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a b s t r a c t 

A new approach to modelling free surface flows is developed that enables, for the first time, 3D consis- 

tent non-hydrostatic baroclinic physics that wets and drys in the large aspect ratio spatial domains that 

characterise geophysical systems. This is key in the integration of physical models to permit seamless 

simulation in a single consistent arbitrarily unstructured multiscale and multi-physics dynamical model. 

A high order continuum representation is achieved through a general Galerkin finite element formulation 

that guarantees local and global mass conservation, and consistent tracer advection. A flexible spatial 

discretisation permits conforming domain bounds and a variable spatial resolution, whilst atypical use of 

fully implicit time integration ensures computational efficiency. Notably this brings the natural inclusion 

of non-hydrostatic baroclinic physics and a consideration of vertical inertia to flood modelling in the full 

3D domain. This has application in improving modelling of inundation processes in geophysical domains, 

where dynamics proceeds over a large range of horizontal extents relative to vertical resolution, such as 

in the evolution of a tsunami, or in urban environments containing complex geometric structures at a 

range of scales. 

© 2017 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

v  

t  

t  

fi  

2  

h  

a

 

p  

t  

p  

s  

i  

g  

A  

b  

o  
1. Introduction 

Flooding has huge impacts on the economy of a region and

the livelihood of its people. Significant progress has been made

to model and predict the impact of these inundation events, cap-

turing the character of their source and resultant behaviour. Many

challenges still exist and in particular in concurrently simulating

the physical processes involved from the large planet-scale forcings

down to the small human scales of an urban environment. This is

highlighted in the review ( Medeiros and Hagen, 2013 ) as one of the

key limitations of existing wetting and drying (WD) models. In an

urban flooding scenario for example, modelled water column depth

could be down to 1cm over a horizontal range of tens or hundreds

of kilometres, leading to a very high aspect ratio of ∼ 10 −7 . 

Inundation flow models typically use simplified formulations

of the Navier–Stokes equations, commonly the Saint–Venant shal-

low water equations (SWEs). These simplifications make assump-

tions, such as a hydrostatic pressure and well-mixed water column,
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hich are not necessarily valid in the whole range of scales rele-

ant to the inundation. Non-hydrostatic processes become impor-

ant, for example, in the dispersive effects of short waves where

he ratio of vertical and horizontal scales of motion are not suf-

ciently small. The study of Oishi et al. (2013) considering the

011 T ̄ohoku tsunami in Japan, found it was critical to include non-

ydrostatic effects to correctly model processes on the small scale,

 point further highlighted by Cui et al. (2014) . 

Typically, multi-physics over a broad range of scales is ap-

roached using multiple model runs at a hierarchy of scales such

hat domains are nested, with varying complexity and included

hysics. As an alternative, effort s to integrate the physics and

cales of separate models into single Earth system models is grow-

ng, where it is important individual components function in a

eneral context, and are not too restrictive in discretisation choice.

lthough this can be achieved weakly with offline communication

etween models, the ‘holy grail’ is a flexible single model capable

f simulating a range of physics and scales, with inherit consis-

ency and conservation. 

This work pushes the boundaries in two key regards: Firstly,

dding a novel approach to WD in the ‘thin-film’ family solving a

ull 3D pressure rather than the usual SWE approximation in very

hallenging acutely large aspect ratio domains typical of geophys-
 under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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cal systems — a first for WD. Secondly, this brings the modelling

f WD processes together with non-hydrostatic baroclinic flow dy-

amics in a single simultaneous and seamless system model. This

s critical for tightly coupled processes, for example in tracking

rounding line movement under an ice shelf ocean cavity, that is

trongly influenced by non-hydrostatic and baroclinic ocean flows. 

Accurately tracking an inundation interface is technically chal-

enging. Of the Eulerian type WD approaches (reviewed in

edeiros and Hagen, 2013 ), where the underlying spatial discreti-

ation is predominantly independent of space and time such that

atrix operators can be cached and there is no need for com-

lex contour tracking, there are four types: element removal, lim-

ting the computational domain to the wet region (see Casulli and

telling, 1998 , UnTRIM Casulli and Walters, 20 0 0; D’Alpaos and

efina, 20 07; Defina, 20 0 0 and the WASH123D code Lin et al.,

004 ); thin film approaches (see Bates and Anderson, 1993 , the

VCOM model Chen et al., 2003 , POM model Oey, 2005 and also

egnudelli and Sanders, 2006 ); depth extrapolation from wet to

ry cells ( Bradford and Sanders, 2002; Lynett et al., 2002 ); and

egative depth ( Heniche et al., 20 0 0; Jiang and Wai, 20 05 ) applied

n ROMS ( Warner et al., 2013 ), including the use of porous media

elow the sea bed ( vant Hof and Vollebregt, 2005; Ip et al., 1998 )

nd bathymetry movement ( Kärnä et al., 2011 ). 

Underlying model discretisations largely steer this choice, with

he first by far the most common for explicit time stepping mod-

ls, applied in QUODDY, ADCIRC, MIKE21, Delft3D and in one of

he first Eulerian methods ( Leendertse, 1970 ), subsequently re-

iewed in Balzano (1998) . Whilst robust, stability constraints re-

trict movement of the interface to one cell per time step ( �t ),

ince the Courant number must be maintained less than one in

rying regions ( Stelling and Duinmeijer, 2003 ) to ensure a non-

egative bound on water depth, a strict limitation on �t ( Walters,

005 ). Depth extrapolation also suffers this restriction with ele-

ents switching states ( Medeiros and Hagen, 2013 ), whereas thin

lm and negative depth options can be time-integrated implicitly. 

For spatial discretisations, WD procedures were first applied to

tructured meshes ( Casulli and Stelling, 1998; Stelling and Duin-

eijer, 2003 ), with updates to include non-hydrostatic correc-

ions ( Stelling and Zijlema, 2003 ), baroclinic solvers ( Warner et al.,

013 ) and recently subgrid information ( Casulli and Stelling, 2010;

’Alpaos and Defina, 20 07; Defina, 20 0 0; Volp et al., 2016 ) to in-

lude higher resolution bathymetry and flux calculations. 

Current approaches to unstructured mesh geophysical fluid

odelling is considered in detail in Danilov (2013) , with its po-

ential importance best highlighted in Danilov et al. (2013) . In-

eed, this review states that whilst unstructured mesh models may

ot replace structured modelling approaches completely, there are

ases where this type of approach could be optimal. In particu-

ar, allowing a flexible approach to the vertical discretisation could

mprove accuracy and model efficiency in domains where there are

harp changes in bathymetry relative to horizontal spatial resolu-

ion, strong non-hydrostatic gradients in pressure, strong vertical

nertial flows, or when it would be more optimal to reduce or in-

rease the number of layers in shallow and deep regions, respec-

ively. Moreover, these could be critical in the fringes of the ocean

oundary, along geometrically complex coastlines and in interac-

ions with other types of physical systems, such as an urban en-

ironment, or the complex shallowing in ice shelf ocean cavities.

ithin this discretisation type, WD models can more accurately

odel a wider range of scales in larger domains. 

One of the early finite volume (FV) approaches UnTRIM ( Casulli

nd Walters, 20 0 0 ) permits unstructured meshes with the con-

traint that, like structured models, the domain elements are or-

hogonal where circumcentres are inside their respective elements.

ts non-hydrostatic advance ( Casulli and Zanolli, 2002 ) is applied

n the SUNTANS model, with the same orthogonality restriction. It
ontains a WD algorithm ( Wang et al., 2009 ) stabilised with a tech-

ique from Ip et al. (1998) that applies an increased drag to satisfy

n additional constraint on volume flues in dry regions. Similar ap-

roaches are also made in Cui et al. (2010 , FVCOM, MIKE21) with

on-hydrostatic corrections added (e.g. Cui et al., 2012 ). FV is low

rder only and models generally explicit. 

Unstructured finite element (FE) methods offer high order con-

inuum approximations which are more accurate and naturally in-

lude less diffusive and dispersive advection schemes. WD has

een built into 2D barotropic flow models such as QUODDY with

ry element removal in Greenberg et al. (2005) ; ADCIRC, a SWE

ethod for explicit hydrostatic modelling of storm surges with dry

emoval ( Dietrich et al., 2006 ); TELEMAC, initially using element

emoval ( Bates and Hervouet, 1999 ) and now negative depth; and

LIM ( Kärnä et al., 2011 ) with a repositioned sea bed SWE method

nd adoption of implicit �t advance. 

WD is combined with solvers capable of modelling baroclinic

rocesses in Funke et al. (2011) ; Warner et al. (2013) , with the

ormer using thin film high order FE and the latter explicit finite

ifference with negative depth WD and mode splitting. The for-

er performs well in relatively modest aspect ratio domains, but

erformance is strictly limited by use of direct solvers (LU decom-

osition), restrictions on dry element aspect ratios and erroneous

nphysical flows that develop in dry regions. 

Here a general approach for WD with FEs is considered in full

D, building on established methods for modelling fluid flow on

ully 3D unstructured meshes ( Piggott et al., 2008 ) which vary in

esolution and support a multiscale of physical processes, including

on-hydrostatic and baroclinic dynamics in the large aspect ratio

omains found in geophysical domains. Under the constraints of a

lobal number of degrees of freedom, this allows the focus of com-

utational resources on small scale regions and areas of interest,

hilst capturing the large scale flows elsewhere in the domain. An

dditional advantage is no constraint on the internal mesh struc-

ure, nor that it is fixed in time. It is not constrained to layers, and

an be completely, or partially in select regions, fully anisotropi-

ally unstructured. 

To allow efficient time integration over a range of element sizes,

n implicit treatment necessitates a continuum approach to inter-

ace tracking. A thin film is applied, which as ( Medeiros and Hagen,

013 ) notes, generally satisfies mass and momentum conservation

ithout significant special treatment, and produces a realistic and

mooth wetting front. WD is included in a natural manner, through

dditional terms in the momentum equation and modified bound-

ry conditions. Indeed, the numerical treatment is careful to en-

ure the solution remains in the Sobolev solution space of the orig-

nal physically-based weakly formulated Galerkin problem. Prog-

ostic variables, including tracers, are self-consistent through the

E formulation and notably, through use of a combined pressure

ariable, consistency with the free surface is naturally inherent. 

