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Summary

Prior to any estimation process of channelized reservoirs, in the context of an Assisted History Matching
method, the parameterization of facies fields is a necessary task. The parameterization of channelized reservoirs
consists of defining a numerical field (parameter field) so that a projection function recovers the facies field
from the parameter field. Mostly, the dimension of parameter field is equal to the dimension of reservoir
domain. The issue of dimensionality is becoming relevant when the history matching method is applied,
especially due to the tremendous number of parameters involved in the estimation process of the channelized
reservoirs. In addition, one of the most important issue encountered is the loss of the multi-point geostatistical
properties in the updates (channel continuity). In this study, we start from an initial parameterization of the
channelized fields and infer from it a low-dimensional parameterization obtained after a high order singular
value decomposition of a tensor built with the parameter fields. We show how the facies fields are fully
characterized by a linear combination of a small number of coefficients with "basis functions". The
decomposition is followed by a truncation so that we keep the relevant information from the channel continuity
perspective. This new parameterization is further introduced in the estimation process of facies fields, using the
ensemble smoother with multiple data assimilation (ES-MDA), updating the coefficients of decomposition. For
a fair assessment of the parameterization, we perform a comparison of the results with those obtained by
applying the traditional singular value decomposition and the original parameterization. The comparison is
done from the perspective of multipoint geostatistical characteristics of the updates and predictions (oil and
water rates). We show that the new parameterization is able to better keep the multipoint geostatistical structure
in the updates than the other two parameterizations, while the prediction capabilities are the same.
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I ntroduction

One of the most challenging problems in the inverse modealfrgyibsurface flow is the estimation and
uncertainty quantification of the facies distribution o&ahelized reservoirs. Even though the number of
the facies types involved in the characterization of geplomuld be greater than two, the reservoirs with
only two facies types (a channel and a non-channel) have dtedied extensively over the past years.
This type of geology is challenging because in the Assististioly Matching (AHM) process some of
the geometrical and topological characteristics of thennkls can be lost. At the end of the assimila-
tion process, it raises the question whether the updatddgjeal models have the same characteristics
with the prior models(i.e. the geological plausibility ieeperved or not). The first step in the AHM
process is the prior characterization of the channelizedrweirs. Typically the channelized reservoirs
are conceptually drawn by the geologists, but one needsciatiped software to simulate possible re-
alization of the facies distributions. The software inaogies a so-called geological simulation model,
a geostatistical based model that enables generation afsdbpmrealization of the subsurface geology.
Since now, two of the geological simulation models have enotheir usefulness in the generation of
channelized reservoirs: object-based simulation modelu{g&ch and Wang 1996) and multi-point geo-
statistical simulation model (MPS, Caers and Zhang 2004te@he geological simulation model is set,
it is coupled with an AHM method in order to estimate the posibf channels in the reservoir domain
and reduce its uncertainty. The link between the geologitallation model and the AHM method is
done with the aid of the parameterization of the reservaiperties. Since now two major techniques
have been proposed. The first technique is the use of the pbilitefield (or a transformation of it) as
the parameterization of facies fields and the second is emnpeterize the facies fields with a numerical
field different from the permeability. In both cases, thédadield is inferred from the values of param-
eter field. However, if the permeability is used as paranezttion one needs to be very careful with the
function used to project the numerical values of the perifigaln discrete values of the facies field.
For the second technique, the function is implicitly defifgycthe parameterization and consequently,
from this perspective is much suitable for the estimatiofaoies fields.

