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Summary 
 
Prior to any estimation process of channelized reservoirs, in the context of an Assisted History Matching 
method, the parameterization of facies fields is a necessary task. The parameterization of channelized reservoirs 
consists of defining a numerical field (parameter field) so that a projection function recovers the facies field 
from the parameter field. Mostly, the dimension of parameter field is equal to the dimension of reservoir 
domain. The issue of dimensionality is becoming relevant when the history matching method is applied, 
especially due to the tremendous number of parameters involved in the estimation process of the channelized 
reservoirs. In addition, one of the most important issue encountered is the loss of the multi-point geostatistical 
properties in the updates (channel continuity).  In this study, we start from an initial parameterization of the 
channelized fields and infer from it a low-dimensional parameterization obtained after a high order singular 
value decomposition of a tensor built with the parameter fields. We show how the facies fields are fully 
characterized by a linear combination of a small number of coefficients with "basis functions". The 
decomposition is followed by a truncation so that we keep the relevant information from the channel continuity 
perspective. This new parameterization is further introduced in the estimation process of facies fields, using the 
ensemble smoother with multiple data assimilation (ES-MDA), updating the coefficients of decomposition.  For 
a fair assessment of the parameterization, we perform a comparison of the results with those obtained by 
applying the traditional singular value decomposition and the original parameterization.  The comparison is 
done from the perspective of multipoint geostatistical characteristics of the updates and predictions (oil and 
water rates). We show that the new parameterization is able to better keep the multipoint geostatistical structure 
in the updates than the other two parameterizations, while the prediction capabilities are the same. 
 
 



