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In this paper we prove a randomized difference norm charac-
terization for Bessel potential spaces with values in UMD 
Banach spaces. The main ingredients are R-boundedness 
results for Fourier multiplier operators, which are of indepen-
dent interest. As an application we characterize the pointwise 
multiplier property of the indicator function of the half-space 
on these spaces. All results are proved in the setting of 
weighted spaces.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Vector-valued Sobolev and Bessel potential spaces are important in the Lp-approach 
to abstract evolution and integral equations, both in the deterministic setting (cf. e.g. 
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[1,40,63]) and in the stochastic setting (cf. e.g. [10,55,56]). Here a central role is played by 
the Banach spaces that have the so-called UMD property (unconditionality of martingale 
differences); see Section 2.1 and the remarks below. The class of Banach spaces that have 
UMD includes all Hilbert spaces, Lp-spaces with p ∈ (1, ∞) and the reflexive Sobolev 
spaces, Triebel–Lizorkin spaces, Besov spaces and Orlicz spaces.

Let X be a Banach space, s ∈ R and p ∈ (1, ∞). The Bessel potential space Hs
p(Rd; X)

is defined in the usual Fourier analytic way via the Bessel potential operator Js =
(I − Δ)s/2 based on the Lebesgue–Bochner space Lp(Rd; X); see Section 2.3. If X has 
UMD and k ∈ N, then we have Hk

p (Rd; X) = W k(Rd; X), where W k
p (Rd; X) denotes the 

k-th order X-valued Sobolev space on Rd with integrability parameter p; see [23], which 
also contains some converse results in this direction. Furthermore, if X has UMD and 
s = k + θ with k ∈ N and θ ∈ [0, 1), then Hs

p(Rd; X) can be realized as the complex 
interpolation space

Hs
p(Rd;X) = [W k

p (Rd;X),W k+1
p (Rd;X)]θ.

In the scalar-valued case X = C, Strichartz [51] characterized the Bessel potential 
space Hs

p(Rd) = Hs
p(Rd; C), with s ∈ (0, 1) and p ∈ (1, ∞), by means of differences. The 

characterization says that, for every f ∈ Lp(Rd; C), there is the equivalence of extended 
norms

||f ||Hs
p(Rd;C) � ||f ||Lp(Rd;C) +

∣∣∣∣∣∣( ∞̂

0

t−2s
[
t−d

ˆ

B(0,t)

||Δhf ||C dh
]2 dt

t

)1/2∣∣∣∣∣∣
Lp(Rd)

, (1)

where Δhf = f( · +h) −f for each h ∈ Rd. This extends to Hilbert spaces [60, Section 6.1]. 
In fact, given a Banach space X, the X-valued version of (1) is valid if and only if X is 
isomorphic to a Hilbert space. Indeed, the X-valued version of the right-hand side of (1)
defines an extended norm on Lp(Rd; X) which characterizes the Triebel–Lizorkin space 
F s
p,2(Rd; X) [48, Section 2.3]. But the identity

Hs
p(Rd;X) = F s

p,2(Rd;X), (2)

i.e. the classical Littlewood–Paley decomposition for Bessel potential spaces, holds true 
if and only if X is isomorphic to a Hilbert space [17,46]. However, if X is a Banach space 
with UMD, then one can replace (2) with a randomized Littlewood–Paley decomposition 
[39] (see (13)), an idea which for the case s = 0 originally goes back to Bourgain [5] and 
McConnell [33]. In [39] this was used to investigate the pointwise multiplier property 
of the indicator function of the half-space on UMD-valued Bessel potential spaces. The 
randomized Littlewood–Paley decomposition will also play a crucial role in this paper to 
obtain a randomized difference norm characterization for UMD-valued Bessel potential 
spaces; see Theorem 1.1.
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Since the early 1980’s, randomization and martingale techniques have played a fun-
damental role in Banach space-valued analysis (cf. e.g. [7–9,23,24,20,27,28,45,58]). In 
particular, in Banach space-valued harmonic analysis and Banach space-valued stochas-
tic analysis, a central role is played by the UMD spaces. Indeed, many classical Hilbert 
space-valued results from both areas have been extended to the UMD-valued case, and 
many of these extensions in fact characterize the UMD property. In vector-valued har-
monic analysis, (one of) the first major breakthrough(s) is the deep result due to Bourgain 
[3] and Burkholder [6] that a Banach space X has UMD if and only if it is of class HT , i.e. 
the Hilbert transform has a bounded extension to Lp(R; X) for some/all p ∈ (1, ∞). As 
another major breakthrough we would like to mention the work of Weis [61] on operator-
valued Fourier multipliers on UMD-valued Lp-spaces (p ∈ (1, ∞)) with an application 
to the maximal Lp-regularity problem for abstract parabolic evolution equations. A cen-
tral notion in this work is the R-boundedness of a set of bounded linear operators on 
a Banach space, which is a randomized boundedness condition stronger than uniform 
boundedness; see Section 2.1. In Hilbert spaces it coincides with uniform boundedness 
and in Lp-spaces (p ∈ [1, ∞)), or more generally in Banach function spaces with finite 
cotype, it coincides with so-called �2-boundedness. It follows from the work of Rubio 
de Francia (see [42–44] and [12]) that �2-boundedness in Lp(Rd) (p ∈ (1, ∞)) is closely 
related to weighted norm inequalities; also see [11].

