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Iterative Robust Experiment Design for MIMO System Identification
via the S-Lemma

Nic Dirkx!, Koen Tiels2, and Tom Oomen

Abstract— Optimal input design plays an important role in
system identification for complex and multivariable systems.
A known paradox in input design is that the optimal inputs
depend on the true but unknown system. The aim of this paper
is to design inputs for multivariable systems that are robust to
all system variations within a given continuous uncertainty set.
In the presented approach, the robust design problem is cast
as an infinite-dimensional min-max optimization problem, and
tackled via the S-lemma in an iterative approximation scheme.
Experimental results from a multivariable motion system show
that the algorithm enables significant robustness improvements.

I. INTRODUCTION

Good design of system identification experiments is an
essential step towards high-quality identified models. This
applies especially to complex multiple inputs multiple out-
puts (MIMO) systems such as wafer stages [1]. Optimal
experiment design consists in a systematic approach for
the design of inputs that maximize model accuracy within
limited experimental resources. The topic of optimal exper-
iment design has seen much research over the past decades,
including [2], [3], and more recent surveys [4] and [S].
Paradoxically, an inherent issue in experiment design for
system identification is that the optimal inputs depend on
the true system itself, which is unknown prior to the iden-
tification experiment. In the majority of literature, this issue
is circumvented by using a (point) estimate of the true
system [6], e.g., in [7], [8]. In the presence of uncertainty in
the estimated model, such nominal design approaches lack
performance guarantees in view of the true system.

The aim in robust experiment design is to explicitly ad-
dress the uncertainties in the prior model. The most widely
considered approach is to design inputs that are worst-
case optimal with respect to a model set that includes the
true system, leading to a min-max design [9], [10], [11].
Typically, the model set is described as a compact continuous
set, by which the design problem becomes a semi-infinite
program (SIP), i.e., an optimization problem over a finite
number of decision variables but with an infinite-dimensional
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constraint set. Such problems are generally difficult to solve
and potentially NP-hard [12]. This makes robust experiment
design a complicated task in general.

To handle the complexity in robust experiment design, sev-
eral techniques have been developed that involve discretiza-
tion of the continuous uncertainty set. In [11], the uncer-
tainty set is gridded after which the problem is solved via
standard convex optimization. In [13], a scenario approach is
presented wherein the continuous uncertainty set is approx-
imated by a finite number of constraints that are randomly
selected. A drawback of these approaches is that the required
size of the finite subset is typically large [13], which comes
with a substantial computational burden [14]. In [15], an
exchange algorithm is presented where in each iteration
only the active constraints are maintained. This reduces the
computational load, yet at the expense of accuracy.
Departing from discretization approaches, in [16] a separa-
tion of graph framework is used to substitute the infinite-
dimensional constraint by a different one that implies the
original constraint. While this enables providing hard robust-
ness guarantees, the substitution comes with conservatism.
Further, the approach is limited to a specific design criterion
and single input single output (SISO) systems. In [10], the
infinite-dimensional constraints are preserved by exploiting
sum of squares formulations. The method involves intro-
ducing high-order auxiliary polynomials in the optimization
program, which selection is non-straightforward, and gives
rise to numerical complexities.

Although important developments have been made in the
design of robust experiments, tractable design approaches for
complex MIMO systems are scarce. The aim of this paper is
to present a robust experiment design approach for complex
MIMO systems, that does not require the inclusion of a large
number of constraints or auxiliary parameters.

The contributions of this paper are:

1. An iterative robust experiment design algorithm for
system identification of multivariable systems, based on
the S-lemma,

2. An experimental validation on a MIMO motion system.

Throughout, proofs are omitted to conserve space.

Notations Operation J(X) denotes the real part of X,
and X = conj(X). Operator ® denotes the Kronecker

product. Tr(X) is the trace. For X = [Xi,...,X,]
with X; € C™ i = 1,...,n, operation vec(X) =
(xT,... ,X};]T. The operation diag ([X71, ..., X,]) results
in a block-diagonal matrix with X;, ¢ = 1,...,n on its

block-diagonal.
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II. PROBLEM FORMULATION
A. Complex mechatronic systems

Complex MIMO mechatronic systems are considered,
such as the next-generation wafer stage system in Fig. 1.
To perform fast motion tasks, the stage is designed to be
lightweight. As a consequence, it exhibits complex dynamic
behavior, e.g., due to mechanical flexibilities. To achieve
extreme positioning performance, the stage is equipped with
8 actuators and 7 sensors, enabling explicit control of internal
flexibilities [17]. Accurate system identification demands
experiment design techniques that can handle such complex
MIMO systems. In this paper, a robust experiment design
approach for such systems is presented.

