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CHAPTER 7

Data science and advanced analytics for
shipping energy systems
Andrea Coraddua, Miltiadis Kalikatzarakisb, Jake Walkera, Davide Ilardic, and
Luca Onetoc
aFaculty of Mechanical, Maritime, and Material Engineering, Delft University of Technology, Delft, the Netherlands
bDepartment of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Glasgow,
United Kingdom
cDepartment of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova,
Italy

7.1. Data availability

The use of sensor technologies is rapidly expanding in the shipping industry, allowing for
real-time monitoring and control of systems and processes. It is then possible to say that
maritime data analytics is embracing the process of datification. Lloyd’s Coffee houses
and the publication of Lloyd’s list in 1734 listing vessels and cargoes arriving in the port of
London is one of the first records of data analytics in the maritime field. Nonetheless, the
first big step in gathering and analyzing digital information is dated in the early 1990s.
The first edition of [1], along with the establishment of Shipping Intelligence Weekly by
Clarkson Research, powered a new generation of shipping analysts to develop tools
that investigated changes in market cycles and vessel demands. Currently, the industry
is hesitantly entering the third Age of Maritime Data Analytics, with the use of algorithms
integrating several strands of data, from a component level to a fleet-wide level.

A modern seagoing vessel can generate a significant amount of data in a large variety
of formats, which can provide an analyst with an holistic view of the vessel in terms
of both internal and external awareness. In this context, internal awareness refers to
all information regarding events occurring within the vessel (endogenous information),
whereas external awareness (exogenous information) provides insight about the interaction
of the vessel with its surrounding environment.

7.1.1 Datification
Technological progresses made substantial steps forward in the last decades. Datification,
namely, the process of transforming a phenomenon into data using sensors, is one of
the fields that has most benefited from these technological evolution. Daily life of every
individual is monitored by smartphone, smartwatches, and home automation devices.
The industries are full of embedded devices to monitor the production processes real-
time. Products produced by industry are natively equipped with sensors able to monitor
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their own status. Moreover, an increasingly high number of sensors are installed on assets
like bridges, wind turbines, highways and ships. All of these additions are motivated by
the intent, at a different level, to predict the future whether to avoid adverse events or
to profile users behavior.

The datification concept is not so novel. In 3800 B.C., the King of Babylonia recorded
the first census in ancient Mesopotamia [2]. It was the first mean to measure the richness
and powerfulness of the kingdom at that time and the very first datafication process ever
made. Since then human beings never stop datifying the world all around. Nevertheless,
the gap between the amount of past and current collected data is enormous. As Google
CEO Eric Schmidt stated that [3]: “Every two days now we create as much information
as we did from the dawn of civilization up until 2003”. What is new is the process of
datifying aspects of the world and of our daily life that would have never been possible
in the past. For example, social networks transform individuals into a live stream of het-
erogeneous different data sources. Industrial data sources, that were previously ignored
or discarded (e.g., activity logs and machinery signals), are now becoming a crucial el-
ement to empower competitiveness. This datification process allows to transform the
decision-making processes from a matter of best practice, intuition, and experience into
a measurable science.

One crucial benefit of the process of datification is the ability to fuse together dif-
ferent data sources, namely the one directly linked to the phenomena under exam
(the so-called endogenous sources) with the ones that can increase our knowledge base
since they indirectly improve the endogenous sources (the so-called exogenous sources).
A simple representation of a datification process of a vessel is reported in Fig. 7.1.

7.1.2 Endogenous data
Endogenous, in the shipbuilding industry, refers to the data generated by vessels dur-
ing their life. A modern seagoing vessel can generate a significant amount of data in a
large variety of formats. Automation and control systems, maintenance and condition
monitoring, cargo monitoring systems, and equipment specifications all provide valu-
able information regarding the operational status of the vessel with respect to internal
awareness. Let us briefly explore the various data sources and their scope.

7.1.2.1 Automation and control systems

As the market is driving shipowners to become more efficient with reduced manning
requirements on-board, the use of sophisticated automation and control systems is be-
coming increasingly common and modern vessels are capable of safely operating for
extended periods of time with unattended machinery spaces. To enable this, modern
automation and control systems are fully integrated and capable of covering several as-
pects of the vessel’s operations, and it is common for them to collect tens of thousands
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Figure 7.1 The datification process of a vessel.

of process measurements, and control system status information. In state-of-the-art sys-
tems, these aspects include the operation of the propulsion plant, power management
of the electric power distribution systems, the operation of all auxiliary machinery, as
well as navigation and administration of maintenance and purchasing of spares.

Monitoring and controlling the propulsion and the electric power generation sys-
tems is an essential task to maintain the efficiency and reliability of the vessel. There
are numerous systems on-board that work together to provide electricity and propel the
vessel, which require constant monitoring of different parameters such as fuel consump-
tion, combustion and engine temperatures, over-load and over-speed limits, starting and
stopping operations, generator voltage and frequency, load and torque of electric mo-
tors, heavy consumers’ logic, and thruster monitoring.

The auxiliary machinery monitoring and control requires to supervise multiple sys-
tems and parameters. For instance, sea and fresh cooling water installations require pump
and system pressure and temperature monitoring, potable and fresh water, bilge and
sludge control require close monitoring of tank levels, pump pressures and valve status.
Fuel oil system control requires monitoring and processing of tank levels, temperature,
viscosity and flow, purifier and heater status. Understandably, similar complexity and
amount of information arises from Heating, Ventilation and Air Conditioning (HVAC)
systems, ballast water treatment, and exhaust gas temperature treatment systems.

The process of monitoring of all these systems generates a significant amount of
data that can be extracted and used by analysts for various purposes, such as identifying
instrument failures, finding and quantifying mechanical issues, measuring the effective-
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ness of the control systems on-board, and identifying control strategies that are no longer
working properly.

7.1.2.2 Maintenance and condition monitoring

The reliability level required by modern vessels can only be ensured with timely main-
tenance, which involves periodic checks, repairs, and equipment replacements. All these
events are routinely recorded, as required by the International Safety Management (ISM)
code, in various forms that have evolved over the years.

In modern vessels, these events are cataloged digitally in maintenance management
software, which provides an interface that enables seafarers and engineers to:
• schedule and document all planned and unplanned maintenance events;
• define and schedule time- and condition-based maintenance tasks;
• provide details regarding the criticalities of each event;
• automatically keep track of available spare parts;
• generate and keep track of life-cycle records of each equipment.

In addition to the data presented above, shipping companies routinely use additional
sources when developing maintenance procedures for a particular vessel, which can
further enrich the information available to engineers or analysts in terms of:
• maintenance guidelines given by the manufacturer;
• equipment history that includes defects, damages and remedial actions taken;
• equipment criticalities;
• age of the vessel;
• third party inspections;
• planned maintenance intervals;
• International Safety Management (ISM) guidelines.

Moreover, it is becoming increasingly common for shipping companies to use condi-
tion monitoring software (e.g., [4]) for the monitoring of the most critical components.
Such software are constantly monitoring key parameters of the machinery using various
methods (e.g., vibration and temperature measurements, ultrasonic signals, thermogra-
phy, current analysis) to identify subtle changes that are indicative of developing faults.
This information, when available, further supplements the rest of the data sources re-
lated to maintenance events. When properly analyzed, all this information does not
only provide an overview of the life-cycle costs of the vessel, it can also help predict
equipment failures in advance and allow shipowners the freedom to address developing
defects in a way that best suits their operational goals.

7.1.2.3 Cargo monitoring

Cargo monitoring and control systems are prevalent in oil and chemical tankers and
Liquefied Natural Gas carriers and containerships. They differ based on vessel type and
cargo and record different parameters, however, their scope always remains the same: to
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ensure the safety of the crew, vessel and cargo, and facilitate efficient loading / unloading
and storage.

Depending on the complexity of the process and the type of cargo, vessels may
have a dedicated cargo control room to monitor important Key Performance Indicators
(KPIs) of the state of the cargo, as well as all the systems that are involved in the loading /
unloading processes and cargo storage. In oil and chemical tankers and Liquefied Natural
Gas carriers that carry sensitive and dangerous cargo, these systems are logging and
processing of cargo temperatures, pressures and flows of all cargo and ballast pumps,
tank levels, heeling angle estimation and control, as well as constant monitoring of trim
and list angle and draft. Similar parameters are monitored in containerships, including
the position and status of gantries, hatch covers, gearboxes and special cargo (dangerous
goods and reefer cargoes) are monitored to ensure the stability of the vessel and potential
loss of cargo.

Modern systems also have the ability to benchmark every port call to identify effi-
ciency improvements and reduce the risk of a delay, and even record berth performance
so that analysts can compare the reported performance from the terminal, against the
observed performance from the vessel.

7.1.2.4 Equipment specifications

Modern vessels are large and complex platforms that must be self-sustaining in their
environment for extended periods with a high degree of reliability. There is a wide
variety of components on-board that work in synergy to realize all the key functions of a
seagoing vessel, such as machinery required for propulsion, steering, anchoring and ship
securing, cargo handling, air conditioning and ventilation, and power generation and
distribution. All these components are accompanied by various technical specifications
and safety sheets, application guides, and user manuals that detail key characteristics of
the machinery, underline functional information and KPIs, the intended scope of use,
and maintenance specifications and instructions. This documentation provides a finer
understanding of the equipment capabilities and makes the equipment’s design, metrics
and capacity clearly understood. Furthermore, it gives a detailed overview of the service
conditions and processes that should be followed for proper equipment maintenance.

This information, as intended, helps engineers in establishing routine equipment
conditions, usage frequency and the environmental conditions in which the equipment
may or may not be used. However, it is very beneficial to analysts who can generate
accurate evaluations of the equipment functioning under ideal operating conditions
without any deviation. When these analyses are supplemented and compared with real-
time information about the equipment of a sea going vessel, allow us to evaluate whether
the equipment is appropriate to meet current and future objectives, derive an actual
appraisal of the equipment’s current efficiency and level of activity, and alarm us against
costly mistakes that can disrupt operations, or cause material and human loss.
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Table 7.1 Example vessel data features.
Vessel feature Sensor type
Position Global Positioning System (GPS) Receiver
Speed Over Ground (SOG) GPS Receiver
Speed Through Water (STW) Doppler Log
Sink Hydrostatic Pressure Sensors
Vessel motions Motion Reference Units

7.1.2.5 Vessel environment interaction

Some features are usually utilized to describe and understand the interaction between
the vessel and its surroundings and do not fit strictly into the endogenous / exoge-
nous categorization. For the purposes of this chapter, they are considered as a subset of
endogenous features. Table 7.1 describes the data features that measure the interaction
between the vessel and its environment.

The Global Positioning System (GPS) is one of the most important devices for
measuring vessel’s position. GPS work by relating the position of the receiver to a
constellation of GPS satellites. The receiver uses trilateration to determine the position
of the vessel given the distance from the receiver to each of the 3 most proximate
satellites in the network. The GPS receiver is responsible for tracking the vessel position
throughout a voyage. In addition to serving a navigational role, the change in position
is used to determine the GPS speed, which is also the Speed Over Ground (SOG). The
position and speed of the vessel are logged into the vessel data center also accounting
for the timestamp.