Randomization techniques also play an important role in this paper. As already men-
tioned above, we work with a randomized substitute of (2). This approach naturally leads 
to the problem of determining the R-boundedness of a sequence of Fourier multiplier 
operators. The latter forms a substantial part of this paper, which is also of independent 
interest; see Section 3.

The results in this paper are proved in the setting of weighted spaces, which includes 
the unweighted case. We consider weights from the so-called Muckenhoupt class Ap. This 
is a class of weights for which many harmonic analytic tools from the unweighted setting 
remain valid; see Section 2.2. An important example of an Ap-weight is the power weight 
wγ , given by

wγ(x1, x
′) = |x1|γ , (x1, x

′) ∈ Rd = R× Rd−1, (3)

for the parameter γ ∈ (−1, p − 1). In the maximal Lp-regularity approach to parabolic 
evolution equations these power weights yield flexibility in the optimal regularity of the 
initial data (cf. e.g. [34,35,38,41]).

The following theorem is our main result. Before we can state it, we first need to 
explain some notation. We denote by {εj}j∈N a Rademacher sequence on some proba-
bility space (Ω, F , P), i.e. a sequence of independent symmetric {−1, 1}-valued random 
variables on (Ω, F , P). For a natural number m ≥ 1 and a function f on Rd with values 
in some vector space X, we write
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Δm
h f(x) =

m∑
j=0

(−1)j
(
m

j

)
f(x + (m− j)h), x ∈ Rd, h ∈ Rd.

Theorem 1.1. Let X be a UMD Banach space, s > 0, p ∈ (1, ∞), w ∈ Ap(Rd) and m ∈ N, 
m > s. Suppose that

• K = 1[−1,1]d in the unweighted case w = 1; or
• K ∈ S(Rd) is such that 

´
R
K(y)dy �= 0 in the general weighted case.

For all f ∈ Lp(Rd, w; X) we then have the equivalence of extended norms

||f ||Hs
p(Rd,w;X) � ||f ||Lp(Rd,w;X)

+ sup
J∈N

∣∣∣∣∣∣ J∑
j=1

εj2js
ˆ

Rd

K(h)Δm
2−jhf dh

∣∣∣∣∣∣
Lp(Ω;Lp(Rd,w;X))

. (4)

Remark 1.2. If f ∈ Hs
p(Rd, w; X), then the finiteness of the supremum on the RHS 

of (4) actually implies the convergence of the sum 
∑∞

j=1 εj2js
´
Rd K(h)Δm

2−jhf dh in 
Lp(Ω; Lp(Rd, w; X)). Moreover, (4) then takes the form

||f ||Hs
p(Rd,w;X) � ||f ||Lp(Rd,w;X) +

∣∣∣∣∣∣ ∞∑
j=1

εj2js
ˆ

Rd

K(h)Δm
2−jhf dh

∣∣∣∣∣∣
Lp(Ω;Lp(Rd,w;X))

.

This follows from the convergence result [30, Theorem 9.29] together with the fact that 
Lp(Rd, w; X) (as a UMD space) does not contain a copy c0.

Remark 1.3. We will in fact prove a slightly more general difference norm characterization 
for Hs

p(Rd, w; X), namely Theorem 4.1, where we consider kernels K satisfying cer-
tain integrability conditions plus an R-boundedness condition. Here the R-boundedness 
condition is only needed for the inequality ‘�’. In the case m = 1 it corresponds to 
the R-boundedness of the convolution operators {f �→ Kt ∗ f : t = 2j , j ≥ 1} in 
B(Lp(Rd, w; X)), where Kt = tdK(t · ). For more information we refer to Section 4.2.

To the best of our knowledge, Theorem 1.1 is the first difference norm character-
ization for (non-Hilbertian) Banach space-valued Bessel potential spaces available in 
the literature. In the special case when X is a UMD Banach function space, the norm 
equivalence from this theorem takes (with possibly different implicit constants), by the 
Khintchine–Maurey theorem, the square function form

||f ||Hs
p(Rd,w;X) � ||f ||Lp(Rd,w;X) +

∣∣∣∣∣∣( ∞∑
j=1

∣∣ 2js ˆ K(h)Δm
2−jhf dh

∣∣2)1/2∣∣∣∣∣∣
Lp(Rd,w;X)

;

Rd
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see Section 4.4. In the unweighted scalar-valued case X = C, this a discrete version for 
the case q = 2 of the characterization [54, Theorem 2.6.3] of the Triebel–Lizorkin space 
F s
p,q(Rd) by weighted means of differences (recall (2)). Furthermore, in the unweighted 

scalar-valued case X = C, one can also think of it as a discrete analogue of Strichartz’s 
characterization (1).

