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Abstract

The NIST Post-Quantum Cryptography standardisation process has called for new algorithms,
for the purpose of finding and standardising new cryptographic algorithms, able to withstand
attacks enabled by future quantum processing progress. Digital signature schemes are fundamental
for validating authenticity and integrity of digital documents. In the pages that follow, algorithms
currently submitted in the NIST process, which rely on multivariate equations, will be investigated.
This thesis will examine their underlying structure, known attacks, as well as their required storage
and efficiency.

1 Introduction

1.1 Background
Quantum computing is a topic actively being researched by both academic and private institutions.
Quantum computers should be able to run any classical algorithm and, at the same time, provide
exponential speedups for some specific "hard" problems.

One such algorithm is Shor’s algorithm, exponentially faster than any known current algorithm
for decomposing a number into its prime factors [1]. This exponential speedup is troublesome for
a cryptographic system depending on the hardness of decomposing numbers, such as the public key
system RSA.

Public key cryptographic systems are especially vulnerable to be broken by quantum algorithms,
since they rely on the lack of a fast solution for NP hard problems (such as prime factor decomposition);
quantum algorithms may be able to compute a fast solution, effectively breaking the encryption.

While the number of qubits that most quantum computers is still low and can’t yet break RSA,
ciphertexts that can’t be maliciously decrypted now, can be stored by an attacker and decrypted at a
later date; something known as Retrospective decryption. Thus, the search for a cryptographic system
that is immune to attacks from quantum algorithms has been started by the United States National
Institute for Standards and Technology, as well as various EU authorities and institutions [2].

A digital signature system is a cryptographic algorithm that enables a user to generate a signature
for a given document and for another user to authenticate the author and verify the integrity of said
document. The signer typically needs to keep a secret key, that enables him to quickly generate
signatures, secret which keeps away a malicious attacker (who only has access the public key) for a
long amount of time.

For the purpose of finding and standardising quantum-resistant public key cryptographic systems,
NIST has started a standardisation process in 2017. It is currently in its third round, with 7 finalists and
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8 alternate candidates [3]. As such, there is no consensus yet on the best digital signature cryptographic
system.

This research will not cover all digital signature cryptographic systems, but we will focus on the
category of schemes based on multivariate equations. Algorithms in this category base their security
on the NP-hardness [4] of solving a general system of multivariate equations. Such schemes usually
generate a trapdoor, a way of quickly solving the system of equations knowing the secret key, while
keeping it difficult for an attacker to find a solution. In more detail, the solution X ′ of F̄ (X ′) = D
(where F̄ is the system of multivariate equations and D is the document to be signed) is usually called
the digital signature. In order to verify the validity of the signature, a verifier will simply check the
validity of the solution X ′ in F̄ (X ′) = D.

The goal of our research is to analyse systems based on multivariate schemes. We aim to compare
and classify them on multiple criteria, such as underlying features, memory and time efficiency, security
and any known vulnerabilities. The following research questions follow from our goal.

1.2 Research Question
Investigate post-quantum multi-variate signature cryptographic systems as submitted in NIST. Com-
pare security, storage and time efficiency. Analyse similar/distinguishing features, advantages and
disadvantages.

1.3 Sub-questions
1. How can multivariate signature systems be classified, amongst those submitted to NIST Post-

Quantum Cryptography Standardisation?

2. What are the distinguishing features between the systems?

3. What are the similar features between the systems?

4. How secure are the multivariate signature systems submitted for the NIST standardisation pro-
cess?

5. How fast/memory efficient are the multivariate signature systems?

6. Are there any potential vulnerabilities and drawbacks of the multi-variate signature systems?
Can we find ways to fix said drawbacks?

1.4 Methodology
First we will look for all multivariate signature schemes algorithms submitted in the NIST Post-
Quantum Cryptography Standardisation [5] [6] [7] [8] [9] [10].

Next we will read the original papers, analyse other reviews, as well as analyse the related works
the NIST algorithms are inspired by [3].

Next we will write a high level comparison between them (look for distinguishing features as well
as similar structure). Furthermore, we will compare the algorithms based on their security and on any
known vulnerabilities.

Next, we will compare the memory and time necessary to run the NIST algorithms. We will use
our previous knowledge to explain and compare these results. We will use the found results in order
to formulate a preliminary opinion on the quality of each algorithm.

We will be looking for drawbacks and propose a way of fixing said drawbacks.
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1.5 Structure
In section 1 we have introduced the research background and have formulated the research questions
that need to be answered. We have also described the research methodology, how we aim to collect
data to motivate the answers to our research questions. In sections 2 and 3, we will analyse the NIST
algorithms as well as the older algorithms they are inspired by. We will explain the mathematical
principles of each algorithm, how signing and verifying works and what attacks have been discovered
so far.

Sections 4 and 5 will contain a comparison between the time and memory constraints of all NIST
multivariate digital signature algorithms. Using the previous knowledge, we will try and motivate the
found results and talk about potential trade offs supported by the schemes.