Speed Through Water (STW) is the headway speed due to the force produced by
the vessel. In deep water scenarios, the STW of a vessel is determined by the Doppler
Log. The Doppler log measures the STW by emitting a signal at a known frequency
from the bottom of the vessel, which reflects off the sea bed and detected by the device
at the new frequency. The Doppler log then uses the Doppler Shift equation to infer
the STW by measuring the relative shift in frequency between the source signal and
the apparent one. Configurations of the Doppler log with only one transducer are often
sensitive to the transient motion of the vessel such as slight pitch and roll. To overcome
these sensitivities, the Janus configuration is used to average the results of four signals
for a more robust prediction of the speed. In shallow water, most Doppler logs will only
be capable to measure the SOG. However, recent advancement in the JLN log from
Japanese Radio Company (JRC) [5] is able to measure the STW even in shallow depths
(2 meters). It should be noted that the speed of sound in water varies between 1,450 and
1,570 meters (∼ 9%) depending on salinity and temperature, which can induce errors in
logs which do not consider these parameters when calculating the speed. However, the
International Maritime Organization (IMO) performance standards for the Doppler log
mandate the performance for depths greater than 3 meters from the keel. The displayed
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measurements for the speed and distance through water must be within the greater of
either, a 2% or 0.2 knots tolerance for digital displays (or equivalently 2.5% or 0.25
knots for analogue displays) even in conditions where the vessel roll is up to 10° & 5°
pitch.

To measure the vessel motions and displacement requires a combination of sensors
working in tandem to capture the dynamic behavior. The draft is usually measured
from a set of hydrostatic pressure sensors deployed at the bow and stern. With larger
ships, it is beneficial to include additional sensors at the port and starboard mid-ship.
From the hydrostatic pressure readings, it is then possible to infer the draft along the
length of the vessel and negate temporary wave effects. It is possible to compute the
trim from the difference between the fore and aft drafts and the length of the ship. This
approach yields a good approximation of the trimming angle when stationary, but is not
as robust in sailing conditions. On the other hand, specialized sensors to detect the exact
position of the fore and aft of the ship are also deployed to measure the Dynamic Trim
in transient conditions. In this case, two GPS sensors are deployed at the fore and aft
masts which continuously monitor the dynamic trim regardless of the sailing condition.
Finally, the vessel motion response is usually recorded with an Inertial Measuring System
(IMS). Similar to the other dynamic responses, two IMSs are deployed at the fore and
aft of the vessel to ensure a robust measurement of the vessel motion. The IMS contains
accelerometers and gyroscopes to measure the motion and rotation in 6 degrees of
freedom.

7.1.2.6 Navigational data

All this equipment is a valuable source of information regarding external awareness, as
there is a significant amount of data generated from the sensors and relevant measuring
equipment found on the bridge, such as radars, rate of turn indicators, heeling angle
recorders, the Electronic Chard Display and Information System (ECDIS), auto-pilot,
and the Automatic Identification System (AIS), which transmits the vessel’s unique iden-
tification number, position, speed and course as required by the IMO for all commercial
vessels over 300 Registered Tonnage. Moreover, additional instrumentation and data
sources can be found on the bridge of special-purpose vessels, which can also include
wave radars, oil spill detectors, and high-accuracy inertial navigation sensors. These data
sources, when combined with all data providing us with internal awareness, can give a
holistic view of a seagoing vessel and its surrounding environment.

7.1.3 Exogenous data
Environmental and navigational data provide us with information regarding the sur-
rounding environment in which the vessel is operating. Historically, weather forecasts
and navigational data were captured through descriptive notes, or later transmitted via
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Table 7.2 Exogenous data.
Climate features Sensor type
Wind speed and direction Anemometers (Mechanical or Ultrasonic)
Air Temperature Thermocouples
Relative humidity Hygrometer
Pressure Barometers
Metocean features Sensor type
Current speed and direction Inferred with Doppler Log
Seawater temperature Thermocouples
Sea depth Echo Sounders
Significant wave height Satellite Radar Altimeters

radio, were the primary source of data for seafarers to draw inferences regarding the like-
lihood of the success of a voyage. Nowadays these data can be transmitted both using
satellite communication (in open sea) and VSAT, L-band, and 3G/4G/LTE networks
in coastal navigation. Table 7.2 describes the exogenous data that can be collected.

7.1.3.1 Climate features

At the present time, weather satellites are one of the primary source of climate data
utilized in the maritime industry. This technology is widely considered the standard in
weather feature data collection due to the variety and accuracy of the data gathering
methods. The process of collecting these data is explored in [6]. Weather data from
these satellites is often gathered and distributed for free by many state-funded organiza-
tions, such as the U.S. Naval Research Laboratory (NRL) [7], National Weather Service
(NWS) [8], and the MET Office [9], although industrial services exist to collate the data
and provide access to maritime clients at varying degrees of detail [10–12]. Radio oc-
culation technology is also at the forefront of climate data capturing. A competitive
proponent of this method proposed in [11] aims to improve the accuracy of weather
forecasting with less reliance on calibration. They provide an exhaustive option in re-
gards to maritime forecasting as their platform incorporates a high frequency network of
Global Positioning System (GPS) / Global Navigation Satellite System (GNSS) satellites
and emphasize learning from previous occulation data to improve performance.

State-of-the-art research into the datafication of weather features is driving the ac-
curacy and availability of these datasets. Here we discuss technologies applied to capture
the most important climate and metocean features and the principal implementation
scenarios. Robust environmental data loggers used to capture this information include
considerations towards both climate and metocean attributes. Now, like many other
maritime processes, advancements in deployable, economic sensing technology have led
to a transformation in how we apply this data in the context of marine energy systems.
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From a mariner’s perspective the weather data, specifically regarding the wind, is
essential for understanding the stability of a vessel. Especially in the case of container
vessels, VLCCs, LGN, and Liquefied Petroleum Gas (LPG) vessels due to the wide
side (“sail”) area. The force from the wind also influences the surface tension force in
the ocean that causes swell and variability in the sea state. In combination with data
describing the ocean current, this is a powerful inference on the length of a voyage, the
vessel’s fuel consumption, and the safety during operation.

Although the wind has arguably the most direct effect on the sailing conditions,
it exists only due to differences in atmospheric pressure as air flows from high to low
pressure areas. In fact, historically, recording the pressure was one of the most important
inferences mariners had about the short term weather forecast. Other climate factors
that influence the sailing conditions include the humidity which describes the ratio of
water vapor in the air, and the air temperature. Ultimately, the weather is the direct
product of the transfer of energy in the environment. When the different sources of
climate data are combined it is possible to develop a clear understanding about how the
weather will influence the success of a voyage.

7.1.3.2 Metocean features

In order to measure waves, ocean wave monitoring buoys offer an alternative method of
datafication for weather features and are employed in applications where satellites are not
suitable or available. Floating weather stations have been in operation from the early 20th
century where ships designated for the datafication of weather features were anchored
to form a network of weather stations. Today, ocean buoys are deployed with sensors
to capture both climate and metocean features, in comparison to satellite technology,
the data collection from a buoy is able to effectively target an area of interest with a
cardinality restricted only by the frequency of the sensors rather than the period of orbit.
However, the available region the buoy can cover is minute with respect to the satellite
(typically in the region of two orders of magnitude [13]) and is usually reserved for
instances where the primary method is unsuitable. State-of-the-art reviews of weather
systems over the last decade [14,15], have centered around improving the performance
of X-band radar (8.0 to 12.0 GHz) for capturing metocean conditions by analyzing the
sea surface spectra. The ability of the X-Band system to assume the calculation of these
features is of extreme value in the marine industry as it comes at almost no additional
cost to the vessel, since radar systems are almost universally employed in vessels for a suit
of other applications, mainly: for safety purposes so as to avoid collisions and navigation
purposes. The most prominent application of this technology, wave motion detection,
has been applied through a range of frequencies to accurately describe the changing sea
state and vessel response. Research has shown the expansion of this technology from
the defense industry to the commercial sector has proven its use as a marine remote
sensing tool within a range of several kilometers when attached to a moving vessel.
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A comparison between short and medium wave inferences in [16] has shown that the
significant wave height estimated by the medium wave pulse width is in agreement with
the short wave after a re-calibration process, further research in [17] then demonstrates
the implementation of this process without disrupting the essential safety mechanisms
performed by the X-Band system.

For what concerns the currents, the information describing them, is often implicit
within other data sources in shipping applications. For example, by comparing the dif-
ference between the SOG and STW the effects of the currents can be obtained. For
problems that are specific to a location, the Acoustic Doppler current Profilers (ADPs)
work on the same principle as described in Section 7.1.2.5. However, these devices
(which are discussed further in [18]) are moored as buoys and can often measure both
the currents and waves in a single device.

With consideration towards mapping ocean depth, shore-based radar stations have
long been able to map the depth of the sea bed in shallow water, without the need to
travel directly to the location. With sufficient georeferencing data it was shown in [19]
that X-Band radar technology, mounted on a vessel, could favorably determine the
bathymetry up to depths of 50m kilometers away from the points of interest. This
presents a potential safety mechanism when working in areas of uncharted water, since
the radar can effectively determine ocean depth in areas that vessels may not be able to
enter.

7.1.4 Discussion
Obtaining a holistic view of a seagoing vessel requires aggregating tabular, unstructured,
and geospatial data, with sampling rates that span several orders of magnitude, from
multiple and heterogeneous data sources, generating datasets of different structure. Even
though datafication is a reality in several sectors (e.g., finance, media, telecommunica-
tions, and healthcare), its adoption in the maritime industry has been slower, and the
full benefits have not fully materialized yet. Slowly but surely, the shipping industry will
evolve, from using a decision-tree driven, to a data-driven approach.

7.2. Data science and advanced analytics technologies

Data Science and Advanced Analytics are the fields of research that study how to exploit
data to derive new, meaningful, and actionable information [20–35,76]. Since in this
chapter we are focusing on Shipping Energy Systems, in this section we will describe the
subset of methods, technologies, and tools that can exploit the data listed in Section 7.1
to answer the key questions of this domain. In particular, Data Science and Advanced
Analytics allow to answer four fundamental questions.

The first question is “What happened or is happening to the system?”. This question,
even if naive at first sight, requires at least a datification process, namely, to have properly
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sensorized the systems, collected the data produced by the sensors in a data hub, and
designed the required dashboards and KPI to be able to visualize the performance of
the systems and then their status. This process is not a trivial one since, in the shipping
context, there is still a large space for human intervention: the status of the engine is
manually checked by experienced operators, some sensors cannot be deployed in legacy
systems, the data are not centrally collected, the data suffer of low quality or reliability,
the right KPI are not easy to be synthesized, and the dashboards are not informative
enough to be fully reliable. Even if in the last years a large effort has been spent in order
to fill these gaps, there are still some major issues to be addressed: exploit the free form
or manual reports of the operators, build virtual sensors able to estimate sensors mea-
surements that cannot be deployed in legacy systems, build a network infrastructure able
to centrally collect all the data produced, design a limited set of meaningful and infor-
mative KPI, build dashboards able to help the user in easily and rapidly understanding
the system status. Descriptive Analytics is the field of Data Science and Advanced Ana-
lytics that allows to answer these questions and leverage the technologies coming from
the world of data collection, storage, cleaning, cleansing, exploration, and visualization,
namely Data Wrangling.

The second question is “Why is something happening or has happened to the system?”.
This second question is clearly more complex than the first one and requires to extract
information that is not readily available even if all the data regarding the system are.
Especially in the Shipping Energy Systems domain, this question is commonly answered
by experienced operators who gained, during many years of direct experience on the
field, the required knowledge to be able to understand, based on data or manual/visual
inspections, why a particular problem arose in the system. In fact, most of the problems
of a Shipping Energy System are recurrent and very few of them are novel problems
never happened in the past. For this reason, the experience is essential since it allows to
rapidly detect the reasons of these repetitive problems. Data allow to answer this question
in a more scalable and reliable way since one single operator cannot see, in its entire life,
a hundred of different systems while computers can store the information of possibly all
the systems for their entire working life. Therefore, it is possible to exploit all these data
to find correlations and patterns which allow to understand in which situations, and
then why some problems arise. Note that correlation and causality are similar concepts
but not the same ones (causality implies correlation but not vice versa since spurious
correlations are widespread in nature1). Nevertheless, listing all the correlated factors is
surely an effective way to restrict the possible causes. Diagnostic Analytics is the field of
Data Science and Advance Analytics that allow to answer these questions and leverage
the technologies coming from the world of Data Mining.