As an application of Theorem 1.1, we characterize the boundedness of the indicator 
function 1Rd

+
of the half-space Rd

+ = R+×Rd−1 as a pointwise multiplier on Hs
p(Rd, w; X)

in terms of a continuous inclusion of the corresponding scalar-valued Bessel potential 
space Hs

p(Rd, w) into a certain weighted Lp-space; see Theorem 1.4. The importance of 
the pointwise multiplier property of 1Rd

+
lies in the fact that it served as one of the main 

ingredients of Seeley’s result [49] on the characterization of complex interpolation spaces 
of Sobolev spaces with boundary conditions. As an application of an extension of Seeley’s 
characterization to the weighted vector-valued case one could, for example, character-
ize the fractional power domains of the time derivative with zero initial conditions on 
Lp(Rd

+, wγ ; X).

Theorem 1.4. Let X �= {0} be a UMD space, s ∈ (0, 1), p ∈ (1, ∞) and w ∈ Ap(Rd). 
Let ws,p be the weight on Rd = R × Rd−1 given by ws,p(x1, x′) := |x1|−spw(x1, x′) if 
|x1| ≤ 1 and ws,p(x1, x′) := w(x1, x′) if |x1| > 1. Then 1Rd

+
is a pointwise multiplier on 

Hs
p(Rd, w; X) if and only if there is the inclusion

Hs
p(Rd, w) ↪→ Lp(Rd, ws,p). (5)

In Section 5.2 we will take a closer look at the inclusion (5). Based on embedding 
results from [37], we will give explicit conditions (in terms of the weight and the param-
eters) for which this inclusion holds true. The important class of power weights (3) is 
considered in Example 5.5.

In the situation of the above theorem, let w̄s,p be the weight on R × Rd−1 defined 
by w̄s,p(x1, x′) := |x1|−spw(x1, x′). Note that, in view of the inclusion Hs

p(Rd, w) ↪→
Lp(Rd, w), the inclusion (5) is equivalent to the inclusion

Hs
p(Rd, w) ↪→ Lp(Rd, w̄s,p).

In the unweighted scalar-valued case, the above theorem thus corresponds to a result 
of Triebel [53, Section 2.8.6] with q = 2, which states that the multiplier property for 
F s
p,q(Rd) (recall (2)) is equivalent to the inequality

||x �→ |x1|sf(x)||Lp(Rd) � ||f ||F s
p,q(Rd), f ∈ F s

p,q(Rd).

Similarly to Strichartz [51], who used (1) to prove that 1Rd
+

acts as a pointwise multiplier 
on Hs

p(Rd) in the parameter range
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− 1
p′

< s <
1
p
, where 1

p
+ 1

p′
= 1, 1

Triebel used a difference norm characterization in his proof. Our proof is closely related 
to the proof of Triebel [53, Section 2.8.6].

An alternative approach to pointwise multiplication is via the paraproduct technique 
(cf. e.g. the monograph of Runst and Sickel [47] for the unweighted scalar-valued set-
ting). Based on a randomized Littlewood–Paley decomposition, Meyries and Veraar [39]
followed such an approach to extend the classical result of Shamir [50] and Strichartz 
[51] to the weighted vector-valued case. They in fact proved a more general pointwise 
multiplication result for the important class of power weights wγ (3), γ ∈ (−1, p − 1), in 
the UMD setting, from which the case of the characteristic function 1Rd

+
can be derived. 

Their main result [39, Theorem 1.1] says that, given a UMD Banach space X, p ∈ (1, ∞)
and γ ∈ (−1, p − 1), 1Rd

+
is a pointwise multiplier on Hs

p(Rd, wγ ; X) in the parameter 
range

−1 + γ′

p′
< s <

1 + γ

p
, where 1

p
+ 1

p′
= 1, γ′ = − γ

p− 1 .

For positive smoothness s ≥ 0 this pointwise multiplication result is contained in Exam-
ple 5.5, from which the case of negative smoothness s ≤ 0 can be derived via duality.

The paper is organized as follows. Section 2 is devoted to the necessary prelimi-
naries. In Section 3 we treat R-boundedness results for Fourier multiplier operators 
on Lp(Rd, w; X). The results from this section form (together with a randomized 
Littlewood–Paley decomposition) the main tools for this paper, but are also of indepen-
dent interest. In Section 4 we state and prove the main result of this paper, Theorem 4.1, 
from which Theorem 1.1 can be obtained as a consequence. Finally, in Section 5 we use 
difference norms to prove the pointwise multiplier Theorem 1.4, and we also take a closer 
look at the inclusion (5) from this theorem.

