 0, the vehicle is in the oversteering state [8].
SSGs of the left and right side of the vehicle are represented as
SSGL and SSGR, separately.

Table 5 Comparisons of fuzzy synthetic evaluation and K-means clustering
Fuzzy synthetic evaluation K-means clustering analysis Similarity, %

Driving style Driver no. Cluster Driver no.
cautious D13, D16, D17, D20, D22, D26, D27, D28, D30 I D06, D13, D14, D16, D20, D22, D26, D30 66.7
moderate D01, D03, D05, D06, D07, D08, D09, D10, D11,

D15, D19, D21, D23, D24, D25, D29
II D01, D03, D05, D07, D08, D10, D11, D12, D15, D17,

D19, D21, D23, D24, D25, D27,D28, D29
87.5

aggressive D02, D04, D12, D14, D18 III D02, D04, D9, D18 60
 

Fig. 4  Driving styles classification based on K-means clustering
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Four different scenarios were considered with the variations of
the road adhesion coefficient and the curve radius. The route was
set in the order of straight road, curve road and straight road. All
variables were kept the same except the road adhesion coefficient
and the curve radius in each simulation scenario. The data was
extracted during the driving process on curves and they are plotted
(see Fig. 6). 

As shown in Fig. 6, LTR varies when the road condition
changes due to the influence of the vehicle speed to the lateral
stability. The curve shapes are similar. In the early period, LTR

rises from 0 to the peak value; then it is steady during most of the
following time; it come down in the end. All peak values are found
to be lower than 0.6, indicating that the vehicle is always out of the
risk of rollovers on the curve. Similarly, SSGL and SSGR are
between −0.05 to 0.05 rad most of the time. In accordance with
previous finding, this implies that the yaw motion of the vehicle is
under control and out of the danger of sideslips [8].

Table 6 Driver behaviours influence factors of 30 studied drivers
Driver no. Style R, m vsafe, km/h vsr, km/h kd
D01 moderate 172 78 106.7 0.731
D02 aggressive 172 89.6 106.7 0.84
D03 moderate 196 75 113.9 0.67
D04 aggressive 662 90 209.3 0.43
D05 moderate 196 77.5 113.9 0.681
D06 moderate 172 82.8 106.7 0.776
D07 moderate 196 80.7 113.9 0.709
D08 moderate 172 62 106.7 0.581
D09 moderate 662 85.4 209.3 0.408
D10 moderate 303 62.2 141.6 0.439
D11 moderate 303 61.8 141.6 0.437
D12 aggressive 196 78.8 113.9 0.692
D13 cautious 196 55.1 113.9 0.484
D14 aggressive 172 60 106.7 0.566
D15 moderate 303 62.2 141.6 0.439
D16 cautious 196 61.7 113.9 0.542
D17 cautious 662 90.3 209.3 0.432
D18 aggressive 303 92 141.6 0.65
D19 moderate 303 64.9 141.6 0.458
D20 cautious 303 47.1 141.6 0.333
D21 moderate 303 81.1 141.6 0.573
D22 cautious 303 76.3 141.6 0.539
D23 moderate 303 73.6 141.6 0.52
D24 moderate 303 72.1 141.6 0.509
D25 moderate 303 74 141.6 0.523
D26 cautious 303 66.3 141.6 0.468
D27 cautious 303 72.4 141.6 0.511
D28 cautious 303 72.2 141.6 0.51
D29 moderate 172 43.9 106.7 0.412
D30 cautious 303 65 141.6 0.459
 

Fig. 5  Calibration result of kd for drivers with different driving styles
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4 Comparisons with existing curve speed models
In this part, simulation experiments were carried out under
different road conditions to analyze the influences of the road
adhesion coefficient and the curve radius on the curve speed
calculated by the proposed model. Thereafter, the results were
compared between different speed models. To make the simulation
environment similar to the field test, we chose the road parameters
that were common in highways. The superelevation iy = 0.04 rad
and four kinds of common road adhesion coefficients are 0.4
(gravel), 0.6(wet asphalt), 0.8(dry asphalt) and 0.85(dry concrete)
[27]. The curve radiuses are 100 200, 400 and 1000 m. Based on
these conditions, four existing curve speed models including the
simplified model [27], Glaser's model [8, 9], Chen's model [10]
and Lee's model [13, 14] were compared with the proposed model.

