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Geological uncertainty and its effects on 
financial project performance

The mining industry as a business is quite distinct 
to other manufacturing ventures. It is characterised by 
a value chain, which elementary production factor is 
not completely known or fully understood - the mineral 
deposit. Information about the deposit in terms of spatial 
grade distribution is scarce and taken from only few drill-
holes compared to the whole extension of the deposit. A 
gross figure for the relation between volume sampled and 
volume of the entire ore body in the mining industry is given 
by Dagbert (2003) with 1: 10.000.000. In other words, one kg 
of sample represents 10.000t of ore to be mined or five to 
ten train loads. It is obvious that there is some uncertainty 
associated with estimating the local grades and eventually 
the grades of a train load. This uncertainty has a strong 
impact on the economic performance of any project. Most 
mining projects sell “products” of ore defined in tight 
quality bands to costumers. In iron ore, train or ship loads 
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have to be delivered in a certain range between upper and 
lower quality limits for multiple elements including Al2O3, 
SiO2, P or LOI (Stone et al, 2004). Another example is coal, 
which has to be shipped in certain limits to the power plants 
to guarantee an efficient and environmental responsible 
energy production.  

Figure 1 shows a typical compassion between model 
based prediction and actual shipped calorific value of 
delivered coal. Certainly the actual variability is significantly 
larger than the prediction suggested. Deviations from 
production targets cause inefficiencies in subsequent 
processes, penalties and directly impact the cash flow of 
the overall project. To understand the interaction between 
mineral resource, mining equipment, mining process and 
product quality and for best decision making, geological 
uncertainty needs to be well understood.    

Fig. 1:
Model based prediction vs. actual delivered calorific 
value (Benndorf, 2009).
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Questions like:

“What is the current knowledge about the ore body?”,•	

“What is a desired level of confidence of knowledge to •	
make best decisions?”,

“Which exploration effort is required to obtain the desi-•	
red level of confidence?” or

“Which frequency and magnitude of deviations are to be •	
expected, when executing a certain mine plan?”

are essential to ask to understand and manage 
geological project risk.

Traditional methods in mine planning and production 
management are based on single interpolated ore body 
model, using for example Kriging. Although these models 
can be quiet good locally, they also exhibit a smoothing 
effect. Typically, low-grade values are overestimated 
whereas high-grade values are underestimated (David, 
1977; David, 1988). Interpolation methods are unable to 
account for in-situ variability and uncertainty associated 
with the description of the ore body.

The ability to model geological uncertainty, utilising it 
for quantifying project risk and its integration into long- 
and short-term production scheduling opens up a high 
potential to decreases project risk and enhances project 
profitability.

One direction of future research in Resource Engineering 
at TU Delft will involve the development of a framework for 
managing geological risk and the application to different 
stages in a mining project. The following contribution will 
provide an overview of a framework of risk based decision 
making in mining. It integrates methods of modelling 
geological uncertainty by the means of conditional 
simulation in geostatistics, the concept of a transfer function 
to quantify project risk and to optimisation algorithms for 
mine planning. Selected examples along the mine value 
chain will illustrate the concepts and demonstrate the 
significant benefit of the risk based approach compared 
to the traditional deterministic approach based on one 
interpolated ore body model.

A framework for managing geological 
risk

A framework of managing geological risk integrates 
three main elements:

Modelling geological uncertainty, 1. 
Evaluating project risk due to geological 2. 
uncertainty and 
Optimising decisions in mining under geological 3. 
uncertainty.

Following subsections provide a brief introduction to 
each of the elements. For more detailed information the 
given references provide a good start for the interested 
reader.

Decisions in mining, such as equipment selection and 
specification, the optimisation of a short- or long term 
mine plan or the design of blending opportunities are 
usually based on one estimated ore body model. Although 
estimated models can be quiet good locally, they also exhibit 
a smoothing effect. To account for variability and grade 
uncertainty, methods of conditional simulation have been 
increasingly applied over the last two decades (Journel and 
Huijbregts, 1978; Goovaerts, 1997; Chiles and Delfiner, 1999; 
Dimitrakopoulos 2004). Conditional simulation is a Monte-
Carlo-Simulation based technique that allows generating 
multiple possible models or scenarios of the deposit based 
on the information available, e.g. exploration drill holes. 

