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Abstract

Large and complex projects, such as infrastructure, often require the collaboration
of multiple parties and disciplines, where an structured interdisciplinary methodology
is necessary: Systems Engineering. This field traditionally relied on a document
based approach, but is currently transitioning to a model based variant, with the
Systems Modeling Language as one of its main standards. Visual modeling platforms,
such as Enterprise Architect, allow to design and construct models in SysML.
However, these tools lack proper measurement and visualization functionality to deal
with project specific meta-model architectures. To overcome these limitations a
software tool was developed using the extract-abstract-present paradigm: VoSMA.
Also, multiple measurements were developed applying the Goal-Question-Metric
approach, and different visualization methodologies were explored to present this
information. Three SysML tunnel projects were analyzed as test case studies to assess
the usefulness and correctness of the generated data, and multiple feedback sessions
were conducted with experienced systems engineers. The results are very promising
and indicate that the data generated may greatly benefit project development. Based
on the results of the evaluation and the achieved progress, some suggestions and
possible future directions were provided at the end of this study.
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A4DS A4 Delft-Schiedam. In the context of this thesis work, the MBSE solution
developed by Soltegro in SysML to address this tunnel project.

CSV Comma-Separated Values. This file format is widely used to store tabular data
(numbers and text). Lines in the text file represent table rows, while commas or semicolons
in a line separate the data fields.

DOM Document Object Model. Cross-platform and language-independent convention
for representing and interacting with objects in HTML, XHTML and XML documents.

EA Enterprise Architect. A multi-user, Windows-based, visual modeling and design
platform based on the OMG UML. The tool is developed and distributed by Sparx
Systems.

EAB Enterprise Architect Branch. A Model Branch file (*.EAB) provides a convenient
reference to an exported model sub-tree. It is a small file that can be named in human
readable terms, and can later be used to populate a model repository from scratch.

EAP Enterprise Architect Project. The EA project file (*.EAP) usually refers to the file-
based Model Repository.

GQM Goal Question Metric. Approach to software metrics which defines a measurement
model on three levels: conceptual, operational, and quantitative.

GUI Graphical user interface. Interface that allows users to interact with electronic
devices using images rather than text commands.

INCOSE International Council on Systems Engineering. Non-profit membership
organization dedicated to the advancement of systems engineering, and to raise the
professional stature of systems engineers.
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LTS Landelijke Tunnelstandaard. Safety standard for Dutch tunnels1 developed by
Rijkswaterstaat and multiple commercial parties. Version is 1.2 was introduced in October
2012, and it is meant as the standard for all future government tunnels in the Netherlands.
The technical standard forms an important part, displaying the functional requirement
processes, and outlining the design and layout of tunnels.

MBSE Model Based Systems Engineering. Formalized application of modeling to support
system requirements, design, analysis, verification and validation activities beginning in the
conceptual design phase and continuing throughout development and later life cycle phases.

MOF The Meta-Object Facility. An OMG standard for model-driven engineering.

NVD Nijverdal. In the context of this thesis work, the MBSE solution developed by
Soltegro in SysML to address this tunnel project.

OMG Object Management Group. Consortium focused on modeling and model-based
standards.

Project meta-model In this context, the model structure inferred from the use of a set of
rules, frames, and constraints applied while modeling projects.

RE May stand for:

Reliability engineering. Engineering field that deals with the study, evaluation, and
life-cycle management of reliability (the ability of a system or component to perform its
required functions under stated conditions for a specified period of time).

Requirements engineering. Systems and software engineering process which covers all
of the activities involved in discovering, documenting and maintaining a set of requirements
for a computer-based system.

Revision control Also known as version control and source control. It involves the
management of changes in documents, computer programs, and other collections of
information.

SAX Simple API for XML. Event-based sequential access parser API developed by the
XML-DEV mailing list for XML documents.

SE Systems Engineering. Interdisciplinary field of engineering focusing on how complex
engineering projects should be designed and managed over their life cycles.

1http://www.rijkswaterstaat.nl/wegen/veiligheid/tunnelveiligheid/landelijke_
tunnelstandaard/, in Dutch.
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(Software) metric Measure of some property of a piece of software or its specifications.

SoS System-of-Systems. Collection of task-oriented or dedicated systems that pool their
resources and capabilities together to create a new, more complex system which offers more
functionality and performance than simply the sum of its constituent parts.

StAX Streaming API for XML. Application programming interface able to read and write
XML documents, originating from the Java programming language community.

SVN Apache Subversion. Software versioning and revision control system distributed
under an open source license.

SysML Systems Modeling Language. General-purpose modeling language for systems
engineering applications.

UML Unified Modeling Language. Standardized general-purpose modeling language in
the field of object-oriented software engineering. Created by the OMG.

UML Profile UML customization that uses Stereotypes, Tagged Values, and Constraints.

VCS Version control system. Software program to aid in the management of changes in
other programs and documents.

VoSMA Custom software tool in Java created for this thesis project, used to identify,
check, measure and visualize project-specific meta-models in SysML.

W3C World Wide Web Consortium. International community that develops open
standards to ensure the long-term growth of the Web.

Working Copy In this context, the set of files on a local machine retrieved from the
Version Control Repository. Enterprise Architect uses the working copy files to update the
model and Version Control Repositories.

XMI XML Metadata Interchange. An OMG standard for exchanging metadata
information via XML.

XML eXtensible Markup Language. Markup language that defines a set of rules for
encoding documents in a format that is both human-readable and machine-readable.
Defined in the XML 1.0 Specification by the WC3.

XSLT Extensible Stylesheet Language Transformations. Language for transforming
XML documents into other XML documents, XSL Formatting Objects, or other objects
(such as HTML or plain text).
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Chapter 1

Introduction

This chapter introduces the basic notations that create the context and motivation of this
thesis project. Section 1.1 explains the key role structure plays and why, as with other large
and complex activities, it benefits from the Systems Engineering approach. Section 1.2
provides a general overview of Soltegro, the company involved in this project, while section
1.3 outlines the problem statement and defines the main research questions. In section 1.4
the research approach is described, followed by the a general overview of the document’s
structure in section 1.5.

1.1 Problem Context

According to the 2010 World Bank’s Logistics Performance Index2, the quality of Dutch
infrastructure ranks second in the world. Indeed, infrastructure is crucial for the country: not
only is the Netherlands the world’s fifth largest exporter of goods [15], it is also one of the
key entry points and distribution hub of goods in Europe: the Port of Rotterdam (Europort)
is the largest port in Europe, Amsterdam Airport Schiphol is one of busiest airports in the
world, there are more distribution centers than anywhere else in the continent, and almost
every cargo destination can be reached by inland waterways. However, the country also has
one of the highest population densities which generates increasing traffic congestions [67],
and the Dutch railway network ranks among the densest in the world [75].

Tunnels, locks, bridges, traffic and rail systems play a key role in Dutch infrastructure,
tied to strict regulations demanding extremely rigorous requirements with respect to safety
and traffic flow. The outcome are large and complex projects, employing a combination of
technical systems to guarantee the safety, reliability and availability of these installations.
The involvement of a diversity of disciplines performed by multiple parties becomes
indispensable, which, beyond technical solutions, demand a greater focus on processes and
communication between the different concerned parties. To deal with this situation, a
structured interdisciplinary approach is required, able to handle both the technical effort
and the project management aspects: Systems Engineering.

2http://info.worldbank.org/etools/tradesurvey/mode1b.asp (accessed 01-08-2012)
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1. INTRODUCTION

1.2 The Company - Soltgero B.V.

Soltegro3,4 is a consultancy firm established in 2009 by a group of experienced managers
and specialists from the world of complex technical systems in various markets. Beside
consultancy, the company also provides secondment, training, and realization of complete
projects. Soltegro’s main challenge is "the integration of different technical disciplines
using a multidisciplinary approach", accomplished through the application of the Systems
Engineering methodology. This has resulted in the development of its own approach with
respect to design and execution of multidisciplinary projects, which is based on (and
satisfies) multiple international standards (including ISO/IEC 15288, IEEE 1220, ISO
12207, CENELEC 50126, CENELEC 50128, CENELEC 50129, and CMMi). The
company is also one of INCOSE’s sponsors.

Figure 1.1: An example of a complex system: The road system in the Coentunnel (upper tubes) and
Second Coentunnel (lower tubes) [55].

Soltegro also specializes in Reliability Engineering, an engineering field that deals
with the study, evaluation, and life-cycle management of reliability (the ability of a system
or component to perform its required functions under stated conditions for a specified
period of time) [37], and Reliable Software Engineering (RSE, also known as Software
Reliability Engineering), concerned with techniques for developing and maintaining
software systems whose reliability can be quantitatively evaluated [39]. These approaches
are crucial when working on systems which must satisfy stringent requirements in terms of
safety, availability, and reliability.

3http://www.soltegro.com/
4Soltegro factsheet http://www.soltegro.com/fileadmin/user_upload/Soltegro_overview_ENG.

pdf (accessed 09-10-2012)
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Problem Statement and Research Goals

Examples of Soltegro’s involvement in infrastructure projects include the Second Coen
Tunnel5 (see figure 1.1), Nijverdal Tunnel6, Western Scheldt Tunnel7

(Westerscheldetunnel), and A2 Leidsche Rijn Tunnel8. Industrial software engineering
projects include the development of new products for companies such as Priva and
Oliveira. Soltegro has also been one the main knowledge partners in the first two Tunnel
safety in the Netherlands congresses9 (Tunnelveiligheid in Nederland, in its original Dutch
name) organized in 2011 and 2012.

1.3 Problem Statement and Research Goals

While working on systems engineering solutions, Soltegro engineers employ the Systems
Modeling Language (SysML). Models are created following a methodology based on the
IEEE J-STD-016-199510 standard. However, this methodology may require to be adapted
or modified depending on the needs and constraints of a project, leading to different project
meta-model architectures (consult appendix A for an overview of meta-model evolution in
tunnel projects at Soltegro). While models represent abstractions of phenomena in the real
world, meta-models represent yet another abstraction highlighting properties of models. A
project’s system architecture meta-model may be defined as follows: the model structure
inferred from the use of a set of rules, frames, and constraints applied while modeling.
Soltegro engineers use the Enterprise Architect (EA) visual modeling platform to work
on SysML projects. Although EA provides functionality such as element traceability (the
capability to trace element relations through a model), it lacks facilities for project-specific
meta-models. Thus, the goal of this research is to provide users with understanding about
these meta-model structures, by identifying, analyzing and measuring the corresponding
architecture, and effectively presenting this information. It is also desired to depict this data
through the project’s development, to visualize the project’s evolution. To achieve these
goals this study has been divided into two main research questions:

R.Q.1 - How can we gain insight into project-specific SysML meta-model
architectures?

The objective of the first research question is to provide insight into the meta-model
architectures described before. This involves developing a framework to identify and
extract the project-specific structure from the SysML model data, analyze it applying the
appropriate measurements, and generating the corresponding data.

5http://www.rijkswaterstaat.nl/wegen/plannen_en_projecten/a_wegen/a10/tweede_
coentunnel_westrandweg/, in Dutch

6http://www.rijkswaterstaat.nl/wegen/plannen_en_projecten/n_wegen/n35/
combiplannijverdal/, in Dutch

7http://www.westerscheldetunnel.nl/, in Dutch
8http://www.rijkswaterstaat.nl/wegen/plannen_en_projecten/a_wegen/a2/maarssen_tot_

knooppunt_oudenrijn/, in Dutch
9http://www.soltegro.nl/fileadmin/user_upload/Brochure_congres_tunnelveiligheid.pdf

(accessed 11-10-2012)
10http://standards.ieee.org/findstds/standard/J-STD-016-1995.html
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R.Q.2 - How can we effectively visualize the meta-model structure, its measurement
data, and picture its evolution through development?

The second research question is concerned with visualization of the previously
generated data. The objective is to present this information to the users in a meaningful
way, so they can gain insight into project’s meta-model. The second part involves using
this data to depict the meta-model’s evolution through development. This aims to outline
the effect of changes in the model, and may be used (for example) to perform impact
analysis.

1.4 Research Approach

To answer the questions posed in the previous section, this project has been divided into
three main parts:

1. Preliminary research: Provides context and background, including a short literature
study of two relevant subjects to this research project: Systems Engineering and the
Systems Modeling Language, and definitions relating the concept of "system". An
overview of the current situation is also provided, including other possible available
solutions.

2. Approach implementation: Divides the proposed solution into phases, which are
further refined into multiple research sub-questions. The VoSMA software artifact,
which serves as a proof-of-concept framework, is designed and implemented to
satisfy the described requirements.

3. Assessment of correctness and quality: The last part is concerned with the
verification and evaluation of the obtained results according to the established
research goals.

Literature consulted for this thesis work comes primarily from academic sources
written in English. Whenever multiple sources were available, the "quality" of the material
was established as follows: a) journals, b) conferences, c) (non-self) published third-party
academic books, d) workshops, e) technical reports, and f) others sources. Information
from web pages is also included, but it is often added as footnotes providing clarification
or further reading material.

1.5 Thesis Outline

The next chapter introduces some fundamental concepts, such as system and
system-of-systems, which lead to a different approach to problem solving: Systems
Thinking. Chapter 3 provides a general overview of the Systems Engineering field,
explaining its main characteristics and how the traditional document-based approach needs
to be replaced with a model-based approach, requiring a new modeling language. Chapter
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Thesis Outline

4 examines the Systems Modeling Language with a general overview, but paying special
attention to a couple of essential aspects to this research: how structure and requirements
are modeled, and how model data is exchanged between tools. Chapter 5 describes the
current situation and available methodologies, and proposes an approach based on the
extract-abstract-present paradigm resulting in three main implementation phases: data
gathering, knowledge inference and information interpretation, respectively discussed in
chapters 6, 7, and 8. Chapter 9 describes how the obtained results were assessed for
completeness, correctness and usefulness, while chapter 10 provides an evaluation of these
results. Finally, chapter 11 summarizes the findings of this study, lists the contributions of
this study, and discusses some general recommendations and possible future directions.
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Chapter 2

System, System of Systems, and
Systems Thinking

Some elemental concepts concerning systems must be introduced before discussing
Systems Engineering and the Systems Modeling Language. Section 2.1 provides a
definition of system, which will be used to describe the system of systems principle in
section 2.2, in particular its main characteristics and challenges. Section 2.3 discusses how
this architectural paradigm leads to a new systems-based approach: systems thinking, and
how it differs from traditional analysis when dealing with large and complex projects.

2.1 System

The word system, as with many other common words in the English language, has a broad
meaning. One typical definition is: "a set of things working together as parts of a
mechanism or an interconnecting network; a complex whole" [52] (refer to appendix B for
the definition of system in international System Engineering standards). From this
description it can be derived that a system is a collection of different interacting
components/parts/elements working together to achieve goals not obtainable by the
individual elements alone (figure 2.1 illustrates this concept). It should be noted that the
word elements is used to describe parts, which may refer to physical objects or intangible
concepts (i.e. people, software, hardware, documents, policies. . . ). The parts are required
to produce system-level results, including system-level qualities, properties,
characteristics, functions, behavior, and performance [31] [36] [41] [42]. Some defining
characteristics of systems include [2]:

• Presence: All parts of a system must be present to carry out its purpose optimally. If
components can be added or removed without affecting the functionally, then it is a
collection, not a system.

• Arrangement: Components must be arranged in a specific way to carry out the
system’s purpose.

• Purpose: Each system has its own purpose within larger systems.
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• Stability: Systems seek to maintain their stability through interactions, feedback and
adjustments.

• Feedback: A system has feedback within itself and other external systems.

Figure 2.1: Symbolization of the concept system. Systems may be composed of various parts, and
are delimited by a boundary. Systems may also be connected to other systems in their environment.

The concept of system has a fundamental role in contemporary science [1] leading to a
systems approach, which focuses on systems as a whole rather than its parts taken
separately, and where properties are addressed from a holistic11 point of view.

2.2 System of Systems

Currently many applications are not just large scale and complex, but also characterized by
distributed, decentralized networked compositions of heterogeneous and (semi)
autonomous elements [30]. In the Systems Engineering community, these are described as
system of systems (or system-of-systems, SoS), which describes a decentralized
architectural paradigm. In this paradigm, systems exist within a broader context, a
super-system, which is a collection of related systems. Also, a component in a system may
be complex enough to be a system on its own, also known as subsystem. This leads to a
hierarchical sequence (see 2.2 for an example of such a sequence). Some formal
definitions of SoS include:

"A configuration of systems in which component systems can be added/removed during
use; each provides useful services in its own right; and each is managed for those services.

Yet, together they exhibit a synergistic, transcendent capability" [57]

"[SoS] are man-made, created and utilized to provide services in defined environments for
the benefit of users and other stakeholders. These systems may be configured with one or

11 Holistic: "characterized by the belief that the parts of something are intimately interconnected and
explicable only by reference to the whole" [52].
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more of the following: hardware, software, humans, processes (e.g., review process),
procedures (e.g., operator instructions), facilities, and naturally occurring entities (e.g.,
water, organisms, minerals). In practice, they are thought of as products or services. The
perception and definition of a particular system, its architecture and its system elements
depend on an observer’s interests and responsibilities. One person’s system- of-interest
can be viewed as a system element in another person’s system-of-interest. Conversely, it

can be viewed as being part of the environment of operation for another person’s
system-of-interest." [ISO/IEC 15288]

Figure 2.2: Hierarchical sequence of terms used by INCOSE’s Systems Engineering Working
Group.

