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NON-TYCHONOFF e-COMPACTIFIABLE SPACES 

K. P. HART AND J. VERMEER 

ABSTRACT.We construct a non-Tychonoff space X which is e-compactifiable, thus 
answering a question of S. Hechler. We also answer a question of R. M. Stephenson: 
whether there exists a Tychonoff space, the largest e-compactification of which has a 
noncompact semiregularization. 

1. Introduction. All spaces are Hausdorff. In [He] S. Hechler introduced the class 
of e-compactifiable spaces, i.e. spaces which admit an e-compactification. He posed 
the question whether there exist non-Tychonoff e-compactifiable spaces. We show 
that such spaces exist. In [St] R. M. Stephenson observed that an e-compactifiable 
space has a largest e-compactification ex ,  and he asked whether the space (ex),-the 
semiregularization of ex-is always compact. We show that this need not be the 
case, even if the space X is assumed to be Tychonoff. The example of the space we 
present is based on an example of J. Chaber. 

2. Preliminary definitions and theorems. 
DEFINITION2.1 [He]. Let D be a dense subspace of X. X is said to be e-compact 

with respect to D if each open cover of X contains a finite subcollection that covers 
D. If so, Xis  called an e-compactification of D and D is called e-compactifiable. 

Observe that within this terminology the expression "let X be an e-compact 
space" is meaningless. From this definition it readily follows that an e-compactifica-
tion of a space X is an H-closed extension. The following theorem shows that the 
converse need not be true. 

THEOREM2.2 [He]. Let pX be an extension of X. Then the following statements are 
equivalent: 

(i)pX is an e-compactificationof X. 
(ii) Every ultrafilter on X has an accumulation point in pX. 

(iii) pX is H-closed and X U {q) is regular, for all q E pX. 

It follows that an e-compactifiable space is regular. The converse is not the case. 
From 2.2(iii) we can conclude that each noncompact %closed space (i.e. a regular 
space whlch is closed in every regular space in which it is embedded, see [BS]) is an 
example of a regular non-e-compactifiable space. It is clear that every Tychonoff 
space is e-compactifiable, and in [He] the question appeared whether the converse 

Received by the editors February 21, 1983. 
1980 Muthemutlcs Subject Clussificut~on.Primary 54C10, 54D20, 54620; Secondary 54D25 
Kev words undphruses. e-compactifiable spaces, perfect maps. 

91983 American Mathematical Soclety 
0002-9939/83 $1.00 + $.25 per page 



726 K P HART AND J .  VERMEER 

holds. In the next section we show that this is not the case. We were unable to 
characterize the class of e-compactifiable spaces in terms of some separation 
property. 

The following properties of e-compactifiable spaces are known. 

THEOREM2.3 [He].(i) Let pX be an e-compactification of X. Then cl,, Y is an 
e-compactificationof Y, for each Y C X. 

(ii) Let p, XI be an e-compactificationof XI ( i  E I ). Then II p,XI is an e-compactifica-
tion of IIX,. 

Recall that a subset U C X is regular-closed if clint U = U. The collection of 
regular-closed subsets of Xis  a closed base for some topology on X. X supplied with 
this topology is called the semiregularization of X, to be denoted by X,. X is called 
semiregular if Xis  homeomorphic to X,. 

In [St] R. M. Stephenson observed that Theorem 2.3 implies that each e-com-
pactifiable space X has a largest e-compactification ex,  i.e. if a X  is an e-compactifi-
cation of X then the map id: X - a X  has a continuous extension over ex.  

THEOREM2.4. (i) [St] Let X be an e-compactifiable space. Then X is an open 
subspace of e x  and e x  - X is a closed discrete subspace of ex.  

(ii) Let f :  X - Y be a contirzuous map and assume that both X and Y are 
e-compactifiable. Then there is a continuous extension ef: e x  - eY off. 

PROOF.(ii) According to 2.3(ii) we have that e x  X eY is an e-compactification of 
X X Y. Define 2 = {(x, f(x)): x E X) C X X Y. 2 is a closed subset of X X Yand 
II.r 2:2 - X is a homeomorphism. Since ~ l , ~ , , ,2 is an e-compactification of 2, 
the map (II ,I $)-I: X - 2 has an extension e(lI ,I 2)-I :  e x  -- cl,,,,, 2.Define 
e f=  II,, 0 e(IIxr 2 ) - I .  

As a method to answer the question of S. Hechler, R. M. Stephenson asked the 
following question. 