In the following Sections 2 –4 , the new consistent approach for

D in large aspect ratio geophysical domains is developed, with

etails of mesh movement in Section 5 and additional strategies

oted in Section 6 . This is validated in Section 7 and evaluated in

ection 8 . 

. Governing continuum equations 

.1. 3D Boussinesq with piezometric pressure 

The non-hydrostatic Boussinesq equations for a rotating strat-

fied fluid, are solved in a time-dependent domain � ⊂ R 

3 (see

ig. 1 ), bounded by the surface �. This is split into the free surface

oundary �η , and the remaining bound �b = � \ �η . These are de-

ned for the prognostic variables of velocity u : � × [0 , T ) �→ R 

3 ,

nd pressure p : � × [0 , T ) �→ R , over the time interval [0, T), such
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Fig. 1. A schematic of an example high aspect ratio geophysical inundation domain considered here, with a ‘horizontal’ length scale L spanning its extent on a geoid surface, 

and the ‘vertical’ length scale H . In reality, these length scales differ by many orders of magnitude. 
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ρ0 

(
∂ u 

∂t 
+ u · ∇ u 

)
− ∇ · μ∇ u + ∇ p = −gρ ′ n g , (1)

∇ · u = 0 , (2)

where μ is the tensorial dynamic viscosity, −n g and g the gravi-

tational acceleration direction and magnitude respectively, and ρ :

� × [0 , T ) �→ R the density. The latter is split into a background ρ0 ,

and perturbation density ρ′ , such that ρ = ρ0 + ρ′ . Since the hy-

drostatic component of pressure of the equilibrium state does not

have an important contribution dynamically, it is subtracted from

the momentum equation and the full pressure p , is replaced by a

piezometric pressure, commonly applied in coastal engineering ap-

plications (e.g. Labeur and Pietrzak, 2005 ), defined as 

p := p + ρ0 g n g · r + p a , (3)

for a position vector r , relative to a position where hydrostatic

pressure is zero. Atmospheric pressure at the interface is denoted

p a . 

Redefining the prognostic pressure with this particular choice

of piezometric pressure forms a combined free surface – pressure

prognostic p( p , η) eliminating the need to solve a separate, com-

monly used, wave equation for the free surface, denoted by the in-

jective function η: � × [0, T ) �→ �η . The prognostic pressure p now

contains non-hydrostatic components and the hydrostatic pressure

due to perturbations in the free surface elevation. This remaining

hydrostatic pressure ρ0 g η, is the boundary condition for p at �η ,

and through (3) , we find 

p 
∣∣
�η

= ρ0 gη. (4)

2.2. Boundary conditions 

With the inclusion of the free surface height in the prognos-

tic pressure, the kinematic free surface boundary condition of

Appendix A is expressed 

n · n g 
∂ p 

∂t 

∣∣∣∣
�η

= ρ0 g n · u , on �η. (5)

This is the boundary condition for η and now a required constraint

for the combined p( p , η) prognostic variable. This is joined by the

u and p boundary constraints 

u · n = 0 , ∀ x ∈ �b , and 

p = p a , ∀ x ∈ �η. (6)

More general conditions, for open ocean boundaries or flux inputs,

can be applied without fundamental changes to the approach. 
.3. Coordinate system and frame of reference 

Note additionally that the direction of gravity, describing the

ormal n g , is not restricted to a Cartesian z -component, such that

he development is relatively independent of the coordinate refer-

nce frame. It is free to vary arbitrarily within R 

3 , aligned with the

ocal direction of gravitational acceleration, and it is possible for

xample, to apply this method to the spheroid shell of the Earth

n a Cartesian coordinate reference frame. 

. Spatial and temporal discretisation 

The non-linear system of Eqs. (1) and (2) , combined with

oundary conditions (5) and (6) , are solved for p( p , η) , and veloc-

ty u , using a Chorin projection method ( Chorin, 1967 ) to enforce

ncompressibility. This is a modified predictor – corrector scheme

ased on Gresho et al. (1984) in which a predictor u 

n +1 ∗ is ob-

ained from momentum conservation that is not divergence free,

uch that a correction u 

n +1 = u 

n +1 ∗ − ∇ φ is then calculated subject

o the divergence-free constraint ∇ · u 

n +1 = 0 . For each time step,

his proceeds for a number of Picard iterations until sufficiently

onverged. 

.1. Temporal discretisation 

Discretisation in time is achieved by the θ-method ( Iserles,

012 ) in all cases, for a time step �t , such that the explicit forward

uler, Crank-Nicolson and backward Euler time-stepping schemes

an be obtained with choices of θ = 0 , 1 
2 and 1, respectively. The

odified Navier-Stokes with implicit free surface system (1) and

2) at a time n is therefore 

0 
u 

n +1 − u 

n 

�t 
= R 

n + θ − ∇ p n + θ − ρn + θ g n g , (7)

 · u 

n +1 = 0 , (8)

here R n + θ = θR n +1 + (1 − θ ) R n contains the advective mass flux

erm, together with viscosity and other source terms. A choice

∈ [ 1 2 , 1] leads to an implicit time stepping scheme that allows

imulations to use large time steps, which are not restricted by

he Courant-Friedrichs-Lewy (CFL) condition ( Courant et al., 1928 )

ith respect to the velocity and wave speed. In practice for the

imulations presented here, for the required level of accuracy and

tability, Courant numbers up to 10 are applied. 

.2. Combined free surface – pressure Chorin corrector 

Under a Galerkin FE spatial discretisation the temporally discre-

ised momentum (7) and continuity (8) equations are tested with

he velocity φ and pressure ψ basis functions, respectively. The
i i 
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rial functions u and p are defined in terms of their respective ba-

is functions also, and Appendix B describes their form and the

omenclature used in more detail. This leads to the space-time dis-

rete momentum equation 

0 
M u 

�t 

(
u 

n +1 
∗ − u 

n 
)

+ θ ˜ A 

n +1 u 

n +1 
∗ + (1 − θ ) A 

n u 

n 

= θCp n +1 
∗ + (1 − θ ) Cp n + S u , (9) 

0 
M u 

�t 

(
u 

n +1 − u 

n 
)

+ θA 

n +1 u 

n +1 + (1 − θ ) A 

n u 

n 

= θCp n +1 + (1 − θ ) Cp n + S u , (10) 

or a Picard iteration step and end of time step, respectively. The

tarred variable u 

n +1 ∗ is the current best approximation to u 

n +1 ,

alculated from pressure at the previous time level n . The best

uess of the solenoidal velocity at a time level n + 1 is denoted

˜ 
 

n +1 
, and used in the calculation of updated non-linear operators,

uch as mass flux ˜ A 

n +1 . The velocity space mass matrix M u addi-

ionally contains the diagonal or block-diagonal (depending on the

hosen discretisation) component of viscosity from R , which is to

e treated implicitly in pressure. The discrete cross-space gradient

perat or C i j := − ∫ 
� φi ∇ ψ j d�, contains an inner product over ve-

ocity and pressure spaces, leaving sources in S u . 

Subtracting (9) from (10) and multiplying by θ�t C T M 

−1 
u yields

 discrete Poisson equation for the correction 

0 θC T ( u 

n +1 − u 

n +1 
∗ ) = θ2 �t C T M 

−1 
u C(p n +1 − p n +1 

∗ ) . (11)

.3. Discrete continuity 

Discretisation of the continuity Eq. (8) is written 

C T u 

n +1 + (1 − θ ) C T u 

n + G 

T 
θ u 

n +1 + G 

T 
1 −θ u 

n = 0 , (12)

her e G θ,i j := 

∫ 
�η

θn φi ψ j d� and G (1 −θ ) ,i j := 

∫ 
�η

(1 − θ ) n φi ψ j d�.

or G θ = G (1 −θ ) = 0 , the system of equations enforces incompress-

bility with weakly applied no normal flow boundary conditions. 

.4. Discrete modified kinematic boundary condition 

Discretisation of the free surface boundary condition (5) is now

equired to provide the boundary integral terms in (12) , with a θ
ime discretisation described by 

 

n +1 · n g p 
n +1 − n 

n · n g p 
n 

= ρ0 g�t 
(
θn 

n +1 · u 

n +1 + (1 − θ ) n 

n · u 

n 
)
. (13) 

iscretisation of (13) in space using the test and trial functions φi 

nd ψ i , introduced in Section 3.2 gives 

 s 
p n +1 − p n 

ρ0 g�t 
= G 

T 
θ u 

n +1 + G 

T 
1 −θ u 

n , (14)

ith the surface integr al M s,i j := 

∫ 
�η

n g ψ i ψ j d�. 

Applying this discrete combined p( p , η) kinematic condition

14) to the discrete continuity (12) , we find 

C T u 

n +1 + (1 − θ ) C T u 

n + M s 
p n +1 − p n 

ρ0 g�t 
= 0 . (15)

ubstituting (15) into the momentum Eq. (11) , with the correction

efined �p := p n +1 − p n +1 ∗ , yields 

θ2 C T M 

−1 
u C + 

M s 

g(�t) 2 

)
�p 

= −θC T u 

n +1 
∗ + (1 − θ ) C T u 

n 

− M s 
(p n +1 

∗ − p n ) . (16) 

�t g(�t) 2 d
.5. Combined free surface – pressure system solution 

During a single Picard iteration, the first velocity predictor step

olves the discrete linearised momentum Eq. (9) , to establish an

pdated intermediate velocity u 

n +1 ∗ , from the current best approx-

mation to the velocity and pressure, and their value at the previ-

us time step. 

The predictor u 

n +1 ∗ obtained is not divergence free in general,

nd in order to enforce the incompressibility condition, a pressure

orrection �p is calculated to project this velocity into the diver-

ence free subspace by solving (16) above. The velocity correction

s made to update the intermediate velocity, consistent with the

ew intermediate pressure, and projected to the divergence free

ubspace using the difference of (9) and (10) , where 

 

n +1 = u 

n +1 
∗ + 

θ�t 

ρ0 

M 

−1 
u C�p. (17) 

Finally, the interface tracking step adjusts the free surface posi-

ion following (4) in light of the new pressure field, in a direction

n g , parallel to the gravitational vector. 

