[earning from

[ eakage: Database
Reconstruction from
ysta rew

gl 1cNSIoNa

O3




[earning from
[ eakage: Database

Reconstruction from
Justa bFew

Multidimensional
Range Queries

Peijle L1

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Thursday August 28, 2025 at 9:30 AM.

Student number: 5952433
Project duration: October 8, 2024 — August 28, 2025
Thesis committee:  Prof. Dr. G. Smaragdakis, TU Delft, Supervisor

Dr. J. Decouchant, TU Delft
Dr. K. Liang, TU Delft
H. Chen, MSc, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

o]
TUDelft


http://repository.tudelft.nl/

Preface

I would like to express my heartfelt gratitude to all those who have supported and guided me throughout my
research journey.

First, I sincerely thank my advisor, Prof. Dr. G. Smaragdakis, for being a member of my committee and for his
guidance and support, which has been valuable throughout this process. I am deeply grateful to my supervisor,
Prof. Kaitai Liang, who has met with me multiple times, provided extensive guidance on my thesis, and offered
insightful advice on research methods. His mentorship has been instrumental in shaping my work. I would like
to thank Prof. J. Decouchant for agreeing to be part of my defense committee. I greatly appreciate his time and
willingness to review my work. Special thanks go to my daily supervisor, Huanhuan Chen, for meeting with
me weekly, patiently guiding me through challenges, and providing continuous support and encouragement that
made this research possible. I am especially indebted to Prof. Lilika Markatou, whose foundational work formed
the basis of my research. She provided invaluable guidance, offered many insightful ideas, and helped me clarify
and organize the structure of my thesis. Her support has been crucial in helping me complete this work.

Finally, I want to thank my family and friends for their unwavering love, encouragement, and understanding.
Your support has been my source of strength throughout this journey, and I could not have completed this work
without you.

Peijie Li
Delft, August 2025



Abstract

Searchable Encryption (SE) has shown a lot of promise towards enabling secure and efficient queries over en-
crypted data. In order to achieve this efficiency, SE inevitably leaks some information, and a big open question
is how dangerous this leakage is. While prior reconstruction attacks have demonstrated effectiveness in one-
dimensional settings, extending them to high-dimensional datasets remains challenging. Existing methods either
demand excessive query information (e.g. an attacker that has observed all possible responses) or produce low-
quality reconstructions in sparse databases.

In this work, we present REMIN, a new leakage-abuse attack against SE schemes in multi-dimensional settings,
based on access and search pattern leakage from range queries. Our approach leverages unsupervised repre-
sentation learning to transform query co-occurrence frequencies into geometric signals, allowing the attacker to
infer relative spatial relationships between records. This enables accurate and scalable reconstruction of high-
dimensional datasets under minimal leakage. Furthermore, we introduce REMIN-P, a practical variant of the
attack that incorporates a poisoning strategy. By injecting a small number of auxiliary anchor points—either
known or intentionally leaked—REMIN-P significantly improves reconstruction quality, particularly in sparse or
boundary regions.

We evaluate our attacks extensively on both synthetic and real-world structured datasets. Compared to state-
of-the-art reconstruction attacks, our reconstruction attack achieves up to 50% reduction in mean squared error
(MSE), all while maintaining fast and scalable runtime. When the poisoning strategy is chosen properly, our
poisoning attack further reduces MSE by an additional 50% on average. To the best of our knowledge, these are
the first attacks that enables accurate multi-dimensional reconstruction under low-leakage conditions for any type
of database.
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Introduction

Searchable encryption (SE) [42, 15] supports secure and efficient queries over encrypted databases. Current
SE constructions incorporate various cryptographic techniques such as oblivious RAM (ORAM) [21, 43], fully
homomorphic encryption (FHE) [17], and property-perserving encryption (PPE) [4] and they are widely imple-
mented in real-world applications, for instance, MongoDB deploys Queryable Encryption (a variant of SE) [39]
allowing users to perform expressive (e.g. range) queries on encrypted data.

In order to achieve its high efficiency, SE leaks some information to the server. Common types of leakage are
access pattern (which records are returned given a query), search pattern (whether two queries are the identical),
and volume pattern (the number of records returned given a query). This leakage has been shown to allow a
server to infer information about the plaintext data [52, 34, 27], leading to a line of research aiming to understand
how this leakage can be exploited to reveal information about the encrypted data. Among various query types in
SE, range queries pose a particularly severe leakage threat. Unlike keyword queries, which typically reveal only
discrete match signals, range queries leak structural information by returning clusters of spatially or semantically
adjacent records. When a query is issued, a associated token will be generated to retrieve records within a specified
range as the response. As a result, attackers may recover layout characteristics of the original dataset, such as
density clusters, relative positioning, or even record locations. In this work, we investigate the security risks of
range queries across arbitrary dimensions under limited information leakage.

Motivation. Prior work [30, 33, 23, 31, 24, 35] has demonstrated search pattern and access pattern can achieve
full or approximate database reconstruction in one-dimensional (1D) datasets, where simpler relationships among
records make such attacks more feasible. These attacks have achieved notable success in this regard, providing
a solid foundation for understanding the potential of leakage-abuse attacks from range query leakage. However,
as we move from one-dimensional to two-dimensional and even higher-dimensional databases, the complexity
of the relationships between records increases significantly. To support attacks on these more complex scenarios,
researchers have proposed various strategies to address the challenges posed by intricate data relationships and
the exponential growth in equivalent databases (databases with the same leakage) [36, 16, 38, 37].

Across all existing methods, the core attack principle remains consistent: use the minimum amount of leaked
information (e.g., partial query patterns) and maximize by the quality of the reconstructed data. As summarized
in Table 1.1, attacks targeting 1D datasets have achieved this, enabling accurate reconstruction with minimal
leakage. However, higher-dimensional datasets naturally introduce greater complexity. While some attacks attain
high reconstruction accuracy, they often rely on strong and impractical assumptions, such as access to all possible
queries [16] or access to all possible responses [38]. These methods require substantial leakage making them
impractical for real-world settings.

The state-of-the-art graph-based approach by Markatou et al. [36] represents the first significant attempt to use
minimal leakage in high-dimensional settings by observing very few queries and reconstructing from access
pattern leakage alone. This attack has significantly weaker assumptions than earlier methods [16, 38]. But it pri-
marily recovers local ordinal relationships using graph drawing techniques and fails to capture structural features
like clustering and relative positioning, especially in generic datasets (i.e., non-dense or sparse datasets). Conse-
quently, its performance degrades in more complex scenarios, which raises a fundamental research question:



Table 1.1: Comparison of our attack REMIN with closely related work. The "Required Leakage” column represents the number of queries
needed for the attack, with fewer queries being more desirable. Both Required leakage and reconstruction quality are indicated with stars,
where more stars mean fewer queries required and better query efficiency. Our approach achieves practical reconstruction quality with least
required leakage. Markatou et al. [36] achieves FDR in dense databases, and achieves high quality ADR in non-sparse datasets.

A ti Attack
Attacks Query Type SeumpTion ‘ a¢
Query Dist. Database Search Pat. Access Pat. ‘ADR FDR Required Leakage Reconstruction Quality

Kellaris et al. [30] 1D Range  Uniform General X v X v PAR% xS %k k
Lacharité et al. [33] ID Range Agnostic Dense X v o/ KV * %k
Grubbs et al. [23] 1D Range Uniform General X v / 2.8 856 ok ke
Kornaropoulos et al. [31] 1D Range Agnostic General v v o/ 2.8, 8¢ 28,8,
Falzon et al. [16] 2D Range Agnostic General v v X v WV * %k ok
Markatou et al. [38] 2D Range Agnostic General v v o/ RARX A %k
Markatou et al. [36] dD Range Agnostic (Dense) X v ‘ v () 2.8 8¢ *eve
REMIN dD Range Agnostic General v v ‘ o X * %k * %k e

Under limited multi-dimensional range search leakage, what is best reconstruction for general databases that we
can achieve?

New Perspective. In this work, we propose a novel and practical database reconstruction attack that operates
under minimal leakage assumptions, named REMIN. Unlike prior work such as Markatou et al. [36], which
explores reconstruction under low query leakage but focuses primarily on topological recovery (i.e., identifying
neighboring records) via an unweighted graph that captures connectivity but does not account for finer-grained
distance signals, our goal is more ambitious: we aim to recover both the topological and geometric structure of
the original database.

By topological structure, we refer to the connectivity and neighborhood relationships among data points—i.e.,
who is close to whom. By geometric structure, we mean the relative distances and spatial arrangement of data
points in the underlying data space.

Our method builds on the observation that records retrieved together in response to user queries are often seman-
tically or structurally related in the original dataset. By measuring how frequently pairs of records co-occur in
leaked queries, we can estimate their relative proximity in the data space. Using these co-occurrence frequencies,
we construct a high-dimensional distance matrix of size n X n, where n is the number of records, and each record
is represented as an n-dimensional vector (described in Section 4).