Section 6 contains a proposed improvement of one of the schemes, while section 7 will contain a
final discussion pondering the advantages and disadvantages.

Section 8 includes an ethical reflection upon the carried out research and section 9 contains future
possible work and a conclusion.

2 Analysis of related work
As part of the analysis, we will be doing a high level description of the algorithms. We will focus on
the underlying mathematical problem of each algorithm a general overview on how it generates public
and secret keys as well as any known security vulnerabilities.

Before we start with the NIST submissions, we will analyse some older algorithms that have influ-
enced present day work. This is because many of our present day algorithms can be described as some
variant of an old algorithm.

2.1 Bipolar systems
Most algorithms we will analyze fall into the category of bipolar multivariate systems [11]. This means
that the public key is usually a map from Kn to Km, meaning that the public key takes n variables and
outputs m polynomials over a finite field K (each polynomial depending on n variables). Algorithms in
this category usually have a low running time for computing F̄ (X ′) = D (corresponding to the verifier
checking the signature X ′ for a document D ) and F−1(D) = X ′(corresponding to the signer using
their secret key to generate a signature) for some secret equation F . After finding such a function, the
signer usually picks 2 random affine maps S, T so that the final public key

F̄ = S ◦ F ◦ T

hides the secret inner polynomial F .
We will now briefly describe the signing and verifying process. As previously mentioned F̄ is the

public key with F, S, T composing the secret key. In order to sign a document D = (x1, · · · , xn), the
signer uses the secret to calculate

X ′ = F̄−1(D) = T−1 ◦ F−1 ◦ S−1(D)

which we claimed should be easy, knowing the secret key. The signer will offer X ′ as the signature
accompanying D.

The verifier will use the public key F̄ to check whether F̄ (X ′) is indeed F̄ (F̄−1(D)) = D. The
security of this signing process is usually assuming that a malicious party, knowing only the public key
F̄ , will run into the difficulty of solving a multivariate systems of equations [4], thus will be unable to
invert F̄ .
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2.2 Matsumoto Imai
We will start with one of the first digital signature systems based on multivariate equations. As
many others after it, this cryptosystem is based on the "hardness" of inverting, or solving a system
of multivariate equations. The C* algorithm introduced by Matsumoto and Imai [6] describes how to
"systematically" construct a system of low degree equations (so that verifying the plublic key is fast)
with high degree inverses (so that a malicious party has a hard time finding the secret key).

2.2.1 Secret and Public keys

As detailed in the original paper, the secret key consists of multiple parts; first, S and T are two affine
bijections S, T : Kn → Kn, meant to hide the structure of our inner system of equations. µ and φ
together represent K-isomorphisms, from the field K to the finite field Kn. At the core of this process,
the system of equations K are raised to the power 1 + qθi where θ is chosen such that F̄ will be an
invertible map. This process can be summed up by the equation

pk = F̄ = TR ◦ µ ◦ φ ◦ F ◦ φ−1 ◦ µ−1 ◦ SR(x)

while the secret key is sk = (S, T, θ).

2.2.2 Signing and Verifying

The security is based on the difficulty of inverting the public key; if one owns the secret key, one can
invert T, S, µ, φ and F , which will lead to a fast computation of the inverse and, thus, of generating a
signature.

More specifically, in order to sign a document, the signer first generates the public and secret keys.
In order to sign a document D, the signer finds the inverse of F̄ , which should be easy, knowing the
secret (invertible) components T, S, µ, φ and F . Hence, the signature will be X ′ = F̄−1(D). Anybody
who wants to verify the signature will use the public key, F̄ , to compute F̄ (X ′) and check whether it
is or is not equal to the document D. The signature and verification process are fast, while trying to
compute F̄−1 without the secret key should be hard for any malicious attacker [4].

2.2.3 Attacks

A paper by Patarin in 1995 [12] detailes a linearization attack in order to retrieve the secret key. There
are variations of the Matsumoto Imai scheme, developed in order to patch up this vulnerability but
we will not cover them in depth [13].

2.3 Oil Vinegar
In 1999, Patarin and Kipnis [14] develop a new multivariate signature scheme, based on the idea of
"Oil-Vinegar" polynomials. An Oil-Vinegar polynomial is of the form

Fk(x) =

v∑
i=1

o∑
j=1

aijkx
′
ixj +

v∑
i=1

v∑
j=1

bijkx
′
ix
′
j +

o∑
i=1

cikxi +

v∑
i=1

dikx
′
i + ek

The variables aijk, bijk, cik, dik, ek are the secret coefficients, x1, · · · , xo are called the "oil" variables
and x′1, · · · , x′v are called the "vinegar" variables. The name hints at the fact that the oil variables do
not mix, which will be helpful in solving this system of equations.

2.3.1 Secret and Public keys

Similarly to Matsumoto Imai [6], the scheme uses a secret bijective affine function S : Kn → Kn, in
order to hide the underlying structure of the equations.
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The underlying difficulty of this scheme is once again the difficulty [4] of inverting the public key
F̄ = F ◦ S without knowing both F and S separately.