. High aspect ratio wetting and drying domains 

.1. Wetting and drying of the simulation domain 

The free surface boundary is split into distinct wet and dry re-

ions (illustrated in Fig. 1 ), defined by the combined p( p , η) at the

urface such that �η = �w 

∪ �d , with 

w 

: r ∈ �η, ∀ p( r ) ≥ ρ0 g(h ( r ) + d 0 ) , and 

d : r ∈ �η, ∀ p( r ) < ρ0 g(h ( r ) + d 0 ) . 

he conditions in dry regions differ from those in wet in two

efining ways. Firstly, the water column depth is maintained at a

hreshold minimum d 0 above the bottom bathymetry defined by

 : � �→ R , and secondly, the surface boundary condition on the

ombined p( p , η) prognostic variable is modified to enforce this

onstraint in the solver. With the depth constraint the free surface

volution described by (4) provides the first constraint 

( r ) = max 

(
1 

ρ0 g 
p( r ) , h ( r ) + d 0 

)
, for r on �η. (18)

he second is found by modifying the combined kinematic condi-

ion (5) , which in light of the depth restriction gives 

 · n g 
∂ 

∂t 
max ( p, ρ0 g ( h + d 0 ) ) = ρ0 g n · u , on �η. (19) 

In wet regions �w 

, the constraints (18) and (19) reduce back to

he free surface conditions (4) and (5) , respectively. In dry regions

w 

, (19) is a no normal flow condition, and effectively im poses a

igid lid approximation. 

.2. Conditioning of the pressure calculation 

The spatial domains of geophysical processes are typically large

spect ratio, due to the gravitational influence and disparity in dy-

amics parallel and perpendicular to geoid surfaces. The solution

f a non-linear fluid flow system in these types of domains includ-

ng non-hydrostatic dynamics, with implicit time evolution and a

redictor – corrector approach such as Section 3.5 is shown in

ramer et al. (2010) to lead to an ill-conditioned pressure system.

n the limit of large domain aspect ratio and long time steps, the

ystem behaves approximately as though it has a rigid lid, where

he free surface is fixed with η = 0 and u · n = 0 . 

The dry regions introduced by the WD process significant exac-

rbate ill-conditioning, since a rigid lid condition is applied directly

nd the region contains elements with acutely large aspect ratios

ue to their defining shallow water column depth. 
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The correction u 

n +1 = u ∗ − ∇ φ (17) is calculated subject to the

divergence-free constraint ∇ · u 

n +1 = 0 . This leads to the following

pressure Poisson equation for φ

∇ 

2 φ = ∇ · u ∗, (20)

which corresponds to the discrete Poisson operator C T M 

−1 
u C in the

formulations (16) and (42) above. For no normal flow boundary

conditions where u · n = 0 , at interfaces with bedrock or in the

case of the rigid lid approximation for the ocean-air interface, the

coupling between velocity and pressure results in the correspond-

ing boundary condition on (20) as the Neumann expression 

∂φ

∂n 

= 0 , on �η, (21)

ensuring the velocity constraint is consistently preserved. 

Applying a kinematic condition instead leads to the homoge-

neous Dirichlet condition φ = 0 on �η . The redefinition of pres-

sure in (3) to form the piezometric pressure here allows standard

pressure splitting approaches to treat baroclinic and barotropic dy-

namics (e.g. Shchepetkin and McWilliams, 2005 ) in the general

case of domains discretised with fully-unstructured meshes. These

schemes themselves aid the conditioning of pressure solves in geo-

physical models ( Maddison et al., 2011 ), where there is a large dis-

parity of scales and resolution of the dominant physical processes.

This piezometric variable satisfies the same Eq. (20) , with a modi-

fied right-hand side source term and boundary condition. 

Discretisation of the kinematic condition (5) defined in terms

of the piezometric pressure using implicit backward Euler in time

gives a Robin condition for φ, such that 

n · n g 
φ

�t 2 
= g 

∂φ

∂n 

. (22)

With the barotropic wave speed c = 

√ 

gH , for a distance H , and

noting that 

φ

�t 2 

/ 

g 
∂φ

∂n 

≈ H 

g �t 2 
= 

(
H 

c�t 

)2 

, 

the ratio of the terms in (22) scale as the square of the time it

takes for a barotropic wave to travel a distance H relative to the

length of a time step, and we see that the condition for free sur-

face flows (22) tends to that of the rigid lid (21) in the large time

step limit. So although adjusting a system to apply a free surface

kinematic boundary condition on the top surface as opposed to a

rigid lid does improve conditioning for modest aspect ratios, as the

disparity in scales increases and the aspect ratio becomes smaller,

or equivalently larger time steps are taken, the ill-conditioning of

a rigid lid system is soon recovered due to the quadratic depen-

dence. 

The multigrid preconditioner of Kramer et al. (2010) for un-

structured meshes on high aspect ratio domains helps better con-

dition the Poisson problem in general, without consideration of

WD, using a combination of algebraic multigrid and a geometric

vertical prolongation operator. This solver method itself makes it

feasible to run non-hydrostatic unstructured mesh simulations of

fluids in geophysical domains. 

Whilst the relatively moderate aspect ratio wet areas can be

treated by the multigrid preconditioner approach, specific meth-

ods to handle the acute aspect ratio and direct rigid lid condition

applied in dry regions are required, if this general fully 3D and

non-hydrostatic WD approach is to be applied to real geophysical

systems. 

4.3. Quantification of the ill-conditioning 

The discrete form of the Laplacian operator that appears on the

left-hand side of (20) , seen in (16) , has eigenvalues λi ∼ k 2 
i 
, for
avenumbers k i . The conditioning of the matrix is determined by

he ratio of the maximum ‖ λ‖ ∞ 

and minimum ‖ λ‖ min eigenval-

es. This is, equivalently, the ratio of the minimum and maximum

avenumbers, k min and k max , squared 

(
C T M 

−1 
u C 

)
= 

∣∣∣∣ ‖ 

λ‖ ∞ 

‖ 

λ‖ min 

∣∣∣∣ ∼
∣∣∣∣∣
∥∥k 2 

∥∥
∞ 

‖ 

k 2 ‖ min 

∣∣∣∣∣ = 

∣∣∣∣ ‖ 

k ‖ ∞ 

‖ 

k ‖ min 

∣∣∣∣2 

. (23)

or high aspect ratio problems H / L � 1, for H and L characteristic

ength scales of the solution domain in the vertical and horizontal,

espectively (see Fig. 1 ), we find 

 

k ‖ min ∼
1 

H 

, and ‖ 

k ‖ ∞ 

∼ 1 

L 
, and hence 

κ
(
C T M 

−1 
u C 

)
∼

(
H 

L 

)2 

. (24)

n a spheroid, such as the Earth, the characteristic ‘horizontal’

ength scale L is the extent of the encompassing surface geoid,

ith H the height in a direction parallel to gravitational accelera-

ion. Conditioning of linear system that results from the discretisa-

ion of the Poisson equation is approximately proportional to the

quare of the aspect ratio of the global domain. Equivalently, the

lement edge-lengths, which are constrained to resolve processes

mportant to the simulation, can also be used to characterise the

caling, such that condition number is proportional to ( �x / �z ) 2 ,

ith �x and �z characteristic edge-lengths in local horizontal and

ertical directions, respectively. 

Ideally, entries into the matrix of the linear system that arise

rom dry cells would be removed, in a process similar to lifted

irichlet boundary conditions (e.g. Karniadakis and Sherwin, 1999 )

nd the solver limited to variables on the wet sub-system, much

ike an element removal approach. For an implicit approach it is

ot clear how this would be accomplished without adversely af-

ecting the natural evolution of the interface. Instead, under im-

licit integration, treatment of the ill-conditioning highlighted by

24) needs to be addressed. 

.4. Vertical velocity relaxation in dry areas 

To close the system (1) –(2) , an equation of state is required. De-

ails of the form of this function do not influence the development

hat follows, and a general treatment of the evolution of density is

onsidered, such that 

∂ρ

∂t 
+ u · ∇ ρ = 0 , (25)

ith its temporal discretisation following Section 3.1 as 

ρn +1 − ρn 

�t 
+ 

˜ u 

n +1 · ∇ ρn +1 = 0 . (26)

evelopment of the approach proceeds with a discretisation of the

ensity transport Eq. (25) , in a slightly different linearisation to

hat of (26) , of the form 

ρn +1 − ρn 

�t 
+ w 

n +1 ∂ρn +1 
∗

∂z 
+ s n +1 

ρ∗ = 0 , (27)

ρn +1 
∗ − ρn 

�t 
+ w 

n +1 
∗

∂ρn +1 
∗

∂z 
+ s n +1 

ρ∗ = 0 , (28)

ith vertical velocity w , starred variables representing the best

urrent guess, and the source term s n +1 
ρ containing details of spa-

ial gradients of density locally aligned to the geoid. Subtracting

28) from (27) gives a transport equation, that mirrors (11) , de-

cribing the variation over the Picard iteration process 

ρn +1 − ρn +1 
∗

�t 
+ (w 

n +1 − w 

n +1 
∗ ) 

∂ρn +1 
∗

∂z 
= 0 . (29)
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ubstitution of this temporally discrete density transport Eq.

29) into the momentum Eq. (7) leads to 

0 
u 

n +1 − u 

n 

�t 
= R 

n + θ − ∇ p n + θ

+ g n g �t 
∂ρn +1 

∗
∂z 

(w 

n +1 − w 

n +1 
∗ ) − ρn +1 

∗ g n g . (30) 

The FE weak form of (30) is developed by testing with velocity

asis functions φi and applying integration by parts twice at the

ree surface to obtain ∫ 
�

φi ρ0 
u 

n +1 − u 

n 

�t 
d� = 

∫ 
�

φi 

(
R 

n + θ − ∇ p n + θ

+ g n g �t 
∂ρn +1 

∗
∂z 

(w 

n +1 − w 

n +1 
∗ ) − ρn +1 

∗ g n g 

)
d�

−
∫ 
�η

φi n · n g g�t(ρn +1 − ρa )(w 

n +1 − w 

n +1 
∗ ) d�. (31) 

he density of air just above the free surface interface ρa , can in

ost cases be neglected as a small effect, in the same way as the

tmospheric pressure. 

