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Abstract

The literature has proven that attaining good transient behavior in leakage-based robust adaptive
control of uncertain switched systems is intrinsically challenging. In fact, because the gains of
the inactive subsystems must exponentially vanish during inactive times as an e�ect of leakage
action, new learning transients will repeatedly arise at each switching instant. In this paper, a new
leakage-based mechanism is designed for robust adaptive control of uncertain switched systems:
in contrast to the available designs, the key innovation of the proposed one is that the adaptive
gains of the inactive subsystems can be kept constant to their switched-o� values, thus preventing
vanishing gains. Bounded stability of the closed-loop switched system is guaranteed thanks to the
introduction of an auxiliary gain playing the role of leakage. A benchmark example commonly
adopted in adaptive switched literature shows that the proposed strategy can consistently improve
the transient behavior under various families of switching signals.

Keywords:
Adaptive switched systems, learning transient, dwell-time switching, leakage.

1. Introduction

With a wide range of application in several �elds, such as networked control systems [1, 2],
circuit and power systems [3, 4], multi-agent systems [5], fault-tolerant control [6, 7] and many
more, switched systems have drawn enormous interest over the last decades. Switched systems are
a special type of hybrid dynamic systems, constituted of continuous-time subsystems, also called
modes, and a switching law determining the activation of the subsystems. Switched systems not
only �nd application in several technological areas, but also bring several theoretical challenges,
spanning from stability to control.

Stability is the most basic desirable property of a switched system [8�10]. The state of the art
has shown that stability under arbitrary switching cannot in general be achieved unless a common
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Lyapunov function to all subsystems exists [11�14]: therefore, many researchers have concentrated
on several classes of slowly-switching signals for which stability can be derived. Dwell-time (DT)
switching requires the time interval between consecutive switching to be no less than a su�ciently
large constant. Average dwell time (ADT) was put forward in [15], as the extension of DT: in
ADT the dwell-time is de�ned on an average sense, i.e. fast switching is allowed, provided it is
compensated by slow switching later on [16]. Some conservativeness of DT and ADT has been later
relaxed by the concepts of mode-dependent dwell time (MDDT) and mode-dependent average dwell
time (MDADT), where each mode has its own dwell time or average dwell time [17].

From the control point of view, adaptive control of switched system is a quite recent research
�eld aiming at controlling switched systems with parametric uncertainties [18�22]. In adaptive
control of uncertain switched systems the challenge is to design not only an adaptation mechanism
for each subsystem, but also a slowly-switching law for which stability can be derived (typically in
the framework of dwell time and its extensions as mentioned above). If adaptive control of uncertain
switched systems presents some challenges, the literature has shown that robust adaptive control
of switched systems is even more challenging [19, 21, 23, 24]. Notably, in line with the issues
highlighted in the famous Rohr's counterexample [25] or in the books [26, 27], adaptive control
designs are generally not robust. Lack of robustness refers to the fact that, in the presence of
disturbances and/or unmodelled dynamics, not only asymptotic convergence of the tracking error
is lost, but also the adaptive closed-loop might become unstable, because the integral action of
the adaptive law would integrate the "bad" disturbances and/or unmodelled dynamics [26, 27].
Solutions to the robustness issue in adaptive non-switched systems involve modifying the adaptive
law, such as adding projection, dead-zone or leakage as a way to reduce the integral action of the
adaptive law [26, Chap. 8].

Lack of robustness of adaptive design transfers to switched systems as well : some designs have
been recently proposed aiming at robust adaptive control of switched systems [19, 23, 28�31].
Such designs can be classi�ed in two families. In the �rst family, one adopts a sliding mode
perspective, in which uncertainties can be compensated by su�ciently high robusti�cation terms
[28�30]: unfortunately, this approach requires to monotonically increase the control gains, which
might lead to unpractically high control inputs. In the second family, one tries to extend the
adaptive law modi�cations proposed for non-switched systems (projection/dead-zone/leakage) in
the switched framework [19, 23, 31]. The leakage modi�cation is quite interesting in view of the
fact that it does not require any a priori knowledge on the uncertainty [26, Chap. 8], so it can
potentially handle larger parametric uncertainty than projection-based robusti�cation, as illustrated
in [24, 31, 32]. Unfortunately, while avoiding high gains, the leakage-based methodology has serious
performance issues, which can be highlighted by referring to the representative work [31]. In
contrast with (non-robust) adaptive control of switched systems, where the control gains of the
inactive subsystems can be kept constant at their switched-o� values [19, 20, 22], in leakage-based
robust adaptive control of switched systems one requires the control gains of the inactive subsystems
to decrease exponentially during inactive interval. This is necessary in order to prove (bounded)
stability, because such exponential decrease is a stabilizing e�ect of the leakage action. Of course,
such a vanishing-gain mechanism would lead to a new learning transient whenever an inactive
system is activated again. This is up to now, the biggest challenge in robust adaptive control of
switched systems.

This work is motivated by the following research question: how to design a robust adaptive
controller for uncertain switched systems that does not require the control gains to vanish during

2



inactive times?
A positive answer to this question is provided here. A new leakage-based framework is proposed,

whose main contribution is to allow the control gains of the inactive subsystems to stay constant
at their switched-o� value, while guaranteeing stability of the closed-loop switched system. This
is achieved via a new auxiliary gain that provides a suitable leakage action during inactive time
intervals. A benchmark example commonly adopted in adaptive and robust adaptive literature
shows that the proposed strategy can consistently improve the transient of the closed-loop system
under various families of slowly-switching signals (in the framework of dwell time and its extensions).

The paper is organized as follows. The problem formulation and de�nition are presented in
Section 2. The proposed robust adaptive mechanism is presented in Section 3, while its stability
analysis is provided in Section 4. In Section 5, the e�ectiveness of the proposed controller is
extensively studied using the benchmark example. Section 6 presents concluding remarks.