Thus, Oil-Vinegar the secret key is the combination (F, S), enabling the signer to easily invert the
public key F̄ .

2.3.2 Signing and Verifying

While Matsumoto Imai [6] relied on several other secret functions (µ, θ, φ), an Oil Vinegar polynomial
can be inverted as is. The signer of a document D = (y1, · · · , yn) will try and find

F (x1 · · ·xo, x′1 · · ·x′v) = (y1 · · · yn)

While this is a multivariate equation, the clever trick is to fix (guess) the values of the vinegar vari-
ables (x′1, · · · , x′v). Since our polynomials contain no oil-oil terms and because the terms are at most
quadratic, guessing the vinegar variables will transform our problem into solving a system of linear
univariate equations (where one could use Gaussian reduction). While some guesses might lead to no
solutions, the signer could try again, knowing that the chance of no solutions is relatively low.

After finding a solution for

F (x1, · · · , xo, x′1, · · · , x′v) = (y1, · · · , yn)

the signer outputs the signature X ′ = S−1 ◦ (x1, · · · , xo, x′1, · · · , x′v). The verifier will have to compute
F (X ′) and check if it is indeed equal to the signed document D = (y1, · · · , yn). As before, computing
the signature X ′ without knowing the entire secret key is difficult to a malicious attacker [4].

2.3.3 Attacks

While the original scheme had the same number of oil and vinegar variables ("balanced"), security
considerations indicate that the number of vinegar variables should be roughly n2/2 [14].

2.4 HFE
Hidden Field Equations [5] are yet another variation of the Matsumoto and Imai scheme. It features
a similar secret key, composed from two affine bijections S and T , meant to hide the structure of the
inner multivariate equations

F (X) =
∑

aij ∗Xqθij+qφij +
∑

bk ∗Xqεk + c

2.4.1 Secret and Public keys

Schemes relying on hidden field equations, generally keep S, T and F as the secret keys. This enables
the signer, the owner of the secret, to be able to compute the inverse functions S−1, T−1 in order to
find the solution to the equation F (X ′) = D′. Finding a solution to this equation typically involves a
specialised algorithm that runs in log polynomial time (e.g. Berlekamp algorithm [15]).

2.4.2 Signing and Verifying

The security of this scheme relies on the difficulty of inverting the public key F̄ = T ◦F ◦ S, while the
signer knowing the T, F and S has an easy time inverting and finding a solution F (X ′) = D where D
is the document to be signed. In order to invert the polynomials in F , Patarin points to the Berlekamp
root finding algorithm [15], which is expected to run in log polynomial time [5].

The process for signing and verifying is fairly straightforward. The signer will use the secret keys
T, F and S to find

F̄−1(D) = S−1 ◦ F−1 ◦ T−1(D) = X ′

where D is the document to be signed and X ′ is the resulting signature. The verifier will use the public
key F̄ to check whether F̄ (X ′) is indeed equal to the signed document D.
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2.4.3 Attacks

A point of weakness is detailed in the same paper by Patarin, where some choices for the polynomials
F will leave the scheme more vulnerable to an affine multiple attack [5].

As a notable variant of this scheme, HFEv uses the HFE form of the equations F , while introducing
"vinegar" variables. More precisely, Patarin introduces v variables a′ = (a′1, · · · , a′v); the scheme uses
these variables to express bk as a secret random linear function depending on a′ and c as a secret
random quadratic function depending on a′. This will transform the HFE polynomial into a "oil
vinegar" like polynomial.

F (X) =
∑

aij ∗Xqθij+qφij +
∑

b(a′1, · · · , a′v) ∗Xqεk + c(a′1, · · · , a′v)

This form is inspired by Oil-Vinegar schemes in that it enables the signer to invert the polynomial by
guessing the vinegar variables and solving the resulting linear univariate polynomials.

3 Analysis of NIST algorithms

3.1 Rainbow
We will now start analysing multivariate digital signature schemes that have been submitted to the
NIST Post-Quantum Cryptography standardisation process [3].

Rainbow [10], as the authors describe it, can be described as a generalised version of the Oil-Vinegar
[14] scheme we have discussed earlier. It addresses security concerns, while at the same time promising
a smaller signature size.

As was the case in oil-vinegar schemes, rainbow uses polynomials of the form

yi =
∑

i∈Ol,j∈Sl

aij ∗ xi ∗ xj +
∑
i,j∈Sl

bij ∗ xi ∗ xj +
∑
i∈Sl+1

ci ∗ xj + ei

where xi, i ∈ Ol are the oil variables and xi, i ∈ Sl are the vinegar ones.
To note here, is the construction of the Ol and Sl sets. More precisely, the cardinality of the vinegar

sets Sl keeps increasing
S1 ∈ S2 ∈, · · · ,∈ Su

and the oil sets Ol are constructed from the vinegar sets.

Oi = Si+1 − Si, i = 1, · · · , u− 1

This can more easily be seen in Figure 1, taken from the original paper [10], where [] indicate the
vinegar variables and () indicate the oil variables.