B. Identification framework

Consider the MIMO true system with inputs © € R™ and
outputs y € R"v,

S y(t) = Golq)u(t) + Ho(q)e(t) ey

where G,(g) is a n, x n, stable transfer function matrix
(TEM) and q is the forward shift operator qu(t) = u(t + 1).
Furthermore, e € R™v represents measurement noise, char-
acterized as an independent and identically distributed (iid)
standard normal random sequence with covariance A, and
H,(q) is a n, X n, stable inversely monic TFM representing
the noise dynamics.

The true system is identified within the model structure

M y(t) = Glg, 0)ult) + H(g, 0)e(t), 2)

with 6 = [pT MT}T € R™, where p € R™ and p € R
represent the parameters in G and H, respectively. It is
assumed that the true system is within the model set, i.e.,
there exists a parameter 6, such that G(q,0,) = G,(q) and
H(Q7 00) = HO(Q)~

The right matrix fraction description (RMFD) parametriza-
tion for G(q, p) and H(q, p) is considered,

G(q,p) = N(q,p)D (g, p),
H(q, 1) = Nu(q. p) Dy (g, ).

where N(q,p) € R™w>™ D(q,p) € R"™*™ Ng(q,p) €
R™*™ Dpg(q,p) € R™*™ are real polynomial matrices,
affinely parametrized in p and u, respectively. Furthermore,
D(q,p),Nu(q,p), and Dg(q, p) are monic.

The covariance error in the estimates 6 of any parametric
estimator is lower bounded by the Cramér-Rao lower bound,
i.e., cov 0 = M, , where My, is the Fisher information
matrix [3]. For the 1ndependent parametrization in (3), the
information matrix is of the block-diagonal form My, =
diag([M,,0, M, ,]) [18]. Often, the main interest is in the

p,05
part M, ,, i.e., the part related to the plant model G (g, p). For
the multivariable system (1), the matrix M, , is expressed

as M, , = M(0,,®,), where [6]

—?R/ FH (¢,0

with NV the sample size, ®,,

3)

M(6,,®.,) (Pu @A) F(g, 00)dw, (4)

the input spectrum, and

F(a,0) = (In, ® H™(q,0)) Ac(q,9),
Aclg,0) = avecéiW' 5)

999

Fig. 1.

Next-generation wafer stage setup.

Expression (4) shows that the lower bound on the achievable
covariance in the parameter estimates is determined by the
input spectrum ®,,. Also, it appears from (4) that this bound
depends on the true but unknown parameter 6,,. In this paper,
optimal design of the input spectrum ®,, is considered that
is robust to the uncertainty in 6,.

C. Robust experiment design problem

Optimal experiment design consists in computing an input
spectrum @, that achieves optimal model quality, in some
sense, while respecting possible limitations in experimental
resources, e.g., bounded inputs or outputs.

Two choices of quality measures are considered. The
first measure is the parameter covariance matrix defined
as Cyp(0,,D,) M~1(0,,®,). The second measure
is the frequency-wise covariance of the identified model

Ca(q,0,,P,) = cov(vec(G(q,Go)) , which is estimated
using a first-order Taylor approximation as [7],

CG(q7 eoa cI)u) - AG(Q, 00)09(907 (bu)Ag(qa eo)a

(6)

with Ag in (5). A typical property of input spectrum design
is that the optimal spectrum depends on the true but unknown
system parameter 6, as reflected by (6). In this paper, it is
assumed that the true parameter 6, is unknown, but is known
to lie with a-probability within the ellipsoid

Oinic = {9 el My € < Xi(no)}a @)

with € := 6 — 6y, and X2 (ng) denoting the a-probability
level for a x? distribution with ny degrees of freedom.

