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Abstract. In various medical and biological modalities, in particular,
electron microscopy (EM), visualization of large fields of view requires
acquisition of multiple overlapping frames with their subsequent recon-
struction into a single panoramic image. Such reconstruction process is
hampered by several factors, including different intensity scaling and
imperfect localization of the acquired frames, intensity inhomogeneity
within each frame, and large content variability between different frames.
This poses a significant challenge not only for visualization, but also for
further quantification of such panoramic images. In this work, we present
a simple yet efficient data-driven algorithm that improves reconstruction
of the large panoramic views using a minimal set of assumptions. More pre-
cisely, our approach fully relies on the information from the overlap regions
of the neighbouring frames. Such formulation results in a linear system
of equations that can be solved numerically, when supported by proper
constraints. We validated our approach on a large set of highly-diverse in-
house EM panoramic views and demonstrated improved performance with
respect to traditional metrics as well as network training capacity.

Keywords: Panoramic image - Electron microscopy - Intensity
inhomogeneity correction - Intensity standardization

1 Introduction

For many different medical and biological modalities, including light and elec-
tron microscopy (EM), pathology, and magnetic resonance imaging, the size of
a sample being visualized is limited by the physical size of the imaging device.
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Hence, larger fields of view are acquired in multiple stages, which requires subse-
quent reconstruction (stitching) of the acquired frames into a single picture. Such
panoramic views, being a collection of separately-acquired images, inevitably
suffer from intrinsic imperfections, including: different intensity scaling of the
acquired frames, intensity inhomogeneity (bias) within each frame, imperfect
localization of each separate frame, and large content variability between differ-
ent frames. All these factors hamper subsequent quantification of the panoramic
images.

Improved stitching of the EM data has recently received significant atten-
tion [1,7,10,12,14]. However, the vast majority of these methods concentrate on
compensation of misalignments and geometric distortions, and the size of the
reconstructed stitches in terms of the number of frames remains rather low. In
particular, Kaynig et al. [7] developed a method for correcting lens distortion
for transmission EM images based on estimating the correspondences between
SIFT landmarks. Bria et al. [1] present TeraStitcher, a tool specially developed
for stitching of teravoxel-sized microscopy images. Scheffer et al. [12] present a
multi-step approach for reconstructing EM stitches, with prior intensity norma-
lization to a mix of two Gaussian distributions. Zheng et al. [14] developed a
high-throughput EM platform for reconstructing the entire brain of the adult
Drosophila melanogaster. Recently, Mahalingam et al. [10] built on the aforemen-
tioned work to develop a modular ASAP (Assembly Stitching and Alignment
Pipeline) framework capable of reconstructing petabyte-sized data sets.

Two of the more recent approaches, MIST [2] and ASHLAR [11] are capable
of dealing with larger microscopy panoramic images, but these approaches also do
not perform intensity correction. In particular, the MIST algorithm of Chalfoun
et al. [2] estimates translation between the pairs of the overlapping frames based
on the phase correlation, with consequent estimation of the camera angle and
hardware-related parameters. Recently, in their ASHLAR software tool, Muhlich
et al. [11] extended this approach by using a spanning tree of the neighbourhood
graph for joint estimation of the frame translations between the overlapping
frames.

At the same time, reconstructed panoramic images presented in the publica-
tions and EM data analysis efforts, such as the MitoEM Challenge [6], exhibit
clear stitching artefacts at the transitions between the overlapping frames. Cor-
recting these artefacts will not only improve the visual appearance of these
stitches, but will also lead to a more objective quantification. To the best or
our knowledge, except for the learning-based solution developed specifically for
relatively small histopathological stitches [8], our earlier work [4] is the only
publication presenting a solution to this challenging problem.

In our recent publication [4], we presented a method capable of correcting
and standardizing intensity of EM stitches and analyzed learning capacity of the
corrected data. However, this solution turned out to be impractical when applied
to really large stitches composed of few thousand separate frames.

Here we present a simple and efficient data-driven approach for correcting
intrinsic intensity inhomogeneity within (large) panoramic images and analyze
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Table 1. Number of annotated frames and different EM structures of interest from
each selected data set

Number/Data set/2922Q1/2922Q4/29291.4/2929Q1|2929Q4
Frames 20 44 58 251 55
Mitochondria 222 598 1927 2764 |745
Cell nuclei 0 17 37 122 39
Ruffled border |8 19 29 46 13

its performance on large collection of EM stitches. Our approach results in a
system of linear equations that can be solved numerically. Since our method
relies on the joint estimation of the correction parameters based on the average
intensity in the overlap region, it does not require perfect alignment between
the neighbouring frames. Hence, our approach can be easily combined with any
of the reconstruction methods that improve alignment between the frames and
perform geometric corrections.

Improved performance enabled by our approach has been demonstrated using
both statistics in the overlap area as well as better convolutional neural network
training. Moreover, this approach can be directly extended to different types of
panoramic images, such as histopathology data or whole-body magnetic reso-
nance volumes.