We then apply unsupervised representation learning and dimensionality reduction techniques (e.g., t-SNE [46])
to embed the records into a low-dimensional space, reconstructing both the topology and geometry of the data in
its original target dimensional space, while preserving the pairwise distance information as faithfully as possible.

A key challenge in this setting is edge distortion— there are fewer queries covering boundary regions than central
ones, resulting in inaccurate positioning and compression of sparse areas. To address this, we propose REMIN-
P, a new active attack variant that employs a poisoning strategy. We consider a more powerful attacker, that is
able to inject carefully crafted anchor points—records with known or leaked positions—into the dataset. These
anchors act as geometric references, correcting misalignment and improving layout fidelity, particularly in sparse
orunderrepresented regions. To the best of our knowledge, this is the first poisoning-based reconstruction strategy
tailored to range query attacks.

We evaluate our attacks on both synthetic and real-world datasets, simulating practical scenarios under different
query distributions. A brief comparison is summarized in Table 1.1, and the full experimental results are provided
in Chapter 5. Our main contributions are:

* A practical reconstruction attack under minimal leakage: We introduce an unsupervised, co-occurrence-
based attack that recovers both topological and geometric properties for general dataset using only limited
information leakage. REMIN remains effective even in extremely low-leakage conditions, even on sparse
datasets (See Fig. 1.1 for an example).
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Figure 1.1: (Left) Manhattan Highway Crossings dataset. (Middle) Reconstruction by our method REMIN, achieving an MSE of 14.25.
(Right) Reconstruction by Markatou et al. [36], with an MSE of 42.97. (under 1% uniformly sampled queries)

* A novel poisoning attack: We propose REMIN-P, the first active attack variant, where the attacker poi-
sons the dataset, injecting anchor points to improve global alignment and correct distortions in geometric
reconstruction.

* Comprehensive experimental evaluation: We demonstrate the effectiveness of our attacks across diverse
datasets and leakage scenarios, showing significant improvements in reconstruction accuracy, neighbor-
hood preservation, and runtime compared to prior work.

Our work shows how minimal co-occurrence leakage can be exploited to recover both how records are related
(topology) and how they are spatially arranged (geometry). This highlights the need for stronger leakage mitiga-
tion techniques in searchable encryption systems.



Related Works

Searchable Encryption (SE) has evolved significantly from its early keyword-search origins to support increas-
ingly complex functionality like dynamic updates and expressive queries [15, 6, 7, 9, 10, 12, 18, 19, 28, 29,
40]. Early constructions primarily supported simple keyword queries [42, 20], but were later extended to support
more expressive query types, including conjunctive, boolean, and range queries [10, 22, 2, 26, 5]. In particular,
Dynamic Searchable Symmetric Encryption (DSSE) [29] enables updates and deletions on encrypted databases,
making SE practical for real-world applications.

Despite their theoretical security, SE schemes inevitably leak side-channel information during query execution.
Several works have systematically characterized and quantified the leakage in SE protocols [34, 27, 30, 11, 3,
32], which has been shown to be particularly exploitable for reconstructing private data through range query
attacks [34, 27, 30, 33, 51]. Most work on dataset reconstruction from range query leakage can be broadly cate-
gorized into three methodological classes: (1) symbolic or algebraic attacks that rely on geometric properties and
deterministic constraints, (2) statistical estimation methods that infer data distributions from frequencies infor-
mation, and (3) graph-theoretic approaches that exploit co-occurrence patterns to recover structural information.
Each class of methods operates under different leakage assumptions and achieves varying levels of reconstruction
accuracy and generality.

Early work primarily focused on determining how much information about the query inputs can be recovered
from leakage [27, 11, 41]. Subsequently, several algebraic attacks have been proposed to exploit range query
leakage for recovering plaintext geometry, which mainly explored the reconstruction of the encrypted dataset
under strong leakage assumption-full access pattern leakage and knowledge of the query set. KKNO [30] is the
first to formalize this setting by introducing a generic volume-based attack model that combines access patterns
with volume leakage. By analyzing the frequency of record occurrences across query responses, KKNO is able
to infer exact record positions. Lacharité et al. [33] extended this approach to Approximate Density Reconstruc-
tion (ADR) with partial inaccuracies in the inferred structure in exchange for significantly improved efficiency.
Falzon et al. [16] further demonstrated leaked information in 2D databases can also be exploited to achieve exact
reconstruction. These symbolic or order-based attacks offer strong recovery guarantees, but require full access
pattern leakage and knowledge of the query or data distribution.

To mitigate such strong assumptions, later methods turned to statistical estimation. Instead of directly solving
for positions, these approaches estimate the underlying distribution or topological layout of the data using query
response patterns. Kornaropoulos et al. [31] introduced a support-size estimator that, notably, was the first to
leverage search pattern leakage—a previously overlooked signal—to reconstruct the database without relying on
knowledge of the underlying query or data distribution. Building on this direction, Markatou et al. [38] proposed a
non-parametric estimator that aggregates access frequencies to support partial reconstruction in two-dimensional
settings. While these methods reduce the required leakage compared to earlier techniques, they still assume
visibility over a large fraction of the query workload and can be sensitive to dataset sparsity and distributional
skew.

More recently, graph-theoretic approaches have emerged as a powerful alternative, shifting focus from precise
reconstruction to structural recovery. Grubbs et al. [24] introduced a method that uses volume leakage to recon-
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struct the database structure in 1D settings. While the approach targets full reconstruction, it is primarily effective
on dense datasets, resulting in an ordering of records rather than detailed spatial layout. Markatou et al. [36] fur-
ther proposed a framework that constructs a co-occurrence graph from access patterns and aligns it to a target
topology using graph-matching techniques. These methods succeed under minimal leakage — often access pat-
tern or volume pattern alone — and generalize well to higher dimensions. However, they model co-occurrence
as binary and ignore richer signals such as relative distance or frequency, limiting their geometric fidelity.

In contrast to symbolic reasoning and graph-based approaches, machine learning offers a new paradigm for
capturing geometric relationships from leakage. While ML techniques have been widely applied in privacy
attacks—such as side-channel and website fingerprinting [48, 13]—they remain largely unexplored in the con-
text of database reconstruction from searchable encryption leakage to the best of our knowledge. In particular,
the effectiveness of unsupervised learning for this task remains an open question. Our work bridges this gap by
leveraging co-occurrence frequency as a proxy for spatial proximity, embedding records via manifold learning,
and refining the reconstruction through alignment. This enables robust and efficient recovery even under sparse
leakage and agnostic query distributions.



Preliminaries

3.1. Basic Concepts

In a searchable encryption (SE) scheme, a user first encrypts their dataset and uploads the encrypted data to
an untrusted server. Later, to perform a range query, the user generates a query token that encodes the desired
range and sends it to the server. Using this token, the server searches over the encrypted dataset and returns the
identifiers of the documents whose associated values fall within the specified range.

Let F = {rq,r2,...,r,} denote the dataset belonging to the user, where each r; is a record in the dataset. We
consider a d-dimensional dataset where each record is a unique point in a discrete space:

Sq = [N1] x [Na] X -+ x [Ng],

where [N;] = {0,1,..., N; — 1} defines the index range along dimension . Each record r has a domain value
x = (x1,22,...,24) € Sq.

Let & = {ery,era, ..., er,} be the encrypted dataset corresponding to F. A range query g is defined by a set of
bounds for each dimension:
q= [alvbl] X [af27b2] X X [adabd];

where a;,b; € [N;] and a; < b; for each i. The server responds with all encrypted records within the correspond-
ing hyperrectangle:
Response(tq) = {erju e 76qu | Ty €q, \V/j € [jlaj(]]}7

where #, is the token corresponding to the query q. See Table 4.1 for notation details.

We consider a setting similar to that studied in prior work on range query SE schemes [36, 30, 33, 23, 31, 38,
24, 35]. Since both the encrypted dataset and the query tokens are stored on the server, an adversarial server
could observe: (1) the universe of encrypted records and query tokens, and (2) the relationship between them—
specifically, whether a given encrypted record matches a given query token (i.e., whether it falls within the queried
range).

Our attacks leverage both the access pattern and search pattern leakages from the encrypted dataset and associated
query tokens. The access pattern reveals the relationship between each encrypted record and each query token,
i.e., which records match which queries. The search pattern indicates whether two query tokens correspond to
the same query, allowing the attacker to eliminate duplicate query tokens and thus avoid redundant computations
in subsequent distance calculations.