The following notations are used in this paper: λmin(·), λmax(·) and ||(·)|| denote the minimum
eigenvalue, maximum eigenvalue and Euclidean norm of (·) respectively; D > 0 denotes a positive
de�nite matrix D; diag{·} denotes a diagonal matrix with diagonal elements de�ned in {·}.

2. Problem Formulation and De�nition

In the following we recall the main concepts of model reference adaptive control, the most
studied framework for adaptive control of switched systems [18�20, 22]. Consider the following
switched linear system:

ẋ(t) = Aσ(t)x(t) +Bσ(t)uσ(t)(t) + d(t), σ(t) ∈ Ω (1)

where x ∈ Rn is the state vector; uσ ∈ Rm is the (switched) control input; d ∈ Rn is an external
bounded disturbance with unknown bound, and σ(·) is the piecewise constant switching signal (to
be de�ned later) taking values in Ω := {1, 2, . . . , N}, with switching instants denoted by tl, tl+1, · · · ,
and with intervals in between instants denoted by [tl, tl+1), l = 1, 2, · · · , and being N the number of
subsystems. The switched linear system (1) is uncertain when the entries of the matrices Ap ∈ Rn×n
and Bp ∈ Rn×m, p ∈ Ω are unknown.

A switched reference model representing the desired behavior for each subsystem is given as:

ẋm(t) = Amσ(t)xm(t) +Bmσ(t)r(t), σ(t) ∈ Ω (2)

where xm ∈ Rn is the desired state vector, and r ∈ Rm is a bounded user-de�ned signal. The
matrices Amp ∈ Rn×n and Bmp ∈ Rn×m are known and Amp, p ∈ Ω, are Hurwitz matrices (so that
the desired behavior of each subsystem is stable). It is known from literature [18�20, 22] that the
state-feedback mode-dependent control that makes (1) behave like (2) is

u∗σ(t)(t) = K∗Tσ(t)x(t) + L∗σ(t)r(t)

where K∗p ∈ Rn×m and L∗p ∈ Rm×m, p ∈ Ω, are nominal parameters satisfying the following
matching conditions:

Ap +BpK
∗T
p = Amp, BpL

∗
p = Bmp. (3)
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As the matrices (Ap, Bp) are unknown, the gain K
∗
p and L∗p in (3) are unknown. De�ne Kp and

Lp as the (time-dependent) estimates of the ideal parameters K∗p and L∗p, respectively. Thus, the
following controller is introduced:

uσ(t)(t) = KT
σ(t)(t)x(t) + (Lσ(t)(t) + Γσ(t)(t))r(t), (4)

where Kp ∈ Rn×m, Lp ∈ Rm×m and Γp = diag{γip}, p ∈ Ω, i = 1, · · · ,m are to be updated
from appropriately designed adaptive laws. As compared to (3), the introduction of Γp in (4) is for
robustness reasons, as it will be clear from Section 3.

Let e(t) = x(t) − xm(t) be the tracking error. After substituting (4) into (1) and subtracting
(2), we obtain the dynamics of the tracking error as follows:

ė(t) = Amσ(t)e(t) +Bσ(t)

(
K̃T
σ(t)(t)x(t) + (L̃σ(t)(t) + Γσ(t)(t))r(t)

)
+ d(t) (5)

where K̃σ = Kσ −K∗σ and L̃σ = Lσ − L∗σ are the parameter estimation errors.
The following class of switching signals σ(·) is considered for the switched system (1):

De�nition 1. (Mode-dependent Average Dwell Time) [17]. Consider two time instants t2 ≥
t1 ≥ 0. Let Np(t1, t2) be the number of times subsystem p is activated over the interval [t1, t2], and
let Tp(t1, t2) denote the total running time of subsystem p over the interval [t1, t2], ∀p ∈ Ω. We say
that the switching signal σ(·) has mode-dependent average dwell time (MDADT) τp if there exist
N0p ≥ 1 and τp > 0 such that

Np(t1, t2) ≤ N0p +
Tp(t1, t2)

τp
, ∀t2 ≥ t1 ≥ 0 (6)

where N0p is termed as mode-dependent chatter bound.

Remark 1. The MDADT class is adopted in this work because it comprises various families of
switching laws considered in literature [9], such as dwell time (DT) switching (N0p = 1, τp =
τ, ∀p ∈ Ω), mode-dependent dwell time (MDDT) switching (N0p = 1, τp = τp, ∀p ∈ Ω), and
average dwell-time (ADT) switching (N0p = N0, τp = τ, ∀p ∈ Ω).

After appropriate minor modi�cations, one can easily extend De�nition 1 so as to include the
class of mode-mode-dependent dwell time (MMDDT) switching signals, introduced in [31] to handle
the case in which the next subsystem to be switched on is known. When the switching sequence
is known, we indicate the fact that the next mode to be switched on after p is q with q ∈ N (p).
Then, we present the following de�nition.

De�nition 2. Mode-mode-dependent Average Dwell Time. Let Npq(t1, t2) be the number of
times subsystems p is activated over the interval [t1, t2] with q ∈ N (p), and let Tpq(t1, t2) denote
the total running time of subsystem p switching to q over the interval [t1, t2], ∀p, q ∈ Ω. We say
that σ(·) has a mode-mode-dependent average dwell time (MMDADT) τpq if there exist positive
numbers N0pq ≥ 1 and τpq such that

Npq(t1, t2) ≤ N0pq +
Tpq(t1, t2)

τpq
, ∀t2 ≥ t1 ≥ 0 (7)

where N0pq is termed as mode-mode-dependent chatter bound.
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Remark 2. The MMDADT switching signal is an extension in an average sense of the MMDDT
proposed in [31]. It is introduced for consistency, in order to be able to run fair comparisons with
many switching families introduced in literature.

We now introduce some standard stability concepts. In robust adaptive control of uncertain
switched systems, uniform boundedness of the tracking error and of the closed-loop signal is what
one can aim at [23, 24, 28�31]. This concept is formalized in the following two de�nitions:

De�nition 3. (Uniform Ultimate Boundedness (UUB)) [26]. The uncertain switched system
(1) under switching signal σ(·) is uniformly ultimately bounded if there exists a convex and compact
set C such that for every initial condition x(0) = x0, there exists a �nite time T (x0) such that
x(t) ∈ C for all t ≥ T (x0).