Each model is called realisation and reproduces available 
data and information, statistics and spatial variability. In the 
terms of geostatistics, the generated models reproduce the 
representative data histogram and the variogram. Figure 
2 shows a comparison between models generated by 
interpolation and simulation for a multi-seam coal deposit. 
A visual inspection of the models illustrates the differences 
very well. The interpolated model suggests a very smooth 
seam geometry and distribution of calorific value, however, 
this smoothness does not represent what was found in the 
data. Essentially this smooth behaviour does not represent 
reality. The two simulated models exhibit features inferred 
from data, namely the variability. Each realisation captures 
the global structure of the deposit but exhibits a different 
behaviour at a local scale.    
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Analysing the spread of values from different realisations 
at a location, say a mining block, allows for quantifying 
uncertainty in prediction and inferring probabilities of 
exceeding certain thresholds. 

Applications of conditional simulation in mining present 
their own challenges, including the size of simulations, 
computational efficiency and data management. Large 
ore body models, frequently discretised by up to millions 
grid nodes, need to be generated. The development 
of algorithms for mining application has to take this 
requirement into account.

Generally, techniques can be divided into direct 
conditional simulation methods and two-step methods. 
Two-step methods, such as the almost historical turning 
bands (e.g. Journel and Huijbregts, 1978) or spectral 
methods (e.g. Borgman et al 1984; Pardo-Iguzquiza and 
Chica-Olmo, 1993) first generate unconditional simulations, 
which are conditioned by Kriging afterwards. This involves 
redundant computations and increases computational 
costs. Direct conditional simulation methods, such as 
sequential methods (Scheuer and Stoller, 1962; Journel, 
1994) and conditional simulation via covariance matrix 
decomposition (Davis, 1987) perform the conditioning 
step during the simulation process. Dimitrakopoulos 
and Luo (2004) suggest the theoretical background for 

a computationally efficient method, the generalised 
sequential Gaussian simulation (GSGS). This sequential 
simulation approach simulates groups of clustered nodes 
simultaneously instead node-by-node, which decreases 
computing time. Benndorf and Dimitrakopoulos (2007) 
investigated practical aspects of GSGS and demonstrated 
its benefits in terms of runtime in a case study.  Applied 
to a copper ore body of 14.000.000 grid nodes GSGS run  
20 times faster than a similar implementation of the 
traditional Sequential Gaussian Simulation.  

The concept of quantifying risk due to geological 
uncertainty is based on a general framework of ore 
body uncertainty in mining projects (Dimitrakopoulos, 
1998; Dimitrakopoulos, 2004). Based on several equally 
possible ore body models the mining process or sequence 
of processes, such as open pit design or production 
scheduling, is conceptualised as transfer function. For 
a set of simulated ore body models the transfer function 
will generate a distribution of the response, which defines 
its space of uncertainty. Response values are usually key 
performance indicators of the project such as the net 
present value (NPV), tonnage or grades.    

Fig. 2:
Comparison between deposit models 
based on Interpolation and Simulation 
in geostatistics (Benndorf, 2009).
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Figure 3 illustrates the concept. It is important to 
recognise that in general the transfer function is a non-
linear function. The consequence is that an average type 
ore body model, such as generated from an interpolation 
algorithm, may not provide the average of response 
uncertainty. This often generates a bias leading to non-
optimal decisions.

An example of a simulation based risk assessment in 
mining was performed in Benndorf (2009). For a given coal 
deposit with a defined level of exploration a mine plan was 
evaluated regarding its economic performance (Figure 4). 

Based on estimated CAPEX and OPEX figures and 
the long-term mining sequence the interpolated model 
resulted in a single NPV-forecast of 42,7 Mio. Euro. 
Applying 25 simulated models to the evaluation procedure, 
a distribution of possible NPV’s was generated as shown 
in figure 4. 

Analysing this distribution it is somewhat surprising that 
the interpolation based forecast will never be achieved. 
In the best case, executing the mine plan will generate 
an NPV of 39,8 Mio Euro, in the worst case only 27,2 Mio 
Euro.  

The expected value of the risk based approach is about 
36,2 Mio Euro and is significant less than the interpolation 
based estimation. The reason for this phenomenon is the 
non-linear transfer function “Mine Plan”. Variabilities, 
which are not captured in the interpolated model, cause 
deviations from production targets leading eventually to a 
negative economic impact. It is important to state at this 
point that the here quantified uncertainty is solely due to 
geological uncertainty and does not take into account 
other factors, such as uncertainty in market price.

Certainly interesting is the spread between Minimum and 
Maximum of 9.0 Mio Euro.  This amount is an expression 
of imperfect knowledge about the deposit. The ability to 
quantify the “costs of imperfect knowledge” provides 

   

Fig. 3:
General framework of modelling ore body uncertainty in mining 

(Dimitrakopoulos, 2004).
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Fig. 4:
Quantification of financial project risk due to geological uncertainty (right)  

and optimizing exploration strategy (left).