3.2. Reconstruction Attack and Our Assumptions

Reconstruction attacks attempt to recover the underlying structure of the encrypted database based on the leakage
observed from access and search patterns. We categorize these attacks into two types:

* Full database reconstruction (FDR). This attack aims to recover the exact positions of all records in the
database, thereby reconstructing the entire dataset with complete accuracy.
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3.3. Dimension Reduction 7

» Approximate Database Reconstruction (ADR). This reconstruction seeks to recover the fundamental
topological structure of the dataset, without necessarily recovering the exact positions of all record s. The
focus is on preserving the overall layout, such as clustering and relative positioning, rather than achieving
a perfect reconstruction.

In this work, we investigate the approximate reconstruction process under the assumption of limited leakage,
assuming that only a small fraction (e.g., 1%) of the access and search patterns are available to the attacker.
Specifically:

» Partial search pattern leakage: The attacker knows a subset of queries token ¢, | ¢ € Q that were issued to
the database.

+ Corresponding access pattern leakage: For each observed query, the attacker also knows the set of encrypted
records returned in the response, as shown in Fig. 4.1 as Observed Response.

The goal of the attacker is to recover as much information as possible about the original dataset, minimizing the
reconstruction error and preserving the topological and geometric structure of the data.

3.3. Dimension Reduction

In our REMIN attack, we generate a representation matrix that captures the relative positions of records in a
high-dimensional space. To convert this high-dimensional matrix into a reconstruction that reflects the original
spatial distribution, we utilize dimensionality reduction techniques. Dimensionality reduction is a process used to
reduce the number of dimensions in a dataset while retaining as much information as possible about the original
structure. This technique is widely used in various fields, such as data visualization and pattern recognition, to
simplify complex, high-dimensional data while preserving essential relationships between data points [8, 47, 14].

In the context of database reconstruction, the choice of dimensionality reduction method is critical. Traditional
methods like Principal Component Analysis (PCA) [1] and Multidimensional Scaling (MDS) [45] are designed to
preserve global relationships, making them less suitable for the task at hand. Specifically, PCA assumes a linear
structure, while MDS relies on the assumption that global distance information is reliable. However, the distance
matrix constructed from the co-occurrence frequency matrix F' is likely to exhibit a nonlinear, high-dimensional
manifold structure. In this case, global geometric relationships are not the most informative, and dimensionality
reduction techniques should focus on recovering local manifold structures instead.

Notably, t-SNE (t-distributed Stochastic Neighbor Embedding) [46] is particularly well-suited for this scenario
because it prioritizes local relationships, making it effective at uncovering the intrinsic low-dimensional geometry
in high-dimensional data. By minimizing the divergence between the original and projected distance matrices,
t-SNE ensures that records that are close in the high-dimensional space remain close in the lower-dimensional
space. In contrast, methods like PCA and MDS, which focus on global structure, may fail to capture important
local relationships, leading to less accurate reconstructions. Thus, we use t-SNE to balance local and global
structures effectively.



Basic Attack
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Figure 4.1: A schematic illustration of the REMIN reconstruction attack. The method first observes the model’s responses to a set of query
tokens and counts how frequently each pair of encrypted records (e.g., (a, b)) co-occurs in the different responses. Each cluster in the
Observed Responses represents the response returned by a single query token, and each letter (e.g., a) corresponds to an individual
encrypted record. These co-occurrence frequencies are transformed into pairwise distances (e.g., using the reciprocal of the frequency),
resulting in a distance matrix that represents the records as points in a high-dimensional space. The high-dimensional relationships are then
embedded into low-dimensional space through dimensionality reduction (e.g. t-SNE), preserving the structural relationships implied by
response co-occurrence.

We present a new attack called REMIN that leverages machine learning, frequency-based co-occurrence analysis
and dimensionality reduction techniques. The core insight behind this attack is that the co-occurrence frequencies
of records in query responses can serve as a high-dimensional representation of their spatial relationships. By
applying dimensionality reduction algorithms, we can recover the underlying geometry of the dataset in a lower-
dimensional (target) space (e.g., 2D or 3D). An overview is illustrated in Fig. 4.1, outlining the attack flow.

4.1. Extracting Frequency-Based Distances

For the leakage in range query SE schemes, we consider both access pattern and search pattern leakage, as de-
scribed in Section 3. In particular, the attacker leverages the leakage to infer the response set for each query token,
denoted by {Response(t,) | ¢ € Q}, where each response comprises the encrypted records matching the query.

We begin by constructing a frequency matrix F' that captures the co-occurrence relationships between encrypted
records—specifically, whether two records appear together in the response to the same query. Since different
queries may yield identical responses, we resolve such ambiguities using the search pattern leakage. The resulting
matrix F' serves as the basis for computing distances between records in subsequent steps.

To be precise, the co-occurrence frequency F'(i,j) is defined as the number of query tokens where encrypted
records er; and er; are both returned in the corresponding responses:

F(i,j) = Z 1 (er; € Response(t,) A er; € Response(ty)) .
ty, q€Q

An example is shown in Fig. 4.1, where F'(0,2) = 2, indicating that encrypted records a and ¢ co-occur in
two query responses. This matrix inherently reflects the spatial relationships among records, as records that are
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Table 4.1: Notation Summary

Symbol Description

n Total number of records

F Original dataset with n records

Sa A d-dimensional Euclidean space

N; Range size in dimension ¢ (¢ = 1,...,d)

& Encrypted dataset stored on the server

tq Query token corresponding to the query ¢
Response(tq) Set of returned records of the query token ¢,
Q Set of observed queries

F The co-occurrence frequency matrix

D(i, ) The (i, 7)-th entry of the distance matrix D
Y Representation matrix after dimension reduction

spatially closer are more likely to appear together in the same query response, resulting in higher co-occurrence
frequencies. To convert this frequency-based information into a distance relationship, we apply appropriate dis-
tance metrics.

Common choices for this transformation include reciprocal distance (which we adopt for its efficiency and exper-
imental accuracy) [44], Euclidean distance (less suitable in this case, as it assumes a real geometric relationship
rather than frequency-based), and Gaussian kernel distance [25]. Reciprocal distance, defined as:

1
1+ F(i,5)

is particularly effective, as it ensures that smaller co-occurrence frequencies (indicating weaker associations) re-
sult in larger distances, while higher frequencies (indicating stronger associations) correspond to smaller distances.
The resulting distance matrix D as a proxy for the pairwise distances between records in the high-dimensional
space, with its complete computation procedure detailed in Algorithm 1, where id.,. denote the index of an en-
crypted record er.

D(i, j) 4.1

4.2. Dimensionality Reduction for Reconstruction

The distance matrix D captures the high-dimensional relationships between records based on their co-occurrence.
However, the true underlying structure of the dataset exists in a lower-dimensional space. To recover this structure,
we apply dimensionality reduction techniques.

Dimensionality reduction is a common machine learning approach used to simplify complex, high-dimensional
data while preserving its essential features. In our method, we employ t-SNE, which is particularly effective at
preserving local relationships and minimizing global distortions, ensuring that the reconstructed dataset reflects
the original spatial layout. The result of this step is a set of reconstructed coordinates in a low-dimensional space,
approximating the original dataset’s spatial relationships.

While t-SNE excels at preserving local structure, it is sensitive to parameters such as perplexity, which controls
the trade-off between local and global preservation. For completeness, we refer to Appendix A for a more detailed
discussion on parameter sensitivity. Our empirical analysis shows that the optimal perplexity value scales with
dataset size: smaller datasets benefit from lower perplexity values, while larger datasets require higher values for
optimal reconstruction. By carefully selecting perplexity, we can significantly improve the reconstruction quality,
balancing local and global structure preservation.

4.3. Refinement and Alignment

The dimensionality reduction process provides an initial set of coordinates for the records in the original space.
However, due to due to the lack of absolute positional information in the co-occurrence data, the reconstruction
result may suffer from potential misalignment. It typically differs from the original structure by certain rotations,
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Algorithm 1 GetDistanceMatrix(responses, points)

Input: responses: Set of query responses to each query token
EncRec: Set of encrypted records in the dataset
Output: D: Distance matrix where D(i, j) is the dissimilarity measure
1: n < |EncRec|
/* Initialize the co-occurrence frequency matrix */
2: Ann x n symmetric matrix F' < {}
. for each response € responses do
for two different records er, es € response do
/* Update frequency of point pair co-occurrence */

& W

5: Flidey,ides] +=1
6: Flides,ide,] +=1
7: end for

8: end for

/* Initialize distance matrix with infinity */
9: An n X n symmetric matrix D initialized with all entries set to a large constant (e.g., co0)
10: for each (i,7) € [n] % [n] do

/* Convert frequency to distance */
11: D(i,5) «
12: end for
13: fori <~ 0Oton —1do

/* Set distance to itself as zero */
14: D(i i)« 0
15: end for
16: return D

1
1+F(i,5)

scalings, and translations—affine transformations that preserve relative distances and angles between points but
do not maintain their absolute positions.