De�nition 4. (Ultimate Bound). A signal Φ(·) is said to have ultimate bound b if there exists
a positive constant b, and for any a ≥ 0, there exists T = T (a, b), where b and T are independent
of t0, such that ‖Φ(t0)‖ ≤ a⇒ ‖Φ(t)‖ ≤ b,∀t ≥ t0 + T .

The following assumption is standard in literature (see Sect. 4.1 in survey paper [33] for details
on this assumption), in order to handle adaptive control of multi-input linear subsystems in (1).

Assumption 1. The matching conditions (3) hold for some unknown K∗p and L∗p, and there exists

a family of known matrices Sp ∈ Rm×m, p ∈ Ω , such that Mp = L∗pSp = (L∗pSp)
T = STp L

∗T
p >

0, ∀p ∈ Ω.

The problem formulation can be �nally given as:

Problem 1. Under Assumption 1, develop an adaptive law for the control parameters in (4) and a
switching law based on MDADT (or MMDADT if the switching sequence is known) such that, with-
out requiring knowledge of the nominal values of Ap and Bp, ∀p ∈ Ω, uniform ultimate boundedness
of all closed-loop signals is guaranteed, including the tracking error in (5).

3. Controller Design

In this section, novel adaptive laws for the gains in (4) are proposed to solve Problem 1.
Correspondingly, stabilizing switching laws are given in the framework of MDADT switching (or
MMDADT if the switching sequence is known).

3.1. Adaptive control

For compactness, let us denote with p the index corresponding to the active subsystem at time
t (e.g. in the interval t ∈ [tl, tl+1)). If p is an active system, we use p ∈ I(p) to indicate the set of
inactive subsystems with respect to p. Let Pp > 0 be the solution to

ATmpPp + PpAmp + (1 + κp)Pp ≤ 0, (8)

where κp is a user-de�ned scalar.
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Then, consider the leakage-based adaptive laws

K̇T
p (t) = −STp BT

mpPpe(t)x
T (t)− δpKT

p (t), K̇T
p (t) = 0, (9a)

L̇p(t) = −STp BT
mpPpe(t)r

T (t)− δpLp(t), L̇p(t) = 0, (9b)

γ̇ip(t) = 0,

γ̇ip(t) = −
(
βip + δp

(
{Kp(t)K

T
p (t)}ii + {LTp (t)Lp(t)}ii

))
γip(t) + βipεip, (9c)

with δσ ≥ max
σ∈Ω

(
λmax(M−1

σ ) + κσ
2

, 2κσλmax(M−1
σ )

)
> 0, (9d)

and γip(t0), γip(t0) > εip, (9e)

where the notation {KpK
T
p }ii and {LTp Lp}ii is used to indicate diagonal elements along the corre-

sponding matrices; βip, εip ∈ R+ i = 1, · · · ,m are static design scalars and t0 is the initial time.
The leakage bound in condition (9d) stems from Assumption 1, which implies that an upper bound
on the perturbation in matrix Bσ is known. Such consideration is not only standard in literature
(cf. the aforementioned survey paper [33]), but also valid in practical systems (cf. [34]).

Remark 3. The inequality (8) is equivalent to the standard Lyapunov inequality(
ATmp + (1 + κp)/2I

)
Pp + Pp

(
ATmp + (1 + κp)/2I

)
≤ 0 (10)

which highlights how Amp of the reference models should be chosen in such a way to have their
eigenvalues which su�ciently large real part (implying su�ciently high exponential decay). This
is not restrictive, since it is a standard requirement for stability of switched systems. Stability of
switched systems is typically achieved by requiring that the possibly destabilizing e�ect of switching
are compensated by the exponential decrease of the Lyapunov function in between switching instants
[9�11].

Remark 4. For comparison purposes, let us explicitly recall the robust adaptive law in [31]

K̇T
p (t) = −STp BT

mpPpe(t)x
T (t)− δpMpK

T
p (t), (11a)

L̇p(t) = −STp BT
mpPpe(t)r

T (t)− δpMpLp(t), (11b)

K̇T
p (t) = −δpMpK

T
p (t), (11c)

L̇p(t) = −δpMpLp(t), (11d)

where the leakage rates δp must satisfy: δp ≥ λmax(M−1
p ) ≥ 0. Albeit the slightly di�erent leakage

action (see the simulation section for more details on this point), it can be seen that the adaptive laws
(11) are designed such that the gains for the inactive subsystems vanish exponentially during the
inactive times, as an e�ect of leakage. This is required in order to prove UUB [31]. Unfortunately,
this mechanism implies that the gains will drop to zero if a subsystem remains inactive for su�ciently
long time. This will lead to a new learning transient every time the subsystem is switched-on again.
This undesirable scenario is avoided by (9a) and (9b) where the adaptive gains are kept constant
after the subsystem is switched-o�.
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3.2. Switching Laws:

In this section, a stabilizing switching law is given in terms of MDADT switching (or MMDADT
if the switching sequence is known).

We de�ne %Mσ , λmax(Pσ), %mσ , λmin(Pσ), %M , maxσ∈Ω(%Mσ) and %
m

, minσ∈Ω(%mσ).
Following De�nition 1 of MDADT, the switching law is proposed via:

τp > τ∗p = lnµp/χp, ∀p ∈ Ω (12)

and any N0p ≥ 1, where µp , %Mp/%mp; χp is a user-de�ned scalar satisfying 0 < χp < κp,∀p ∈ Ω.
According to Remark 1, the switching law (12) includes DT, MDDT, and ADT as special

cases. For the scenario when the next subsystem q to be switched after subsystem p is known, we
propose a MMDADT switching law in line with De�nition 2 via

τpq > τ∗pq =
1

χp
lnµpq, ∀p ∈ Ω, q = N (p), (13)

where µpq = %Mq/%mp. The MMDADT law is proposed for subsequent comparisons with [31].