Figure 1: Rainbow layers
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3.1.1 Secret and Public keys

As is the case for many of our schemes, the secret key consists of the polynomials F and two invertible
affine linear maps S and T . In more detail, each rainbow layer (as seen in the figure above) has oi
polynomials with coefficients chosen randomly, where oi is equal to the increase of vinegar variables
(oi = vi+1 − vi). S and T are invertible linear maps (important for the signature process) which serve
the purpose of hiding the structure of F . Thus, the secret key components are S, T and F and the
public key is F̄ = S ◦ F ◦ T .

3.1.2 Signing and Verifying

To sign a document, the signer needs to use his secret key, in order to find a solution for the equation
F̄ (X ′) = D, where D is the document to be signed. The secret key is helpful, in the sense that
the signer can invert both S and T , which reduces the problem to solving F (X ′) = D′. Inverting
this system of multivariate equations will rely on the special layered Oil-Vinegar structure we have
described earlier. The inverting process starts at the first layer of o1 equations and, similarly to simple
Oil-Vinegar, randomly chooses values for the vinegar variables. This will turn the equations at this
layer into easy to solve linear, univariate equations [16].

After solving the first layer, the algorithm now knows the previously guessed x1, · · · , xv1 as well
as the previous oil variables xv1+1, · · · , xv2 . These variables are precisely the new vinegar variables of
the second layer, which will enable us to find solutions for these now linear, univariate equations. This
will go on, either until we find values for all x1, · · · , xn, or until there exists no solution at a certain
layer, case in which we restart the process with a new guess for the first layer x1, · · · , xv1 .

The final signature X ′ for a document D is composed of the variables x1, · · · , xn. In order to check
the validity of the signature for a given document, the verifier will simply use the public key F̄ and
check whether F̄ (X ′) is indeed equal to the document D.

3.1.3 Attacks

The Rainbow scheme is one of the most secure algorithms in terms of attacks targeting it. As it is
based on Oil-Vinegar schemes, multiple attacks [17] [18] have been analysed and determined to be no
more threatening than a brute force attack. It is surely still an open question, but the security of the
well studied Oil-Vinegar scheme gives us confidence.

3.2 LUOV
LUOV [9] is another multivariate digital signature scheme that is based on classical Oil-Vinegar
schemes. LUOV aims to drastically reduce the size of the public keys, by "lifting" the public key
from the field F2 to Fr2. This extension will lead to all coefficient being 0 or 1, thus lowering the
public key size. The paper authors point to Beullens and Preneel [19] for the theoretical background
of this "lift" not affecting security, but attacks exploiting this property have been found, increasing
the parameters by at least 40 percent [20].

3.2.1 Secret and Public keys

Similarly to other Oil-Vinegar schemes, LUOV uses a trapdoor F̄ = F ◦ T where T is a secret map
and F is a collection of Oil-Vinegar polynomials of the form

Fk(x) =

v∑
i=1

o∑
j=1

aijkxixj +

v∑
i=1

v∑
j=1

aijkxixj +

o∑
i=1

bikxi +

v∑
i=1

bikxi + ck

where v represents the number of the vinegar variables and o variables are called the oil variables.
Regular Oil-Vinegar schemes store the coefficients of F, T as the secret key, and P as the public key,

but that might be an issue for memory limited devices. LUOV fixes this issue by using a psuedorandom
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number generator, which enables to algorithm to generate the needed coefficients by storing a seed
and a small part of the public key F̄ . We will analyse this in more detail in sections 4 and 5. More
specifically, the secret key is a private seed, which is used by the pseudorandom number generator to
generate a public seed and the linear secret map T . The public key consists of the public seed and a
matrix Q2, both used by the algorithm in order to calculate the public map F̄ .

3.2.2 Signing and Verifying

The security of the algorithm relies on the difficulty of finding a solution X ′ for the system of mul-
tivariate equations F̄ (X ′) = D where D is the document to be signed, without knowing the secret
components of F̄ . The signer, possessing the secrets F, T will be able use the inverse T−1 in order to
solve X ′ = F−1 ◦T−1(D). In order to find a solution to X ′ = F−1(D′) the signer will use the property
of the Oil-Vinegar polynomial that the oil variables do not "mix" together. This will enable the signer
to guess the v vinegar variables and then quickly solve a system of now linear univariate equations
[16]. The solution X ′ is the signature of the document D and can be verified by using the public map
F̄ and checking whether F̄ (X ′) = D.

3.2.3 Attacks

One of the improvements LUOV brings is "lifting" the public key: usual Oil-Vinegar public keys are
defined as P : Fn2 → Fm2 (meaning a system of m equations with n variables over a finite field of size
2); LUOV defines its public key as P : Fn2r → Fm2r , using a larger extension field F2r . This is inspired
by [19]: the algorithm still chooses its public and secret keys over the field F2, but when representing
it over the larger field F2r , the coefficients become easier to store, while the security of the scheme
should stay unaffected.