The goal in this paper is to design an input spectrum ®,, that
maximizes the model accuracy in a worst-case sense with
respect to the initial uncertainty region (7). Specifically, the
following robust design problem is considered,

mirgir’l’iyze ~y

subject to )]
Cx (ejw,e,(I)u(w)) <7y, wef, 0 € Omit
Pu(®y(w)) + why(0, @y (w)) <1, 0 € Ounit, &)

where X € {0,G} and Q = (—m, 7] and w is a user-
selected weight. For the choice X = G, the objective is the
minimization of the largest eigenvalue of the worst-case plant
frequency-wise covariance, see (6). For the choice X = 6,
the objective becomes an E-optimality criterion [19].

The constraint (9) reflects limited experimental resources,
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given by the weighted sum of the input power P, and output
power P, where

1 ™
P =5 [ () o
L (10)
Py(6,2.) = o / Tr(Ga, 0)2,(0)C" (4.0)) e,

and w > 0 a user-defined weight.
The key difference between the robust design problem (8)
and nominal input design is that the constraints in (8) are
evaluated over the uncertainty set Oj,;, while in nominal
design these are evaluated around a point estimate of 6,.
Problem (8) involves the optimization of the infinite-
dimensional decision variable ®,(w) over an infinite-
dimensional constraint set O;,;;. In the next section, the deci-
sion variable is discretized to obtain a tractable formulation.

D. Finite spectrum parametrization

To obtain a tractable formulation of (8), the infinite-
dimensional spectrum ®,, is parametrized as that of a mul-
tisine signal at frequencies w,,, m =1,...,L, i.e., [16]

L
Duw) =7 Y Do (8w = wm) + 0w +wp)), (A1)

where ®,, € H'*,¥m and ¢ is the unit impulse function.
Using (11), the information matrix M (6, ®,,) in (4) becomes

L S—
M(0,8) = NR S F (g, 0) (3 @ A7) Flam,0),  (12)
m=1

where ¢,, = e’“m, and the power P = P, + wP, becomes

L
PO,%) =3 Tr(ci>m + WG (G, 0) B G (g, 9)). (13)
m=1

With these finite parametrizations, the problem (8) becomes
a semi-infinite program (SIP) [12], i.e., an optimization
problem over a finite number of decision variables but with
an infinite-dimensional constraint set. SIPs are generally
difficult to solve in exact sense [12]. In the next section,
an iterative robust experiment design algorithm is presented
that solves (8) approximately.

ITII. ROBUST EXPERIMENT DESIGN ALGORITHM
A. Main idea: Iterative robust design via the S-lemma

The presence of the infinite-dimensional constraint 6 €
Oinit renders (8) a complex problem to solve. Commonly, the
set constraint is (iteratively) approximated by a finite subset,
e.g., [13], [15]. In this paper, the constraint € € Ojpy is
not approximated but addressed in its infinite-dimensionality.
Instead, the program (8) is approximated iteratively by a
sequence of convex programs of the form

minimize -y
D,y
subject to f(qm,e,(i),v) >0 Vm, €€ Oy (14)
g(57 éfy) Z 07 €€ ®init7

that are solved exactly at each iteration. Here, the functions
f, g are quadratic approximations to the constraints in (8).

The key existing technical result that is employed to solve
(14) is the S-lemma [20], which provides conditions under
which the non-negativity of one quadratic function is a
consequence of another one. Since, by virtue of (7), the
constraint € € Oy in (14) is quadratic, the following result
is due to the S-lemma.

Lemma 1: Given the quadratic function

=[]« []

Then, f(s) > 0 for all € € Oy, with Oy given by (7), if
and only if there exists a scalar 8 > 0 such that

where £ = diag( [~ Mit, X%(no)]).

When the functions f , g are constructed to be convex in L)
and v, Lemma 1 enables formulating and solving (14) as a
convex program. Hence, suitable selection of the functions
f,g is crucial to facilitate solving (14) on the one hand,
and ensuring that (14) reflects the original problem (8). To
achieve this, program (8) is first recast as a convex SIP that
is affine in the decision variables in the next section.