To address this, we apply Procrustes analysis, a statistical method specifically designed to correct affine transfor-
mations. As shown in Algorithm 2 (see Appendix C for details), Procrustes analysis requires a reference set of
points for alignment. For datasets with a relatively uniform distribution, where records are evenly spaced across
the spatial domain, we construct a reference grid to serve as the target for alignment. This approach works be-
cause each record in the original database lies on a grid point, making the grid a natural representation of the
true spatial structure. Mathematically, given the original coordinates X (the reference grid) and the reconstructed
coordinates Y, Procrustes Analysis solves the following optimization problem:

min || X — (sYR +t)||? (4.2)
R,s,t
where R is a rotation matrix, s is a scaling factor, and ¢ is a translation vector. This ensures that the reconstructed
embedding aligns with the original dataset’s spatial layout, correcting for reasonable distortions.

For datasets requiring integer coordinate constraints, simulated annealing, a probabilistic optimization technique,
can be used to further optimize point placement, guaranteeing reconstructed coordinates occupy exact integer
positions. Details on this technique can be found in Algorithm 3 (see Appendix C for implementation details).



5.1

Evaluation on REMIN attack

Experiment Setup

We assess the performance of our reconstruction method through comprehensive experiments across various
datasets, including both synthetic and real-world scenarios. These datasets are as follows:

Grid (Synthetic): A procedurally generated n x n grid dataset with uniform spacing and configurable
sparsity (by randomly removing records). The grid size, denoted by n, indicates the number of cells per
dimension. This dataset is used to simulate idealized structured data. We refer to this dataset as Grid.

California Intersections: A real-world spatial dataset of over 21,000 road intersections in California rep-
resenting urban and suburban sprawl (normalized to a 5050 grid), previously used in SE research [36]. We
refer to this dataset as Cali.

Amsterdam Drinking Water Points: A spatial dataset of water access locations in Amsterdam, collected
from OpenStreetMap. It exhibits moderate clustering typical of urban infrastructure. We refer to this dataset
as AMS. The data was normalized to a 50 x 50 grid, containing 289 points.

Manhattan Highway Crossings: This dataset captures highway intersections in Manhattan with 1708
points normalized to 50 x 50 space, exhibiting prominent spatial clustering. We refer to this dataset as
Manhattan.

Paris Shops: Locations of shops in central Paris, characterized by non-uniform spatial clusters that reflect
commercial hotspots. We refer to this dataset as Paris. The data was also normalized to a 50 x 50 grid,
containing 1158 points.

Shanghai Bus Stops: Bus stop locations in downtown Shanghai with 1046 points normalized to 50 x 50,
forming a relatively uniform distribution shaped by the urban road network, with non-equidistant spacing
between points. We refer to this dataset as Shanghai.

New Hampshire Elevation (3D): A 3D terrain dataset containing elevation samples from the White Moun-
tains, previously used in reconstruction research [36]. Normalized to a 16x16x16 volume. We refer to this
dataset as NH.

To ensure a fair comparison between reconstruction methods, we align all reconstructed coordinates to the original
dataset before computing evaluation metrics. This is necessary because reconstruction from range queries is
inherently non-unique: many databases can produce identical query responses, forming what is known as the
reconstruction space [36]. Within this space, any dataset is considered indistinguishable from others based solely
on query leakage. To account for this ambiguity, we apply Procrustes analysis using known point correspondences
to align reconstructions to the ground truth, allowing only rotation and scaling. This alignment ensures that
evaluation metrics such as MSE and neighborhood accuracy reflect meaningful geometric fidelity rather than
coordinate frame discrepancies. Unlike the basic attack setting, where alignment and grid snapping are performed
post-reconstruction, we avoid such post-processing as it may introduce artificial artifacts that could distort the
comparison. All quantitative metrics reported in this section are computed after this alignment, ensuring that the
results are directly comparable across methods and settings.

11
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We evaluate our reconstruction method using four key metrics, each capturing a distinct aspect of reconstruction
quality:

* Mean Squared Error (MSE): MSE measures the average squared distance between the reconstructed
coordinates and the original coordinates across all records. It quantifies the overall reconstruction error,
balancing the contributions of both large and small errors, thus offering a comprehensive measure of recon-
struction quality.

Tolerant Match Rate: This relaxed version of exact coordinate match assesses the method’s ability to
recover positions within a specified radius of the ground-truth location. Specifically, a predicted point is
considered a match if its Euclidean distance to the true point is less than /2. This metric is particularly
valuable in practical settings, as it accounts for minor distortions that remain even after alignment, providing
a more meaningful measure of localization accuracy.

* Neighbor Accuracy: This metric evaluates the preservation of local consistency by measuring the percent-
age of records whose 5 nearest neighbors in the reconstructed dataset match those in the original dataset.
This is crucial for assessing how well the method preserves clusters and neighborhood relationships, which
are often key to the dataset’s structure.

* Chamfer Distance: Chamfer Distance measures the average closest-point distance between two sets of
points, capturing the overall structural similarity between them. Unlike MSE, which is sensitive to small
shifts in coordinates, Chamfer Distance is robust to minor mismatches in point correspondence, making it
an ideal metric for evaluating the structural integrity of the reconstructed dataset.

These four metrics collectively evaluate both global accuracy and local consistency, providing comprehensive
assessment of reconstruction quality. To account for the inherent instability of t-SNE and ensure statistical relia-
bility, we repeat each experimental setup ten times in our experiments, and the results are averaged across these
runs.

5.2. Structural Visualization on Real-World and 3D Datasets

To qualitatively assess the reconstruction capabilities of our method, we present visual comparisons between the
ground truth datasets, our reconstructed outputs, as well as those of a leading query-efficient baseline (Markatou
et al. [36]). These comparisons span both real-world 2D spatial datasets obtained from OpenStreetMap and a 3D
dataset, showing that our method outperforms the baseline in both geometric and topological preservation under
severely limited query access.

We evaluate three real-world 2D datasets described in Section 5.1: Amsterdam drinking water access points,
Manhattan highway crossings, and shops in central Paris. All reconstructions are conducted with only 1% query
coverage under q uniform query distribution.

Fig. 1.1 and Fig. 5.1 depict datasets with strong clustering structures (AMS and Manhattan). Our method ef-
fectively recovers both the intra-cluster density and inter-cluster spacing, preserving neighborhood relationships
with high fidelity. In the AMS dataset, we achieve 82% neighbor accuracy and a Chamfer distance of 1.46.
Similar performance is observed for Manhattan. In contrast, the baseline fails to capture both the global and lo-
cal structures. Its reliance on unweighted connectivity producing nearly uniform point clouds with significantly
lower neighbor accuracy (below 40%) and substantially higher Chamfer distances, indicating both geometric and
topological distortions.

Not all spatial datasets exhibit strong clustering. To evaluate reconstruction performance in general cases, we
consider the Paris datasets (Fig. 5.2), which features more diffuse yet structurally meaningful point distribu-
tions. Despite the absence of large-scale clustering, this dataset still contains significant spatial heterogeneity
and alignment patterns. Our method successfully recovers the relative positioning of points and underlying spa-
tial organization. The reconstruction achieves consistent accuracy with 80.03% neighborhood accuracy and low
MSE, demonstrating robustness beyond clustered scenarios. Conversely, the baseline once again fails to preserve
spatial structure under the same query budget, producing a near-uniform random distribution of points, devoid of
meaningful spatial relationships.

To demonstrate the dimensional agnosticism of our approach, we further evaluate our method on a 3D dataset
(NH), embedded in Z3. Using the same query rate of 1% under uniform query distribution, we reconstruct the spa-
tial layout via our co-occurrence-based dimensionality reduction pipeline. As shown in Fig. B.1, the reconstructed
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Figure 5.1: (Left) Original Amsterdam Drinking Water dataset (50 x 50 grid). (Middle) Reconstruction by REMIN using 1% uniformly
sampled queries, achieving 82.00% neighbor accuracy and MSE of 23.52. (Right) Reconstruction by the method of Markatou et al. [36]
under the same setting, achieving 50.92% neighbor accuracy and MSE of 37.86.
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Figure 5.2: (Left) Original Paris Shops dataset (50 x 50 grid). (Middle) Reconstruction by REMIN using 1% uniformly sampled queries,
achieving 80.03% neighbor accuracy, Chamfer distance of 0.81, and MSE of 41.1. (Right) Reconstruction by the method of Markatou et
al. [36] with 30% neighbor accuracy, Chamfer distance of 1.21, and MSE of 128.4.

shape preserves most of the original topological structure, highlighting that our method is dimension-agnostic.
Since the approach solely relies on inter-point distances rather than absolute positions, it naturally extends to any
intrinsic dimensionality, as long as local neighborhood information is well represented.