Introduction

One of the most challenging problems in the inverse modelingof subsurface flow is the estimation and
uncertainty quantification of the facies distribution of channelized reservoirs. Even though the number of
the facies types involved in the characterization of geology could be greater than two, the reservoirs with
only two facies types (a channel and a non-channel) have beenstudied extensively over the past years.
This type of geology is challenging because in the Assisted History Matching (AHM) process some of
the geometrical and topological characteristics of the channels can be lost. At the end of the assimila-
tion process, it raises the question whether the updated geological models have the same characteristics
with the prior models(i.e. the geological plausibility is preserved or not). The first step in the AHM
process is the prior characterization of the channelized reservoirs. Typically the channelized reservoirs
are conceptually drawn by the geologists, but one needs a specialized software to simulate possible re-
alization of the facies distributions. The software incorporates a so-called geological simulation model,
a geostatistical based model that enables generation of a possible realization of the subsurface geology.
Since now, two of the geological simulation models have proven their usefulness in the generation of
channelized reservoirs: object-based simulation model (Deutsch and Wang 1996) and multi-point geo-
statistical simulation model (MPS, Caers and Zhang 2004). Once the geological simulation model is set,
it is coupled with an AHM method in order to estimate the position of channels in the reservoir domain
and reduce its uncertainty. The link between the geologicalsimulation model and the AHM method is
done with the aid of the parameterization of the reservoir properties. Since now two major techniques
have been proposed. The first technique is the use of the permeability field (or a transformation of it) as
the parameterization of facies fields and the second is to parameterize the facies fields with a numerical
field different from the permeability. In both cases, the facies field is inferred from the values of param-
eter field. However, if the permeability is used as parameterization one needs to be very careful with the
function used to project the numerical values of the permeability to discrete values of the facies field.
For the second technique, the function is implicitly definedby the parameterization and consequently,
from this perspective is much suitable for the estimation offacies fields.
Over the years have been proposed many methods for improvingthe updated permeability fields. Ja-
farpour and McLaughlin (2008) applies the discrete cosine transform (DCT) to the permeability field,
defining a decomposition of the permeability field as a linearcombination of some basis functions. The
coefficients of decomposition are updated with the EnsembleKalman Filter (EnKF, Evensen 2003) as
the AHM method. Zhao et al. (2016) extends the DCT parameterization and the basis functions are
customized chosen for a better estimation of the permeability field. In addition, the authors propose
a post-processing step in order to recover the facies field from the updated permeability field. Other
approaches involving the parameterization of the permeability field involve the use of the wavelet trans-
form (Jafarpour (2011), Zhang et al. (2015)) or complex methodologies imported from machine learning
(Tahmasebi et al. 2018, Golmohammadia et al. 2018). One of the most used methodology for the trans-
formation of the permeability field as a linear combination of basis function is the principal component
analysis (PCA) and its advanced form kernel principal component analysis (K-PCA). This methodology
has roots in machine learning and has the advantage of extracting relevant information from the perme-
ability field with only a few coefficients. In Sarma et al. (2008) and Sarma et al. (2009) are developed
a methodology that links the K-PCA with EnKF for the estimation of permeability field of two facies
model. The PCA decomposition in the kernel space was able to better capture the multi-point geosta-
tistical properties of the permeability field. The back-transform from the kernel space into the original
space is done numerically by solving an optimization procedure. Emerick (2017) presents a comparison
between PCA and K-PCA for estimation and uncertainty quantification of the permeability field of chan-
nelized reservoirs using the ensemble smoother with multiple data assimilation (ES-MDA,Emerick and
Reynolds 2013) as the AHM method. Tene (2013) uses the K-PCA coupled with EnKF, and he present
an analytical solution for the back-transform from the kernel space using a modified characterization of
the kernel space. Vo and Durlofsky (2014) propose an optimization-based PCA (O-PCA) methodology
by which the PCA is viewed as an optimization problem with a regularized term that pushes the solution
close to a bimodal one. The idea of the regularized term used in O-PCA is further developed in Vo and
Durlofsky (2016) where the authors present a methodology toexplicitly solve the pre-image problem
(the back transform from the kernel feature space into the original space). Similar to the PCA param-
eterization is the parameterization with the coefficients provided by the singular value decomposition
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(SVD). Firstly introduced in the history matching community by Tavakoli and Reynolds (2011) it was
further developed by Khaninezhad et al. (2012) towards a novel methodology named K-SVD by which
sparse geologic dictionary is learned from a library of prior models. The parameterization based on
K-SVD is used in the inverse modeling of the facies fields in Khaninezhad et al. (2018) employing a
regularization term to enforce the solution to be discrete.
Typically, the SVD decomposition applies to a matrix constructed with a linearization (flattening) of
the permeability fields of the reservoir. However, the reservoir domain is multi-dimensional, so, with
an ensemble of such prior models, one could easily build a multi-linear object called tensor. Afra and
Gildin (2016) proposed a parameterization of the permeability field of two facies reservoir with the aid
of the high order singular value decomposition (HOSVD, De Lathauwer et al. 2000) of the tensor built
with the ensemble of permeability fields. The coefficients ofthe tensor decomposition were introduced
in an AHM process and estimated. The same approach was used byInsuasty et al. (2017) combining the
truncated HOSVD with the EnKF for estimation and uncertainty quantification of the permeability field
of a channelized reservoir.
In this study, we are not using the HOSVD decomposition of thetensor defined by the ensemble of per-
meability fields. First, we are using the parameterization of the facies fields (different from permeability)
introduced in Sebacher et al. (2015) and Sebacher et al. (2016) and second, we apply the HOSVD de-
composition of the tensor defined by the ensemble of parameter fields. In this way, each parameter field
is written as a linear combination of some basis functions. We truncate the decomposition (T-HOSVD),
retaining the most important coefficients that are further updated with the ensemble smoother with mul-
tiple data assimilation. In this way, we define a low-dimensional parameterization of the facies fields of
a channelized reservoir. We perform a comparison between this novel parameterization and the parame-
terization introduced by the truncated SVD (T-SVD) and the global parameterization. We show that the
T-HOSVD parameterization is able to better keep the high-order statistics (multi-point) in the updates
than the other two, while the data match and predictive capabilities of the updated ensembles are the
same.