From these definitions it can be derived that a system of systems is any system composed
of various other systems which are themselves autonomous [20][1], where autonomous
stands for an entity exercises independent action or decision making. However, there are five
fundamental properties the whole (often) possesses to be considered a system of systems
[40][20][59][8]:

• Operational independence: The various component systems must be able to operate
in their own right and independently if dissembled from the overall system.

• Managerial independence: The various component systems are managed for their
own purposes, and do operate independently for their own purposes rather than the
purpose of the whole.

• Geographic distribution of the systems: Geographic must be interpreted as
distributed (either local or wide area scale). Distribution refers to physical
distribution and decoupling of individual system capabilities.

• Evolutionary development: The development of SoS is evolutionary, and adapts with
functions and purposes added, removed, and modified as technologies evolve with
time.

• Emergence: Emergent properties of SoS may not be localized to any component
system, as the whole is greater than the sum of its parts.
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Element System System of Systems

Autonomy Autonomy is ceded by parts in
order to grant autonomy to the
system.

Autonomy is exercised by constituent systems in
order to fulfill the purpose of the SoS .

Belonging Parts are akin to family members;
they did not choose themselves but
came from parents. Belonging of
parts is in their nature.

Constituent systems choose to belong on a
cost/benefits basis; also in order to cause greater
fulfillment of their own purposes, and because of
belief in the SoS supra purpose.

Connectivity Prescient design, along with parts,
with high connectivity hidden
in elements, and minimum
connectivity among major
subsystems.

Dynamically supplied by constituent systems with
every possibility of myriad connections between
constituent systems, possibly via a net-centric
architecture, to enhance SoS capability.

Diversity Managed i.e. reduced or
minimized by modular hierarchy;
parts’ diversity encapsulated
to create a known discrete
module whose nature is to project
simplicity into the next level of the
hierarchy.

Increased diversity in SoS capability achieved by
released autonomy, committed belonging, and open
connectivity.

Emergence Foreseen, both good and bad
behavior, and designed in or tested
out as appropriate.

Enhanced by deliberately not being foreseen, though
its crucial importance is, and by creating an
emergence capability climate, that will support early
detection and elimination of bad behaviors.

Table 2.1: Differentiating a system from a system of systems, adapted from [8].

There are some fundamental differences between a system and a system of systems (as
presented in table 2.1), but the two concepts have something fundamental in common:
being "gathered together". This means that each consists of parts and their associated
relationships, where the whole is greater than the sum of the parts, and thus the same in
this sense. However it has been noted [20] that the "gathering together" in SoS comes from
two opposing forces: a) legacy, given by the previous existence of systems which
constitutes the SoS, and b) mystery, from the uncertain and unknowable environment in
which SoS must operate. Given its properties, seven main challenges can be identified
when developing system of systems [25]:

• System elements operate independently: SoS must be capable of operating on their
own.

• System elements have different life cycles: Since SoS involve multiple components,
we should be aware that these components may have different life cycles.

• The initial requirements are likely to be ambiguous: Requirements in the design stage
are usually no more explicit than the system component requirements.

• Complexity is a major issue: Conflicting or missing interface standards complicate
data exchange between components. Adding components also increments system
complexity in a non-linear fashion.
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• Management can overshadow engineering: The development of a SoS is
complicated because every component has its own requirements, constraints,
schedules, interfaces. . .

• Fuzzy boundaries cause confusion: Unless someone explicitly defines and controls
the scope of a SoS, no one controls the definition of external interfaces.

• SoS engineering is never finished: After deploying a SoS, we must account for
changes in the various components’ life cycles.

2.3 Systems Thinking

Ludwig von Bertalanffy’s publication of his article "General system theory" in 1956 served
as the foundation of a field of study which has shown the importance of system-based
approach. Systems theory (or General Systems Theory, GST) [9] is applied through
systems analysis, and one of its major tools is systems thinking problem methodology
approach [24][51]. Systems Thinking views systems from a broad perspective (including
overall structure, patterns and cycles in systems), rather than only specific events.
Adopting this methodology can lead to quickly identifying the causes of issues in complex
systems, and where to work to address them.

2.3.1 The Systems Thinking Approach

Traditional analysis focuses on separating individual pieces of what is being analyzed. In
fact, the word analysis itself means "the process of separating something into its constituent
elements" [52]). In contrast, systems thinking "focuses on how the thing being studied
interacts with the other constituents of the system - a set of elements that interact to produce
behavior - of which it is a part" [4]. The goal of this discipline can be defined as "systems
thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships
rather than things, for seeing patterns of change rather than static snapshots" [5].

Models are frequently used to analyze large and complex problems, but these are often
oversimplified or incomplete, usually from applying a model to a different system than that
for which it was designed [13]. Thus, instead of reacting to specific parts of a system and
their components, systems thinking attempts to view problems as parts of an overall system.
This is especially beneficial when dealing with dynamically complex systems involving
multiple actors, or systems with a great amount of internal and/or external feedback. In
short, Systems Thinking provides structured steps to walk a path toward a vision, and to
gather all possible processes and interrelationships into an organized structure.
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Chapter 3

Systems Engineering

The previous chapter introduced some fundamental concepts, and how they lead to a new
system-based approach. However, while systems thinking relies upon understanding the
holistic properties of complex systems, this chapter discusses an approach focused upon
transforming the need for a system into a set of capabilities, requirements, functions or
objects; and guides the production of these systems and services to meet this need in an
effective manner: Systems Engineering. This can be envisaged as "to think" versus "to
act" in terms of systems [5] [23]. This chapter presents a general overview of this field,
providing some formal definitions, and explaining how this field originated, its management
aspect, and the role of systems engineers (sections 3.1 to 3.4 respectively). One of the most
important aspects for this research is discussed in section 3.5: the current transition from a
document-based to a model-based approach.

3.1 Definition and Objectives

There are multiple definitions to describe Systems Engineering, but the following are
provided to illustrate this concept:

"A discipline that concentrates on the design and application of the whole (system) as
distinct from the parts. It requires examining a problem in its entirety, taking into account
all the facets and variables and relating the social to the technical aspect. The translation

of operational requirements into design, development, implementation concepts, and
requirements in the life cycle of a system." [18]

"Systems engineering is a methodical, disciplined approach for the design, realization,
technical management, operations, and retirement of a system." [42]

Multiple definitions can also be found in international standards (refer to appendix B
for other formal definitions in SE standards):

"Systems engineering is an interdisciplinary approach and means to enable the realization
of successful systems." [25]
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"An interdisciplinary approach that encompasses the entire technical effort, and evolves
into and verifies an integrated and life cycle balanced set of system people, products, and

process solutions that satisfy customer needs." [EIA Standard IS-632, Systems
Engineering, December 1994]

"An interdisciplinary, collaborative approach that derives, evolves, and verifies a life-cycle
balanced system solution which satisfies customer expectations and meets public

acceptability." [IEEE P1220, Standard for Application and Management of the Systems
Engineering Process, Final Draft, 26 September 1994]

"The process by which a customer’s needs are satisfied through the conceptualization,
design, modeling, testing, implementation, and operation of a working system." [57]

From these definitions it can be concluded that the function of Systems Engineering is
to guide the engineering of complex systems [31], where to guide may be defined as "to
show the way, lead, manage, or direct, usually based on the superior experience in pursuing
a given course". In short, Systems Engineering can be defined as a holistic, integrative
interdisciplinary engineering management process focusing on how complex engineering
projects should be designed and managed over their life cycles. Thus, Systems Engineering
is about looking at the big picture, not just by meeting the requirements, but also following
the right design.

Figure 3.1: The System Engineer’s dilemma. It should be noted that time in a schedule is often a
critical resource, and thus schedule behaves like a kind of cost.

The objective of Systems Engineering has also been described as "to see to it that the
system is designed, built, and operated so that it accomplishes its purpose in the most cost-
effective way possible, considering performance, cost, schedule, and risk" [41]. In this
context, cost-effective refers to a balance between effectiveness (quantitative measure of the
degree to which the system’s purpose is achieved) and cost (foregone value of the resources
needed to design, build, and operate the system). This leads to the Systems Engineer’s
Dilemma [42], as seen in picture 3.1.
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3.2 Origins

It is difficult to pinpoint the origins of Systems Engineering to a particular date, since the
discipline has been involved in some form in the execution of complex projects following a
system specification through history. However, the term itself can be traced back to the
Bell Laboratories in the 1940s, and textbooks first recognized it as a separated field in the
1950s [28]. Moreover, Systems Engineering as a separated activity can be traced to the
effects of World War II, which triggered a tremendous advancement in technology and the
development of complex systems (e.g. jet fighters, military radar, ballistic missiles,
proximity fuse, the atomic bomb. . . ). The need for an increased level of organization and
efficiency to combine multiple technical disciplines, and a new approach to program
planning to meet tight schedules, resulted in the Systems Engineering field as we know it
today. During the Cold War (1950s-1980s), technological advancement was still greatly
influenced by military requirements, but it is the development of solid-state electronics
which probably had the biggest impact. This led to the ongoing Information (or Digital)
Age, with the development of the digital computer and associated software technology,
resulting in increased automation and greater system complexity. These are of particular
interest to Systems Engineering. In the summer of 1990 a professional society for systems
engineering, the National Council on Systems Engineering (NCOSE), was founded by
representatives from a number of U.S. corporations and organizations. In 1995, due to the
growing involvement of systems engineers outside of the U.S., the name of the
organization was changed to International Council on Systems Engineering12 (INCOSE).
INCOSE is a non-profit membership organization dedicated to the advancement of systems
engineering and to raise the professional stature of systems engineers. In 2002 the
international standard ISO/IE 15288 was introduced, which formally recognized systems
engineering as a preferred instrument, and establishes a common framework for describing
the life cycle of systems created by humans, defining a set of processes and associated
terminology within that framework. In short, the origins of SE can be attributed to three
basic factors [31] [12]: a) advancing technology which leads to new opportunities as well
as new challenges, b) competitive pressures on the system development process leading to
trade-offs, and c) specialization of systems leading to the emergence of interfaces.

3.3 Systems Engineering Process and Management

Systems Engineering is often divided into two main sub-disciplines [64] [36]:

• Systems Engineering Process, actual technical knowledge domain, including
identification and quantification of system goals, creation of alternative system
design concepts, performance of design trades. . .

• Systems Engineering Management, which integrates three main activities (as seen
in figure 3.2): development phasing, Systems Engineering Process, and life cycle
integration.

12http://www.incose.org/ (accessed 01-06-2012)
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Figure 3.2: The three activities of Systems Engineering management, as depicted in [36].

Development phase: The development phase involves a design process where more
detailed systems descriptions or designs are progressively produced:

• System concept describes what the system should do and how it would operate.

• Functional baseline where all the functions the system are identified and specified.

• Allocated baseline in which subsystems are defined and the functions are allocated to
the various subsystems.

• Product baseline describing the detailed design.

Systems Engineering Process: The Systems Engineering Process (SEP) is "a
comprehensive, iterative and recursive problem solving process, applied sequentially
top-down by integrated teams" [36]. Its purpose is to transform a set of needs and
requirements into a system product and process descriptions, achieved by generating
information for decision makers, and providing input for the next level of development.
This process is applied sequentially (as shown in figure 3.3) where the steps are as follows:

• Process Inputs: Inputs consist primarily of the customer’s needs, objectives,
requirements and project constraints.

• Requirements Analysis: Used to develop functional and performance requirements
(what the system must do and how well it must perform).

• Functional Analysis/Allocation: Decompose higher-level functions into a
description of the product or item in terms of what it does logically and in terms of
the performance required.

• Requirements Loop: Iterative process of revisiting requirements analysis as a result
of functional analysis.
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Figure 3.3: Systems Engineering Process, as originally depicted in [36].

• Design Synthesis: Process of defining the product or item in terms of the physical and
software elements.

• Design Loop: Revisiting the functional architecture to verify that the physical design
synthesized can perform the required functions at required levels of performance.

• Verification: Solution is compared to the requirements for each application of the
process.

• Systems Analysis and Control: Used to measure progress, evaluate and select
alternatives, and document data and decisions.

• Process Output: Includes any data that describes or controls the product configuration
or the processes necessary to develop the product.

Life cycle integration: Every system has a life cycle which includes the development,
production, usage, and retirement stages. Systems Engineering encompasses the entire life
cycle for the system, and its goal can be defined as:

"The purpose and outcomes shall be defined for each stage of the life cycle. The life cycle
processes and activities are selected, tailored as appropriate, and employed in a stage to

fulfill the purpose and outcomes of that stage." [ISO/IEC 15288]
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3.4 Systems Engineers

Systems Engineering has been described as both and art and a science [56], where systems
engineers must display technical leadership (the art), focusing on a system’s technical
design and technical integrity throughout its life-cycle; and handle systems management
(the science), focusing on rigorously and efficiently managing the development and
operation of complex systems. Many personal behavior characteristics have been
attributed to effective systems engineers [31] [56], both innate, or learned and honed (refer
to figure 3.4 for an example).

Figure 3.4: Characteristics of good systems engineers as seen in [56], with decreasing priority from
top to bottom.

Systems engineers (sometimes referred as technical manager or chief engineer), need
to find a safe and balanced design while dealing with multiple opposing interests and
constraints. Systems engineers must possess the skill to focus efforts to optimize the
overall design, instead of favoring (sub)systems at the expense of another. Responsibilities
of a systems engineer in a project include: ensuring that the system fulfills the technical
needs and requirements defined, monitoring, coordination and oversight of technical
teams, and evaluation of the technical aspects of the project to ensure the proper function
of all (sub)systems from concept to product. Among many other tasks, the lead system
engineer of a project is usually charged with a leading role in the development of the
systems architecture, the definition and allocation of requirements, evaluation of design
trade-offs, and oversight in the validation and verification of activities. The systems
engineer also must produce many of the project documents, including requirements-,
specification-, verification-, validation-, and certification-documents. These include the
Systems Engineering Management Plan (SEMP), which provides the framework and
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guidance for all engineering activities within the overall project. The lead systems
engineer of a project must ensure that the system fulfills the technical needs and
requirements defined, while directing, communicating, monitoring and coordination tasks
between technical teams. Systems engineers can fulfill multiple roles in a project, and up
to twelve different roles have been identified and analyzed [60].

3.5 Document-Based versus Model-Based Approach

Traditionally, large and complex projects have relied on a document-based systems
engineering approach, characterized by the generation of textual specifications and design
documents, which are then exchanged between the project’s stakeholders (refer to
appendix C for a list of stakeholders in SE). Some fundamental concepts of this approach
include [21]:

1. Specification tree: Depicts in a hierarchical manner the specifications for a particular
system, its subsystems, and its hardware and software components.

2. Systems engineering management plan: Documents the systems engineering process
employed on the project, and how the engineering disciplines work together to
develop the documentation needed to satisfy the requirements in the specification
tree.

3. Operation document: Defines how the system is used to support the required mission
or objective.

4. Document-based requirements traceability: Maintained by identifying the part of the
system or subsystem that satisfies the requirement, and/or the verification procedures
used to verify the requirement, and then reflecting this in the requirements database.

This approach has some fundamental limitations. Completeness, consistency, and
relationships between requirements, design, engineering analysis, and test information is
spread across multiple documents. This results in difficulty to access information and to
understand a particular aspect of the system, which leads to problems with requirements
traceability and impact assessments when changes occur, especially for an evolving or
variant system design.

Model-based systems engineering (MBSE) attempts to overcome these limitations [50]
by emphasizing a system architecture model as the primary work artifact, combining
traditional SE best practices with rigorous visual modeling techniques. MBSE is starting to
be more prevalent in SE, becoming part of a long-term trend toward model-centric
approaches, although it has been the standard practice in disciplines such as mechanical
engineering and electrical engineering for many years. A formal definition provided by
INCOSE is as follows:

Model-based systems engineering (MBSE) is the formalized application of modeling to
support system requirements, design, analysis, verification and validation activities
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beginning in the conceptual design phase and continuing throughout development and
later life cycle phases. [29]

Some of the fundamental characteristics of MBSE include:

1. System model: Includes system specification, design, analysis, and verification
information, and consists of elements that represent requirements, design elements,
test cases, design rationale, and their interrelationships. Primarily used to design a
system that satisfies system requirements and to allocate these requirements to the
system’s components.

2. Model repository: Stores model elements and captures specification, design, analysis,
and verification information.

3. Model-based requirements traceability: The system model maintains rigorous
traceability between requirements, design, analysis, and testing.

Take figure 3.5 as an example, which shows the traditional V-Model approach. In this
methodology each stage of refinement results in a set of documents, which serve as input
for the next level of system definition. Models used at each level of definition are
independent, often relying on different techniques and tools. Thus, document validity is
essentially established by isolated review of the document’s content, and traceability is
limited to the requirements as stated by the previous product.

Figure 3.5: The Systems Engineering process using the V-Model, taken from [38].