   

the means for improving decisions in exploration. The left 
side of figure 4 displays a typical diagram for optimising 
exploration expenditure. It shows the exploration costs 
as function of spacing between drill holes K(s) and the 
expected earnings as function of the spacing G(s). 

Intuitively the exploration costs decrease with drill-hole 
spacing as do the earnings, because increasing geological 
uncertainty increase the frequency and magnitude of 
deviations from production targets. Utilising the information 
from simulation based evaluation, G(s) can be quantified 
before the operation is commissioning and strategic 
decisions regarding exploration expenditures is made. 
Linking directly the economic consequence with the level 
of exploration is an essential part in reporting resources 
and reserves according international standards, e.g. the 
Australian JORC –Code (JORC, 2004).

Mine planning aims to define the “best” mining plan 
subject to the constraints imposed by physical and 
geological conditions, policies and the operational mining 
approach. The term “best” is defined by management 
objectives. These typically include maximising the 
monetary value of a mining project. An essential part of 
mine planning is production scheduling (Hustrulid and 
Kuchta, 1995). 

It is concerned about the extraction sequence of parts of 
the deposit. Long-term production scheduling defines the 
sequence of mining phases, working fronts or pushbacks 
over the whole mine life with the goal to optimise the 
monetary value of the mining project. Restrictions are 
imposed by market and technological conditions. 

Production scheduling in mining ventures involving 
multi-element deposits, such as nickel, bauxite, coal or 
iron ore deposits, strongly depends on the ability to model 
and include the geochemical composition of the ore into 
the optimisation process. It influences the performance of 
the beneficiation process and the properties of the final 
product. In many mining projects often problems associated 
with high fluctuations in various quality parameters are 
reported. At the same time there is an increasing demand 
of output ore under strict market conditions. To minimize 
quality fluctuation and deliver a most homogeneous 
product, variability of key quality parameters should be 
adressed already in long-term production scheduling. 
Ramazan and Dimitrakopouos (2004) presented an 
approach to integrate modeled geological uncertainty 
into long-term production scheduling using stochastic 
integer programming (SIP). The goal here is to generate an 
extraction sequence that maximises the monetary value 
of the project while minimising the risk of deviating from 
production targets. This is achieved by integrating multiple 
simulated scenarios of the deposit into the optimisation 
algorithm. 
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Benndorf and Dimitrakopoulos (2010) applied the 
concept to an iron ore mine in Western Australia (Figure 
5). The study considered production targets in terms of 
the different quality parameters  SiO2 and Al2O3 and metal 
quantity. Results demonstrated the benefits of stochastic 
scheduling using simulations compared to the traditional 
approach using an interpolated model. Figure 6 shows the 
risk profile of meeting quality targets defined by maximum 
and minimum criteria per period for both schedules. 

Fig. 5:
Stochastic production schedule of a Channel Iron 
Ore deposit in Western Australia (after Benndorf and 
Dimitrakopoulos, 2010).

Fig. 6:
Risk profiles of SiO2 and Al2O3, per period for the 
traditional schedule based on an interpolated model 
(left) and the stochastic schedule using geostatistical 
simulation (right) (after Benndorf and Dimitrakopoulos, 
2010).
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The traditional scheduling approach exhibits high 
fluctuations of the quality parameter, while the stochastic 
approach produces a schedule with significantly lower risk 
of deviating from targets. In addition, the economic benefit 
of the stochastic schedule was quantified with 35% less 
costs in penalties for deviating from targets compared to 
the one based on an interpolated model.

Conclusions and future research 
Understanding effects of geological uncertainty plays a 

key role in managing project risk in mining. A framework 
was presented that integrates modelling geological 
uncertainty, quantifying project risk and optimising 
decisions under uncertainty. The discussed examples 
demonstrate, how the framework can lead to a better 
understanding in geological uncertainty impacting financial 
performance. Besides the discussed cases the approach 
has high potential to improve decisions along the whole 
mining value chain, including optimization of drill-hole 
spacing, defining selectivities and selective mining units, 
equipment selection, short-term mine planning or stock-
pile management.

The current trend in mining is moving towards more 
sophisticated applications of modern Information and 
Communication Technology (ICT) leading to a large 
amount of data along the whole extraction, transportation 
and beneficiation process. In addition to exploration data 
these data provide valuable information about the actual 
spatial behaviour of the resource and its impact to process 
efficiency and resource recovery. Future research will 
concentrate on capturing process data, back-propagation 
and integrating it into the resource and reserve model. 
Doing this in a real-time manner will provide the opportunity 
to identify deviations of the actual production from planning 
assumptions and take immediate action by optimising the 
process under the new conditions.
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