Tensor decomposition (HOSVD) and approximation

The tensors could be seen as the natural extension of the vector and matrices. IfA= (ai j )i, j ∈Mm,n(R) is
a matrix withm rows andn columns having real entries, then it defines a bi-linear application (mapping)

φ : Rm× Rn −→ R,φ(x,y) =
m

∑
i=1

n

∑
i=1

ai j xiy j ,

wherex= (x1,x2, . . . ,xm) ∈ Rm andy= (y1,y2, . . . ,ym) ∈ Rn. If we calculate the values of application

φ on the elements of canonical bases{e(1)1 ,e(1)2 , . . . ,e(1)m } ⊂ Rm and{e(2)1 ,e(2)2 , . . . ,e(2)n } ⊂ Rn we obtain

φ(e(1)i ,e(2)j ) = ai j . With this in mind, we extend this approach to multi-linear applications. We define a
(N1×N2× . . .×Nk) -order tensor T as a multi-dimensional array (structure) that induces a multi-linear

applicationφ : RN1 × RN2 × . . .×RNk −→ R. If we consider the canonical basis{e(i)1 ,e(i)2 , . . . ,e(i)Ni
} ⊂ RNi

in each of the linear spaceRNi , then the elementφ(e(1)i1 ,e(2)i2 , . . . ,e(k)ik
) = Ti1i2...ik is the entry of tensor T at

the position(i1, i2, . . . , ik). In addition, we have the relation

φ(x(1),x(2), . . . ,x(k)) =
N1

∑
i1=1

N2

∑
i2=1

. . .

Nk

∑
ik=1

Ti1i2...ikx
(1)
i1

x(2)i2
. . .x(k)ik

With this formulation, the arrays are(n)-order tensors and the matrices(m×n)-order tensors. Similar to
matrix factorization, in the mathematical literature, exits various tensor factorizations (decomposition),
from which, here we use the high order singular value decomposition (HOSVD). The HOSVD is a
particular case of a broader tensor factorization called Tucker decomposition (Bergqvist and Larsson
2010). The Tucker factorization of a(N1×N2,× . . .×Nk) -order tensor T consists of the decomposition
of T as

T =
n1

∑
i1=1

n2

∑
i2=1

. . .

nk

∑
ik=1

σi1i2...iku
(1)
i1 ⊗u(2)i2 ⊗ . . .⊗u(k)ik

, (1)
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where⊗ is the outer (tensor) product of the arrays (i.e.x⊗ y= xyT ). The(N1×N2× . . .×Nk) -order

tensorσ is called core tensor and the sets{u(1)i1 ,u(2)i2 , . . . ,u(r)ir } ⊂ RNr , r ∈ 1,k are bases of the linear
spaces{RNr , r ∈ 1,k}. In addition, if all the bases are orthonormal (with respect with the canonical inner
product inRNr , r ∈ 1,k) and any two different "slices" of the core tensorσ (taken along the same mode)
are orthogonal we say that Eq.1 is the HOSVD decomposition of tensor T. The core tensor is defined
so that the Frobenius norms of "the slices" (taken along the same mode) decreases. This last property
is a generalization of the SVD decomposition of matrices where the rows and columns of the singular
matrix are mutually orthogonal and the singular values decreases on the diagonal. Just like in SVD
decomposition, the summations from eq.1 is done for indicesir ∈ {1, . . . ,nr}, with nr ≤ Nr which means
that the(n1×n2× . . .×nk) -order tensorσ could be seen as a compression of the(N1×N2× . . .×Nk)
-order tensor T. In addition, because the core tensorσ has the "slices" in decreasing order with respect
to Frobenius norm, one could truncate even more Eq.1 obtaining a higher compression (or low-rank
approximation) of the tensor T. Consequently, taking the indicesir ∈ 1,nr , r ∈ 1,k with nr < nr for each
r ∈ 1,k we obtain a so called approximation of the tensor T with the tensor