Over the years have been proposed many methods for imprtwingpdated permeability fields. Ja-
farpour and McLaughlin (2008) applies the discrete cosiapsform (DCT) to the permeability field,
defining a decomposition of the permeability field as a lirmanbination of some basis functions. The
coefficients of decomposition are updated with the Enserdblenan Filter (EnKF, Evensen 2003) as
the AHM method. Zhao et al. (2016) extends the DCT paranestion and the basis functions are
customized chosen for a better estimation of the permaalfiild. In addition, the authors propose
a post-processing step in order to recover the facies fieluh fthe updated permeability field. Other
approaches involving the parameterization of the perntigafield involve the use of the wavelet trans-
form (Jafarpour (2011), Zhang et al. (2015)) or complex méttogies imported from machine learning
(Tahmasebi et al. 2018, Golmohammadia et al. 2018). One=ahttst used methodology for the trans-
formation of the permeability field as a linear combinatidibasis function is the principal component
analysis (PCA) and its advanced form kernel principal conegmb analysis (K-PCA). This methodology
has roots in machine learning and has the advantage of gxgraelevant information from the perme-
ability field with only a few coefficients. In Sarma et al. (B)&nd Sarma et al. (2009) are developed
a methodology that links the K-PCA with EnKF for the estiratiof permeability field of two facies
model. The PCA decomposition in the kernel space was ablettertcapture the multi-point geosta-
tistical properties of the permeability field. The backastorm from the kernel space into the original
space is done numerically by solving an optimization pracedEmerick (2017) presents a comparison
between PCA and K-PCA for estimation and uncertainty gfiaation of the permeability field of chan-
nelized reservoirs using the ensemble smoother with neltipta assimilation (ES-MDA,Emerick and
Reynolds 2013) as the AHM method. Tene (2013) uses the K-Rbpled with EnKF, and he present
an analytical solution for the back-transform from the le¢ispace using a modified characterization of
the kernel space. Vo and Durlofsky (2014) propose an optititia-based PCA (O-PCA) methodology
by which the PCA is viewed as an optimization problem withgutarized term that pushes the solution
close to a bimodal one. The idea of the regularized term us€3RPCA is further developed in Vo and
Durlofsky (2016) where the authors present a methodologgxpiicitly solve the pre-image problem
(the back transform from the kernel feature space into thginal space). Similar to the PCA param-
eterization is the parameterization with the coefficiemsvigled by the singular value decomposition
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(SVD). Firstly introduced in the history matching commuyriity Tavakoli and Reynolds (2011) it was
further developed by Khaninezhad et al. (2012) towards &Inoethodology hamed K-SVD by which
sparse geologic dictionary is learned from a library of prizodels. The parameterization based on
K-SVD is used in the inverse modeling of the facies fields iraKinezhad et al. (2018) employing a
regularization term to enforce the solution to be discrete.

Typically, the SVD decomposition applies to a matrix comsted with a linearization (flattening) of
the permeability fields of the reservoir. However, the resierdomain is multi-dimensional, so, with
an ensemble of such prior models, one could easily build ditmgar object called tensor. Afra and
Gildin (2016) proposed a parameterization of the permigalbield of two facies reservoir with the aid
of the high order singular value decomposition (HOSVD, Déhaawer et al. 2000) of the tensor built
with the ensemble of permeability fields. The coefficienttheftensor decomposition were introduced
in an AHM process and estimated. The same approach was usesuagty et al. (2017) combining the
truncated HOSVD with the EnKF for estimation and uncertaguantification of the permeability field
of a channelized reservoir.

In this study, we are not using the HOSVD decomposition otémsor defined by the ensemble of per-
meability fields. First, we are using the parameterizatith@facies fields (different from permeability)
introduced in Sebacher et al. (2015) and Sebacher et al6)20H second, we apply the HOSVD de-
composition of the tensor defined by the ensemble of pararfielgs. In this way, each parameter field
is written as a linear combination of some basis functions.ti¥hcate the decomposition (T-HOSVD),
retaining the most important coefficients that are furthmtaied with the ensemble smoother with mul-
tiple data assimilation. In this way, we define a low-dimenal parameterization of the facies fields of
a channelized reservoir. We perform a comparison betwagndwel parameterization and the parame-
terization introduced by the truncated SVD (T-SVD) and tladbgl parameterization. We show that the
T-HOSVD parameterization is able to better keep the higleostatistics (multi-point) in the updates
than the other two, while the data match and predictive dhped of the updated ensembles are the
same.