Notations and conventions. All vector spaces are over the field of complex scalars C. 
|A| denotes the Lebesgue measure of Borel set A ⊂ Rd. Given a measure space (X, A , μ), 
for A ∈ A with μ(A) ∈ (0, ∞) we write

 

A

dμ = 1
μ(A)

ˆ

A

dμ.

For a function f : Rd −→ X, with X some vector space, we write f̃(x) = f(−x)
and, unless otherwise stated, ft(x) = tdf(tx) for every x ∈ Rd and t > 0. Given a 
Banach space X, we denote by L0(Rd; X) the space of equivalence classes of Lebesgue 

1 This result is originally due to Shamir [50]. However, Strichartz [51] in fact obtained this result as a 
corollary to a more general pointwise multiplication result (in combination with a Fubini type theorem for 
Bessel potential spaces).
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strongly measurable X-valued functions on Rd. For x ∈ Rd and r > 0 we write Q[x, r] =
x + [−r, r]d for the cube centered at x with side length 2r.

2. Prerequisites

2.1. UMD spaces and randomization

The general references for this subsection are [23,24,28].
A Banach space X is called a UMD space if for any probability space (Ω, F , P) and 

p ∈ (1, ∞) it holds true that martingale differences are unconditional in Lp(Ω; X) (see [7,
45] for a survey on the subject). It is a deep result due to Bourgain and Burkholder that 
a Banach space X has UMD if and only if it is of class HT , i.e. the Hilbert transform has 
a bounded extension to Lp(R; X) for any/some p ∈ (1, ∞). Examples of Banach spaces 
with the UMD property include all Hilbert spaces and all Lq-spaces with q ∈ (1, ∞).

Throughout this paper, we fix a Rademacher sequence {εj}j∈Z on some probability 
space (Ω, F , P), i.e. a sequence of independent symmetric {−1, 1}-valued random vari-
ables on (Ω, F , P). If necessary, we denote by {ε′j}j∈Z a second Rademacher sequence on 
some probability space (Ω′, F ′, P′) which is independent of the first.

Let X be a Banach function space with finite cotype and let p ∈ [1, ∞).2 The Khint-
chine–Maurey theorem says that, for all x0, . . . , xn ∈ X,

∣∣∣∣∣∣( n∑
j=0

|xj |2
)1/2∣∣∣∣∣∣

X
�

∣∣∣∣∣∣ n∑
j=0

εjxj

∣∣∣∣∣∣
Lp(Ω;X)

. (6)

In the special case E = Lq(S) (q ∈ [1, ∞)) this easily follows from a combination of 
Fubini and the Kahane–Khintchine inequality. Morally, (6) means that square function 
estimates are equivalent to estimates for Rademacher sums.

The classical Littlewood–Paley inequality gives a two-sided estimate for the Lp-norm 
of a scalar-valued function by the Lp-norm of the square function corresponding to its 
dyadic spectral decomposition. This classical inequality has a UMD Banach space-valued 
version, due to Bourgain [5] and McConnell [33], in which the square function is replaced 
by a Rademacher sum (as in (6); see the survey paper [20]). One of the main ingredients 
of this paper is a similar inequality for Bessel potential spaces, namely the randomized 
Littlewood–Paley decomposition (13).

Let X be a Banach space and p ∈ [1, ∞]. As a special case of the (Kahane) contraction 
principle, for all x0, . . . , xn ∈ X and a0, . . . , an ∈ C it holds that

∣∣∣∣∣∣ n∑
j=0

ajεjxj

∣∣∣∣∣∣
Lp(Ω;X)

≤ 2|a|∞
∣∣∣∣∣∣ n∑

j=0
εjxj

∣∣∣∣∣∣
Lp(Ω;X)

. (7)

2 A Banach space X has cotype q ∈ [2, ∞] if 
(∑n

j=0 ||xj ||q
)1/q � || ∑n

j=0 εjxj ||L2(Ω;X) for all x0, . . . , xn ∈
X. We say that X has finite cotype if it has cotype q ∈ [2, ∞). The cotype of Lp is the maximum of 2

and p. Every UMD space has finite cotype.
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A family of operators T ⊂ B(X) on a Banach space X is called R-bounded if there 
exists a constant C ≥ 0 such that for all T0, . . . , TN ∈ T and x0, . . . , xN ∈ X it holds 
that

∣∣∣∣∣∣ N∑
j=0

εjTjxj

∣∣∣∣∣∣
L2(Ω;X)

≤ C
∣∣∣∣∣∣ N∑

j=0
εjxj

∣∣∣∣∣∣
L2(Ω;X)

. (8)

The moments of order 2 above may be replaced by moments of any order p. The resulting 
least admissible constant is denoted by Rp(T ). In the definition of R-boundedness it 
actually suffices to check (8) for distinct operators T0, . . . , TN ∈ T .

