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1
Introduction

John Horton Conway (1937-2020) was a renowned mathematician who made significant contributions
to various areas of mathematics, including group theory, number theory, and combinatorial game the-
ory. He was known for his remarkable intuition and ability to come up with elegant solutions to difficult
problems. However, he was also famously informal in his approach to mathematics, often relying on
his intuition and geometric insight to guide his reasoning rather than following traditional methods of
proof.

Conway was known for being precise in his writing, but he did not always provide complete proofs.
Sometimes, he would skip steps or leave out details that he felt were ”elementary” and could be easily
filled in by the reader. This approach often led to criticism from more traditional mathematicians, who
argued that Conway’s methods were not rigorous enough.

However, despite this criticism, Conway’s work has stood the test of time and has had a profound
impact on the field of mathematics. Many of his ideas, such as the discovery of the Conway groups
and the invention of surreal numbers, have led to new areas of research and have inspired generations
of mathematicians.

Ultimately, Conway’s legacy lies not only in his groundbreaking research but also in his unconventional
approach to mathematics, which challenged the status quo and encouraged others to think outside
the box. This makes understanding his work particularly hard, because he is not an ordinary thinker
and sometimes sees things in mathematics that no one else have ever seen it before. This thesis is
devoted to one of his recent articles that is interesting to read, but where not everything is immediately
clear for the reader.

In this thesis, we will have a careful look at one of his works, namely the paper called ”The Extra
Fibonacci Series and the Empire State Building” written by John Conway and Alex Ryba [1]. This ar-
ticle is published in 2016 where he wrote down some properties and Facts about the so-called Extra
Fibonacci Series. He then connects those Series of integers with the Empire State Building. He or-
ders all those series in a Some Facts in this article, more likely to be called Lemmas, are not always
provided with complete proofs. Again this is typical Conway. He mostly provides some small hints in
the text, which gives us a direction of his thought process. But sometimes, he writes down a Fact and
does not give us a hint, because Conway apparently sees it immediately. This makes it difficult for an
average reader to understand why it is true. Therefore, the main goal of this thesis is to provide a clear
explanation or proofs to the Facts stated in the article.
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2
Summary

In his paper titled ”The Extra Fibonacci Series and the Empire State Building,” Conway begins by in-
troducing the well-known Fibonacci and Lucas numbers. He then presents a new series called the
”extraFib series,” which consists of infinite sequences of integers that follow Fibonacci’s rule and have
a positive sequence to the right. There are several facts about the extraFib series that require proof as
they may not be immediately apparent.

Conway proceeds to introduce the Zeckendorf notation, a method of representing any integer as the
sum of non-consecutive distinct Fibonacci numbers. Prior to establishing the connection between the
extraFib series and the Empire State Building, he introduces the concept of the Garden State. The
Garden State serves as a display area for all the extraFib series, which are listed vertically. The term
”Garden State” is a play on words by Conway, who spent the latter part of his life in New Jersey, often
referred to as the Garden State. The array’s wall, consisting of terms between vertical lines, represents
the garden wall, and the garden expands beyond the wall.

Conway then introduces the concept of ”reversal” in the extraFib series to obtain the ”left wall term”
and determine the central term, referred to as the ”pillar” of the Empire State Building. He organizes all
the extraFib series from the Garden State in a way that aligns their central terms in the same column.
Some extraFib series share the same ”inner width” between the left and right terms, resulting in them
being grouped together in a so-called ”block.” The resulting infinite array takes on a structure resem-
bling the Empire State Building, where the inner width increases by 1 as you move to the block below.
This array exhibits various intriguing structures that will become apparent to readers as they progress
through the thesis.

Not only does Conway discover a connection between the extraFib series and the Empire State Build-
ing, but he also identifies a relationship between the Fibonacci and Lucas numbers and the standard
trigonometric formulas. He coins the term ”Fibonometry” for this novel concept, which will be explained
in the thesis. It offers a fascinating perspective on how seemingly unrelated mathematical concepts
can be interconnected.
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3
Fact Checking

The Facts stated in the paper of John Conway and Alex Ryba will be proven by first stating definitions
and providing background information before we actually give a proof to a Fact.

Fibonacci numbers and Lucas numbers are two related sequences of numbers that have many in-
teresting properties and connections.

Fibonacci numbers are a series of numbers where each number is the sum of the two preceding
numbers. The sequence begins with 0 and 1, resulting in the initial values of 0, 1, 1, 2, 3, 5, 8, 13,
21, and so on. These numbers are named after Leonardo of Pisa, also known as Fibonacci, an Italian
mathematician who introduced them to the Western world through his book ”Liber Abaci” published in
1202. However, the sequence had already been known in Indian mathematics long before Fibonacci’s
time. Fibonacci encountered this sequence while investigating the growth of a rabbit population. He
observed that the number of rabbit pairs in each generation equaled the sum of the pairs from the
previous generation and the newly born pairs in the current one. This observation led to the recursive
relationship that defines the Fibonacci sequence. After Fibonacci’s book was published, the sequence
gained popularity in Europe and has since found applications in various fields of mathematics and sci-
ence. It showcases captivating properties and connections, such as the golden ratio, which represents
the limit of the ratio between consecutive Fibonacci numbers.

Lucas numbers are a similar sequence of numbers, but they start with 2 and 1 instead of 0 and 1.
So the Lucas sequence begins as 2, 1, 3, 4, 7, 11, 18, 29, and so on. The Lucas sequence is named
after the French mathematician Édouard Lucas, who introduced it in the late 19𝑡ℎ century. Like the
Fibonacci sequence, Lucas numbers also exhibit interesting properties and relationships. They have a
connection to the golden ratio as well, similar to the Fibonacci numbers. The ratio between consecutive
Lucas numbers also approaches the golden ratio as the terms increase.

A sequence is an enumerated collection of numbers where each number has a fixed position, i.e.
has an index. Usually the term ”series” is used for an infinite sequence of numbers that is to be added,
but in this thesis we will use the term series to refer to a doubly infinite sequence of integers where a
position of a term is not fixed.

Definition 1. Let (𝑥𝑖) be an indexed sequence of integers. If 𝑖 runs over ℕ, we say it is a sequence. If
𝑖 runs over ℤ and each term does not have a fixed position, we say it is a series.

We can continue the Fibonacci and Lucas sequences backwards with the Fibonacci’s rule, then we
obtain the Fibonacci and Lucas series, which are both palindromic except for the signs.

... -8 5 -3 2 -1 1 0 1 1 2 3 5 8 ...

... 18 -11 7 -4 3 -1 2 1 3 4 7 11 18 ...
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4 3. Fact Checking

We say that these series ‘‘end in positive integers’’ because 𝐹𝑛 and 𝐿𝑛 are positive for 𝑛 ≥ 0. In
this report, we want to review the ‘‘extra Fibonacci series’’—briefly, ‘‘extraFib’’ series—that have these
properties: each term is the sum of the previous two, and they end in positive integers, meaning that
after some term in the series, that the terms after that are all positive integers.
The extraFib series form the rows of the ‘‘extraFib array.’’ Because its rows, being series, do not have
well defined starting points, the array has many ‘‘states’’ that differ only by sliding individual rows left or
right.

Definition 2. Let (𝑥𝑖) be a series that satisfies the recurrence 𝑥𝑖 + 𝑥𝑖+1 = 𝑥𝑖+2. We say that (𝑥𝑖) is
ExtraFib if there exists an 𝑁 such that 𝑥𝑖 > 0 if 𝑖 > 𝑁.

Figure 3.1: Garden State (Conway 2016)

This extraFib array is described in its Garden State (Figure 3.1). In the Garden State, you see the
”tail” of the ExtraFib series, where all terms are positive in a row. We now wonder if we can find all
ExtraFib series in the Garden State. We will later find out that this is the case.

We define the seed terms to be the terms in the first column, which is just a sequence 0, 1, 2, 3,⋯.
The wall terms are between the lines in the second column. The sequence of the wall terms are harder
to understand and this will be clear later in Fact 4. After we have defined those two terms, everything
after follows by the recurrence. We call the terms after the bold line the garden terms. Seed terms
can be seen as the index of a row. The wall column turns out to be the so-called the lower Wythoff
sequence, a well known series of numbers, 1 3 4 6 8 9 11 12 14 16 17 .... This sequence can be
found online as well and has different ways to describe them [2]. For instance one description is that
this sequence has numbers that can be written as a sum of different Fibonacci numbers including the
Fibonacci number 1. After knowing the seed column and the wall column, we can generate the garden
terms by using the Fibonacci’s rule.

We say that 𝑛 has a Fibonacci representation if it can be written as a sum of descending Fibonacci
numbers, 𝑛 = 𝐹𝑎+𝐹𝑏+⋯+𝐹𝑘 with 𝑘 ≥ 2 (since 𝐹2 = 𝐹1 = 1). We define 𝑜𝑢𝑡(𝑛) = 𝐹𝑎+1+𝐹𝑏+1+⋯+𝐹𝑘+1.
So the 𝑜𝑢𝑡(𝑛) is the shifted version of the Fibonacci numbers that build up 𝑛. In our Garden State, the
seed terms 𝑠 for 𝑠 = 0, 1, 2,⋯ are followed by the wall terms 𝑜𝑢𝑡(𝑠) + 1. It will become clear in Fact 1
that function 𝑜𝑢𝑡(𝑛) actually does not depend on the choice of the Fibonacci numbers where 𝑛 is made
out from.

We say that 𝑛 = 𝐹𝑎+𝐹𝑏+⋯+𝐹𝑘 where 𝑎 > 𝑏 > ⋯ is a Zeckendorf representation of n if the indices
differ by more than one. It is not immediately clear that each number admits a Zeckendorf representa-
tion. We will show in Fact 2 that this expansion is uniquely determined for any number 𝑛.

The Zeckendorf notation is analogous to the usual binary notation. In binary notation, each digit
represents a power of 2. In a canonical Zeckendorf notation, for instance 11 does not exist, because
the requirement is that no adjacent Fibonacci numbers are used in the representation.