Tensor decomposition (HOSVD) and approximation

The tensors could be seen as the natural extension of ther et matrices. IA= (&)i j € Mmn(R) is
a matrix withmrows andn columns having real entries, then it defines a bi-lineariagfibn (mapping)

@:R"x R"— R, 0(xy) = leiamyj,

wherex = (x1,X2,...,Xn) € RMandy = (y1,¥2,...,Y¥m) € R". If we calculate the values of application
@ on the elements of canonical bas{%l),e(zl), e ,a(%)} CcRM and{e(lz),e,(zz), e ,e(('|2)} C R" we obtain
(p(q(l),e§2>) = a;j. With this in mind, we extend this approach to multi-lineapkcations. We define a

(N7 x N2 x ... x Nk) -order tensor T as a multi-dimensional array (structura) thduces a multi-linear

applicationg: RN x RN x ... x RN — R, If we consider the canonical bas{ie(li) eg), ,e,(\P} cRM
in each of the linear spad®, then the elemerq)(q(ll),q(zz), ,(—:«Ik ) Tijio...ik IS the entry of tensor T at
the position(iy, iz,...,ik). In addition, we have the relation

N1 Ny Nk

k
oY X2, X = 55 S Ty i
i1=1li,=1 ik=1

With this formulation, the arrays af@)-order tensors and the matricgs x n)-order tensors. Similar to
matrix factorization, in the mathematical literature,texiarious tensor factorizations (decomposition),
from which, here we use the high order singular value decaitipn (HOSVD). The HOSVD is a
particular case of a broader tensor factorization calleckéudecomposition (Bergqvist and Larsson
2010). The Tucker factorization of(&l; x N, x ... x Ni) -order tensor T consists of the decomposition

of T as
n ng Nk

T=3 33 Ol ou) o ey, (1)

i]_:liz 1 Ik—l
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where® is the outer (tensor) product of the arrays (ke y = xy"). The (N x Np x ... x Nk) -order
tensoro is called core tensor and the se{\#ll),u(z) .,ui(rr)} c RN r € 1k are bases of the linear

5
spaceg R, r € 1.k}. In addition, if all the bases are orthonormal (with respect with the canonical inner
product inRN,r € 1,k) and any two different "slices" of the core tengoftaken along the same mode)

are orthogonal we say that Eq.1 is the HOSVD decomposition of tensor T. The core tensor is defined
so that the Frobenius norms of “the slices" (taken along the same mode) decreases. This last property
is a generalization of the SVD decomposition of matrices where the rows and columns of the singular
matrix are mutually orthogonal and the singular values decreases on the diagonal. Just like in SVD
decomposition, the summations from eq.1 is done for indjceq1,...,n; }, with n, <N, which means

that the(ny x ny x ... x ng) -order tensow could be seen as a compression of tNg x N x ... x N)

-order tensor T. In addition, because the core teosbas the "slices" in decreasing order with respect

to Frobenius norm, one could truncate even more Eq.1 obtaining a higher compression (or low-rank
approximation) of the tensor T. Consequently, taking the indicesL, i, r € 1,k with iy < n, for each

r € 1,k we obtain a so called approximation of the tensor T with the tensor

m mn Ny

T= Z Z z ailizwiku(”®u(2)®...®ui(l‘>, (2)

i1 in
i1:li2:l Ik:l

Knowing that the base.#ll),ui(zz),...,u(r) € RN r € 1k} are orthonormal, the Frobenius norm of tensor

ir
T[T |r=+/<T,T > becomes

N1 Ne

Nk
ITHe=] > > > O,

I1:li2:1 Ik:].

The level of approximation of the tensor could be quantified by the IU%EP%FLF but in this paper we
define a different criterion for truncation of the sum from Eq.1.

L ow dimensional parameterizations

In this section we present the parameterization of channelized reservoirs introduced in Sebacher et al.
2015 followed by the definition of the tensor and its HOSVD decomposition and approximation. Using
the tensor approximation we define a low-dimensional parameterization of the facies fields. We continue
with the introduction of the truncated SVD parameterization of the facies fields.

We present the methodology for a channelized reservoir with a rectangular domain of 100 grid cells in
each direction. The geological simulation model used for the generation of the prior models is a multi-
point geostatistical one, called the Single Normal Equation Simulation (SNESIM, Strebelle 2002). We
use its implementation from S-GeMS software (Remy 2005).

10¢
20 40 60 80 100 20 40 60 80 100

50 100 150 200 250 20 40 60 80 100 20 40 60 80 100

(a) Training Image (b) Members

Figure 1 The training image from Strebel(€002) (a) and the first 4 members (b).