4.1 Impact analysis of road curvature on curve speed
threshold

Fig. 7 shows that the value of speed positively correlates to the
radius under the fixed friction coefficient. When the radius is small,
the curve safety speed would rise quickly with the increasing
radius. When the radius becomes bigger, the curve safety speed
becomes steady. 

The simplified model does not take the driver behaviors and
vehicle parameters into consideration, resulting in the apparent
larger value of curve safety speed. For example, when the vehicle
drives on the gravel road (μ = 0.4) entering a curve of 400 m, the
curve safety speed calculated by simplified model is close to 150 
km/h, which is too high. Instead, the results calculated by the
proposed curve speed model mostly fall between the result of Lee's
model and Glaser's model. The reason could be that Lee's model
adds three different influence factors to the vehicle-road based
calculation.

Specifically, through our analysis and the results shown in
Fig. 7, our curve speed model stays the same when the friction
coefficient are 0.8 and 0.85 as the curve radius changes. In the
meantime, the curve safety speed calculated by other models still
changes, although the friction coefficient is big enough. Thus, it
can be seen that the improved curve speed model takes the risk of
rollover into consideration when the friction coefficient of road
surface is high. From this perspective, our improved model
performs better.

4.2 Impact analysis of coefficient of road adhesion on curve
speed threshold

Fig. 8 shows the variation tendency of safety speed with respect to
the road friction coefficient. The value of speed is positively
correlated to the friction coefficient under the fixed radius in most
models, except Glaser's model whose variation is not completely
monotonically increasing. When the friction coefficient is small,
the curve safety speed would rise quickly with the increasing
friction coefficient. But when the friction coefficient increases, the
curve safety remains steady. 

When the friction coefficient comes to 0.8, the curve speed
calculated by the improved model reaches its saturation point due
to rollover's role in our model. When the friction coefficient is over
0.8, rollover becomes the leading factor causing speed growth
stagnation that could affect the traffic safety. On the contrary, other
speed models have not shown the similar property, which could be
the limitations in practical application.

5 Conclusion and recommendations
A curve speed model is proposed with the consideration of vehicle
parameters, road conditions and driving styles. The driver behavior
factor kd is introduced to reflect the driving styles. The
improvements of driving safety and comfort are the objectives of
the curve speed modeling. Driving comfort can be guaranteed
when calculated curve speeds are compatible with drivers’
psychological expectations of driving speeds when negotiating
road curves ahead. On the premise of driving safety, the proposed
curve speed model could meet the psychological expectations of
drivers in different (cautious, moderate and aggressive) driving
styles by quantitatively evaluating the driving features. In this
regard, the proposed model could improve both driving safety and
comfort on curve negotiations.

A calibration test with 30 participants is conducted to determine
the values of kd. First, the driving style is defined by analyzing five
evaluation indexes with fuzzy synthetic evaluation model. The
classification is verified by comparing with K-means clustering
model. Thereafter, the entry speeds chosen by drivers on the curve
of the exit ramp are collected to linear fit the curve speed
coefficient of drivers in different driving styles. Through the joint
simulation of TruckSim and MATLAB/Simulink, LTR and SSG are
chosen to evaluate risks of vehicle lateral instabilities including
rollovers and sideslips. The results show that the vehicles are out of

Fig. 6  Data was extracted during the driving process on curves
(a) LTR, (b) SSGL and, (c) SSGR analysis in four scenarios with the corresponding curve speeds
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risks of rollover and sideslip after entering the curve roads with the
calculated speeds based on the proposed curve speed model.

Although the number of the experiment drivers is 30, which is
not enough to draw generalisable conclusions, this study lays the
foundation for the speed profiling of the automated driving on
curve roads. Nowadays, there is a common view that the human–
vehicle cooperation will still be the dominating form in automated
driving before autopilot system takes over all aspects of the driving

tasks under all traffic scenarios in the foreseeable future [28, 29].
One important aspect in the human–vehicle cooperation is the
accurate evaluation of driver behaviour made by driver assistance
system when responding to driving tasks because of the variety of
drivers’ adaptability to it. Therefore, personalised automated
driving systems considering drivers’ driving styles are more likely
to be accepted by different types of drivers or passengers, which

Fig. 7  Variation of curve speed with respect to the curve radius
 

Fig. 8  Variation of curve speed with respect to the road friction coefficient
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will lead to lower driving risks and higher efficiency even in
complicated traffic scenarios.

Future studies can be conducted on optimising the driving style
classification and its coefficient calibration under more different
driving scenarios. More importantly, real-world experiments with
CSW systems based on the proposed model could be carried out
under real-world traffic scenarios.
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