A Banach space X is said to have Pisier’s contraction property or property (α) if 
the contraction principle holds true for double Rademacher sums (for some extra fixed 
multiplicative constant); see [28, Definition 4.9] for the precise definition. Every space 
Lp with p ∈ [1, ∞) enjoys property (α). Further examples are UMD Banach function 
spaces. However, the Schatten von Neumann class Sp enjoys property (α) if and only if 
p = 2.

A Banach space X is said to have the triangular contraction property or property (Δ) 
if there exists a constant C ≥ 0 such that for all {xi,j}ni,j=0 ⊂ X

∣∣∣∣∣∣ ∑
0≤j≤i≤n

εiε
′
jxi,j

∣∣∣∣∣∣
L2(Ω×Ω′;X)

≤ C
∣∣∣∣∣∣ n∑

i,j=0
εiε

′
jxi,j

∣∣∣∣∣∣
L2(Ω×Ω′;X)

;

see [26]. The moments of order 2 above may be replaced by moments of any order p. 
The resulting least admissible constant is denoted by Δp,X . Every space with Pisier’s 
contraction property trivially has the triangular contraction property. For vector-valued 
Lp-spaces we have Δp,Lp(S;X) = Δp,X . Furthermore, every UMD space has the triangular 
contraction property.

Let X be a Banach space. The space Rad(X) is the linear space consisting of all 
sequences {xj}j ⊂ X for which 

∑
j∈N

εjxj defines a convergent series in L2(Ω; X). It 
becomes a Banach space under the norm ||{xj}j ||Rad(X) := || 

∑
j∈N

εjxj ||L2(Ω;X); see 
[24,25,28].

2.2. Muckenhoupt weights

In this subsection the general reference is [16].
A weight is a positive measurable function on Rd that takes it values almost everywhere 

in (0, ∞). Let w be a weight on Rd. We write w(A) =
´
A
w(x) dx when A is Borel 

measurable set in Rd. Furthermore, given a Banach space X and p ∈ [1, ∞), we define the 
weighted Lebesgue–Bochner space Lp(Rd, w; X) as the Banach space of all f ∈ L0(Rd; X)
for which
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||f ||Lp(Rd,w;X) :=

⎛⎝ ˆ

Rd

||f(x)||pX w(x) dx

⎞⎠1/p

< ∞.

For p ∈ [1, ∞] we denote by Ap = Ap(Rd) the class of all Muckenhoupt Ap-weights, 
which are all the locally integrable weights for which the Ap-characteristic [w]Ap

∈ [1, ∞]
is finite; see [16, Chapter 9] for more details. Let us recall the following facts:

• A∞ =
⋃

p∈(1,∞) Ap, which often also taken as definition;
• For p ∈ (1, ∞) and a weight w on Rd: w ∈ Ap if and only if w− 1

p−1 ∈ Ap′ , where 
1
p + 1

p′ = 1;
• For a weight w on Rd and λ > 0: [w(λ · )]Ap

= [w]Ap
;

• For p ∈ [1, ∞) and w ∈ A∞(Rd): S(Rd) d
↪→ Lp(Rd, w);

• The Hardy–Littlewood maximal operator M is bounded on Lp(Rd, w) if (and only 
if) w ∈ Ap.

An example of an A∞-weight is the power weight wγ (3) for γ > −1. Given p ∈ (1, ∞), 
we have wγ ∈ Ap if and only if γ ∈ (−1, p − 1). Also see (48) for a slight variation.

A function f : Rd −→ R is called radially decreasing if it is of the form f(x) = g(|x|) for 
some decreasing function g : R −→ R. We define K (Rd) as the space of all k ∈ L1(Rd)
having a radially decreasing integrable majorant, i.e., all k ∈ L1(Rd) for which there 
exists a radially decreasing ψ ∈ L1(Rd)+ with |k| ≤ ψ. Equipped with the norm

||k||K (Rd) := inf
{
||ψ||L1(Rd) : ψ ∈ L1(Rd)+ radially decreasing, |k| ≤ ψ

}
,

K (Rd) becomes a Banach space. Note that, given k ∈ K (Rd) and t > 0, we have 
kt = tdk(t · ) ∈ K (Rd) with ||kt||K (Rd) = ||k||K (Rd).

Let X be a Banach space. For k ∈ K (Rd) we have the pointwise estimate

ˆ

Rd

|k(x− y)| ||f(y)||X dy ≤ ||k||K (Rd)M(||f ||X)(x), f ∈ L1
loc(Rd;X), x ∈ Rd.