The MPS models use a training image (TI, Fig.1, (a)) from which are simulated facies fields with similar
multi-point geostatistical characteristics as the training image (Fig.1,(b)). We start by generating of an
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ensemble of N facies fields from the training image. In maclkéaening this ensemble is called the
training set and is used to create the library of basis functions. Here, we want to estimate a facies
fields with an ensemble based method and we use a single ensemble for the training set and for the
AHM method. Each ensemble member is an image with two values, O for the background (non-channel
facies type) and 1 for the channel. The target is to define a numerical field on the reservoir domain and a
function (rule) so that, we reconstruct the facies field by applying the function to the numerical field. For
each grid cellj of the reservoir domain we calculate, from the ensemble, the probability of occurrence
of the channel at that location and we denote it with= SN ; Ind;(j), wherelnd;(j) = 1 if at location

j in ensemble memberis a channel andind;(j) = O otherwise. Thus, we define a discrete variable
denotedfacieg with the distribution

o Channel Non- channel
facied ~

p’ 1-p )

We link this random variable with standard normal variables with the normal score transform and define
athresholdx’ € R so that for any random variable~ N(0; 1) we have the conditionB(X < a') = p/
andP(X > a!) = 1— p!. For each ensemble membet {1,...,N} we define a parameter field denoted

/

Channel zone | Non-—channel zone

Figure 2 Thenormalscoretransform.
6 that has the valué (j) in the grid cellj

_ [ E(X|X<al) if jechannel
9'(])_{ E(X|X>a!) if | enonchannel ()

Thetruncation rulethat reconstructs the facies field from the values of parameter field consists of com-
paring the values o with the thresholdsx; for each ensemble membieif 6(j) < a’ then we assign

a channel at locatiopand if 6 (j) > a! we assign non-channel.

In this way we end up with N parameter fields defined on the reservoir domain that parameterize the
facies fields.

Low dimensional truncated HOSVD (T-HOSVD) parameterization

With the ensemble of parameter field); .7y we built a(100x 100x N) order tensor T, by stacking the
parameter fields. Thus, the slice (laykrx {1,...,N} of the third mode of tensor T is defined s=
T(:,:,k) and is the parameter field of th& ensemble member. Applying the HOSVD decomposition

to tensor T we obtain
100100 N

(1) (2 (3),
T= Okl @U” @u (5)
22 2, T

where(oijk )i j k is the core tensor and all the sétél))i:m, (u§2>)i:m, (ul(<3))i:L_N are orthonomal

basis. We truncate Eq.5 keeping only the figgiand n, elements from the first two sets, obtaining a
(nx x ny x N)-order tensor
L A C D)
T= gijku U @u (6)
PR

In the linear spac®\ we consider the canonical bafls = {%”,eéz),...,%(m} and applying to each
vector of the basi8; the multi-linear application defined by the tenJowe can define thény x ny)-
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order tensor (a matrix)

- n Ny N

=T (7 7e3 le ZO-”kU <Uk ,Q > Zi ZO-IJk<u|((),a§)>) (1)®U§2)-

J=1k=1 j=1 k=1

(3)

By denotingayj = SR1Oijk < Uy ,e§3) >, we obtain the decomposition

Ny
6 = ZZ Ll (7)

Eq.7 could be seen as the writing of tfg x ny)-order tensom, with respect to theény x ny)-order

tensors(ui(l) ® u%z))u. We then consider the séni(1> ® uﬁz))u as the basis functions and the coefficients
(airj )i,j the low-dimensional parameterization of the parameter 8eldenoted T-HOSVD).

20 20

40 40

60 60

80 80

100 100
20 40 60 80 100 20 40 60 80 100

100

5o ™
20 40 60 80 100 20 40 60 80 100

Figure 3 From leftto right: original field, field after truncatiorof tensor approximation, original pa-
rameter field, parameter field after tensor approximation.

The question thatemains is how to truncatbe expansion from Eq.5. The channelizedervoirs were
sampledfrom the training imageand consequemyland dueto the stochasticnatureof the MPS algo-
rithm, haveaboutthe samemulti-point geostatisticapropertieswith the training image. By truncating
the expansionfrom Eq.5andapply the truncationrule to eachfield 8, we obtainfaciesfields that are
differentthanthe original ones.Higher valueof the numbers, andmy from Eq.6rendermoreaccurate
approximationof the prior parametefields. As we mentionedbefore,a prior faciesfield approximately
respectghe multi-point geostatisticof Tl so, afield thatlittle differs from it could be a candidate We
thencould choosen, andny sothatthe differenceof values(in grid cellsor pixels)betweertheoriginal
faciesfieldsandthe approximatedaciesfieldsis in meanlessthan3%.