Assuming that, for shallow waters, the vertical velocity w is lin-

arly related to the distance from the bottom of the ocean or in a

epth-averaged sense, and ignoring the density variations ρ ′ in the

urface integral above, the terms in (31) above containing explicit

eference to the vertical velocity w can be grouped into an absorp-

ion term 

zz = g�t max 

(
0 , −∂ρn +1 

∗
∂z 

)
+ 

g�tρ0 

d 
n · n g , (32) 

here d = h + η is the water depth, such that ∫ 
�

φi ρ0 
u 

n +1 − u 

n 

�t 
d� = 

∫ 
�

φi 

(
R 

n + θ − ∇ p n + θ

− σ ( u 

n +1 − u 

n +1 
∗ ) ︸ ︷︷ ︸ 

† 

−ρn +1 
∗ g n g 

)
d�, 

with σ = 

( 

0 0 0 

0 0 0 

0 0 σzz 

) 

. (33) 

he inverse time scale for the vertical velocity relaxation is de-

ned by (32) . As the Picard iterations proceed, and u 

n +1 ∗ → u 

n +1 ,

he magnitude of this stabilising term, marked by † in (33) , relaxes

o zero. Although the absorption coefficient σ will be relatively

mall in wet regions, and the contribution from † small overall, it

s important to include these terms throughout in order to main-

ain consistency and as a result, accuracy. 

The following conditions on vertical density gradient, the free

urface, vertical viscosity, and vertical absorption provide a well-

onditioned pressure Poisson equation 

1. Vertical density gradient 

(�x ) 2 

(�z) 2 
≤ a 2 g �t 2 max 

(
∂ρn +1 

∗
∂z 

, 0 

)
, (34) 

2. Free surface variation 

(�x ) 2 

(�z) 2 
≤ a 2 (�t) 2 g 

d 
, (35) 

3. Vertical viscosity 

(�x ) 2 

(�z) 2 
≤ a 2 �t νzz 

�z 2 
, (36) 

4. Vertical absorption 

(�x ) 2 ≤ a 2 �t σzz , (37) 

(�z) 2 
here a is a tolerable aspect ratio of element length scales (e.g.

nity in the isotropic case), �x and �z characterise local resolution

cales, νzz is a kinematic viscosity, and σ zz an absorption. Note that

he viscosity of (36) must be treated implicitly or semi-implicitly

n pressure (e.g. diagonal or block diagonal) in order to control the

ondition number of the pressure Laplacian. Implementation of the

iscosity in stress form is appropriate here since tensor forms di-

ectly smooth horizontal velocities in the vertical. 

In the case of WD, where (35) does not hold, we must ensure

37) is satisfied by a suitable choice of the absorption σ zz . From

37) , in order to make the resulting pressure matrix feel like an

 ( a ) aspect ratio domain, we need 

zz = 

(�x ) 2 

a 2 �t(�z) 2 
. (38) 

he form of σ zz in (38) defines the inverse time scale for the verti-

al velocity relaxation in (32) . Note that this form of σ zz is spatially

arying, and in particular, the characteristic local length scales �x

nd �z are non-homogeneous across the geoid surface. In WD

imulations, these fields contain large deviations, indicative of the

egions affecting conditioning of the pressure Poisson equation. 

.5. Discretisation for high aspect ratio domains 

The momentum Eq. (33) discretised in space-time at any given

icard iteration step is 

0 
M u 

�t 

(
u 

n +1 
∗ − u 

n 
)

+ θ ˜ A 

n +1 u 

n +1 
∗ + (1 − θ ) A 

n u 

n 

= θCp n +1 
∗ + (1 − θ ) Cp n − Q 

(
u 

n +1 − u 

n +1 
∗

)
+ S u , (39) 

it h Q i j := 

∫ 
� φi σφ j d�. This balance compared to its end of time

tep state is multiplied by θ�t C T M 

−1 
u , to give 

ρ0 θC T − θ�t C T M 

−1 
u Q 

)(
u 

n +1 − u 

n +1 
∗

)
= θ2 �t C T M 

−1 
u C(p n +1 − p n +1 

∗ ) . (40) 

his is equivalent to (11) previously, noting the term marked † in

33) is zero at the end of a time step. 

The new form of the combined kinematic boundary condition

19) leads to a time discretised form modified from (13) to include

he no normal flow component applied in dry regions, described

y 

 

n +1 · n g max 
(

p n +1 , ρ0 g ( h + d 0 ) 
)

− n 

n · n g max ( p n , ρ0 g ( h + d 0 ) ) 

= ρ0 g�t 
(
θn 

n +1 · u 

n +1 + (1 − θ ) n 

n · u 

n 
)
. 

oreover, the surface integral M s is modified such that the discrete

odified kinematic conditon (14) becomes 

 w 

p n +1 − p n 

ρ0 g�t 
+ M d 

h + d 0 
�t 

= G 

T 
θ u 

n +1 + G 

T 
1 −θ u 

n , 

here M w,i j = 

∫ 
�w 

n g ψ i ψ j d� and M d,i j = 

∫ 
�d 

n g ψ i ψ j d�. This kine-

atic condition change modifies the pressure correction, and the

iscrete continuity (15) becomes 

C T u 

n +1 + (1 − θ ) C T u 

n + M w 

p n +1 − p n 

ρ0 g�t 
+ M d 

h + d 0 
�t 

= 0 . (41)

ubstituting (41) into momentum (40) , yields the discrete com-

ined p( p , η) Poisson corrector, with (16) evolving to 

θ2 C T M 

−1 
u C + 

M w 

g(�t) 2 

)
�p 

= −θC T u 

n +1 
∗ + (1 − θ ) C T u 

n 

�t 
−

Q 

(
u 

n +1 
∗ − u 

n +1 
)

�t 

− M w 

g(�t) 2 
(p n +1 

∗ − p n ) − ρ0 M d 

h + d 0 
(�t) 2 

. (42) 
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The predictor – corrector method of Section 3.5 solves the non-

linear system with the updated p( p , η) Poisson corrector (42) com-

bined with discrete linearised momentum (39) , and a velocity cor-

rection determined from (40) . 

4.6. Self-consistency and physical basis of the solution 

Mass, momentum and tracer quantities are self-consistent and

conserved, properties inherited from their underlying Galerkin FE

weak formulations ( Piggott et al., 2008 ) and use of a thin-film

( Funke et al., 2011; Medeiros and Hagen, 2013 ). The constrained

discrete Soblev solution space of the weak form modified with the

additional terms marked † in (33) converges on the solution space

of the original form without these, as the Picard process proceeds.

In a similar manner to Petrov–Galerkin and variational multiscale

( Hughes et al., 1998 ) residual-based stabilisation methods ( Candy,

2008 ), this ensures consistency, that the solution found is a valid

solution of the original weak Galerkin formulation, a true discrete

solution to the governing continuum equations and is therefore

physically-based. 

Moreover, just like streamline-upwind Petrov–Galerkin (SUPG)

stabilisation, the additional terms themselves are defined from

physical properties of the flow. For example, (32) includes contri-

butions from g , the local vertical density gradient and water col-

umn depth. This is supported along with local discretisation pa-

rameters such as time step and element size used to quantify un-

resolved scales, in a similar way to multiscale turbulence closures

( Candy, 2008 ). 

4.7. Determination of characteristic length scales 

Accurate calculation of the characteristic length scales is critical

to the success of the approach, particularly due to the quadratic

dependence in (38) . 

The calculation of the characteristic horizontal length scale

could be simply the minimum or maximum edge length of the el-

ement projected to a 2D horizontal geoid. A more accurate approx-

imation can be determined from the smallest and largest circum-

scribing circular bounds of this projection. The length scale �x is

then a function of these minimum and maximum extents. This is a

natural approach for models employing anisotropic mesh elements.

The vertical length scale is less ambiguous to determine, since

unique intersections with �η and �b exist ∀ x ∈ �, due to the con-

struction of geophysical domains Candy (in prep. ); Candy et al.

(2014) , and similarly for internal layers. Evaluating length scale

functions at Gaussian quadrature points rather than by element

further increases accuracy, since FE assembly integrations are per-

formed this way, with options to develop mean or area-weighted

means. This is trivially extended to superparametric elements

which are typically used in the top layer for accurate representa-

tion of geoid curvature. 

Arguably the best characterisation of tetrahedral element size

is determined from the Jacobian transformation matrix which

projects a FE from global to local parameterised space. The deter-

minant of the transformation Jacobian intersected with the local

(to quadrature point) surface geoid plane and gravitational accel-

eration vector will give characteristic length scales for the element

in the required horizontal and vertical directions, respectively. This

approach also naturally handles element anisotrophy and meshes

which are fully unstructured in 3D. The merits of this choice are

examined in Section 7.3 . 

4.8. Correction to velocity relaxation in shallow regions 

Under no forcing the momentum Eq. (33) tends to relax the im-

plicit velocity u 

n +1 ∗ to the state in the previous time step u 

n , but
his can be too strong in very shallow areas. This is corrected by

educing the magnitude of the explicit part of the velocity that we

elax to, by adding −γ u 

n to the right of the momentum equation,

ith 

= max 

(
2 

(
1 − d 

2 d 0 

)
, 0 

)
. (43)

or a water column depth d , this relaxation scales away the veloc-

ty in the vicinity of dry regions where d < 2 d 0 , and relaxes to zero

n dry regions, where d = d 0 . 

. Mesh movement with wetting and drying 

.1. Discrete function space updates 

The free surface evolution results in many quantities varying in

ime, such as the free surface normal vector n in (13) . Moreover,

his includes the mesh, and hence spatial discretisation, which

eads to a change of the discrete function spaces S h , and their span-

ing basis sets resulting in new forms of mass and other matrices

n discrete forms such as (14) . For conservation and accuracy it is

ecessary to update the discrete non-linear system during the Pi-

ard iteration to reflect these changes. There are various techniques

o handle this conservatively, through the definition of a grid ve-

ocity, for example. In this formulation, the domain discretisation

s updated at the end of a Picard iteration to reflect the new free

urface height predicted, with the normal n , mass matrix and other

atrices representing advection and surface integrals recalculated

nder the new domain discretisation. It is therefore the case that

he discrete matrices M u , M s , C, AG , and Q ; free surface normal n ,

asis functions φ and ψ , and domain � and free surface �η , are

lways the best known approximation, i.e. the starred n + 1 case.

 subtle exception is at the end of the final Picard iteration, where

he update is not made, to ensure the domain and derivative pa-

ameters are those the prognostic variables were calculated on. 