The Zeckendorf notation is where the bit string ...𝛾𝛽𝛼 represents ... + 𝛾𝐹4 + 𝛽𝐹3 + 𝛼𝐹2 rather than
...+4𝛾+2𝛽+𝛼. We also use this for sums of distinct Fibonacci numbers that may contain two adjacent
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ones (‘‘noncanonical Zeckendorf expansions’’). If ∗ ∗ ∗ is possibly a noncanonical Zeckendorf notation,
then | ∗ ∗ ∗ | represents its canonicalization. Thus |1011| = 10000 is the canonical Zeckendorf notation
for 8, since 𝐹5 + 𝐹3 + 𝐹2 = 5 + 2 + 1 = 8 = 𝐹6. Note that 𝑜𝑢𝑡(𝑛) is equivalent to putting a 0 after the
binary notation of 𝑛.

Fact 1 The function 𝑜𝑢𝑡(𝑛) is well-defined.

Proof. 𝑜𝑢𝑡(𝑛) is well-defined when the outcome is the same for a different Fibonacci representation of
𝑛. First we need to know if there is a Fibonacci representation for any 𝑛. This follows from Fact 2. Fact
1 will be established once we prove Fact 2.

Suppose that 𝑃 is a Zeckendorf representation of 𝑛 and 𝑄 be another representation of 𝑛 which is
not Zeckendorf. Note that the 𝑜𝑢𝑡(𝑛) will put a 0 after the bit string of 𝑛. So 𝑜𝑢𝑡(𝑄) will put a 0 after
the bit string of Q. Since Q is not a Zeckendorf notation, from the left we can find 11 in its bit string. we
find 11 either in the beginning of the bit string, then we can replace that with 100 or find it later and we
can replace 011 with 100. In both cases we can replace 𝑄 by 𝑄′, where 𝑄′ is the new representation
of 𝑛. Then 𝑜𝑢𝑡(𝑄) = 𝑜𝑢𝑡(𝑄′) holds because 011 is still the same as 100 after shifting. We can repeat
this process for 𝑄′. Every time we replace 011 in the bit string by 100, the number of 1’s decrease and
eventually we arrive at the Zeckendorf representation.

Fact 2 The Zeckendorf expansion of n is unique

Proof. This Fact states two things. We first give a proof to that there exists a Zeckendorf expansion
for every 𝑛 ∈ ℕ. There is an algorithm to find it. Choose 𝐹𝑝 to be the largest Fibonacci number that is
less than or equal to 𝑛 (when 𝑛 is equal to a Fibonacci number, then we already have the Zeckendorf
expansion and we are done, so we may suppose that 𝑛 > 𝐹𝑝).
Find a Fibonacci number that is less than or equal to 𝑛−𝐹𝑝. This cannot be 𝐹𝑝−1 because 𝑛 < 𝐹𝑝+𝐹𝑝−1 =
𝐹𝑝+1 holds. since we assumed that 𝐹𝑝 is the largest Fibonacci number that is smaller than 𝑛. It follows
that the next Fibonacci number we can use for the expansion is less or equal to 𝐹𝑝−2. Eventually, we
will get that the remainder is equal to the next Fibonacci number, since 1 is a Fibonacci number. The
algorithm halts.

To prove uniqueness, suppose that the sets 𝑃 and 𝑄 are distinct Zeckendorf representations for 𝑛.
So 𝑛 = ∑𝑃 = ∑𝑄. Consider then 𝑃′ = 𝑃 ⧵ 𝑄 and 𝑄′ = 𝑄 ⧵ 𝑃, which are sets where common elements
are removed. Then still ∑𝑃′ = ∑𝑄′ holds, so either both are empty sets and we are done, or both
are non-empty. Let 𝐹𝑝 the largest element of 𝑃′ and 𝐹𝑞 the largest element of 𝑄′. Since these sets are
disjoint, 𝐹𝑝 ≠ 𝐹𝑞. WLOG let 𝐹𝑝 < 𝐹𝑞. We will need the following fact. If a Zeckendorf expansion of 𝑛
begins with 𝐹𝑝, then it can be at most 𝐹𝑝 + 𝐹𝑝−2 + ⋯ + (𝐹3 𝑜𝑟 𝐹2). It becomes at most 𝐹𝑝+1 when we
again add 1. This follows from the fact that the sum of adjacent Fibonacci numbers can be written as
the next Fibonacci number of the largest of the two, i.e. 𝐹𝑛 + 𝐹𝑛+1 = 𝐹𝑛+2 for any 𝑛.

Using this information we can conclude that ∑𝑃′ < 𝐹𝑝+1 and also ∑𝑃′ < 𝐹𝑞 by assumption. We
assumed that ∑𝑃′ = ∑𝑄′, but the largest term 𝐹𝑞 ∈ 𝑄′ is already larger than ∑𝑃′, which gives a
contradiction. So 𝑃′ and 𝑄′ must be empty sets. Therefore 𝑃 = 𝑄 and we have proved the uniqueness.

Let 𝜏 = 1+√5
2 and 𝜎 = 1−√5

2 . These are the roots of the equation 𝑥2 = 𝑥 + 1 and have nice prop-
erties such as 𝜏 + 𝜎 = 1, 𝜏 − 𝜎 = √5 and 𝜏𝜎 = −1. Those two numbers are the roots of the equation
𝑥𝑛+1 = 𝑥𝑛 + 𝑥𝑛−1. So their power sequence satisfy Fibonacci’s rule. We will write out those starting
with 1.

1, 𝜎, 𝜎2, 𝜎3, ⋯
1, 𝜏, 𝜏2, 𝜏3, ⋯

Then if we subtract the second sequence from the first, we obtain the following sequence:

0, √5, √5, 2√5,⋯
and after dividing every term by √5, we get the Fibonacci sequence. We can write a series out of
those two sequences by continuing them backwards. Then every extraFib series can be described
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from these two power series by 𝑎𝜎𝑛 + 𝑏𝜏𝑛 where 𝑛 ∈ ℤ. For an extraFib, 𝑏 ≥ 0 holds. The extraFib
series is palindromic when 𝑎 = 𝑏.

Therefore we have a formula for the n-th Fibonacci which is known as the Binet formula. This
formula will be used multiple times in this thesis.

𝐹𝑛 =
𝜏𝑛 − 𝜎𝑛

√5
Also we derive a formula for the n-th Lucas number, which is validated by the recurrence relation [3]:

𝐿𝑛 = 𝜏𝑛 + 𝜎𝑛

It is handy to establish Fact 3, because once we have that, we can calculate 𝑜𝑢𝑡(𝑛) directly without
having to find the Zeckendorf representation for 𝑛. Multiply 𝑛 with 𝜏 and then subtract 𝜎2. Find the first
integer that is greater that that number. Then we have found our 𝑜𝑢𝑡(𝑛).

Fact 3 The unique integer in the open unit interval (𝜏𝑛 − 𝜎2, 𝜏𝑛 − 𝜎) is 𝑜𝑢𝑡(𝑛)
Proof. First note that 1−𝜎2 = −𝜎. We will show that 𝑜𝑢𝑡(𝑛)−𝜏𝑛 is in the open unit interval (−𝜎2, 1−𝜎2),
which is just the shifted version of Fact 3.

We know that 𝜏 = 1+√5
2 > 0 and 𝜎 = 1−√5

2 < 0. We will first show that 𝐹𝑟+1 − 𝜏𝐹𝑟 = 𝜎𝑟.

𝐹𝑟+1 − 𝜏𝐹𝑟 =
𝜏𝑟+1 − 𝜎𝑟+1

√5
− 𝜏(𝜏

𝑟 − 𝜎𝑟)
√5

= 𝜏𝑟+1 − 𝜎𝑟+1

√5
− 𝜏

𝑟+1 − 𝜏𝜎𝑟

√5

= −𝜎𝑟+1 + 𝜏𝜎𝑟

√5

= 𝜎𝑟(𝜏 − 𝜎)
√5

= 𝜎𝑟𝐹1 = 𝜎𝑟

Note that we can write 𝑛 = 𝐹𝑎 + 𝐹𝑏 +⋯ for any n. So we have

𝑜𝑢𝑡(𝑛) − 𝜏𝑛 = (𝐹𝑎+1 + 𝐹𝑏+1 +⋯) − 𝜏(𝐹𝑎 + 𝐹𝑏 +⋯)
= (𝐹𝑎+1 − 𝜏𝐹𝑎) + (𝐹𝑏+1 − 𝜏𝐹𝑏) + ⋯
= 𝜎𝑎 + 𝜎𝑏 +⋯

(3.1)

by the identity shown above. We claim that 𝜎𝑎 + 𝜎𝑏 + ⋯ is smaller than 1 − 𝜎2 and greater than
−𝜎2. With a simple calculation we see that 1 − 𝜎2 = −𝜎 = 𝜎2

1−𝜎2 . Then by using the geometric series

we see that 𝜎2
1−𝜎2 = 𝜎2 ∑∞𝑖=0(𝜎2)𝑖 = 𝜎2 + 𝜎4 + ⋯ since 𝜎2 < 1. Since 𝜎 < 0, even powers of 𝜎 are

positive and odd powers are negative. Therefore this sum is the upper bound for 𝑜𝑢𝑡(𝑛)−𝜏𝑛. Similarly,
−𝜎2 = 𝜎3

1−𝜎2 = 𝜎
3 ∑∞𝑖=0(𝜎2)𝑖 = 𝜎3 + 𝜎5 +⋯. Then this sum is the lower bound for 𝑜𝑢𝑡(𝑛) − 𝜏𝑛 and we

have proved Fact 3.