Remark 5. It is important to notice that, when selecting the same κp as [31] (thus obtaining the
same Pp and µp in in (8) and (12), respectively), one will obtain exactly the same τp as [31] (since
the design parameter ζp in [31] plays exactly the same role as χp here). Therefore, the proposed
adaptation mechanism does not introduce any restriction in τp as compared to the state of the art.
This allows a fair comparison of the proposed method with the method in [31], i.e. the methods can
be compared for the same switching signals.

4. Stability Analysis of the Proposed Adaptation Framework

The following lemma is useful for stability analysis:

Lemma 1. [35] Let Φ ∈ Rg, ϕ ∈ Rs be vector-valued signals, and let W ∈ Rg×g, G ∈ Rg×s be
constant matrices. Then, the following inequality holds:

± 2ΦTWGϕ ≤ ΦTWW TΦ + ϕTGTGϕ

The stability properties of the proposed adaptation framework can now be stated:

Theorem 1. Under Assumption 1, the closed-loop switched system formed by the switched system
(1), the reference model (2), the controller (4), the adaptive laws (9), and the switching law (12),
is Uniformly Ultimately Bounded (UUB) and an ultimate bound b on the tracking error e can be
found as

b ∈
[
0,

√√√√%M
%2
m

B
N∏
p=1

µ
N0p
p

]
, (14)

B , max
p∈Ω

(
ζ1

√
%
m

(κp − χp)
+

√
ζ2

1

%
m

(κp − χp)2
+

ζ2

(κp − χp)

)2

,

where the scalars ζ1, ζ2 ∈ R+ are de�ned during the proof.
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Proof. Stability relies on the Lyapunov candidate:

V = eT (t)Pσ(t)e(t) +
N∑
s=1

tr[K̃s(t)M
−1
s K̃T

s (t)] +
N∑
s=1

tr[L̃Ts (t)M−1
s L̃s(t)] +

N∑
s=1

tr[ΓsΓs(t)]}, (15)

where Γσ = diag{1/γ
iσ
}. In fact, from (9c) and the initial conditions (9e), it can be veri�ed that

∃γ
iσ
, γiσ ∈ R+ such that

γ
iσ
≤ γiσ(t) ≤ γiσ, ∀t ≥ t0. (16)

Analysis of (15) at the switching instants is required, since Pp is di�erent for di�erent subsystems
generally (i.e. V (·) might be discontinuous at switching instants). Let subsystem σ(t−l+1) be active
when t ∈ [tl, tl+1) and subsystem σ(tl+1) be active when t ∈ [tl+1, tl+2). Without the loss of
generality, the behavior of V (·) is studied at the switching instant tl+1, l ∈ N+.

At the switching instant tl+1, we have before switching

V (t−l+1) = eT (t−l+1)Pσ(t−l+1)e(t
−
l+1) +

N∑
s=1

tr[Γs(t
−
l+1)Γs(t

−
l+1)]

+
N∑
s=1

tr[K̃s(t
−
l+1)M−1

s K̃T
s (t−l+1)] +

N∑
s=1

tr[L̃Ts (t−l+1)M−1
s L̃s(t

−
l+1)]

and after switching

V (tl+1) = eT (tl+1)Pσ(tl+1)e(tl+1) +
N∑
s=1

tr[Γs(t
−
l+1)Γs(tl+1)]

+
N∑
s=1

tr[K̃s(tl+1)M−1
s K̃T

s (tl+1)] +
N∑
s=1

tr[L̃Ts (tl+1)M−1
s L̃s(tl+1)]

According to the continuity of the tracking error e(·) in (5) and the continuity of the parameter
estimates updated via (9), we have e(t−l+1) = e(tl+1), K̃s(t

−
l+1) = K̃s(tl+1), L̃s(t

−
l+1) = L̃s(tl+1), and

Γs(t
−
l+1) = Γs(tl+1) for any switching law. Due to eT (t)Ppe(t) ≤ %Mpe

T (t)e(t), and eT (t)Ppe(t) ≥
%mpe

T (t)e(t) we have

V (tl+1)− V (t−l+1) = eT (t−l+1)(Pσ(tl+1) − Pσ(t−l+1))e(t
−
l+1)

≤
%Mp − %mp

%mp
eT (t−l+1)Pσ(t−l+1)e(t

−
l+1)

≤
%Mp − %mp

%mp
V (t−l+1)

Then, we obtain the following inequality for V (·) at the switching instant tl+1:

V (tl+1) ≤ µpV (t−l+1) (17)

with µp = %Mp/%mp ≥ 1.

8



Next, the behavior of V (t) is studied between two consecutive switching instants, i.e., when
t ∈ [tl tl+1). In the following, let σ(t) = p denote an active subsystem and an inactive is denoted
as p when t ∈ [tl+1, tl+2). Let us also use the notation I(p) to indicate all inactive subsystems when
subsystem p is active. Then using (8), (5) and (9a)-(9c) we have

V̇ ≤ −eT (1 + κp)Ppe+ 2eTPpBp(K̃px+ (L̃p + Γp)r) + 2eTPpd

+ 2

N∑
s=1

tr[K̃sM
−1
s K̇T

s ] + 2

N∑
s=1

tr[L̃TsM
−1
s L̇s] + 2

N∑
s=1

tr[ΓsΓ̇s]

≤ −κpeTPpe+ 2eTPpBpΓpr + dTPpd+
∑
p∈I(p)

tr[ΓpΓ̇p]

− 2 tr[K̃pδpM
−1
p KT

p ]− 2 tr[L̃Tp δpM
−1
p Lp]. (18)

The following simpli�cation can be made using Lemma 1:

−2 tr[K̃pδpM
−1
p KT

p ] <− tr[K̃pM
−1
p (2δpI −M−1

p )K̃T
p ] + tr[K∗pδ

2
pK
∗T
p ], (19)

−2 tr[L̃Tp δpM
−1
p Lp] <− tr[L̃TpM

−1
p (2δpI −M−1

p )L̃p] + tr[L∗p
T δ2

pL
∗
p]. (20)

