
 
 

Delft University of Technology

Advisory-Based Time Slot Management System to Mitigate Waiting Time at Container
Terminal Gates

Nadi, Ali; Nugteren, Alex ; Snelder, Maaike; Lint, J. W.C.Van; Rezaei, Jafar

DOI
10.1177/03611981221090940
Publication date
2022
Document Version
Final published version
Published in
Transportation Research Record

Citation (APA)
Nadi, A., Nugteren, A., Snelder, M., Lint, J. W. C. V., & Rezaei, J. (2022). Advisory-Based Time Slot
Management System to Mitigate Waiting Time at Container Terminal Gates. Transportation Research
Record, 2676(10), 656-669. https://doi.org/10.1177/03611981221090940

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1177/03611981221090940
https://doi.org/10.1177/03611981221090940


Research Article

Transportation Research Record
2022, Vol. 2676(10) 656–669
� National Academy of Sciences:
Transportation Research Board 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/03611981221090940
journals.sagepub.com/home/trr

Advisory-Based Time Slot Management
System to Mitigate Waiting Time at
Container Terminal Gates

Ali Nadi1 , Alex Nugteren1, Maaike Snelder1, J.W.C. Van Lint1 ,
and Jafar Rezaei2

Abstract
This paper introduces an advisory-based time slot management system (TSMS) to control truck arrivals at seaport terminals
with the aim to reduce congestion at terminal gates. A modeling framework is proposed, developed, and applied to assess
the impact of a truck arrival shift for a case study in the Port of Rotterdam. This system is designed to apply control policies
on truck inflow while taking the behavioral aspect of truck operating companies (TOCs) into account. Discrete choice model-
ing is used to infer the time-of-day preferences of TOCs for container pick-ups from the exchange of information between
port and hinterland stakeholders. These preferences are used to shift truck arrivals to the off-peak period which conse-
quently reduces the high waiting time of trucks at terminals gates. To evaluate the effectiveness of the designed TSMS, a simu-
lation platform that resembles terminal operations has been developed using discrete-event simulation. For the allocation of
trucks to a certain time of day, a choice-based stochastic assignment heuristic is designed to approximate the optimum con-
figuration of the truck arrival shift policy experiment. The optimum truck arrival shift design shows that significant gain can
be obtained even at a low shift rate.

Keywords
freight systems, model/modeling, truck, trucking industry research, carrier, marine, logistics, optimization, port, seaports,
simulation, terminals

High waiting time for trucks at the terminal gates of sea-
ports is an issue that is increasingly receiving more atten-
tion. Long queues of idling trucks at terminal gates
waiting to pick up or deliver a container lead to conges-
tion further upstream, and induce emissions, costs, and
delays (1–4). Container terminals in the Port of
Rotterdam area—the largest European port—are no
exception to these issues, as the waiting time for trucks
at the terminal gates has been rapidly increasing over the
past 6 years. Therefore, effective traffic management pol-
icies at terminal gates are becoming a challenge for most
large container ports.

The problem of congestion and high waiting time—
and therefore non-optimal turnaround time for trucks at
the terminal—is often because of a lack of port-
hinterland alignment (3). Establishing such alignment
goes beyond port boundaries, concerns various stake-
holders, and is highly related to the connectivity between
port and hinterland (5–8).

In general, the port-hinterland connection can be
viewed from two perspectives, the first of which is physi-
cal connectivity. From this perspective, the connection of
the port to the hinterland can be improved through the
expansion of physical infrastructure. Since extending
physical capacity takes considerable time, this physical
connectivity perspective predominantly captures long-
term strategies. The second perspective is digital connec-
tivity where multiple stakeholders can communicate and
exchange information for better cooperation and coordi-
nation. Digital connectivity facilitates short-term as well
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as medium-term policies to control the demand (and sup-
ply) patterns. Various studies find that there is potential
for digital-connectivity-based solutions to control traffic
demand patterns (1, 9–11). This form of connectivity is
often cheap and fast to implement. Despite its advan-
tages, there are also some barriers against digital connec-
tivity. For example, the exchange of data and
information has always been sensitive because of privacy
issues and fear of potential competitive advantages for
other stakeholders. Recently, large ports around the
world are developing safe and reliable data-sharing, that
is, port community system (PCS) platforms to ease com-
munication and facilitate digital connectivity. Even in
the case of available safe data-sharing platforms like
PCS, the port community has not, in many cases, utilized
these data properly because of the cumbersome process
needed to transform big raw data into valuable informa-
tion. These difficulties have led to relatively limited
research toward digital connectivity as compared with
physical connectivity. This research contributes to the lit-
erature of enhancing digital connectivity by using shared
data in PCSs and exploring short-term solutions to solve
day-to-day truck traffic issues at the terminals. One
potential policy to reduce congestion at terminal gates is
to balance the arrival time of the demand inflow with the
available terminal processing capacity. There are roughly
two means of controlling demand inflow in which digital
information plays a role. The first one is to provide real-
time traffic information to facilitate more self-organized
(user) optimal scheduling behavior of truck drivers and
companies (1). The challenge is, however, that the situa-
tions at terminals’ gates may change rapidly because of
the volatility of the demand. Therefore, providing real-
time information may, in some cases, be counter-effec-
tive, even leading to trust deterioration in the system.
The second approach is an incentive-based or charging-
based scheme to spread demand across the day by pro-
viding monetary incentives to nudge scheduling behavior
toward more (system) optimal decisions. Although
charging-based policies like time-varying tolls can be, in
many cases, effective for traffic mitigation, they may raise
social objections (10). Incentive-based approaches also
require sufficient funding sources for successful applica-
tion. Finally, the third and most stringent approach
toward more optimal scheduling is time slot management
system (TSMSs) (9–11). A TSMS typically uses a reserva-
tion system to allocate trucks to different time slots
across the day based on the terminal’s capacity.