Fact 4 The canonical Zeckendorf notation for the typical row of the Garden State is ∗ ∗ ∗, | ∗ ∗ ∗1|, ∗ ∗
∗01, ∗ ∗ ∗010, ∗ ∗ ∗0100, ... where that for the seed is ∗ ∗ ∗.
Proof. Fact 4 is a definition of the rows in Table 1 via the wall term. From the second term after the wall
term 𝑛, the row grows with 𝑜𝑢𝑡(𝑛), because 𝑜𝑢𝑡(𝑛) puts a 0 after the bit string of n. The seed terms
can be seen as the index of a row. We will show that the row ∗ ∗ ∗, | ∗ ∗ ∗ 1|, ∗ ∗ ∗01, ∗ ∗ ∗010, ∗ ∗ ∗0100, ...
satisfies Fibonacci’s rule. Let 𝑛 = 𝐹𝑎 +𝐹𝑏 +𝐹𝑐 +⋯ be a seed term ∗ ∗ ∗. Then the wall term that follows
is 𝑜𝑢𝑡(𝑛)+1 = 𝐹𝑎+1+𝐹𝑏+1+𝐹𝑐+1+⋯+𝐹2, which is equal to | ∗ ∗ ∗1| by the definition. By adding those
two terms we get, 𝐹𝑎+2 + 𝐹𝑏+2 + 𝐹𝑐+2 +⋯+ 𝐹2 which is equal to ∗ ∗ ∗01, which is the first garden term
given in the definition. If the seed term’s bit string was ∗ ∗ ∗1, then the wall term is | ∗ ∗ ∗ 11| = ∗ ∗ ∗100.
Adding those two terms will indeed give a term in the form ∗∗∗01. If the seed term’s bit string was ∗∗∗0
then the wall term is ∗ ∗ ∗01 and adding those two terms will again give a term in the form ∗ ∗ ∗01.

So the first 3 terms satisfy the Fibonacci’s rule. From here, it is clear that the next terms also satisfy
Fibonacci’s rule: all the terms satisfy the equation 𝑛 + 𝑜𝑢𝑡(𝑛) = 𝑜𝑢𝑡(𝑜𝑢𝑡(𝑛)) for any 𝑛 ∈ ℕ.
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Fact 5 is important because only the garden terms are followed by 𝑜𝑢𝑡(𝑛), so we can locate where
the seed term and the wall term is for any extraFib series. For this, we need to know if every ”tail”
of any extraFib is in the Garden State. Fact 7 guarantees this. Note that if we know two consecutive
terms, then we know which extraFib series it is by the Fibonacci’s rule. Thus when term 𝑛 is followed
by 𝑜𝑢𝑡(𝑛), then they are in the garden and we can find the extraFib series in which those terms appear.

Fact 5
(a) A garden term 𝑛 is followed by 𝑜𝑢𝑡(𝑛).
(b) A seed term 𝑠 is followed by 𝑜𝑢𝑡(𝑠) + 1.
(c) A wall term 𝑤 is followed by 𝑜𝑢𝑡(𝑤) − 1.

Proof. This Fact is analogous to Fact 4. Nevertheless, we will show that this Fact 5 is true to be
complete. (a) That the garden term 𝑛 is followed by 𝑜𝑢𝑡(𝑛), is given by the definition. (b) By the
definition of a row in Fact 4, a seed term ∗ ∗ ∗ is followed by | ∗ ∗ ∗ 1| which is ∗ ∗ ∗0+1 = 𝑜𝑢𝑡(∗ ∗ ∗)+1.
We do not care about the representation whether it is canonical or not, because the 𝑜𝑢𝑡 function is
well-defined. (c) By the definition of a row in Fact 4, a wall term | ∗ ∗∗1| is followed by ∗∗∗01. We know
that 𝑜𝑢𝑡(|∗∗∗1|) = ∗∗∗10 = ∗∗∗01+1, so indeed, a wall term |∗∗∗1| is followed by 𝑜𝑢𝑡(|∗∗∗1|)−1.

Fact 6 Every positive integer appears exactly once in the garden and once as a seed, and zero also
appears just once as a seed.

Proof. Every positive integer appears exactly once as a seed, since the seed is just the index that starts
at 0 and increased with 1. So zero also appears just once as a seed. It is left to show that every positive
integer appears exactly once in the garden. If we take any 𝑛 ∈ ℕ and find the unique index (seed term)
of the row where 𝑛 is in, then we have proved this Fact. This is because one term cannot appear twice
in its extraFib series due to Fibonacci’s rule except for the original Fibonacci series. We can find the
unique index of an arbitrary 𝑛 as follows: First remove all the zeros from the right in its Zeckendorf
notation until you come across a one. Then you have a number with Zeckendorf representation ∗∗∗01.
Now take the sequence with seed ∗ ∗ ∗. By Fact 4 it is given by ∗ ∗ ∗, ∗ ∗ ∗1, ∗ ∗ ∗01. It is obvious that
this is the unique row that contains n.

When a series is represented in the Garden State, it means that it appears as a row in the Gar-
den State. The Garden State consists of sequences and not series. We need to know where the
wall term is in the series, then we can determine where a series is represented in the Garden State.
Fact 5 provides the answer. We compute the outs of a series 𝑥𝑛, then for every consecutive terms 𝑥𝑡,
𝑥𝑡+1 in the series, we look at the outs. If 𝑜𝑢𝑡(𝑥𝑡)+1 = 𝑥𝑡+1 it follows from Fact 5 that 𝑥𝑡+1 is a wall term.

Fact 7 Every series that satisfies Fibonacci’s rule and ends with positive integers is represented in
the Garden State.

Proof. From Fact 6, we know that every positive integer appears exactly once in the Garden. If some
term 𝑛 in a series is followed by 𝑜𝑢𝑡(𝑛), this series be seen in the Garden by Fact 5. This series also
satisfies the Fibonacci’s rule. We want to show that for any extraFib series, there exist a term 𝑥𝑘 s.t.
𝑥𝑘+1 = 𝑜𝑢𝑡(𝑥𝑘). We will show that 𝑥𝑘+1 lies in the open interval (𝜏𝑥𝑘 − 𝜎2, 𝜏𝑥𝑘 − 𝜎), then the Fact
follows from Fact 3.

If we write 𝑥𝑘 = 𝑎𝜎𝑘+𝑏𝜏𝑘, then 𝑥𝑘+1 = 𝑎𝜎𝑘+1+𝑏𝜏𝑘+1. We have to show that−𝑎𝜎𝑘−1+𝑏𝜏𝑘+1−𝜎2 <
𝑎𝜎𝑘+1+𝑏𝜏𝑘+1 < −𝑎𝜎𝑘−1+𝑏𝜏𝑘+1−𝜎. Since 𝜎 < 1, for 𝑘 large enough, the terms 𝑎𝜎𝑘−1 and 𝑎𝜎𝑘+1 are
close to 0, so we can disregard those terms in the inequality. Therefore we have 𝑏𝜏𝑘+1−𝜎2 < 𝑏𝜏𝑘+1 <
𝑏𝜏𝑘+1 − 𝜎 which obviously holds because −𝜎2 < 0 and −𝜎 > 0.

Fact 7 is sort of a corollary from the previous Facts.

Fact 8 If 𝑋𝑛 is any extraFib series, so too is any positive multiple 𝑚𝑋𝑛.

Proof. Let 𝑋𝑛 to be an extraFib series. First it is clear that when you multiply a series that ends in
positive integers with a positive number 𝑚, that the multiplied series also ends in positive integer. Now
let 𝑥𝑎 , 𝑥𝑏 , 𝑥𝑐 three consecutive arbitrary terms of 𝑋𝑛. Then for𝑚𝑋𝑛, those terms become𝑚𝑥𝑎 , 𝑚𝑥𝑏 , 𝑚𝑥𝑐.
Then 𝑚𝑥𝑎 +𝑚𝑥𝑏 = 𝑚𝑥𝑐 holds from the definition of an extraFib series.

Fact 9 The multiples of any extraFib series appear in order in the extraFib array.
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Proof. Fact 9 states that if we have 𝑎, 𝑏 ∈ ℕ where we assume 𝑎 > 𝑏 and 𝑋𝑛 is any extraFib series,
then the seed term of 𝑎𝑋𝑛 is greater than the seed term of 𝑏𝑋𝑛.
To see this, suppose for a fixed 𝑡, that 𝑏𝑋𝑡 is the seed term of the multiplied extraFib series 𝑏𝑋𝑛. Then
by Fact 5b we have 𝑏𝑋𝑡+1 = 𝑜𝑢𝑡(𝑏𝑋𝑡) + 1. By Fact 3, we know that 𝑜𝑢𝑡(𝑏𝑋𝑡) is the smallest integer
greater than 𝜏𝑏𝑋𝑡 − 𝜎2. Therefore it follows that 𝑜𝑢𝑡(𝑏𝑋𝑡) + 1 > 𝜏𝑏𝑋𝑡 + (1 − 𝜎2). So we have that
𝑏𝑋𝑡+1 > 𝜏𝑏𝑋𝑡 + (1 − 𝜎2)

If we have 𝑎 > 𝑏, by multiplying both sides on the last inequality by 𝑎
𝑏 , we have 𝑎𝑋𝑡+1 > 𝜏𝑎𝑋𝑡 +

𝑎
𝑏 (1 − 𝜎

2) > 𝜏𝑎𝑋𝑡 + (1 − 𝜎2) > 𝑜𝑢𝑡(𝑎𝑋𝑡) by Fact 3 and since 𝑎
𝑏 > 1. This inequality says that 𝑎𝑋𝑡+1

is greater than 𝑜𝑢𝑡(𝑎𝑋𝑡). So 𝑎𝑋𝑡 cannot be a garden term, nor a wall term by Fact 3. Therefore 𝑎𝑋𝑡 is
either the seed or a term that is located to the left of the seed. If 𝑎𝑋𝑡 is the seed, then since 𝑎 > 𝑏, this
index is larger than 𝑏𝑋𝑡, so the series 𝑎𝑋𝑛 appear later than 𝑏𝑋𝑛 in the extraFib array. If 𝑎𝑋𝑡 is located
to the left of the seed, then the actual seed of this extraFib series is greater than 𝑎𝑋𝑡, meaning that
the argument in the first case still holds and therefore the series 𝑎𝑋𝑛 still appear later than 𝑏𝑋𝑛 in the
extraFib array.