5.3. Comparison with Prior Work

To quantitatively evaluate the effectiveness of our reconstruction method, we conduct a series of experiments
comparing its performance against representative baselines [1555162, 36] across a variety of settings. Specifically,
we assess reconstruction quality and scalability on both synthetic and real-world datasets.

First, we analyze performance on synthetic grid datasets, varying both dataset size and sparsity level to investigate
robustness under different density and completeness conditions. Second, we perform extensive comparisons on
multiple real-world 2D spatial datasets, focusing on the performance at very low (1%) and moderate (25%) query
ratios under uniform query sampling. These ratios represent scenarios where an attacker has access to either very
limited information or relatively more, but still insufficient, data for full reconstruction. By testing these methods
on practical datasets, we aim to better demonstrate their effectiveness and applicability in real-world settings.

These experiments provide a comprehensive assessment of accuracy, robustness, and scalability, highlighting the
significant advantage of our method over existing techniques under realistic leakage constraints.

5.3.1. Synthetic Dataset Comparison

To further validate the effectiveness and generality of our method, we benchmark it against Markatou et al. [36].
Although this technique also aims to recover database structure under limited query access, it tends to overlook
the underlying pairwise distance in datasets, complicating alignment and structural interpretation.
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We then design two evaluation scenarios to capture realistic variations in database conditions:

* Scalability: Datasets may vary in size or resolution, ranging from small tables to large-scale records. A
robust attack should scale efficiently with dataset growth.

» Data Density: Real-world datasets often exhibit non-uniform density, with missing records or irregular
data collection leading to sparsity and gaps.

To assess performance under these conditions, we conduct two comparative studies:

* Varying grid size to examine structural consistency across scales.

* Varying missing data ratio to evaluate robustness to sparsity and missing records.

As mentioned before, once the mapping between reconstructed results and original coordinates is established, we
compute all evaluation metrics based on the matched pairs, as shown in Fig. 5.3.

Scalability. We evaluate the scalability of our approach against the baseline by testing both methods on grid-
structured datasets, ranging from 20 x 20 to 40 x 40 in size. The experiments maintain a fixed query ratio of
1% and explore varying data distributions—uniform, beta, and Gaussian—to assess robustness across different
query patterns. This setup isolates the impact of database scale on reconstruction performance. As dataset size in-
creases, a robust method should maintain reconstruction accuracy while remaining computationally efficient. To
fully characterize this trade-off, we augment our evaluation with runtime measurements alongside the previously
introduced metrics.
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Figure 5.3: Reconstruction by REMIN (Left) and by Markatou et al. [36] (Right) using 1% uniformly sampled queries.

The experimental results in Fig. 5.4 reveal that our method consistently outperforms the baseline across all set-
tings.

Interestingly, as the grid size increases from 20 x 20 to 40 x 40, both methods demonstrate stable performance,
suggesting that both approaches exhibit scalability with respect to dataset size. However, we observe a more
pronounced performance decline when varying the query distribution. Under non-uniform distributions, such as
beta and Gaussian, both methods suffer in reconstruction quality due to increased sampling redundancy—fewer
unique range responses result in less informative co-occurrence data. Nevertheless, our method maintains strong
performance in preserving local structures. For example, neighborhood accuracy remains above 70% across
all settings, demonstrating that our method is particularly resilient to distributional shifts. While other metrics,
such as tolerant match rate and MSE, show greater variability, neighborhood accuracy remains relatively stable,
indicating that our approach excels at capturing fine-grained local geometry, even when global information is
limited.

In addition to improved accuracy, our method is significantly more efficient. While the baseline relies on itera-
tive leakage amplification with O(n3) complexity, our pipeline reduces this to O(n?) through direct representa-
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tion learning. Runtime comparisons (See Fig. B.2 in Appendix B) demonstrate an order-of-magnitude speedup,
making our method particularly suitable for large-scale applications where traditional cubic-complexity methods
become infeasible.

Overall, these results highlight the scalability, geometric accuracy, and topological robustness of our method. It
consistently outperforms the state-of-the-art across a variety of settings, demonstrating its ability to effectively
handle larger datasets and reliably preserve local structure even in the presence of sparse or biased query patterns.

Table 5.1: Comparison of reconstruction methods under increasing sparsity levels with perplexity set to 80.

.. . REMIN Markatou et al. [36]
Missing Data Ratio
MSE Tolerant  Neighbor  Chamfer =~ MSE Tolerant ~ Neighbor  Chamfer
l Match 1 Accuracy 1 Distance | l Match 1 Accuracy 7 Distance |
0% 1.81  0.7365 0.8142 0.4375 30.10 0.3718 0.6898 0.5665
10% 2.19  0.7090 0.8103 0.4931 28.17  0.2761 0.6635 0.6035
20% 233 0.6715 0.8202 0.5115 28.25 0.1683 0.6096 0.6771
30% 244  0.6572 0.8335 0.5636 2891 0.1146 0.5443 0.8047
40% 2.88  0.6251 0.8221 0.5951 23.59  0.1420 0.4951 0.7946
50% 10.33  0.4920 0.8132 0.6685 2293  0.1178 0.4475 0.8575
60% 17.03  0.4109 0.8105 0.7983 22.65 0.1437 0.3944 1.0110
70% 18.79  0.2292 0.8071 0.9523 23.59  0.0859 0.3565 1.0540

Data Density. In many real-world applications, databases are not fully populated — due to missing records, data
corruption, or partial collection — leading to what we refer to as gaps or missing data points. Existing methods,
such as Markatou et al. [36] do not explicitly preserve local distance consistency and thus experience significant
distortion when applied to incomplete datasets, struggling to infer the locations of missing points.

To evaluate the robustness of our approach under varying levels of sparsity, we simulate random missing data
points on a 30 x 30 grid with a uniform data distribution. The query ratio is fixed at 1%, and we gradually increase
the percentage of missing records from 0% to 70%. All other experimental parameters remain consistent with the
previous setup.

As shown in Table 5.1, our method consistently outperforms the baseline method by Markatou et al. [36] across
all sparsity levels. In the range of 0%—60% missing data, our reconstruction remains notably stable, suggesting
that the method is resilient to moderate sparsity. For example, even with 60% of the records are missing, our
method maintains a tolerant match rate above 49%, indicating successful structural recovery despite substantial
data loss. In contrast, the baseline method exhibits a clear decline in all performance metrics as the missing data
ratio increases. This performance degradation aligns with the baseline’s inability to capture pairwise distance
relationships, as its graph-based design relies solely on connectivity, neglecting local geometric structure.

Notably, when the percentage of missing data exceeds 20%, the performance of the baseline stabilizes at a low
level (approximately 10% in tolerant match rate), suggesting that any reconstruction at this stage is largely due
to random overlaps with the original dataset rather than meaningful structural recovery.

Interestingly, across all levels of sparsity, our method maintains high neighborhood accuracy same as the previous
experiment (exceeding 80%), highlighting its robustness in preserving local topology. This resilience stems from
our design, which leverages co-occurrence frequency to encode proximity, even when full structural information
is not available.

However, when the missing data ratio exceeds 70%, performance becomes more volatile. At this point, co-
occurrence signals become too sparse for reliable inference, and the gap between our method and the baseline [36]
narrows. This limitation underscores a known challenge in high-sparsity scenarios: when neighbor relationships
are insufficiently sampled, even distance-aware methods struggle to recover accurate structures.

In summary, the experiment demonstrates that our method is robust and scalable under realistic levels of sparsity
(up to 60%), with clear advantages over the state-of-the-art. Its ability to preserve local geometry makes it well-
suited for moderately sparse database scenarios, though extreme sparsity remains challenging for all current
approaches.
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5.3.2. Quantitative Comparison on Real-World 2D Spatial Datasets

In realistic scenarios, attackers often face strict constraints on the number of observable query responses, either
due to system-imposed query budgets or privacy-preserving mechanisms. Consequently, a key challenge in re-
construction attacks is recovering as much spatial structure as possible with limited information. To assess the
effectiveness of our method under such low-leakage conditions, we evaluate its performance on four real-world
2D datasets, and compare it against state-of-the-art reconstruction baselines [36, 38].

Our primary baseline is the recent method of Markatou et al. [36], which has been employed in prior studies. To
simulate realistic query leakage, we uniformly sample a fixed percentage of range queries (from 1% to 5%) under
a uniform distribution and use them as the sole input to each reconstruction method. We then evaluate the output
using the four metrics mentioned before.