An attack by Ding [20] shows that this "lift" can be generally insecure, as for some r, a smaller
subfield F2d can be found where d is a divisor of r. This will reduce the complexity of our attack and
thus decrease the security of our scheme.

3.3 GeMSS
GeMSS is another digital signature algorithm based on multivariate equations. It is most closely
related to the HFE variant, HFEv, promising fast signing and verifying times at the cost of a larger
public key size. HFE schemes have been studied in depth without the discovery of any generic attacks
against them.

3.3.1 Secret and public keys

The secret key of GeMSS [7] is composed of two invertible maps S, T , meant to hide the structure of
the HFEv-like polynomial

F (X) =
∑

0≤j<i<n,2i+2j<D

AijX
2i+2j +

∑
0≤i<n,2i≤D

βi(v1, · · · , vv)X2i + γ(v1, · · · , vv)

The v variables v1, · · · , vv are called the vinegar variables and, importantly, all βi are linear trans-
formations while γ is quadratic. As the original paper authors point out, if the vinegar variables are
fixed, the polynomial becomes a univariate HFE[5] polynomial, that can be solved in quasi-linear time:
GeMSS uses the Berlekamp algorithm for finding the roots of a univariate polynomial [15].

Thus, the secret key consists of the invertible secret maps S, T and the n HFEv polynomials in
n+ v variables. The public key F̄ is obtained by taking the first m polynomials of

T ◦ F ◦ S(X, v1, · · · , vn+v)

The public key hides the vinegar variables in the central HFEv polynomials, thus making it difficult
for an attacker to solve a system of multivariate equations [4].
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3.3.2 Signing and verifying

As is the case in most digital signature systems based on multivariate equations, signing a document D
involves the signer to find a solution to F̄ (X ′) = D. This is normally an NP hard problem [4], but the
signer should be able to make the problem easier by knowing the secret key, F, S and T . Specifically,
GeMSS first appends n − m values to the document D (so that there are n equations again) and
computes T−1. Now, in order to solve the multivariate equation

F (X, v1, · · · , vv) = D′

the signer randomly guesses the vinegar variables V = v1, · · · , vv and is now tasked with solving the
univariate HFE equation F (X,V ) = D′. GeMSS uses the Berlekamp algorithm for quickly solving
univariate equations [15]. A found solution X̄ is finally composed with S−1 to give the final signature

X ′ = S−1 ◦ F−1 ◦ T−1(D)

In order to verify the signature X ′ accompanying the document D the verifier will use the public
key F̄ and check whether it is a solution to the equation F̄ (X ′) = D.

3.3.3 Attacks

As GeMSS is heavily influenced by HFE, one of the most studied families of multivariate digital
signature schemes, none of the proposed attacks are able to harm its security. NIST mentions progress
in the efficiency of the MinRank attack [18], which still does not contradict the theoretical security of
GeMSS. As such, the security of this algorithm is one of its advantages.

3.4 MQDSS
MQDSS [8] is a digital signature scheme based on multivariate equations, but is dissimilar to all other
algorithm we have analyzed so far. It does rely on the hardness of solving a system of multivariate
equations F , but its main idea relies on the polar form G(x, y) where

G(x, y) = F (x+ y)− F (x)− F (y)

This polar form enables the algorithm to make use of the Sakumoto-Shirai-Hiwatari 5-pass IDS [21],
where the secret and public keys, s and v respectively, are split, resulting in two "summands" which,
by themselves, don’t give any information of the secret s.

3.4.1 Secret and public keys

Similar to other digital signature schemes aiming to reduce the size of their keys, MQDSS uses a
pseudorandom number generator, in order to be able to store the secret key sk as a seed. This is used
as input for the random generator, which outputs a seed SF which further generates the multivariate
system F , the input of the system s and the vectors r0, t0 and e0 which will be necessary for the signing
process.

Thus, the public key is (SF , F (s)) where SF is the seed used to generate F (seeds are used repeatedly
in order to reduce key sizes).

The secret key remains the secret sk, meaning the variables r0, t0, e0 and the system input s.

3.4.2 Signing and verifying

The process of signing a document and verifying said signature is unlike other multivariate digital
signature schemes we have analysed so far. It is based on identification scheme protocols, protocols in
which the verifier and signer exchange challenges and responses in order to validate the authenticity
of the signature.
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In particular, MQDSS is inspired by the Fiat-Shamir transform [22] : knowing a predetermined
challenge function H(pk,M), the signer will be able to use the secret key sk in order to return as
signature a valid response resp (its validity depending on the nature of the challenge function).

In order to verify a signature, the Fiat-Shamir transform processes H(pk,M) and resp and deter-
mines if the challenge was satisfied.

In the case of MQDSS, the challenge revolves around the polar form and the secret splitting of the
secret key sk = r0 + r1 as well as subsequent splits αF (r0) = e0 + e1 and αr0 = t0 + t1. The security
of this signature relies on the ability to send some coefficients, without revealing anything about the
secret key sk.