The third question is “What will happen to the system?”. Answering this third question
is even more challenging with respect to answering the previous ones but surely provides

1 https://www.tylervigen.com/spurious-correlations

https://www.tylervigen.com/spurious-correlations
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a first big insight toward deeply understanding the behavior of the system, and it may
allow to act before something can happen. The answer to questions about the future
is always associated with a risk, namely, the probability of mistakes associated with a
prediction, which is quite complex to estimate. In fact, Descriptive and Diagnostic
Analytics, which pose questions on present or past system behaviors, require answers
whose risks can be easily estimated using past data. Instead, when we pose questions
about the future, we need to make some hypotheses and be completely aware of their
meaning to make aware decisions that fully contemplated these risks. As an example, let
us suppose that we want to migrate the maintenance processes of a component of a ship
energy system from a corrective or working-hours-based maintenance to a condition
based or predictive maintenance. In this scenario we will have to build models able to
estimate and predict the current and future decay status of this component and, for this
purpose, we need to have some data regarding its past behavior. Once these models
have been built, we have to keep in mind some important considerations. For example,
the first one is about the representatives of the exploited data (namely, the ship will be
still used in the future for the same purposes? Or will it travel the same routes?). The
second one is about the possible causes of malfunction. If in the past the component
has been maintained with a higher frequency to avoid any possible issue we have to
take into account that the model has never seen data regarding very high decay state or
malfunctions so it will probably never be able to extrapolate too much. Consequently,
answering questions about future behavior needs to take into account many complex
relations between systems, data, models, decisions, and actions. Predictive Analytics is the
field of Data Science and Advanced Analytics that allows to answer these questions and
leverage the technologies coming from the world of Machine Learning (ML).

The last question is “What is it needed to do to make the system behave in a certain way?”.
This last question is surely the most challenging one and requires a lot of technologies
since it points out to the design of a fully automated supervision system able to guide
the ship energy system toward a particular behavior. For example: why do I have to
warm-up an engine to reduce the maintenance? Why do I have to modulate the trim
to reduce the energy consumption? How often do I have to clean the hull to optimize
the trade-off between maintenance costs and fuel savings? In order to address these
questions, we do not have to simply predict the behavior of a system, but we also have
to model, for example, the system constraints, the preferences of the operator which
exploits the system, the maintenance constraints, the maintainers preferences. For this
purpose, we need all the information listed in Section 7.1 and we need to be able to
both build data-driven models, describe the knowledge bases, describe the constraints,
and describe the processes. Predictive Analytics is the field of Data Science and Advanced
Analytics that allows to answer this question and leverage on the technologies coming
from the world of Artificial Intelligence.

Aside from these four questions, there is a field of Data Science and Advances
Analytics called Visual Analytics, that exploits all the previously mentioned analytics
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Figure 7.2 Analytics approaches for shipping energy systems.

(Descriptive, Diagnostic, Predictive, and Prescriptive) tools and results to give visual in-
sight to the human operators and let them make the best out of it. In fact, it is quite
rare, also in Prescriptive Analytics, to let an intelligent system take a final decision on
a complex subject in a fully autonomous way (e.g., decide to stop a vessel and make
an important maintenance intervention to a ship energy system). The final decision is
often taken by a human operator and Visual Analytics is the science which studies how
to present the information coming from different analytics in the most possible aware
manner. For this reason, a cornerstone of the Visual Analytics is the concept related to
the Human–Machine Interaction, which allows to design ways to make the intelligence
of the machine be fully exploited by the intelligence of the humans. Machines are often
not very smart but very fast in doing simple things (the so called narrow intelligence),
while humans are often slow but very clever in developing complex connections and so-
lutions (the so called general intelligence). Visual Analytics tries to empower the human
mind with the tools of Descriptive, Diagnostic, Predictive, and Prescriptive Analytics
making them easily and fully exploitable by human for taking faster and more aware
decisions and actions.

A graphical representation of the field of Data Science and Advanced Analytics and
related technologies is depicted in Fig. 7.2.

Note that this segmentation of the Data Science and Advanced Analytics research
field is not always so neat and it is not the only possible one. In fact, in some cases
even, for example, for Descriptive Analytics, it is required to use ML technologies
(e.g., to create a virtual sensor for a system that cannot be retrofitted with a particular
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sensing technology as we will see in this chapter). Note also that, as we will see in
this section, the distinction between, for example, Data Mining and ML or ML and
Artificial Intelligence and Deep Learning, is again not always so clear and neat but this
chapter presents the point of view of the authors acquired in many years of research in
this field.

Once Data Science and Advanced Analytics aim has been understood, we can de-
scribe the technologies on which they leverage. We will start with the Data Wrangling,
we will continue with Data Mining, then ML and finally with Artificial Intelligence.

Data Wrangling [36–40] is a broad term that contemplates many technologies, but in
general, it allows to transform raw data into a manageable format that can be exploited
to perform higher level analysis. We will use this concept with its broader meaning
including data collection, storage, cleaning, cleansing, exploration, and visualization.
Recent technologies for big data collection and fruition systems allow to collect, store,
and access huge amounts of data from different and heterogeneous sources. Software
frameworks for centralized and distributed data storage and processing (like Hadoop,
Spark, Hive, MongoDB, etc.) and their ecosystems allow to easily access data in different
formats from different sources, to create and to process big data sources with reference
to the particular phenomenon under exam. Usually data can appear in nature in many
different forms (see Section 7.1), from the classical tabular data, to images, free form
reports, natural language, graphs, and they can represent different information like sensor
logs, maintenance reports, configuration data, concepts, and relations. For this reason,
it is necessary, and extremely useful, to collect it in a centralized hub, curate it, keep it
always updated since data represent an intangible, but fundamental asset for any modern
industry, especially the shipping one, that will become even more crucial in the future.
In fact, progresses in shipping energy systems technologies are experiencing a sort of
advancements plateau (like in many other industries), while the space for improvements
in the adoption of data-driven technologies and solutions is still very large and in many
fields of shipping it represents the one in which companies build their competitiveness.
Data Wrangling allows to understand what happened and is happening to a ship energy
system since it represents the source of information that needs to be synthesized in KPI
to be displayed to human operators and to stakeholders to take decisions based on data
and not just the experience.

Data Mining [41–45], contrarily to Data Wrangling, is a technology which allows
to extract additional information from data and not simply collect, store, clean, cleans,
explore, and visualize it. Data Mining main objective, as described before, is to un-
derstand why something has happened to a system based on the current and historical
data. In other words, Data Mining main focus is to discover repetitive patterns related
to a particular fact or behavior. The first step toward addressing this goal is to find a
correct notion of similarity and distance between data and patterns. This may appear a
simple procedure for structured data, but for text, graphs, concepts, and relations this
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is not trivial at all. One has to define a metric of similarity or distance which should
simultaneously well represent the phenomena, be rigorous enough to be mathematically
described, and be simple enough to be efficiently computed. The second step in data
mining is to apply algorithms able to find recurrent patterns or associations between
them. For this purpose, we have many tools aiming at solving different problems: from
Frequent Pattern Mining Model to Association Rules and Interesting Pattern Analy-
sis with their different algorithms. There are also more advanced tools and concepts
like Pattern Summarization and Pattern Querying, which are fundamental to make a
synthesis when the number of patterns or amount of data increases. Finally, there are
also ways to group data and patterns to find similarities at higher hierarchy. Clustering
Methods and Algorithms focus on this problem. Many applications in shipping energy
systems require the partitioning of data points into intuitively similar groups. The par-
titioning of a large number of data points into a smaller number of groups helps greatly
in summarizing the data and understanding it for a variety of data mining applications.

ML [46–53] is a subset of Artificial Intelligence defined as the study of com-
puter algorithms that improve automatically through experience. ML algorithms build a
mathematical model based on sample data, known as training data, to make predictions
or decisions without being explicitly programmed to do so. ML algorithms are able
to solve two main types of problems, namely, classification and regression, and these
problems can be faced in supervised, semi-supervised, and unsupervised fashion. The
distinction between classification and regression lays in the output that the model has to
predict. For classification we need to estimate the class belonging (so there is no con-
cept of distance between the classes) of a particular observation e.g., when one has to
detect if a maintenance is needed or not based on the data coming from the automation
system, while in regression we have to estimate an output of a system where the possible
output is a sorted set of possibilities (so there is a concept of distance between the out-
puts), e.g., when one has to detect the fouling status exploiting data coming from the
automation system. Note that many problems that seem to not fit in this framework,
like the time series forecast, e.g., when one has to detect the fuel consumption of the
propulsion system based on the history of fuel consumption, can be easily plugged in
a regression framework with an autoregression approach or appropriate decomposition.
For what concerns, instead, the distinction between supervised, semi-supervised, and
unsupervised cases, in the supervised case we have a possibly large amount of historical
labeled data as training set, namely both the observations of the system and associated
outputs are available. This case is the simplest one, but in many applications (e.g., fault
detection) the number of faults is quite limited, or not always available, so the amount
of labeled samples is limited. In these cases, called semi-supervised, we have a large
amount of unlabeled samples while few data are labeled. Finally, the unsupervised case,
which is the most complex one, consists in all those cases where no desired output is
available for the observations (e.g., detect the operational profiles of a ship). Based on
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the data available and the problem that one has to solve, it is possible to derive specific
sub-problems, e.g., clustering is an unsupervised classification and novelty detection is
a semi-supervised classification problem. For each specific sub-problem there are then
families of algorithms (e.g., Ensemble Methods (EM), Kernel Methods (KM), Artifi-
cial Neural Networks (ANN), Gaussian Processes (GP), Random Projections, and Rule
Based Methods) and then specific algorithms (e.g., Support Vector Machines (SVM) in
KM or Random Forests (RF) in EM) that can be exploited. These algorithms can be
easily divided in two groups: shallow and deep models. Shallow models require a so
called feature engineering phase that maps the raw data (e.g., the data coming from the
automation system) into a feature vector, called representation vector, using the knowl-
edge about the physical problem (e.g., using frequency analysis) and then, by having
a training set of features vector and possibly the associated output, the shallow model
learns the relation between input and output. In many cases this feature engineering
phase is not trivial (e.g., image of graph analysis) but a large training set of raw data
and possibly the associated output is available. In this case, deep models are able to au-
tomatically learn from the data itself the feature vector, also called data representation
or embedding, and the final model. Deep models are quite powerful but often require
a huge amount of data to be trained and not all the applications have these amount
of data available. Another issue that we have to face in ML is how to tune and as-
sess the performance of the algorithms [54]. In fact, ML algorithms often require to
choose between different approaches and each approach is characterized by hyperpa-
rameters to tune. These choices deeply affect the performance of the final model and
for this reason they must be tuned and assessed carefully. Resampling techniques like
cross validation and non-parametric bootstrap are often used by practitioners because
they work well in many situations. Other alternatives exist, which are based on the
Statistical Learning Theory, which give more insight into the learning process. Exam-
ples of methods in this last category are: the seminal work of the Vapnik-Chervonenkis
Dimension, its improvement with the Rademacher Complexity, the theory of compres-
sion, the Algorithmic Stability breakthrough, the PAC-Bayes theory, and more recently
the Differential Privacy theory.