As shown in Fig. 5.5, the performance of all methods generally improves with higher query ratios, with MSE de-
creasing and accuracy-related metrics increasing. Across all datasets and query budgets, our method consistently
outperforms the baselines by a clear margin. Notably, under the lowest query ratio of 1%, our method achieves
a tolerant match rate that more than doubles that of Markatou et al. [36]. Furthermore, due to the geometry-
aware properties of our t-SNE-based reconstruction, our approach reliably preserves local spatial relationships,
achieving neighbor accuracy above 72% across all settings even under minimal information observed.

As mentioned before, one of the most critical concerns is obtaining the highest quality of the reconstructed dataset
under minimal query leakage. A practical attack should be capable of extracting meaningful structural information
under extremely constrained leakage, while also scaling to higher coverage when available.

To further assess this, we we fix the query ratio at two representative levels—1% and 25% (extremely low and
relatively low query coverage)—and compare MSE results across the four real-world datasets. We additionally
include the earlier method of Markatou et al. [38], which relies on full dataset ordering as a prerequisite and uses
a statistical technique to infer the original data.

The results, summarized in Table 5.2 and 5.3 demonstrate that our method is significantly more query-efficient
than the baselines. As expected, the method from [38] fails to operate under these settings, since recovering
dataset order requires access to at least 50% of the query responses—far exceeding our evaluation budget. In
contrast, As expected, the method from [38] fails to operate under these settings, since recovering dataset order
requires access to at least 50% of the query responses—far exceeding our evaluation budget. For instance, under
just 1% query coverage, our method achieves up to 80% reduction in MSE relative to the baseline, and in some
cases reconstructs geometry with an MSE as low as 1.29.

These findings highlight the robustness of our framework in sparse regimes, demonstrating that even minimal
query access can yield accurate geometric reconstructions—reinforcing the threat posed by range query leakage
in real-world systems.

Table 5.2: MSE of reconstruction using 1% query ratio.

Method Paris Shanghai AMS Manhattan

REMIN 42.17  22.81 23.52 14.25
Markatou et al. [38] - - - -
Markatou et al. [36] 53.07 36.92  37.86 42.97

Table 5.3: MSE of reconstruction using 25% query ratio.

Method Paris Shanghai AMS Manhattan

REMIN 2046 2126  19.04 1.29
Markatou et al. [38] - - - -
Markatou et al. [36] 26.14  23.02  37.20 10.82

5.4. Reconstruction in Higher Dimensions

To evaluate the scalability and generalizability of our approach, we conduct experiments on synthetic grid-structured
datasets with increasing dimensionality, from 2D to 6D. These settings reflect realistic encrypted database scenar-
ios where records are embedded in high-dimensional feature spaces. As dimensionality grows, the reconstruction
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task becomes significantly more challenging due to sparser co-occurrence observations and more complex geo-
metric structures.

We compare our method against the leading query-efficient baseline [36] under a fixed query coverage of 1%
and uniform query distribution. To manage the exponential growth in data size and computational cost, we use
progressively smaller grids (e.g., 162 for 3D, 6° for 5D). Evaluation is based on MSE and Chamfer distance, both
of which capture geometric fidelity. We omit tolerant match and neighbor accuracy in dimensions >3, as the geo-
metric complexity and uniformity of inter-point distances in high-dimensional spaces render local neighborhood
metrics less reliable.

Table 5.4: Performance on higher-dimensional grid datasets with 1% query ratio under uniform distribution.

Dim Method MSE Chamfer Dist

REMIN 0.9753 0.4113

2D (322
(32°) Markatou et al. [36] 24.6954 0.5184
3D (16%) REMIN 0.2991 0.5414
Markatou et al. [36]  0.5968 0.5969
4D (8 REMIN 0.6547 0.6851
Markatou et al. [36]  0.6814 0.7061
sD (6°) REMIN 0.8624 0.9174
Markatou et al. [36] 1.0639 1.0369
6D (49) REMIN 1.1759 1.0247
Markatou et al. [36] 1.1888 1.1168

As shown in Table 5.4, our method consistently achieves lower MSE and Chamfer distance across all dimensions.
Even in 6D, our attack maintains a clear advantage, demonstrating its robustness to geometric complexity. This
suggests that our distance-based co-occurrence representation preserves meaningful spatial structure even when
embedding dimensionality increases.

These findings demonstrate the scalability and robustness of our approach: despite extreme query sparsity and
dimensional complexity, our attack can still recover the structural layout of the dataset far more effectively than
existing methods. This underscores the potential risks of leakage in high-dimensional encrypted systems, where
traditional defenses may underestimate the attacker’s reconstruction capabilities.
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Figure 5.4: Reconstruction performance on varying grid sizes (20 x 20 to 40 x 40) and data distributions with 1% query ratio.




5.4. Reconstruction in Higher Dimensions

19

50

45

40

Mse

35

30

25

20

I
IS

Tolerant Match
o
W

0.1

Neighbor Accuracy

o
o
=)

o
«
«

1.0

0.9

0.8

0.7

Chamfer Distance

0.6

Paris Shops Shanghai Bus Stops Amsterdam Drinking Water Manhattan Highway Crossings
Mse Mse Mse Mse
37.5
X —o— REMIN X —o— REMIN BT T ———y X —o— REMIN
Y -~ Markatou et al. [1] 3509 \ -%- Markatou et al. [1] 350 TTeex 401 N -%- Markatou et al. [1]
\ .04 \
\ \
325 Y 325 35 N\
\ \
30.0 \ ]
o Y o 300 —e— REMIN o 30 XS
] \ 0 3 .
=275 \ 2 575 -%- Markatou et al. [1] =
X 25
N
25.0 . * 25.0 1
225 Se-mT 22,51 20
20.0 ‘\./o—/‘\. 20.0 15
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Query Ratio (%) Query Ratio (%) Query Ratio (%) Query Ratio (%)
Paris Shops Shanghai Bus Stops Amsterdam Drinking Water Manhattan Highway Crossings
Tolerant Match Tolerant Match Tolerant Match Tolerant Match
0.8
0.250 4 06
0.7 0.225 4
] 0.5
£ 06 £ 0.200 £
T 5} & P AT X
2 = 0.175 —e— REMIN = -7
2 2 0.4 *
505 S =»- Markatou et al. [1] H /
o =X & 01507 & K
© ° © /
=] S =]
04 0.125 0.3 % /
N /
/ —o— REMIN 03 e —e— REMIN 0.100 1 5 S,/ —® REMIN
< ~>- Markatou et al. [1] e -%- Markatou et al. [1] IR e mmm e m =X 0.2 N/ =%~ Markatou et al. [1]
0.075 4 X
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Query Ratio (%) Query Ratio (%) Query Ratio (%) Query Ratio (%)
Paris Shops Shanghai Bus Stops Amsterdam Drinking Water Manhattan Highway Crossings
Neighbor Accuracy Neighbor Accuracy Neighbor Accuracy Neighbor Accuracy
0.75
0.80
0.75
2 0.70 2 0751 >
e e e
5 5 0704 5070
—~o— REMIN £ 065 & —e— REMIN &
~»=- Markatou et al. [1] 5 5 0.65 == Markatou et al. [1] S 0.65
o -} o 0.
S ) 5 5-=="" === AL
£ 060 -2 0.60 1 E y, X
z z 2 /
0.60 v
1 , 0.55 K
oL Y L —e— REMIN & I} % —e— REMIN
-~ R TV, . - ] e mm e m = K= -

- > Hem e 0.55 ><' »- Markatou et al. [1] 0.50 1 == 055 X, »- Markatou et al. [1]
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Query Ratio (%) Query Ratio (%) Query Ratio (%) Query Ratio (%)

Paris Shops Shanghai Bus Stops Amsterdam Drinking Water Manhattan Highway Crossings
Chamfer Distance Chamfer Distance Chamfer Distance Chamfer Distance
X ~e— REMIN 0.62 X —e— REMIN 1.05 4 === e mmmm e Xemo 1 PR
N ~»- Markatou et al. [1] \ =»=- Markatou et al. [1] AN
0601 1.00 4 \
. "
H § 0951 8 Ssao | _o-X
2 2 0.0 —e— REMIN a2 —e— REMIN X
K e -%- Markatouetal. [1] | g 06571 -%- Markatou etal. [1]
€ € £
8 £ 0851 s
© © © 0.60
] \’\/\'
0.75 0.55

1 2 3 4 5
Query Ratio (%)

Query Ratio (%)

1 2 3 4 5
Query Ratio (%)

1 2 3 4 5
Query Ratio (%)

Figure 5.5: Reconstruction performance on real-world datasets under varying query ratios (1% to 5%) with uniform query sampling. Our
method consistently outperforms method of Markatou et al. [36] and other baselines in all metrics.



REMIN-P Attack: Leveraging Auxiliary
Information for Improved
Reconstruction

In this section, we explore a new approach for reducing reconstruction error by utilizing auxiliary information.
The technique— our poisoning strategy—operates on the output of any reconstruction algorithm and is agnostic
to the underlying inference mechanism. As such, it represents a general augmentation layer that can enhance or
exploit the structure recovered by any range leakage attack. We describe the new attack, called REMIN-P, and
demonstrate its effectiveness in improving the database reconstruction.