Now see figure 3.6 for an example of a model-based and model-centric approach,
which involves the same tasks as in the previous methodology. However, in this case these
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Figure 3.6: The Systems Engineering Process using a model-centric approach, taken from [38].

tasks contribute to a central model repository (a relational database which captures system
elements and relationships). Traceability is provided through these relationships, and
documents are generated from the model data. MBSE provides multiple methodologies
[17] to address many of the limitations of a document-based approach, which define a
more rigorous means for capturing and integrating system requirements, design, analysis,
and verification information, and facilitating the maintenance, assessment, and
communication of this information across the system’s life cycle. It is the INCOSE’s
intention [29] to facilitate the transition to MBSE, shifting the emphasis from controlling
the documentation about the system, to controlling the model of the system. However, lack
of tool interoperability and absence of convergent MBSE standards has been a significant
inhibitor to widespread deployment of MBSE. Still, systems modeling standards are
commencing to emerge which should have a significant impact on the application and
practice of MBSE, including OMG’s Systems Modeling Language, discussed in the next
chapter.
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Chapter 4

The Systems Modeling Language

The previous chapter described how the Systems Engineering field is currently transitioning
from a traditional document-based approach to a model-based approach. There are some
emerging systems modeling standards, with the Systems Modeling Language as a prime
example. This chapter presents a general introduction to SysML, describing its origins,
providing a general overview, and describing the diagram types used (sections 4.1 to 4.3
respectively). The most relevant aspects to this research are presented in section 4.4 (how
structure is modeled), and section 4.5 (how requirements are modeled). Finally, section 4.6
analyzes the current situation when exchanging data between modeling tools.

4.1 Background

As described before, Systems Engineering processes tend to be document-centric,
employing a variety of techniques which are often inconsistent and imprecise. During the
1990s software engineers sought a general-purpose modeling language to specify
software-intensive systems, which derived in the Unified Modeling Language (UML) (see
figure 4.1 for a visualization of the evolution of modeling languages). UML is now the
standard modeling language in the software community. UML is also capable to address
the systems engineering needs through its wide range of notations, and it is adaptable
though extensions known as UML profiles. Some examples of SE projects using adapted
UML profiles include MARTE [48] and System on a Chip [74]. Still, systems engineers
seek a general purpose modeling language to specify complex systems-of-systems that
include non-software components. UML cannot satisfy this need without modifications
because of its software bias, while lacking the semantics to model requirements and
parametric constraints (which are crucial to support requirements engineering and
performance analysis, two essential Systems Engineering activities).

The Systems Modeling Language initiative originated in January 2001 from the
decision of the INCOSE’s Model Driven Systems Design workgroup to customize the
UML for Systems Engineering applications. This decision led to a collaborative effort
between the OMG13 (Object Management Group), which maintains the UML

13http://www.omg.org/
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Figure 4.1: SysML and visual modeling language evolution, from [68].

specification, and INCOSE, resulting in the establishment of the OMG Systems
Engineering Domain Special Interest Group14 (SE DSIG) in July 2001. The SE DSIG,
aided by INCOSE and the ISO AP 233 workgroup, developed the requirements for the
modeling language. In March 2003, these requirements were issued by the OMG as part of
the UML for Systems Engineering Request for Proposal (SE RFP). The goals of this
language were defined as follows:

"A standard modelling language for Systems Engineering to analyze, specify, design, and
verify complex systems, is intended to enhance systems quality, improve the ability to

exchange systems engineering information amongst tools, and help bridge the semantic
gap between systems, software, and other engineering disciplines". [19]

In 2003, in response to these developments, an informal association of industry leaders
and tool vendors organized in SysML Partners [69] to initiate an open source SysML
specification project. Their first open source SysML specification drafts were distributed in
2004, and the SysML 1.0a was submitted to the OMG for technology adoption in
November 2005. This led to a series of competing proposals, which ended with the SysML
Merge Team, adopted in July 2006 as OMG SysML. It is worth noting that OMG
SysML

TM
is trademarked and maintained by the OMG, but since it is derived from open

source SysML, an open source license is included for distribution and use.

14http://syseng.omg.org/
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4.2 Language Overview

Figure 4.2: Overview of SysML/UML
interrelationship, as originally appeared in [49].

SysML is defined as an extension
of the OMG UML 2.0 Superstructure
Specification [44] which provides a
standard modeling language to support the
specification, analysis, design, verification
and validation of a broad range of
complex systems which are not necessarily
software related. SysML is based on the
minimal subset of UML that satisfies the
needs of systems engineers, adapting UML
only when it is required. Figure 4.2 shows
the relationship between the UML and
SysML languages. The subset of modeling
constructs that SysML reuses from UML is
called "UML4SysML". The new modeling
constructs defined for SysML, which have no counterparts in UML or replace UML
constructs, are called "SysML extensions to UML". Other constructs that are not required
to implement SysML are defined as "UML not required by SysML". It should be noted
that UML does not address how to trace the requirements of a system from informal
specifications down to the individual design elements and test cases, a crucial activity in
Systems Engineering. Instead SysML provides support for representing requirements and
relating them to the model of a system, the actual design, and the test procedures.

4.2.1 Design Principles

SysML was created according to the following fundamental design principles [47] [49]:

1. Requirements-driven, intended to satisfy the requirements of the UML for SE RFP.

2. UML reuse, by reusing UML wherever practical to satisfy the requirements of the
RFP, and when modifications are required, they are done in a manner that strives to
minimize changes to the underlying language.

3. UML extensions, by extending UML as needed to satisfy the requirements of the RFP.

4. Partitioning, where the package is the basic unit of partitioning in this specification.
The packages partition the model elements into logical groupings that minimize
circular dependencies among them.

5. Layering, where packages are specified as an extension layer to the UML metamodel.

6. Interoperability, by inheriting the XMI interchange capability from UML.

Cris Kobryn, chair of the SysML Partners, observed [68] that 80%+ of the time the
SysML Partners discussed SysML language features in four diagrams: Requirement,
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Activity, Block, and Parametric diagrams, used to specify, respectively, system
requirements, behavior, structure, and parametric relationships. He coined the term Four
Pillars of SysML, as depicted in figure 4.3, to refer to these four essential diagrams [14].
From these four concepts, two are essential for our research: structure and requirements,
which will be further discussed in the following sections.

Figure 4.3: The Four Pillars of SysML, from [72].

4.3 Diagram Overview

Figure 4.4 shows all the diagram types supported by SysML (refer to appendix E for a
comparison between SysML diagrams and their UML counterparts). Every diagram
graphically represents a particular aspect of the system model. The diagram types in
SysML are as follows:

• Activity diagram (act): Represents behavior in terms of the ordering of actions based
on the availability of inputs, outputs, and control, and how the actions transform the
inputs to outputs.

• Sequence diagram (sd): Represents behavior in terms of a sequence of messages
exchanged between parts.

• State machine diagram (stm): Represents behavior of an entity in terms of its
transitions between states triggered by events.

• Use case diagram (uc): Represents functionality in terms of how a system or other
entity is used by external entities to accomplish a set of goals.

• Block definition diagram (bdd): Represents structural elements called blocks, and
their composition and classification.
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Figure 4.4: SysML diagram taxonomy, as originally appeared in [49].

• Internal block diagram (ibd): Represents interconnection and interfaces between the
parts of a block.

• Parametric diagram (par): Represents constraints on property values used to support
engineering analysis.

• Package diagram (pkg): Represents the model structure.

• Requirement diagram (req): Represents text-based requirements and their
relationship with other requirements, design elements, and test cases to support
requirements traceability.

Table 4.1 shows the valid permutations of model elements in the different diagram types.

SysML Diagram Type Model Element Allowed
Activity diagram activity control operator

Internal block diagram block
Package diagram package, model, model library, profile, view

Parametric diagram block, constraint block
Block definition diagram block, constraint block, package, model, model library

State machine state machine
Use case diagram package, model, model library

Requirement diagram package, model, model library, requirement
Sequence diagram interaction

Table 4.1: Allowed permutations of model elements in SysML diagrams.
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4.4 Structure

In SysML packages are used to organize the model, system structure is represented in
block definition diagrams, and internal block diagrams describe the internals of a block
such as parts, ports, and connectors. SysML also involves modeling blocks (instead of
modeling classes as in UML) to suit the vocabulary of systems engineers. Blocks extend
the UML Structured Class, and are a general purpose hierarchical structuring mechanism
that abstracts away much of the software-specific detail implicit in UML structured
classes. A block may represent software, hardware, data, process, personnel, facilities and
any other system element [54]. Blocks are shown in diagrams as UML classes stereotyped
«block».

4.5 Requirements

Requirements for a system are a collection of needs expressed by stakeholders regarding
some constraints under which the system must operate [65]. These requirements may come
from different sources (e.g. the party requiring the system, regulations and norms, consumer
preferences. . . ), and are realized as functionality and constraints which must be satisfied by
the delivered application or system. Requirements form a significant part of the contractual
agreement between acquirer and supplier, and must be in a form that is understandable to
both non-technical customers and technical developers. Systems engineers must ensure that
these requirements are: expressed in clear and unambiguous terms, consistent, feasible,
validated according to the needs of the stakeholders, and verified to ensure that they are
satisfied by the system design.

Figure 4.5: Requirements flow, where stakeholder needs flow down as system requirements, which
in turn flow down as component requirements in SysML.

It is a common practice to group similar requirements into a specification. Stakeholder
requirements are gathered in the user requirement specification, which is usually written
using natural language. Systems requirements are derived from this specification, and
include a detailed description of how the system should work using (semi) formal methods
and languages. The process by which requirements for systems and software products are
gathered, analyzed, documented and managed throughout the development life cycle is
called Requirements Engineering (RE) [16].
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One of the principal extensions of SysML is the support for requirements [26], where
each requirement specifies a capability or condition that must (or should) be satisfied, a
function that a system must perform, or a performance condition a system must achieve.
Component requirements are modeled in SysML to satisfy these system requirements
using the stereotype «requirement», which specifies the textual shall statement (picture 4.5
illustrates the process of requirement modeling).

4.6 Model Interchange Between Tools

Data can be exchanged between SysML modeling tools trough manual, file-, interaction-,
and repository-based mechanisms. However, to reduce the cost and improve the quality of
the data exchange, a standardized approach is often preferred [29].

4.6.1 ISO AP 233

OMG’s SysML specification is intended to be compatible with the ISO AP233 Systems
Engineering Data Exchange standard (formally ISO 10303-233). This standard is still
evolving and is intended to describe, represent, and exchange industrial data in a computer
interpretable format. When implemented, the standard will allow to support the whole
system development life cycle ranging from requirements definition to system verification
and validation in different fields, including: Engineering Analysis, Algorithm Design,
Planning Tools, Testing Tools, Software Design, Mechanical Computer Aided Design, and
Electrical Computer Aided Engineering. With this standard, OMG will try to ensure that
models can be exchanged using the AP233 data exchange protocol, and data generated by
another tool stored in AP233 can be visualized in any other OMG SysML tool.

4.6.2 XML Metadata Interchange

The XML Metadata Interchange (XMI) [46] is an OMG standard for exchanging metadata
information via eXtensible Markup Language (XML). XMI integrates three industry
standards:

1. XML: eXtensible Markup Language, a W3C standard.

2. UML: Unified Modeling Language, an OMG modeling standard.

3. MOF: Meta Object Facility, an OMG language for specifying metamodels.

XMI is used for any metadata whose metamodel can be expressed in Meta-Object
Facility, and is commonly applied to serialize UML models for interchange. Since SysML
is an extension of the UML metamodel, SysML models can also be exchanged using an
XMI schema. However it should be noted that certain limitations exist, especially when
exchanging diagrammatic information.
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4.6.3 Interchange Problems

We should be aware of the distinction between data interchange and diagram interchange.
XMI and AP 233 are used to exchange model data, but do not include diagram layout
information, such as where symbols appear in a diagram. OMG provides the Diagram
Interchange standard [45], though it is not widely used. It is a long term goal of the OMG
to address this challenge in the future through the use of MOF-based models.
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Chapter 5

Current Situation and Proposed
Approach

The previous chapter presented a general overview of the Systems Modeling Language,
paying particular attention to how models are structured, how requirements are modeled an
traced, and how data can be exchanged between tools. In this chapter, section 5.1 further
analyzes the current situation at Soltegro. In sections 5.2 and 5.3 multiple alternatives are
evaluated. However, it is concluded that the development of a new framework is necessary.
Thus, in section 5.4 a software tool is designed to provide answer to the main research
questions, and multiple research sub-questions are defined for each of the implementation
phases.

5.1 Current Situation

Figure 5.1 shows an overview of the current situation. Soltegro systems engineers create
and model SysML projects using the Enterprise Architect15 (EA) visual software platform.
According to the engineers themselves, this tool was chosen because, in their opinion, it is
one of the best visual modeling tools available, particularly highlighting its support for
SysML, scalability, and license price. Figure 5.2 presents an example of EA’s interface.
Important components to note are:

A. Toolbox: Allows the user to add various elements to the model.

B. Diagram viewer: Allows the user to inspect and modify diagrams.

C. Project browser: Allows the user to navigate through the project space. It displays
packages, diagrams, elements and element features in a tree like structure, reflecting
the arrangement of elements and packages within the model.

D. Traceability window: Shows element traceability through the model, allowing the user
to explore the relationship chain of which any element is a component.

15http://www.sparxsystems.com/products/ea/ (accessed 01-06-2012)
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Figure 5.1: Overview of the current situation at Soltegro.

All Enterprise Architect models are stored in databases, which are kept in a single
Enterprise Architect Project file (with an EAP extension). This EAP file uses a Microsoft
Jet database engine16, and may be browsed using programs such as Microsoft Access 97,
2000 or 2003, or any other reporting tool that can work with JET databases (see figure 5.3
for an example of the contents of this file).

Figure 5.2: Example of Enterprise Architect’s interface. In the figure we can identify the following
components: A) Toolbox, B) Diagram Viewer, C) Project Browser, and D) Traceability Window.

16http://support.microsoft.com/kb/275561/ (accessed 01-06-2012)
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Figure 5.3: Browsing an EAP file with Microsoft Access 2010.

However, applying version control to the database as a whole would require to use
the file-locking mechanism. In this revision control variant, concurrent access to files in
a central repository is prevented using locks. This is often necessary when dealing with
files in binary format (non line-based text files, such as artwork and sound), where it is not
possible to merge changes. Still, the file-locking mechanism means only a single user may
work on a model at a time, which especially hinders collaborative work. To overcome this
limitation, EA exports the packages in a model to individual XMI files which are kept under
revision control (and not the EAP file). Be aware that these files are still treated as binary
files, and thus disallowing merge operations. However, dividing the model into smaller
parts allows multiple users to work on different parts of the model simultaneously. Figure
5.4 provides an example of the files stored in an EA project working copy directory.

Figure 5.4: Example of EA SysML project working copy directory. On the left, we can identify the
following: A) multiple folders containing the XMI files, B) the EAP file, C) the reference data file
(contains data such as EA scripts), and D) EAB files, and E) resource files (such as text files and
spreadsheets). On the right, the collection of XML files in XMI format in such a folder is shown.

Notice that file name does not reflect package name.
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SysML model data is kept under revision control at Soltegro using an Apache
Subversion17 (SVN) repository. A user may work on the revision of a project from the
SVN repository by performing a check-out command on a local directory using the
TortoiseSVN client18. From EA, a model may be imported selecting the root XMI package
file. However, since every package is exported to an individual XMI file, a large collection
of files would need to be placed under revision control for complex projects, where it may
become difficult to find the corresponding root package. To alleviate this, EA uses Model
Branch files to retrieve information about the root package file and import a model branch.
When a user performs a check-out operation on a package, EA commands the revision
control system to check-out the corresponding XMI file. The latest revision of the file is
put into the user’s working copy directory overwriting any previous revision. With a
check-in operation, EA exports a package as an XMI file overwriting any existing copy,
and then the revision control system performs a commit on the new file.

5.2 Existing UML/SysML Measurement Tools

Since it is required to measure SysML models, this section reviews a couple of promising
projects which may provide the required data: SDMetrics and the EmpAnADa project.

5.2.1 SDMetrics

While reviewing possible UML/SysML measurement techniques, we were able to evaluate
the SDMetrics19 software tool. Juergen Wuest, the tool’s author, provided us with a free
academic license (excludes commercial use). SDMetrics is an object-oriented design
quality measurement tool that analyzes the structure of UML and SysML models (refer to
figure 5.5 for a couple of examples showing the tool’s interface). The tool has two main
features:

1. Object-oriented measures used to measure design, coupling and complexity.

2. Design rule checking aimed at detecting incomplete, incorrect, redundant, or
inconsistent design and style problems.

SDMetrics provides metamodel extensions and metrics support for OMG’s SysML
v1.2 through SysML 1.2 design quality metrics and rules20, a collection of XMI
transformation files. Note however, that these serve as a demonstration of how SDMetrics
can be adapted to deal with UML 2 profile extensions. The metrics provided assess system
quality in MBSE, including: assessment of the completeness, correctness, consistency of
the model; adherence to modeling conventions; estimating design and development effort;
and monitoring of design and development progress.

17http://subversion.apache.org/
18http://tortoisesvn.net/
19http://www.sdmetrics.com/
20http://www.sdmetrics.com/PF_SysML.html (accessed 01-08-2012)
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Figure 5.5: Examples of SDMetrics’ interface. On the left, the data presented in table format per
element (note the ability to highlight value beyond an specific threshold). On the right, the data as

an histogram per class.