Artificial Intelligence [55–59], in the context of this chapter, is the effort of fully, or
at least partially, automatize the process of taking decisions. For this purpose, we need
different tools able to build all the intelligence needed to start from data and design
decisions and actions to undertake (see Fig. 7.3). A first building block is ML able to
exploit data and prior knowledge about a particular domain to build predictive models.
These ML models scale well with the amount of data available but they are not as
effective if exploited for deduction purposes. For this reason we need a second building
block which exploits the Model Based Reasoning technology. Model Based Reasoning
(based, for example, on classical optimization or on Answer Set Programming, or in
AI-guided optimizers) allows to model in an effective way complex systems and its
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Figure 7.3 Artificial intelligence for shipping energy systems.

constraints based on the physical knowledge about them and to deduce meaningful
information by solving complex (optimization) problems creating causal models. The
Model Based Reasoning limitation is that it may not scale well with the size of problem.
The joint use of ML and Model Based Reasoning allows to fill their gaps and empower
them with their strengths. Note that multiple solutions may result in the achievement
of the desired outcome, we need also to model the preferences of the domain and use
a preferred planner (e.g., using Planning Domain Definition Language) to finally take
the final decision and actions.

Note that, because of the particular domain of the shipping energy systems, not al-
ways a fully automated system can be exploited or people will accept its use. In fact,
some decisions require a final, or in between, supervision of a human expert or stake-
holder. For this purpose, in many cases, just part of the building block depicted in
Fig. 7.3 is actually exploited and then the information is provided, in some form, to
a human expert. The way in which this information is presented requires a profound
knowledge of technological and psychological aspects related to the Human Computer
Interaction [60–65]. In fact, providing the information alone does not guarantee that
the user will be able the exploit it. The way in which the information is presented
is as-much or more important than the information itself. Human Computer Inter-
action enhances the capabilities of the information receivers by developing data- and
context-driven interfaces. The interaction between decision-makers and the context-
driven human machine interface allows to overcome the effects of missing or inaccurate
measures and data and of model uncertainties. At the same time, decisions can be im-
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proved by means of better situational awareness, helping the decision-maker to evaluate
trade-offs in finding the best compromises toward the final decision. Particular attention
needs to be given in avoiding a visual information overload to the decision-makers to
provide the minimum number of stimuli with the maximum informative value. The
stakeholders can then be able to accept the prescribed decisions or to further specu-
late by understanding the process that led to the prescribed suggestions. Furthermore,
decision makers need to be able to check for alternative solutions by parameter steer-
ing or varying the context-specific constraints, preferences, and KPIs before taking
the final decision. This continuous interaction between the system and the decision-
makers should be also recorded, allowing to close the human-in-the-loop cycle and
back-propagate the human corrections to system suggestions.

7.3. State-of-the-art in data science and advanced analytics

In the following, the authors provide an overview of the state-of-the-art contribution
in the context of data science and advanced analytics for shipping energy systems. We
selected the most relevant (according to the venue) and referenced works in the last 6
years. These results are summarized in Table 7.3.

Lu et al. [66] address the problem of the energy costs of shipping by the devel-
opment of a route optimization framework to determine the Energy Efficiency of
Operation (EEO) of a vessel considering the variable resistance of a ship’s hull. The
proposed framework combines the ship characteristics determined from historical data
and a modified Kwon’s method for semi-empirical performance estimates, and cor-
rections for the variable resistance of the vessel hull. The resulting model was able to
predict the ship’s resistance from Vessel – Environment interaction data (the encounter
angle between the ship and the wind, and the draft) and exogenous data (mainly, the sea
states) for the two case studies considered. The results demonstrated that the inclusion
of these data sources led to increased accuracy in the prediction of hull resistance com-
pared to traditional semi-empirical models which was then used to determine the EEO
for the vessels. The Modified Kwon’s method was also applied in a route optimization
framework where the authors obtained routes for both the lowest fuel consumption and
the lowest Beauford number & fuel consumption together. The authors admit the vari-
ability in both the accuracy of exogenous data forecasts and the vessel’s ability to follow
the prescribed route may lead to considerable uncertainties in the application.

Wang et al. [67] proposed a dynamic control system to identify effective energy
saving and CO2 reducing measures for a cruise ship. The authors proposed reducing
the energy consumption by tuning a control system to predict the total resistance of
the vessel in terms of parameters describing the Vessel – Environment interaction and
suggesting an optimal trajectory. The control system was able to predict the Energy
Efficiency Operational Indicator (EEOI) by solving a non-linear dynamic Time-Series



Data science and advanced analytics for shipping energy systems 321

Table 7.3 Summary of the state-of-the-art contributions in the context of data science and advanced
analytics for shipping energy systems. We selected the most relevant (according to the venue) and
referenced works in the last 6 years.
Ref. Scope Input data Models output Methods Results
[66] Route

Optimization
Vessel – Environment
Interaction & Exogenous
Conditions

Route Fuel
Consumption [t]

Semi-Empirical
model

Accuracy not reported
Reduction in Fuel Consumption of
7–11% for 4 routes

[67] Control System
Optimization

Vessel – Environment
interaction & Exogenous
Conditions (Forecasted)

Optimal set of control
parameters to
minimize EEIO

Semi-Empirical
models
PSO

Accuracy not reported
Improvement in EEOI of ∼ 2%
Reduction in fuel consumption
and CO2 of ∼ 28%

[68] Fuel Consumption
Reduction

Vessel – Environment
interaction & Exogenous
Conditions

Predicted Navigation
Environment

Wavelet ANN Accuracy not reported
Reduction in fuel consumption per
unit distance of 19.04%

[69] Fuel Consumption
Estimation

Vessel – Environment
Interaction

Fuel Consumption
[Mt]

ANN MAPE: 7.4–10.8%

[70] Fuel Consumption
Estimation

Vessel – Environment
Interaction & Exogenous
Conditions

Fuel Consumption
[L/h]

Bag, RF, Boo RMSE: 45.2 (Bag)
RMSE: 43.5 (RF)
RMSE: 41.3 (Boo)

[71] Operational Pattern
Classification

Automation and Control
Systems, Equipment
Specifications, Metocean
Features

Operation Type SVM Accuracy: 98% (port)
Accuracy: 94% (sailing)

[72] Shaft Power
Estimation

Automation and Control
Systems, Vessel –
Environment Interaction,
Climate Features

Shaft Power [kW] ANN MAPE: 7.8%

[73] Wear fault diagnosis
of Marine Diesel
Engines

Automation and Control
Systems, Maintenance and
Condition Monitoring

Wear Fault Mode BRB, ER, ANN Accuracy: 86.7% (BRB)
Accuracy: 83.3% (ER)
Accuracy: 93.3% (ANN)

[74] Fuel Consumption
Estimation

Automation and Control
Systems, Maintenance and
Condition Monitoring,
Navigational and Climate
Features

Fuel Consumption
[t/day]

RF, SVR MAE: 1.2 (RF) – 2.5 (SVR)
MAPE: 8% (RF) – 15% (SVR)
RMSE: 1.8 (RF) – 3.1 (SVR)
Fuel savings: 2%÷7%

[75] Fuel Consumption
Estimation

Automation and Control
Systems, Vessel –
Environment Interaction,
Navigational Data, Climate
Features

Fuel Consumption
[t/day]

ANN, SVR, PR R2: 0.98 - MSE: 0.19 (ANN)
R2: 0.49 - MSE: 1.85 (SVR)
R2: 0.36 - MSE: 0.65 (PR)

[76] Fuel Consumption
and CO2 Emissions
Reduction

Sailing/Engine speed,
Position and Fuel
Consumption (Endogenous)
– Wind speed/direction and
Water depth/speed
(Exogenous)

Fuel Consumption
[Kg] and CO2

Emissions [kg]

K-means
Clustering
PSO

Percentage Decrease: 3%

[77] Energy Efficiency Ship Characteristics and
Voyage Speed (Endogenous)
– Ice Concentration and
other Environmental factors
(Exogenous)

Energy Efficiency
Operational Indicator
(EEOI) [t/t·nm]

ANN Accuracy error less than 5%

[78] Fuel Consumption
Estimation

Ship states (Endogenous) and
Weather/Environment
conditions (Exogenous)

Fuel Consumption
[mt/day]

ANN, SVR, GP
Lasso Regressor

RMSD: 19.5 MAE: 15.0 (ANN)
RMSD: 18.7 - MAE: 13.5 (SVR)
RMSD: 27.5 - MAE: 23.4 (GP)
RMSD: 7.4 - MAE: 4.9 (Lasso)

[79] Fuel Consumption
Estimation

Ship’s Speed (Endogenous) –
Water Depth, Wind Speed,
Wave, Swell and Current
(Exogenous)

Fuel Consumption
[mt]

ANN-MR offline
ANN-MR JIT

Fuel saving: −0.43% (offline)
Fuel saving: 21.24% (JIT)

[80] Ship Speed and
Engine Power
Estimations

Weather Data (Exogenous) –
Ship Motion and Engine
States (Endogenous)

Ship Speed (SS) [kn]
Engine Power (EP)
[kW]

GP regressor +
Ship propulsion
domain
knowledge

RMSE: 0.33 (SS) – 386 (EP)
NRMSE: 2.23% (SS) – 2.26% (EP)
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regression model which considered the current state of the vessel and the forecasted
exogenous conditions. The combination of semi-empirical methods and dynamic op-
timization was effective in increasing ship efficiency by about 2% and reducing CO2

emissions by up to 28% in the documented case studies. However, while the paper pro-
poses route optimization with a constraint for total sailing time there is further work to
be completed in terms of balancing the EEOI when the vessel is constrained by port,
transport, or fleet management demands.

Wang et al. [68] employed a real-time ship control system to optimize vessel speed to
the reduction of the energy demands. The authors proposed the use of Wavelet ANN
to forecast the operating condition of a vessel using real-time sensor data. This model
was used to obtain predictions for the water depth (Vessel – Environment interaction)
and wind speed (Exogenous data) over a short sample time with six environmental
parameters as input. The ship resistance and energy efficiency were then inferred using
semi-empirical models common in literature. The authors applied this framework to a
case study where the optimization framework used the forecasted resistance model to
investigate a range of engine speeds (from 175 to 630 r/min) and selected the speed
corresponding to the lowest fuel consumption. By this method, the authors proposed
the fuel consumption per unit distance can be reduced by up to 19.04% in the best
case. The framework presents a viable method for energy saving. However, the authors’
development of the wavelet neural network was not extended to forecasts in advance of
one-time step in the future. Additionally, the authors do not quantify the accuracy of
their savings by additional validation methods.

Le et al. [69] apply a multi-layer perceptron framework for the prediction of vessel
fuel consumption. An energy-saving framework is proposed through the prediction
of fuel consumption from limited Vessel – Environment interaction data parameters
including the average speed, sailing time, maximum capacity, and cargo weight. The
authors suggest that this model can drive a slow steaming controller following a robust
features engineering phase using the dropout procedure. The methodology is partially
consistent with the literature as the authors do employ ten-fold cross-validation for the
grid search model selection phase of their experiment. However, they only present the
results for one split of their data with no confidence interval. The authors compare the
results of the framework when applied to a containership with the fuel consumption
prediction for varying semi-empirical and data-driven models with both limited and
extensive features. As expected, by using an ANN and tuning the hyperparameters with
a state-of-the-art approach, the accuracy of the data-driven approach supersedes the
performance of the semi-empirical models by ∼ 10% for the container vessels. The
authors suggest in their conclusion that the data-driven approach is limited since it does
not incorporate a priori information from the designers. Instead, they advocate that GP
may be favored in the future.