15)

(16)

B. Reformulation to convex SIP

To enable approximating the input design problem by the
form (14), the original program (8) is reformulated such
that the constraints become affine in the decision variables.
Exploiting the finite spectrum parametrization (8), the perfor-
mance constraint in (8) is reformulated as an affine function
in ® by applying the Schur complement:

- ~ 1

with Rx (q,0) = A¥(q,0)Ax(q,0) and Ay = I. Addition-
ally, introducing the coordinate transform ¥ = ~® enables
expressing (8) exactly as the convex SIP,

minimize -y
Wy

subject to, for 6 € Ojpi;, (17)
9(0,,7) = —P,(¥) —wP,(6,¥) + >0,

with o the smallest eigenvalue. In the next section, quadratic
approximation functions to f,g in (17) are presented that
enable solving (17) approximately using the S-lemma.

C. Quadratic approximations of f and g

In this section, the quadratic approximation functions f.q
of f,g in (17) are presented.
To approximate the nonlinear function f by a quadratic
function f of form (15), first the information matrix M (6, ¥)
is approximated. To this end, the term F(q, 0. + ¢) in (5)
is approximated by a first-order Taylor expansion around the
point 6, as

]:<Qa 0., 5*) = -7:((]7 9*) + (In & EZ)VGI(Q79*)7 (18)

1000
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where €, = 0 — 0. and n = n,n,.

To express the deviations around 6, to deviations around
the center 6;,;; of Ojnir, the coordinate transformation ¢, =
€ + (Oinit — 6) is imposed onto (18). This yields

F(q,04,6) = Fi(q,0.) + Fa(q, b4, ), (19)
where

Fila0.) = F(g,0.) + (In @ (i — 0.)7 ) VoF(.6.),
Folq,0s,6) = (I, @ ")V F(q,04).
This gives rise to the approximated information matrix

L —_
=NR Z ﬁH(qm,H*,e)(\iJm ® Afl)]t'(qm,e*,e).

m=1

M (6.,e,0)

Following the same procedure, the matrix Rx in (17) is
approximated as
RX (q7 9*7 E) = A%(qa 9*7 E)AX (qa 6*, E)'

Exploiting these approximations, the function f(q,0,,e,0)
represents the smallest eigenvalue of M — Rx via

Fa.0.e,0) = U (N1(0,,2,9) = Rx(q,0.,0) U, @)

(20)

where U(q, 0., \il) € C" is the eigenvector corresponding
to the smallest eigenvalue of M (6.,e,¥) — Rx(q,0.,¢) at
the point . The arguments of ¢/ in (21) have been omitted
for notational brevity. Rearranging terms allows expressing
f in (21) as the quadratic function,

T
(40,6, 9) = m As(g.6.,0) m , @)

where
L

A =N Y2 (G 0e, W) (W @ A1) 24 (G, 00, U1)

m=1

- Zg(q7 9*7 qj)ZX((L 9*7 qj)
(23)

with
Zp =|(
Zx =]

Iﬂ,®uT(q797®))v9F(q7 9) fl(q7 ) (q79 \I})]
L, @ U™ (q,0,9))VeAx(q,0) Ax,(g,0.)U(q,0,F)].

Similarly, the quadratic approximation function g of g in (17)
is constructed as

§(6.,2,0,9) = mTAg(H*,\Il,y) H |

The derivation of A, is omitted due to space limitations. The
function f in (22) has the following properties:

Lemma 2: The approximation function f in (22) has the
following properties:

(24)

i. The approximation is exact at the point 0, i.e.,
f(bi,e,¥) = f(9*7\I/)f0r5—0 — b,

ii. The Jacobian V.f(0.,e, %) = Vo f(8,9) at the point
{0,¢} ={0.,6. —0,}. 3
. Define 0y . = argmingcg.  f(6, V). The approxima-
tion function f attains the same minimum as f, i.e.,
lnfgeelml f(9 \I/) lnfgeemn f(@f wes €, \I/)

A similar result applies to the function g in (24).
The approximation functions f, g are exploited in the robust
experiment design algorithm in the next section.