It should be kept in mind that SDMetrics is unable to read XMI files generated by EA,
since SDMetrics’ default XMI transformations expect all model elements in the XMI file
to have and XMI ID, while EA does not provide XMI IDs for all the model elements. To
solve this, XMI 1.2 Transformation File for Enterprise Architect21 is available from the
tool’s site. SDMetrics also has a free Java implementation featuring its core functionality
as open source (AGPLV3 license for non-commercial use). This distribution provides full
XMI import, measurement, and rule checking capabilities, also including the XMI parser,
metrics and rule engine.

5.2.2 EmpAnADa project

EmpAnADa22 (Empirical Analysis of Architecture and Design Quality) is a project of the
Eindhoven University of Technology (as part of the System Architecture and Networking
group) led by M.R.V. Chaudron and C.F.J. Lange. The project is concerned with the
development of techniques to improve the quality of UML (and nowadays SysML)
models. Techniques derived from this project include rules, metrics, visualization
techniques, and modeling conventions. These tools include the following:

• MetricView: Analysis and visualization of model quality and model evolution.

• DICT Toolset: Design Implementation Conformance Tools. Techniques to assess
the conformance and differences between the UML model of a system and its
implementation.

• SquAT: Sequence Diagram Analysis Tool. Assessment of the conformance of UML
sequence diagrams to predefined rules.

21http://www.sdmetrics.com/PF_EA.html (accessed 01-08-2012)
22http://www.win.tue.nl/empanada/ (accessed 01-10-2012)
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• SAAT: Software Architecture Analysis Tool. Metrics that combine information from
different UML diagram types.

The EmpAnADa project also includes research in the visualization of UML models
using metric and architectural information [71] [32].

Collaboration with Adry Ferwerda, one of Chaudron’s students, was proposed. His
research project focuses on the evaluation of software development using a model driven
approach. Even though it did not involve SysML models, there were overlapping interests,
such as identifying regions in the model with low quality and visualizing how changes in one
element affect other elements in the project. However, Adry expressed that these points had
a low priority and were not planned to be addressed before the end of this research project.
Thus, further contact was not pursued, but future endeavors could review the measurements
proposed and/or developed to address these points in a (non-SysML) model, and how they
impact user insight into the model’s quality (evolution).

5.2.3 Evaluation

A possible solution would involve using a tool from (or similar to) those previously
described, which will be tasked with reading, interpreting and measuring the model data
from the XMI files. However these tools only analyze one file at a time, and since EA
doesn’t export all the data about every package (often relies on the use of stubs, see section
6.1.1), reading individual files would result in incomplete information. Instead, an
automatized method would need to be devised to read all the XMI files, or combine these
files into one single file, or enforce exporting models without stubs. Even so, project
meta-models would still require custom rules which take into account their specific
structures.

5.3 Extending Enterprise Architect Functionality

There are three main ways to add extra user-custom functionality to Enterprise Architect:
scripts, custom MDG technology, and add-ins.

Scripts: EA has a built-in Script Editor to write and run custom scripts using the
JavaScript23, JScript24 or VBScript25 languages. Scripts are often used to perform time
consuming and repetitive GUI tasks. Although scripts can be saved to the file system, they
are stored in the model, and thus, are only visible in the model in which they were created.

23http://msdn.microsoft.com/en-us/library/ms970435
24http://msdn.microsoft.com/en-us/library/hbxc2t98
25http://msdn.microsoft.com/en-us/library/t0aew7h6
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Figure 5.6: SysML support in EA
through MDG technology.

MDG Technology: Starting from version 8.0, the
built-in wizard in EA allows a user to create Model-
Driven Generation (MDG) technology files. These
files extend (or limit, depending on the user’s
needs) EA’s functionality, providing additional
toolboxes, UML profiles, patterns, templates and
other modeling resources (see the Sparx website26

for a list of third-party examples). Note that support
for SysML in EA is provided as an extension through
MDG technology, as shown in figure 5.6. Tutorials
showing how to develop MDG technology for EA
are available on the web27.

Add-ins: Add-ins allow to add functionality to EA and extend the Automation Interface
(which provides access to the internal EA models). Add-ins can be used to add (sub) menus
and access all user-interface events (such as mouse clicks and file changes). Add-ins require
installation, but do not need to be configured. The Sparx website provides a tutorial 28 to
create an add-in using C#.

Evaluation Choosing one of these methods would allow us to extend EA, a tool
engineers are familiar and comfortable with. EA also provides all the model data necessary
and methods to access it. However, choosing this route would make the framework
EA-dependent, meaning it would be bound to the tool to perform the necessary
measurements. This could prove detrimental if, for example, another modeling tool is used
in the future. Also, every time a model needs to be analyzed, the corresponding EAP file
should be reconstructed (as only XMI and EAB files are stored in the repository). Besides
the problems described above with respect to distribution and availability of these
extensions, it is also desired to take model evolution into account, thus requiring reading
data from the repository (only available from XMI files).

5.4 VoSMA Software Tool

A third option encompasses developing a custom framework, such as a stand-alone
application. The main functions of this tool are to read the relevant model data from the
XMI files. Another variant of this option involves reading the data from the .EAP database
instead. Although querying information from a database is a simpler process than
developing the framework described above, this option was not pursued since, as explained
before, the EAP file is not kept under revision control, has to be generated through EA, and

26http://www.sparxsystems.com.au/products/3rdparty.html (accessed 01-11-2012)
27http://www.tigerteam.dk/2011/how-to-develop-mdgs-for-enterprise-architect-part-1/

(accessed 01-11-2012)
28http://community.sparxsystems.com/tutorials/tool-integration/

create-your-first-c-enterprise-architect-add-10-minutes (accessed 01-11-2012)
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Project name Revision Total XMI file size EAP file size
Nijverdal 5000 82,0 MB 566 MB
Nijverdal 11043 94,0 MB 572 MB

Westerschelde 5000 76,7 MB 133 MB
Westerschelde 9571 119 MB 224 MB

Table 5.1: XMI and EAP file size comparison.

it is much larger than the XMI file collection (refer to table 5.1). Thus, reading the model
data from the XMI file collection is the preferred solution. The software is tasked with the
analysis of this data according to the defined criteria, and generation of the required output.
Advantages of this approach include accessibility and control over the whole model (all
the model data is available from the XMI files), tool independence (other modeling tools
also use XMI files to exchange model data), custom metric rule definition (thus providing
the ability to describe and implement our own measurement criteria), and custom output
data generation. Disadvantages involve the need to develop and implement a system to
read, parse, store, interpret, reconstruct and traverse SysML model data. Still, we consider
that the advantages of this variant heavily outweigh the disadvantages. It is expected that,
when implemented, the framework will provide simple and flexible (yet powerful) means
to create new custom rules for analysis, measurement and visualization.

Figure 5.7: Proposed approach using the extract-abstract-present paradigm.

To this end the VoSMA software tool (originally the acronym for Visualization of
SysML Meta-model Architecture) was designed and implemented. The tool provides the
framework responsible for the analysis, measurement and generation of the output data
required to answer the main research goals. The tool’s design follows the
extract-abstract-present paradigm [73], resulting, as shown in figure 5.7, into three main
steps: extraction (data gathering), abstraction (knowledge inference), and presentation
(information interpretation). The goal is to develop a tool capable of reading SysML
model data from a XMI file collection, extract the corresponding project meta-model,
measure its elements, and export the structural and metric data to output files. These files
serve as input for a third-party visualization tool, tasked with the presentation of this data
to the user, as shown in figure 5.8.

A set of research sub-questions have been defined for each step of the proposed
approach, which are further analyzed and addressed in the following chapters.
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Operating System Windows 7 Home Premium SP1
System Type 64-bit

Processor Intel Core2 Duo @ 2.13GHz
Memory 4.00 GB

Java Development Kit 7 update 7

Table 5.2: Development machine specifications.

Figure 5.8: Overview of the proposed approach using the VoSMA tool. Note that model data is
read from the XMI file collection in the working directory or SVN repository.

5.4.1 Extraction - Data Gathering

The first phase is concerned with the identification of the available data sources and the
recollection of the necessary data to produce the required input. This phase is further
described in chapter 6, which provides answer to the following five research sub-questions:

RSQ.1a - What are the data sources available at our disposal?

RSQ.1b - What data do we need to analyze for our research?

RSQ.1c - How can we read the necessary data?

RSQ.1d - How can we effectively store the required data?

RSQ.1e - How can we provide element traceability?
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5.4.2 Abstraction - Knowledge Inference

The second phase involves the extraction and analysis of the project meta-model, which is
measured using the appropriate metrics, leading to a set of output data. This phase is further
described in chapter 7, which provides answer to the following three research sub-questions:

RSQ.2a - How can we reconstruct the project meta-model structure?

RSQ.2b - What measurements should be performed on the project meta-model
architecture?

RSQ.2c - What output data do we need to generate?

5.4.3 Presentation - Information Interpretation

The final phase mainly involves presenting the output data to the users. This phase is further
described in chapter 8, which provides answer to the following two research sub-questions:

RSQ.3a - How can we efficiently present the generated data to systems engineers?

RSQ.3b - How can we represent the project meta-model architecture evolution through
development?

However, it is also required to evaluate the satisfaction level of the presented results,
as one of the main research objectives is to aid engineers to gain insight into the project
meta-model. This is discussed in chapter 9.

RSQ.3c - How satisfied are systems engineers with the presented data?
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Chapter 6

Data Gathering

The previous chapter examined the current situation, where multiple alternatives where
proposed and evaluated. After concluding that a new framework had to be developed, a
three step approach based on the extract-abstract-present paradigm was proposed. Each
step was refined with a set of research sub-questions, and a software artifact was
introduced to provide the necessary answers.

Figure 6.1: Overview of the data gathering phase.

This chapter analyzes the data gathering phase (see figure 6.1 for an overview). Section
6.1 identifies, analyzes and filters the available data sources. Section 6.2 explains how the
required data is obtained and read, while section 6.3 describes how this data is stored and
normalized. Lastly, section 6.4 presents means to provide element traceability. The result
of this phase is the complete SysML model data, and the means to transverse the model.

6.1 Identifying Available Data Sources

This section provides answer to two research sub-questions: RSQ.1a - What are the data
sources available at our disposal?, and RSQ.1b - What data do we need to analyze for our
research? Three main data sources were identified in our environment:
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• EA working directory: Contains all the data used by EA, including the model data.
Section 5.4 explained why retrieving the model data from the XMI file collection is
the preferred choice (XMI format discussed in section 6.1.1). Most element data is
required, but diagram and visual information can be left out.

• The SVN repository: Provides the various model revisions and revision history
metadata through change-log (format discussed in section 6.1.3).

• Soltegro systems engineers: Provide needs and constrains for this project. They also
determine the appropriate measurement and visualization preferences.

6.1.1 XMI file format

This section examines EA’s proprietary native XMI format. As explained earlier, every XMI
file holds data about a single package in the model, including all information about every
element in its sub-packages (refer to figure 6.2 for an example). However, after version 4.5,
EA only saves stub information about any nested packages. When using version control,
this method ensures that information in a nested package is not inadvertently over-written
by a top level package (and thus, only the top level package is modified when checking out).
The option to save nested packages as stubs is enabled (and recommended) by default in
EA.

Figure 6.2: XMI file example.

EA’s XMI file format is as follows:

1. Declaration, which consists of:

a) An XML version processing instruction: xml version="1.0".

b) An optional encoding declaration that specifies the character set, which
follows the ISO-10646 (also called extended Unicode) standard:
encoding="windows-1252".

2. An schema XMI element (<XMI>), which consists of:

a) An XMI version processing instruction: xmi.version="1.1".

b) An optional encoding declaration that specifies the character set:
xmlns:UML="omg.org/UML1.3".
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This XMI schema contains four nodes:

a) Header (<XMI.header>): The header is the same across all XMI files (see
figure 6.3), and contains the name of the tool that generated the file, and the
exporter version, which has remained unchanged since EA version 2.5.

Figure 6.3: XMI header.

b) Content (<XMI.content>): The main source of element data (see figure 6.4 for
an example). It is important to notice that the data over the associated package
can always be found in the following path:

"XMI.content/UML:Model/UML:Namespace.ownedElement/UML:Package"

Almost every element in a model possesses an unique identifier, also known as
UID (xmi.id attribute). The element’s UID and name (if any) can always be
found in the attributes. Data about every other element in the package can be
found in the "UML:Namespace.ownedElement" node.

Figure 6.4: XMI content node example.

c) Differences (<XMI.difference>): Holds XML elements representing
differences to a base model.

d) Extensions (<XMI.extensions>): Contains data to transfer that does not
conform to the metamodel(s) in the header. Extensions can be used or ignored
by other modeling tools. In EA it is mainly used for stubs (declared as an
element, but not used for interactions) and NoteLink (the connector of a Note)
elements.

Information about every element in a package is stored in a node with the name of its
SysML class type. This node is assigned multiple attributes (such as the element’s name
and UID), optionally followed by a list of associated tagged values, owned elements and
other related data.

43



6. DATA GATHERING

Figure 6.5: Example of an XMI element node, showing A) the owner node, B) the node type, C)
attributes, D) tagged values, and E) owned elements.

6.1.2 Model Branch File format

Reading a model from a SysML project can be done in two ways: a) read the whole
collection of XMI and retrieve the corresponding model root(s), or b) use a branch file
which points the model root of the branch. The model is then reconstructed by recursively
reading the owned packages, which point to their corresponding files. The first option
reads the whole project and finds all the models, while the second only reads what is
necessary to reconstruct the desired model.

Figure 6.6: Contents of the Westerscheldetunnel.EAB file. Note that the address marked in red
points to the relative path of the model’s root XMI file package.

EA’s Model Branch File (.EAB file extension) is a text file used to record information
version control configuration settings. The file contains the relative path to the XMI package
file used as root of the model to be imported (as shown in figure 6.6).

6.1.3 The SVN change-log data

The SVN repository revision metadata can be accessed through the change-log, which stores
the following information:
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• Revision number: The incremental number assigned when the revision was
committed.

• Author: The user who committed the revision.

• Date: The date when the revision was committed.

• Action Performed: There are four actions possible per file when committing a
revision: M (modified), A (added), D (deleted), or R (replaced).

• Path: Files and folders that were changed with the revision.

• Message: Full log message for the committed revision (if any).

This data will be mainly used to visualize the model evolution through different
revisions.

6.2 Reading Data Sources

This section addresses research sub-question RSQ.1c - How can we read the necessary
data?, describing the tools used to extract, filter and/or generate the required data.

SVN repository reader: This module is responsible for reading the XMI files and
change-log data from the repository. The module was built using the SVNKit29 Java
Subversion library. Other possible alternatives included JavaHL30 and SvnClientAdapter31,
but were discarded due to lack of documentation, support and/or working examples.

Streaming API for XML (StAX): In the Java programming language community, there
are traditionally three options to read data from an XML file:

• Event-based APIs (streaming): SAX32 (Simple API for XML) is a prime example,
where an event-based sequential access parser only operates on portions of the XML
document at a time (push model). However, once started, it goes to the end of the
document and the caller must be ready to handle all of the events in one shot.

• Tree-based APIs (document object model): DOM33 (Document Object Model)
implementation relies on this technique, where a hierarchy-based parser recreates an
object model of the entire XML document in memory (the model built is usually
larger than the original XML document).

• String manipulation: Sometimes implemented due to performance or memory
constraints, but often hardly scalable or reusable.

29http://svnkit.com/
30http://subclipse.tigris.org/wiki/JavaHL
31http://subclipse.tigris.org/svnClientAdapter
32http://docs.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/SAXParser.html
33http://docs.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/package-summary.html

45



6. DATA GATHERING

Table 6.1 provides an overview of XML parser APIs for Java. Streaming pull parsing
refers to model in which the client only gets (pulls) XML data when it explicitly asks for it
(used by StAX). In the streaming push parsing variant the parser sends the data whether or
not the client is ready to use it at that time (used by SAX). Several advantages of the pull
method include: capable of reading multiple documents with a single thread, elements
unnecessary to the client can be ignored, and the client controls the application thread
(methods are called on the parser when needed). Our project requires reading a writing
XML files, may use the ’forward only’ option, and an efficient memory usage is preferred.
XPath and XML modification capabilities are not necessary. From these requirements it
appears the StAX API is the prime candidate for this project.

Feature StAX SAX DOM TrAX
API Type Pull, streaming Push, streaming In memory tree XSLT Rule

Ease of Use High Medium High Medium
XPath Capability No No Yes Yes

CPU and Memory Efficiency Good Good Varies Varies
Forward Only Yes Yes No No

Read XML Yes Yes Yes Yes
Write XML Yes No Yes Yes

Create, Read, Update, Delete No No Yes No

Table 6.1: XML parser API feature comparison34

StAX is defined in the JSR 173 specification35. VoSMA uses the Sun Java Streaming
XML Parser36 (SJSXP) implementation. The core StAX API falls into two categories:
cursor API, and event iterator API. The cursor variant mirrors the SAX API: it represents
a cursor which traverses through an XML document from beginning to end. This cursor
may point to one element at a time, and always moves forward (never backwards). The
cursor API methods return XML information as strings, which minimizes object allocation
requirements. On the other hand, the event iterator variant somewhat resembles the DOM
API: it represents an XML document stream as a set of discrete event objects pulled by the
application and provided by the parser in the order in which they are read. The event iterator
API is more flexible and extensible, but the cursor API is more CPU and memory efficient,
while using smaller code. This variant was chosen as advantages of the iterator API are not
required by our solution, while efficiency and memory usage are important aspects.