Soner et al. [70] applied a tree-based method to predict the operational perfor-
mance of a vessel using a dataset describing the operating conditions of a vessel. The
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data included Vessel – Environment Interaction features and features for the Exogenous
conditions, the authors used these parameters to predict the fuel consumption. The au-
thors first applied a feature ranking method to determine the variables with the highest
potential for information extraction. The authors compared the results from Bagging
(Bag), RF, and Boostrap (Boo) and were relatively comparable for the fuel consumption
prediction. In particular, a Root Mean Square Error (RMSE) equal to 45.2 [L/h] for
the Bag, 43.5 [L/h] for the RF, and 41.3 [L/h] for the Boo were reported. However,
only one splitting of the data is presented in the paper. The authors proposed tree-
based methods to develop an energy-saving framework over the use of alternative ML
approaches such as the popular ANN. However, alternative algorithms in the literature
performed close to those presented in this paper, and without the interval of confidence,
it is difficult to make a valid comparison. Additionally, no features engineering has been
performed in this paper, as is often present with a tree-based approach to improve the
accuracy of regressors.

Pagoropoulos et al. [71] highlighted the importance and benefits of predictive analyt-
ics in driving energy efficiency on board, by identifying the presence of energy efficient
operations. The authors focused on the electricity production from Diesel-generator
sets on a group of tanker vessels by analyzing a set of endogenous and exogenous data,
originating from equipment specifications about the main consumers on-board, and
noon reports. The latter include a limited subset of measurements from automation and
control systems, and metocean features, for over a period of two months. Based on this
information, they utilized Penalized Linear Discriminant Analysis (LDA) and a SVM to
solve a multi-class classification problem. Specifically, the aim was to separate between
cases in which the vessel was sailing according to proper procedures, and cases in which
equipment was operated inefficiently. The feasibility of the approach was demonstrated
during port and sailing conditions, with an average accuracy of 98% and 94%, respec-
tively. Although the authors did not perform systematic comparisons and a proper error
estimation and model selection procedure, they underlined the potential benefits of in-
tegrating more measurements, and expanding to data streams from auto logging systems
would have a very positive effect on the obtained results.

Parkes et al. [72] utilized shallow and deep feed forward ANN to estimate propulsive
power demand at different environmental conditions, as a basis for more sophisticated
prescriptive analytics solutions. For instance, improving weather routing and establishing
power margin for new shipbuilding projects. In particular, 27 months of performance
monitoring data from 3 vessels sampled every 5 min were utilized. Few endogenous and
exogenous variables were available for the analysis, and these included GPS speed and
speed through water, wave height, wind speed and direction, draft, trim, and heading.
The authors considered multiple ANN architectures, focusing primarily on the number
of layers and neurons in each layer, for a total of 16 architectures. Through the proper
error estimation and model selection procedures, the actual propulsive power could be
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predicted with a Mean Absolute Percentage Error (MAPE) of 10% on average for all
architectures, with the best ANN architecture resulting in a MAPE of 8%. The authors
concluded that the quality of the predictions is satisfactory, underlying that the extent
to which the ANN captures the underlying physics of ship performance is still an open
issue.

Xu et al. [73] demonstrated the application of predictive analytics for wear fault
diagnosis of marine Diesel engines. The authors developed a multi-model fusion system,
considering the predictions of an Evidential Reasoning (ER) model, a Belief Rule-
Based (BRB) inference model, and an ANN, as pieces of evidence to be fused in a
decision level, for the classification of 8 wear-and-tear faults. The diagnostic framework
also included a novel methodology to determine the reliability of the predictions of each
model, and the use of a genetic algorithm to assign relative importance weights to the
predictions of each model. Utilizing a total of 150 samples acquired from the control and
condition monitoring systems of marine diesel engines in operation, and through proper
error estimation procedures, the authors showed that the accuracy of their diagnostic
framework could correctly classify faults with an accuracy ranging between 93–100%,
an increase of approximately 8%, compared to the smallest accuracy given by the single
models.

Yan et al. [74] demonstrated the advantages of adopting prescriptive analytics in the
shipping industry. They proposed a two-stage sailing speed optimization framework for
a dry bulk vessel, with the aim of minimizing the vessel’s fuel consumption during a
voyage subject to the required arrival time at the port of destination. Decision Tree
(DT), ANN, RF, SVM, and Lasso Regressors were developed and validated to estimate
the vessel’s fuel consumption, considering sailing speed, total cargo weight, and climate
features, utilizing information available in the noon reports for a time span of 2 years.
Although the authors have not reported detailed results regarding model selection and
error estimation, they obtained a Mean Absolute Percentage Error (MAPE) of 7.91%
in fuel consumption estimation. Subsequently, they formulated a mixed-integer linear
programming optimization problem that uses the predictions of the RF, to derive the
optimal vessel speed throughout the voyage. They compared the obtained solutions with
real historical data on two 8-day voyages and concluded that fuel savings of 2%÷7% can
be achieved. Furthermore, it was argued that developing more sophisticated optimiza-
tion models would help to yield more practical management strategies. The authors
further underlined the importance of accurately estimating the environmental condi-
tions as they heavily influence the quality of the obtained solutions, and highlighted the
importance of obtaining additional endogenous and exogenous features to develop and
benchmark their RF regression algorithm.

Jeon et al. [75] developed an ANN for the prediction of the fuel consumption of a
marine Diesel engine, which they also compared with other ML models, including SVR
and Polynomial Regression (PR). The authors utilized a limited set of both endogenous
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and exogenous data for the fuel consumption estimation, including information from
the navigational and cargo monitoring systems, climate features, and engine speed and
power output. However, they do not provide all details regarding the data collection
process. A systematic variation on the number of layers and the number of neurons in
each layer was performed, ranging between 0–2 and 1–7 respectively, with three ac-
tivation functions. The performance of all architectures was benchmarked on a single
subset of data, without detailing the error estimation and model selection procedures.
It was concluded that through proper calibration of the parameters of an ANN, highly
accurate results can be obtained, that surpass the performance of the SVR or PR, al-
though the variance of the results was high. More specifically, the best performing ANN
architecture is characterized by an MSE of 0.19 and an R2 of 0.98, whereas for SVR
and PR the results were not satisfactory, and possibly a more thorough model selection
could have helped achieve better results.

Yan et al. [76] apply data analytics techniques to reduce vessel transportation’s CO2

emissions that correspond to approximately 2.7% of the global releases. Inland ships are
included in this survey and the authors focus on proposing an optimization workflow,
based on big data analysis, to minimize this issue. They use a K-means clustering al-
gorithm to classify each segment of the ship’s route based on exogenous factors. Then
a ship energy efficiency model considering both exogenous and endogenous factors is
set up. Finally, a swarm intelligence algorithm based on iterative processes, the Particle
Swarm Optimization algorithm (PSO), is adopted to solve the non-linear optimization
problem concerning the optimal engine speeds under different environmental condi-
tions. The authors test their approach on the Yangtze river case study and they achieve
a reduction in fuel consumption and CO2 emissions over an entire trip equal to 3%
and 2.38% during the dry and rain seasons, respectively. The presented optimization
method can be extended to include others or even more influencing factors, such as
ship parameters, route characteristics, port operation, and transport demand.

Zhang et al. [77] focused on transportation in Arctic waters which is becoming very
attractive nowadays thanks to shorter and faster sea routes connecting main continents.
Nonetheless, the fragility and sensitivity of the Arctic environment require a feasibility
analysis and ship energy efficiency improvements. For this reason, the authors propose
a methodology based on three steps. Firstly, they perform a Pearson correlation analysis
to find the energy efficiency’s most influencing factors. Then, they feed a prediction
model based on an ANN with previously detected variables to find the best ship speed
optimization strategy. The prediction model achieves a 0.98 Fitting Rate on the test set
that corresponds to an accuracy error less than 5%. Finally, the improved Ant Colony
Algorithm (ACA) is adopted to solve the optimum energy efficiency route planning
problem. The authors test this approach on Yong Sheng ship’s collected data, and the
results point out the importance of considering also the energy efficiency during ship’s
route planning instead of the distance uniquely. Further improvements can be achieved
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enriching network’s inputs with a greater number of parameters. Moreover, this analy-
sis would benefit from a validation on other case study and, finally, since the concrete
danger of navigating in Arctic waters, a risk analysis needs to be included in this opti-
mization methodology.

Wang et al. [78] focused on the maritime fuel consumption and optimization. Their
aim was to develop a novel predictive model able to estimate the fuel consumption
of a specific ship as a function of the ship’s state and surrounding environments. They
clearly pointed out the several numbers of feature variables affecting the fuel consump-
tion characterized by colinearities which make a traditional multiple linear regression
method unable to correctly predict the fuel consumption. To deal with this problem, the
authors employ the Lasso Regression algorithm to implement the variable selection of
feature variables and to build an accurate ship fuel consumption prediction model. The
authors show that the latter methodology can successfully select 20 features out of more
than 30. Moreover, to demonstrate the performance of the proposed predictive model,
they compare it with typical regression methods, such as ANN, Support Vector Regres-
sion (SVR), and GP. They decide to measure the performances of the latter models in
terms of MAE and Root Mean Square Deviation (RMSD). The proposed Lasso-based
model outperforms the other three models on the same test set with a RMSD of 7.4
[mt/day] and a MAE of 4.9 [mt/day]. Thus, it is able to fit accurately the real values
most of situations. To further improve the model’s performance a greater data collection
of different voyages or ships is needed.

Farag and Ölçer [79] developed a combined ANN and Multi-Regression (MR)
model able to predict ship fuel consumption under different sea environment conditions
in a real-time varying scenario. The authors select the Brake Power feature variable as
the target of their ANN model, after performing a correlation analysis on the available
dataset. They demonstrate how the proposed combined prediction model outperforms
a single ANN-based model. Moreover, they employ the validated performance model
to assess the potential savings of real-time, or rather Just-In-Time (JIT), measures and
they successfully achieve a 24.24% of heavy fuel oil and 328.5 ton of CO2 emissions
savings. Further improvements of the actual model can be accomplished expanding the
available dataset and considering other modeling approaches.

Yoo and Kim [80] analyze the powering performance of full-scale ships under
varying environmental and operating conditions to face the increased concerns about
environmental pollution and global warming. Since classical ML algorithms are often
susceptible to statistical overfitting in dealing with such data sources with many influ-
encing factors, they propose to incorporate domain knowledge of ship propulsion into
the design of two regression models able to predict the optimal Ship Speed (SS) and
Engine Power (EP). They choose to employ GP regression model thank to its effective-
ness in describing complicated nonlinear models. After identifying domain influencing
factors through graphical models’ exploitation, the authors employ the regularization
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scheme to integrate such domain knowledge. For the training dataset, the GP model
without regularization outperforms the GP with regularization in terms of RMSE and
Normalized Root-Mean-Square Error (NRMSE). For the test dataset, on the contrary,
the GP model with regularization achieves the best results. This confirms that the reg-
ularization technique prevents overfitting and leads to better regression performance.
The authors estimate that the travel time and total fuel consumption can be predicted
over any path segment and that the proposed method can be directly applied to optimal
weather routing.

7.4. Case studies

In the following, the authors provide an in-depth analysis of three relevant case studies:
1. Data-driven condition monitoring of a marine dual fuel engine;
2. Data-driven digital twin to estimate the marine fouling status;
3. Trim optimization to reduce fuel consumption.