T =
n1

∑
i1=1

n2

∑
i2=1

. . .

nk

∑
ik=1

σi1i2...iku
(1)
i1

⊗u(2)i2
⊗ . . .⊗u(k)ik

, (2)

Knowing that the basesu(1)i1 ,u(2)i2 , . . . ,u(r)ir ∈ RNr , r ∈ 1,k} are orthonormal, the Frobenius norm of tensor
T, ‖ T ‖F=

√
< T,T > becomes

‖ T ‖F=

√√√√
N1

∑
i1=1

N2

∑
i2=1

. . .

Nk

∑
ik=1

σ2
i1i2...ik

.

The level of approximation of the tensor could be quantified by the ratio‖T−T‖F
‖T‖F

, but in this paper we
define a different criterion for truncation of the sum from Eq.1.

Low dimensional parameterizations

In this section we present the parameterization of channelized reservoirs introduced in Sebacher et al.
2015 followed by the definition of the tensor and its HOSVD decomposition and approximation. Using
the tensor approximation we define a low-dimensional parameterization of the facies fields. We continue
with the introduction of the truncated SVD parameterization of the facies fields.
We present the methodology for a channelized reservoir with a rectangular domain of 100 grid cells in
each direction. The geological simulation model used for the generation of the prior models is a multi-
point geostatistical one, called the Single Normal Equation Simulation (SNESIM, Strebelle 2002). We
use its implementation from S-GeMS software (Remy 2005).
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Figure 1 The training image from Strebelle (2002) (a) and the first 4 members (b).

The MPS models use a training image (TI, Fig.1, (a)) from which are simulated facies fields with similar
multi-point geostatistical characteristics as the training image (Fig.1,(b)). We start by generating of an
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ensemble of N facies fields from the training image. In machinelearning this ensemble is called the
training set and is used to create the library of basis functions. Here, we want to estimate a facies
fields with an ensemble based method and we use a single ensemble for the training set and for the
AHM method. Each ensemble member is an image with two values, 0 for the background (non-channel
facies type) and 1 for the channel. The target is to define a numerical field on the reservoir domain and a
function (rule) so that, we reconstruct the facies field by applying the function to the numerical field. For
each grid cellj of the reservoir domain we calculate, from the ensemble, the probability of occurrence
of the channel at that location and we denote it withp j = ∑N

i=1 Indi( j), whereIndi( j) = 1 if at location
j in ensemble memberi is a channel andIndi( j) = 0 otherwise. Thus, we define a discrete variable
denotedf aciesj with the distribution

f aciesj ∼
(

Channel Non−channel
p j 1− p j

)
(3)

We link this random variable with standard normal variables with the normal score transform and define
a thresholdα j ∈ R so that for any random variableX ∼ N(0;1) we have the conditionsP(X ≤ α j) = p j

andP(X > α j) = 1− p j . For each ensemble memberi ∈ {1, . . . ,N} we define a parameter field denoted

Figure 2 The normal score transform.

θi that has the valueθi( j) in the grid cell j

θi( j) =

{
E(X|X ≤ α j) i f j ∈ channel
E(X|X > α j) i f j ∈ nonchannel

(4)

Thetruncation rulethat reconstructs the facies field from the values of parameter field consists of com-
paring the values ofθ with the thresholdsα ; for each ensemble memberi if θi( j) ≤ α j then we assign
a channel at locationj and if θi( j)> α j we assign non-channel.
In this way we end up with N parameter fields defined on the reservoir domain that parameterize the
facies fields.