In Fig.3we presentanexamplewith N = 120,n, = 30, ny = 15. Hereis shownanexamplefor thefirst
memberWe havefrom left to right: the original faciedfield, thefaciesfield obtainedafterthetruncation
of parametefield 0, the parametefield 6; andthe parametefield 6, . Thefaciesfields obtainedafter
thetruncationof 67 haveabout97% percentof the valuesof the original faciesfields andcould be con-
sideredthathavesimilar geostatisticgbropertiesasthetrainingimage. Thefield 8, is definedby 10000

values while after the tensor truncation the new field 61 depends only on ny x n, parameters (Eq.7). For
the case presented we obtained areduction from 10000 parameters to ny x ny = 450 parameters. A visual
representationf equation?/ is presentedn Fig.4 where6r is approximatedwith alinear combinatiorof

the basis function(sui(l) ® u%z))u
Low dimensional truncated SVD (T-SVD) parameterization

The SVD decomposition is applied to a matrix build with the liniarization (flattening) of the bi-dimensional
fields 6, i € 1,N. We define a matrix denotedl that has the columnequal to the flattening of (de-

noted here byd'). Then, the matrix A has dimension 10000N. We apply the SVD decomposition

to matrix A obtaining the orthonormal sets of vectdts},_ry € R, {V}_x € RN and the
decreasing non-negative singular vaIQes}k:L—N C R so that

N
A=S ol®Vk= usv'. (8)
=1
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ERENCE THE MATHEMATICS OF

Figure 4 Parameter field expansion with HOSVD

In Eq. 8,U is the 10000< N matrix built with the columns{Ux},_1x, V is the N x N matrix built
with the columns{Vi},_1y andSis aN x N diagonal matrix with entrie$ok},_1. If we denote by

B = SV' then the SVD decomposition of the matdxbecomesA = UB. We write this equation for
each column of matri®, so for each € 1,N

6 =A =3 BU, €)
=1

whereB} is the entry from rowj and columni of matrix . We truncate Eq.9 retaining only the first
m < N members defining new columigsas

G- iy, 10
X (10)

All the columns@' have dimension 10000 and we can reshape them to<ID matrices (denoted
hereé) that approximates. If we apply the truncation rule t6 we obtain a facies field (binary) that
approximate the prior one. The difference between themrakpen the value om from Eq.10. We
choosem with the same condition as for the truncated HOSVD pararzetgon i.e. the difference
between facies fields (original and transformed after ttion) in average to be less than 3%. We then
consider the sgU i)izm as the basis functions and the coefficigt$) the low-dimensional truncated
SVD (T-SVD) parameterization of the parameter fiéid

In Fig.5 we present an example takibg= 120, m = 70, values that fulfilled the condition that the

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Figure 5 From left to right: original field, field after truncation okhsor approximation, original pa-
rameter field, parameter field after tensor approximation

transformed facies fields have in average 97% of the grid aihhilar with the original facies fields.
In this figure are show from left to right: original facies fielfacies field after truncation of SVD
decomposition, original parameter field, parameter fietdré®VD decomposition. Comparing with a
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visual inspection Fig.3 and Fig.5 One can see that the ttadc@VvD parameterization takes out pixels
from inside of the channels while the truncated HOSVD keegitebthe channel geometry, taking out
pixels mostly from the borders. For this particular case, difference of pixels compared with the
original is for HOSVD 3% (i.e. 300 pixels) and for SVD 1% (i.200 pixels). In Fig.6 is shown the

il ~-1§’.‘
T i

Figure 6 Parameter field expansion with SVD

linear decompositio, with respect to the basis functicﬁhl‘)izlﬁm.