7.4.1 Data-driven condition monitoring of a marine dual fuel engine
Maritime transportation accounts for around 80% of the world freight movements,
remarkably contributing to the global environmental footprint. Dual fuel engines, run-
ning on both gaseous and liquid fuels, represent a viable way toward the reduction of
emissions at the cost of additional complexity in monitoring activities. While various
traditional approaches to monitoring exist, data-driven methods represent the frontier
in research and in maritime industrial applications. Data-driven monitoring methods
usually require a large amount of labeled data, i.e., sensor measurements plus the associ-
ated engine status usually annotated by human operators, which are costly and seldomly
available in the wild. Unlabeled samples, instead, are commonly, cheaply, and read-
ily available. The enabling technology for data-driven methods is the availability of a
network of sensors and an automation system able to capture and store the associated
stream of data. In [81], authors design and propose multiple alternatives toward the
weakly supervised marine dual fuel engines data-driven monitoring. To this aim, the
authors developed a Digital Twin of the dual fuel engine and novelty detection algo-
rithms. Results on data generated from a real-data validated simulator of a marine dual
fuel engine demonstrated that the proposed weakly supervised monitoring approaches
lead to a negligible loss in accuracy compared to costly and often unfeasible fully su-
pervised ones supporting the validity of the proposal for its application in the wild. The
main outcome of the paper was to guide researches and practitioners for the selection
of the best data-driven dual fuel engine monitoring method according to the available
data about the vessel.
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7.4.1.1 The approach

The approach employed in [81] includes the following three steps:
1. Fully Supervised Performance estimation;
2. Fully Supervised Health Status Estimation;
3. Weakly Supervised Health Status Estimation.
The Fully Supervised Performance Estimation step includes the design of a Digi-
tal Twin, exploiting state-of-the-art supervised data-driven methods for enabling the
prediction of the engine performance and emissions parameters based on the control
variables (e.g. engine load and engine speed), in healthy engine conditions. This step
actually does not employ labeled data; instead it employs the acquired data from engine
operation under healthy conditions. The Fully Supervised Health Status Estimation step
focuses on developing models capable of classifying the status of the engines as healthy
or faulty, and it is accomplished by employing two approaches. The first one employs
the Digital Twin developed in the first step to estimate the deviation (drift) of the pa-
rameters of the actual engine operation (based on the acquired data) from the respective
Digital Twin predicted parameters. The second one exploits state-of-the-art supervised
data-driven methods to classify the status of the investigated engine based on the control
and performance parameters. This step requires labeled data of the engine under healthy
and faulty conditions. The Weakly Supervised Health Status Estimation step focuses on
reducing the amount of labeled data required to build the models developed in the sec-
ond step by employing two approaches. The first one focuses on the estimation of the
engine performance parameters variation from the respective parameters calculated by
employing the Digital Twin by employing a limited amount of labeled data for tuning
the drift detection model. The second one, instead, exploits state-of-the-art unsuper-
vised data-driven methods to detect abnormal conditions (anomalies) of the investigated
engine by employing as input the considered control and performance parameters. The
weakly supervised health status estimation step employs the models trained just with
data acquired under the engine healthy conditions from the engine monitoring system.
These models are subsequently fine tuned with a very small amount of labeled data.
Fig. 7.4 depicts the authors proposal with a simple graphical representation.

7.4.1.2 Data description

Since datasets corresponding to the investigated marine DF engine under faulty con-
ditions were not available to the authors (for the reason described in the original
manuscript) this study employed a high fidelity physical model developed and vali-
dated in previous authors’ studies [82] to generate the data. For this purpose, multiple
simulation runs, corresponding to different scenarios, were performed collecting engine
control and performance parameters to generate this dataset.

Two of these datasets correspond to the engine operation at healthy conditions in
both the diesel mode (DBDM

Healthy) and the gas mode (DBGM
Healthy). These datasets were
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Figure 7.4 Case Study 1 – The approach.

referred as the “healthy status” datasets. Moreover, a third dataset (DBDM
Faulty) is created

that contains the control and the performance variables corresponding to the degraded
conditions (described in the original manuscript) and the engine diesel mode. This
dataset was referred as the “faulty status” dataset.

The control (input – C) and performance (output – P) variables collected from the
physical model and included in the datasets are listed in Table 7.4.

7.4.1.3 Results

In this section, we summarize the results of [81] in applying the approach summarized
in Section 7.4.1.1 over the data summarized in Section 7.4.1.2.

For what concerns the Fully Supervised Performance estimation scenario, Table 7.5
reports the best error (measured with the MAPE) over three different models (RF, KM,
and ANN) for both diesel and gas modes. As reported in Table 7.5, the MAPE of the
best performing model (KM) is always less than 4% (and in most case less than 2%) for
all the performance variables, in the considered modalities.

For what concerns the Fully Supervised Health Status Estimation scenario, three
different models (RF, KM and ANN) have been applied again to distinguish between
two possible engine’s statuses: +1 for faulty condition and -1 for healthy condition. Ta-
ble 7.6a reports the misclassification errors of the best of the tree model for the two
different approaches under analysis (Direct and Digital Twin). As one can observe from
Table 7.6, the Direct approach outperforms the Digital Twin one in terms of misclassi-
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Table 7.4 Case Study 1 – The data.
Type Name Unit
C1 Ambient Temperature [K]
C2 Air Cooler Temperature [K]
C3 Gas Valve Unit Gas Pressure [bar]
C4 Heating Value of Diesel [MJ/kg]
C5 Heating Value of Gas [MJ/kg]
C6 Engine Load [kW]
C7 Engine Speed [rpm]
P1 Fuel Rack Position (Diesel Mode)
P2 Main Gas Pressure [bar]
P3 Max Cylinder Pressure [bar]
P4 Charged Air Pressure (Inlet section) [bar]
P5 Exhaust Gas Temperature Turbocharger – inlet [K]
P6 Turbocharger Speed [rpm]
P7 Waste Gate Opening [mm2]
P8 Nitrogen Oxide [g/kWh]
P9 Carbon dioxide [g/kWh]
P10 BSFC [g/kWh]

Table 7.5 Case Study 1 – Fully Supervised Per-
formance estimation – Error, measured with the
MAPE, of the best model (among RF, KM, and
ANN) in predicting the performance variables for
both diesel and gas mode.
Engine P Diesel mode Gas mode
P1 0.31±0.02 0.00±0.00
P2 0.91±0.05 2.67±0.15
P3 0.22±0.01 3.56±0.21
P4 0.49±0.03 2.97±0.17
P5 1.37±0.07 4.20±0.30
P6 1.17±0.06 2.38±0.13
P7 – 3.06±0.18
P8 1.77±0.12 1.46±0.08
P9 0.55±0.03 1.13±0.07
P10 1.71±0.10 1.39±0.08

fication errors for all the exploited models. In order to better represent the quality of
the developed model, Tables 7.6b and 7.6c report the confusion matrices for the best
models and for both the adopted approaches. By observing these confusion matrices it
is possible to note that the misclassification errors are well distributed and models do
not tend to predict more false positive than false negative. Also in this case the quality of
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Table 7.6 Case Study 1 – Fully Supervised Health Status Estimation - Error (percentage of misclassifi-
cation error) and confusion matrices (positive are faulty and negative are healthy) of the best model
(among RF, KM, and ANN) with a Direct Approach or with a Digital Twin in predicting the health status
conditions of the engine in diesel mode.

(a) Misclassification error %

Engine Diesel mode

Approach Direct Digital twin

1.7±0.1 4.3±0.2

(b) Confusion matrix with KM
for diesel mode using a Direct
Approach.

Pr
ed

ic
tio

n

Actual

TP
98.2±0.1

FP
1.8±0.1

FN
1.6±0.1

TN
98.4±0.1

(c) Confusion matrix with KM
for diesel mode using a Digital
Twin.

Pr
ed

ic
tio

n

Actual

TP
96.2±0.2

FP
3.8±0.2

FN
4.8±0.3

TN
95.2±0.3

the developed models is surely up to a level which is acceptable for their use in the wild
with misclassification below the 5% (and in most case less than 3%). It is worth noting
that switching from the Fully Supervised Performance estimation scenario to the Fully
Supervised Health Status Estimation scenario does not compromise the ability to make
accurate predictions.

For what concerns the Weakly Supervised Health Status Estimation scenario Ta-
ble 7.7a reports the misclassification error percentages and the related confusion matrices
of the best model. Diesel engine mode data and the Direct and Digital Twin approaches
are exploited in this context, in accordance with previous scenario’s experiments. In
this case, the experimental setup is slightly different, by drastically reducing the need for
labeled data. For the Direct approach, One Class Support Vector Machines (OCSVM)
and the Global KNN (GKNN) models are taken into consideration and compared
against the ones based on the Digital Twin (built with RF, KM, and ANN). In this
setting, the validation set size (which is the only actual labeled one) is a parameter to
be considered as another degree of freedom (which must be kept as small as possible
to be able to apply this methodology in the wild). Observing Table 7.7a, the Di-
rect approach outperforms again the Digital Twin-based one. For the Direct approach,
OCSVM model outperforms the GKNN one. Meanwhile, for the Digital Twin-based
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Table 7.7 Case Study 1 – Weakly Supervised Health Status Estimation - Error (percentage of misclassi-
fication error) and confusion matrices (positive are faulty and negative are healthy) of the best model
with a Direct Approach (among OCSVM and GKNN) or with a Digital Twin (among RF, KM, and ANN) in
predicting the health status conditions of the engine in diesel mode.

(a) Misclassification error %

Engine DM

Approach Direct Digital twin

nv = 10 2.3±0.1 4.9±0.3
nv = 20 2.2±0.1 4.7±0.2
nv = 40 2.1±0.1 4.4±0.2

(b) Confusion matrix with
OCSVM for diesel mode using a
Direct Approach (nv = 10).

Pr
ed

ic
tio

n

Actual

TP
97.6±0.1

FP
2.4±0.1

FN
2.2±0.1

TN
97.8±0.1

(c) Confusion matrix with KM
for diesel mode using a Digital
Twin (nv = 10).

Pr
ed

ic
tio

n

Actual

TP
95.5±0.2

FP
4.5±0.2

FN
5.3±0.3

TN
94.7±0.3

approach, KM model confirms to outperform both RF and NN models. Increasing the

validation set size (the amount of labeled data) increases also the performance. For the

Direct approach the improvement is not so relevant, while for Digital Twin approach is

more relevant. This confirms the higher ability of the Direct approach to deliver high

performance with limited number of labeled samples. Tables 7.7b and 7.7c report the

confusion matrices of the best models under analysis for a validation set size equal to

10. Also in this case, observing these confusion matrices it is possible to note that the

misclassification errors are well distributed and models do not tend to predict more

false positive than false negative. Also in this case the quality of the developed models is

surely up to a level which is acceptable for their use in the wild with misclassification

below the 5% (and in most case less than 3%). Note then that, switching to this last

scenario does not compromise the ability to make accurate predictions (the decrease in

performance is less than 1%).
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7.4.1.4 Conclusions

In this paper, authors of [81] focus on data-driven monitoring models to be employed
in the wild. Unfortunately data-driven methods often require a large amount of labeled
samples which are rarely available. For this reason, authors design and propose multiple
alternatives toward the weakly supervised marine dual fuel engines data-driven moni-
toring. Results on data generated from a real-data validated simulator of a marine dual
fuel engine demonstrate that the proposed weakly supervised monitoring approaches
lead to a negligible loss in accuracy compared with costly and often unfeasible fully
supervised ones supporting the validity of the proposal for its application in the wild.
In particular, in the Fully Supervised Performance estimation scenario, the error of the
data-driven model is always less than 4% (and in most cases less than 2%) for all the per-
formance variables in the considered modalities. This result is surely up to a level which
is acceptable for the utilization of data-driven models for dual fuel engine performance
estimation. Considering the Fully Supervised Health Status scenario, the error of the
fault detection models is always below the 5%, and in most cases less than 2% which is
again suitable for real operational environment, but unfortunately it requires a number
of labeled samples which is not realistic to obtain in the wild. Finally, in the Weakly
Supervised Health Status Estimation scenario, we fill this gap by remarkably decreasing
the amount of labeled samples necessary to train the model whilst obtaining an error
below the 5% (and in most cases less than 3%) and not compromising the ability to
make accurate predictions (the decrease in performance is less than 1%) for the use of
this model in real operational conditions.