The design and effects of TSMSs have been studied
before; however, several relevant design intricacies justify
a deeper analysis (12). Most importantly, the TSMSs in
research or practice are mostly designed and implemen-
ted taking terminal conditions—for example, capacity,
operations, and costs—into account. However, there are

two sides of the system, that is, the port and the hinter-
land, that have to be considered while designing a
TSMS. On the port side, the application of a TSMS
allows terminal operators to improve their operational
efficiency at terminal gates and consequently reduce
truck waiting time (11, 13–16). On the hinterland side,
the operations of truck operating companies (TOC) are
largely affected by the application of the TSMS as they
might have to shift their arrival time. Previous studies
predominantly ignore the hinterland side, that is, neglect-
ing the roadside or users’ perspective while designing
TSMSs. However, the authors believe that TOC can also
benefit from TSMSs. This requires considering both port
and hinterland sides in the design of the TSMS. To the
best of the authors’ knowledge, previous studies of
TSMSs have not dealt with the two sides of the system.
This paper addressed this knowledge gap by introducing
a new advisory-based TSMS that takes the port and hin-
terland sides into account.

The novelty and scientific contribution of this research
are as follows:

1) This system uses shared data coming from PCS
and historical traffic data to infer arrival time pre-
ferences of TOCs and produce a set of recommen-
dations on their pick-up times.

2) The introduction of a novel modeling framework.
The framework includes parametric modeling of
the truck handling process at terminal gates, beha-
vioral modeling of TOC preferences of container
pick-up times, and a stochastic assignment heuris-
tic to assess different configurations of the TSMS
toward an optimum setup. This modeling frame-
work assures accurate communication between
two sides of the system—port and hinterland—
and gives a comprehensive assessment of the
potential gains for the application of the TSMS.

This paper is structured as follows. First, the literature
for TSMSs is reviewed. Next, a new TSMS is proposed
and the methods used to evaluate this system are
explained. Finally, the paper is concluded by discussing
the findings.

Literature

A suitable and well-known measure to initiate gate traffic
reduction is the implementation of a truck appointment
system, in which trucks are appointed to specific time
slots to load and unload their cargo. There is good evi-
dence for the effectiveness of truck appointment systems
to reduce congestion at seaport terminals (13, 17–19).

In most research, two components are used to design
and test truck appointment systems before real-world
application. The first component is a simulation
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platform that can mimic the real world accurately
enough to capture the dynamics of terminal operations
in response to TSMS interventions. Models based on
queuing theory are popular discrete event simulation
(DES) tools for this purpose (12). Queueing theory
makes sure that the physics of the simulated system is
interpretable. The second component is an optimization
framework to compute the best match between truck
arrival patterns and service availability according to a
particular objective function. Early research in this direc-
tion focused mostly on the gate operation, the environ-
ment, energy, and labor costs to design this objective
function (20). Later research formulates an optimization
approach to minimize the trucker’s cost associated with
the waiting time as well as gate operation costs (18). To
this end, they apply a multi-server queueing model to
simulate marine terminal gate congestion and identify
truck waiting costs. They show that the optimized
appointment system can drastically reduce truck waiting
costs.

The queueing process has been extensively discussed
(17–19). Most researchers adopt non-stationary queueing
models to estimate queue lengths and waiting time in
TSMS design (9, 11, 13, 18). Non-stationary queueing
models provide more accurate results but at the cost of
more complex approximation methods for queue lengths
and waiting times estimation.

In most previous research, optimization is used to
determine the appointment quota or time slot duration

as decision variables (9, 19, 21). In almost all cases, the

terminal operations and conditions are the center of

attention for modeling. Earlier studies assumed that

trucks can follow the optimum design of the appointment

system at no cost. Such truck appointment systems usu-

ally force truckers to choose another time slot even

though this shift in their arrival may have a domino effect

on their operation schedules in the hinterland. All these

models consider the cost that truckers would have if they

had to wait in a queue, but not the cost that they would

have if they had to shift their arrival time because of the

lack of available spots in their preferred time slot. Some

researchers identified the importance of considering

trucking operations while designing a TSMS (16, 22, 23).