The generalised approach that includes the non-linear advec-

ion term in the governing Eq. (1) precludes the discretised spatial

perator from being self-adjoint. Evaluation of this non-linear term

equires sub-cycling, and for under-resolved high Froude number

r rapidly-varying flows this could require a large number of iter-

tions to converge, unless the continuum system is linearised, or

ocal resolution increased. 

.2. Surface representation and interface tracking 

At the end of each Picard iteration, as outlined in Section 3 ,

he free surface position is updated using (18) to reflect the new

ressure at the interfac e p n +1 | ηs . Due to the minimum threshold

 0 , the perturbation of the interface in the direction of the gravita-

ional acceleration is limited. If the pressure p n +1 at the interface

mplies it should move below this level, it is fixed at the thresh-

ld level above the bottom bathymetry (i.e. η = h + d 0 ). The pres-

ure remains unaffected, and is allowed to deviate from the in-

erface position η. Conversely, as soon as p n +1 produces a water

olumn depth greater than d 0 the free surface interface moves up-

ards. Correspondingly, the domain discretisation is updated with

he mesh stretched in the direction −n g , parallel to the gravita-

ional vector, to meet the new free surface bound. 

Spatial representation of η is inherited from the function space

sed to approximate the combined p( p , η) . Irrespective of the or-

er of variation, such as quadratic for the P DG 
1 

− P 2 element pair,

he interface is approximated by a piecewise linear function as far

s the domain representation is concerned. This satisfies the min-

ax property, such that the extent of the surface is bounded by

he nodal positions that define its representation. This, together
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ith the minimum threshold level prevents elements from becom-

ng inverted or excessively small. 

.3. Remeshing 

It is not a requirement that the domain is remeshed anew to

hese adjusted bounds. Since only one of the domain boundaries

s perturbed through the above process and in a direction aligned

o the gravitational vector field, locally orthogonal to other bounds

f the domain, it is possible to apply a relatively simple r -adaptive

ransform. The domain mesh is stretched linearly in this direction

o fit the new boundary. It is also possible to limit the perturba-

ion to the nodes on the free surface, or to apply more compli-

ated r - or h -adaptive strategies to achieve a hybridised coordinate

ystem (see Kleptsova et al., 2010; Bleck, 2002; Burchard and Pe-

ersen, 1997 ) for more accurate solutions or better-represented fea-

ures. The implementation of the approach described here in the

odel code (Fluidity, Piggott et al., 2008 ) functions with and sup-

orts these methods. 

. Additional stabilising approaches for dry areas in high 

spect ratio domains 

Two supplementary approaches to control conditioning are pre-

ented, acting directly to prevent strong erroneous flows devel-

ping in the thin film and modifying behaviour in neighbouring

et regions. This is exacerbated by the fact the physical system

s solved in a weak sense, which whilst better for conditioning can

ermit large fluxes across the interface. Unlike the above, these ap-

roaches transform the solution space and have the potential to

ffect the solution in unphysical ways. They are presented as ad-

itional techniques which can be employed to enable a solution to

e reached, but require careful application. 

.1. Manning–Strickler drag and dry region stability 

In the case of inundation flows where WD is applied, a param-

terisation of drag that is commonly employed is the Manning–

trickler formulation, defining the bottom stress 

 · μ∇ u = n 

2 g 
| u | u 

d 1 / 3 
, on �b , (44)

here n is the Manning coefficient, d is the water depth and n

ere is the unit surface normal on the bottom surface �b . This

ormulation itself has a stabilising effect, and more so in the very

hallow dry regions, with a drag applied along the bottom bound-

ry proportional to d −1 / 3 . In practice, the Manning–Strickler bot-

om stress is sufficient to prevent significant erroneous flow de-

eloping in dry areas. In the cases of acute high aspect ratio, long

ime steps or particularly steep bathymetric gradients, the Man-

ing coefficient can be increased in dry regions and their proximity

o increase the stabilising effect, with 

ˆ 
 = n + max 

(
0 , n dry 

2 d 0 − d 

d 0 

)
, 

here ˆ n replaces n in (44) , and for n dry a new Manning coefficient

with usual standard units of sm 

−1 / 3 ) large in size, relative to the

tandard coefficient n . 

.2. Horizontal bulk eddy viscosity in dry regions 

A second solution to increase stability, is to damp flow directly

n dry regions with a bulk volume viscosity or a source-absorption

ponge, both allowing the approach to remain implicit. 
This stabilisation is applied throughout the domain, or selec-

ively in dry regions and their immediate proximity, with the large

orizontal viscosity 

L = max 

(
0 , νdry 

2 d 0 − d 

d 0 

)
, (45) 

ntroduced to control spurious horizontal fluxes, with νdry a con-

tant eddy viscosity coefficient and d ≥ d 0 ∀ x ∈ �. This horizontal

iscosity is continuous in space without discontinuous jumps in

ntensity across the WD interface, acting in the proximity of dry

egions where d < 2 d 0 . 

. Validation and application: Numerical tests 

Performance of the implicit WD formulation described in

ections 2 –5 , and additional strategies of Section 6 are examined

n four test scenarios in acutely high aspect ratio domains, to a de-

ree found in geophysical systems. 

.1. Implementation and verification 

The approach has been implemented and validated in the FE

uid dynamics code Fluidity ( Piggott et al., 2008 ). This simulation

ramework contains many tools for geophysical modelling, is par-

llelised with sophisticated load balancing and supports adaptive

esh methods allowing computational effort to be focused on re-

ions of dynamic interest. It functions for a spatially variable grav-

tational acceleration vector, and hence can be used for large-scale

imulations on the Earth’s spheroid. The implementation includes

 suite of test cases to routinely verify the new algorithm in a for-

al sense, in an automated continuous verification build engine

 Farrell et al., 2011 ) to ensure robustness of the code and resiliency

n light of further development. The unstructured meshes used in

he following cases were built by means of the open source soft-

are Gmsh 

1 . 

The balance and LBB stability properties of the P DG 
1 

− P 2 
elocity-pressure pairing (see Cotter et al., 2009 ) aid conditioning

nd are used in all applications considered here. All four cases have

een run on the purely continuous pairing P 1 − P 1 also, but due

o the pressure filtering required, did not perform as well, and in

ll but modest aspect ratio cases were too ill-conditioned to reach

onvergence. The behaviour of P DG 
1 

− P 2 and P 1 − P 1 and their rela-

ive performance in regular aspect ratio problems is presented in

otter et al. (2009) . 

Due to the aspect ratios considered, all cases use the multigrid

reconditioner described in Kramer et al. (2010) for iterative so-

ution of the conditioned symmetric pressure Poisson linear sys-

em in combination with Conjugate Gradient (CG, Hestenes and

tiefel, 1952 ). The momentum system is solved in a more stan-

ard approach with Symmetric Successive Over-Relaxation (SSOR,

oung, 1971 ) preconditioning and the iterative Restarted Gener-

lised Minimal Residual (GMRES, Saad and Schultz, 1986 ) algo-

ithm, where the calculation is restarted after k = 30 iterations.

he iterative SSOR-GMRES process is performed using algorithms

uilt into the established and well-verified PETSc library ( Balay

t al., 1997 ). In contrast to the study ( Funke et al., 2011 ), it was

ound that two Picard iterations provide sufficient convergence of

he coupled system in the cases studied. In all cases, both linear

ystems are solved to a convergence criteria specified by a relative

rror tolerance of 10 −7 
, which is considered sufficiently accurate.

he quadrature based subgrid resolution described in Funke et al.

2011) is also used, with a quadrature degree of eight. 

http://www.geuz.org/gmsh
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Fig. 2. The first Balzano channel flow benchmark with, in this presented case, a horizontal extent of 1.38 × 10 4 m, corresponding to a minimum element aspect ratio of 

∼ 10 −6 . The discretised horizontal surface (a) contains 108 triangular elements with a characteristic length scale of ∼ 500m. Vertical sections show the free surface position 

at 10min intervals for the initial drying phase (b) and during wetting (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Impact of the optimal aspect ratio parameter on solver conditioning in the 

first Balzano benchmark over a WD phase. 101 individual simulations shown. 
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7.2. First Balzano sloped channel benchmark 

The first two sets of numerical tests are from the suite of prob-

lems in Balzano (1998) , selected since they exhibit the problem-

atic ill-conditioning in as simple a setup as possible. No analyt-

ical solution is available, so the problem configuration is chosen

consistently with Balzano (1998) to be able to draw comparisons.

The base benchmark case is developed from the originally 2D do-

main consisting of a 13.8km long slope with a depth of 5m at one

end which tends to zero at the other. Recently developed schemes,

such as the flux-limiting WD method for FE SWE models presented

in Gourgue et al. (2009) and the non-hydrostatic algorithm pro-

posed in Funke et al. (2011) , have been benchmarked on these

cases. These model in 3D, but force dynamics to occur predomi-

nantly in the directions where the extremes in extent occur, with

10 elements introduced in the third direction in the former and 1–

2 in the latter, which is followed here to a width of 1km. With the

assumption solutions are laminar, this extrusion into 3D space will

not change the physical behaviour. The sloped bottom bathymetry

is defined h (x ) = x/ 2760 , for the x -coordinate direction indicated

alongside the surface geoid computational mesh in Fig. 2 (a). The

base case single-layer mesh contains vertically-aligned nodes and

a horizontal element size of 500m. 