We will show that in general, the signs of an extraFib series has the form ⋯ .−,+,−,+,+,+,+,⋯.
First we know that an extraFib series has to end in positive integers, so eventually will only have positive
signs on the ”right” side. We will show that it will have alternating signs on the ”left” side. We assume
that 0 is a positive number. Since extraFib series satisfy the Fibonacci’s rule, 𝐸𝑎+𝐸𝑎+1 = 𝐸𝑎+2 holds for
every term in the extraFib series. Assuming that those terms are greater, we deduce that 𝐸𝑎+1 < 𝐸𝑎+2.
In case one term is 0, then it is a multiple of the original Fibonacci series, so we know that the signs
alternate. Since we have deduced that the terms in any extraFib series decrease as it goes backwards,
there must be a negative term in the series. Also from Fibonacci’s rule, the first negative term we found
has to be followed by a positive term, so the term before the negative term must be positive and larger
in absolute value. Using this logic, we find that any extraFib series has the form⋯ .−,+,−,+,+,+,+,⋯.

We will define a reverse for an extraFib series. A reverse is obtained by taking its terms in the
reverse order around the pivot term. The pivot term is the first term after the last negative term. After
reversing the terms, every term after the pivot becomes positive and the terms before the pivot will
alternate in sign, starting with - from the first term before the pivot. We can define the reverse series
as follows: 𝑅𝑎 = (−1)𝑎𝑋−𝑎, with 𝑋0 as the pivot.

Fact 10 The reversal of an extraFib series is also an extraFib series.

Proof. This Fact follows immediately from the definition of the reversal of a series and Fibonacci’s rule
reverses to itself:

𝑅𝑎 + 𝑅𝑎+1 = (−1)𝑎𝐹−𝑎 + (−1)𝑎+1𝐹−𝑎−1 = (−1)𝑎(𝐹−𝑎 − 𝐹−𝑎−1) = (−1)𝑎𝐹−𝑎−2 = 𝑅𝑎+2
.

If we continue the Fibonacci sequence backwards, we obtain the series

..., 13, −8, 5, −3, 2, −1, 1, 0, 1, 1, 2, 3, 5, 8, 13, ...

We see that this series is its own reverse with the pivot being the term 0, ignoring the sign.

Not every extraFib series is its own reverse. For instance the series

... − 19, 12, −7, 5, −2, 3, 1, 4, 5, 9, 14, ...

Its reverse is namely
... − 14, 9, −5, 4, −1, 3, 2, 5, 7, 12, 19...

We see that the pivot term here is 3.

For our series above, we will find the right wall term. We find that 𝑜𝑢𝑡(5) = 𝑜𝑢𝑡(3 + 2) = 5 + 3 = 8
but the term after is 9, and 𝑜𝑢𝑡(9) = 𝑜𝑢𝑡(8 + 1) = 13 + 2 = 15 but the term after 9 is 14. Thus 9 is
our right wall term. The left wall term is found similarly but after reversing the series first. We find that
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𝑜𝑢𝑡(7) = 𝑜𝑢𝑡(5+2) = 8+3 = 11 but the term after is 12, and 𝑜𝑢𝑡(12) = 𝑜𝑢𝑡(8+3+1) = 13+5+2 = 20
but the term after is 19. The left wall term is 12. We define the left seed as the term that comes right
before the wall term when we reverse the series. We can indicate both wall terms in the original series
by | |, so we have:

..., 31, −19, |12|, −7, 5, −2, 3, 1, 4, 5, |9|, 14, 23, ...
The central term is the middle term in a series that lies between the left and the right wall terms.

This definition is only valid when there are uneven number of terms between the two wall term. We will
show in Fact 12 that this is indeed the case. The ”Empire State of the extraFib array” (also called the
”Empire State Building”) is obtained by sliding the rows of the array so as to align these central terms
(indicated by double lines) to form a central ”pillar”. The pillar is not always the same as the pivot term.
The situation can be illustrated as follows:

Figure 3.2: (Conway 2016)

Block 𝑟 of the Empire State Building consists of those series with an inner width of 2𝑟 + 1. See
Appendix for the Empire State Building.

Fact 11 Both wall terms are positive.

Proof. We define a series 𝑥𝑡 with 𝑥0 = 𝑜𝑢𝑡(𝑙) + 1, 𝑥1 = −𝑙 with 𝑙 ≥ 0. We show that this series is an
extraFib series indexed so that 𝑥0 is the left wall and 𝑥1 the left seed. We want to show that the right
wall is also positive. We fix 𝑟 such that 𝐹2𝑟−1 ≤ 𝑙 < 𝐹2𝑟+1, where 𝑟 will give the block of the series (Fact
13). This bound will have further applications. By Fact 3, we find that 𝑜𝑢𝑡(𝑙) + 1 is equal to 𝜏𝑙 − 𝜎 + 1
rounded down which we can write as 𝜏(𝑙 + 1) − 𝜃 where 0 < 𝜃 < 1. We have 𝑥𝑡 = 𝐹𝑡−1𝑥0 + 𝐹𝑡𝑥1. It
is with ease verified that this relation holds. For 𝑡 = 0 and 𝑡 = 1, one can see that it works. It follows
from recurrence that it works for every next terms. This series satisfy Fibonacci’s rule since it is a linear
combination of two series that satisfy Fibonacci’s rule. Thus by using properties of 𝜏 and 𝜎 and the
definitions of 𝑥0 and 𝑥1 we have,

√5𝑥𝑡 =√5(𝐹𝑡−1𝑥0 + 𝐹𝑡𝑥1) = (𝜏𝑡−1 − 𝜎𝑡−1)(𝜏(𝑙 + 1) − 𝜃) − (𝜏𝑡 − 𝜎𝑡)𝑙
=𝜏𝑡𝑙 + 𝜏𝑡 − 𝜃𝜏𝑡−1 − 𝜎𝑡−1𝜏𝑙 − 𝜎𝑡−1𝜏 + 𝜃𝜎𝑡−1 − 𝜏𝑡𝑙 + 𝜎𝑡𝑙
=𝜏𝑡 − 𝜃𝜏𝑡−1 − 𝜎𝑡−1𝜏𝑙 − 𝜎𝑡−2 + 𝜃𝜎𝑡−1 + 𝜎𝑡𝑙
=𝜏𝑡 − 𝜃𝜏𝑡−1 − (𝜎𝑡−1𝜏𝑙 − 𝜎𝑡𝑙) − 𝜎𝑡−2 + 𝜃𝜎𝑡−1
=𝜏𝑡 − 𝜃𝜏𝑡−1 − (𝜏 − 𝜎)𝜎𝑡−1 − 𝜎𝑡−2 + 𝜃𝜎𝑡−1

=𝜏𝑡 − 𝜃𝜏𝑡−1 − √5𝑙𝜎𝑡−1 + 𝜎𝑡−2 + 𝜃𝜎𝑡−1.

(3.2)

We deduce that √5𝑥𝑡 > 𝜏𝑡 − 𝜏𝑡−1 −𝑂(|𝜎|𝑡−2) = 𝜏𝑡−2 −𝑂(|𝜎|𝑡−2) since 0 < 𝜃 < 1 and 𝜎𝑛 tends to 0
as n grows. In 𝑂(|𝜎|𝑡−2) are all the terms that includes the powers of 𝜎 which all tend to 0 as the power
increases. Eventually this term is positive because 𝜏 > 1 and |𝜎| < 1. We conclude that our series
ends in positive integers and therefore 𝑥𝑡 is an extraFib series and is the reverse of the series with seed
𝑙. Then the right wall term that is after the seed 𝑙 is positive. So both wall terms are positive.

Fact 12 The two wall terms are separated by an odd number 2𝑟 + 1 of intermediate terms.

Proof. We work in the same setting as in the proof of Fact 11, so 𝑥𝑡 = 𝐹𝑡−1𝑥0 + 𝐹𝑡𝑥1. We will prove
Fact 12 by showing that 𝑥2𝑟+2 = 𝑜𝑢𝑡(𝑥2𝑟+1) + 1, then we know that 𝑥2𝑟+2 is the wall term by Fact 5.
There cannot be another index after 2𝑟 + 1 that satisfies this rule because every extraFib appears in
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the Garden State and after the wall term, the terms grow with 𝑜𝑢𝑡. Since 𝑥0 was our left wall term,
2𝑟 + 3 is the outer width of the series and the wall terms are separated by 2𝑟 + 1 intermediate terms.
Using equation 3.2 and the fact that 𝜎 − 𝜏 = −√5:

𝑥𝑡+1 − 𝜏𝑥𝑡 =
1
√5
(𝜏𝑡+1 − 𝜃𝜏𝑡 − √5𝑙𝜎𝑡 + 𝜎𝑡−1 + 𝜃𝜎𝑡) − 𝜏

√5
(𝜏𝑡 − 𝜃𝜏𝑡−1 − √5𝑙𝜎𝑡−1 + 𝜎𝑡−2 + 𝜃𝜎𝑡−1)

= 1
√5
(−√5𝑙𝜎𝑡−1 + 𝜎𝑡−2 + 𝜃𝜎𝑡−2)(𝜎 − 𝜏)

= √5𝑙𝜎𝑡−1 − 𝜎𝑡−2 − 𝜃𝜎𝑡−1
(3.3)

.
We first set 𝜃 = 1, use the equation 3.3, 𝐹2𝑟−1 ≤ 𝑙 < 𝐹2𝑟+1 and the properties of 𝜎 and 𝜏 and to

obtain the lower bound:

𝑥2𝑟+2 − 𝜏𝑥2𝑟+1 >√5𝑙𝜎2𝑟 − (𝜎2𝑟−1 + 𝜎2𝑟)
=√5𝑙𝜎2𝑟 − 𝜎2𝑟+1

=𝜎2𝑟(√5𝑙 − 𝜎)
>𝜎2𝑟√5𝐹2𝑟−1
=𝜎2𝑟(𝜏2𝑟−1 − 𝜎2𝑟−1) = −𝜎 − 𝜎4𝑟−1 > −𝜎

And for the upper bound we first set 𝜃 = 0:

𝑥2𝑟+2 − 𝜏𝑥2𝑟+1 < √5𝑙𝜎2𝑟 − 𝜎2𝑟−1

≤ 𝜎2𝑟√5(𝐹2𝑟+1 − 1) − 𝜎2𝑟−1
= 𝜎2𝑟(𝜏2𝑟+1 − 𝜎2𝑟+1 − 𝜏 + 𝜎) − 𝜎2𝑟−1
= 𝜏 − 𝜎4𝑟+1 + 𝜎2𝑟−1 − 𝜎2𝑟−1 < 𝜏

Combining those bounds we find −𝜎 < 𝑥2𝑟+2 − 𝜏𝑥2𝑟+1 < 𝜏. Rearranging gives 𝜏𝑥2𝑟+1 − 𝜎 < 𝑥2𝑟+2 <
𝜏𝑥2𝑟+1 + 𝜏. This is equal to 𝜏𝑥2𝑟+1 − 𝜎2 + 1 < 𝑥2𝑟+2 < 𝜏𝑥2𝑟+1 + 2 − 𝜎2. From this inequality, it follows
from Fact 3 that 𝑥2𝑟+2 = 𝑜𝑢𝑡(𝑥2𝑟+1) + 1

Fact 13 There are 𝐹2𝑟 series with inner width 2𝑟 + 1 (so outer width 2𝑟 + 3). These form a block of
the Empire State Building that we call ”block 𝑟”. They are the series with seeds in the half-open interval
[𝐹2𝑟−1, 𝐹2𝑟+1) defined by adjacent odd rank Fibonacci numbers.

Proof. Again we work in the same setting as in the proof of Fact 11, where 𝑟 is fixed such that 𝐹2𝑟−1 ≤
𝑙 < 𝐹2𝑟+1. Block 𝑟 of the Empire State Building consists of those series with an inner width of 2𝑟 + 1.
There are 𝐹2𝑟 series in Block 𝑟, because 𝐹2𝑟+1 − 𝐹2𝑟−1 = (𝐹2𝑟 + 𝐹2𝑟−1) − 𝐹2𝑟−1 = 𝐹2𝑟. They are the
series with seeds in the half-open interval [𝐹2𝑟−1, 𝐹2𝑟+1) because we have assumed that in the proof of
Fact 11.

Fact 14 The palindromic extraFib series are either multiples of the Fibonacci series or multiples of
the Lucas series.

Proof. The palindromic extraFib series are extraFib series that is its own reverse. Any palindromic
extraFib series can be written in two ways:

⋯ ,−𝑥−3, 𝑥−2, −𝑥−1, 𝑥0, 𝑥1, 𝑥2, 𝑥3, ⋯ , if 𝑥0 > 𝑥1

or
⋯ , 𝑥−3, −𝑥−2, 𝑥−1, 𝑥0, 𝑥1, 𝑥2, 𝑥3, ⋯ , if 𝑥0 ≤ 𝑥1

Where 𝑥0 is our pivot but also the pillar, because of the palindromic property. The last negative term
is at 𝑥−1 or 𝑥−2 because we know that the terms before the pivot must alternate in sign and there are



11

only 2 possible alternating patterns. For the first case it follows from the palindromic property that the
following systems of equations must hold:

−𝑥1 + 𝑥0 = 𝑥1
𝑥0 + 𝑥1 = 𝑥2

So it follows that:

𝑥0 = 2𝑥1
𝑥2 = 3𝑥1

This gives exactly all multiples of the Lucas series since it has to satisfy the Fibonacci’s rule.(𝑥0 = 0
gives the series with only zeros.). Similarly for the second case:

𝑥1 + 𝑥0 = 𝑥1
𝑥0 + 𝑥1 = 𝑥2

So it follows that:

𝑥0 = 0
𝑥1 = 𝑥2

which is exactly all multiples of the Fibonacci series since it has to satisfy the Fibonacci’s rule.

Fact 15 The palindromic series in block r are either multiples of the Fibonacci series (r even) or
multiples of the Lucas series (r odd).

Proof. The wall terms are both positive by Fact 11 and they have odd indices in an even-numbered
block 𝑟. This is because the outer width is given by 2𝑟 + 3, so the index of the right wall term is found
by 2𝑟+3−1

2 = 𝑟 + 1. For the left wall, the index is then −(𝑟 + 1). In case 𝑟 is even, the indices of the
wall terms are odd. So it follows that the negative terms that lie between the left wall and the pivot of
a row in such a block must have even indices. This is exactly the second case in the proof of Fact 14.
Therefore the palindromic series in such a block are multiples 𝑛×𝐹 of the Fibonacci series F. Similarly,
in an odd-numbered block the palindromic rows are multiples 𝑛 × 𝐿 of the Lucas series L.

We now have cut the Building into Blocks. We see palindromic series in block 𝑟 are either mul-
tiples of the Fibonacci series (𝑟 odd) or multiples of the Lucas series (𝑟 even). We call odd blocks
𝐹𝑖-blocks and even blocks 𝐿𝑢-blocks. We can cut the blocks even further into slices by underlining the
palindromic series they contain. Each slice has its height which is equal to the number of rows that it
contains. The underlines are marked 𝑓𝑖 and 𝑙𝑢 in the two cases. So in case when r is odd, we talk of
𝐹𝑖𝑓𝑖 blocks and in case when r is even, we talk of 𝐿𝑢𝑙𝑢 blocks.

Fact 16 In a Fifi block 𝑟 (𝑟 even), there are a ”lot” (𝐿𝑟) of ”fine” (height 𝐹𝑟) slices. In a Lulu block 𝑟
(𝑟 odd), there are a ”few” (𝐹𝑟) ”large” (height 𝐿𝑟) ones.

Proof. Let 𝐹 be the Fibonacci series and 𝐿 be the Lucas series. It is enough to show that the last series
in Fifi block 𝑟 is 𝐿𝑟+1𝐹 and the last series in Lulu block 𝑟 is 𝐹𝑟+1𝐿. The last series in block 𝑟 has the
seed 𝐹2𝑟+1−1 because of Fact 13 and Fact 9. The wall term is then 𝑜𝑢𝑡(𝐹2𝑟+1−1)+1 = 𝐹2𝑟. It follows
from Fact 17 that these are the terms numbered 𝑟 and 𝑟 + 1 in 𝐿𝑟𝐹 or 𝐹𝑟𝐿.

Since every slice in Fifi block ends with a palindromic series that is a multiple of the Fibonacci series,
we know howmany slices are inside the Fifi block 𝑟: 𝐿𝑟+1−𝐿𝑟−1 = 𝐿𝑟. For now we claim that 𝐹2𝑟 = 𝐿𝑟𝐹𝑟
and this will be proven in Fact 17. We know from Fact 13 that there are 𝐹2𝑟 series in a Fifi block 𝑟 and
now we know that there are 𝐿𝑟 slices in the same Fifi block. Therefore the height of the slices are
𝐹2𝑟
𝐿𝑟
= 𝐹𝑟. Similarly In a Lulu block 𝑟, there are 𝐹𝑟+1 − 𝐹𝑟−1 = 𝐹𝑟 slices. Using 𝐹2𝑟 = 𝐿𝑟𝐹𝑟 and the fact

that there are 𝐹2𝑟 series in a Lulu block 𝑟, the height of the slices are 𝐹2𝑟
𝐹𝑟
= 𝐿𝑟.

Fact 17 𝐹2𝑟 = 𝐿𝑟𝐹𝑟 and 𝐹2𝑟−1 − 1 is 𝐿𝑟𝐹𝑟−1 or 𝐹𝑟𝐿𝑟−1 according as 𝑟 is odd or even.
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Proof. We will give a direct proof of 𝐹2𝑟 = 𝐿𝑟𝐹𝑟 by using the Binet formula. We know that 𝐹𝑛 =
𝜏𝑛−𝜎𝑛
√5

and 𝐿𝑛 = 𝜏𝑛 + 𝜎𝑛. By using the identity 𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏) we obtain that 𝐿𝑛𝐹𝑛 =
𝜏2𝑛−𝜎2𝑛
√5 which

is equal to 𝐹2𝑛.

Let 𝑟 be odd. Using the Binet formula again, we find that 𝐹2𝑟−1 − 1 =
𝜏2𝑟−1−𝜎2𝑟−1

√5 − 1 and 𝐿𝑟𝐹𝑟−1 =
(𝜏𝑟+𝜎𝑟)(𝜏𝑟−1−𝜎𝑟−1)

√5 . We can write this out and we obtain 𝜏2𝑟−1−𝜎2𝑟−1
√5 − 𝜏𝑟𝜎𝑟−1−𝜏𝑟−1𝜎𝑟

√5 . It is left to show

that 𝜏
𝑟𝜎𝑟−1−𝜏𝑟−1𝜎𝑟

√5 = 1 to establish the equation 𝐹2𝑟−1 − 1 = 𝐿𝑟𝐹𝑟−1. Since 𝑟 odd, we can write it as
𝑟 = 2𝑛 + 1 for some 𝑛:

𝜏2𝑛+1𝜎2𝑛 − 𝜏2𝑛𝜎2𝑛+1

√5
= 𝜏(𝜏𝜎)2𝑛 − 𝜎(𝜏𝜎)2𝑛

√5

= 𝜏(−1)2𝑛 − 𝜎(−1)2𝑛

√5
= 𝜏 − 𝜎

√5
= 𝐹1
= 1

Let r be even. 𝐹𝑟𝐿𝑟−1 =
(𝜏𝑟−𝜎𝑟)(𝜏𝑟−1+𝜎𝑟−1)

√5 . We write this out and we get 𝜏
2𝑟−1−𝜎2𝑟−1

√5 − 𝜏𝑟−1𝜎𝑟−𝜏𝑟𝜎𝑟−1
√5 .