In Phan and Kim, the system was designed based on the

negotiation between trucking companies and terminal

operators (16). In their system, they provided a dynamic

iterative truck appointment process in which trucking

companies can dynamically adjust their tour planning

according to the information coming from port opera-

tors. Their findings show a significant improvement in

truck operation costs while minimizing waiting costs at

terminal gates. In Schulte et al., also, a collaboration

between terminals and carriers is proposed to show how

providing information about the state of the time slots

can help trucking companies to collaboratively plan their

tours to spread their arrivals evenly and thereby experi-

ence lower waiting times at terminal gates (22). Similarly,

Torkjazi et al. also investigated the collaborative method

by considering the tour scheduling of carriers (23). In

their approach, the time slots imposed by the terminal

operation may affect the tour of the carrier in the hinter-

lands. Their method led to an 11.5% improvement in the

truck tour schedule.
Despite all the significant improvements, the above

methods do not consider truckers’ preferences in the
design of a truck appointment system from a behavioral
perspective. To the best of the authors’ knowledge, there
is only limited research that has considered TOCs’ prefer-
ences. One of them is Chen et al. who introduce a three-
step approach to coordinate vessel arrivals with truck
arrivals through a time windows assignment (15). They
begin with the prediction of truck arrivals based on his-
torical data of vessels’ arrival time windows. However,
all this research considers aggregated behavior of TOCs.
This is while there is heterogeneity in trucking operations
of multiple industries. For example, truck appointment
systems are based on first-reserve-first-serve and make
no distinction between truckers dealing with agricultural
merchandise, that has to be delivered to the stock of
retails in the morning, and textiles, which could be deliv-
ered in the afternoon.

To have a better grip on demand, traffic managers at
container ports require more disaggregate behavioral
insights to control the truck inflow. Methods like dis-
crete choice modeling (DCM) allows exploring trucker
behavior at a disaggregated level which is, to the authors’
knowledge, never used in a TSMS. This research fills this
gap by introducing a new TSMS that advises on the opti-
mum arrival time slot. This advice is based on an opti-
mum control policy derived from an analysis of a large
historical sample of truckers’ preferences. The next sec-
tion elaborates on this new method to integrate choice
modeling in a stochastic assignment heuristic for the
development of the truck arrival shift advisory system.

Methods

This section proposes a methodology for the design of
the advisory-based TSMS. This process commences when
truckers get orders from shippers for pick-up or deliver-
ing a container at a terminal. Truckers then send requests
for the desired time slot. The system then communicates
with terminal operators to check if the requested time
slots are congested. Then the system selects a portion of
trucks—those who are willing to arrive at peak hours
while their market preference is not aligned with their
requested time—and rejects their request. Afterward, the
system will give a set of alternative time slots as
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recommendations to the rejected carriers. The building
blocks of the proposed system are depicted in Figure 1.
In contrast to conventional truck appointment systems
which open a time slot only if the capacity is available
regardless of market preferences of carriers, the proposed
TSMS is more context-aware. The proposed system pre-
dicts the waiting time profile for different times of the
day based on historical traffic data collected from loop
detectors in the vicinity of the terminal’s gates. Then it
identifies the congested time slots where the truck inflow
exceeds the capacity of the terminal. In this case, the
decision-makers can decide to reject a predefined percent-
age of requests (a in Figure 1). This decision is not only
based on the availability of the capacity at the time of the
request but also on market preferences. It means that the
system prioritizes the pick-up time of a container based
on its market. The market preferences of truckers are
based on the result of a choice model estimated on the
truckers’ historical preferences of arrival times. If a
request is rejected, the system proposes the best alterna-
tive time slot which falls within the market preferences
that the target container belongs to, while still as close as
possible to the requested time slot. This recommendation
will be provided to the carriers along with an assortment

of uncongested time slot alternatives. The proposed sys-
tem works at the pre-trip level which lets TOCs reserve a
specific time slot before their operation. Since the model
can give advice based on the predicted waiting time at the
requested time slot, trucking companies can plan their
entire daily activities accordingly.

As can be seen in Figure 1, this framework requires
three models. The first model is a terminal model to
simulate the processes at the terminal gates and predict
the waiting time profile. The second is a choice model to
gain insight into the preferences of the TOC about the
container pick-up times. Finally, the third model is a
truck shifting heuristic that recommends an alternative
time slot to a portion of trucks based on an application
rate a. The next paragraphs explain the method used to
develop each component as well as the data used for a
case study in the port of Rotterdam.

Traffic and Logistic Data

The data that has been collected for the methodology is
twofold. The first data source is historic traffic data from
2017 collected from loop detectors located at the terminal
gates. This data captures the number of trucks that arrive
at the terminal per time of the day. The truck arrivals are
aggregated by the data provider and therefore are avail-
able every 1 h. The second data source is historic logistic
data from 2017, collected from the PCS in the port of
Rotterdam. The logistic data captures details of import
containers. This is revealed preference data of TOC for
container pick up. The data set contains information of
transaction data for the arrival of container vessels, con-
tainer discharges, and the estimated pick-up time of these
containers by hinterland transport trucks. Moreover, the
data set includes container characteristics and informa-
tion about the transported commodity. Additionally, the
waiting time at the terminals obtained from the terminal
model is included in the logistic data set.

Terminal Model

The terminal model is formulated as an M/M/s queueing
model which the notation instances for a multi-server
model with Poisson arrivals and exponential service
times. The terminal model includes three components,
that is, the truck generator, trucks, and a server.
Together, these three components make up three pro-
cesses in the terminal model. The three processes in the
model are the arrival process, the server process, and the
departure process. Figure 2 provides a graphical over-
view of the terminal model.

Equation 1 simply calculates the queue length per unit
of time which is the number of the truck arrivals minus
the trucks being served and the trucks that have
departed.