7.4.2 Data-driven digital twin to estimate the marine fouling status
Shipping is responsible for approximately the 90% of world trade leading to significant
impacts on the environment. As a consequence, a crucial issue for the maritime in-
dustry is to develop technologies able to increase the ship efficiency, by reducing fuel
consumption and unnecessary maintenance operations. For example, the marine fouling
phenomenon has a deep impact, since to prevent or reduce its growth which affects the
ship consumption, costly drydockings for cleaning the hull and the propeller are needed
and must be scheduled based on a speed loss estimation. In [83] a data driven Digital
Twin of the ship is built, leveraging on the large amount of information collected from
the on-board sensors, and is used for estimating the speed loss due to marine fouling.
A thorough comparison between the proposed method and ISO 19030, which is the
de-facto standard for dealing with this task, is carried out on real-world data coming
from two Handymax chemical/product tankers. Results clearly show the effectiveness
of the proposal and its better speedloss prediction accuracy with respect to the ISO
19030, thus allowing reducing the fuel consumption due to fouling.
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Table 7.8 Case Study 2 – Main features of V1 and V2 case studies.
Ship feature V1 V2

Value Unit Value Unit
Deadweight 46764 [t] 46067 [t]
Design speed 15 [knots] 15.5 [knots]
Draft (summer SW) 12.18 [m] 12.2 [m]
Length between perpendicular 176.75 [m] 176.83 [m]
Breadth moulded 32.18 [m] 32.20 [m]
Main engines installed power 3840×2 [kW] 8200 [kW]
Auxiliary engines installed power 682×2 [kW] 1176×3 [kW]
Shaft generator power 3200 [kW]
Exhaust boilers steam generator 750×2 [kg/h] 1130 [kg/h]
Auxiliary boilers steam generator 14000×2 [kg/h] 14000×2 [kg/h]
Fuel consumption 34.7 [mt/day] 31.8 [mt/day]

7.4.2.1 The approach

Inspired by the ISO 19030 [84] and supported by the evidence that data-driven models
can be much more accurate and effective than the physical ones, in this work the authors
proposed a data-driven model for predicting the vessel’s speed, able to act as a “Digital
Twin” [85] of the ship herself. The Digital Twin can be used to compute the deviation
between the predicted performance and the actual one, namely the speed loss [86]. The
authors showed that the average drift in time of the speed loss can be exploited to accu-
rately and effectively estimate the effects of the marine fouling on the ship performance,
and thus program a more efficient hull and propeller cleaning scheduling. To this aim,
authors of [83] propose a two-phase approach:
1. a Digital Twin based on a data-driven model, is built using a deep neural networks

and the data described in Section 7.4.2.2. The model exploits data collected during a
suitable period of time when the marine fouling is not present and for a period long
enough to observe the ship in different operational and environmental conditions
(e.g., one can start the data collection just after the launch of the ship or its hull and
propeller cleaning and stop after one or two months of operations);

2. the data-driven model is applied on a second set of data and the speed loss is com-
puted. Subsequently, the drift in the average behavior of the speed loss between two
maintenance operations is studied, together with changes in its distribution using
robust regression and statistical nonparametric test.

7.4.2.2 Data description

This section presents the two Handymax chemical/product tankers exploited (see Ta-
ble 7.8 for the main features of the vessels) and the available data.
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Table 7.9 Case Study 2 – Data collected from logging system of the two vessels.
Variable name Unit Variable name Unit
Timestamp [t] Sea depth [m]
Latitude [°] Seawater temperature [°C]
Longitude [°] CPP set point [°]
Main engines fuel consumption [kg/h] CPP feedback [°]
Auxiliary engines power output [kg/h] Fuel density [kg/m3]
Shaft generator power [kg/h] Fuel temperature [°C]
Propeller shaft power [kW] Ambient pressure [bar]
Propeller speed [rpm] Humidity [%]
Ship draft (fore) [m] Dew point temperature [°C]
Ship draft (aft) [m] Shaft torque [kN m]
Draft port [m] Rudder angle [°]
Draft starboard [m] Acceleration x direction [m/s2]
Relative wind speed [m/s] Acceleration y direction [m/s2]
Relative wind direction [°] Acceleration z direction [m/s2]
GPS heading [°] Roll [°]
Speed over ground [knots] Pitch [°]
Speed through water [knots] Yaw [°]

The two vessels are equipped with the same data logging system which is used by the
company for both on board monitoring and land-based performance control. Table 7.9
summarizes the available measurements from the continuous monitoring system. The
original frequency of data acquisition by the monitoring system is equal to 1 point every
15 seconds.

The available data of the two vessels have been collected in the time slots for V1,
between the 21/03/2012 17:45:00 and the 03/10/2014 14:15:00, and for V2 between
01/05/2014 00:15:00 and 26/08/2016 14:15:00.

At last, Table 7.10 reports the recorded relevant maintenance events of the two
vessels.

7.4.2.3 Results

As results will show the data-driven model proposed by the authors of [83] allows the
identification of clear drift in the performance of the vessel compared to the ISO 19030
procedure.

In Fig. 7.5 the histograms of the percentage speed losses computed with ISO 19030
of the percentage speed losses for V1 and V2 are reported. The variance of the distribu-
tion of the percentage speed losses is larger for the data driven model with respect to the
one of the ISO 19030. This is caused by the fact that the ISO 19030 filters out a large
amount of data points, only keeping those for which the application of the method
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Table 7.10 Case Study 2 – Maintenance events for V1 and V2.
Date Event

V1
21/03/2012 Vessel delivery
29/10/2012 Propeller cleaning
30/03/2013 Hull cleaning
01/08/2013 Loss of the LOG speed measurement
17/07/2014 Change from fixed-speed to variable-speed operations

V2
19/04/2014 Propeller polishing
20/12/2014 Hull cleaning
28/08/2015 Hull cleaning and Propeller polishing
28/11/2015 Dry-docking

Figure 7.5 Case Study 2 – Histograms of data-driven model and ISO 19030 Estimated Percentage
Speed Loss.

is more reliable. On the other hand, the data-driven model exploits all the available
data points corresponding to a larger variety of operational conditions. Moreover, the
average of the distribution of the speed loss is not always centered on a positive value,
due to the fact that the data used for training the data-driven model and the parameters
used for the ISO 19030 do not correspond to a perfect clean state, as it would be re-
quired for creating a perfect digital twin (as shown later, this problem does not affect the
quality of the final results). Finally, the results obtained by the two models are, at least
qualitatively, in an overall good agreement. In order to better quantify the agreement
between the data-driven model and the ISO 19030 models, Fig. 7.6 reports the scatter-
plot of the data-driven model and the ISO 19030 estimated percentage speed loss for
V1 and V2. From Fig. 7.6 it is possible to observe that the speed loss predicted by the
data-driven model and the ISO 19030 methods are positively correlated (particularly
for V2), thus demonstrating that the prediction achievable by the proposed data-driven
model is consistent with the state-of-the-art.
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Figure 7.6 Case Study 2 – Scatterplot of the data-driven model and the ISO 19030 Estimated Speed
Loss Percentages.

Figure 7.7 Case Study 2 – Robust Regression Analysis on the Speed Loss Percentages between two
consecutive Hull and Propeller Cleaning Events for V1.

Then authors of [83] report the analysis of the drift in data-driven model and ISO
19030 estimated percentage speed loss between two consecutive hull and propeller
cleaning events, carried out with the robust regression analysis. Figs. 7.7 and 7.8 re-
port the results for V1 and V2 respectively. Those results clearly show the higher level
of reliability of the prediction achieved by the data-driven model method against the
ISO 19030 one. In both vessels, the linear trend for the speed loss calculated by the
ISO 19030 method shows large variations between different maintenance intervals. In
addition, in some intervals between two consecutive hull and propeller cleaning opera-
tions, the trend in the estimated percentage speed loss using the ISO 19030 method is
negative. These results do not agree with the physical basis of the fouling phenomenon,
and suggest that, in the case presented in this paper, the application of the ISO can lead
to inaccurate results. On the contrary, as far as data-driven model is concerned, Figs. 7.7
and 7.8 clearly show trends that are always physically plausible. Model drift behavior be-
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Figure 7.8 Case Study 2 – Robust Regression Analysis on the Speed Loss Percentages between two
consecutive Hull and Propeller Cleaning Events for V2.

Figure 7.9 Case Study 2 – Changes in time of the distribution of the percentage of speed loss esti-
mated with the ISO 19030 and the Data-Driven Model for V1.

tween different cleaning intervals is now consistent with the one characterizing a ship
that operates in conditions, on average, similar over time.

Finally authors of [83] report the analysis of the changes in time of data-driven
model and ISO 19030 estimated percentage speed loss distributions, carried out with
the nonparametric statistical test of Kolmogorov–Smirnov. Figs. 7.9 and 7.10 report the
results for V1 and V2 respectively. Those figures testify the higher level of reliability of
the data-driven model method against the ISO 19030 one. In both vessels there are no
statistically meaningful changes in the distribution of the speed losses estimated with the
ISO 19030, and just in a few cases the Kolmogorov–Smirnov test detects a change in
correspondence to an actual hull and propeller cleaning event (see Table 7.10). On the
contrary, when the same method is applied to the speed losses estimated with the data-
driven model, the Kolmogorov–Smirnov test detects all the changes in correspondence
or close to an actual hull and propeller cleaning event.
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Figure 7.10 Case Study 2 – Changes in time of the distribution of the percentage of speed loss esti-
mated with the ISO 19030 and the Data-Driven Model for V2.

7.4.2.4 Conclusions

In this work authors of [83] focus on the problem of estimating the speed loss caused
by the effect of fouling on the ship hull and propeller. For this purpose, a novel data-
driven method in combination with advanced statistical methods is proposed. Results
on real-world data coming from two Handymax chemical/product tankers show the ef-
fectiveness of the proposal and its better prediction accuracy and reliability, with respect
to the ISO 19030 de facto standard. The proposal shown to be both more accurate
in predicting of the loss of performance over time, between cleaning intervals, and in
automatically detecting maintenance events.

7.4.3 Trim optimization to reduce fuel consumption
The authors of [87] investigated the problems of predicting the fuel consumption and
of providing the optimal value for the trim of a vessel in real operations based on data
measured by the onboard automation systems. To this aim, the authors developed and
compared three different approaches for the prediction of the fuel consumption: White,
Black and Gray Box Models. White Box Models (WBM) are based on the knowledge
of the physical underlying processes. Black Box Models (BBMs) build upon statistical
inference procedures based on the historical data collection. Finally, the authors pro-
pose two different Gray Box Model (GBM) which are able to exploit both mechanistic
knowledge of the underlying physical principles and available measurements. Based on
these predictive models of the fuel consumption a new strategy for the optimization of
the trim of a vessel has been developed and proposed. Results on real world operational
data show that the BBM is able to remarkably improve a state-of-the-art WBM, while
the GBM is able to encapsulate the a-priory knowledge of the WBM into the BBM so
to achieve the same performance of the latter but requiring less historical data. Further-
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more, the authors proved that the GBM can be used as an effective tool for optimizing
the trim of a vessel in real operational conditions.