Ensemble smoother with multiple data assimilation (ES-M DA)

The ensemble smoother with multiple data assimilation FH3A, Emerick and Reynolds 2013) is
an ensemble based data assimilation method designed tovienfite results obtained with a standard
smoother. Being a smoother, it assimilates all the obsenaft the same time. The difference with a
standard smoother consists of the fact that the availaltteatta assimilated multiple times (not a single
time as in the standard procedure). We call each assirmlatiole an iteration. However, to preserve
a mathematical consistency, the error covariance matraéll sheasurementSp is inflated (multiplied)

at each iteratiot (I € 1,Ny) with factorsa, taken with the conditiorz,'\'j1 ail =1 (N; is the number of
times the data are assimilated). In this study, the ES-MD#Asisd for parameter estimation purpose
and we denote byn the model parameters involved in estimation and4yythe function that maps
the parameters to simulated observations. The measurerfodrservations) used in this study are the
production data (i.e. the bottom hole pressures taken atjgetion wells, the oil and water rates taken
at the production wells). Then, the state vectdior thei ensemble member is defined as:

Xi=[m gm),i=1..,N, (11)

whereN is the number of ensemble members. Based on this augmentat construct a binary
matrix H that linearly maps the state vectgron the observation spa¢€x; = ¢(m;). At each iteration

| € 1,N,, the forecast step does not modifies the values of the pagesnéut calculates the simulated
measurements (Eqg.11) based on the values of parametergfesious iteration (or prior at the first
iteration). The values of parameters modify in the updadp sthen all the observations are assimilated.
The equation of the update step is

X! = X"+ Cy  HT(HC i HT + a1Cp) Y (dobsi — HX ™), (12)

whereX'? is the updated (analyzed) state vec@y,r is the covariance matrix of the forecasted state
vector calculated from the ensemble alygk; = dops+ & are the perturbed observations for the ensemble
memberi at thel-iteration @yps are the available observations agdis a random sampling from a
Gaussian distribution with 0 mean and covariance maiti®p).

We perform and compare three experiments. The first expaticomsists of the AHM method applied to
the low-dimensional parameterization introduced by thadated HOSVD (T-HOSVD). In the second
experiment we estimate the parameters that come out frotruigated SVD (T-SVD) parameterization
and, in the last experiment, we estimate all 10000 parasefahe global parameterization introduced
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in Sebacher et al. (2015) (entire fiedl. In the first experiment, the model parameterscq’[ei € 1,ny,

j €1ny, relN from Eq.6, in the second experiment we introduce in the state vector the parameters
B, ic€1lm re 1N from Eg.10 and in the last experiment we estimate the entire flgld € 1,N

(Eg.4). Then, the first experiment has 450 parameters, the second 70 parameters and the third 10000
parameters.

Case study

The reservoir model used for testing has a square shape with 10000 grid cells having dimension of each
grid cell 30x 30 x 20 ft. We design the reservoir as a 13-spot water flooding black oil model, hav-
ing four injection wells and nine production wells (Fig.7). The reservoir is initially filled with oil at

a constant uniform saturation of 0.8 (the connate water saturation is 0.2) and with a uniform pressure
of 5000 psi in every grid cell. The producers work under constant bottom hole pressure (BHP) with a
value of 3000 psi and the injectors operate at 3500 STB/D constrained by a maximum BHP of 100000
psi. The measurements were obtained through forward simulation of a synthetic model presented as the
"reference" which was randomly sampled from the same training image using SNESIM (Fig.7). The

Reference field

Figure 7 The referencdeld.

measuremenerrorsof the productiondataare considerechaving Gaussiardistribution with 0 mean
andstandarddeviationsof 70 STB/D for waterrates(WR) andoil rates(OR) at the producersand200
psi for BHP at the injectors. We use thesevaluesfor generationof noisy observationsfrom the
referencemodel.In addition,the distributionis usedto perturbthe observation®f productiondatain
the analysisstepof the HM processWaterinjection startsfrom the first day and continuesthereafter
for a periodof 351 daysof production.We assimilatedataat 60-dayintervalsresultingin a total of 6
assimilationsteps.The permeabilityvaluesweresetat 9 mD and1 mD for the channeffaciestype and
for the non-channefaciestype, respectivelywhile the porosity of both faciestypesis setto 0.2 and
considerecasknown. During the HM processhe permeabilityandporosityarekeptconstantalthough
they could be considereduncertainwithin eachfacies and estimatedtogetherwith facies positions
(Haneaet al. 2015). The ensemblesize is setto 120. We usethe ES-MDA methodwith four data
assimilationgiterations)with decreasingnflation factors of (9.333:7:4: 2).