Figure 1. Components of the proposed time slot management
system (TSMS).
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N (t)= a(t)� s(t)� d(t) ð1Þ

It is assumed that both the inter-arrival time and the ser-
vice time are independent and identically distributed ran-
dom variables with an exponential distribution, and gates
serve trucks with an integer number of cranes, that is, ser-
vers. For the arrival process, a non-stationary arrival profile
is used, as the inter-arrival time between trucks is different
for each hour of the day (i.e., IATh in min). The historic
traffic data from loop detectors at terminal gates contains
the average number of trucks arriving for each hour of the
day (lh). Equation 2 presents the inter-arrival time:

IATh = exp
60

lh

� �
ð2Þ

The mathematical foundation for calculating waiting
time is based on Little’s law and is presented in
Equations 3 to 5.

L= lhW ð3Þ

Lq = lhWq ð4Þ

W =Wq +m ð5Þ

where
L = expected number of trucks in the queueing sys-

tem including trucks that are waiting in the queue and
trucks that are loading a container in the servers,

lh = mean arrival rate for each hour,
W = waiting time including service time (min),
m = mean service time (min) which is from an expo-

nential distribution,
Lq = expected queue length, and
Wq = waiting time in the queue (min).
To set up the queue model of a terminal, the mean

service time m and the number of servers (simultaneous
terminal capacity) have to be known. In this case study,
this information is missing. Therefore, these two para-
meters are estimated by iterative examination of different

settings for the queue simulation while minimizing the
mean squared differences between the simulated (Y) and
observed (Ŷ ) departure profiles (Equation 6). Bayesian
optimization is used, which is a simulation-based optimi-
zation algorithm that seeks the global minimum with a
few numbers of the simulation run.

MSE =
1

n

Xn

i= 1

(Yi � Ŷ i)
2 ð6Þ

Choice Model

The model used in this study is a multinomial logit
model. This model is defined to understand the choice of
a TOC to pick up a certain container at a certain time.
The probability of choosing a certain time P(t|T) is
computed from the attractiveness of the alternatives. The
attractiveness is measured by the utility maximization
theory. In this theory, the alternative with the highest
utility is always chosen (Equation 7),

P(tjT )= Pr (Ut ø Uj, 8j 2 T ) ð7Þ

However, it is impossible to capture all factors in the
choice model that influence the choice. The utility func-
tion Ut, therefore, consists of two parts (Equation 8),

Ut =Vt + et ð8Þ

where
Vt = the first is the deterministic part of the utility,

which includes the attributes that are found to influence
the choice of a certain alternative,

et = an error term contained in the second part of the
utility function. This error term represents the unob-
served behavior that influences the choice.

The deterministic part of the utility function can also
capture the unobserved behavior of the decision-maker
through an alternative specific constant (ASC).

Figure 2. Graphical representation of the terminal model.
Note: a(t) = the arrival of trucks at time t; d(t) = the departure of trucks at time t; N(t) = the queue length at time t; and S(t) = the service capacity at time t.
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The alternatives in the model are times of the day
which are aggregated into four periods. The periods are
formulated as night (from 00:00 to 04:00 and from 21:00
to 00:00), morning (from 04:00 to 10:00), midday (from
10:00 to 15:00), and afternoon (from 15:00 to 21:00).
These periods are based on observed arrival patterns and
time slot categories used in practice at the terminals.

Since the distribution of containers and commodities
differs between terminals, a separate choice model is
defined for each terminal; therefore a separate set of util-
ity functions is formulated. The observed behavior in the
utility for a certain alternative is captured by the inde-
pendent variables in the deterministic part of the utility
Vt. Note that V1 represents the night, V2 the morning, V3

the midday, and V4 the afternoon. The independent vari-
ables considered in the model are container type (xtype),
commodity type (ytype), and waiting time per alternative
(walt). The waiting time is simulated with the terminal
model. It is assumed that a TOC has some perception
about the waiting time at gates at different times of the
day that may influence its arrival time choice.

The ASCs for the night and morning alternatives are
formulated to capture the unobserved factors that
decrease the preference for these two alternatives
(ASCalt). The model specifications are presented in
Equations 9 to 24. The subscripts are defined in the
result section in Table 3.

Terminal A:

V A
1 =ASCNight +bRE : xRE +bSolMinFu : ySolMinFu ð9Þ

V A
2 =ASCMorning +bRE : xRE +bAgr : yAgr +bChem : yChem

ð10Þ

V A
3 =bWT ,Morning :wMorning +bTC : xTC +bCC : xCC ð11Þ

V A
4 =bWT ,Afternoon :wAfternoon +bWT ,midday :wMidday +bGP : xGP

ð12Þ

Terminal B:

V B
1 =ASCNight +bGP : xGP +bChem : yChem +bRawMin : yRawMin

ð13Þ

V B
2 =ASCMorning +bWT ,Morning :wMorning

+bCC : xCC +bAgri : yAgri +bSolMinFu : ySolMinFu

ð14Þ

V B
3 =bWT ,Midday :wMidday +bWT ,Afternoon :wAfternoon ð15Þ

V B
4 =bRE : xRE +bPetro : yPetro ð16Þ

Terminal C:

V C
1 =ASCNight +bGP : xGP +bCC : xCC +bTC : xTC ð17Þ

V C
2 =ASCMorning +bRE : xRE +bSolMinFu : ySolMinFu ð18Þ

V C
3 =bWT ,Morning :wMorning +bWT ,Midday :wMidday

+bTC : xTC +bFert : xFert +bRawMin : yRawMin

ð19Þ

V C
4 =bWT ,Afternoon :wAfternoon +bChem : yChem

+bOres : yOres +bPetro : yPetro

ð20Þ

Terminal D:

V D
1 =ASCNight +bCC : xCC +bChem : yChem ð21Þ

V D
2 =ASCMorning +bGP : xGP +bRawMin : yRawMin +bAgr : yAgr

ð22Þ

V D
3 =bSolMinFu : ySolMinFu +bPetro : yPetro ð23Þ

V D
4 =bWT ,Midday :wMidday +bCC : xCC

+bSolMinFu : ySolMinFu +bOres : yOres

ð24Þ

The parameters can be estimated using the maximum
log-likelihood estimation. The maximum likelihood is the
probability that the model correctly fits the observations
from data. In the maximum log-likelihood estimation,
the model aims to estimate the parameters such that the
model has the highest probability of fitting the observed
data. Equation 25 presents the maximum log-likelihood
function

maxL(b̂1, :::, b̂k)=
XN

n= 1

(
X
t2Tn

ytn lnPn(t 2 Tnjx, y,w),

ð25Þ

where L = the log-likelihood.
If a TOC chooses alternative t, ytn=1 and 0

otherwise. Pn(t|Tn) represents the probability that a
TOC n chooses alternative t from the choice set Tn

(Equation 26).

P(t 2 Tnjx, y,w)=
eVtnP

j2Tn

eVjn
, ð26Þ

To judge the performance and accuracy of the choice
model, the goodness of fit, t-values, and p-values are
used. The goodness of fit can be observed from the likeli-
hood ratio (Equation 27)

� 2(L(0)� L(b̂)) ð27Þ

The likelihood ratio compares a model where all para-
meters are set to zero L(0) with the model with the esti-
mated parameter L(b̂). The likelihood ratio statistic
indicates whether the estimated model is significantly bet-
ter than the model with equal probabilities. The t-value is
calculated by Equation 28
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tk =
b̂k

sk

ð28Þ

where
b̂ = the estimated parameter, and

s = the standard error of the parameter.
Then, the p-value can be computed by Equation 29.

pk = 2(1� F(tk)) ð29Þ

where V = the cumulative density function of the uni-
variate standard normal distribution.

The next section shows how the choice model is used
in the truck shifting heuristic.

Choice-Based Stochastic Assignment

The method explained here is the choice-based stochastic
assignment illustrated in Figure 1. It is assumed that the
trucks whose requests are rejected all accept the recom-
mended alternative from the system. This is because the
desired outcome is to estimate the maximum expected
total gain in the planning horizon after the implementa-
tion of the system. To this end, the truck shifting heuris-
tic has to compute new arrival profiles based on the truck
shifting strategies that result from the choice models.
This process is explained in four steps as follows:

1) Convert containers to trucks: First of all, a com-
parison between the logistic data and traffic data
is used to convert the number of containers to the
number of trucks. From the logistic data of
import containers, occurrence probability percen-
tages for container and commodity types are
obtained for each period. This makes it possible
to calculate an absolute number of trucks trans-
porting a specific container or commodity per
time interval.

2) Temporal distribution matrix: The temporal dis-
tribution of commodity or container type along a
day is presented in the form of a matrix NT3C

with rows representing choice alternatives
T= {1, 2, 3 ,t} and columns representing con-
tainer and commodity types C={1, 2, 3,.c}. see
Equation 30.

NT 3 C =

N11 . . . N1c

..

. . .
. ..

.

Nt1 � � � Ntc

0
B@

1
CA 8t 2 T , c 2 C ð30Þ

where Ntc = the number of trucks that requested to pick
up a certain container or commodity c at period t.

3) Find the recommended alternative: the desired
outcome is to find the best alternative time slot j
which has a minimum deviation from the
requested time slot i and also has the highest
attractiveness for the container or commodity type
c. The system finds this alternative time slot by
solving the optimization problem in Equation 31:

min
X
c2C

X
i2T

X
j2T

ji� jjNica(1� P(jjc,wj)x
c
ij ð31Þ

where
xc

ij = a binary decision variable equal to 1 if trucks
with container/commodity type c are shifted from their
requested time slot i to the alternative time slot j, and 0
otherwise,

P(j|c,wj) = the estimated choice probability of time
slot j given the commodity or container type c and wait-
ing time wj. (This probability comes from the choice
model [Equation 26]),

Nic = the number of trucks that have requested to
pick up container c at time slot i (Equation 30), and

a = the application rate that will be defined by pol-
icymakers (Figure 1) and is used as a knob to do policy
assessment analysis in this paper.

4) Arrival profile reconstruction: The solution of the
above optimization problem is used to calculate
the new arrival profile for each application rate.
The new arrival profile is then used as the input to
the terminal model to calculate the new waiting
time profile. This waiting time can be used to eval-
uate the gain from the application of the proposed
TSMS.

Waiting Time Gain Calculation

The waiting profile represents the average waiting time
for one truck in each hour. The waiting time gain can be
calculated by comparing the total waiting time after the
application of the proposed TSMS with the base case
profile. The total waiting time gain for the entire day
indicates the impact of TSMS under a certain application
rate.