SysML element reader: This module is tasked with the filtering and interpretation of the
data from the StAX parser. The module tries to identify individual elements, assigning all
the corresponding data. Unnecessary data is filtered out (though given the properties of
StAX, all the XML nodes are traversed). Element data is stored in-memory (discussed in
the next section).

34http://docs.oracle.com/javase/tutorial/jaxp/stax/why.html
35http://stax.codehaus.org/
36http://sjsxp.java.net/
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6.3 Model Data Storage

This section addresses research sub-question RSQ.1d - How can we effectively store the
required data?. Every element in a SysML model has a unique identifier and a list of
associated data, consisting of string pairs: a data identifier and a data value (e.g. name =
block, author = Eric, complexity = Medium). The Java HashMap37 data structure is used
to hold all the element data in the model. HashMap is a table implementation of the Map
interface, which relies on the principle of hashing, storing data as pair with the put(key,
value) method, and retrieving information using the get(key) method. Note that HashMap
accepts null values, but it is not synchronized, and thus requires external synchronization if
accessed from multiple threads.

Figure 6.7: Global element dictionary structure. Note that the Map interface declared is
implemented as a HashMap

The HashMap structure used to store every model elements is called the
elementDictionary, which keeps all the element UIDs as key, and where the values hold a
HashMap with the associated element data. Figure 6.7 shows this concept. It is important
to notice that in this dictionary stubs are, whenever available, replaced with full element
data.

6.4 Model Element Traceability

This section provides answer to research sub-question RSQ.1e - How can we provide
element traceability? In SysML, diagram elements can be essentially divided into blocks
and connectors. Connectors associate two elements (although sometimes connectors may
appear to branch and connect multiple components, they are actually different connectors).
When analyzing models, it is important to provide efficient element traceability, which
identifies the correlation between entities (i.e. how an element is related to other elements
in the model).

Although all the model data is available from elementDictionary, it becomes a
cumbersome task to find information when dealing with very large dictionaries from
complex projects. Take figure 6.8 as an example. Three model elements can be

37http://docs.oracle.com/javase/1.4.2/docs/api/java/util/HashMap.html
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Figure 6.8: Element traceability example. Note how the connector is a separate entity, and no
connection information is stored in the elements’ data.

distinguished: two blocks (Block_1 and Block_2) and a composite aggregation connector,
meaning that Block_2 is part of Block_1. Imagine that given Block_1 it is required to
identify all of its parts. To achieve this, it would be necessary to iterate through every entry
in the dictionary, check if it is a connector of the composite aggregation type, and check
wherever the client’s UID matches the elements’ UID (meaning the supplier is one of its
parts).

Figure 6.9: Structure of associationDictionary. The Map interface is implemented as a HashMap,
and the Set interface is implemented as a HashSet

To alleviate this situation, a second (auxiliary) dictionary was implemented:
associationDictionary. This structure does not contain any new information but rather
speeds up searches. This approach is similar to adding an index to a SQL database table38,
where indexes are created on columns which are accessed frequently, so information can
be accessed quickly. As with SQL indexes, the auxiliary dictionary improves search speed,
but the more indexes used, the more memory space is required (however, this dictionary
only holds UIDs as string values, and only for elements with connectors). Another

38http://www.w3schools.com/sql/sql_create_index.asp
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potential drawback involves the modification of the source model data while in use, since it
would require to update all the auxiliary dictionaries as well, which is not the case in the
current implementation (source data is static read-only and never modified).

In Java, the HashMap get() and containsKey() methods result in a lookup
computational complexity39 of Ω(1) and O(n). However, the worst case is approached
when the hash function does not disperse the elements properly among the buckets, the
initial capacity is too high, or the load factor too low. Since this is not the case with this
implementation, it can be assumed that these functions have a lookup of approximately
O(1). Thus, finding the UIDs of all parts of an element would result in O(n) on the
elementDictionary (iterating through the whole dictionary), where n is the total number of
elements in the model. With the auxiliary dictionary, it would take O(1) on the
associationDictionary, plus O(n), where n represents the number of connections of this
element, resulting in a much faster implementation. Thus, it is recommended to use
auxiliary dictionaries on values that are often accessed.

39http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
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Chapter 7

Knowledge Inference

The previous chapter discussed the first phase of the proposed implementation approach,
where multiple data sources were identified and read. After describing the means to
normalize and store the data, element traceability was provided. This chapter examines the
second phase: knowledge inference, and all related research sub-questions. The main goal
is to analyze and process the input data, extract and measure the corresponding project
meta-model, and generate the output necessary for the next chapter.

Figure 7.1: Overview of the knowledge inference phase.

Figure 7.1 shows an overview of this phase. Section 7.1 analyses the project meta-
model and all involved elements and relations, from which the meta-model’s architecture
can be reconstructed. The next step is to measure the elements in this structure, based on the
criteria expressed by the Soltegro engineers. Section 7.2 describes how the Goal-Question-
Metric approach was applied to generated goal oriented measurements. The corresponding
output data is generated in section 7.3.

7.1 Reconstructing the Project Meta-Model

This section provides answer to research sub-question RSQ.2a - How can we reconstruct the
project meta-model structure? As explained in section 1.3, tunnel project models in SysML
are often based on the IEEE J-STD-016-1995 standard at Soltegro. Note however that the
structure described may be subject to modifications due to project constraints. Figure 7.2
shows a basic example of a model following this approach. Basically, the methodology
works with levels, and it is applied as follows: a top-requirement is defined and placed in
level 1. This element is further refined in a set of requirements, which are placed in level
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2, which in turn are further refined (or copied) in level 3 and so on. Also, a top-system (a
block), is defined, placed in level 1, and connected to the top-requirement. This element is
made out of parts or sub-systems, which are placed in level 2, which in turn may contain
sub-parts/systems in level 3 and so on. These (sub)systems are connected to one or more
requirements in the same level through a «satisfy» relation. Thus, the following elements
can be identified in the model (see table 7.1 for an overview):

Figure 7.2: SysML model example following the modeling methodology specified. Note that the
model consists of three types of elements: block, requirements and connectors.

• Blocks: the block is a very general modeling concept and the prime modular unit
of structure. It is used to model a wide variety of entities with a structure, such as
systems, hardware, software, physical objects, and abstract entities. It may also define
a type of system, system component, or item that flows through the system, as well
as conceptual entities or logical abstractions. Each block describes a set of uniquely
identifiable instances that share the block’s definition.

• Requirements: As discussed in section 4.5, requirements from stakeholders are
specified as system requirements. These system and physical requirements are
modeled as component requirements in SysML.

• Connectors:

– Derive: connects a derived requirement and a source requirement. This
association often shows relationships between requirements at different levels
of the specification hierarchy. It is also used to represent a relationship between
requirements at the peer level of the hierarchy, but at different levels of
abstraction (e.g. more detailed requirements may be related to the original
requirements through a derive relationship).
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– Copy: relates a copy of a requirement to its original to support reuse of
requirements. A requirement exists in one namespace or containment hierarchy
and has specific meaning in its containing context. To support reuse of the
requirement, the copied requirement is a requirement whose text property is a
read-only copy of the text property of the source requirement, but with a
different identifier.

– Composite aggregation: Part properties, or just parts, are used to model the
block composition hierarchy. This type of hierarchical composition (whole-part
relationship) of blocks is often used in the breakdown of equipment or bill of
materials.

– Satisfy: used to assert that a model element satisfies a particular requirement
(actual proof that this assertion is correct is achieved with the verify
relationship).

In SysML, the derive, copy and satisfy relationships are treated as dependencies,
indicating that changes in one end may result in corresponding changes on the other end.

Element name Stereotype SysML Type Association Flow
Block «block» Block -

Requirement «requirement» ClassifierRole -
Derive «deriveReqt» Dependency Requirement –> Requirement (next level)
Copy «copy» Dependency Requirement –> Requirement (next level)

Satisfy «satisfy» Dependency Block –> Requirement (same level)
Composite aggregation - Association Block –> Block (next level)

Table 7.1: Overview of relevant SysML model elements. Note that the multiplicity of the relations
shown under the ’Association Flow’ column is 0..*. However, elements do not have multiple

incoming associations of the same kind.

There are two important points which are not enforced by the modeling tool, but rather
derived from the modeling methodology: a) the possible connection permutations and
association multiplicity as stated in table 7.1, and b) only one requirement and one block
are allowed in level 1 (the top-requirement and top-system respectively).

Modeling levels and element hierarchies: Given the nature of the modeling
methodology, the model can be divided in two ways: into two element hierarchies, and into
multiple levels (see figure 7.3). The two hierarchical structures are:

• Requirement hierarchy: Represents the functional decomposition of concepts that
must be fulfilled (focuses on what).

• Block hierarchy: Represents the physical structural (system) decomposition into its
interconnected components (focuses on how).

53



7. KNOWLEDGE INFERENCE

Figure 7.3: Model levels and hierarchies. The figure on the right shows the three levels in the
model. The figure on the left shows two different element hierarchies: on the left the requirements

hierarchy, on the right the block hierarchy (or block decomposition).

7.2 Measuring the Meta-Model Architecture

This section provides answer to RSQ.2b - What measurements should be performed on the
project meta-model architecture? There are multiple measurements that can be performed
on the model described in the previous section. The first step was to consult engineers
about the values they considered important when measuring their models. The following
were named:

• Block complexity level: Block elements can be assigned a complexity value by the
engineer, which (often) can be set to one of the following three levels: ’Easy’,
’Medium’, and ’Difficult’. This value represents the estimated complexity to realize
the system.

• Requirement difficulty level: Requirement elements can be assigned a difficulty value,
which (normally) can be set to one of the following three levels: ’Low’, ’Medium’,
and ’High’. The value represents the estimated difficulty to fulfill this requirement.

• Number of «satisfy» associations: The number of connectors with a «satisfy»
stereotype associated with an element. Given the modeling methodology described
before, every requirement is fulfilled by one system, but a system may fulfill multiple
requirements. Thus, in the case of blocks this value should be above 0, in the case of
requirements it should always be 1.

• Fan-in and fan-out values: In the hierarchies, the fan-in value represents the number
of incoming connections from the previous level, while fan-out represents the number
of outgoing connections to the next level. Note that block fan-in value is always 1
(except for the top-block, which is 0).

Note that both the complexity and difficulty values are not derived from a measurement
or specification, but rather represent an engineer’s personal estimate. Also, note that when
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Figure 7.4: Example of fan-out and number of satisfy relations values. In dark blue: block fan-out,
in dark green: requirement fan-out, in light blue: satisfy associations per block, and in light green:

satisfy associations per requirement.

estimating the total value of a structure only leaf elements count (thus, elements with a fan-
out value of 0). Take figure 7.2 as an example, where Block3 in level 2 is decomposed in
Block4 and Block5 in level 3. This means that Block3 is made of the combination of Block4
and Block5. Still, given the nature of the value, a block may have a lower complexity level
than one of its descendants in the hierarchy.

These values can lead to multiple possible measurements for every element, as shown
in table 7.2. However, presenting all this data to the engineers would provide no real insight
or understanding about model’s quality or hot-spot problems. Instead, measurement should
only be performed towards an explicit stated purpose, called goal-oriented measurement.
To achieve this, a framework methodology that follows this principle is applied: the Goal
Question Metric approach.

7.2.1 Goal Question Metric Approach

The Goal Question Metric (GQM) approach is a mechanism for defining and interpreting
operational and measurable software [6][7][66]. Its main principle is that measurement
should be goal-oriented, and its main result is the specification of a measurement model
with the following three levels:

1. Conceptual level (GOAL): A goal is defined for an object of measurement (e.g.
product, process, resource) with respect to various models of quality.

2. Operational level (QUESTION): A set of questions is used to characterize the object
of measurement with respect to a selected quality issue and to determine its quality
from the selected viewpoint.
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Metric Symbol Type Description
BLCK_LVL integer The block’s level in the hierarchy

BLCK_CMPX_LVL string Block complexity level
BLCK_CMPX_VAL integer Block complexity value

BLCK_CMPX_VAL_TOT integer The complexity value of the block hierarchy
BLCK_CMPX_VAL_LVL integer The complexity value of the block level

BLCK_NR_TOT integer Total number of blocks in the hierarchy
BLCK_NR_LVL integer Total number of blocks in the hierarchy level

BLCK_SAT integer Number of associated requirements per block
REQT_LVL integer The requirement’s level in the hierarchy

REQT_CMPX_LVL string Requirement difficulty level
REQT_CMPX_VAL integer Requirement difficulty value

REQT_CMPX_VAL_TOT integer The difficulty value of the requirement hierarchy
REQT_CMPX_VAL_LVL integer The difficulty value of the requirement level

REQT_NR_TOT integer Total number of requirements in the hierarchy
REQT_NR_LVL integer Total number of requirements in the hierarchy level

REQT_SAT integer Number of blocks associated to a requirement

Table 7.2: Overview of possible model measurements. Note that block element measurements are
prefixed with ’BLCK_’, while requirement element measurements are prefixed with ’REQT_’.

Figure 7.5: Goal-Question-Metric paradigm40.

3. Quantitative level (METRIC): A set of data is associated with every question in order
to answer it in a quantitative way. The data can be objective, if it depends only on the
object that is being measured and not on the viewpoint from which they are taken (e.g.
number of versions of a document, staff hours spent on a task, size of a program. . . ),
or subjective, if it depends on both the object that is being measured and the viewpoint
from which they are taken (readability of a text, level of user satisfaction. . . ).

40https://goldpractice.thecsiac.com/practices/gqm/ (accessed 01-12-2012)
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7.2.2 Goal

The GQM template [6] was applied to define the goal of measurements (see table 7.3). The
next step involves creating a set of questions around the stated measurement goal.

Goal Purpose To aid
Viewpoint Soltegro systems engineers

Issue to gain insight into the quality
Object(process) of project meta-model structures in SysML

Table 7.3: Metric goal definition using the GQM template.

7.2.3 Questions

The following questions were defined with the aid of Soltegro engineers when asked to
define the properties of a project meta-model (in terms of systems and requirements) that
would provide insight into its quality.

* MQ1 - What is the complexity value assigned to the system?

Context: Systems are assigned a complexity level value by engineers. Elements with a
high value are expected to require a higher amount of work. It may also be an indication
that further decomposition is required.

Metric involved: Block complexity (BLCKCOMPLEXITY)

* MQ2 - What is the requirement density per system?

Context: Block elements are associated to one or more functional requirements.
Changes in systems associated to many requirements may affect a high number of
components.

Metric involved: Requirement density per system (BLCKREQT_DENSITY)

* MQ3 - What is the requirement’s total assigned difficulty?

Context: Requirement are assigned a difficulty level value. A high difficulty may
represent a lot work is necessary to fulfill this requirement, or it may indicate that further
decomposition is required.

Metric involved: Requirement difficulty (REQTDIFFICULTY)
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* MQ4 - What is the system fragmentation per requirement?

Context: Each requirement is satisfied by one system. This system may be further
decomposed into multiple systems (in the next level). A high system fragmentation may
indicate that changes in the requirement could propagate through many systems.

Metric involved: Block fragmentation per requirement (REQTFRAGMENTATION)

7.2.4 Metrics

A set of metrics follows, designed to provide quantitative answers to the previous questions.
Note that the first two measurements are meant for block elements, while the last two are
meant for requirement elements.

* Block complexity (BLCKCOMPLEXITY): Represents the total ’complexity’ value of a
block element. It is calculated by first identifying all the block’s ’leaves’ in the structure.
Next, for every block, the complexity value is read and weighted against a value assigned
by the user.

Interpretation: A high value indicates that engineers expect a system have a high
complexity, and thus it may require a high amount of work to complete, or (if applicable)
further decomposition is required.

* Requirement density per system (BLCKREQT_DENSITY): Represents the number of
requirements assigned to a system. It is calculated by identifying the number of
requirements elements associated to a block with an outgoing «satisfy» connector.

Interpretation: A high value indicates a large number of requirements associated to a
single system. Changes on this system may potentially affect many requirements.

* Requirement difficulty (REQTDIFFICULTY): Represents the total ’difficulty’ value of
a requirement element. It is calculated by first identifying all the requirement’s ’leaves’ in
the structure. Next, for every requirement, the difficulty value is read and weighted against
a value assigned by the user.

Interpretation: A high value represents that engineers expect a high amount of work to
fulfill this requirement, or (if applicable) further decomposition is required.

* Block fragmentation per requirement (REQTFRAGMENTATION): Represents the
number of systems associated to a requirement. It is calculated by identifying all the
associated block elements with an incoming «satisfy» connector. From these, all the leaf
blocks are identified (duplicate entries are removed).
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Interpretation: A higher value represents a higher system fragmentation, and thus high
values may denote that a change in a requirement may affect a high number of systems.

7.3 Generated Output Data

Finally, this section is meant to provide answer to research sub-question RSQ.2c - What
output data do we need to generate? There are three key elements we wish to visualize:

• Element identification: The ability to identify each element, through a label or
identifier.

• Project-meta model structure: The data should reflect the structure of the model,
and the relation between the elements. In the case of the WST, there are two tree
structures.

• Metric values: Each element (block and requirement) has two metric values
associated.