Low dimensional truncated HOSVD (T-HOSVD) parameterization

With the ensemble of parameter fields(θi)i∈1,N we built a(100×100×N) order tensor T, by stacking the
parameter fields. Thus, the slice (layer)k ∈ {1, . . . ,N} of the third mode of tensor T is defined asθk =
T(:, :,k) and is the parameter field of thekth ensemble member. Applying the HOSVD decomposition
to tensor T we obtain

T =
100

∑
i=1

100

∑
j=1

N

∑
k=1

σi jku(1)i ⊗u(2)j ⊗u(3),k (5)

where(σi jk)i, j,k is the core tensor and all the sets(u(1)i )i=1,100, (u
(2)
j )i=1,100, (u

(3)
k )i=1,N are orthonomal

basis. We truncate Eq.5 keeping only the firstnx andny elements from the first two sets, obtaining a
(nx×ny×N)-order tensor

T =
nx

∑
i=1

ny

∑
j=1

N

∑
k=1

σi jku(1)i ⊗u(2)j ⊗u(3).k (6)

In the linear spaceRN we consider the canonical basisB3 = {e(1)3 ,e(2)3 , . . . ,e(N)
3 } and applying to each

vector of the basisB3 the multi-linear application defined by the tensorT we can define the(nx×ny)-
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order tensor (a matrix)

θr = T(:, :,e(r)3 ) =
nx

∑
i=1

ny

∑
j=1

N

∑
k=1

σi jku(1)i ⊗u(2)j < u(3)k ,e(3)r >=
nx

∑
i=1

ny

∑
j=1

(
N

∑
k=1

σi jk < u(3)k ,e(3)r >)u(1)i ⊗u(2)j .

By denotingα r
i j = ∑N

k=1σi jk < u(3)k ,e(3)r >, we obtain the decomposition

θr =
nx

∑
i=1

ny

∑
j=1

α r
i j u

(1)
i ⊗u(2)j . (7)

Eq.7 could be seen as the writing of the(nx × ny)-order tensorθr with respect to the(nx × ny)-order

tensors(u(1)i ⊗u(2)j )i, j . We then consider the set(u(1)i ⊗u(2)j )i, j as the basis functions and the coefficients
(α r

i j )i, j the low-dimensional parameterization of the parameter fieldθr (denoted T-HOSVD).
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Figure 3 From left to right: original field, field after truncation of tensor approximation, original pa-
rameter field, parameter field after tensor approximation.

The question that remains is how to truncate the expansion from Eq.5. The channelized reservoirs were 
sampled from the training image and consequently,and due to the stochastic nature of the MPS algo-
rithm, have about the same multi-point geostatistical properties with the training image. By truncating 
the expansion from Eq.5 and apply the truncation rule to each field θr we obtain facies fields that are 
different than the original ones. Higher values of the numbers nx and ny from Eq.6 render more accurate 
approximation of the prior parameter fields. As we mentioned before, a prior facies field approximately 
respects the multi-point geostatistics of TI so, a field that little differs from it could be a candidate. We 
then could choose nx and ny so that the difference of values (in grid cells or pixels) between the original 
facies fields and the approximated facies fields is in mean less than 3%.
In Fig.3 we present an example with N = 120, nx = 30, ny = 15. Here is shown an example for the first 
member. We have from left to right: the original facies field, the facies field obtained after the truncation 
of parameter field θ1, the parameter field θ1 and the parameter field θ1 . The facies fields obtained after 
the truncation of θ1 have about 97% percent of the values of the original facies fields and could be con-
sidered that have similar geostatistical properties as the training image. The field θ1 is defined by 10000
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representation of equation 7 is presented in Fig.4 where θ1 is approximated with a linear combination of

the basis functions(u(1)i ⊗u(2)j )i, j .