Results

This section describes calibration and validation results
for the terminal model, the preferences of TOC based on
the choice model, and the expected waiting for time gains
and monetary gains when TSMS is applied to the term-
inals in the Port of Rotterdam.
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Terminal Model Calibration

To ensure that the terminal models are close to reality,
each terminal model has been calibrated by tuning the
arrival and service process parameters for each terminal
based on the historically observed arrival and departure
profile. Data for 12months in 2017 has been collected
and this data has been divided into two calibration and
validation datasets: the calibration dataset includes
11months to calculate the average working day profile,
since the statistical tests, for example, ANOVA and two-
sided t-test, showed that there are no significant monthly
or daily trends that must be accounted for in arrival or
departure profiles. The one drop-out month then is used
as a validation set to calculate the average arrival and
departure profile for validation of the model.

Arrival Process. The parameter lh in Equation 2 has been
calibrated for the arrival process based on the arrival
profile from historic traffic data. The tuned parameters
have been used in the terminal model to simulate the
arrival process as discussed above. A two-sided t-test
showed that there is a significant similarity between the
observed and simulated arrival profile.

Service Process. For the service process, the number of ser-
vers and the mean service time have been calibrated. The
historic departure profile is used to tune the parameters.
Similar to the arrival process, a two-sided t-test has been
applied to compare the observed and simulated departure
profiles. Moreover, polynomial regression has been used
to test the correlation between the observed and simu-
lated arrival profile. The results show that all the terminal
models can accurately predict truck departure flow with
p-values\ 0.05, and correlation coefficients. 0.93. The
calibrated parameter of each terminal model is presented
in Table 1.

Terminal Model Validation

The terminal model has been validated using a test set.
By splitting the historic traffic data set into two parts, the
train set and test set are created. The train set compre-
hends traffic data of 11months of the year. The test set
includes the data of the remaining month. The calibrated
model has been validated using the test data set (Figure
3). This test set allows for an unbiased evaluation of the
model. The statistical tests and polynomial regression
show that the model can predict the unseen departure
profiles with high accuracy (with a correlation coefficient
of .0.91).

Truck Operating Companies’ (TOCs)’s Preferences

The results from the arrival time choice model are
depicted in Table 2. As opposed to the container and
commodity type variables, the waiting time is a continu-
ous variable and its parameter can show the effect of one
minute waiting time extra on the utility. In general, the
impact of waiting time on the pick-up time choice of
TOCs is relatively small. However, the TOCs seem to
value morning waiting times more than midday and
afternoon waiting times. For terminals B and C, the
waiting time impacts in the midday and afternoon are
noticeable. One minute of waiting time in the midday
and afternoon is more important for these two terminals
as compared with terminals A and D. Note that the
morning waiting time parameter is positive. This means
that, if the waiting time in the morning increases, the pre-
ferences of TOCs for the morning period also increase.
This counterintuitive result could be because of some
latent attitude of TOCs, for example, arrival of large ves-
sels in the morning.

Concerning the contextual variables, that is, commod-
ity and container types, the sign and magnitude of the
parameters have been used to derive the preferences of
the transport markets toward an alternative time slot for
container pick-ups. These preferences are summarized in
Table 3. This indicates that truckers’ preferences of pick-
up time windows can be characterized by the commodity
and container type. For example, it can be seen that con-
tainers that contain agricultural products have prefer-
ences toward morning pick-up. Reefer containers are
more likely to be picked up in the night or morning.
TSMS uses these preferences to assign trucks to their
preferred time windows if their requested time slot is
rejected because of congestion.

Total Gains

This section defines various scenarios to evaluate the
effect of the proposed TSMS under various TOC appli-
cation rates. In scenarios 1 to 10, the application rate (a)
changes from 5% to 50%, with a step size of 5%. In sce-
narios 11 to 15, a changes from 60% to 100%, with a

Table 1. Overview of Estimated Parameter Values for the
Calibrated Models Based on 11 Months of Data

Terminal model Terminal capacity Mean service rate

A 20 19
B 18 19
C 18 11
D 14 10
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step size of 10%. The results are compared with a refer-
ence scenario in which an entirely equal spread of trucks
along the day is simulated. For each designed scenario,
the TSMS can generate new simulated arrival and depar-
ture profiles and the corresponding waiting time profiles.
Comparing the simulated waiting time profiles with the
base case provides insight into the effect of the TSMS on
the waiting time. This helps to realize both the gain and
drawbacks of TSMS. Note that when too many trucks
are shifted away from the peak, a new peak might occur
during other periods. This will cause waiting time in
other periods. The total waiting time gain provides

insight into how effectively the system works. The devel-
opment of waiting time gains under various application
rates (scenarios) is displayed in Figure 4. The x-axis on
the graphs shows the application rate a and the y-axis is
the waiting time gain in hour.

The solid lines represent the development of the wait-
ing time gains under various application rate scenarios.
The dotted lines represent the waiting time gain for the
reference scenario. Please note that in the reference case
the number of trucks arriving will always stay below the
terminal capacity and there will not be any waiting time.
Consequently, the waiting time gain in the reference

Figure 3. Average observed and simulated departure profiles.