Every element hierarchy analyzed is exported to a separate file (a distinction is made
between the block- and requirement-hierarchy). Since the framework relies on third party
tools, the format of the file depends on the input accepted by the tool.
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Chapter 8

Information Interpretation

The previous chapter examined the second phase of the proposed implementation approach:
knowledge inference. The first goal was to identify and reconstruct the project meta-model
structure. However, to present the user with the appropriate data, it was chosen to apply
the goal-oriented GQM methodology. After stating the goal, and deriving a set of related
questions, and defining the corresponding metrics, the generated data was exported to a
collection of output files for visualization with a third-party tool.

Figure 8.1: Overview of the information interpretation phase.

This chapter discusses the third and last phase of the implementation approach:
information interpretation (see figure 8.1 for an overview). Section 8.1 describes how the
SysML model data was visualized within the VoSMA tool to provide functionality
resembling the EA visual platform. Section 8.2 examines how this technique was further
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expanded to present the appropriate project meta-model architecture, visualizing the
corresponding hierarchical decomposition structures, and providing the tool with a model
checker functionality. However, presenting the data using these layout is limited, thus in
section 8.3 multiple visualization methodologies are presented relying on third party tools,
by combining the tree-map and heat-map displays. Lastly, section 8.4 explores and
discusses various alternatives to provide model evolution visualization in a future project.

8.1 SysML Model Data Visualization

The next three sections will attempt to provide answer to research sub-question RSQ.3a -
How can we efficiently present the generated data to systems engineers? Tree structures are
used in VoSMA to reconstruct, analyze, and visualize the hierarchical nature of the SysML
model data. To this end, the tool implements the Java JTree41 class. These structures are
used to recreate two windows familiar to EA users: Project Browser and Traceability. These
two windows can be used with any SysML model.

8.1.1 Project Browser window

In Enterprise Architect, the Project Browser window (discussed in section 5.1) allows users
to navigate through a SysML project model, displaying packages, diagram, elements and
element properties. As shown in figure 8.2, VoSMA implements such a functionality, which
resembles the EA variant.

Figure 8.2: Project Browser window. On the left, the EA variant, on the right the VoSMA
counterpart.

8.1.2 Traceability window

As discussed in section 5.1, the Traceability window shows the composition of the current
element with respect to other model elements. This information is derived from

41http://docs.oracle.com/javase/1.4.2/docs/api/javax/swing/JTree.html
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relationships with child or related classes. Figure 8.2 shows how the VoSMA implements
similar functionality, mainly used to test the correctness of the model data read, and the
association between elements.

Figure 8.3: Traceability window. On the left, the EA variant, on the right the VoSMA counterpart.

8.2 Project Meta-Model Architecture Visualization

In chapter 7 the relevant model structure was extracted and reconstructed. As explained,
this structure can be dived into two different element hierarchies, and thus it was chosen to
use two different tree structures. However, there are two ways to populate these structures:

Figure 8.4: Decomposition visualization in VoSMA using the "plain" layout.

• "Plain" visualization: This layout shows both hierarchies next to each other (see
figure 8.4). Each hierarchy is a tree structure with the top element at the root. This
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element contains elements from level 2 as its children, and so on. This layout is meant
to provide the user with a clear view of each decomposition, but no relations with the
other hierarchy is shown.

• "Rich" visualization: As before, this layout also shows both hierarchies next to each
other (see figure 8.5). However, this time every element is also connected to the
associated elements from the other hierarchy, which provides some sense of
"connectivity" between both structures. However, this results into a more cluttered
display.

Figure 8.5: Decomposition visualization in VoSMA using the "rich" layout.

8.2.1 Project Meta-Model Validator window

Figure 8.6: Example of the Project Meta-Model
Validator window. Errors are sorted by type.

As explained before, the project meta-
model structure is not enforced by the
modeling tool. Engineers expressed their
wish to be able to check if this structure
was consistent with the rules defined. The
Project Meta-model Validator window is
designed to show errors present in this
structure sorted by error type (see figure
8.6). Another variant of this functionality
based on this principle checks all the
elements in the project according to these
rules. The objective, for example, is to find
elements which should have been assigned
to the structure, but have been left out.
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8.3 Measurement Data Visualization

Visualization methodologies may present information through the modification of a finite
set of element properties [53]:

1. x, y, and z position of elements.

2. width, height, and depth of elements.

3. color, shape, and texture of elements,

4. labels of elements.

As described in section 7.3, this project aims to present a minimal set of data to the
user. A 2-D solution will suffice, where the two metric values may be presented trough the
elements size and box color. Labels are used to identify elements, and element position
represents the element’s place within the model’s hierarchical structure. The visualization
of tree structures is further explored in the following sections.

8.3.1 Tree Visualization

The previous sections discussed the hierarchical nature of SysML model data, and how
tree structures can be employed to analyze and present project-specific model information.
Tree visualization (or hierarchy visualization) can be defined as: "a branch of information
visualization dedicated to the graphical representation of connected, acyclic graphs –
trees" [58]. Most techniques require rooted trees, consisting of a root node (designated top
element), internal nodes, and leaves (bottom elements). There are multiple tree
visualization techniques [27] [70], (see figure 8.7 for an example). Visit treevis.net42 for an
extensive overview of different tree visualization layouts.

Figure 8.7: Common tree visualization techniques: a) rooted tree, b) radial tree, c) balloon tree, and
d) tree map layout. As originally appeared in [27].

42http://www.treevis.net
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Tree-maps Tree maps can be defined as: "a representation designed for human
visualization of complex traditional tree structures: arbitrary trees are shown with a 2-d
space-filling representation" [62]. Thus, this enclosure method layout representation is
used to display (tree-structured) hierarchical data nodes as a set of nested rectangles [11].
In a tree, each branch is represented as a rectangle, which is further partitioned in smaller
rectangles representing sub-branches. Leaf node rectangles’ size are proportional to a
specified dimension on the data. There are multiple tree map visualization variants [63],
but figure 8.8 shows the four main types.

Figure 8.8: Edge representation types in tree maps: (1) explicit, node- link, (2) implicit, inclusion,
(3) implicit, overlap, and (4) implicit, adjacency. As originally appeared in [58].

The implicit-inclusion technique is ideal for displaying large trees (because its space-
filling layout technique), and viewers can easily compare values (node space is proportional
to value size) [62]. One of its main disadvantages however, is the difficulty for viewers to
identify the hierarchical relationship between nodes (because its enclosure to display the
structure [27]), and the different levels.

8.3.2 Heat-map

In this context the term ’heat-map’ is used to refer to a choropleth map, rather than the 2D
display of values in a data matrix, or representation of cluster data [77]. Coropleth maps
rely on a system of color coding patterned in proportion to the measurement of the variables
being displayed on the map, and are often used to represent how values vary between areas
[10] [3]. Figure 8.9 shows an example displaying the world’s population density.
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Figure 8.9: Example of a choropleth map, showing the world population density, from Gridded
Population of the World43. A darker shading represents a higher population density in the area.

8.3.3 Visualization with third-party tools

The metric and structural data generated in the previous chapter can be visualized employing
a third party tool or software library. Some of the free services include Treemap-gviz44,
Google’s visualization API45, and Microsoft’s Treemapper46. As proof-of-concept, two of
these tools are evaluated: Treeviz47 and MS Treemapper. The next sections will showcase
both tools using the structure displayed in figure 8.10. Note that all the elements in the
following examples have been assigned the same metric values, which result in all (leaf)
boxes having the same color and size. However, other layouts proved useful to display the
project’s structure (such as the Sunburst Tree layout, refer to appendix I).

Figure 8.10: Model structure as a tree. On the left, the element structure in SysML. On the right, its
tree representation, where elements have been modeled as nodes and connectors as edges.

43http://sedac.ciesin.columbia.edu/gpw-v1/globldem.doc.html
44http://code.google.com/p/treemap-gviz/ (accessed 01-12-2012)
45https://developers.google.com/chart/interactive/docs/gallery/treemap/ (accessed 01-12-

2012)
46http://research.microsoft.com/en-us/downloads/3f3ed95e-26d8-4616-a06c-b609df29756f/

(accessed 01-12-2012)
47http://www.randelshofer.ch/treeviz/
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Treeviz project: Treeviz project aims to achieve fast and interactive visualization of
large tree data structures. A demo application (version 1.1) was used to visualize the
output data as proof-of-concept. The application is capable of visualizing the data with five
types of tree layouts (Hyperbolic, Sunburst, Icicle, Sunray, and Iceray), and two types of
tree-map layouts (Circular and Rectangular). Every component may be assigned a label,
additional data (displayed on mouse-over), and two metric values (box color and size).
After reviewing the various layouts, we came to the conclusion that tree-map variants are
the best choice when dealing with large projects with a large number of elements.
Especially the rectangular layout which uses the whole screen.

Figure 8.11: Treeviz visualization example. The tree structure from figure 8.10 is presented using
four layout types: a) Hyperbolic Tree, b) Sunburst Tree, c) Icicle Tree, and d) Circular Treemap.

Microsoft Research Treemapper: Microsoft Research Treemapper allows
(rectangular) tree-map visualization of hierarchical data. For this project, the standalone
application (version 1.0.1.34) was chosen, but the tool is also available as a MS Excel
add-in. Elements are represented as rectangular boxes and may be assigned labels with
their identifier. Two metric values can be represented, by adjusting the box’s size and color.
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Figure 8.12: MS Treemapper visualization example. The tool uses the structure from 8.10 as input.

With respect to rectangular tree-maps, there are a couple of differences between the
Treeviz and Tremapper tools (see figures 8.12 and 8.13). There are two layouts in Treeviz:
’Show full depth’, where all leaf elements are shown, and ’Show current depth only’, where
clicking on a element will show its direct children (but not its descendants). MS Treemapper
displays all elements on screen, nested within their corresponding parent’s box. Non-leaf
elements can be assigned a weight, represented by the extra space in a box (excluding boxes
representing its children). Treemapper also provides the ability to zoom-in on elements.
Another difference is the information shown on mouse-over: Treeviz can display detailed
information, while Treemapper only shows the element’s ID or path.

Figure 8.13: Rectangular tree-map in Treeviz. The tool uses the structure from 8.10 as input. On
the left, the ’Show full depth’ is selected. On the right, the layout after selecting ’Show current

depth only’ and clicking on BlockA.

69



8. INFORMATION INTERPRETATION

8.3.4 Other visualization techniques

It should be kept in mind that the techniques presented above are intended to visualize
hierarchical data as tree-structures. However, it is expected that not all project meta-models
can rely on these structures, and thus a couple of alternatives are explored.

Class Blueprint: This technique aims to "provide a better understanding of a class" [34]
by visualizing its internal structure. Classes are mapped to a template class blueprint,
consisting of five layers: initialization, interface, implementation, accessor, and attributes
(see figure 8.14 for an example).

Figure 8.14: Visualization with Class Blueprint, as it originally appeared in [34]. On the left, how
up to two metrics can be visualized. Note that color is used to identify element type, rather than

display a metric value. On the right, a blueprint visualization of a class.

Polymetric Views: This technique aims to "understand the structure and detect problems
of a software system in the initial phases of a reverse engineering process" [35]. It relies
on two-dimensional displays to visualize object-oriented software, where nodes represent
(abstraction) entities, and edges the relationships between them. This is coupled with metric
information (see figure 8.15 for an example).

Figure 8.15: Visualization with Polymetric Views, as it originally appeared in [35]. On the left,
how up to five metrics can be visualized. On the right, visualization as a tree structure, with edges

as relationships.
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8.4 Meta-Model Evolution Visualization

This section provides answer to research sub-question RSQ.3b - How can we represent
the project meta-model architecture evolution through development? Visualization of the
evolution of project meta-model structures is one of the key goals of this project. However,
time constrains prevented the implementation of a final solution at this point. Instead, a short
study is performed to present some possible future pointers. The desired goal is to map the
structural evolution through the project’s development, and to identify possible hot-spots,
which, for example, may benefit from early refactoring. Other application is measuring how
much the structure changes when an element is modified. Few changes through the model
may indicate a robust structure. There are two main approaches [22] to model visualization
evolution:

1. Version-centered approaches: Concerned with answering of when something
happened in the history, using version as a representation granularity. This often
involves representing time on an axis and placing different versions along it to show
where changes occurred.

2. History-centered approaches: Concerned with the question of what and where
something happened (rather than when), using an ordered set of versions as
representation granularity.

Be aware that in this project there are two kinds of versions: model version (as labeled
by the repository) and element version (which represents the how many times an element
has been modified). Since it is easier to visualize how the model or particular elements
evolve, rather than the evolution of changes and their meaning, the following
version-centered examples (from research into software code evolution) are presented:

Two versions comparison: This variant forms the base of any evolution analysis. Two
versions of a model or entity are measured, where the goal is to find different types of
changes between them.

Evolution Matrix: This methodology [33] compares the evolution of multiple entities of
properties (see figure 8.16 for an example). In our case, each box may represent a version
of a SysML element (a block or requirement for example), and each line holds multiple
versions of that element. Size and color of the box represent measurement or properties
of that element. From the matrix different patterns can be detected (growth, shrinking,
stabilization...).

Evolution as Cities: Another interesting possibility is visualizing models as cities [76].
In this 3D layout entities can be represented as buildings located in (nested) districts, which
may represent levels or packages, for example. Metric data can be expressed adapting
dimensions, position, color, color saturation, and transparency of entities. Figure 8.17 shows
an example of this concept using the CodeCity tool.
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Figure 8.16: Evolution Matrix concept, adapted from [22]. The horizontal position is given by the
element’s revision number, and the vertical position is given by the element’s name. The size is

determined by a combination of two measurements. A third measurement could be visualized by
assigning colors to the blocks.

Figure 8.17: Snapshot from the CodeCity tool, as it originally appeared in [76].
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Chapter 9

Assessment of Correctness and
Usefulness

Previous chapters discussed the implementation approach followed to answer the main
research questions, where VoSMA was developed to aid with this task. This chapter
provides answer to the last research sub-question: RSQ.3c - How satisfied are systems
engineers with the presented data?, by evaluating the obtained results. In section 9.1 the
correctness and completeness of the data read is assessed. In section 9.2 three tunnel
projects in SysML are analyzed and evaluated as test cases, while the usefulness is
assessed through interviews with the potential users in section 9.3. Finally, possible threats
to validity are examined in section 9.4.

9.1 Completeness and Correctness Assessment

A series of test cases were created in EA to assess the completeness and correctness of the
SysML model data read by VoSMA (see appendix F for a couple of examples). These test
cases were mainly designed to check that all the relevant element data was correctly read,
and that the corresponding package structures could be recreated. A second series of test
cases was implemented to check element relationships and different structures (such as
block decomposition). The third series was concerned with reading project meta-model
structures such as those as described in section 7.1. After these simple tests, it was decided
to use the tool, to analyze a basic (yet complete) SysML project: the example 48 discussed
in "A practical guide to SysML" [21], the book used as SysML reference at Soltegro. The
project is a good starting point when learning SysML, simple enough to not overwhelm the
user, yet complete, since it features most of the language’s capabilities. This project was
mainly used to test the ability to navigate a project, provide element traceability, and
reconstruct the various element hierarchies. However, it is necessary to assess the system’s
performance with real life scenarios, which contain a higher number of packages, diagrams

48Available from http://www.elsevierdirect.com/v2/companion.jsp?ISBN=9780123852069,
accessed 01-11-2012
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and elements. Three tunnel projects in SysML were chosen to this end: Nijverdal,
Westerschelde, and A4 Delft-Schiedam.

9.2 Test Cases

VoSMA was tested using the latest versions of the following projects in SysML as test cases:

9.2.1 Test case: Combiplan Nijverdal (NVD) project

Rijkswaterstaat49 (RWS), part of the Dutch Ministry of Infrastructure and Environment, and
responsible for the execution of the public works and water management, partnered with
ProRail50, a government organization tasked with care of maintenance and extensions of
the national railway network infrastructure, to execute the Combieplan Nijverdal project51,
scheduled to be completed in 2014. Currently, a busy and often congested state road (the
N35) runs through the middle of the city of Nijverdal. To alleviate this situation, the road
will be relocated to a new 6 kilometer trajectory to the north, together with an adjacent
railroad.

Figure 9.1: Section of the Nijverdal Combitunnel, showing the railroad (left), and two-lane road
(right)

A part of the new road and railroad will come to lie in a tunnel: the 1.5 kilometer long
Salland Twente (combi)tunnel. The main objective of this project is to enhance the quality
of life and safety in the city by reducing traffic congestion, pollution and noise. Soltegro
relied on the MBSE methodology to design the tunnel using SysML, while integrating the
RWS’ Landelijk Tunnelstandard using models.

Evaluation The NVD SysML project was proposed as test case for the VoSMA software
tool. However, this project has a modified version of the meta-model described in section
7.1. Instead, the NVD project is based on the "Functional Design" approach, leading to a

49http://www.rws.nl/wegen/plannen_en_projecten/n_wegen/n35/combiplannijverdal/
50http://www.prorail.nl/Publiek/Infraprojecten/Overijssel/CombiplanNijverdal/
51http://www.tunnelplan.nl/
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functional analysis which produces the functional decomposition (do not confuse with
structural decomposition in SysML). Before analyzing this project with VoSMA, the NVD
project meta-model should be defined, the appropriate measurements be discussed and
developed. Even so, all the elements in the project can be correctly read using VoSMA,
and after the proper meta-model is defined, it is expected to easily visualize the model’s
architecture. Still, given the nature of this project (many interfaces between elements), tree
structures may not be appropriate to visualize the structure.