2 Data

For validation of our method, we selected 56 data sets from our in-house data
repository acquired as part of the same project. All acquisitions were performed
on a digital camera (One View, Gatan Inc., Pleasanton, CA, USA) mounted on a
120 kV transmission electron microscope (Tecnai T12 with a twin objective lens;
Fei, Eindhoven, The Netherlands). The frames were acquired with 20% overlap,
using the previously described protocol [4,5]. The number of frames per data
set varied between 756 and 6236. For five representative data sets, three differ-
ent structures: mitochondria, cell nucleus and ruffled border, were annotated by
three experts in EM imaging, one data set by one expert, using custom in-house
annotation software. Typical images from each of the data sets and the corre-
sponding annotations are shown in Fig. 1. Total numbers of annotated frames
and object instances are provided in Table1l. Supplementary Fig.1 illustrates
two of the five stitches selected for annotation, together with the correspond-
ing regions of interest. Notably, the “2929L.4” stitch exhibits a strong intensity
gradient.

3 Methods

For each data set consisting of Np frames, we denote the raw image intensity of
frame n = 1, Np as I,,(x) and the corrected intensity as J,, (x) = T'(I,,(x))—B(x).
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Fig. 1. Sample image from each data set and the corresponding annotation. Mito-
chondria, cell nuclei and ruffled border annotations are shown in yellow, green and
blue, respectively. Contrast of the images was increased for visualization purposes.
The length of the scale bar is 1 pm (Color figure online).

Here T'(I) is an intensity transformation function, x are Cartesian coordinates,
and B(x) is an intensity inhomogeneity field, common for all the frames. Inspired
by [9], we model it as a weighted sum of Ng basis functions G(x):

with w € RY¢ being the weights vector. Further, let O,,., denote the region
within the stack O,, where it overlaps with the stack O,,, and Tmm, jm;m and
Gn.n be, Tespectively, the average value of the raw image intensity, corrected
image intensity, and basis functions within O,,.,. Let the function

Dw(fnl—{% = Fm;n - Fn;m

denote the difference between the mean intensity of the images H,, and H,, in
the corresponding overlap areas. Denoting by P the set of all the Np ordered
pairs of the neighbouring frames, we define the following optimization function:

L= ¥ [P = X T =Tl

(m,n)eP (m,n)eP
- JR— 2
= Y [T~ T, —w D] (1)
(m,n)eP

In this work, we consider two simple cases for the intensity transformation
function T'(I), namely: the additive model T'(I,,) = a, + I, parameterized by
the intensity shift vector a € RVF and the multiplicative model T'(I,,) = s, 1,
parameterized by the intensity scaling vector s € RVF.,
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3.1 Multiplicative Model

For the multiplicative model, we rewrite the optimization function defined in
Eq. 1 as follows:

B B 2
(m,n)eP

Differentiating this function with respect to the scaling vector s and the bias
field weights w results in the following system of matrix equations:

T
[Vs - wTD(G)] V =0, (3)
T
[Vs - wTD<G>] D@ — g, (4)
where
Ti;ja (17]) € Pv
V = (v;) e RYPXNo -y = ¢ —Th, (4,1) € P,
0, otherwise.

Equations 3 and 4 together constitute a linear system of Np + Ng equa-
tions for calculating the same number of the unknowns: intensity scaling vector
s € RYF and vector of bias field weights w € RV, However, it can be easily
noticed that this system has a trivial solution. To overcome this, we constrain
our optimization problem by the following condition:

anF* = ia (5)

meaning that the average corrected intensity of the subset of frames F) is equal
to that of the entire stitch. This constraint is incorporated into our model as an
additional term into the optimization function:

Lconstr =L+ Z (jn — 1)2,

nek,

which results in the following modification of Equation 3:
T _
[Vs - wTD“ﬂ V +[Alps—1p]1=0, (6)

with 1p- € RV being the indicator function of the set F, and A denoting
the functor that distributes the elements of a vector along the diagonal of the
corresponding square matrix. The resulting system of Equations 4 and 6 can be
easily solved numerically.
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3.2 Additive Model
For the additive model, we rewrite the optimization function defined in Eq. 1 as:
_ _ 2
L= 3 [a + Toin — @ — T —w DG | (7)
(m,n)eP

Differentiating this function with respect to the shift vector a and the bias field
weights w, we arrive at the following counterparts of the Equations 3 and 4:

T
[Ua —wiD® | D(I)} U-=o, (8)
T
[Ua ~wTD©® 4 D(I)} D@ — o, 9)
where
L, (4,7) €P,
U = (u;) e RNPNe -y = ¢ =1, (5,i) € P,
0, otherwise.

Similarly to the multiplicative model case, we need to constrain the above
system as it can be easily proven that it is ill-conditioned due to particular form
of the matrix U. Adding the constraint defined in Eq. 5, we rewrite Equation 8
as:

T _
Ua - w’D© +D<I>] U+ Alpatlpyo(I—-T)=0, (10)

which allows solving the resulting system of Equations 9 and 10 numerically;
here o denotes the Hadamard product between two vectors.