Low dimensional truncated SVD (T-SVD) parameterization

The SVD decomposition is applied to a matrix build with the liniarization (flattening) of the bi-dimensional
fieldsθi , i ∈ 1,N. We define a matrix denotedA that has the columni equal to the flattening ofθi (de-
noted here byθ i). Then, the matrix A has dimension 10000×N. We apply the SVD decomposition
to matrix A obtaining the orthonormal sets of vectors{Uk}k=1,N ⊂ R10000 , {Vk}k=1,N ⊂ RN and the
decreasing non-negative singular values{σk}k=1,N ⊂ R so that

A=
N

∑
k=1

σkUk⊗Vk =USVT
. (8)
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Figure 4 Parameter field expansion with HOSVD

In Eq. 8,U is the 10000×N matrix built with the columns{Uk}k=1,N, V is theN×N matrix built
with the columns{Vk}k=1,N andS is aN×N diagonal matrix with entries{σk}k=1,N. If we denote by
β = SVT then the SVD decomposition of the matrixA becomesA = Uβ . We write this equation for
each column of matrixA, so for eachi ∈ 1,N

θ i = Ai =
N

∑
j=1

β i
jU

i
, (9)

whereβ i
j is the entry from rowj and columni of matrix β . We truncate Eq.9 retaining only the first

m< N members defining new columns̃θ as

θ̃ i =
m

∑
j=1

β i
jU

j
, (10)

All the columnsθ̃ i have dimension 10000 and we can reshape them to 100× 100 matrices (denoted
hereθ̃i) that approximateθi . If we apply the truncation rule tõθi we obtain a facies field (binary) that
approximate the prior one. The difference between them depends on the value ofm from Eq.10. We
choosem with the same condition as for the truncated HOSVD parameterization i.e. the difference
between facies fields (original and transformed after truncation) in average to be less than 3%. We then
consider the set(U i)i=1,m as the basis functions and the coefficients(β j

i ) the low-dimensional truncated
SVD (T-SVD) parameterization of the parameter fieldθi.

In Fig.5 we present an example takingN = 120, m= 70, values that fulfilled the condition that the
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Figure 5 From left to right: original field, field after truncation of tensor approximation, original pa-
rameter field, parameter field after tensor approximation

transformed facies fields have in average 97% of the grid cells similar with the original facies fields.
In this figure are show from left to right: original facies field, facies field after truncation of SVD
decomposition, original parameter field, parameter field after SVD decomposition. Comparing with a
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visual inspection Fig.3 and Fig.5 One can see that the truncated SVD parameterization takes out pixels
from inside of the channels while the truncated HOSVD keeps better the channel geometry, taking out
pixels mostly from the borders. For this particular case, the difference of pixels compared with the
original is for HOSVD 3% (i.e. 300 pixels) and for SVD 1% (i.e.100 pixels). In Fig.6 is shown the

Figure 6 Parameter field expansion with SVD

linear decompositioñθi with respect to the basis function(U i)i=1,m.

Ensemble smoother with multiple data assimilation (ES-MDA)

The ensemble smoother with multiple data assimilation (ES-MDA, Emerick and Reynolds 2013) is
an ensemble based data assimilation method designed to improve the results obtained with a standard
smoother. Being a smoother, it assimilates all the observations at the same time. The difference with a
standard smoother consists of the fact that the available data are assimilated multiple times (not a single
time as in the standard procedure). We call each assimilation cycle an iteration. However, to preserve
a mathematical consistency, the error covariance matrix ofall measurementsCD is inflated (multiplied)
at each iterationl (l ∈ 1,Na) with factorsαl taken with the condition∑Na

l=1
1
αl

= 1 (Na is the number of
times the data are assimilated). In this study, the ES-MDA isused for parameter estimation purpose
and we denote bymi the model parameters involved in estimation and byG , the function that maps
the parameters to simulated observations. The measurements (observations) used in this study are the
production data (i.e. the bottom hole pressures taken at theinjection wells, the oil and water rates taken
at the production wells). Then, the state vectorX for the i ensemble member is defined as:

Xi = [mT
i G (mi)]