Following the benchmark description in Balzano (1998) (also

in Gourgue et al. (2009) ), no normal flow boundary conditions

are applied at the bottom and shallow end of the domain, and

additionally applied to the sides. A Manning–Strickler drag with

n = 0 . 02 sm 

−1 / 3 is applied at the bottom boundary. The gravita-

tional acceleration is set to 9 . 81ms −2 and the fluid is initially at

rest. Time discretisation is performed with Crank-Nicholson inte-

gration (i.e. θ = 

1 
2 ) and a time step of 600s. In this case the WD

threshold is set at d 0 = 0 . 5 mm . The free surface is forced at the

deep open boundary with a sinusoidal variation of amplitude 2m,

such that water column thickness oscillates between 3–7m, with a

period of 12h. 

In the series of tests considered here, the horizontal extent is

varied from 1.38 × 10 2 m to 1.38 × 10 6 m, centred about the de-

fined benchmark length of 1.38 × 10 4 m. This provides a range of

element aspect ratios from 10 −4 to 10 −8 
, a domain aspect ratio up

to 3 . 62 × 10 −6 and spatial scales spanning over 10 orders of mag-

nitude in a single domain. Element lengths are scaled with the

domain length, such that element aspect ratio relative to global

aspect ratio is maintained, with the extrusion in the third di-

rection also scaled to preserve element shape. The time step is

also scaled to ensure the wave Courant number is constant. The

WD threshold d 0 , and vertical extent are kept constant across all
cases. r  
The free surface evolution of the intermediate case with a hor-

zontal extent of 1.38 × 10 4 m is shown in Fig. 2 at 10min in-

ervals, matching ( Balzano, 1998 ) and ( Gourgue et al., 2009 ), for

he initial drying and then wetting phase, respectively. The results

re physically reasonable, and comparable to other formulations

 Funke et al., 2011 and Gourgue et al., 2009 for example). In partic-

lar, the free surface interface does not suffer from either underes-

imation with negative water column thickness, nor produce oscil-

ations during the wetting process observed in Balzano (1998) for

ome of the 10 methods examined. This behaviour is characteristic

f the solutions across the range of aspect ratios. 

Through a modification of the optimum aspect ratio parame-

er a in (38) , there is a corresponding change in the aspect ratio

elt in the discrete pressure matrix of elements in dry regions. The

arameter a is varied over the range a ∈ [ 10 −4 , 10 4 ] in a suite of

001 simulations of the base Balzano case. Solver iteration num-

er is used as an indicator of conditioning, and plotted in Fig. 3

or both the pressure and velocity calculations as mean and maxi-

um values over the course of a WD phase. The parameter range

as been spaced equally in log-space in order to give a good rep-

esentation of the behaviour over the large range of domain aspect

atios. This is achieved with a discrete parameter space defined for
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Fig. 4. Pressure solver iterations to convergence in the first Balzano benchmark 

with respect to domain global aspect ratio, in 101 individual simulations, with and 

without conditioning applied. 
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Table 1 

Pressure solver iterations to convergence in the sec- 

ond Balzano benchmark with a domain aspect ratio of 

3 . 62 × 10 −6 for five approaches to calculating character- 

istic height. 

Drying phase Wetting phase 

Method max mean max mean 

Minimum 512 475 512 475 

Maximum 305 303 281 269 

Mean 287 285 328 310 

Minimum capped 300 297 321 301 

Jacobian 310 281 264 259 
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 parameter p , such that 

p ∈ { 10 

( ( 2 s/ (n −1) −1 ) m ) : s ∈ Z , 0 ≤ s < n } , 
or n , the number of distinct individual simulations spanning the

arameter space over m orders of magnitude either size of zero,

uch that p ∈ [10 −m , 10 m ] . 

Whilst the conditioning of the velocity solver is largely un-

ffected, the number of iterations required for pressure conver-

ence increases dramatically as the magnitude of the parameter

 increases. As the aspect ratio parameter becomes acutely large

ith | a | → ∞ , behaviour tends to that of the system without the

cheme applied. It is clear that the vertical relaxation scheme has a

ositive impact on conditioning, reducing the number of required

terations in the pressure solution in this test by a factor of 20.

ith Picard iteration numbers also reduced as a consequence, this

ffect is multiplied for overall performance. 

Changes in the parameter demonstrate the scheme significantly

mproves conditioning in the base case. Now an optimal aspect ra-

io a = 1 is specified and actual changes to the domain extents

onsidered. Again a suite of simulations are run to span the pa-

ameter space and determine conditioning, and the number of iter-

tions required for convergence of the pressure is shown in Fig. 4 ,

ith and without the relaxation consitioning. In the range consid-

red, the improvement is reduced by a factor of up to 20 and re-

ults highlight the approach eliminates a dependence of condition-

ng on aspect ratio. 

.3. Second Balzano shelf channel benchmark 

This case also originates in Balzano (1998) and differs from the

rst by the inclusion of a shelf break in the sloped bathymetry,

efined in Appendix C . The horizontal domain is discretised in a

ay to ensure accurate bottom boundary representation, ensur-

ng element faces align with the discontinuous changes in surface

radient ( Fig. 5 ). Except for the change in bathymetry, discreti-

ation proceeds in the same manner as the first Balzano case of

ection 7.2 , and is again run over a range of aspect ratios. 

The free surface evolution in the case with minimum element

spect rati o 10 −6 is shown in Fig. 5 , again characteristic of the for-

ulation over the range of aspect ratios. In addition to the oscil-

atory and retention problems already mentioned, Balzano noticed

 runoff problem with some methods in this test case, where wa-

er remains on the shelf during the dry period instead of flowing
nto the basin. Like ( Funke et al., 2011 ) and ( Gourgue et al., 2009 ),

he runoff is observed to be linear in time, the correct physical be-

aviour. 

With the irregular bathymetry of this case, we consider the ef-

ect of how the length scales that are passed to the relaxation

cheme are calculated, as discussed in Section 4.7 . The characteris-

ic height �z varies both by element and over elements, and can

e calculated at quadrature points for increased accuracy. Noting

he role of these length scales in the vertical velocity relaxation

nverse time scale (38) , we see that errors in how they are deter-

ined influence conditioning in the same manner as that of per-

urbations of a from the optimum value of 1, except to a greater

egree due to the quadratic dependence which, following Fig. 3 ,

educes the effectiveness of the conditioning. 

Five approaches are considered ( Table 1 and Section 4.7 ). The

ethods ‘minimum’, ‘maximum’ and ‘mean’ each refer to the min-

mum, maximum and mean of the set of 6 vertical lengths �z

alculated from the 4 tetrahedral element vertices. The minimum

f these performs poorly in all phases, so its value was limited

y a lower bound in the ‘minimum capped’ approach, which pre-

ents the applied absorption becoming too large. This produced

etter conditioning than the maximum in the drying phase, and

hilst improved in the wetting phase, the maximum here still

roduced better conditioning. The mean behaves very well in the

rying phase, but only satisfactorily during wetting. This implies

ll three of these norms are not capturing all of the important

arameters to determine an optimum �z . The Jacobian approach

sing the determinant of a contracted transformation matrix at

uadrature points provides the best conditioning during the wet-

ing phase. The conditioning in the drying phase is not consistently

he best, but the lowest mean number implies it is best overall. In

he Balzano shelf case examined here, the number of iterations re-

uired for convergence is approximately halved by a careful con-

ideration of the calculation of �z . 

.4. Thacker parabolic basin benchmark 

The Thacker parabolic bowl ( Thacker, 1981 ) is an idealised

cean basin that thins at its edges, with bathymetry defined in

ppendix D . It is a challenging free surface flow problem with WD

hat has previously been used in intercomparison studies ( Balzano,

998; Funke et al., 2011; Gourgue et al., 2009; Kärnä et al., 2011 ).

n analytical solution for the evolution of the free surface is

nown (also in Appendix D ) when both dissipation and Coriolis are

bsent, and the case suitable for the evaluation of spatial and tem-

oral accuracy, and volume conservation. 

The base case domain size matches that of Balzano (1998) ;

unke et al. (2011) ; Gourgue et al. (2009) ; Kärnä et al. (2011) ;

hacker (1981) with a 880km horizontal extent, R = 430 . 62 km ,

 0 = 50 m , η0 = 2 m , with a minimum water thickness of d 0 =
 . 5 m . No viscosity or drag terms result in a non-damped free

urface oscillation with a 12h period. We make the assumption
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Fig. 5. The second Balzano channel flow benchmark with a horizontal extent in this presented case of 1.38 × 10 4 m, corresponding to a minimum element aspect ratio of 

∼ 10 −6 . The discretised horizontal surface (a) contains 58 triangular elements with a characteristic length scale ∼ 50 − 100 m . Vertical sections show the free surface position 

at 10min intervals for the initial drying phase (b) and during wetting (c). 
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Fig. 6. Thacker parabolic basin benchmark with a vertical extent of 5cm. The dis- 

cretised horizontal surface (a) follows the metric (46) for the case �x = 10 4 m , 

containing 1818 nodes and 3750 triangular elements and characteristic length 

scales ∼ 10 − 100 km . Along the bisecting line, (b) shows the representation of the 

parabolic bathymetry together with equilibrium and initial perturbed free surface 

positions. 
that in this domain the hydrostatic component of the free sur-

face perturbation dominates with the non-hydrostatic part small,

and thus the solution converges to the analytical function in

Appendix D . 

Conditioning is examined for domain aspect ratios ranging over

four orders of magnitude, from the base 5 . 68 × 10 −5 down to

5 . 68 × 10 −8 . This is achieved through vertical scaling the domain

and d 0 , with the maximum equilibrium water column depth vary-

ing between 50 m − 5 cm . With the characteristic horizontal edge

length ∼ 10 4 m close to the edges where the domain drys, element

aspect ratios vary similarly ∼ 5 × 10 −5 − 5 × 10 −8 . A cross section

of the resulting single-layer basin domain for the h 0 = 5 cm case

is shown in Fig. 6 (b), with the initial perturbation η0 ensuring a

minimum thickness of d 0 is applied. 

Edge element length scales are defined isotropically by 

ε( r ) = �x ( 9 | (R − | r − r 0 | ) /R | + 1 ) , (46)

which for the case �x = 10 4 m in Fig. 6 , result in a range from

100km in the middle down to 10km at a distance 3.8 × 10 5 m from

the centre, in an approach following ( Funke et al., 2011 ). 