Table 2. Results of the Pick-Up Time Choice Models

Parameters

Terminal A, LR = 13,326.87 Terminal B, LR = 26,640.73 Terminal C, LR = 46,274.5 Terminal D, LR = 118,682.2

Estimate t p Estimate t p Estimate t p Estimate t p

ASCNight 21.52 278.9 0 22.13 275 0 22.01 250.4 0 21.68 2244 0
ASCMorning 20.601 236.2 0 20.407 233.9 0 20.338 240.4 0 20.333 246.2 0
bGP 20.265 215.1 0 0.325 10.2 0 0.245 5.89 0 20.107 213.2 0
bRE 0.288 15.6 0 20.906 237.4 0 0.418 14.7 0 na na
bCC 0.187 6.01 0 20.096 24.67 0 0.196 3.31 0.00 20.0374 24.28 0
bTC 0.0855 2.83 0.00 na na 0 0.0801 3.24 0.00 na na
bArg 0.177 5.57 0 0.548 14.6 0 0.344 11.7 0 0.322 21.3 0
bChem 0.27 5.64 0 0.287 5.61 0 0.124 9.31 0 0.265 17.9 0
bSolMinFu 1.18 26.1 0 0.0967 2.29 0.02 0.297 16.8 0 20.088 27.66 0
bRawMin na na na 0.333 4.48 0 20.217 29.77 0 20.0569 23.91 0
bPetro na na na 0.175 4.2 0 0.134 7.26 0 0.0532 4.37 0
bOres na na na na na na 0.108 4.87 0 20.0378 22.78 0.00
bFert na na na na na na 20.0656 22.94 0.00 na na na
bWT,Morning 0.079 2.36 0.01 0.0688 2.25 0.02 20.173 22.93 0.00 na na na
bWT,Midday 20.00386 23.01 0.00 20.0222 213.7 0 20.0173 28.94 0 20.0139 28.17 0
bWT, Afternoon 20.00193 22.24 0.02 20.0177 215.5 0 0.00806 14.8 0 na na na

Note: LR = The likelihood ratio reported by the estimated models. na = not applicable.
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scenario is the largest gain possible. From Figure 4 it can
be observed that there is no linear relation between
application rates and waiting time gain. An increase of
5% for shifting trucks does not cause a 5% increase in
waiting time gain. For most terminals, an increase of the
waiting time gain can be observed from the first scenario
(5% shift) until the seventh scenario (35% shift).
Thereafter, for each terminal, the waiting time gain
decreases and eventually becomes negative for some
terminals. This insight indicates that there is an optimum
setting for time slot management to reduce waiting times.
Additionally, it is observed that the gain with small
application rates (5%–10%) is already very close to this
optimum (see Figure 5). The optimum waiting time gain
would be achieved with a shift of around 40% of truck
arrivals. It can be seen from Figure 5, in all terminals
except terminal D, that a 10% application rate would

lead to a significant reduction in waiting time. This
proves that TSMS can successfully mitigate congestion
at terminal gates by minimum changes in the pick-up
time of the containers.

Monetary Gain

Hourly waiting time gains are difficult to interpret for
the entire system as it is not immediately clear what 1 h
of waiting time gain means and for who this gain is bene-
ficial. For the interpretation of the results, the waiting
time gains in hours are converted to monetary values
(euro). In the year 2017, the reported cost for transport-
ing a container was approximated to 62 euros per hour
in the Netherlands. The waiting cost in container trans-
port was estimated at around 38 euros per hour. In
Table 4, the waiting time gain in hours is converted to a

Table 3. Preferences of Truck Operating Companies (TOCs) Based on the Container or Commodity Type

Terminals Market

Pick-up period preferences and disinclinations

Night
(00:00-04:00) (21:00-00:00)

Morning
(04:00-10:00)

Midday
(10:00-15:00)

Afternoon
(15:00-21:00)

A General-purpose container (GP) + + + -
Reefer container (RE) + + - -
Chemical container (Chem) - - + -
Tank container (TC) - - + -
Agricultural products (Agr) - + - -
Chemical products (Chem) - + - -
Solid mineral fuels (SolMinFu) + - - -

B General-purpose container (GP) + - - -
Reefer container (RE) + + + -
Chemical container (Chem) + - + +
Agricultural products (Agr) - + - -
Chemical products (Chem) + - - -
Solid mineral fuels (SolMinFu) - + - -
Raw minerals (RawMin) + - - -
Petroleum (Petro) - - - +

C General-purpose containers (GP) + - - -
Reefer containers (RE) - + - -
Chemical containers (Chem) + - - -
Tank containers (TC) + - + -
Agricultural products (Agr) - + - -
Chemical products (Chem) - - - +
Solid mineral fuels (SolMinFu) - + - -
Raw minerals (RawMin) + + - +
Petroleum (Petro) + - - +
Ores - - - +
Fertilizers (Fert) + + - +

D General-purpose container (GP) + - + +
Chemical container (Chem) - + + -
Agricultural products (Agr) - + - -
Chemical products (Chem) + - - -
Solid mineral fuels (SoMinFu) + + - -
Raw minerals (RawMin) + - + +
Petroleum (Petro) - - + -
Ores + + + -

Note: + = pick-up period preferences. - = Pick-up period disinclinations

Nadi et al 665



monetary gain in euro and a productivity gain in hours
for TOCs. The monetary gain indicates the cost saved by
the TOC because of less waiting time at the terminal.
The productivity gain in Table 4 represents the extra
hours that carriers can be on roads transporting contain-
ers if not waiting at the terminal gates. This is calculated
by dividing the total waiting time gain (terminal-wide)

by the cost of transporting a container on the road (62
euros per hour). This proves that implementation of the
TSMS allows for around 192 h of productivity gain per
day. In other words, the waiting time gain for TOCs
equals the transportation of around 192 containers for
1 h. This can add 10% efficiency to container road trans-
port. In Table 4, the terminal-wide total gain is reported.