As a consequence, if p ∈ (1, ∞) and w ∈ Ap(Rd), then k gives rise to a well-defined 
bounded convolution operator k∗ : f �→ k ∗ f on Lp(Rd, w; X), given by the formula

k ∗ f(x) =
ˆ

Rd

k(x− y)f(y) dy, x ∈ Rd,

for which we have the norm estimate ||k ∗ ||B(Lp(Rd,w;X)) �p,d,w ||k||K (Rd).
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2.3. Function spaces

As general reference to the theory of vector-valued distributions we mention [2] (and [1, 
Section III.4]). For vector-valued function spaces we refer to [23,48] (unweighted setting) 
and [39] (weighted setting) and the references given therein.

Let X be a Banach space. The space of X-valued tempered distributions S ′(Rd; X)
is defined as S ′(Rd; X) := L(S(Rd), X), the space of continuous linear operators from 
S(Rd) to X, equipped with the locally convex topology of bounded convergence. Standard 
operators (derivative operators, Fourier transform, convolution, etc.) on S ′(Rd; X) can 
be defined as in the scalar-case, cf. [1, Section III.4].

Let p ∈ (1, ∞) and w ∈ Ap(Rd). Then w1−p′ = w− 1
p−1 ∈ Ap′ , so that S(Rd) d

↪→
Lp′(Rd, w1−p′). By Hölder’s inequality we find that Lp(Rd, w; X) ↪→ S ′(Rd; X) in the 
natural way. For each s ∈ R we can thus define the Bessel potential space Hs

p(Rd, w; X)
as the space of all f ∈ S ′(Rd; X) for which Jsf ∈ Lp(Rd, w; X), equipped with the 
norm ||f ||Hs

p(Rd,w;X) := ||Jsf ||Lp(Rd,w;X); here Js ∈ L(S ′(Rd; X)) is the Bessel potential 
operator given by

Jsf := F−1[(1 + | · |2)s/2f̂ ], f ∈ S ′(Rd;X).

Furthermore, for each n ∈ N we can define the Sobolev space Wn
p (Rd, w; X) as the 

space of all f ∈ S ′(Rd; X) for which ∂αf ∈ Lp(Rd, w; X) for every |α| ≤ n, equipped 
with the norm ||f ||Wn

p (Rd,w;X) :=
∑

|α|≤n ||∂αf ||Lp(Rd,w;X). Note that H0
p(Rd, w; X) =

Lp(Rd, w; X) = W 0
p (Rd, w; X). If X is a UMD space, then we have Hn

p (Rd, w; X) =
Wn

p (Rd, w; X). In the reverse direction we have that if H1
p(R; X) = W 1

p (R; X), then X
is a UMD space (see [23]).

For 0 < A < B < ∞ we define ΦA,B(Rd) as the set of all sequences ϕ = (ϕn)n∈N ⊂
S(Rd; X) which can be constructed in the following way: given ϕ0 ∈ S(Rd) with

0 ≤ ϕ̂ ≤ 1, ϕ̂(ξ) = 1 if |ξ| ≤ A, ϕ̂(ξ) = 0 if |ξ| ≥ B,

(ϕn)n≥1 is determined by

ϕ̂n = ϕ̂1(2−n+1 · ) = ϕ̂0(2−n · ) − ϕ̂0(2−n+1 · ), n ≥ 1.

Observe that

supp ϕ̂0 ⊂ {ξ : |ξ| ≤ B} and supp ϕ̂n ⊂ {ξ : 2n−1A ≤ |ξ| ≤ 2nB}, n ≥ 1. (9)

We furthermore put Φ(Rd) :=
⋃

0<A<B<∞ ΦA,B(Rd).
Let ϕ = (ϕn)n∈N ∈ Φ(Rd). We define the operators {Sn}n∈N ⊂ L(S ′(Rd; X),

OM (Rd;X)) by

Snf := ϕn ∗ f = F−1[ϕ̂nf̂ ], f ∈ S ′(Rd;X),



N. Lindemulder / Journal of Functional Analysis 272 (2017) 1435–1476 1445
where OM (Rd; X) stands for the space of all X-valued slowly increasing smooth functions 
on Rd. Given s ∈ R, p ∈ [1, ∞), q ∈ [1, ∞] and w ∈ A∞(Rd), the Triebel–Lizorkin space 
F s
p,q(Rd, w; X) is defined as the space of all f ∈ S ′(Rd; X) for which

||f ||F s
p,q(Rd,w;X) := ||(2snSnf)n∈N||Lp(Rd,w)[�q(N)](X) < ∞.