Further, noting ΓpΓ̇p = diag{γ̇ip/γip}, i = 1, · · · ,m, the following can be deduced from (9c)

and (16)

γ̇ip
γ
ip

=
−
(
βip + δp

(
{KpKpT }ii + {LTp Lp}ii

))
γip + βipεip

γ
ip

≤ −δp
(
{KpKpT }ii + {LTp Lp}ii

)
+ (βipεip)/γip. (21)

Moreover, using the relations K̃σ = Kσ −K∗σ, L̃σ = Lσ − L∗σ and Lemma 1 we have

tr[K̃T
σ K̃σ] = tr[KT

σKσ − 2KT
σK

∗
σ +K∗σ

TK∗σ]

≤ 2 tr[KT
σKσ +K∗σ

TK∗σ], (22)

tr[L̃Tσ L̃σ] = tr[LTσLσ − 2LTσL
∗
σ + L∗σ

TL∗σ]

≤ 2 tr[LTσLσ + L∗σ
TL∗σ]. (23)

Using (19)-(23), (18) is simpli�ed as

V̇ ≤ −κpV + 2eTPpBpΓpr + dTPpd

− tr[K̃pM
−1
p (2δpI − (M−1

p + κpI))K̃T
p ] + tr[K∗p

T δ2
pK
∗
p ]− tr[L̃pM

−1
p (2δpI − (M−1

p + κpI))L̃Tp ]

+
∑
p∈I(p)

[
tr[K̃T

p K̃p(κpλmax(M−1
p )− 1

2
δp)] +

1

2
tr[K∗p

T δpK
∗
p ]

]
+

N∑
s=1

tr[κsΓsΓs] + tr[L∗p
T δ2

pL
∗
p]

+
∑
p∈I(p)

[
tr[L̃Tp L̃p(κpλmax(M−1

p )− 1

2
δp)] +

1

2
tr[L∗p

T δpL
∗
p]

]
+
∑
p∈I(p)

m∑
i=1

(βipεip)/γip

≤ −κpV + 2||e||||PpBpΓpr||+ %Mp||d||2 + tr[K∗p
T δ2

pK
∗
p ] + tr[L∗p

T δ2
pL
∗
p]

+
N∑
s=1

tr[κsΓsΓs] +
∑
p∈I(p)

(
1

2
tr[K∗p

T δpK
∗
p ] +

1

2
tr[L∗p

T δpL
∗
p] +

m∑
i=1

(βipεip)/γip

)
. (24)
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By de�nition r(t) ∈ L∞ and by design Γs ∈ L∞ from (16). Therefore, ∃ζ1 ∈ R+ such that
||PpBpΓpr|| ≤ ζ1 ∀p ∈ Ω. Further we de�ne a scalar ζ2 as

ζ2 ,%M ||d||2 + max
p∈Ω

(tr[K∗p
T δ2

pK
∗
p ] + tr[L∗p

T δ2
pL
∗
p]) +

N∑
s=1

tr[κsΓsΓs]

+
∑
p∈I(p)

(
1

2
tr[K∗p

T δpK
∗
p ] +

1

2
tr[L∗p

T δpL
∗
p] +

m∑
i=1

(βipεip)/γip

)
. (25)

Again, the de�nition of the Lyapunov function (15) yields

V ≥ λmin(Pp)||e||2 ≥ %m||e||
2. (26)

We had de�ned earlier 0 < χp < κp. Hence, using (25)-(26), (24) is simpli�ed as

V̇ ≤ −χpV − (κp − χp)V + 2ζ1

√
V/%

m
+ ζ2. (27)

Thus, V̇ ≤ −εpV is established when

V ≥ max
p∈Ω

(
ζ1

√
%
m

(κp − χp)
+

√
ζ2

1

%
m

(κp − χp)2
+

ζ2

(κp − χp)

)2

.

So we obtain that a positive B as

B = max
p∈Ω

(
ζ1

√
%
m

(κp − χp)
+

√
ζ2

1

%
m

(κp − χp)2
+

ζ2

(κp − χp)

)2

. (28)

In light of this, further analysis is needed to observe the behavior of V (t) between the two consecutive
switching instants, i.e. t ∈ [tl tl+1), for two possible cases:

(i) when V (t) ≥ B, we have V̇ (t) ≤ −χpV (t) from (27) implying exponential decrease of V (t);

(ii) when V (t) < B, no exponential decrease can be derived.

Behavior of V (t) is discussed below individually for these two cases.
Case (i): There exists a time, call it T1, when V (t) enters into the bound B and N(t) denotes

the number of all switching intervals for t ∈ [t0 t0 + T1). Accordingly, for t ∈ [t0 t0 + T1), using

10



(17), (27) and from the De�nition 1 we have

V (t) ≤ exp
(
−χσ(N(t)−1)(tN(t) − tN(t)−1)

)
V (tN(t)−1)

≤ µσ(N(t)−1) exp
(
−χσ(N(t)−1)(tN(t) − tN(t)−1)

)
V (t−

N(t)−1
)

≤ µσ(N(t)−1) exp
(
−χσ(N(t)−1)(tN(t) − tN(t)−1)

)
·

µσ(N(t)−2) exp
(
−χσ(N(t)−2)(tN(t)−1 − tN(t)−2)

)
V (t−

N(t)−2
)

...

≤ µσ(N(t)−1) exp
(
−χσ(N(t)−1)(tN(t) − tN(t)−1)

)
·

µσ(N(t)−2) exp
(
−χσ(N(t)−2)(tN(t)−1 − tN(t)−2)

)
·

· · ·µσ(t0) exp (−χσt0(t1 − t0))V (t0)

=

N∏
p=1

µ
Np
p exp

( N∑
p=1

χpTp(t0, t0 + T1)
)
V (t0)

= c exp

(
m∑
p=1

(
lnµp
τp
− χp)Tp(t0, t0 + T1)

)
V (t0), (29)

where c , exp(
m∑
p=1

N0p lnµp) is a constant. Substituting the MDADT condition τp > lnµp/χp to

(29) yields V (t) < cV (t0) for t ∈ [t0 t0 + T1). Moreover, as V (t0 + T1) < B, one has V (tN(t)+1) <

µσ(t−
N(t)+1

)B from (17) at the next switching instant tN(t)+1 after t0 + T1. This implies that V (t)

may be larger than B from the instant tN(t)+1. This necessitates further analysis.