"Let X be an e-compactifiable space. Is the space (ex) ,  always compact?" 
Our example of a non-Tychonoff e-compactifiable space provides a negative 

answer to this question. A partial positive answer to Stephenson's question is the 
following 

THEOREM2.5 [St]. Let X be a regular space. If disjoint regular closed sets are 
contained in disjoint open subsets (in particular, if X is normal), then X is Tychonoff 
(hence e-compactifiable) and is compact. O 

Our second example shows that the answer is negative if X is only assumed to be 
Tychonoff. The following simple lemma is one of the keys to the construction. 

LEMMA2.6. Let X be a Tychonoffspace. Then (ex),  is compact iff the map e(id): 
e x  - p X  is injective. 

PROOF.Observe that Xis  a subspace of (ex) ,  and that the map e(id): (ex),  - PX 
is also continuous. Then we have "- ", since (ex) ,  is a compactification of X and 
" +- " holds because (ex),  is minimal Hausdorff and the topology of ,L3X is weaker 
than that of (ex),. 
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3. The results. The following theorem is the key to our construction of a 
non-Tychonoff e-compactifiable space. 

THEOREM3.1. Perfect preimages of e-compactifiable spaces are e-compactifiable. 

PROOF.Let X be an e-compactifiable space and let f: Y - X be a perfect map. We 
construct an e-compactification a Y  of Y in the following way. The underlying set of 
aY is Y @ ( e x  - X) and a topology is defined by 

(i) Y is open in aY; 
(ii) For p E aY - Y = e x  - X the collection %,,= {{p} u f - ' (X n U): U open 

in e x  &p E U }  is taken as a local base in p E aY. 
One readily sees that aY is a Hausdorff extension of Y. To see that aY is an 

e-compactification of Y, consider an ultrafilter Ton  Y. Thenf(T) = { f (F ) :  F E '3) 
is an ultrafilter on X: hence f ( 3 )  has an accumulation point q in ex. If q E X then, 
since f is perfect, $7has an accumulation point in f -'(q). If q E e x  - X, then 
f ( F )  n U, # 0 for each open neighborhood U, of q in e x  and F E '3. Since 
f ( F )  C X it follows that F f' f -'(u,n X) # 0, i.e. q-considered as an element of 
aY-is an accumulation point of 5. 

In [Ch] J. Chaber constructed examples of non-Tychonoff perfect preimages of 
Tychonoff spaces, and so these examples establish the existence of non-Tychonoff 
e-compactifiable spaces. From 2.3(i) it follows that subspaces of perfect preimages of 
Tychonoff spaces are e-compactifiable. We were not able to construct e-compactifia-
ble spaces outside this particular class. Observe that a space X in this class (with 
/ X / >  I )  admits nonconstant real-valued continuous functions. 

Question 3.2. Do there exist e-compactifiable spaces on which every real-valued 
continuous function is constant? 

Let us now answer the question of R. M. Stephenson. whether there exist 
Tychonoff spaces X for which (ex), is not compact. Our strategy is as follows. We 
construct a Tychonoff space X, a point p E P X  - X and an extension a X  of X such 
that lax- XI> 1 and such that the map f: ax- X U  {p} ( C  pX)  defined by 
f (x)  = x ( x  E X) and f ( a X  - X )  =p is perfect. It then follows that a X  is 
e-compactifiable. and since e a X  can be considered as an e-compactification of X, we 
can conclude from the diagram below that the map e(id): e x  + P X  is not injective. 
(e ,  is the extension of id: X - a X  C e a X  to e x  (see 2.4(iii)).) (e, is the extension of 
id: X U {p} - P(X U { p ) )to e ( X  U {p).) Indeed, the diagram shows that e(id) = 
e, 0 ef 0 e l; hence e(id)-'(p) > 1. 
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The example we present is almost identical to the one constructed by J. Chaber. 
The only difference lies in the fact that we want the point p to lie in the tech-stone 
remainder of X. For the reader's convenience we give the construction in detail. 

EXAMPLE3.3. Put T = ( a ,  + 1) X ( a ,  + 1) - {(w,, a , ) ) .  The set of pairs of the 
form (a ,  a , )  E T will be called the left edge of T. The set of pairs of the form 
( a , ,  a )  E Twill be called the right edge of T. Define the space T", for n E N, as the 
space obtained by identification in the sum e l 'L ,T( i )  where T(i) = T X {i), of the 
right edge of T(i) with the left edge of T(i + 1). Let cp,,: @,'i,T(i) -- T"  be the 
corresponding identification-map. For each 0 G k G n we define an open subset 
U; c T", by 

int cpl,(T(l)) ( k  = O) ,  
int cp , , (~ (k )  U T(k + 1)) ( k  = l , . .  . , n  - 1). 

int %,(T(n)) ( k  = n) .  