Each choice of ϕ ∈ Φ(Rd) leads to an equivalent extended norm on S ′(Rd; X).
The H-spaces are related to the F -spaces as follows. In the scalar-valued case X = C, 

we have

Hs
p(Rd, w) = F s

p,2(Rd, w), p ∈ (1,∞), w ∈ Ap. (10)

In the unweighted vector-valued case, this identity is valid if and only if X is isomorphic 
to a Hilbert space. For general Banach spaces X we still have (see [36, Proposition 3.12])

F s
p,1(Rd, w;X) ↪→ Hs

p(Rd, w;X) ↪→ F s
p,∞(Rd, w;X), p ∈ (1,∞), w ∈ Ap(Rd), (11)

and (
S(Rd;X), || · ||F s

p,1(Rd,w;X)

)
↪→ Lp(Rd, w;X), p ∈ [1,∞), w ∈ A∞. (12)

For UMD spaces X there is a suitable randomized substitute for (10): if p ∈ (1, ∞) and 
w ∈ Ap, then (see [39, Proposition 3.2])

||f ||Hs
p(Rd,w;X) � sup

N∈N

∣∣∣∣∣∣ N∑
n=0

εn2nsSnf
∣∣∣∣∣∣
Lp(Ω;Lp(Rd,w;X))

, f ∈ S ′(Rd;X). (13)

Moreover, the implicit constants in (13) can be taken of the form C = CX,p,d,s([w]Ap
) for 

some increasing function CX,p,d,s : [1, ∞) −→ (0, ∞) only depending on X, p, d and s.

2.4. Fourier multipliers

Let X be a Banach space. We write L̂1(Rd; X) := F−1L1(Rd; X) ⊂ S ′(Rd; X). For a 
symbol m ∈ L∞(Rd) we define the operator Tm by

Tm : L̂1(Rd;X) −→ L̂1(Rd;X), f �→ F−1[mf̂ ].

Given p ∈ [1, ∞) and w ∈ A∞(Rd), we call m a Fourier multiplier on Lp(Rd, w; X) if 
Tm restricts to an operator on L̂1(Rd; X) ∩Lp(Rd, w; X) which is bounded with respect 
to the Lp(Rd, w; X)-norm. In this case Tm has a unique extension to a bounded linear 
operator on Lp(Rd, w; X) due to the denseness of S(Rd; X) in Lp(Rd, w; X), which we 
still denote by Tm. We denote by Mp,w(X) the set of all Fourier multipliers m ∈ L∞(Rd)
on Lp(Rd, w; X). Equipped with the norm ||m||Mp,w(X) := ||Tm||B(Lp(Rd,w;X)), Mp,w(X)
becomes a Banach algebra (under the natural pointwise operations) for which the natural 
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inclusion Mp,w(X) ↪→ B(Lp(Rd, w; X)) is an isometric Banach algebra homomorphism; 
see [28] for the unweighted setting.

For each N ∈ N we define MN (Rd) as the space of all m ∈ CN (Rd \ {0}) for which

||m||MN
= ||m||MN (Rd) := sup

|α|≤N

sup
ξ �=0

|ξ||α||Dαm(ξ)| < ∞.

If X is a UMD Banach space, p ∈ (1, ∞) and w ∈ Ap(Rd), then we have Md+2(Rd) ↪→
Mp,w(X) with norm ≤ CX,p,d([w]Ap

), where CX,p,d : [1, ∞) −→ (0, ∞) is some increasing 
function only depending on X, d and p; see [39, Proposition 3.1].

3. R-boundedness of Fourier multipliers

At several points in the proof of the randomized difference norm characterization from 
Theorem 1.1 we need the R-boundedness of a sequence of Fourier multiplier operators 
on Lp(Rd, w; X). In this section we provide the necessary R-boundedness results.

In many situations, the R-boundedness of a family of operators is proved under 
the assumption of property (α) (see e.g. [8,14,28,59]). Concerning operator families on 
Lp(Td; X) or Lp(Rd; X), the necessity of property (α) for a number of conclusions of this 
kind is proved in [22]. For example, in the setting of Fourier multipliers it holds true that 
every uniform set of Marcinkiewicz multipliers on Rd is R-bounded on Lp(Rd; X) if and 
only if X is a UMD space with property (α). In particular, given a UMD space X, in 
the one-dimensional case d = 1 one has that M1(R) ↪→ Mp,1R

(X) maps bounded sets to 
R-bounded sets if and only if X has property (α). Regarding the sufficiency of property 
(α) for the R-boundedness of Fourier multipliers, in the weighted setting we have:

Proposition 3.1. Let X be a UMD space with property (α) and p ∈ (1, ∞).

(i) For all weights w ∈ Ap(Rd), Md+2(Rd) ↪→ Mp,w(X) maps bounded sets to 
R-bounded sets.