We assume V (t) ≥ B for t ∈ [tN(t)+1 t0 +T2), where T2 denotes the time before next switching.

Let N(t) represent the number of all switching intervals for t ∈ [tN(t)+1 t0 + T2). Then, sub-

stituting V (t0) with V (tN(t)+1) in (29) and following the similar procedure for analysis as (29),

we have V (t) ≤ cV (tN(t)+1) < cµσ(t−
N(t)+1

)B for t ∈ [tN(t)+1 t0 + T2). Since V (t0 + T2) <

B, we have V (tN(t)+N(t)+2) < cµσ(t−
N(t)+N(t)+2

)B at the next switching instant tN(t)+N(t)+2 af-

ter t0 + T2. If we follow similar lines of proof recursively, we can come to the conclusion that
V (t) < cmax

p∈Ω
{%Mp/%mp}B < cµB where µ = %M/%m for t ∈ [t0 + T1 ∞). This con�rms that

once V (t) enters the interval [0,B], it cannot exceed the bound cµB any time later with the ADT
switching law (12).

Case (ii): It can be easily veri�ed that the same argument below (29) also holds for Case (ii).
Next, we study the dynamics of the tracking error: based on the aforementioned analysis about

UUB, it can be obtained that

V (t) ≤ max
{
V (t0), cµB

}
,∀t ∈ t0. (30)

Then, it follows from that the tracking error is upper bounded in the following form:
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‖e(t)‖2 ≤ 1

%
m

max
{
V (t0), cµB

}
. (31)

Substituting c , exp(
m∑
p=1

N0p lnµp) and µ = %M/%m into (31), thus the tracking error is UUB with

an ultimate bound b with

b ∈
[
0,

√√√√%M
%2
m

B
N∏
p=1

µ
N0p
p

]
(32)

Thus, observing the stability arguments of the Cases (i) and (ii), it can be concluded that the
closed-loop system remains UUB.

Theorem 1 reveals that stability of the ideal model reference closed loop (i.e. the switched
linear closed-loop system arising from (1), (2) and the ideal control law before (3)) can be proven,
along the arguments of [9�11], via the �rst quadratic term of the Lyapunov function in (15). Other
remarks to compare Theorem 1 with the state of the art follow:

Remark 6. Because we keep the control gains constant during inactive times, one has to introduce
a new mechanism to achieve stability. The proposed new mechanism is the auxiliary gain Γσ(t)

in (4), together with its adaptation law (9c). This gain plays the role of a leakage action for all
inactive subsystems. Note that the second and the third term in the Lyapunov function (15) are
summations over all (active and inactive) subsystems. In order to achieve exponential decrease
of the Lyapunov function far enough from the origin (i.e. (24)), the items regarding active and
inactive subsystems of V̇ (t) should be o�set by the corresponding items of V (t), respectively. Since
the derivative of the adaptive laws Kp, Lp for inactive subsystems p equals to zero, only the relative
items regarding the active subsystem remain in V̇ (t). That's why Γp is put forward: to compensate
the missing part of inactive systems in V̇ (t) such that (24) can be attained. Therefore, the crucial
di�erence between [31] and the proposed scheme is the use the of auxiliary gains Γσ(t) which avoids
exponentially vanishing gains Kp, Lp for the inactive subsystems p. It is worth noticing that, with
γiσ being lower bounded by a positive value, the Lyapunov function V in (15) does not reach zero.
However, the origin of tracking error and parametric estimation errors is not excluded; V may not
reach origin, but the tracking error e and parameters estimation errors K̃σ, L̃σ can still be zeros
even if γiσ 6= 0. Eventually, the ultimate bound (32) on the tracking error e is still around the
origin.

Remark 7. It has to be noted that, for a certain subsystem p, Γp might be di�erent at switched-
o� and switched-on times, due to the evolution of γp in (9c) during inactive time intervals. This
might lead to some transient at switched-on instant. However, there are clear evidences for such
transient to be smaller than the one in [31]. The �rst evidence is that any possible transient in (4)
is contributed only by Γσ(t) which enters as a feedforward term: feedforward terms have less e�ect
on learning transients than feedback terms. In the proposed design, the feedback gains Kσ(t) do not
contribute any transient, whereas the transients in [31] arise from both feedback terms Kσ(t) and
feedforward terms Lσ(t). The second evidence is that the e�ects of transients in Γσ(t) can be reduced
by properly tuning the design parameters: for example, selecting γip(t0) and βip, εip in (9c) very
close to each other, with relatively high βip, will induce a fast decrease of γip to its lower bound.
Therefore, γip will be almost the same at switched-on and switched-o� times.
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In other words, the intuition behind (4) and (9) is that it will sensibly reduce learning transients
at switched-on instants. Of course, improved transient cannot be formally proven because any
bound on transient performance of adaptive closed-loop systems is in general very conservative
[27]. Nevertheless, one can verify the improved transient performance in simulations, as done in
Section 5.

For a proper comparison with [31], Theorem 1 is now modi�ed to account for MMDADT in
De�nition 2.

Corollary 1. Under Assumption 1, the closed-loop switched system formed by system (1), the
reference model (2), the controller (4), the adaptive laws (9), and the switching law (13), is Uni-
formly Ultimately Bounded (UUB) and an ultimate bound b on the tracking error e can be found
as

b ∈

0,

√√√√ 1

%
m

max
p,q∈Ω
q∈N (p)

{µpq}B
N∏
p=1

µ
N0pq
pq

 , (33)

where the scalar B is the same positive constant as in Theorem 1.