7.4.3.1 The approach

Trim optimization has been extensively discussed in the past. It is well known, from
hydrodynamics principles, that the trim of the vessel can significantly influence its fuel
consumption. Previous work in scientific literature related to trim optimization has
focused on three main alternative strategies: WBMs and BBMs. WBMs describe the be-
havior of the ship resistance, propeller characteristics and engine performances based on
governing physical laws and taking into account their mutual interactions. The higher
the detail in the modeling of the physical equations which describe the different phe-
nomena, the higher the expected accuracy of the results and the computational time
required for the simulation. WBMs are generally rather tolerant to extrapolation and do
not require extensive amount of operational measurements; on the other hand, when
employing models that are computationally fast enough to be used for online optimiza-
tion, the expected accuracy in the prediction of operational variables is relatively low.
In addition, the construction of the model is a process that requires competence in
the field, and availability of technical details which are often not easy to get access to.
Differently from WBMs, BBMs make use of statistical inference procedures based on
historical data collection. These methods do not require any a-priory knowledge of the
physical system and allow exploiting even measurements whose role might be important
for the calculation of the predicted variables but might not be captured by simple phys-
ical models. On the other hand, the model resulting from a black-box approach is not
supported by any physical interpretation, and a significant amount of data (both in terms
of number of different measured variables and of length of the time series) are required
for building reliable models. GBMs have been proposed as a way to combine the ad-
vantage of WBMs and BBMs. According to the GBMs principles, an existing WBM is
improved using data-driven techniques, either in order to calculate uncertain parameters
or by adding a black-box component to the model output. GBMs allow exploiting both
the mechanistic knowledge of the underlying physical principles and available measure-
ments. The proposed models are more accurate than WBMs with similar computational
time requirements, and require a smaller amount of historical data when compared to a
pure BBMs. The aim of [87] was to propose the application of a GBMs to the prediction
of ship fuel consumption which can be used as a tool for online trim optimization. In
this framework the authors exploit data-driven methods (kernel methods and ensemble
techniques) to improve an effective but simplified physical model [88] of the propulsion
plant.

7.4.3.2 Data description

The data exploited in this work are the ones of Case 7.4.2 described in Section 7.4.2.2.
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Table 7.11 Case Study 3 – Indexes of performance of the WBM in predicting the
Shaft Power and Fuel Consumption.

Shaft Power
MAE [KW] MAPE [%] MSE [KW2] NMSE REP [%] PPMCC
7.69e+02 17.85 1.00e+06 1.13 23.59 0.65

Fuel Consumption

MAE
[

g
KWh

]
MAPE [%] MSE

[
g2

KW2h2

]
NMSE REP [%] PPMCC

5.14e-02 20.95 3.94e-03 1.98 25.40 0.63

Table 7.12 Case Study 3 – Indexes of performance of the best BBM in predicting
the Shaft Power and Fuel Consumption.

Shaft Power
MAE [KW] MAPE [%] MSE [KW2] NMSE REP [%] PPMCC
7.67e+01 1.90 2.47e+04 0.03 3.18 0.99

Fuel Consumption

MAE
[

g
KWh

]
MAPE [%] MSE

[
g2

KW2h2

]
NMSE REP [%] PPMCC

4.62e-03 1.95 1.10e-04 0.06 3.56 0.96

7.4.3.3 Results

In this section we summarize the results of [87].
First we report the performance of the WBM in Table 7.11. Results show that the

WBM does not show sufficient accuracy when compared with operational measure-
ments. The inability of the model to take into account the influence of the sea state
(i.e., wind and waves) on the required propulsion power is considered to be the largest
source of error for this model.

Then we report the results of the best BBM (among the one tested in [87]) in
Table 7.12. Note that the BBM remarkably outperform the WBM since they are able to
take into account all the available information measured by the on board sensors. Among
the different BBMs, the one based on ensemble methods shows the most promising
results.

Then we report the results of the best GBM (among the one tested in [87]) in
Table 7.13. Note that the GBMs outperform the both BBMs and GBM since they are
able to take into account both the physical knowledge about the system and all the
available information measured by the on board sensors. Among the different GBMs,
the one based on kernel methods seems to be the best performing ones.

Observing the results on feature ranking in [87] it is also possible to note how
the BBMs and GBMs actually learn meaningful information from the data which is
physically plausible diminishing the doubts about the presence of spurious correlations.
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Table 7.13 Case Study 3 – Indexes of performance of the best GBM in predicting
the Shaft Power and Fuel Consumption.

Shaft Power
MAE [KW] MAPE [%] MSE [KW2] NMSE REP [%] PPMCC
3.18e+01 0.79 1.06e+04 0.01 1.35 0.99

Fuel Consumption

MAE
[

g
KWh

]
MAPE [%] MSE

[
g2

KW2h2

]
NMSE REP [%] PPMCC

1.97e-03 0.83 4.71e-05 0.02 1.55 0.97

Table 7.14 Case Study 3 – Fuel Con-
sumption percentage reduction with
the trim Optimization technique.
δ % reduction
0% 0.52 ± 0.12
1% 1.45 ± 0.32
2% 1.72 ± 0.51
5% 2.22 ± 0.67
10% 2.30 ± 0.64

Finally, Table 7.14 reports the Fuel Consumption percentage reduction with the
trim Optimization technique proposed in [87]. Then result is reported varying the trim
(δ) namely how much (in %) we are willing to deviate from the trim selected by the
operators. As expected, the optimization procedure always leads to a reduction in fuel
consumption. The improvement that can be achieved via trim optimization increases
when δ is increased, although this tendency seems to stabilize for δ > 5%. According
to the results of this model, improvements exceeding 2% in fuel consumption can be
achieved by applying the model for trim optimization to the selected vessel. It should
be noted that trim optimization can be performed at near to zero cost on board, since
it does not require the installation of any additional equipment.

7.4.3.4 Conclusions

Authors of [87] have shown how data driven models (BBMs) can outperform state-
of-the-art numerical models (WBMs) which exploits the physical knowledge of the
system in the task of predicting the fuel consumption of a naval propulsion plant. Based
on these models new approaches for modeling the system have been developed, namely
the GBMs, which are able to exploit the advantages of two philosophies: GBMs are
able to obtain the same performances of the BBMs but requiring less historical data
thanks to the knowledge embedded in the WBMs. The proposed methodologies have
been tested on real world historical data collected from a real vessel during two years
of on board sensors data acquisitions, and the physical plausibility of the models has
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been checked through a feature ranking process. Feature ranking allowed improving the
understanding of BBMs and GBMs as for these model physical principles are only partly
accounted for. Thanks to the high accuracy and physical plausibility of the developed
models, the authors have been able to propose a trim optimization technique which
exploits the predictive power of the proposed models for the online selection of the best
configuration of the trim for reducing the fuel consumption. Results have shown to be
very promising and they should be further verified by implementing the proposal on
the onboard system of a vessel.

7.5. Future of data science and advanced analytics

According to Academia [89–92] and Industry [93–96] there are many Data Science and
Advanced Analytics technologies that should be better studied and engineered because
of their potential benefits for the shipping energy systems domain.

In the last years Data Science and Advanced Analytics are experiencing a fast pro-
cess of commodification [97–102]. This characterization is on the interest of big IT
companies, but it correctly reflects the current industrialization of Data Science and
Advanced Analytics also in the field of shipping energy systems. This phenomenon
means that these systems and products are reaching the society at large and, there-
fore, the trustworthiness related to the use of these tools cannot be ignored any longer.
Designing technologies from this human-centered perspective means incorporating
human-relevant requirements such as safety, fairness, privacy, and interpretability, but
also considering broad societal issues such as ethics and legislation. These are essential
aspects to foster the acceptance of Data Science and Advanced Analytics technologies
in a human oriented environment and the shipping one, as well as to be able to comply
with an evolving legislation concerning the impact of digital technologies on ethically
and privacy sensitive matters. These technologies were not originally conceived with
an eye on ethical issues but they were simply trying to emulate certain aspects of bi-
ological intelligence. It might also be argued that one of the aspects of the outcome
of human biological intelligence is precisely unethical behavior. It is true, though, that
ethics do only come into play in social interaction, where different human intelligence
communicate and interact with each other. Right now, we find ourselves at a crossroad
in the development intelligent entities that are beginning to become tightly interwoven
to the shipping environment, in the form, for example, of intelligent assistants for main-
tenance. Unsurprisingly, their societal impact is coming to the fore of public discussion.
For this purpose, these technologies are now requested to satisfy some additional re-
quirements such as Privacy, Fairness, Safety, Security, Reliability, Interpretability, and
Explainability. The problem of learning from data while preserving the privacy of indi-
vidual observations has a long history and spans over multiple disciplines. One way to
preserve privacy is to corrupt the learning procedure with noise without destroying the
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information that we want to extract. Another way is to exploit the data in a federated
way, leaving the data in the hand of the data generator (on the edge) centralizing only
an aggregated information. Safety, Security, and Reliability are the property of Data
Science and Advanced Analytics to be able to provide robust answers and suggestions.
Recent deep learning algorithms (e.g., computer vision) have even surpassed human
performances on some well-defined benchmark datasets. It has thus been extremely
surprising to discover that such algorithms can be easily fooled by adversarial examples,
that are, imperceptible, adversarial perturbations that mislead these systems into perceiv-
ing things that are not there. This undermined the safety and security properties of such
algorithms and a large number of stakeholders have shown interest in understanding the
risks associated to their misuses, to develop proper mitigation strategies and incorporate
them in their product. Finally, we have to highlight that one of the legal bottlenecks
hampering the application of Data Science and Advanced Analytics to real problems in
the social domain is the “right to explanation” granted to citizens. Such requirement is
in direct course of collision with the limitations of many Data Science and Advanced
Analytics technologies in terms of interpretability and explainability. These issues have
late come to the forefront of researchers, mostly due to the widespread development
and application of Deep Learning methods in systems with societal impact. As they
amplify shallow neural networks, it comes as no surprise that Deep Learning may be-
come an extreme case of black box model, further reducing their interpretability and
explainability.

Another problem of Data Science and Advanced Analytics technologies, which
limits their adoption, is the difficulty of choosing the right tool for a specific prob-
lem [54,103–109]. The series of no-free-lunch theorems [110–114] ensure that there
is not, and there will never be, a single tool able to efficiently solve all tasks and for
this reason it is required to develop meta-tools able to select the right one for the spe-
cific case under exam. For example, in ML there is the need to automatically select
the best learning algorithm or the best hyperparameter for a specific algorithm. In op-
timization we need to select the best language for describing the problem, or the best
solver, or the best optimization strategy, or the best parameters of the optimizer. For
this reason researchers are starting to combine different tools for building the so called
meta-algorithms. In ML optimization strategies of algorithms are exploited not for solv-
ing the specific problem under exam but for selection of the best tool: for example, it
is constructed an optimized or a predictive model to guide the selection of a particular
tool that should be better suited for the specific problem under exam. In optimization
ML models are exploited to determine the best solver to exploit, the best optimization
strategy, the best description language, of to guide the optimizer toward better local
minima. The final focus of all these researches is to involve the human in the loop
for solving a specific task as less as possible so to make the tools accessible in as many
contexts as possible with minimal knowledge and intervention.
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As also shown in Section 7.3, while Descriptive, Diagnostic, and Predictive ana-
lytics are nowadays quite exploited both in research and in practice, less examples of
Prescriptive Analytics can be found. In fact Prescriptive Analytics is the effort to fully
automatize the process of taking decisions and actions starting from the data about the
problem with no human intervention making specific processes (e.g., maintenance or
fuel optimization) autonomous [26,27,115–118]. On the one side, this process is limited
by the specific domain of the shipping energy system, which requires (because of the
legislation or because of the contracts) that the final decision should be undertaken by
a human operator which takes responsibility for that choice (and this is why Visual An-
alytics is so important). However, on the other side, there is a technological limitation:
Prescriptive Analytics requires the knowledge of multiple aspects of artificial intelligence
and the presence of multiple data sources which are not always available. For example,
to model constraints and preferences of the operators, we need to exploit data in the
form of ontology describing the context (and in the shipping energy systems there is
still a large gap in this sense) and we need to exploit data and information which is not
structured (we need to use optical recognition or audio recognition tool to extract the
information from the human operator reports and we need to process it with natural
language processing tools) to achieve practical results. This process requires a big effort
in research to adapt and improve the current tools to the ship energy systems context
but also a big investment from the companies in developing internally the skills required
to adopt these tools. While for simpler analytics this process started already many years
ago, for more advanced analytics this process is still in its early stages and more effort is
required to fill the current gaps.
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