3.4.3 Attacks

While MQDSS still relies on the hardness of solving a system of multivariate equations, its construction
leaves it open to a set of different attacks. In particular, a recent forgery attack [23] takes advantage
of a vulnerability of identification schemes, namely the ability of the attack to guess one of the two
challenges.

This attack increases both the necessary key sizes and number of needed rounds by almost 40
percent [23], thus severely harming the efficiency of this scheme.

4 Comparison of key sizes

name security level parameters |pk| (KB) |sk| (KB) |sig| (byte)

GeMSS128 1 (128, 513, 174, 12, 12, 4) 417 15 32
Rainbow 1 (GF(16), 36, 32, 32) 154 99 66
LUOV 1 (7, 57, 197) 12 0.03 239
MQDSS 1-2 (128, 31, 48, 135) 0.05 0.02 20854

GeMSS192 3 (192, 513, 265, 22, 20, 4) 1304 40 51
Rainbow 3 (GF(256), 68, 32, 36) 841 597 164
LUOV 3 (7, 83, 283) 35 0.03 337
MQDSS 3-4 (192, 31, 64, 202) 0.06 0.02 43728

GeMSS256 5 (256, 513, 354, 30, 33, 4) 3046 84 72
Rainbow 5 (GF(256), 96, 36, 64) 1841 1343 212
LUOV 5 (7, 110, 374) 82 0.03 440

Table 1: Key sizes

We will now be looking at the different key sizes of all NIST multivariate digital signature algo-
rithms. We have separated them by the NIST security levels and we have included the the parameter
sets chosen by the authors of the respective papers [8] [10] [9] [7]. For most schemes there are additional
modes of operation with some kind of trade off between performance and key sizes; we will address
them but haven’t included all of them in our table. Our findings can be found in Table 1.

4.1 GeMSS
Starting with GeMSS, it offers very small signature sizes, a characteristic shared with the other oil-
vinegar scheme Rainbow. This is due to only needing to find a solution in Fo+v2 to the equation
F̄ (X ′) = D. The secret key is relatively small, the difference between it and Rainbow being the smaller
inner polynomial F . The size of the public key is the biggest drawback of GeMSS, disadvantage that is
not fixed by the BlueGeMSS and RedGeMSS variants (which drastically decrease signing performance
at the cost of marginally bigger keys).
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4.2 Rainbow
Rainbow, the other unbalanced oil-vinegar scheme, has similar key sizes to GeMSS. Its public key size
is smaller, due to the simpler form of the inner polynomial F (oil-vinegar polynomial versus a HFEv
polynomial). We note that the secret key is larger, but this is less of a drawback: the memory of a
device signing a document is less stringent than the memory of the many devices who wish to verify
it. Additionally, the Rainbow variant CZ-Rainbow is able to further reduce the public key size by a
factor of 3 at the cost of marginally longer key generation times.

4.3 LUOV
LUOV offers the smallest public key size, amongst the oil-vinegar schemes. This is due to the lifting
assumption, the fact that the public key F̄ is lifted from Fn2 → Fm2 to Fn2r → Fm2r . This lift reduces
the size of the public key coefficients, but has been a relatively unstudied security assumption. More
so, LUOV uses both private and public seeds to generate the respective keys. This further reduces the
size of the otherwise lengthy public key, as well as the secret key. This improvement comes at the cost
of lengthier signature and verification procedures, trade off which we will investigate in section 5.3.

4.4 MQDSS
While the authors of MQDSS did not include parameters for the most difficult security level, we can
see the key sizes are not like other typical multivariate digital signature schemes. The underlying Fiat-
Shamir transform [22] for 5-pass Identification Schemes includes attaching all challenges and responses
in the signature, thereby increasing its size significantly, compared to the other schemes. While, it does
offer promisingly small public and secret key sizes, NIST [24] deemed it most similar but inferior to the
best symmetric-based signature schemes, category of schemes we have not analysed in our research.

5 Comparison of running times

security key generation sign verification
name level parameters (cycles) (cycles) (cycles)

GeMSS128 1 (128, 513, 174, 12, 12, 4) 1.9 G 6.7 G 29 M
Rainbow 1 (GF(16), 36, 32, 32) 32 M 319 K 41 K
LUOV 1 (7, 57, 197) 13 M 4 M 3 M
MQDSS 1-2 (128, 31, 48, 135) 1 M 27 M 20 M

GeMSS192 3 (192, 513, 265, 22, 20, 4) 7.9 G 15.1 G 89 M
Rainbow 3 (GF(256), 68, 32, 36) 197 M 1 M 203 K
LUOV 3 (7, 83, 283) 60 M 14 M 10 M
MQDSS 3-4 (192, 31, 64, 202) 3 M 85 M 62 M

GeMSS256 5 (256, 513, 354, 30, 33, 4) 20.5 G 25.3 G 172 M
Rainbow 5 (GF(256), 96, 36, 64) 436 M 2 M 362 K
LUOV 5 (7, 110, 374) 136 M 28 M 21 M