Finally we define X = el:= ,T". 
It is well known that I PT" - T" I= 1, for each n E N. For a < w ,  put Z, = 

[a ,  w , ]  X [a ,  w,] - { ( a , ,  a , ) ) .  Then {Z,: a < w ,) is a base for the unique nonfixed 
z-ultrafilter on T. If we define, for rr E N, Z: = q, l(@,l~l(Z,X (i))) then {Zi :  
a < a , )  is a base for the unique nonfixed z-ultrafilter Z" on T". 

Next we define a point p E PX - X. Let G be a nonfixed ultrafilter on N. For 
G E G and a < w ,  put Z(G, a )  = U {Z:: n E G). It is easy to verify that the 
collection {Z(G, a) :  G E G,a < a , )  is a base for a nonfixed z-ultrafilter :Ton X. Let 
p E P X  - X be the point in DX corresponding to 9,i.e. { p )  = n{cl,,, F: F E IF). 
In the space X U  { p )  we have the following: If U is open in X then U U { p )  is a 
neighborhood of p in X U { p )  iff 3G E G3a < o, such that Z(G, a )  C U. (*) 

(This is not completely trivial, since X is not normal. However, it follows easily by 
considering the space 2 = @:=
 , clp, T" C PX, which is a-compact (hence normal). 
We omit the details.) 

Let us now introduce a topology on the set X U [0, 11 ([O, 11 is the unit interval) in 
the following way. For t E [O,l] let {F(t));"=, be a countable local base at t. For 
t E [0, 11, I E N, G E G,a < o, define 

(Here [n.s] denetes the greatest integer not greater than n.s.) And next we put: 
Xis  open in X U [0, 11. 
For t E [0, 11 the collection {U(t, 1, G, a) :  1 E N, G E G, cu < w,) is defined to be a 

local base of t in X U [0, 11. 
Observe that [0, 11 is embedded in X U [0, 11. It is easy to check that X U [0, 11 is a 

Hausdorff space. In fact our topology has more open sets than Chaber's. 
Claim. Let U be a subset of X U [0, 11 which contains [0, 11. Then U is neighbor- 

hood of [0, 11 in X U  [0, 11 iff 3G E G3a < w ,  such that Z(G, a )  C U. 
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PROOF.Assume Z(G, a )  C U. Then, for t E [0, 11, t E U(t, I, G, a )  C Z(G, a ) .  
Hence [0, 11 c int U. On the other hand, assume [0, 11 C int U. Then, Vt E [0, 11 
31(t) E N3G(t )  E G3a(t) < w l  such that 

Since [0, 11 is compact, [O, 11 can be covered by finitely many of these sets. Say 
[O, 11 C U,k_,U(t,,I(t,), G(t,), a(t ,))  ( C  U). Put G = n L 1 ~ ( t , )( E  9 )  and a = 
sup{a(t,): i d  k )  (< u l ) .  We claim that Z(G, a )  c U;=,U(t,, I(t ,) ,G(t,) ,a( t , ) )  
( C  U).  Choose p E Z(G, a), say p E Z," for some n E G. Since T n  = U nk = o  U"k ?  

there exists k G n such that p E U,". Choose s E [0, I ]  such that [n.s]= k. If 
s E U(t,, I(t,), G(t,), a( t , ) )  then, since G C G(t,)  and Z, C Z,( ,,,, we conclude that 
p E Z(a(t,))  f' U,:',,,l for "some" n E G(t,), i.e. p E U(t,, I(t,), G(t,),a(t ,)) .  The 
claim follows. 

From the claim and from (*) we conclude that the space obtained from X U [0, 11 
by identifying [0, 11 to a point is homeomorphic to X U {p ) .  Obviously the map f: 
X U [O,l] - X U { p )  defined by f (x )  = x (x E X)  and f [ O , l ]  = p is a perfect map. 
Hence, all the required properties are satisfied. 

REMARK3.4. It is well known that each space Tn ,  as defined in 3.3, has a unique 
(nontrivial) regular extension, namely PT". It follows that cl,,Tn -.PTn ,  for all 
n E N. Consider the space 2= C13~==,PTn.Then X c2 C ex.  2 is a a-compact, 
hence normal, and according to 2.5 this implies that (e*), = = PX. Since 
(ex) ,  f PX, we conclude that the map id: 2 - excannot  be extended continuously 
to e i .  At first glance this may seem a contradiction, but it is not. One cannot use 
2.4(ii) to ensure that such an extension should exist since e x  is not e-compactifiable 
( e x  is not even semiregular), nor the fact that e 2  is the largest e-compactification, 
since e x  is not an e-compactification of 2.(A nonfixed ultrafilter on 2 - X does not 
have an accumulation point in ex.) 
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