It is left to show that 𝜏
𝑟−1𝜎𝑟−𝜏𝑟𝜎𝑟−1

√5 = 1 to establish the equation 𝐹2𝑟−1 − 1 = 𝐹𝑟𝐿𝑟−1. Since 𝑟 even, we
can write it as 𝑟 = 2𝑛 for some 𝑛:

𝜏2𝑛−1𝜎2𝑛 − 𝜏2𝑛𝜎2𝑛−1

√5
= 𝜎(𝜏𝜎)2𝑛−1 − 𝜏(𝜏𝜎)2𝑛−1

√5

= 𝜎(−1)2𝑛−1 − 𝜏(−1)2𝑛−1

√5
= 𝜏 − 𝜎

√5
= 𝐹1
= 1

Fact 18 Entries to the right of the central pillar are positive. Entries to the left of it alternate in sign.
In a Lulu block, entries in the central pillar are positive whereas in a Fifi block they can be positive,
negative, or zero.

Proof. We work in the same setting as in the proof of Fact 11 and use the equation 3.2. We need to
show that for every 𝑡 ≥ 𝑟 + 2, 𝑥𝑡 > 0, as these are the entries to the right of the central pillar. Note
that we have 𝑥1 = −𝑙 which is a negative number. Since the signs alternate, negative terms might only
occur for odd indices, so we only consider 𝑡 odd. If 𝑟 is odd (recall 𝐹2𝑟−1 ≤ 𝑙 < 𝐹2𝑟+1),

√5𝑥𝑡 =𝜏𝑡 − 𝜃𝜏𝑡−1 − √5𝑙𝜎𝑡−1 + 𝜎𝑡−2 + 𝜃𝜎𝑡−1

>𝜏𝑟+2 − 𝜏𝑟+1 − √5(𝐹2𝑟+1 − 1)𝜎𝑟+1 + 𝜎𝑟

=𝜏𝑟+2 − 𝜏𝑟+1 − √5(𝜏
2𝑟+1 − 𝜎2𝑟+1

√5
− 1)𝜎𝑟+1 + 𝜎𝑟

=𝜏𝑟+2 − 𝜏𝑟+1 − 𝜏2𝑟+1𝜎𝑟+1 + 𝜎2𝑟+1𝜎𝑟+1 + √5𝜎𝑟+1 + 𝜎𝑟
=𝜏𝑟+2 − 𝜏𝑟+1 − (𝜏𝜎)𝑟+1𝜏𝑟 + 𝜎3𝑟+2 + (𝜏 − 𝜎)𝜎𝑟+1 + 𝜎𝑟
=𝜏𝑟+2 − 𝜏𝑟+1 − 𝜏𝑟 + 𝜎3𝑟+2 + 𝜏𝜎𝑟+1 − 𝜎2𝑟+1 + 𝜎𝑟
=𝜏𝑟+2 − 𝜏𝑟+2 + 𝜎3𝑟+2 − 𝜎𝑟 − 𝜎𝑟+2 + 𝜎𝑟
=𝜎3𝑟+2 − 𝜎𝑟+2 > 0
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If 𝑟 is even, 𝑡 ≥ 𝑟 + 3 and we have,

√5𝑥𝑡 =𝜏𝑡 − 𝜃𝜏𝑡−1 − √5𝑙𝜎𝑡−1 + 𝜎𝑡−2 + 𝜃𝜎𝑡−1

>𝜏𝑟+3 − 𝜏𝑟+2 − √5𝐹2𝑟+1𝜎𝑟+3 + 𝜎𝑟+1

=𝜏𝑟+3 − 𝜏𝑟+2 − √5(𝜏
2𝑟+1 − 𝜎2𝑟+1

√5
)𝜎𝑟+3 + 𝜎𝑟+1

=𝜏𝑟+3 − 𝜏𝑟+2 − 𝜏2𝑟+1𝜎𝑟+3 + 𝜎2𝑟+1𝜎𝑟+3 + 𝜎𝑟+1
=𝜏𝑟+3 − 𝜏𝑟+2 − (𝜏𝜎)𝑟+3𝜏𝑟−2 + 𝜎3𝑟+4 + 𝜎𝑟+1
=𝜏𝑟+3 − 𝜏𝑟+2 + 𝜏𝑟−2 + 𝜎3𝑟+4 + 𝜎𝑟+1
=𝜏𝑟+1 + 𝜏𝑟−2 + 𝜎3𝑟+4 + 𝜎𝑟+1 > 0

(3.4)

Under reversal, this shows that entries to the left of the pillar must alternate in sign. In a Lulu block, 𝑟 is
odd, meaning that the the central entries have an even index. Since negative terms only occur in odd
indices on the left side of the central entry and the fact that the signs alternate, the entries in the central
pillar are positive. In case of a Fifi block, 𝑟 even, entries in the central pillar can be positive, negative,
or zero.

Conway introduces a so called Fibonometry: For each standard trigonometry formula expressed as
a linear relationship between products of sines and cosines, there exists a corresponding relationship
between Fibonacci and Lucas numbers. In this relationship, Fibonacci numbers replace sines, Lucas
numbers replace cosines, and only the coefficients are altered.

The precise rule for replacing is that an angle 𝜃 = 𝑝𝛼 + 𝑞𝛽 + 𝑟𝛾 + ⋯ become a subscript 𝑛 =
𝑝𝑎 + 𝑞𝑏 + 𝑟𝑐 + ⋯. We then replace 𝑠𝑖𝑛(𝜃) by 𝑖𝑛

2 𝐹𝑛 and 𝑐𝑜𝑠(𝜃) by 𝑖𝑛
2 𝐿𝑛 and insert a factor of (-5) for

each successive pair of sines in a term (and so (−5)𝑘 if the term contains 2𝑘 or 2𝑘+1 sines in all). For
instance 𝑠𝑖𝑛4(𝜃) is replaced by (−5)2( 𝑖

𝑛

2 𝐹𝑛)
4. The simplest case is 𝐹𝑛𝐿𝑛 = 𝐹2𝑛 which corresponds to

2𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃) = 𝑠𝑖𝑛(2𝜃). By following the rule for replacing, we have:

2𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃) =𝑠𝑖𝑛(2𝜃)

2 ∗ 𝑖
𝑛

2 𝐹𝑛
𝑖𝑛
2 𝐿𝑛 =

𝑖2𝑛
2 𝐹2𝑛

𝑖2𝑛
2 𝐹𝑛𝐿𝑛 =

𝑖2𝑛
2 𝐹2𝑛

𝐹𝑛𝐿𝑛 =𝐹2𝑛
Note that this identity appeared in Fact 17 and was proven with the Binet formula. Hence we can

easily validate any equation of Fibonacci and Lucas numbers. We will give another example. From the
equation 𝑐𝑜𝑠(3𝜃) = 4𝑐𝑜𝑠3(𝜃) − 3𝑐𝑜𝑠(𝜃) we have:

𝑐𝑜𝑠(3𝜃) =4𝑐𝑜𝑠3(𝜃) − 3𝑐𝑜𝑠(𝜃)
𝑖(3𝑛)
2 𝐿3𝑛 =4(

𝑖𝑛
2 𝐿𝑛)

3 − 3𝑖
𝑛

2 𝐿𝑛
(−𝑖)𝑛
2 𝐿3𝑛 =

(−𝑖)𝑛
2 𝐿3𝑛 −

3𝑖𝑛
2 𝐿𝑛

(−𝑖)𝑛𝐿3𝑛 =(−𝑖)𝑛𝐿3𝑛 − 3𝑖𝑛𝐿𝑛
𝐿3𝑛 =𝐿3𝑛 − (−1)𝑛3𝐿𝑛

This formula is easily checked by using the identity 𝐿𝑛 = 𝜏𝑛 + 𝜎𝑛, 𝜏𝜎 = −1:

𝐿3𝑛 − (−1)𝑛3𝐿𝑛 =(𝜏𝑛 + 𝜎𝑛)3 − (−1)𝑛3(𝜏𝑛 + 𝜎𝑛)
=𝜏3𝑛 + 𝜎3𝑛 + (−1)𝑛3𝜏 + (−1)𝑛3𝜎 − (−1)𝑛3𝜏 − (−1)𝑛3𝜎
=𝜏3𝑛 + 𝜎3𝑛
=𝐿3𝑛
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Fact 19 In a series with seed 𝑠 that lies in block 𝑟, the central entry is congruent to (−1)𝑟𝑠𝐹𝑟−1(𝑚𝑜𝑑𝐹𝑟).

Proof. Let 𝑐 be the central entry of a series 𝑥𝑛 with seed 𝑠 that lies in block 𝑟. We need to show that
𝑐 ≅ (−1)𝑟𝑠𝐹𝑟−1(𝑚𝑜𝑑𝐹𝑟), i.e. 𝑐 = 𝑘𝐹𝑟+(−1)𝑟𝑠𝐹𝑟−1 for some 𝑘 constant integer. Let 𝑠 = 𝐹𝑎+𝐹𝑏+⋯+𝐹𝑧
to be the extended Zeckendorf representation of the seed 𝑠. It is called the extended Zeckendorf
because we added 𝐹𝑧 = 𝐹0 = 0 on the unique Zeckendorf representation; This does not change
the value of 𝑠. By shifting this expansion we obtain 𝑤 = 𝐹𝑎+1 + 𝐹𝑏+1 + ⋯ + 𝐹𝑧+1, a sum with value
𝑜𝑢𝑡(𝑠) + 𝐹𝑧+1 = 𝑜𝑢𝑡(𝑠) + 𝐹1 = 𝑜𝑢𝑡(𝑠) + 1, which is the wall term. Now it follows from the Fibonacci’s
rule that the term with index 𝑡 ∈ ℤ is the shifted expansion 𝑥𝑡 = 𝐹𝑎+𝑡 + 𝐹𝑏+𝑡 + ⋯ + 𝐹𝑧+𝑡. The central
term, which lies 𝑟 terms away from the seed term, is then 𝑐 = 𝐹𝑎−𝑟 + 𝐹𝑏−𝑟 +⋯ + 𝐹𝑧−𝑟. We then apply
the following Fibonometric identity to complete the proof: 𝐹𝑛−𝑟 = (−1)𝑟𝐹𝑛𝐹𝑟−1+(−1)𝑟+𝑛𝐹1−𝑛𝐹𝑟 (we can
validate this identity easily by applying the Binet formula).