Table 4. The Waiting Time Gain (Euros per Day) and Productivity Gain (Hours)

a
Trucks shifted

(terminal wide)

Gain at each terminal (euros) Total gain
(euros)

(terminal-wide)
Productivity
gain (hour) Gain/truck (euros)Terminal A Terminal B Terminal C Terminal D

5 114 1.061 1.582 3.176 2638 5.181 83 45
10 230 3.356 2.627 4.802 1.144 11.929 192 52
15 344 3.014 2.253 5.447 1.203 11.916 192 35
20 459 3.069 2.867 5.477 1.604 13.017 210 28
25 537 3.073 2.879 5.742 1.811 13.505 218 25
30 687 3.093 2.914 5.855 2.105 13.967 225 20
35 803 3.152 2.948 5.876 2.410 14.386 232 18
40 917 3.112 2.900 5.872 2.521 14.405 232 16
45 1,030 2.775 2.770 5.838 2.647 14.029 226 14
50 1,146 2.431 2.651 5.706 2.667 13.456 217 12

Figure 4. Total waiting time gains for the proposed time slot management system (TSMS).
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This is the amount of gain for all the trucks in the system
and can also be referred to as social gain. The ‘‘gain/
truck’’ is the average contribution of a shift made by one
single truck to the entire system. The numbers show that
a shifting percentage of 10% will provide the highest
value (52 euros) in relation to effort and reward.

Discussion

To assess the ability as well as the limitations of the pro-
posed TSMS at terminal gates, the findings are summar-
ized and discussed in this section. This research shows
that it is possible to utilize traffic and logistics data to
extract valuable knowledge about TOCs preferences and
use this knowledge to control traffic at terminal gates.
This approach considers two main actors from two sides
of the system; that is, terminals at port and TOC in the
hinterland. However, there are more stakeholders in the
system—such as public sectors, shippers, forwarders,
warehouses, and so forth—whose decisions may have a
significant impact on terminal (or hinterland) congestion
and whose costs arising from either terminal operations
or the proposed time-slot interventions are relevant in
assessing efficacy. This collective perspective could be

captured by applying a multi-stakeholder analysis and
could help to investigate other costs and benefits in the
system such as emission reduction gains associated with
congestion reduction at gates.

The proposed system maximizes the waiting time gain.
However, ideally the effort to shift (e.g., tour re-planning
costs) should also be considered. Therefore, the optimum
waiting time gain achieved by a 35%–45% shift percent-
age might not reflect the ideal situation for shifting
trucks. In this research, this impact was limited by fine-
tuning the application rate so that the minimum number
of shifts would lead to the maximum amount of gain.
Moreover, the costs of shifting to another time are
directly experienced by a TOC, whereas the benefits from
the control system will only indirectly reach them (if at
all). Policymakers can consider giving some extra incen-
tives by sharing information, giving priority, or reducing
the chance of being rejected in their next calls. Decision-
makers can also consider compensating truckers’ effort
by recycling a part of public monetary gains (e.g., emis-
sion gains) to the shifted trucks.

From the application perspective, the advisory-based
TSMS not only proved its ability to mitigate waiting
times at terminal gates but also proved to be a great

Figure 5. The waiting time reduction per terminal for a = 10%.
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policy assessment and decision support tool for decision-
makers. It helps them to turn data to value, get insights
about the behavior of truckers, and ease integrated traf-
fic and logistics management at logistic hubs.

Conclusions

In this paper, an advisory-based TSMS has been pre-
sented. The novelty of this research is that it proposes a
new modeling framework that can be used to design
more efficient TSMSs considering both the port and hin-
terland side in the design of a truck appointment system
which can be used to reduce truck waiting times at term-
inals. The method combines a queueing model to simu-
late the processes at terminals and integrates choice
modeling with optimization to control truck arrivals at
the terminals taking the preferences of truckers into
account. An application of the TSMS to the terminals in
the Port of Rotterdam showed that by rescheduling a
small portion of trucks, remarkable waiting time gains
and productivity gains can be achieved. The key findings
from this research are as follows:

� The proposed TSMS can save up to 1,2000 euros
per day by shifting only 10% of truck schedules.

� This system allows for 192 extra hours of produc-
tivity which can add to the benefits of trucking
companies and increase the efficiency of road con-
tainer transport by 10%.

� Truckers can be prioritized for each time-window
based on their market preferences. For example,
containers carrying agricultural products have a
preference for morning pick-ups, and reefer con-
tainers have preferences for night and morning
pick-ups.

With respect to future research, the authors recom-
mend including internal operations in the terminal model,
including vessel arrivals, in the TOC choice models, and
coupling the proposed model with a traffic model to
explore the impact of the TSMS on the traffic conditions
on the surrounding roads. Future studies can add to this
research using a joint-optimization of all actors’ costs.
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