Proof. The proof follows the same steps as Theorem 1 with same Lyapunov function (15) being
adopted. The main di�erence arises from the relationship of the values between the Lyapunov
function at switching instant tl+1, which can be expressed as:

V (tl+1) ≤
%Mσ(tl+1)

%mσ(t−l+1)

V (t−l+1) = max
p,q∈Ω
q∈N (p)

{µσ(tl+1)σ(t−l+1)}V (t−l+1). (34)

Here, we de�ne µpq = µσ(tl+1)σ(t−l+1), p, q ∈ Ω, q ∈ N (p). The analysis of the Lyapunov function

during the switching intervals is identical with (18)-(28). Since the switching sequence is known,
the maximum increase of the Lyapunov function at the switching instants is max

p,q∈Ω
q∈N (p)

{µpq} instead

of %M/%m as in the MDADT case. The rest of the proof follows the lines from (24)-(32) after

substituting µσ(t−l+1) with µσ(tl+1)σ(t−l+1) and c , exp(
m∑
p=1

N0pq lnµpq). We conclude that the adaptive

law (9) and the switching law with MMDADT (13) lead to UUB stability with bounds (33).

5. Simulation Results

A benchmark example commonly adopted in switched adaptive literature [31, 36�40] is consid-
ered to show how the proposed strategy compares to the state of the art, i.e. the approach in [31].
The example is a simpli�ed model of a Highly Maneuverable Aircraft Technology (HiMAT) with
the following three subsystems:

A1 =

−0.8435 0.97505 −0.0048
8.7072 −1.1643 0.0026

0 1 0

 , B1 =

−0.1299 −0.092 −0.0107 −0.0827
−7.6833 −4.7974 4.8178 −5.7416

0 0 0 0

 .
A2 =

−1.8997 0.98312 −0.00073
11.720 −2.6316 0.00088

0 1 0

 , B2 =

−0.2436 −0.1708 −0.00497 −0.1997
−46.206 −31.604 22.396 −31.179

0 0 0 0

 .
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Table 1: Parameters for the six switching families under consideration (note that DT/ADT, MDDT/MDADT, and
MMDDT/MMDADT have the same τ∗, τ∗p , and τ∗pq, as they only di�er in terms of chattering bound).

Switching DT/ADT MDDT/MDADT MMDDT/MMDADT
strategies

Switching Unknown Unknown Known in advance
sequences

Parameters

τ∗ = 23.7 τ∗1 = 16.3, τ∗2 = 11.8, τ∗3 = 13.2 τ∗13 = 16.3, τ∗32 = 12.6
τ∗21 = 11.8, τ∗23 = 10

µ = 278.3 µ1 = 48.6, µ2 = 278.3, µ3 = 154.1 µ13 = 48.6, µ32 = 120.3, µ21 = 272.4
κ = 0.25 κ1 = 0.25, κ2 = 0.5, κ3 = 0.4 κ1 = 0.25, κ2 = 0.5, κ3 = 0.4

A3 =

−1.2206 0.99411 −0.00084
−64.071 −1.8876 0.00046

0 1 0

 , B3 =

−0.0662 −0.0315 −0.0141 −0.0749
−27.333 −13.163 11.058 −26.878

0 0 0 0

 .
5.1. Design of reference model

Three ideal controllers and reference models arise from the same design of [31], whose parameters
are given below for completeness:

K∗1 =


0.6219 0.7469 1.4508
0.3969 0.4671 0.9013
−0.3174 −0.4621 −0.9483
0.4534 0.5572 1.0902

 , L∗1 = I4×4, Am1 =

−0.9949 0.7939 −0.3562
−2.1076 −14.5691 −26.2966

0 1 0

 .

K∗2 =


0.1984 0.6793 1.5202
0.1368 0.4646 1.0392
−0.0642 −0.3289 −0.7527
0.1431 0.4585 1.0212

 , L∗2 = I4×4, Am2 =

−1.9997 0.6484 −0.7487
−7.6710 −70.3615 −151.7803

0 1 0

 .

K∗3 =


−0.6674 0.6397 1.4517
−0.3220 0.3081 0.6995
0.3287 −0.2599 −0.6292
−0.6423 0.6288 1.4175

 , L∗3 = I4×4, Am3 =

 −1.1228 0.8986 −0.2163
−20.6916 −43.2036 −93.9421

0 1 0

 .
5.2. Comparison

For a fair comparison purposes with [31], the leakage action in the adaptive laws in (9) is slightly
modi�ed as

K̇T
p (t) = −STp BT

mpPpe(t)x
T (t)− δpMpK

T
p (t), K̇T

p (t) = 0, (35a)

L̇p(t) = −STp BT
mpPpe(t)r

T (t)− δpMpLp(t), L̇p(t) = 0, (35b)

γ̇ip(t) = 0,

γ̇ip(t) = −
(
βip + δp

(
{Kp(t)K

T
p (t)}ii + {LTp (t)Lp(t)}ii

))
γip(t) + βipεip, (35c)

with δp ≥ λmax(M−1
p ) ≥ 0, (35d)

and γip(t0), γip(t0) > εip, (35e)
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which allows us a perfect comparisons with [31] under the same choice of design parameters. Please
note that the only di�erence between (11) and (9) is the special choice of the leakage gain, which
requires some knowledge of L∗p.

Let κ1 = 0.25, κ2 = 0.5, κ3 = 0.4 as in [31]. By solving (8), we get the following positive de�nite
matrices:

P1 =

 0.7337 −0.0162 −0.3781
−0.0162 0.0549 0.0800
−0.3781 0.0800 2.3960

 , P2 =

 0.5225 −0.0028 −0.0517
−0.0028 0.0092 0.0132
−0.0517 0.0132 1.9764

 ,

P3 =

 0.7942 −0.0063 −0.3177
−0.0063 0.0167 0.0241
−0.3177 0.0241 2.4767

 .
As explained in Remark 1, this implies that the same parameters for DT, MDDT, MMDDT

can be obtained as in [31]. Table 1 shows such parameters, whereas Fig. 1 shows three switching
signals satisfying the DT, MDDT and MMDDT requirements (such signals are the same as [31]).
We also provide three additional switching families which satisfy the ADT, MDADT and MDDADT
requirements: such signals have the same τ∗, τ∗p , and τ

∗
pq as DT, MDDT, MMDDT, and they only

di�er in terms of chattering bound. The chattering bound allows fast switching, compensate by
slow switching later on: this can be seen from the three switching signals depicted in Fig. 2. Then,

Table 2: Total RMS and transient RMS errors for the six switching laws (the transient RMS error is calculated for
one second after each switching).