Table 2: Number of cycles on Reference platform

We will now analyse the different performance of the multivariate digital signature schemes pre-
sented in NIST. As in the previous section, we have included the reference parameters the author of
the original papers have chosen themselves [8] [10] [9] [7]. We have included only the standard schemes,
but will briefly talk about some of the variants the authors have proposed. All running times have
been taken from the original papers, running on processors with a similar architecture. We will be
looking at the number of CPU cycles, averaged out over a large amount of runs by the authors (due
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security key generation sign verification
name level parameters (cycles) (cycles) (cycles)

GeMSS128 1 (128, 513, 174, 12, 12, 4) 52 M 1.2 G 150 K
Rainbow 1 (GF(16), 36, 32, 32) 11 M 85 K 42 K
LUOV 1 (7, 57, 197) 2 M 1 M 1 M
MQDSS 1-2 (128, 31, 48, 135) 1 M 4 M 2 M

GeMSS192 3 (192, 513, 265, 22, 20, 4) 273 M 3.5 G 439 K
Rainbow 3 (GF(256), 68, 32, 36) 60 M 348 K 162 K
LUOV 3 (7, 83, 283) 6 M 3 M 3 M
MQDSS 3-4 (192, 31, 64, 202) 3 M 9 M 6 M

GeMSS256 5 (256, 513, 354, 30, 33, 4) 844 M 7.1 G 943 K
Rainbow 5 (GF(256), 96, 36, 64) 217 M 857 K 423 K
LUOV 5 (7, 110, 374) 13 M 6 M 4 M

Number of cycles on architecture supporting AVX2

Table 3: Number of cycles on architecture supporting AVX2

to the deterministic nature of some schemes). The results can be found in Table 2. Additionally, we
have included the performance of the schemes on a newer Haswell/Skylake CPU architecture. This
new architecture enables AVX2 instructions, which optimize some vector operations. In the following
subsection we will only discuss the results of the optimised Table 3.

5.1 GeMSS
GeMSS offers key generation and signature verification similar to Rainbow. They similarly have
to generate the invertible maps S, T and the inner polynomial F . While F requires more storage,
generating it is comparably fast. The signature verification process similarly has to check the validity
of a signature X ′ in the equation F̄ (X ′) = D. The drawback of this schemes lies in the complicated
signature process, due to the application of the Berlekamp algorithm in finding a solution to the HFE
polynomial (after guessing the vinegar variables) [7] [15].

5.2 Rainbow
On the other hand the Rainbow scheme offers a very small signature time due to the simpler nature
of the underlying polynomial F̄ . After guessing the vinegar variables in the first layer, the algorithm
repeatedly performs Gaussian elimination in order to get the final signature X ′. We attribute the
speed of the signature process to the conceptual simplicity of the performed Gaussian elimination [16].
We note that the performance of CZ-Rainbow, variant which reduces the size of the public key by a
factor of 3, is similarly fast, with the exception of a much slower verification time.

5.3 LUOV
LUOV offers mixed performance, when compared to the fast Rainbow scheme. Key generation is
fast, due to the usage of pseudorandom number generators and storing the used seeds. This comes at
the cost of higher signature and verification times: the generation of the invertible matrix T and the
inner polynomial F is delayed to these later phases. This is similar to the performance of Compressed
Rainbow, which also uses pseudorandom number generators in order to obtain smaller key sizes at the
cost of slower performance.
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5.4 MQDSS
MQDSS offers fast key generation times, due the small amount of variables (r0, t0, e0) that need to be
generated but also due to the pseudo random number generator that is used to delay the creation of
some vectors in the signature phase. Verification time is slower than other schemes we have looked
at: this is due to the verifier no longer checking the signature X ′ in F̄ (X ′) = D, but rather a more
complex 5-pass identification scheme. The verifier receives all challenges and answers and must parse
them several times in order to check its validity.

6 Proposed improvement of GeMSS
In the previous sections, we covered Oil-Vinegar schemes, category which contains two NIST schemes,
Rainbow and GeMSS. In this section, we will focus on the similarities between the 2 algorithms and
propose an improvement to the GeMSS public key generation.

GeMSS is a digital signature algorithm based on an HFEv polynomial. The underlying structure
is different than that of Rainbow in the structure of the inner polynomial F . Some of the drawbacks
include large signing times (due to the complexity of solving F (X ′) = D′) as well as large public key
sizes.

Rainbow is an Oil-Vinegar scheme: it has a similar structure (two invertible secrets S, T and a
polynomial F ) which contributes to a large public key.

We would like to draw attention to the Compressed Rainbow variant, variant which offers greatly
reduced public and secret key sizes at the cost of slower signature generation and verification. This
trade off is accomplished by randomly choosing S, T using a pseudo random number generator. The
public key becomes the seed used in the generator and a small part (30 percent) of the previous public
key. This procedure is similarly used in LUOV.

We propose a variant of GeMSS which has smaller key sizes at the cost of a slower signing procedure,
similar to the version of Compressed Rainbow. We note that the key generation algorithm detailed
in the original paper already samples S, T, F at random, giving us confidence in the ability to use a
pseudo random generator. This would include changing the secret and public keys to store the used
seeds spub, spriv. Furthermore, the signing and verification subroutines need to be changed such that
the scheme generates S, F, T and F̄ respectively, from the given public and private seeds.