D. Robust experiment design algorithm

In this section, the robust experiment design algorithm is
presented to approximately solve (17).
The approximations f,g in (22), (24) are quadratic in ¢,
which enables evaluation of the conditions f > 0, g > 0 over
the ellipsoidal set Ojp;, by virtue of Lemma 1. However, the
complexity that arises in view of input design (14) is that
these functions are non-linear and non-convex functions of
the inputs W. The reasons are twofold: 1) the worst-case
parameters 0w and 0, . are non-convex functions of U,
and 2) the eigenvectors U(q, 0¢,we, ¥) in (21) are non-convex
in 0 . and . Differently stated, the points 0 yc, 0g we and
the eigenvectors U depend on the solution W, and cannot be
determined before the problem (14) is solved.
This dependency is resolved by an iterative procedure, where
the parameters {Hf we, Og, WC,L{ } are based on a previous
iteration. Let the function f (] be defined as

Fol(g, e 0,) = [i] A [f].

where ,AE;T] (¢,®) is of the form (23) but with Z;(gq,6, )
and Zx(q,0, ) substituted by the fix matrices
z{(q)
Z(g)

(25)

= Zf(Qv 050 lvc’ ij[m])v

= ZX(Qvgngwca D I])

As aresult, (25) becomes convex in 0. Likewise, the function
G(04,2,%,~) is convex in the variables ¢, ¥, and v when

evaluated at a fix point 9;73‘,0.

The obtained convex approximation functions are exploited

in Algorithm 1. The algorithm alternates between updating

{0 .we,0g.we,U} based on a previous (candidate) solution,

and solving the following convex program,

(26)

mlnlmlze ¥+ Tn
\IJ’Y;Bf ﬂq i

subject to, for x = a, b :

R (A (g, D)
 \dm;

R (A0, ,4)) - Bllg = 0,

m o ‘111[—71]

27
— e +nT =0, m=1,...,L,

<e, m=1,...,L, (28)

3,81, 88 > 0,9, = 0,

where Z = diag([01,ny+1;- - -
Kronecker delta.

Program (27) computes, by virtue of Lemma 1, the spectrum
U that satisfies f1*) + 71 >0 and gl"l > 0 for e € Oy for
the smallest value of 4 + 7n2. Herein, the second term is
a penalty term, where 7 > 0 and 7 is a slack variable that
softens the first constraint in (27) to ensure that the program
is feasible in each iteration.

The approximations in (27) depend on the prior iterations
([a]) and prior candidate solutions ([b]). To achieve accurate

a5n9+1,n9+1]) with 5i,j the

1001
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Algorithm 1 Robust Experiment Design

Input: Initial data: W[ HE‘OIVC79£;0]‘VC7 O], Algorithm

parameters: « € (0,1),7 > 0,€¢ > 0. Output: W7,

1: Initialize Set i = 1,v = 0.

2: Loop

32 Setla] =1[b]=[i—1].

4:  Compute candidate solution:

5 Set step size: € = KV - €l0. )

6 Solve program (27) to obtain candidate W[*],

7 Global search: determine points 9; L,C, Hgfwc and

Gue = g(OF e, BID), 414 = f(agc*] ),

8 Make feasible: W*l « min(%, 1)l

9: Compute true performance: y* = f (9}*)1”0, W),

10: if A < Al ' _

11: Accept candidate: {Wl 417 ol oll}
(B0 A1, 00 05 ke

12: Update step size parameter: v < max(v — 1,0).

13: Advance i 7 + 1.

14: else

15: Update step size parameter: v <— v + 1.

16: Set [b] + [].

17: Return to line 4.

18: end if

approximations, the constraint (28) controls the stepsize, i.e.,
the distance between the new and the previous solution.
Algorithm 1 consists in, at each iteration ¢, the computation
of a candidate spectrum Wyl (lines 6 - 8) that satisfies
the constraint on the true power, and improves the true
performance ~*1 upon the prev10usly achieved performance
Z 1 (line 10). The true parameters 6 e Ggﬂw are obtained
by a global search strategy (line 7). Spemﬁcally, the set Oipit
is uniformly randomly sampled, where sufficiently dense
sampling is assumed.
If a candidate solution does not improve performance (line
14), the step size parameter € in (28) is reduced (lines 15 and
5). In addition, constraints based on the candidate solution
are added to the program (27) via line 16.
The behavior of Algorithm 1 is characterized as follows.
Theorem 1: Algorithm 1 has the following properties:

i) Program (27) is feaszble in each iteration i > 1.

i) The sequence {Wf } is monotonically non-decreasing.
In the next section, the algorithm is confronted with an
experimental motion system.