DT ADT MDDT MDADT MMDDT MMDADT

Total RMS error

Method in [31] 0.1295 0.1257 0.1172 0.1116 0.1369 0.1353
Proposed method 0.1153 0.1123 0.0895 0.0876 0.1195 0.1176
Improvement 11.0% 10.7% 23.6% 21.5% 12.7% 13.1%

Transient RMS error

Method in [31] 0.1904 0.1893 0.1930 0.1938 0.2009 0.1520
Proposed method 0.1085 0.0785 0.1398 0.1382 0.1293 0.0820
Improvement 43.0% 58.6% 27.6% 28.7% 35.7% 46.1%

we consider for the proposed adaptation laws (9) the same design parameters as [31], i.e. the
adaptive gains S1 = S2 = S3 = 10I4×4, and the leakage rates δ1 = δ2 = δ3 = 0.05. What is left
to design in (9) are the parameters for (9c) which are taken εip = 0.1, βip = 2 with i = 1, 2, 3, 4.
The initial conditions are x(0) = [0 0 0]T , xm = [2 2 1]T ,Kp(0) = 0.8K∗p , Lp(0) = 0.8L∗p,
the disturbance is d(t) = [0.2 sin(10t) 0.15e−t 0.1 cos(πt)], and the reference input is r(t) =
[2 sin(t) cos(t) 0.5 sin(0.5t) 0]T .

The comparison in terms of tracking errors are depicted in Figs. 3-5, for all six switching signals
of Figs. 1-2 (upper plots are the tracking errors for the approach in [31], lower plots are the tracking
errors for the proposed approach). From the lower plots of each �gure, it is noticeable that the
learning transients of the proposed methods are considerably reduced, in contrast with the method
of [31]. This con�rms that the bad e�ects of vanishing gains are alleviated. On the other hand,
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it has to be acknowledged that the learning transients are not completely removed because the
adaptive gain Γσ evolve during inactive times. However, the intuition of Remark 7 is con�rmed,
i.e. the feedforward term Γσ has less e�ect on transient performance than the feedback gain Kσ in
[31].

The performance improvements are quanti�ed in Table 2 and visualized in Fig. 9, which show
that not only the total Root Mean Square (RMS) error is reduced, but especially the transient RMS
error is sensibly reduced. The transient RMS error is calculated for one second after each switching,
as a way to measure the learning transients. The table shows that the improvement in terms of
transient is much more pronounced than the improvement over the whole simulation: notice how
the transient improvements range in 27-58%, depending on the switching signal.

5.3. Additional simulations

To further elaborate on consistency of the proposed result, we test a di�erent leakage action,
i.e. we test the proposed adaptive laws (9) against the state-of-the-art adaptive laws (11), where
the terms δpMp and δpMp are replaced with δp and δp, respectively. This leakage action represents
the case whenMp is unknown and thus cannot be used for control design. All the other parameters
are left unchanged. The results are summarized in Table 3 and visualized in Fig. 10 (the plots are
not shown for compactness): again, consistent improvements can be noticed. The improvements in
terms of total RMS error are sometimes smaller than before, while transient improvements range
in 36-82%, depending on the switching signal.

Table 3: Total RMS and transient RMS errors for the six switching laws with alternative leakage term(the transient
RMS error is calculated for one second after each switching).

DT ADT MDDT MDADT MMDDT MMDADT

Total RMS error

Method in [31] 0.0997 0.0990 0.0796 0.0776 0.1018 0.0998
Proposed method 0.0952 0.0961 0.0605 0.0620 0.0971 0.0960
Improvement 4.5% 2.9% 24.0% 20.0% 4.6% 3.8%

Transient RMS error

Method in [31] 0.1738 0.1564 0.1364 0.1320 0.1437 0.0871
Proposed method 0.0794 0.0285 0.0787 0.0793 0.0907 0.0556
Improvement 54.3% 81.8% 42.3% 39.9% 36.9% 36.2%

6. Conclusions

This paper proposed a new adaptive framework based on leakage mechanism for the robust
control of uncertain switched linear systems. Owing to introduction of an auxiliary gain, the
proposed framework allows the adaptive gains of the inactive subsystems to keep the same values
as switched-o�: this is in clear contrast with the state of the art where the control gains of the
inactive subsystems should vanish during inactive times. This innovation sensibly reduces the
learning transient at switched-on instants for various families of dwell-time based switching signals
(and their extensions).
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Figure 1: Switching signal based on DT, MDDT, MMDDT

0 6 12 18 96 120 144 168 192

1

2

3

Switching signal based on ADT.

0 3 7 111417 86 98 112 129 143 155 169 181 198

1

2

3

Switching signal based on MDADT.

0 7 101215 1921 49 67 102 119 137 150 166 189

time (s)

1

2

3

Switching signal based on MDDADT.

Figure 2: Switching signal based on ADT, MDADT, MMDADT
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Figure 3: Tracking error for DT switching law
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Tracking error with MDDT for the leakage mechanism [28].
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Figure 4: Tracking error for MDDT switching law
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Tracking error with MMDDT for the leakage mechanism [31].
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Figure 5: Tracking error for MMDDT switching law
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Figure 6: Tracking error for ADT switching law
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Figure 7: Tracking error for MDADT switching law
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Figure 8: Tracking error for MMDADT switching law
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Figure 9: Visualization of the comparative results in Table 2.
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Figure 10: Visualization of the comparative results in Table 3.
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