𝑐 =𝐹𝑎−𝑟 + 𝐹𝑏−𝑟 +⋯+ 𝐹𝑧−𝑟
=((−1)𝑟𝐹𝑎𝐹𝑟−1 + (−1)𝑟+𝑎𝐹1−𝑎𝐹𝑟) + ((−1)𝑟𝐹𝑏𝐹𝑟−1 + (−1)𝑟+𝑏𝐹1−𝑏𝐹𝑟)+
⋯ + ((−1)𝑟𝐹𝑧𝐹𝑟−1 + (−1)𝑟+𝑧𝐹1−𝑧𝐹𝑟)

=𝑘𝐹𝑟 + (−1)𝑟(𝐹𝑎 + 𝐹𝑏 +⋯+ 𝐹𝑧)𝐹𝑟−1
=𝑘𝐹𝑟 + (−1)𝑟𝑠𝐹𝑟−1

Where 𝑘 = (−1)𝑟+𝑎𝐹1−𝑎 + (−1)𝑟+𝑏𝐹1−𝑏 +⋯+ (−1)𝑟+𝑐𝐹1−𝑐 is a constant integer.

Recall Fact 16, where it showed how the Fifi and Lulu blocks were sliced. For the following Facts
about the central pillar, we define the alternative segmentation as follows. In a Fifi block, instead of a
Fifi block is sliced into 𝐹𝑟 slices of height 𝐿𝑟, it is sliced into 𝐹𝑟 slices of height 𝐿𝑟. In a Lulu block (𝑟 odd),
the segmentation of the central pillar is the same as the slicing. Thus in every block 𝑟 is the central
pillar cut into 𝐹𝑟 segments of length 𝐿𝑟.

Fact 20 In a Fifi block 𝑟, the central entry is congruent to 𝑠𝐹𝑟−1 modulo 𝐹𝑟, and in the 𝑚𝑡ℎ segment
it lies in the range [𝑚 − 𝐹𝑟 , 𝑚).

Proof. That the central entry is congruent to 𝑠𝐹𝑟−1 modulo 𝐹𝑟 follows from the proof of Fact 19, because
𝑟 is even in a Fifi block. To prove the second statement, we need to show that the central entry 𝑐 lies
in the right range. For the proof, we work in the same setting as in Fact 11, where 𝑥𝑡 is defined with
𝑥0 = 𝑜𝑢𝑡(𝑙) + 1, 𝑥1 = −𝑙 with 𝑙 ≥ 0. In this case, 𝑥1 is our left seed, hence 𝑐 = 𝑥𝑟+1. We write
𝑙 = 𝐹2𝑟−1 +𝑚𝐿𝑟 − 𝑛, where 1 ≤ 𝑚 ≤ 𝐹𝑟 and 1 ≤ 𝑛 ≤ 𝐿𝑟. From equation 3.2 we have:

𝑥𝑟+1 = (𝜏𝑟+1 − 𝜃(𝜏𝑟 − 𝜎𝑟) − √5(𝐹2𝑟−1 +𝑚𝐿𝑟 − 𝑛)𝜎𝑟 + 𝜎𝑟−1)/√5
= [𝐹𝑟+1 − 𝜃𝐹𝑟 − (−1)𝑟(𝐹𝑟−1 +𝑚)] + [(𝑛 − 1)𝜎𝑟 −𝑚𝜎2𝑟 + (𝜎3𝑟−1 − (−1)𝑟𝜎𝑟−1)/√5]

(3.5)

Here, the first summand is the major term and the second one is a small correction. The major term
belongs to an open interval of length 𝐹𝑟, which is either (−𝑚, 𝐹𝑟−𝑚) or (2𝐹𝑟−1+𝑚, 𝐿𝑟+𝑚) according as
𝑟 is even or odd. Since 𝑟 is even in a Fifi block, we have that the major term equals 𝐹𝑟+1−𝜃𝐹𝑟−𝐹𝑟−1−𝑚.
For the lower bound, we have

𝐹𝑟+1 − 𝜃𝐹𝑟 > 𝐹𝑟−1 (0 < 𝜃 < 1)

So
𝐹𝑟+1 − 𝜃𝐹𝑟 − 𝐹𝑟−1 −𝑚 > 𝐹𝑟−1 − 𝐹𝑟−1 −𝑚 = −𝑚

For the upper bound, note that 𝐹𝑟+1 − 𝐹𝑟−1 = 𝐹𝑟. It follows that

𝐹𝑟+1 − 𝜃𝐹𝑟 − 𝐹𝑟−1 −𝑚 = 𝐹𝑟 − 𝜃𝐹𝑟 −𝑚 > 𝐹𝑟 −𝑚

For 𝑟 even, we will show that the small correction is positive and less than 1, showing that if the reverse
has seed 𝑙, then its central entry in a Fifi block, and for the series with seed 𝑙, the central entry lies in
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the interval (−𝑚, 𝐹𝑟 −𝑚].

(𝑛 − 1)𝜎𝑟 −𝑚𝜎2𝑟 + (𝜎3𝑟−1 − 𝜎𝑟−1)/√5 > −𝑚𝜎2𝑟 + 𝜎
3𝑟−1

√5

>𝐹𝑟𝜎2𝑟 +
𝜎3𝑟−1

√5

>𝜏
2𝑟𝜎2𝑟 + 𝜎4𝑟

√5
+ 𝜎

3𝑟−1

√5

=1 + 𝜎
4𝑟 + 𝜎3𝑟−1

√5
> 0

And we also have

(𝑛 − 1)𝜎𝑟 −𝑚𝜎2𝑟 + (𝜎3𝑟−1 − 𝜎𝑟−1)/√5 <𝑛𝜎𝑟 − 𝜎
𝑟−1

√5
<𝐿𝑟𝜎𝑟 − 𝜎𝑟−1
=𝜏𝑟𝜎𝑟 + 𝜎2𝑟 − 𝜎𝑟−1
<1 + 𝜎0 − 𝜎0 = 1

However, reversal changes the sign of the central entry in a Fifi block, and for the series with seed
l, the central entry lies in the interval [𝑚 − 𝐹𝑟 , 𝑚).

Fact 21 In a Lulu block, say block 𝑟 (𝑟 odd), the central entry is congruent to 𝑠𝐹𝑟−2 modulo 𝐹𝑟 and
in the 𝑙𝑡ℎ slice it lies in the range [2𝐹𝑟−1 + 𝑙, 𝐿𝑟 + 𝑙). However, the last central entry in a Lulu block is
aberrant and takes the value 𝐿𝑟 + 𝑙 rather than 𝐿𝑟.

Proof. First note that fromFact 19 for a seed 𝑠 if 𝑟 odd, the central entry 𝑐 is congruent to−𝑠𝐹𝑟−1(𝑚𝑜𝑑𝐹𝑟).
This is equivalent as saying that 𝑐 = 𝑘𝐹𝑟 − 𝑠𝐹𝑟−1 for some integer 𝑘. We use 𝐹𝑟−1 = 𝐹𝑟 −𝐹𝑟−2 to obtain
𝑐 = 𝑘𝐹𝑟 − 𝑠(𝐹𝑟 − 𝐹𝑟−2) = (𝑘 − 𝑠)𝐹𝑟 + 𝑠𝐹𝑟−2 where 𝑘 − 𝑠 is again an integer. It follows that the central
entry is congruent to 𝑠𝐹𝑟−2 modulo 𝐹𝑟.
We will complete the proof using the proof of Fact 20. We use the letter 𝑚 (like in the proof of Fact 20)
for the 𝑙𝑡ℎ slice, because in a Lulu block (𝑟 odd), the segmentation of the central pillar is the same as
the slicing. We will first show that the small correction in equation 3.5 is still bounded in magnitude by
1, but this time it can take both positive and negative signs.

(𝑛 − 1)𝜎𝑟 −𝑚𝜎2𝑟 + (𝜎3𝑟−1 + 𝜎𝑟−1)/√5 >𝐿𝑟𝜎𝑟 − 𝐹𝑟𝜎2𝑟 +
𝜎3𝑟−1

√5

=𝜏𝑟𝜎𝑟 + 𝜎2𝑟 − 𝜎
𝑟 − 𝜎3𝑟

√5
+ 𝜎

3𝑟−1

√5

> − 1 + 𝜎
3 + 𝜎2

√5
> −1

And

(𝑛 − 1)𝜎𝑟 −𝑚𝜎2𝑟 + (𝜎3𝑟−1 + 𝜎𝑟−1)/√5 <(𝜎3𝑟−1 + 𝜎𝑟−1)/√5
<𝜎3𝑟−1 + 𝜎𝑟−1 < 1

The major term now becomes 𝐹𝑟+1−𝜃𝐹𝑟+𝐹𝑟−1+𝑚. The lower bound is found by using the inequality
𝐹𝑟−1 < 𝐹𝑟+1 − 𝜃𝐹𝑟 since 0 < 𝜃 < 1. So

𝐹𝑟+1 − 𝜃𝐹𝑟 + 𝐹𝑟−1 +𝑚 > 𝐹𝑟−1 + 𝐹𝑟−1 +𝑚 = 2𝐹𝑟−1 +𝑚

For the upper bound, we use the identity 𝐿𝑛 = 𝐹𝑛−1 + 𝐹𝑛+1. We have

𝐹𝑟+1 − 𝜃𝐹𝑟 + 𝐹𝑟−1 +𝑚 = 𝐿𝑟 − 𝜃𝐹𝑟 +𝑚 < 𝐿𝑟 +𝑚
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This places the central entry in the interval [2𝐹𝑟−1 + 𝑚, 𝐿𝑟 + 𝑚]. However, the only positive term in
the small correction is the last one: (𝜎3𝑟−1 + 𝜎𝑟−1)/√5 = 𝜎𝑟−1(1 + 𝜎2𝑟)/√5. If this is to outweigh the
negative contribution of −𝜃𝐹𝑟, we have that 𝜎𝑟−1(1 + 𝜎2𝑟)/√5 > 𝜃𝐹𝑟. We have