Numerical evolution of the free surface for the highest aspect

ratio case, shown in Fig. 7 (a)–(b), is observed to fit the analytical

solution very well, even with elements of a very high aspect ratio

( 5 × 10 −8 ). Like the results from the more modest domain size a

phase shift is observed, which also seen in Funke et al. (2011) , is a

feature produced by the thin layer in the dry areas. The contribu-

tion of numerical dissipation inherent in the scheme is eliminated,

We can eliminate numerical dissipation inherent in the scheme as

a contributor, as we find that with solves iterated to convergence,

volume is conserved up to a relative factor of 1 . 0 × 10 −11 
, which

can be attributed to numerical round off error. This phase shift

is reduced with an increase in mesh resolution (see Funke et al.,

2011 ), which contributes to the increase in accuracy observed in

Fig. 9 (b). In the time series taken at the edge of the domain, it

is clear when the location becomes dry in both the analytical and

numerical solution, and where the factor of d 0 is maintained in the

latter (here 0.5mm). 

The radial velocity at the free surface at two locations is pre-

sented in Fig. 7 (c)–(d) at approximately the same relative locations

as those considered in Casulli and Zanolli (2007) , and is compared

to the analytical solution provided in Appendix D . In the main

body of fluid the solution is a very good match, with the same

shift observed in η as in Fig. 8 above and ( Funke et al., 2011 ).

Close to the edge of the basin, u r is not as well predicted as η.

This is partly due to the continuous nature of the thin-film ap-
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Fig. 7. Thacker parabolic benchmark, showing analytical (solid) and numerical 

(dashed) solutions. Evolution of η in 5 . 68 × 10 −8 aspect ratio domain at (a) the cen- 

tre of the basin and (b) a distance 424km from the centre marked ∗ in Fig. 6 (b). 

Radial velocity u r evolution at the free free surface, in the base domain of Fig. 6 , at 

a distance (c) 212km, and (d) 424 km. 

Fig. 8. Thacker benchmark analytical (solid) and numerical (dashed) η solutions 

along the vertical slice indicated in Fig. 6 after thirty days, in a domain with global 

aspect ratio 5 . 68 × 10 −8 . 
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roach, which solves for u in both wet and dry regions. The spatial

iscretisation local to this point is relatively coarse, and addition-

lly is not aligned to a radial direction, which makes u r particularly

hallenging to calculate. This and the phase error, can be mitigated

y increasing spatial resolution and constraining mesh structure to

lign with flow direction in inundation regions. Importantly, accu-

acy of Funke et al. (2011) is maintained, whilst the difficulty in

olving the linear systems is much reduced. 

The position of the free surface in a vertical slice of the domain

long the line indicated in Fig. 6 and after a period of thirty days,

o include two each of the WD phases, is shown in Fig. 8 . Spatially,

he numerical solution is a good fit to the analytical solution and

ts resolution of the WD front comparable to studies in more mod-

st aspect ratio domains ( Funke et al., 2011; Gourgue et al., 2009 ).

he use of the vertical velocity relaxation approach and iterative

olvers for the linear systems does not have a significant impact

n accuracy of the solution, and provides a formulation for high

spect ratio domains that performs as well as those of modest size.

An evaluation of error e ( t ), at a time t , is made under an L 2 
orm of the absolute difference, such that 

 (t) = ‖ 

η(t) − max ( ηa (t) , h + d 0 ) ‖ 2 , �, 

= 

(∫ 
�

| η(t) − max ( ηa (t) , h + d 0 ) | 2 
) 1 

2 

, 

or h and ηa defined in Appendix D . The minimum water depth

s included in the analytical solution, since this is the free surface

eight the formulation converges to, and the domain � encom-

asses both wet and dry regions. 

Solution convergence with respect to the smallest horizontal

haracteristic edge length �x is considered in Fig. 9 (a) for the base

omain, where the time step is linearly scaled to maintain a con-

tant CFL number. Meshed domains are generated by scaling the

etric (46) . With this WD formulation, we obtain the linear con-

ergence in error to characteristic edge length observed in Funke

t al. (2011) . 

The impact of domain aspect ratio on the accuracy of the cal-

ulation of free surface height after the initial wetting phase is

onsidered in Fig. 9 (b). Notably the error does not increase signif-

cantly with an increase in the magnitude of the aspect ratio, and

s far from linear. The increase could be accounted for, to some ex-

ent, by the fixed relative tolerance on the iterative solvers of the

inear systems. Adjusting this tolerance to increase convergence in
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Fig. 9. Thacker benchmark convergence properties. Accuracy relative to (a) edge length in base domain of Fig. 6 and with respect to aspect ratio in (b). Error is evaluated at 

the point of time that the initial wetting period is complete. Linear and quadratic gradients are indicated by dashed lines. The diagonal cross, marked by ∗ , points to a case 

with a relative tolerance reduced to 10 −10 . 
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Fig. 10. Flood plain basin benchmark (a) horizontal domain. Circular contours mark 
1 

10 
h 0 , 

1 
2 

h 0 and 9 
10 

h 0 , of the applied bathymetric features. Solid and dashed lines 

mark the bathymetry cross-sections appearing in (b), where plain, hollow and hill 

case profiles are shown. 

 

c  

i  

i  
cases with very small edge lengths could help to increase accu-

racy at this level. A small improvement in accuracy is seen in the

highest aspect ratio case considered in Fig. 9 (b) where the relative

error tolerance of 10 −7 described in 7 is reduced to 10 −10 . It is a

significant result that a solution can be found for these cases with

very high aspect ratios and additionally, that the approach does not

have an appreciable impact on accuracy. 

7.5. Basin inundation 

This case considers the inundation of water into an initially dry

basin, with the effect of bathymetric features on WD front prop-

agation also examined. The base domain is shown in Fig. 10 and

consists of a basin with horizontal extent 100m × 100m, and an

inlet of width 10m, its centre positioned 15m in from one of the

corners. The domain is discretised with elements of a characteris-

tic edge length of 5m. The problem is forced with a normal inlet

velocity of 0 . 5 ms −1 to model a levee breach into a flood plain on

an urban scale. 

To provide a more natural forcing, instead of applying a flux

directly on the boundary, the inlet is extended back 10m and is

maintained wet throughout by developing a sloped bathymetry

back, down to a depth of b = 20 m , as seen Fig. 10 (b). The nor-

mal inlet velocity is then applied to the face that has been ex-

tended back, with velocity slip conditions on the adjacent sides.

This was found to avoid problems with the inflow at the edges of

the breach. At the outflow on the far boundary at y = 100 m , a nat-

ural Neumann condition is applied perpendicular to the boundary,

such that ∂v / ∂y = 0 , for velocity v in the y −direction. All other

boundaries are closed, with no normal flow conditions. Other ve-

locity components are free and left unconstrained. 

To ensure accuracy of the calculation of prognostic variables is

not affected by the use of relatively large time steps with potential

impact on the conditioning analysis, �t is set conservatively at 10s

to give a maximum Courant number of 1. 

In a similar approach taken for the Balzano slope case, we con-

sider the influence of the optimum aspect ratio parameter a on

conditioning in the base domain with aspect ratio 10 4 , over a pa-

rameter space spanned by 1001 simulations shown in Fig. 11 . Con-

ditioning of the pressure solver is significantly increased, by over a

factor of six in this modest aspect ratio case. Again velocity is only

slightly affected, and felt through the coupling, a consequence of

better pressure conditioning. When varying simulation domain ex-

tent, with an optimal choice of a = 1 , similar behaviour is observed

and shown in Fig. 12 . 
In practice, large gradients in bathymetry have an impact on

onditioning. This is studied with the introduction of a depression

n the domain to form a hollow, and conversely, a raised hill. Both

nteract differently with the incoming wetting front. These features
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Fig. 11. Impact of the optimal aspect ratio parameter on solver conditioning in the 

flood plain basin benchmark over a WD phase. 1001 individual simulations shown. 

Fig. 12. Pressure solver iterations to convergence in the flood plain basin bench- 

mark with respect to domain global aspect ratio, in 1001 individual simulations, 

with and without conditioning applied. 
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Fig. 13. Impact of horizontal viscosity νL of (45) on solver conditioning in the flood 

plain basin with hill protrusion benchmark over a WD phase. 1001 individual sim- 

ulations shown. 
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u  
re introduced to the domain with a Gaussian perturbation, which

s defined at all points r on the horizontal surface on the do-

ain by h ( r ) = h 0 e 
− 1 

2 ( ( r −r 0 ) ·σ̄) 
2 

, for h 0 the maximum deviation in

eight, which occurs at the centre where r = r 0 . The inverse vari-

nce vector σ̄ defines width, and consequently the gradient, of the

bstacle. In the scales of the base case, the magnitude of the per-

urbation | h 0 | is 5m, with a width of 10m, defined by σ̄ = 

(
1 

10 , 
1 

10 

)
.

he perturbation is positioned at 30m in from each of the bound-

ng edges at the corner closest to the inlet. At the start, the mini-

um water thickness of d 0 = 1 cm is applied above the bathymetry,

o provide the initial thin dry flood basin. 

The above is used to generate an inundation into a domain con-

aining a large hollow with h 0 = −5 m . Conditioning is further de-

reased with the presence of the hollow, with a mean number of

05 iterations required in pressure for the modest aspect ratio case.

ompared to the flat case, the number of iterations required in-

reases at a greater rate, and the positive effect on conditioning of

he vertical relaxation scheme is further pronounced. Additionally,

he large gradients in bathymetry adversely affect conditioning of

he velocity solver early in the simulation where large velocities

evelop around the steep slopes to fill the hollow. This can be seen

n the example snapshot results shown in Fig. 14 . Initially flow is
trong from the breach, and predominantly flows into the hollow,

hose surface oscillates in a similar manner to that seen in the

hacker parabolic bowl benchmark of Section 7.4 . Once the hollow

s filled, the free surface peaks and a hydraulic jump develops be-

ween the fast-flowing inlet from the breach and the formed lake.

he fluid then gains momentum in the direction of the inlet flow

nd is seen to build up on the opposite boundary. A clear front has

eveloped by this stage, and begins to propagates across the plain

owards the open boundary. It is also possible to see the larger ve-

ocities that develop at the front and ahead in the thin dry regions.

his is motivation for the application of velocity conditioning dis-

ussed in the following. 