T
, i = 1, . . . ,N, (11)

whereN is the number of ensemble members. Based on this augmentation, we construct a binary
matrix H that linearly maps the state vectorXi on the observation spaceHXi = G (mi). At each iteration
l ∈ 1,Na, the forecast step does not modifies the values of the parameters, but calculates the simulated
measurements (Eq.11) based on the values of parameters fromprevious iteration (or prior at the first
iteration). The values of parameters modify in the update step when all the observations are assimilated.
The equation of the update step is

Xl ,a
i = Xl , f

i +CXl , f HT(HCXl , f HT +αlCD)
−1(dobs,i −HXl , f

i ), (12)

whereXl ,a is the updated (analyzed) state vector,CXl , f is the covariance matrix of the forecasted state
vector calculated from the ensemble anddobs,i = dobs+εi are the perturbed observations for the ensemble
memberi at the l -iteration (dobs are the available observations andεi is a random sampling from a
Gaussian distribution with 0 mean and covariance matrixαlCD).
We perform and compare three experiments. The first experiment consists of the AHM method applied to
the low-dimensional parameterization introduced by the truncated HOSVD (T-HOSVD). In the second
experiment we estimate the parameters that come out from thetruncated SVD (T-SVD) parameterization
and, in the last experiment, we estimate all 10000 parameters of the global parameterization introduced
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in Sebacher et al. (2015) (entire fieldθ ). In the first experiment, the model parameters areα r
i j , i ∈ 1,nx,

j ∈ 1,ny, r ∈ 1,N from Eq.6, in the second experiment we introduce in the state vector the parameters
β r

i , i ∈ 1,m, r ∈ 1,N from Eq.10 and in the last experiment we estimate the entire fieldθ r , r ∈ 1,N
(Eq.4). Then, the first experiment has 450 parameters, the second 70 parameters and the third 10000
parameters.

Case study

The reservoir model used for testing has a square shape with 10000 grid cells having dimension of each
grid cell 30× 30× 20 ft. We design the reservoir as a 13-spot water flooding black oil model, hav-
ing four injection wells and nine production wells (Fig.7). The reservoir is initially filled with oil at
a constant uniform saturation of 0.8 (the connate water saturation is 0.2) and with a uniform pressure
of 5000 psi in every grid cell. The producers work under constant bottom hole pressure (BHP) with a
value of 3000 psi and the injectors operate at 3500 STB/D constrained by a maximum BHP of 100000
psi. The measurements were obtained through forward simulation of a synthetic model presented as the
"reference" which was randomly sampled from the same training image using SNESIM (Fig.7). The
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Figure 7 The reference field.

measurement errors of the production data are considered having Gaussian distribution with 0 mean 
and standard deviations of 70 STB/D for water rates (WR) and oil rates (OR) at the producers, and 200 
psi for BHP at the injectors. We use these values for generation of noisy observations from the 
reference model. In addition, the distribution is used to perturb the observations of production data in 
the analysis step of the HM process. Water injection starts from the first day and continues thereafter 
for a period of 351 days of production. We assimilate data at 60-day intervals resulting in a total of 6 
assimilation steps. The permeability values were set at 9 mD and 1 mD for the channel facies type and 
for the non-channel facies type, respectively, while the porosity of both facies types is set to 0.2 and 
considered as known. During the HM process the permeability and porosity are kept constant, although 
they could be considered uncertain within each facies and estimated together with facies positions 
(Hanea et al. 2015). The ensemble size is set to 120. We use the ES-MDA method with four data 
assimilations (iterations) with decreasing inflation factors of (9.333 : 7 : 4 : 2).
We check if this new low-dimensional parameterization performs better than the other two 
parameteri-zations from the following perspectives:

• At the end of the assimilation process is able to provide an ensemble of facies fields with better
geostatistical properties.

• Estimates better the channel positions.

• The updated ensemble has better data match and predictions.