𝜃 <𝜎
𝑟−1(1 + 𝜎2𝑟)/√5

𝐹𝑟

=𝜎
𝑟−1(1 + 𝜎2𝑟)/√5
(𝜏𝑟 − 𝜎𝑟)/√5

=𝜎
𝑟−1(1 + 𝜎2𝑟)
(𝜏𝑟 − 𝜎𝑟)

= − 𝜎2𝑟−1

Since (𝜏𝑟 − 𝜎𝑟) ∗ −𝜎2𝑟−1 = 𝜎𝑟−1 + 𝜎3𝑟−1 = 𝜎𝑟−1(1 + 𝜎2𝑟).
Note that we can write 𝜃 = −𝜎+𝜏𝑙−𝑜𝑢𝑡(𝑙). Then from the proof of Fact 3, we know that 𝑜𝑢𝑡(𝑙)−𝜏𝑙 =

𝜎𝑎 + 𝜎𝑏 + ⋯ where 𝑎, 𝑏,⋯ are the indices of the Fibonacci numbers of the Zeckendorf notation of 𝑙.
Then we have for block 𝑟,

𝜎𝑎 + 𝜎𝑏 +⋯ ≤𝜎2𝑟 + 𝜎2𝑟−2 +⋯+ 𝜎2
=𝜎2(𝜎2𝑟−2 +⋯+ 1)

=𝜎2 1 − 𝜎
2𝑟

1 − 𝜎2

=𝜎2 1 − 𝜎
2𝑟

−𝜎
= − 𝜎 + 𝜎2𝑟+1

So we have the inequality 𝜃 ≤ −𝜎 + 𝜎 − 𝜎2𝑟+1 = 𝜎2𝑟+1. It follows that the only seed in block 𝑟 that
could give such a small value of 𝜃 must have the Zeckendorf expansion 𝐹2𝑟 + 𝐹2𝑟−2 +⋯+ 𝐹2. We will
show that the series grown from this seed is the Lucas multiple 𝐹𝑟+1 × 𝐿. So this gives the last row in
a Lulu block 𝑟 and the last central entry in a Lulu block is indeed aberrant and takes the value 𝐿𝑟 + 𝑙.
We first show that 𝐹2𝑟 + 𝐹2𝑟−2 +⋯ + 𝐹2 = 𝐹𝑟+1 × 𝐿𝑟, which shows that this sum indeed is the seed of
the Lucas multiple 𝐹𝑟+1 × 𝐿. By using Fact 17 we have:

𝐹2𝑟 + 𝐹2𝑟−2 +⋯+ 𝐹2 = 𝐹𝑟+1 × 𝐿𝑟
= (𝐹𝑟−1 + 𝐹𝑟) × 𝐿𝑟
= 𝐹𝑟−1𝐿𝑟 + 𝐹𝑟𝐿𝑟
= 𝐹2𝑟−1 − 1 + 𝐹2𝑟

The term 𝐹2𝑟 cancels out and it is left to show that 𝐹2𝑟−2 + 𝐹2𝑟−4 +⋯ + 𝐹2 = 𝐹2𝑟−1 − 1. By using that
𝐹𝑛 − 𝐹𝑛+1 = −𝐹𝑛−1 we have:

𝐹2𝑟−2 + 𝐹2𝑟−4 +⋯+ 𝐹2 = 𝐹2𝑟−1 − 1
𝐹2𝑟−2 + 𝐹2𝑟−4 +⋯+ 𝐹2 = 𝐹2𝑟−1 + 𝐹2𝑟−3 − 𝐹2𝑟−3 + 𝐹2𝑟−5 − 𝐹2𝑟−5 +⋯− 1

𝐹2𝑟−2 − 𝐹2𝑟−1 + 𝐹2𝑟−4 − 𝐹2𝑟−3 +⋯+ 𝐹2 − 𝐹3 = −𝐹2𝑟−3 − 𝐹2𝑟−5 −⋯− 1
−𝐹2𝑟−3 − 𝐹2𝑟−5 −⋯− 1 = −𝐹2𝑟−3 − 𝐹2𝑟−5 −⋯− 1

Secondly, we show that 𝐹2𝑟+1 +𝐹2𝑟−1 +⋯+𝐹3 + 1 = 𝐹𝑟+1 × 𝐿𝑟+1. Then the sum on the left side of the
equation is the wall of the Lucas multiple 𝐹𝑟+1 × 𝐿. From this, we can conclude that the series grown
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from the seed is the Lucas multiple 𝐹𝑟+1 × 𝐿. By using Fact 17 we have:

𝐹2𝑟+1 + 𝐹2𝑟−1 +⋯+ 𝐹3 + 1 = 𝐹𝑟+1 × 𝐿𝑟+1
𝐹2𝑟+1 + 𝐹2𝑟−1 +⋯+ 𝐹3 + 1 = 𝐹2𝑟+2

𝐹2𝑟−1 +⋯+ 𝐹3 + 1 = 𝐹2𝑟+2 − 𝐹2𝑟+1
𝐹2𝑟−1 +⋯+ 𝐹3 + 1 = 𝐹2𝑟
𝐹2𝑟−3 +⋯+ 𝐹3 + 1 = 𝐹2𝑟 − 𝐹2𝑟−1
𝐹2𝑟−3 +⋯+ 𝐹3 + 1 = 𝐹2𝑟−2

⋯
1 = 1

Fact 22 The central entry of a series in a Lulu block is adjacent to the two terms of the series that
have the smallest absolute values

Proof. If a series belongs to a Lulu block, its central entry is positive (Fact 18) and is larger than its
right-hand neighbor (because its left neighbor is negative). But we know that the central entry is smaller
than all other entries to its right by the Fibonacci’s rule, since the terms on the right of the central entry
are positive (Fact 18). Hence if we consider the reversal, Fact 22 immediately follows.

Fact 23 The center is the term with smallest absolute value in any series in a Fifi block.

Proof. In a Fifi block, a similar argument as for Fact 22 shows that the term with the smallest absolute
value that lies at or to the right of the central column is either the central entry or the term two places to
its right. From Fact 20, the central entry is bounded by 𝐹𝑟 − 1 in absolute value. We will show that the
entry two places to the right of the central entry is larger than 𝐹𝑟 in a Fifi block 𝑟 even. Recall inequality
3.4 for 𝑡 ≥ 𝑟 + 3:

√5𝑥𝑡 > 𝜏𝑟+1 − 𝜏𝑟−2 + 𝜎3𝑟+4 + 𝜎𝑟+1

For the entry two places to the right of the central entry (𝑥𝑟+3) we have to show that,

√5𝑥𝑟+3 > 𝜏𝑟+1 − 𝜏𝑟−2 + 𝜎3𝑟+4 + 𝜎𝑟+1 > 𝜏𝑟 − 𝜎𝑟 (3.6)

Then after dividing both sides by √5 and using the Binet formula our Fact follows. The second inequality
is verified as follows:

𝜏𝑟+1 − 𝜏𝑟−2 + 𝜎3𝑟+4 + 𝜎𝑟+1 > 𝜏𝑟 − 𝜎𝑟
𝜏𝑟+1 − 𝜏𝑟 − 𝜏𝑟−2 > −𝜎3𝑟+4 − 𝜎𝑟+1 − 𝜎𝑟

𝜏𝑟−1 − 𝜏𝑟−2 > −𝜎3𝑟+4 − 𝜎𝑟+2
𝜏𝑟−3 > −𝜎3𝑟+4 − 𝜎𝑟+2

The second inequality follows immediately because the left side is positive and the right side is negative
since 𝑟 is even.

Fact 24 A nonpalindromic series has two centers, its ”fi center” 𝑋𝑓 and its ”lu center” 𝑋𝑙, where 𝑓
and 𝑙 differ by 1. Its multiples 𝑚𝑋𝑛 will be centered at either 𝑚𝑋𝑓 or 𝑚𝑋𝑙 according as they lie in Fifi or
Lulu blocks.

Proof. Let 𝑋𝑛 be a nonpalindromic series. If 𝑋𝑛 is in a Lulu block with the ”lu center” 𝑋𝑙, the central
term is adjacent to the two terms of the series that have the smallest absolute values (Fact 22). If the
multiples 𝑚𝑋𝑛 is in a Lulu block again, then 𝑚𝑋𝑙 is again the central term, since adjacent terms are
still the smallest in absolute value. If the multiple 𝑚𝑋𝑛 is in a Fifi block, then the central term is either
𝑚𝑋𝑙−1 or 𝑚𝑋𝑙+1 by Fact 23. Those two terms are the candidates for the ”fi center” and only differ by 1
from the ”lu center” 𝑋𝑙.
On the other hand, If the series 𝑋𝑛 is in a Fifi block with the ”fi center” 𝑋𝑓, then it should be the smallest
term in absolute value (Fact 23). If the multiples 𝑚𝑋𝑛 is in a Fifi block again, then the central entry is
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𝑚𝑋𝑓. If the multiple 𝑚𝑋𝑛 is in a Lulu block. Then by Fact 22, the central entry cannot be 𝑚𝑋𝑓 and it is
either𝑚𝑋𝑓−1 or𝑚𝑋𝑓+1. Those two terms are the candidates for the ”lu center” and only differ by 1 from
the ”fi center” 𝑋𝑓.
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Figure A.1: The Empire State Building: blocks 0 to 4 and part of block 5 (Conway, 2016)
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Figure A.2: The Empire State Building: the rest of block 5 (Conway, 2016)
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