6.1. Intention

We explore how to further minimize reconstruction error, especially in scenarios where limited query data leads to
imperfect reconstructions. In practical settings, some records in the dataset may be known to the attacker, either
due to unavoidable leakage or intentional injections. For instance, in a medical record database, an attacker can
create an encrypted record for themselves by visiting a hospital at a specific time, thereby introducing a poisoned
record into the system. This knowledge—referred to as poisoning anchor points—can be exploited to refine the
reconstruction.

We show that even small amounts of auxiliary knowledge can significantly improve the reconstruction of the
underlying data. This section explores how poisoned anchor points can be strategically used to adjust the geometry
of the reconstructed dataset and reduce edge distortions, with a focus on the impact of two different injection
strategies.

6.2. The REMIN-P Attack Framework

The core idea behind the REMIN-P Attack is to inject auxiliary anchor points into the reconstructed dataset,
using known or leaked record positions as spatial references. These anchor points are then used to perform a
post-processing adjustment to realign the reconstructed points, improving the overall structure and minimizing
distortion.

Such auxiliary information may originate from different sources. We distinguish between two typical threat
models:

+ Passive Attacker gains access to a small, random subset of ground-truth record positions, either through
metadata leakage, user-side exposure, or cross-database matching.

» Active Attacker deliberately injects or identifies structurally meaningful points (e.g., central locations,
synthetic users) with known coordinates.

These scenarios motivate two corresponding injection strategies-random anchor selection and cross-shaped an-
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chor placement (Fig. 6.1). The former explores the effect of anchor quantity under realistic, uncontrolled leakage,
while the latter demonstrates how even a few strategically placed anchors can serve as structural scaffolds for
global alignment.
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Figure 6.1: Comparison of two anchor injection strategies. The left figure illustrates the random placement of poisoned points, while the
right shows the cross-shaped method, highlighting the structural improvement achieved by targeting central axes.

Given that the reconstructed embedding may exhibit mild geometric distortions due to manifold learning effects,
we propose a post-processing adjustment step that leverages these known anchor points. Specifically, the attacker
uses the identified correspondences between a small set of original and reconstructed coordinates to fit a smooth
warping function that aligns the entire structure more closely with its true layout. The full procedure is outlined
in Algorithm 4 (See Appendix D).

Since edge points typically have fewer neighboring points in the query responses, the positional information
extracted for these points tends to be sparser, resulting in greater distortion in the reconstruction edges. To address
this, we aim to align the reconstructed space with the true space based on the radial deviation of poisoned points
relative to the layout center. By applying 1D interpolation along each axes, the algorithm efficiently warps the
reconstructed layout to better match the ground-truth structure. Unlike global affine transformations, this method
adapts to local distortions while preserving the relative neighborhood consistency of the reconstruction.

6.3. Experimental Evaluation

To evaluate the effectiveness of poisoning anchor strategies, we conduct experiments on structured grid datasets
ranging from 20 x 20 to 35 x 35 in size with 5% query ratio. We simulate the attacker having access to the
true coordinates of a small subset of records (anchors), which are used to fit a transformation that adjusts the
reconstructed layout.

For the random injection strategy, we fix the grid size (30%30) and vary the anchor injection ratio across values
1% to 10%. For each ratio, we randomly sample the corresponding number of poisoned points from the dataset.
For the cross-shaped injection, we vary the grid size from 20x20 to 40x40, and insert anchor points along the
central row and column (i.e., forming a cross), with the number of poisoned points growing linearly with grid
size.

Our results reveal complementary performance trends under the two anchor injection strategies, with the cross-
shaped method achieving strong alignment with fewer anchors, and the random method showing gradual improve-
ment as the injection ratio increases.

Random Injection. Fig. 6.2 illustrates the quantitative performance of the random poisoning strategy. When
the poisoned point ratio is very low (13%), the adjustment often introduces additional distortion, degrading the
reconstruction accuracy. This is attributed to biased or under-constrained interpolation, where the limited num-
ber of anchor points leads to unreliable global correction. However, once the poisoned ratio exceeds 3%, the
adjustment consistently outperforms the original reconstruction. As the number of anchors increases, the quality
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Figure 6.2: (Left) MSE and (Right) Tolerant match ratio of reconstructed coordinates as the ratio of poisoned points increases under the
random injection strategy. Results are based on a 30 x 30 grid dataset with 5% query ratio.

of the correction steadily improves across all evaluation metrics. However, the improvement is gradual, and a
large number of anchors are required to reach the performance level achievable by a well-placed set of structural
anchors.

Cross-Shaped Injection. In contrast, the cross-shape strategy demonstrates that even limited auxiliary knowl-
edge can be leveraged to significantly improve reconstruction fidelity. As shown in Fig. 6.3, even with only 19
anchors in a 30x30 grid (lower than 2.5%), we observe a reduction of over 22% in MSE and a gain of 4% in
tolerant match accuracy compared to the no-anchor baseline. This targeted selection yields significant structural
improvement, particularly in correcting edge distortions. The boundary regions, which often exhibit curvature or
compression artifacts are realigned more accurately when poisoned points span both axes.

Moreover, as shown in Table 6.3, this method exhibits greater stability and effectiveness across dataset sizes
(from 20x20 to 35x35) compared to random poisoning. Notably, while both strategies lead to improvements,
the cross-shaped anchors consistently outperform random anchors at low budget levels, especially for correcting
global misalignment.

Our experiments confirm that even limited auxiliary knowledge—either leaked or injected—can be leveraged to
significantly improve reconstruction fidelity. In practice, it suggests that attackers may benefit from strategically
introducing or identifying semantically informative points, thereby refining the geometry of otherwise noisy em-
beddings. This calls for stronger defense mechanisms beyond traditional leakage profiling, including robustness
against minimal anchoring and geometry-aware leakage mitigation.
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Figure 6.3: Comparison of reconstruction metrics before and after post-processing under centerline poisoning attack. Grid sizes range from
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Conclusion and Discussion

7.1. Conclusion

In this work, We address the challenge of reconstructing spatial datasets under severe query leakage constraints,
a critical problem in privacy-preserving systems and adversarial settings. We present a novel machine learning-
based attack that leverages representation learning from highly limited range query leakage. Our method, based
on t-SNE and co-occurrence analysis, is the first to demonstrate effective reconstruction under general datasets,
outperforming state-of-the-art baselines by up to 50% in MSE. These results highlight a critical vulnerability
in current privacy-preserving systems and show that even minimal query exposure can lead to meaningful data
recovery, calling for stronger defenses in real-world deployments.

7.2. Discussion and Future Work

Challenges in Extremely Sparse Datasets. Experimental observations indicate a dramatic decline in recon-
struction performance in highly sparse datasets, characterized by over 70% empty regions. In such scenarios, the
reduced co-occurrence of distant records severely limits the attacker’s observable information. This sparsity also
increases the likelihood of queries returning very few or even single records, further weakening the statistical sig-
nal needed for reconstruction. Future work could explore incorporating additional signals, such as the frequency
of individual point occurrences, to estimate the size of empty neighborhoods, thereby improving reconstruction
capabilities in sparse data environments.

Framework Limitations and Generalization. While REMIN shows strong performance under extremely lim-
ited query leakage, its scalability under higher leakage ratios (e.g., 50%) remains underexplored. Evaluating
whether full database reconstruction is achievable in such settings may further reveal the method’s robustness
and practical potential. Moreover, the use of t-SNE introduces sensitivity to parameters such as perplexity and
stochastic variability, which may affect reconstruction fidelity—especially in non-uniform datasets where iso-
lated points offer limited relational signals. Although our poisoning-based REMIN-P helps mitigate some of
these issues, future work could explore embedding algorithms that incorporate structural constraints or density-
aware regularization. More broadly, the modular structure of our framework suggests potential for extending to
other types of leakage, by transforming diverse observable signals into learnable spatial representations through
flexible embedding techniques.

Opportunities and Challenges in Query Poisoning. Our REMIN-P shows that even limited manipulation—
through observing or injecting a small number of ground-truth records—can substantially improve reconstruction
outcomes. A slightly more active attacker could further exploit this by crafting specific queries or strategically
inserting points to guide the embedding process. Future work may explore adaptive poisoning strategies that
leverage dataset geometry or embedding sensitivities.
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Ethics Considerations

This work demonstrates the vulnerability of searchable encryption systems to practical database reconstruction
attacks using minimal leakage, which can help inspire stronger security measures and privacy-preserving tech-
niques. By exposing these risks, our research contributes positively to the advancement of secure encrypted
database systems. Below we discuss key ethical considerations regarding intellectual property, intended usage,
potential misuse, risk control, and human subjects.