This approach would further hinder the performance of the GeMSS signing and verification process,
but could be very important in instances which necessitate small public keys (e.g. Certificate chains).

7 Discussion
In this section, we will analyse all multivariate digital signature algorithms submitted to NIST and
some of their variants. We will summarise our findings and formulate advantages and disadvantages
to each. We will mention any found attacks and will reason which use cases suit which algorithm.

7.0.1 Rainbow

The Rainbow scheme [10] is based on the well studied Oil-Vinegar scheme. It is fast and by building
upon such a well studied problem, its security has not been exploited. Its main disadvantage is the
large size of its public key, disadvantage that is addressed by its slightly slower variant CZ-Rainbow.
CZ-Rainbow uses a pseudorandom number generator in order to not store the entire public key F̄ , but
rather the used seed and a small portion of it, reducing the size of the key by 70 percent. Being able
to choose this trade off, in the cases where storage is limited, gives us confidence that Rainbow can
function as a general purpose digital signature scheme.
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7.0.2 LUOV

LUOV [9] is another Oil-Vinegar scheme, with its main advantage being the very small size of the
(usually large) public key. In order to achieve this, LUOV uses a pseudorandom number generator
in order to not store the entire public key, but rather a part of it and the used seed. This increases
signature and verification performance, which might be important in some cases. Additionally LUOV
lifts the public key from Fn2 → Fm2 to Fn2r → Fm2r . This further reduces the size of the public key,
but the security of this assumption is not well studied. As a response to the NIST submission, a
differential attack [20] takes advantage on the possibility of a smaller subfield for some parameter
choices. The authors have mitigated this attack in the latest version of LUOV, but NIST did consider
this assumption insufficiently studied [24]. We consider this algorithm to be similar to Compressed
Rainbow, but the lift security assumption needs to be additionally studied.

7.0.3 GeMSS

GeMSS [7] is a scheme based on Hidden Field Equations. The small size of its signature and the
security of the well studied HFE scheme are two main advantages.

The key sizes are similar to Rainbow, but its BlueGeMSS and RedGeMSS variants do not offer a
similar trade off between a smaller public key size at the cost of slower performance. The two variants
only affect the choices of the parameters, and enable a trade off between an even larger public key for
the purpose of a faster signing process.

Thus, as other Oil-Vinegar schemes, GeMSS suffers from large public keys. GeMSS also suffers
from slow signature time, due to the complicated operations needed to find a solution to the underlying
equation F (X ′) = D. We consider this algorithm to be inferior to Rainbow, with similar but more
accentuated drawbacks.

7.0.4 MQDSS

MQDSS [8] is a multivariate digital signature scheme, constructed upon a SSH 5-pass Identification
Scheme [21]. Thus, it does not possess some of the common characteristics of the other schemes. Its
key sizes are small and performance is some of the best in the group. Having said this, its signature
size is vastly higher than the other multivariate schemes: NIST compares [24] it most closely with
symmetrical key signature schemes, outside the scope of our study. Furthermore, the security of the
scheme is mathematically proved, but it is vulnerable to a forgery attack, common attack against
algorithms relying on Identification Schemes. Without having done further investigation in another
category of digital signature schemes, we believe the opinion of NIST [24], that the algorithm has
inferior performance to other candidates, while also being insecure.

8 Responsible Research
The authors of this research were not affiliated directly or indirectly with any of the stakeholders
of the analysed algorithms or with the government agency carrying out the standardisation process.
Nonetheless we acknowledge some factors which might influence the integrity of the carried out research.
Namely, the discussion weighing the advantages and disadvantages of each algorithm could have been
influenced by the plethora of other opinions from related work. The data used in the research is
publicly available and reproducible, but there could be implicit bias favoring the algorithms which
have performed better in other analyses.

As far as the ethical aspect of the performed research, the investigation was done theoretically,
with no human experiments. The goal of the research is to improve digital signature schemes, schemes
which play role in validating authorship of documents, thereby preventing instances of fraud, forgery
or tampering. The research has investigated attacks against said algorithms, for the purpose of dis-
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qualifying potentially insecure algorithms. More so, none of the analysed algorithms are in present
use, so the investigation of possible attacks cannot, yet, enable unethical agents.

9 Conclusions and Future Work
The purpose of this report was to investigate digital signature schemes based on multivariate equations
as submitted in the NIST standardisation process. This paper contains an in depth overview of
related work, especially on schemes which have influenced the current NIST schemes. The research
has focused on the underlying mathematical problems, highlighting similarities and differences between
the algorithms. Furthermore, the schemes were compared on the basis of their key sizes, performance,
as well as known attacks damaging their security. A point of improvement was suggested for one of
the algorithms, leaving the implementation and documentation of the results to future research. This
study made some preliminary recommendation on the overall quality of analysed algorithms, while
acknowledging the need for further investigation.
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