9.2.2 Test case: Western Scheldt Tunnel (WST) Complex project

The Westerschelde52 (Western Scheldt) tunnel has a length of 6.6 kilometers, the longest
tunnel for highway traffic in the Netherlands. Its location under the Western Scheldt estuary
between Ellewoutsdijk and Terneuzen makes it a key connection point between Zeeland,
Flanders and West-Brabant. Opened on 14 March 2003, it consists of two excavated tubes,
each with room for two driving lanes (see figure 9.2).

Figure 9.2: Section of the Westerschelde tunnel, adapted from [43].

The tunnel is part of the Westerscheldetunnelcomplex (Western Scheldt Tunnel
Complex), consisting of access roads in South Beveland and Zeeland, the toll points, the
tunnel and associated (tunnel) buildings. The current maintenance agreement for the
Westerscheldetunnelcomplex ends in 2013. Because of this, a new contract is necessary
(from 2013 to 2033, afterwards the complex will be transferred to the State). The new
contract deals with the maintenance, refurbishment and other adaptation works, and
following European directives. To take part in this process, Soltegro has modeled their own
MBSE solution based on SysML models in Enterprise Architect.

Evaluation The WST SysML project served as the main test case (refer to appendix I for
an extensive evaluation using VoSMA). Both element hierarchies were identified,
reconstructed, analyzed and measured. Multiple visualization layouts were used to present
this information.

52http://www.westerscheldetunnel.nl/, in Dutch
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9.2.3 Test case: A4 Delft-Schiedam (A4DS) project

Currently the A13 highway is the main connection between the cities of The Hague and
Rotterdam. However, the increasing traffic flow on this road leads to frequent traffic jams
which increase air pollution, noise, and traffic hazards in the surrounding areas. RWS began
in 2012 extending the A4 53 highway to connect the cities of Schiedam and Delft. The
project is also known as A4 Midden Delfland54. Part of this project is a 2.0 kilometer land
tunnel (Tunnel Schiedam), to be completed in 2015. Soltegro is currently developing a
solution based on MBSE for this project.

Figure 9.3: Artist’s impression of the A4DS project. Orange represents the half-sunken location,
red the sunken location, and green the land tunnel.

Evaluation As with the NVD project, the whole SysML model data can be read correctly.
However, the A4DS project is currently in the early stages of development. Parts of this
projects resemble the methodology examined in 7.1 (the land tunnel also integrates the
LTS), and thus some element’s structural decompositions can be identified. Still, the Model
Validator functionality may be used to identify requirements in the model which have not
been assigned to a block, for example. No project-specific measurements were developed
for this project.

9.3 Usefulness Assessment

Short feedback sessions were conducted at Soltegro with engineers experienced with the
EA platform and SysML, following a presentation given at a company meeting on
27-11-2012, which provided a general overview of the research project. These sessions
seek to achieve three main goals: a) to evaluate the project according to user experience
and expectations, b) to raise awareness about this project within Soltegro by providing
engineers with the opportunity to know more about the software and its capabilities, and c)
to generate pointers and suggestions for future work. See appendix G for an overview of
the interviews conducted. Note that the software was not evaluated as a final product, but
rather as a showcase for possible functionality.

The main outcomes from these sessions were as follows: users mainly appreciate the
extra functionality provided by VoSMA, which cannot be found in EA at this point, specially

53http://www.rws.nl/wegen/plannen_en_projecten/a_wegen/A4/delft_schiedam/, in Dutch
54http://www.a4middendelfland.nl/,inDutch
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to analyze project meta-model structures (which are hard to track in EA). The architecture
visualization was greatly appreciated, as it helped to quickly identify points of concern in the
model. Suggestions included using other layouts to perform change impact analysis, which
can help other members of the team (or less technical users) easily picture how changes in
a system or requirement may affect the project. In short, users were very optimistic about
the project, providing multiple ideas for future functionality.

9.4 Threats to Validity

This section discusses some of the possible factors which could affect the results presented
through this study. These mainly involve: the correctness of the data read, the changing
working practices at Soltegro, the chosen visual structures and visualization layouts, and
the lack of a final product.

SysML model data is correctly read as far as it could be assessed with the test cases.
However not enough cases were made to test that information from every element in the
model was read correctly. Instead it was chosen to focus on the elements and data relevant
to this research project.

It should be noted that the situation described in section 5.1 has started to change at
Soltegro. Currently, a local EAP file allows users to edit a model without being connected
via a shared model repository. This file periodically updates their copy from a shared
repository. However, the new situation involves a dedicated database management system
to host the model. This is the recommended approach for larger teams, as all team
members can view and edit the current-state model, without the need for a separate
synchronization. Thus, the version control system is not a mechanism for distributing
model information, but rather to help manage revisions. It should be noted that XMI files
are still used in the repository (but not in the ’local working copy’). Even if XMI files were
not used in the future (which is not expected), VoSMA could still be easily adapted to
query information from the EAP file.

In this study it was chosen to use tree structures to reconstruct the project meta-model
structure. Since the SysML model data is hierarchical in nature, it was easy to adapt this to
fit the needs of this research. However, its limitations have become apparent. Two tree
structures are necessary (one for each decomposition), were it may become cumbersome to
identify the relation between elements from each tree. Although the structural
decomposition can be represented perfectly as a tree, as each block can only have one
parent, this is not the case for the functional decomposition, where an element may have
multiple parents. These elements do not count multiple times towards the measurements
developed in section 7.2, but are represented as a separate entity in most layouts (thus the
same element can appear multiple times). To prevent this, some alternatives were
discussed in section 8.3.4. Since there are multiple project meta-models, the question
remains if the presented visualization implementations do fit other projects. Depending on
their architecture, or the wishes of engineers, other layouts or visual structures could prove
more efficient.
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Given the nature of this study, the tool has yet to be employed in a real life working
environment. Because of this, multiple crucial questions (beyond this study) remain
unanswered: does it perform the right measurements?, can it improve the model’s
development?, can it help with change impact analysis?. . . Feedback sessions with
experienced EA and SysML users did show promising results, but actual application
during model development would be required before addressing its added value in a
project.
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Chapter 10

Discussion

This chapter summarizes the findings through this thesis study (section 10.1), while
revisiting the main research questions and the obtained results. Section 10.2 discusses
some of the main strengths and limitations of the chosen approach.

10.1 Summary of Findings

The problem was introduced in chapter 1, where the main research questions were posed.
However, context information was necessary before these could be addressed. Basic
concepts relating systems were introduced in chapter 2, and a general overview of the
Systems Engineering field was provided in chapter 3. After discussing the current
transition from the traditional document based approach to MBSE, a general overview of
the Systems Modeling language was provided in chapter 4. An evaluation the current
situation followed in chapter 5, concluding that a new framework was necessary. To this
end the VoSMA software tool (designed following the extract-abstract-present paradigm)
was implemented to answer the main research questions:

R.Q.1 - How can we gain insight into project-specific SysML meta-model
architectures?

The first research question resolves around specific project meta-model identification,
analysis and measurement. However, the first step was to retrieve the necessary SysML
model data. Chapter 6 described what data sources were chosen, what data was read, how
the model is stored, and how element traceability is provided (essential to transverse the
model). The first research question can now be answered in chapter 7: the mapping of
components and requirements is achieved by recreating the relevant project meta-model
architecture form the model data. The GQM approach was applied to set a measurement
goal, define a set of questions, and finally create the corresponding metrics to perform the
appropriate measurements.
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R.Q.2 - How can we effectively visualize the meta-model structure, its measurement
data, and picture its evolution through development?

The second research question is answered in chapter 8, which explored multiple
alternatives to present the measurement and structural data to the user. The chosen solution
combines the heat-map and tree-map layouts using third-party tools. Though not
implemented, the chapter also discussed possible methodologies to provide model
evolution visualization.

Furthermore, chapter 9 presented an evaluation of the implementation based on test
cases and feedback sessions with potential users. The VoSMA tool allowed to analyze and
visualize the latest revision of the WST project (see appendix I). Other projects were not
analyzed because the corresponding meta-model had to be defined (NVD), or the project
was in the early stages of development (A4DS). Feedback sessions showed a lot of interest
by potential users in this project, and many possible future directions for this project were
proposed (see appendix G).

10.2 Approach Implementation Discussion

This section provides a short reflection and discussion of the implemented solution, divided
into three categories: configuration effort, usability, and scalability.

Configuration effort: The configuration effort of VoSMA is low, as the software does
not need to be installed (but requires a JVM), and no further configuration is necessary
(beside selecting the correct meta-model structure type to be analyzed). The software can
be adapted to be platform-independent (see section 11.2). Still, the current implemented
solution means a user needs to use three tools: visual modeling tool to work on SysML
models (EA), a tool to analyze and measure project-specific models (VoSMA) and a tool
to visualize this data (Treeviz/MS Treemapper/other). These third-party tools may require
additional configuration and/or installation.

Usability: One important issue to note is that VoSMA was intended as a
proof-of-concept, meant to show the possibilities of this project and to provide a solid
framework for future work, rather than to deliver a final product. Thus, the tool prioritizes
functionality above usability at this point. The current user interface was made using Java
Swing55 to somewhat resemble the look and feel of the Enterprise Architect platform, a
tool engineers are familiar with. It also implements visualization and functionality used by
EA to navigate the model and trace elements. Still, using the tool means an additional step
for the engineer, which has to model using EA, and analyze it with VoSMA. The current
implementation of the visualization means having to rely a third tool to visualize this data,
which means yet another step in the process. The first step can be removed if VoSMA (or

55http://docs.oracle.com/javase/tutorial/uiswing/start/about.html
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its functionality) is integrated as an EA plug-in. The second step can be avoided by
integrating the visualization into VoSMA (discussed in section 11.2).

Expected scalability: The latest version of the tool (20-12-12) is offered as an executable
JAR file of around 3,19 MB (where 3,12 MB necessary for the SVNKit library). Loading a
project is almost as fast as opening an EAP file in EA. In terms of memory, the tool requires
around 25 MB to run, which increases depending on the number of elements read in a
model. In the case of the latest version (9571) of the WST project with 130.639 elements
this results in a considerable memory usage of around 290 MB. However this could be
alleviated in by only storing relevant element data. Thus, reconstructing the model from the
root (leaving out elements not present in the current model) and removing internal EA data
fields.

Should the structure ever become too large to handle, using an external database could
provide an easy and fast replacement, trading memory for disk space (similar to the solution
implemented in EA with the EAP files). However, it is not expected to become a problem,
since the three test cases discussed in the previous chapter (up to 250K elements) were
easily read by the software.

In terms of visualization, the current solutions may be insufficient in a project with a
structure consisting of a very large number of elements. In this case, blocks (elements)
shown by Treemapper and Treeviz will become very small, and the labels will be
unreadable. Also, even though it is not the practice, if a project consists of a very large
number of levels, it may be very hard to identify them with these tools. This can be
alleviated by providing functionality to zoom in parts of the layout, or visualizing per
level. Since not all the projects may rely on (or be represented by) a tree structure, it is
recommended to look at layout techniques such as BlueClass [34].
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Chapter 11

Contributions and Future Work

This last chapter concludes this thesis work. Section 11.1 lists the contributions made by
this study, while some recommendations and possible future work directions are presented
in section 11.2.

11.1 Contributions

The contributions made by this thesis project are as follows:

• General overview of Systems Engineering and the Systems Modeling Language:
Chapters 2 through 4 of this thesis consist of a short literature study intended to
provide context to this project.

• The VoSMA software tool: The tool showcases the possibilities of this project, and
is meant to serve as a framework and foundation for future work. It features some
functionality found in EA, and is capable of identifying measuring, and visualize
specific SysML project meta-model structures.

• SysML project-specific measurements: Beyond the currently available standard UML
and SysML metrics, some metrics were developed suited to measure the project meta-
model used at Soltegro using the GQM approach.

• SysML project-specific visualization: Multiple visualization layouts were
implemented to present both structural and measurement data to the users.

• Three case studies and multiple feedback sessions: By performing three test case
studies and conducting multiple interviews with experienced EA users, we
demonstrated that the system may be capable of providing insight into the structure
and quality of project-specific models.
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11.2 Recommendations and Future Work

The following recommendations are based on the results obtained up to this point:

Immediate work:

• Model visualization: Depending on the project meta-model structure being analyzed,
visualization relying on tree structures may prove insufficient. If this is the case,
section 8.3 already provided possible alternatives. Visualization relying on third-
party tools provides a quick and easy way to display models, as it only requires to
change the format of the data exported. However, these tools can hardly be modified
or adapted. If users decide they require a specialized display of data, or the current
available solutions do not fit their needs, it could be possible to expand VoSMA to
also display model data. This could be accomplished using, for example, a third-
party library. The advantages of this approach include removing an extra step (no
second tool is necessary), removing the need to use external files (no need to export
data), and the flexibility to customize the visualization layout. Disadvantages mainly
involve having to invest time expanding the tool, and making it heavier (as it also must
include visualization). Another option involves developing a solution with Moose56,
the free and open source platform for data analysis. Features include: importing and
parsing data, modeling, measuring, querying, mining, and building interactive and
visual analysis tools.

• Other project meta-model structures: In this study three projects were presented
(NVD, WST, and A4DS). However, only the meta-model structure of the WST
could be properly analyzed. Other projects could also be read, given that the
corresponding meta-model structures and metrics are defined.

• Model evolution: One of the long term goals of this project is to provide insight into
the evolution of these specific models. The software architecture was built with model
evolution in mind, and section 8.4 provided some future pointers. It is recommended
to start with a basic two versions comparison solution, which can be later expanded
to a variation of the evolution matrix.

• More metric rules: Other metric rules could be designed to analyze different aspects
of the model. Beside quantifying the ’quality’ of an element, engineers also expressed
a need to measure the ’change impact’ value (how much will changes in this element
impact the model). Other metrics discussed included a ’degree of change’ in elements
through development (how often, when and how a component has been modified).

• User friendliness: The graphical user interface (GUI) was built to provide a proof-of-
concept of the possibilities of this project. However the tool is meant to be used in the
future on a regular basis by engineers at Soltegro. Depending of the user’s wishes, a
modification of revamp of the GUI would be a necessary step before the software can
be used in a regular basis.

56http://www.moosetechnology.org/
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Other possibilities:

• Expanding functionality: The Project Browser and Traceability windows provide
similar functionality to their EA counterparts. However, they could be improved
with the ability to filter, search, and sort elements. The tree structures should also be
populated dynamically (wherever the user requests more information, or expands a
node), instead of a static structure with all the elements, which is often unnecessary.
Other functionality include similar windows, and an improved search function.

• Reading models generated by other SysML modeling tools: The software could be
adapted with the capability of reading SysML models by other visual modeling
platforms (as long as models can be exported to XMI files). There are two main
alternatives: a) write new reading modules for every tool format, or b) use XSLT
transformation stylesheets57 in combination with a XSLT processor (see figure 11.1
for an example). Both are equally feasible, however, the second provides more
flexibility and does not require further knowledge of the VoSMA structure.

Figure 11.1: Reading SysML model data from different visual modeling platforms. Multiple XSLT
transformations are defined which convert custom XMI formats to a normalized data document.

• Support for the new OMG XMI standard: As explained in section 4.6, the OMG
intends to standardize the XMI format used by visual modeling SysML tools. This
standard should be adopted as soon as available, and EA custom format, of older
formats, should be supported through the use of XSLT transformation files.

• Cross platform support: The VoSMA tool was written using the Java programming
language, and thus, thanks to the Java Virtual Machine58 (JVM) provides cross
platform functionality. XMI files contain text based data serialized in a XML

57http://www.w3.org/TR/xslt
58http://docs.oracle.com/javase/specs/jvms/se7/html/index.html
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markup format, and are thus system independent. The software could be easily be
adapted to run on different operating systems if necessary.

• Web client: Another possibility involves integrating VoSMA into a web client. Since
the tool is written in Java, it could be easily be modified to be executed as a Java
applet59, which runs in a Web browser using the JVM or Sun’s AppletViewer60. This
will allow users to access the tool remotely, and since Java’s bytecode is platform
independent, Java applets can be executed by browsers for different platforms.

59http://docs.oracle.com/javase/7/docs/api/java/applet/Applet.html
60http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/appletviewer.html
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Appendix A

Application of MBSE in Tunnel
Projects at Soltegro

Figure A.1: Application of MBSE in tunnel projects at Soltegro. Adapted from "INCOSE -
Toepassen van Model Based Systems Engineering bij Tunnelontwerpen" presentation by E. Burgers
(December 2012). Note how a higher model precision is desired with each new tunnel project. The

expected context of this work is shown under ’Future’.
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Appendix B

Definitions of System and Systems
Engineering in SE Standards

Standard or Model Definition of System Definition of Systems Engineering

MIL-STD- 499B An integrated composite of
people, products, and processes
that provide a capability
to satisfy a stated need or
objective.

An interdisciplinary approach encompassing
the entire technical effort to evolve and
verify an integrated and life-cycle balanced
set of system people, product, and process
solutions that satisfy customer needs. Systems
engineering encompasses:

a) the technical efforts related to the
development, manufacturing,
verification, deployment, operations,
support, disposal of, and user training
for, system products and processes;

b) the definition and management of the
system configuration;

c) the translation of the system definition into
work breakdown structures;

d) development of information for
management decision-making.