IV. EXPERIMENTAL CASE STUDY
A. Experiment description

1) Experimental setup: The presented approach is applied
for input design of the steel beam in Fig. 2. The system
exhibits predominant flexible dynamics, hereby mimicking
the behavior of the next-generation wafer stage in Fig. 1.
The beam has a translational and rotational motion degree
of freedom, and is equipped with three voice-coil actuators
and three contactless fiberoptic sensors.

2) Initial model: An initial 16th-order model Gj,; and un-
certainty set Oy, are estimated from an initial identification
experiment. The frequency response of the (ys, us)-entry of
Ginit 18 shown in (=) in Fig. 3. The system shows flexible
behavior originating from six lightly damped flexible modes.

3) Goal: The goal in this case study is to compare input
designs from three different design approaches:

a) Nominal design: Solution to program (8), where the set
constraint § € Oy is replaced by the point constraint
0 = Oinii. The nominal spectrum is scaled to robustly
satisfy the power constraint.

b) Robust design - SA: Solution to program (8), where the
set constraint § € Oy, is replaced by a finite subset
Osample C Oini that is augmented at each iteration with
a random sample from Ojy.

c) Robust design - Algorithm 1 as presented in this paper.

E-optimality is considered, i.e., Cx = Cy in (8).

4) Settings: The frequency grid contains L = 100 fre-
quencies. The settings used for approach c) are k = 0.8,
el = 0.1L, w = 10%, and n = 10. The spectrum computed
from the nominal approach a) is used as the initial spectrum
in approaches b) and c).

B. Results

1) Convergence: The performance, in terms of the inverse

of v, e, /vy = 0o (M(G,@)), achieved by the different
approaches is compared in Fig. 4. The values are based on the
worst-case results from a Monte-Carlo analysis with 10.000
samples drawn randomly from Oj.
Algorithm 1 (—) shows monotonically non-decreasing per-
formance. A factor 1.8 improvement compared to nominal
design (- -) is achieved. Also, it outperforms the SA (—) for
Niter < 40. In the limit case Njer — 00, the SA (—) achieves
a factor 1.06 better performance (- -) than Algorithm 1 (- -).
However, the computational burden of the SA is large, since
it involves extending the constraint set at each iteration.

2) Monte-Carlo analysis: The distribution of the sam-

pled performance indicators o (M (9,@)) and the powers

P(0, \i') obtained from the Monte-Carlo analysis is compared
in Fig. 5. The nominal design (N) shows a long-tailed dis-
tribution in both the performance and the power. Algorithm
1 (m), for 40 iterations, renders a denser distribution, which
enables an average power increase and in turn an improved
robust performance. The distribution of the SA in the limit
case is the most dense and yields the highest performance.
This is expected behavior, since the SA converges to the
global optimum in the limit Nje — co.

3) Spectrum: The input spectra are compared in Fig. 3.
The nominal spectrum (—) has its energy highly concentrated
around the resonance frequencies. The energy is more dis-
tributed in the spectrum obtained from Algorithm 1 (—) to
achieve robustness to model uncertainty. Similar observations
are made for the SA approach, but the results are not depicted
to retain clarity in Fig. 3.

Overall, this case study demonstrates that Algorithm 1 pro-
vides a viable approach to robustify input spectrum design.
The achieved performance in the limit Nje, — oo is lower
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Fig. 2. Flexible beam (yellow) with actuators u; and sensors ;.
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Fig. 3. Top: Entry of Gipit(3, 3) including 95% confidence region. Bottom:
Nominal spectrum (—) and robust spectrum using Algorithm 1 (—).

than using the SA, yet Algorithm 1 avoids the the inclusion
of many constraints and the associated computational cost.

V. CONCLUSIONS

The method presented in this paper enables input spectrum
design for high-quality identification for complex MIMO
systems that is robust to ellipsoidal parametric uncertainty
in the nominal plant model. The iterative algorithm alter-
nates beween solving a convex approximate program and
updating the approximation functions. The method avoids
the discretization of the infinite-dimensional uncertainty set,
as well as the inclusion of a large number of constraints in
the optimization program, both of which are encountered in
existing approaches such as the scenario approach. Experi-
mental confrontation with a flexible beam setup shows that
the method enables a significant robustification and achieves
a performance close to that of the scenario approach.
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