4 Experiments and Results

Our algorithm was implemented in Matlab R2019b (MathWorks; Natick, MA,
USA) in the low-memory fashion as it simultaneously stores maximum 2 frames
in the memory. The bias field was modelled using the polynomial basis functions;
we will further refer to the highest degree of the polynomial basis function as
the “order” of the corresponding model. Further, in all our experiments, the
regularization set F, consisted of ten frames with the highest information content
in terms of the entropy. Neighbouring frames were labelled as overlapping if their
overlap area was larger than 5% of the frame size. Statistical significance was
assessed using the paired Student’s test.

Training of the neural networks was implemented in Tensorflow v2.0.0. Archi-
tecture of the convolutional neural network was adapted from [13] for performing
multi-class segmentation. Geometric data augmentation (flipping, rotation by
90°, 180° and 270°) was used at both training and testing phases. The dropout
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Fig. 2. The mean intensity difference in the overlap area of the neighbouring images,
before and after correction. Here “A-[Q]” and “M-[Q]” denote intensity correction with
the additive or multiplicative model of order @, respectively. Whiskers of the boxplot
indicate the maximum and the minimum value, respectively. The vertical axis is shown
in the logarithmic scale.

rate was set to 0.1 and the batch size was set to 8. The network was trained for 50
epochs, using the weighted sum of the categorical cross-entropy and the Jaccard
index as the loss function. The ratio between the sizes of the training and vali-
dation sets was 4:1. Prior to training, all frames were downsampled to the size
of 256 x 256 pixels and all the stitches, both raw and intensity-corrected, were
mapped to the same intensity space by using the exact histogram specification
approach [3,4].

We start by analyzing the performance of our approach with respect to differ-
ent models and complexity of the bias field. To objectively analyze these complex
data, spanning over all the data sets and all the pairs of the overlapping frames
within each data set, we calculated different percentiles P(‘D(i) |) of the distri-
bution

{|ps,

U o ie {10000 00 a0
(m,n)eP

Box-whisker plots presenting distributions of P(|D(i)‘) over all the validation
data sets are reported in Fig.2. The reported results indicate that applying
intensity correction using the linear model, with linear (first-order) polynomial
bias field, has, in both cases, significantly lower loss compared to the raw data
and other orders. Moreover, the fact that the constant model, without correction
of the bias field, in both cases, performs worse than the linear one, confirms the
added value of the bias field correction within each frame. This conclusion is in
line with the results reported in [4].

Next, we assessed how the applied intensity correction impacts the neural
network training ability, using the aforementioned network design. This expe-
riment was implemented in the leave-one-set-out manner, meaning that one of
the five annotated data sets was interchangeably used as the testing set and the
network was trained on the remaining four. Each experiment was repeated four
times, using different seeds for splitting the data into the training and validation
parts, with five repetitions for each seed. The results in terms of the average
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Fig. 3. Network training performance in terms of the Jaccard index on the test set
for uncorrected and corrected data. The results were obtained in the leave-one-set-
out manner, with 4 different seeds for data splitting and repeating each experiment
for 5 times. Whiskers of the boxplot indicate the maximum and the minimum value,
respectively.

Jaccard index on the three structures of interest on the test set are reported in
Fig. 3.

For the final experiment, to demonstrate the added value of the bias correc-
tion, we have trained the network on all the five annotated data sets and applied
it to a complete large unseen data set. The segmentation results for the three
classes of interest on the data corrected by the zero-order (only scaling, no bias
correction) and the first-order multiplicative model are shown in Fig. 4. While
the stitch corrected with the zero-order model exhibits clearly visible intensity
inhomogeneity resulting in poor segmentation performance, the results with the
bias correction are notably better.

5 Discussion and Conclusions

In this work, we have presented a data-driven algorithm for performing dif-
ferent types of intensity correction for large EM panoramic images. The mini-
mal assumptions our approach is based on allow its seamless extension to other
modalities, including histopathology and magnetic resonance imaging.

Analysis of the intensity difference within the overlapping areas of the neigh-
bouring frames confirms significantly improved results on the corrected data.
Both models exhibit similar trend with respect to the order of the highest poly-
nomial used for modelling the bias field, although this holds somewhat to a lesser
extent for the multiplicative model. From the result presented in Fig.2 we can
conclude that, in this particular case, the bias field can be well modelled by a
linear intensity gradient.

Training results exhibited a somewhat surprising trend, making it difficult to
draw definite conclusions due to inconsistent performance of the three models
on different validation data sets.

For solving the derived system of linear equations, it needs to be supported
by a proper constraint(s). Although our current solution works well in prac-
tice, in the future research we will explore alternative, more natural, ways for
conditioning the system.
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Fig. 4. Segmentation of the entire stitch for the data corrected by the zero-order (left)
and the first-order multiplicative model (right); the segmentation masks are overlayed
over the original images. Mitochondria, cell nuclei and ruffled border segmentation is
shown in yellow, green and blue, respectively. (Color figure online)
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