Intellectual property. All comparative attacks and defenses, models, datasets and implementation libraries are
open-source.

Intended Usage. Our work demonstrates how minimal leakage from encrypted databases can enable approxi-
mate data reconstruction, exposing critical vulnerabilities in current systems. These findings aim to drive the
development of more secure encryption schemes that better protect sensitive information.

Potential Misuse. Our findings could be misused to reconstruct sensitive location data, infer private finan-
cial/medical information, or manipulate data via poisoning attacks. Potential defenses may include padding [49],
ORAM [21, 43], and poisoning detection system.

Risk Control. To further mitigate potential risks, we will release the code of this work including algorithms and
the implementations in the experiments. We believe that transparency can reduce the risks related to this work,
encourage reliable code reuse and promote advancement of database security.

Human Subject. This research does not involve human subjects and any personally identifiable information.
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Parameter Sensitivity

Following the attack design described above, we conduct a detailed investigation into the impact of key parameters
on the reconstruction quality. Among them, the perplexity parameter of the t-SNE algorithm, a key parameter that
balances the preservation of local and global structures, plays a particularly critical role. This section presents an
empirical study of its sensitivity and how to select it appropriately for datasets of varying sizes.

t-SNE has been identified as the most suitable dimensionality reduction algorithm in our attack pipeline due to its
strength in preserving local neighborhoods. However, its effectiveness is heavily influenced by the perplexity pa-
rameter, which governs the trade-off between local and global structure preservation. Perplexity can be intuitively
interpreted as the effective number of nearest neighbors that t-SNE considers when constructing the probability
distribution of points. A lower perplexity value forces the algorithm to focus on local neighborhoods, which may
result in over-clustering and distortion of the global geometry. Conversely, a higher perplexity encourages better
preservation of global structure, but may oversmooth local relationships, especially in datasets with fine-grained
variations.

Given that the effective neighborhood size should ideally scale with the total number of points, we hypothesize
that the optimal perplexity is not fixed across datasets, but rather dependent on the size of the dataset—i.e., the
number of records to be reconstructed. To validate this hypothesis, we conduct a series of experiments measuring
reconstruction performance under varying perplexity values across datasets of increasing size (20x20, 25%25, and
30x30 grids, corresponding to 400, 625, and 900 points, respectively). For consistency, all experiments are con-
ducted on structured grid databases with 0% missing records and 1% query coverage under uniform distribution.
We evaluate four key metrics—mean squared error (MSE), tolerant exact match ratio, neighborhood accuracy
and Chamfer distance—across a wide range of perplexity values (from 20 to 120). Results are shown in Fig. A.1.

Our findings consistently support our hypothesis: as the total number of records increases, the optimal perplexity
also shifts upward. For smaller datasets (e.g., 20x20, with 400 points), lower perplexity values (around 40)
yield the best performance, as these preserve local structures without over-smoothing. In contrast, for larger
datasets (e.g., 30x30, with 900 points), higher perplexity values (around 60-80) are necessary to capture sufficient
neighborhood information and maintain global structural consistency.

These results suggest that perplexity should be carefully tuned based on dataset size. For small datasets (< 600
points), a perplexity of 30-50 is ideal, while medium-sized datasets (900 points), 60—80 is more effective. Larger
datasets (> 35) require 80-120 to achieve optimal structure preservation. When perplexity is chosen appropriately,
the reconstruction quality improves significantly, as visualized in Fig. 1.1.
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Figure A.1: Parameter Sensitivity Analysis: Perplexity vs. Dataset Size. Reconstruction performance (MSE, neighborhood accuracy, etc.)
is evaluated across perplexity values (20—120) for grid datasets of increasing size (400900 points). All tests use 1% query coverage and
0% missing data.



Supplementary Experiments

To complement the evaluation presented in the main text, we include additional figures in this appendix. These
visualizations provide further evidence of the effectiveness and efficiency of our method across different settings.

X
(b) Reconstruction of REMIN

(a) Original Coordinates

Figure B.1: (Left) Original NH dataset in 3D coordinates. (Right) Reconstruction by our method REMIN using 1% uniformly sampled
queries, achieving 72.38% neighbor accuracy, Chamfer distance of 0.5674, and MSE of 0.6745.
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Runtime Comparison vs. Grid Size
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Figure B.2: Runtime across varying grid sizes (20 x 20 to 40 x 40) and data distributions with 1% query ratio.



Alignment and Refinement
Algorithms

The reconstructed coordinates from co-occurrence data lack absolute position and may differ by rotation, scaling,
and translation. To correct this, we use Procrustes Analysis (Algorithm 2) to align coordinates to a reference
grid. Since Procrustes only handles global alignment, we further refine positions with Simulated Annealing
(Algorithm 3) to snap points to integer grid locations, ensuring consistency with the original spatial structure.

Combining these methods yields a well-aligned, discretized embedding.

Algorithm 2 AlignAndScale(coords, grid_shape)

Input: coords: Input coordinates from previous step to be aligned, represented as an n X 2 matrix
grid_shape: The ranges of the dataset ((Zmin, Tmaz ), (Ymin, Ymaz))

Output: scaled: Aligned and scaled coordinates in target grid space

/*Estimate grid size (g X g) based on total points*/
1: n < |coords|, g + [v/n]
/* Generate a reference grid of n evenly spaced points */
2: grid + first n points of meshgrid(g, g)
/* Align input coordinates to the reference grid using Procrustes analysis. Procrustes is an algorithm to align
two point sets via translation, rotation, and scaling. Here we use the implementation from SciPy library [50].
*/
3: aligned < Procrustes(grid, coords)
/* Define rescaling ranges */
4z, yp < [1, grid_shapel0] — 1], [1, grid_shape[1] — 1]
/* Normalize and scale to target range */
5. scaled < normalize(aligned) X (xy,y.) + (2.[0], y»[0])
/* Return final coordinates */
6: return scaled
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Algorithm 3 SimulatedAnnealing(coords, grid_shape)

Input: coords: Input coordinates from previous step to be aligned, represented as an n X 2 matrix
grid_shape: The ranges of the dataset ((Zmin, Tmaz ), (Ymin, Ymaz))
Output: S: Snapped coordinates

/* Init temp T, min temp T,;,, cooling rate o */
1: Initialize T, Tryin, ¢
/* Round coords and compute initial energy */
2: Set S = round(coords), E = Energy(.S, coords)
/* Main annealing loop */
3: while T' > T,,;, do
/* Generate candidate by perturbation */
4; S’ = Perturb(S, grid_shape)
/* Evaluate new candidate energy */
5 E’ = Energy(S’, coords)
/* Accept better/worse solution */
6:  if B’ < E or random() < e~ (E'~E)/T then
/* Update state and energy */
S+ S, E« FE
end if
/* Cool down temperature */
9: T + oT
10: end while
/* Return optimized snapped coords */
11: return S




REMIN-P: Radial Correction Using
Poisoned Anchors

Algorithm 4 constitutes the fundamental component of REMIN-P, aiming to refine reconstructed coordinates by
leveraging a limited set of known poisoned points as anchor references. It first aligns the reconstructed embedding
to the true coordinates using Procrustes analysis, then rescales to fit the original domain. Next, it learns radial
correction functions mapping displacements from the center in reconstructed space to true space via interpolation

on the anchor points. Finally, these mappings are applied to all points to obtain corrected coordinates that better
match the true distribution.

35



Algorithm 4 RadialCorrection(X, X , I, Ng, N1)

Input: X: True coordinates of records, X € R"*?
X: Reconstructed coordinates, X € Rx2
I: Indices of poisoned (known) points
Ny, Ni: Original coordinate ranges
Output: X: Corrected coordinates

/* Center true/reconstructed coordinates */

1: Compute mean px and p ¢ of X and X
/* Align shape and scale */

2: Apply Procrustes alignment between X and X centered at .y, j %
/* Ensure domain bounds */

3: Rescale aligned X to fit within [0, No] x [0, Ny]
/* Select anchor points */

4; Extract poisoned points: X; < X[I], X; « X[I]
/* Displacement from center */

5. Compute offsets: Ax; = Xi(l) — u(;), Ay; = X'i(z) — ,u;?)
/* Learn radial mapping */

6: Fit 1D interpolators:

fo Az — Xi(l) — ug), fy Ay — Xi(2) — u()?)

7: for each point j = 1 to n do
/* X displacement */

8: 0z < Xj(l) — M()%)
/* Y displacement */

9: 0y X J(g) — i
/* Corrected X */

0 XM e fo(0ay) + 4y
/* Corrected Y */

i X e £, (0y) + n§)

12: end for
/* Return corrected coordinates */

13: return X

(2)
X
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