EIA/IS 632 Same as MIL-STD -499B Same as MIL-STD -499B
IEEE 1220 The top element of the system

architecture, specification tree,
or systems breakdown structure
that is comprised of one or
more products and associated
life cycle processes and their
products and services.

An interdisciplinary collaborative approach
to derive, evolve, and verify a life cycle
balanced system solution that satisfies customer
expectations and meets public acceptability.

EIA 632 The aggregation of end
products and enabling products
that achieves a given purpose.

None-the term is not used or referred to in the
standard.
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ISO 15288 An integrated composite that
consists of one or more of the
processes, hardware, software,
facilities and people, that
provides a capability to satisfy
a stated need or objective. (ISO
12207 definition adopted for
ISO 15288)

None-the term is not used or referred to in the
standard.

SE-CMM An integrated composite of
people, products, and processes
that provide a capability
to satisfy a stated need or
objective. (MIL-STD-499B
definition).

Systems engineering is the selective application
of scientific and engineering efforts to

• Transform an operational need into a
description of the system configuration
which best satisfies the operational
need according to the measures of
effectiveness,

• Integrate related technical parameters
and ensure compatibility of all physical,
functional, and technical program
interfaces in a manner which optimizes
the total system definition and design,

• Integrate the efforts of all engineering
disciplines and specialties into the total
engineering effort.

SECM (EIA/IS 731) The aggregation of end
products and enabling products
that achieves a given purpose.

An interdisciplinary approach and means to
enable the realization of successful systems.

SECAMA A set of interrelated
components working together
to accomplish a common
purpose (CAWG). An
interacting combination of
elements viewed in relation to
function (INCOSE).

An interdisciplinary approach and means to
enable the realization of successful systems.

Table B.1: Definitions of system and Systems Engineering in SE Standards, adapted from [61].
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List of Stakeholder Perspectives in
Systems Engineering

Description

User Defined set of people in the field who benefit from system with relatively well
understood expectations.

Developer System developed by prime contractor and subcontractors with single program
office. High degree of focus on the integration of the system components to
specified level of performance.

Trainer Trainers with high degree of knowledge of system deliver training based on system
intended use; training changes incrementally when system upgrades are delivered.

Tester Verification and validation in accordance with V-model of system to well specified
set of requirements and documented needs; master test plan drives testing
activities.

Sustainer Sustainment needs and requirements planned in front end of systems effort;
sustainment activities performed by single organization..

Acquirer Sound acquisition practices used to select and manage prime system contractor.
Direct relationship between acquisition and contractor program offices.

Researcher SE research efforts are typically program focused; performed in program
laboratory involving modeling and simulation; and research is performed in early
phases of system development or directed at specific system enhancements in later
phases. Research is directed at program/domain specific problems.

Table C.1: List of stakeholder perspectives in Systems Engineering, adapted from [57].
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Frequently Used Terms in Systems
Engineering

Term Definition

Activity set of actions that consume time and resources and whose
performance is necessary to achieve or contribute to the realization
of one or more outcomes

Baseline a specification or product that has been formally reviewed and
agreed upon, that thereafter serves as the basis for further
development, and that can be changed only through formal change
control procedures

Enabling system a system that complements a system-of-interest during its life cycle
stages but does not necessarily contribute directly to its function
during operation

Enterprise that part of an organization with responsibility to acquire and to
supply products and/or services according to agreements

Organization a group of people and facilities with an arrangement of
responsibilities, authorities and relationships

Process set of interrelated or interacting activities that transform inputs into
outputs

Project an endeavor with start and finish dates undertaken to create a
product or service in accordance with specified resources and
requirements

Resource an asset that is utilized or consumed during the execution of a
process

Stage a period within the life cycle of a system that relates to the state of
the system description or the system itself

Stakeholder a party having a right, share or claim in a system or in its possession
of characteristics that meet that party’s needs and expectations
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Supplier an organization or an individual that enters into an agreement with
the acquirer for the supply of a product or service

System a combination of interacting elements organized to achieve one
more stated purposes

System element a member of a set of elements that constitutes a system
System-of-interest the system whose life cycle is under consideration

Trade-off decision-making actions that select from various requirements and
alternative solutions on the basis of net benefit to the stakeholders

Validation confirmation, through the provision of objective evidence, that the
requirements for a specific intended use or application have been
fulfilled

Verification confirmation, through the provision of objective evidence, that
specified requirements have been fulfilled

Table D.1: Frequently used terms in Systems Engineering (from ISO/IEC 15288)
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Appendix E

Comparison Between SysML and
UML Diagrams

SysML
Diagram

Purpose UML Diagram
Analog

Activity
diagram

[Behavioral diagram] An Activity diagram shows system
behavior as control and data flows. Useful for functional

analysis. Compare Flow Block Diagrams (FBDs) and Extended
Functional Flow Block diagrams (EFFBDs), already commonly

used among systems engineers.

UML::Activity
diagram

Block Definition
diagram

[Structural diagram] A Block Definition diagram shows system
structure as components along with their Properties, Operations

and Relationships. Useful for system analysis and design.

UML::Class
diagram

Internal Block
diagram

[Structural diagram] An Internal Block diagram shows the
internal structures of system components, including their Parts

and Connectors. Useful for system analysis and design.

UML::Composite
Structure
diagram

Package
diagram

[Structural diagram] A Package diagram shows how a model is
organized into Packages, Views and Viewpoints. Useful for

model management.

UML::Package
diagram

Parametric
diagram

[Structural diagram] A Package diagram shows parametric
constraints between structural elements. Useful for performance

and quantitative analysis.

[No analogous
diagram in

UML]
Requirement

diagram
[Requirement diagram] A Requirement diagram shows system

requirements and their relationships with other elements. Useful
for requirements engineering, including requirements verification

and validation (V&V).

[No analogous
diagram in

UML]

Sequence
diagram

[Behavioral diagram] An Sequence diagram shows system
behavior as interactions between system components. Useful for

system analysis and design.

UML::Sequence
diagram

State Machine
diagram

[Behavioral diagram] A State Machine diagram shows system
behavior as sequences of states that a component or interaction
experience in response to events. Useful for system design and

simulation/code generation.

UML::State
Machine
diagram
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Use Case
diagram

[Behavioral diagram] A Use Case diagram shows system
functional requirements as transactions that are meaningful to
system users. Useful for specifying functional requirements.

(Note potential semantic overlap with functional Requirements
specified in Requirement diagrams.)

UML::Use Case
diagram

Allocation Table [Mapping table; not a diagram] An Allocation Table shows
various kinds of assignment relationships (e.g., requirement

allocation, functional allocation, structural allocation) between
model elements. Useful for facilitating automated verification

and validation (V&V) and gap analysis.

[No analogous
table in UML]

Instances
Instances

As per the OMG SysML 1.2 minor revision, Instance
Specifications, but not Object diagrams are allowed.

UML:: Object
diagram

[No analogous
diagram in

SysML]

UML::
Communication

diagram
[No analogous

diagram in
SysML]

UML::
Component

diagram
[No analogous

diagram in
SysML]

UML::
Deployment

diagram
[No analogous

diagram in
SysML]

UML::
Interaction
Overview
diagram

[No analogous
diagram in

SysML]

UML:: Profile
diagram

[No analogous
diagram in

SysML]

UML:: Timing
diagram

Table E.1: Comparison between SysML diagrams and their UML counterparts, adapted from [68].
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Appendix F

Test Case Examples in EA

Figure F.1: Example of a test cases in EA to assess element information read. The top case is meant
to assess that all elements and relations are read correctly. The bottom case is meant to assess that

the project-specific structure is correctly identified and reconstructed.

103





Appendix G

User Feedback

G.1 Interview with Remco Luitwieler

Date: 07-01-2013.
Experience with EA and SysML: Currently working on the WST and A4DS projects.

Remco was generally positive about the project. His main point of criticism involved
the current implementation of the software: could it not be replaced with templates and/or
scripts in EA which analyze the model and generate the corresponding data? Indeed, a
valid (and common) point of concern. Still, as explained before, this solution would involve
relaying on the EAP files, which are not stored on the SVN. This is especially inconvenient
when dealing with a model’s evolution, as different project revisions would need to be
downloaded and the EAP reconstructed, instead of a SVN file scan as is the case with the
current solution.

He appreciated the extra functionality provided by the software when dealing with
project-specific meta-models, and he did not really mind having to rely on a tool outside
EA to perform the analysis. His recommendations for future work included a ’consistency
check’ functionality (outside of the current scope of this project). This would check the
model for completeness and correctness, which apparently is not working properly in the
current version of EA. His main expectations for future versions is to be able to measure
’quality’ of elements, especially the ability to identify hot-spots in a model.
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G.2 Interview with René Krouwel

Date: 09-01-2013.
Experience with EA and SysML: Currently working on the NVD project. In a previous
project he was employed by KLM - Dutch Royal Airlines to work on solutions in EA to
integrate luggage and ticket systems with Air France.

René’s main concerns involved the measurements chosen to determinate the quality
of an element, and the current visualization layout. The former is related to the complex
question of how to actually quantify the ’quality’ of an element. The latter is related to the
cluttered view of the display using a tree-map layout. He proposed to apply an alternative
’list’ layout to focus on the elements that may need rework. However, he also pointed many
(potential) benefits. Though the current solution could not read the NVD meta-model (his
current SysML project), he presented multiple ideas for future work:

1. Identify ’unbalanced’ requirements. These are places in the decomposition tree with
an uneven distribution of elements of levels, which may indicate the need for further
decomposition.

2. Element evolution, specially requirements evolution: René showed special interest in
the visualization of requirements, especially in the early stages of a project.

3. Visualize the system decomposition value: René also proposed developing a value
for the ’quality’ of the decomposition, which could help identify element which may
require further refinement.

4. Identify requirements which have undergone multiple updates. A high number of
updates (may often) indicate it is a ’mature’ element, as it has experienced multiple
reviews. These elements are expected to experience less changes in future iterations,
and may be considered ’safe’ to use.

5. List based visualization. René proposed a visualization methodology were elements
were ranked according to certain (to be developed) metrics. The goal is to show
elements which require immediate attention at the top. He noted that this will provide
a less cluttered display than the current tree-map implementation. He also proposed
the ability to select which elements to visualize. Another proposition was to assign
another color to an element once the threshold value is exceed, to easily identify
elements requiring refactoring. He expected that this clear and simple visualization
methodology could be also be presented to the less technical project managers, so
they also could get a better insight on the work that needed to be done.

6. Identify elements with a low complexity which have undergone multiple
modifications. This may indicate that the elements has not been understood, or that
the assigned complexity value is incorrect. Also, if a certain percentage of elements
in a model show this behavior (he named a value of 30%) it could be a sign that the
model has not been well understood.
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7. Identify elements with high a complexity value which required a lesser amount of
work or modifications than elements with a lower complexity value. This may
pinpoint elements which still require work (as it is expected that a high complexity
value leads to a high amount of work).

René also noted that gaining actual insight into a meta-model could lead to eventual
cost savings. For example, by identifying problems with the model in early stages of
development, or by having a better picture of how changes could impact the rest of the
model before they are made.

G.3 Review session with André Stehouwer and Eric Burgers

Date: 11-01-2013.
Functions: André and Eric were the main company supervisors of this project. André was
tasked with the general work process, while Eric was charged with the technical aspects.

The session was concerned with a central question: have the goals set at the start of
this project been met? As with the interview with René Krouwel, this session also led to a
brainstorm of ideas. The review involved a detailed walk-trough the software using the
latest version of the WST project, showing all the currently implemented functionality.
Eric appreciated the Project Browser and Traceability windows (similar to EA). The choice
to present the WST project meta-model as two trees structures side by side seemed to
provide a clear picture of the model’s structure. Although this project focused on
visualization with rectangular tree-map layouts, the choice to also implement multiple
layouts in Treeviz paid off. When cycling through the different choices, some layouts were
pointed for other possible useful tasks, such as presenting information to less technical
involved project members (such as management), or identifying the possible impact of
changes in the model when deliberating with other members of a project. Thus, multiple
layouts could be implemented aimed to fulfill different tasks. It was also remarked that one
of the stated main strengths of this project is that it provides additional functionality
currently not present in visual modeling platforms, especially when it comes to
project-specific meta-model identification, checking, measurement and visualization. Both
users stated that functionality provided by the user-interface was clear. Eric showed a lot of
interest in starting using the tool as soon as possible.

To answer the question posed at the start of this section: it was stated that the software
does serve as a strong framework to build upon. The functionally and visualization of model
data could lead to a better insight into project-specific meta-models. It was remarked that
one of the next steps should involve a meeting between potential users to decide where to
take the tool next, considering the possibilities presented through this study.
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G.4 Interview with Franc Fouchier

Date: 11-01-2013.
Experience with EA and SysML: Currently working on the NVD project.

After a short introduction of the software, it was attempted to read the latest version of
the NVD project. However, the NVD’s meta-model is not defined in VoSMA at this point,
so no useful information could be obtained (although SysML model data was correctly read,
including project structure and element traceability). Instead the latest WST revision was
used to showcase the tool functionality.

Franc appreciated the tree-map visualization, noting that if coupled with the correct
metrics could lead to a fast identification of regions in the models which may need to be
reviewed. However, he was especially concerned with (change) impact analysis:
identifying the potential consequences of a change in the model. He desired a solution
where selecting an element will show the user all the paths and elements which may be
affected by changes. Another idea he proposed involved checking if functionality assigned
to systems in a level was fully implemented in the following level, and that no systems
were present with unassigned functionality.
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Appendix H

Modeling Methodology in the WST
Project

Figure H.1: Modeling methodology in the WST project at Soltegro.
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Appendix I

Visualization of the WST Project
Meta-Model Data

This section provides an example of results produced by the current implementation of the
VoSMA software tool, and the multiple visualization layouts discussed in sections 8.2 and
8.3. The following figures present the architecture and measurement of the project meta-
model from the Westerschelde project used at Soltegro (revision 9571). When presenting
the model information, the structure is divided into the requirements and systems (blocks)
decompositions.

VoSMA VoSMA relies on tree structures to present both decompositions side by side,
with additional panels on the right to show metric information. Figure I.1 shows the
"plain" layout option, while figure I.2 shows the "rich" layout variant. Although levels in
the hierarchy are easy to identify, note how VoSMA struggles to display structures with a
large number of elements, and metric information can only be retrieved when selecting an
element.

Treeviz The same data is also visualized using the Treeviz tool. The metrics presented
(whenever possible) are as follows: for blocks box size represents BLCKCOMPLEXITY and
box color BLCKREQT_DENSITY. For requirements, box size stands for REQTDIFFICULTY and
box color for REQTFRAGMENTATION. A larger box size or darker color represent a higher
metric value. Every element has a label with its name, and mouse-over shows more element
information to the user. Most layout options allow to choose between showing all elements
at once, or showing one level at a time. Note that rectangular tree-maps provide the best
layout when displaying all elements in the model at once (as the whole screen can be used).
Still, a large number of elements in a project leads to very small (and thus hard to read)
boxes.

Figure I.3 shows the functional decomposition using the Hyperbolic Tree layout. Note
that the top-requirement element is situated in the center (level 1). The "inner" circle
contains elements in the next level, and so on. The same data is also presented using the
Sunburst Tree layout in figure I.4. The inner circle contains a dummy ’Files’ element
(constrain of the current Treeviz demo version). Elements are shown in concentric circles,
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with the lowest level (1) in the middle (which contains the top-element). Lastly, the same
data is presented with a rectangular tree-map layout, as shown in figure I.6. Note that one
level is presented at a time (level 2 in this case). All layout options allow to display
extensive element information to the user on mouse-over.

MS Treemapper Finally, the WST model data is also visualized using the MS
Treemapper tool. The metrics presented are as follows: for blocks box size represents
BLCKCOMPLEXITY and box color BLCKREQT_DENSITY. For requirements, box size stands for
REQTDIFFICULTY and box color for REQTFRAGMENTATION. A larger box size or darker color
represent a higher metric value. Every element has a label with its name, and mouse-over
shows the element’s path to the user. Note that all elements in a structure are displayed at
the same time. Figure I.7 shows the structural decomposition, and figure I.8 the functional
decomposition. Note how in both visualizations the leaf elements have the same size. This
a consequence of using the complexity and difficulty values, which are almost always set
to ’Easy’ (in the case of blocks), and ’Medium’ (in the case of requirements) at this point
of development.
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Figure I.1: WST model data using VoSMA’s "plain" layout option.
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Figure I.2: WST model data using VoSMA’s "rich" layout option.
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Figure I.3: WST functional decomposition in Treeviz with the Hyperbolic Tree layout.
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Figure I.4: WST functional decomposition in Treeviz with the Sunburst Tree layout. Note that the
figure’s brightness was turned down in order to properly display the elements with a grey border.
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Figure I.5: WST functional decomposition in Treeviz with the Rectangular Treemap layout (full
depth).
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Figure I.6: WST functional decomposition in Treeviz with the Rectangular Treemap layout (current
depth).
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Figure I.7: WST structural decomposition in MS Treemapper.
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Figure I.8: WST functional decomposition in MS Treemapper.
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