Results

Figure 8 presents the probability fields of the channel, figures that should be compared with the truth
(Fig.7). The first picture represents the probability field of the channel calculated from the prior ensem-
ble and, from it, can be seen that we have started with a high prior uncertainty of the channel positions.
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The next pictures depict the probability field of the channel calculated from the updated ensemble ((b)
from T-HOSVD, (c) from T-SVD and (d) from estimation of the entire field). The assessment of the
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(d) Field

Figure 8 The probability fields.

estimation of channel positions in all experiment is done by comparison the updated probability fields 
(Fig.8) with "the truth" (Fig.7). Here, by a visual inspection of the Figure 8 one can conclude that the 
continuity of the channel position in the T-HOSVD parameterization is clearly better than the other two. 
In addition, the channel position seems to be better estimated with T-HOSVD parameterization than 
with the other two parameterizations.
One of the most important query of the updated ensemble of facies fields is the existence of the geolog-
ical plausibility (realism) of the updated facies fields. The geological realism means that the posterior 
ensemble of facies fields and prior ensemble should have similar multi-point geostatistical properties 
(i.e. similar with the training image). This is a very hard task for ensemble-based methods and has 
been fulfilled only in few particular cases (e.g. small reservoir cases with non complicated geometry 
and many wells). Our reservoir model has 10000 grid cells, four channels of which two are intersecting 
and only 13 wells. In Fig.9 is shown the first ensemble member of facies fields in updated ensemble 
((a) from T-HOSVD, (b) from T-SVD and (c) from estimation of the entire field). We are not claiming 
that the updated ensemble of facies fields have exactly the same multi-point geostatistical characteristics 
with the prior, but is clearly from Fig.9 that the low-dimensional parameterization with T-HOSVD keeps 
much better multi-point characteristics of the prior in the updates than the other two. From the picture 
one can see a good continuity of the channels and only few regions with small channel areas. The first
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Figure 9 The first member in updated ensemble.

nx×ny elements of basis(u(1)i1
×u(2)i2

)i, j were able to keep important multi-point characteristics from the
prior during data assimilation and the linear combination from Eq.7 conserves many more aspects from
the prior during history matching than the linear combination of T-SVD. Is clear that the AHM-method
applied to the entire fieldθ destroys parts of the multi-point geostatistics. At this moment, in Sebacher
et al. (2015) is proposed a re-sampling step for regaining the continuity of the channel. Unfortunately,
this can be done only if a MPS model is used and is not possible for object based simulation models.

In Fig.10 are shown the water production rates in the initial ensemble (a), in the updated ensemble of
the T-HOSVD experiment (b), T-SVD (c) and in the experiment with the estimation of the entire field
θ (d). From here one can see a comparable reduction in variability for all cases and, as expected, there
is no clear difference between the experiments; all the experiments behave equally well from the data
match perspective. Even though is not shown here, the predictive capabilities of the updated models are
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(a) Initial ensemble
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(b) T-HOSVD
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(c) T-SVD
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(d) Field

Figure 10 Water production rates.

similar.

Conclusions

In this paper, we have introduced a novel low dimensional parameterization of the channelized reservoirs
based on the high order singular decomposition of tensors. The estimation and uncertainty quantification
of the channel positions is a complicated task and with the new parametrization, we wanted to ask at
two challenges: to obtain updated facies fields realistic as possible and to have a very good data match.
The geological realism of the updates means that the updated facies fields have similar multi-point
geostatistical characteristics as the prior. We have not reached completely this target, but the updates
show a good channelized structure, close to the prior and without the need of re-sampling. The AHM
method used was the ES-MDA with four data assimilations (iterations), a method that does not have a
resampling step between iterations. We have performed a comparison of this parameterization with other
two parameterizations: a global parameterization introduced in a previous study and a low dimensional
parameterization based on the singular value decomposition. We have proven that even though the data
match is similar between parameterizations, the novel HOSVD parameterization outperforms the other
two when speaking on the geological structure of the updates.
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