In the case of the hill, with h 0 = 5 m in the base domain, the

ffect on velocity is more significant, particularly as the WD front

eets the bathymetric intrusion. In this case it is necessary to ap-

ly a regularisation to the momentum equation to improve con-

itioning, which is achieved through an application of a bulk vol-

me viscosity, as introduced in Section 6.2 . The domain-wide hor-

zontal viscosity νL , is varied over the range νL ∈ [ 10 −4 
, 10 4 ] m 

2 s −1 

hrough (45) in the mid aspect ratio 10 −6 case, with condition-

ng shown in Fig. 13 . As a general trend, the number of iterations

equired increases with strengthening of the horizontal viscosity.

here is however a point at which there is a noticeable dip, where

he increase in intensity improves conditioning. This decrease in

he mean number of iterations is due to improvement of condi-

ioning made when the front approaches and traverses the hill

rotrusion. Limiting application of this conditioning to dry regions

nd its proximity, as described in Section 6.2 , allows WD fronts to

ncounter steep changes in bathymetry without the corresponding

mpact on conditioning of the velocity solver, in this implicit and

ontinuous WD formulation. 

Increasing the bottom drag through the Manning-Strickler pa-

ameterisation in this region as outlined in Section 6.1 also acts to

mprove conditioning. In particularly high aspect ratio cases with

teep bathymetry, the velocity solver is too badly conditioned for

fficient solution with a SSOR-GMRES iterative process without ap-

roaches such as the horizontal viscosity and drag discussed. 

. Conclusions 

In this paper a novel approach to efficiently modelling WD in-

ndation processes in 3D, capturing non-hydrostatic and baroclinic
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0

Fig. 14. Inundation into a flood basin of side length 100m and threshold value 1cm containing a hollow bathymetric feature. Three successive visualisations with (a) the 

hollow filling, (b) a hydraulic jump and (c) propagation further into the plain, are shown at 7,350, 20,400 and 37,650s into the simulation, respectively. The left panels 

contain contour plots of free surface perturbation, overlaid with magnitude-scaled vectors of depth-integrated velocity. The right panels present the 3D domain stretched 

in the vertical by a factor of 40, to better show the change in free surface height, with the inlet breach and connecting reservoir seen on the right side. Contours of the 

magnitude of surface velocity are plotted together with vectors indicating the surface flow direction. Note the velocity fields presented are those in a continuous P 1 space, 

calculated through a Galerkin projection from the discontinuous P DG 
1 prognostic velocity field (see Candy, 2008 ). 
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hysics, in the high aspect ratio domains that characterise geo-

hysical systems has been proposed. 

This has identified the ill-conditioning present in implicit con-

inuum WD methods applied in fully 3D fluid flow models. Follow-

ng a quantification of the highly spatial and temporally variable

ontributing factors, regularisation of the governing weak form

eads to a linear system that appears as a unit aspect ratio prob-

em. The result is that the approach can be used to model WD in

ultiscale geophysical domains, seamlessly alongside other chal-

enging physics, such as baroclinic and non-hydrostatic flow, with-

ut a severe and limiting impact on the iterative solvers typically

equired for efficient simulation of multi-physics 3D dynamics. 

The approach has been demonstrated effective over a wide

ange of spatial scales and correspondingly, aspect ratios. The pre-

icted behaviour on convergence is verified in numerical tests in

oth domain and element aspect ratios representing up to 8 orders

f magnitude difference, with discrete domains containing spatial

cales spanning 10 orders of magnitude. 

The approach imposes no restrictions on space and time dis-

retisation, permitting an arbitrarily flexible mesh choice (includ-

ng generalised vertical coordinates), order of representation and

mplicit time integration. All are important for system models

imulating over a range of scales and physics. Discretisation can

e chosen largely independent of WD considerations, with for

xample, spatial resolution focused on local physics modelling

emands. 

Use of a combined p( p , η) variable strictly enforces consistency

etween the full 3D pressure and free surface perturbation. No-

ably there is no need to interpolate η and its derivatives from �η

o the internal domain � for inclusion in the momentum calcula-

ion. Consistency with other fields and conservation are achieved

y the overall FE approach, which can provide a high order contin-

um representation. P 1 − P 1 and the heterogeneous element pair-

ng P DG 
1 

− P 2 have been applied in the numerical tests. The implicit

reatment of p( p , η) is inherited by p and η, and as a result, �t

ay be based solely on accuracy considerations and not stability

hen considering free surface wave propagation. As discussed in

’Alpaos and Defina (2007) this may need careful consideration

hen a system is under-resolved with a relatively irregular bottom

opography containing sharp gradients, or in high Froude number

apidly varying flow. 

A limitation to note is that the free surface interface cannot be-

ome unduly complicated, including folds, since the function η is

y definition injective with only a single point permitted to lie on

he surface for any point within the domain. As such it is not pos-

ible to model breaking waves, a common limitation to all of the

ulerian approaches cited. 

Unlike schemes applying additional viscosity or bed friction

ased on empirical numerical measures that potentially lead

o stabilisation through unphysical means, the approach ensures

hysical consistency such that resultant solutions are enforced to

xist in the space of solutions available to the original physically

ased weak form of the continuum governing Eqs. (1) –(2) . Physi-

al consistency is verified in the numerical tests. Lastly, since the

erms introduced specifically to improve conditioning are formu-

ated in the continuum primitive form, this part of the approach

ould equally be applied in other WD implementations for an ar-

itrary underlying discretisation. 

This approach will not be optimum for some WD problems,

articularly due to the computational cost even with the aspect

atio problem solved, where a single layer SWE approximation

s sufficient, or computational efficiency may demand lower or-

er methods for real-time tsunami prediction, for example. How-

ver, this approach now enables the modelling of physical phe-

omena not possible previously, particularly those at the interfaces

f traditionally separate fields, and with rapid ongoing develop-
ent of computational resources, this approach and similar will

row in use and become more common practice – a way to bring

D to seamless massive multiscale multi-physics Earth system

odels. 
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ppendix A. Kinematic condition and nomenclature 

Evolution of the free surface accommodating surface waves re-

uires a further prognostic variable defining its height η : � �→ R

see Fig. 1 ) with the interface parametrised by z = η(x, y ) , where

= 0 when the fluid is at rest and in equilibrium. Without loss

f generality, the reference frame is rotated to align z to the lo-

al gravitational direction, with n g = (0 , 0 , 1) T . An additional con-

traint is required and the assumption made that a fluid parcel on

he free surface remains there throughout time ( Acheson, 1990 ),

hich with the coordinates of a fluid parcel ( x ( t ), y ( t ), z ( t )) T , is

ritten η(x, y, z, t) = z, for t ∈ [0 , T ) , with time derivative 

∂η

∂t 
= −∂η

∂x 

∂x 

∂t 
− ∂η

∂y 

∂y 

∂t 
+ 

∂z 

∂t 
= n · u , 

or the surface normal vector n = (−∂η/ ∂x , −∂η/ ∂y , 1) T and nor-

alised form n = n / | n | . Scaling by | n | and noting n · n g = 1 , gives

he kinematic condition 

 · n g 
∂η

∂t 
= n · u on �η. 

ppendix B. Finite element basis definitions 

The weak form Brenner and Scott (1994) of the governing equa-

ions is obtained by an inner product with all test basis functions

rom a Soblev space S := H 

1 (�) defined over the domain � with

eneralised first derivatives and an L 

2 inner product. The Galerkin

E spatially discretised equations are found by limiting S to a dis-

rete subspace S h ⊂ S, itself defined over a discrete representation

f the domain, containing a finite number of spanning orthogonal

rial functions. The prognostic variables are represented 

 := 

∑ 

u i φi , p := 

∑ 

p j ψ j , for u i , p i ∈ R , 

nd trial functions φi : � �→ R 

3 and ψ j : � �→ R , and sums over

he entire Soblev spaces. Applications in this paper operate on

eshes consisting of tetrahedral elements; with discontinuous

iecewise linear functions and continuous piecewise quadratic

unctions for velocity and pressure respectively, referred to as

 

DG − P 2 and introduced in Cotter et al. (2009) . 

1 
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Appendix C. Second Balzano benchmark bathymetry 

h (x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

x/ 2760 , for x ∈ [0 . 0 , 3 . 6] km , 

30 / 23 , for x ∈ (3 . 6 , 4 . 8] km , 

x/ 1380 − 50 / 23 , for x ∈ (4 . 8 , 6 . 0) km , 

x/ 2760 , for x ∈ [6 . 0 , 13 . 8] km . 

Appendix D. Thacker parabolic basin benchmark functions 

Basin bathymetry is a parabola of the form 

h ( r ) = h 0 ( R 

2 − | r − r 0 | 2 ) / R 

2 , 

for position vector r on the 2D horizontal surface, r 0 locating the

disc centre, R the basin radius at rest, and h 0 the equilibrium wa-

ter column depth at r = r 0 . The analytical free surface evolution,

inferred from Thacker (1981) , i s 

ηa ( r , t) = h 0 

( √ 

1 − ˆ η2 

1 − ˆ η cos ωt 
− | r − r 0 | 2 

R 

2 

×
(

1 − ˆ η2 

(1 − ˆ η cos ωt) 2 
− 1 

)
− 1 

)
, 

with ˆ η = 

(h 0 + η0 ) 
2 − h 

2 
0 

(h 0 + η0 ) 2 + h 

2 
0 

, and ω 

2 = 

8 gh 0 

R 

2 
, 

where ˆ η is the initial free surface perturbation at r = r 0 , such

that ηa ( r 0 , 0) = ˆ η. Analytical horizontal velocities are calculated in

Thacker (1981) (with polar versions in Casulli and Zanolli (2007) )

and for the examined cases reduce to 

u r ( r ) = 

ω ̂  η | r − r 0 | sin ωt 

2(1 − ˆ η cos ωt) 
, for ηa ( r , t) > 0 . 

Model availability 

The approach is implemented in the general purpose, arbitrarily

unstructured, FE geophysics model Fluidity ( Piggott et al., 2008 ),

https://fluidity-project.org , open source, available under LGPL at

https://github.com/FluidityProject/fluidity , with verification tests

specific to the approach for high aspect ratio domains described. 
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