We check if this new low-dimensional parameterizationperforms better than the other two
parameteri-zationsom the following perspectives:

e At the end of the assimilation process is able to provide an ensemble of facies fields with better
geostatistical properties.

e Estimates better the channel positions.

e The updated ensemble has better data match and predictions.
Results

Figure 8 presents the probability fields of the channel, figures that should be compared with the truth
(Fig.7). The first picture represents the probability field of the channel calculated from the prior ensem-
ble and, from it, can be seen that we have started with a high prior uncertainty of the channel positions.
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The next pictures depict the probability field of the chanrstulated from the updated ensemble ((b)
from T-HOSVD, (c) from T-SVD and (d) from estimation of the entire field). The assessment of the

(a) Prior (b) T-HOSVD (c) T-SvD (d) Field

Figure 8 The probabilityfields.

estimationof channelpositions in all experimeris done by comparison the updated probabfiiyds
(Fig.8) with "the truth" (Fig.7). Here, by a visualinspectionof the Figure 8 one canconcludethatthe
continuity of the channelpositionin the T-HOSVD parameterizatiofs clearly better tharthe other two.
In addition, the channelposition seemsto be betterestimatedwith T-HOSVD parameterizatiorthan
with the othertwo parameterizations.

Oneof themostimportantqueryof the updatedensembleof faciesfieldsis the existenceof the geolog-
ical plausibility (realism)of the updatedfaciesfields. The geologicalrealismmeansthat the posterior
ensembleof faciesfields and prior ensembleshouldhave similar multi-point geostatisticaproperties
(i.e. similar with the training image). This is a very hardtaskfor ensemble-baserhethodsand has
beenfulfilled only in few particularcasege.g. small reservoircaseswith non complicatedgeometry
andmanywells). Our reservoimodelhas10000grid cells, four channelsf which two areintersecting
andonly 13 wells. In Fig.9is shownthe first ensemblenemberof faciesfields in updatedensemble
((@) from T-HOSVD, (b) from T-SVD and(c) from estimationof the entirefield). We arenot claiming
thattheupdatedensemblef faciesfields haveexactlythe samemulti-point geostatisticatharacteristics
with theprior, butis clearlyfrom Fig.9thatthelow-dimensionaparameterizatiomwith T-HOSVD keeps
muchbettermulti-point characteristic®f the prior in the updateghanthe othertwo. Fromthe picture
onecanseea goodcontinuity of the channelsandonly few regionswith small channelareas.The first

(a) T-HOSVD (b) T-SVD (c) Field

Figure 9 The first member in updated ensemble.

Ny x Ny elements of basiéui(ll) X ui(zz))L j were able to keep important multi-point characteristics from the
prior during data assimilation and the linear combination from Eq.7 conserves many more aspects from
the prior during history matching than the linear combination of T-SVD. Is clear that the AHM-method
applied to the entire fiel@ destroys parts of the multi-point geostatistics. At this moment, in Sebacher
et al. (2015) is proposed a re-sampling step for regaining the continuity of the channel. Unfortunately,
this can be done only if a MPS model is used and is not possible for object based simulation models.

In Fig.10 are shown the water production rates in the initial ensemble (a), in the updated ensemble of
the T-HOSVD experiment (b), T-SVD (c) and in the experiment with the estimation of the entire field

0 (d). From here one can see a comparable reduction in variability for all cases and, as expected, there
is no clear difference between the experiments; all the experiments behave equally well from the data
match perspective. Even though is not shown here, the predictive capabilities of the updated models are
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(c) T-SVD (d) Field

Figure 10 Waterproductionrates

similar.

Conclusions

In this paper, we have introduced a novel low dimensional parameterization of the channelized reservoirs
based on the high order singular decomposition of tensors. The estimation and uncertainty quantification
of the channel positions is a complicated task and with the new parametrization, we wanted to ask at
two challenges: to obtain updated facies fields realistic as possible and to have a very good data match.
The geological realism of the updates means that the updated facies fields have similar multi-point
geostatistical characteristics as the prior. We have not reached completely this target, but the updates
show a good channelized structure, close to the prior and without the need of re-sampling. The AHM
method used was the ES-MDA with four data assimilations (iterations), a method that does not have a
resampling step between iterations. We have performed a comparison of this parameterization with other
two parameterizations: a global parameterization introduced in a previous study and a low dimensional
parameterization based on the singular value decomposition. We have proven that even though the data
match is similar between parameterizations, the novel HOSVD parameterization outperforms the other
two when speaking on the geological structure of the updates.
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