(ii) Let w ∈ Arec
p (Rd), i.e. w is a locally integrable weight on Rd which is uniformly 

Ap in each of the coordinates separately; see [29]. Write Rd
∗ = [R \ {0}]d. If M ⊂

L∞(Rd) ∩ Cd(Rd
∗) satisfies

CM := sup
M∈M

sup
α≤1

sup
ξ∈Rd

∗

|ξα| |Dαm(ξ)| < ∞,

then M defines an R-bounded collection of Fourier multiplier operators TM = {TM :
M ∈ M } in B(Lp(Rd, w; X)) with R(TM ) �X,p,d,w CM .

Proof. (i) Let w ∈ Ap. For each N ∈ N we define RMN (Rd; B(X)) as the space of all 
operator-valued symbols m ∈ CN (Rd \ {0}; B(X)) for which

||m||RMN
= ||m||RMN (Rd;B(X)) := R

{
|ξ||α|Dαm(ξ) : ξ �= 0, |α| ≤ N

}
< ∞.
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If Y is a UMD space, then RM d+2(Rd; B(Y )) ↪→ Mp,w(Y ) (as remarked before [39, 
Proposition 3.1]). Using this for Y = Rad(X), the desired result follows in the same 
spirit as in [14, Section 3] (also see [20,28]).

(ii) Put Ij := [−2j , −2j−1) ∪(2j−1, 2j ] for each j ∈ Z. For each k ∈ {1, . . . , d} it can be 
shown that {1Rk×Ij×Rd−k}j∈Z ⊂ Mp,w(X) and that the associated sequence of Fourier 
multiplier operators {Δk[Ij ]}j∈Z defines an unconditional Schauder decomposition of 
Lp(Rd, w; X); see e.g. [31, Chapter 4]. Since {Δk[Ij ]}j∈Z and {Δl[Ij ]}j∈Z commute for 
k, l ∈ {1, . . . , d} and since X is assumed to have property (α), it follows (see [62, Re-
mark 2.5.2]) that the product decomposition {

∏d
i=1 Δk[Ij ]} is an unconditional Schauder 

decomposition of Lp(Rd, w; X). One can now proceed as in the unweighted case; see e.g. 
[28, Theorem 4.13 & Example 5.2]. �

As we will see below, for general UMD spaces it is still possible to give criteria for 
the R-boundedness of a sequence of Fourier multipliers. Before we go to the Fourier 
analytic setting, we start with a general proposition which serves as the main tool for 
the R-boundedness of Fourier multipliers below. In order to state the proposition, we 
first need to introduce some notation.

Let Y be a Banach space. For a sequence {Tj}j∈N ⊂ B(Y ) we write

||{Tj}j∈N||Y→Rad(Y ) := inf

⎧⎨⎩C :
∣∣∣∣∣∣ n∑

j=0
εjTjy

∣∣∣∣∣∣
L2(Ω;Y )

≤ C||y||Y , y ∈ Y

⎫⎬⎭
and

||{Tj}j∈N||Rad(Y )→Y := inf
{
C :

∣∣∣∣∣∣ n∑
j=0

Tjyj

∣∣∣∣∣∣
Y

≤ C
∣∣∣∣∣∣ n∑

j=0
εjyj

∣∣∣∣∣∣
L2(Ω;Y )

, n ∈ N, y0, . . . , yn ∈ Y

}
.

In the following remark we provide an interpretation of these quantities in terms of the 
space Rad(Y ), which gives a motivation for the chosen notation.

Remark 3.2. Identifying {Tj}j∈N with the linear operator T : Y −→ �0(N; X), y �→
(Tjy)j∈N, we have

||{Tj}||Y→Rad(Y ) = ||{Tj}||B(Y,Rad(Y )) = ||T||B(Y,Rad(Y )),

where || · ||B(Y,Rad(Y )) is, in the natural way, viewed as an extended norm on 
L(Y, �0(N; X)), the space of linear operators from Y to �0(N; X). Similarly, identifying 
{Tj}j∈N with the linear operator Tt : c00(N; X) −→ Y, (yj)j∈N �→

∑
j∈N

Tjyj , we have

||{Tj}||Rad(Y )→Y = ||{Tj}||B(Rad(Y ),Y ) = ||Tt||B(Rad(Y ),Y ),



1448 N. Lindemulder / Journal of Functional Analysis 272 (2017) 1435–1476
where || · ||B(Rad(Y ),Y ) is viewed, in the natural way, as an extended norm on L(c00(Y ), Y ).
Using that the natural map i : Rad(Y ∗) −→ Rad(Y )∗ is a contraction (see [24]), we 

find that

||{Tj}||Rad(Y )→Y = ||Tt||B(Rad(Y ),Y ) = ||(Tt)∗||B(Y ∗,Rad(Y )∗)

= ||i ◦ ({T ∗
j })t||B(Y ∗,Rad(Y )∗)

≤ ||({T ∗
j })t||B(Y ∗,Rad(Y ∗)) = ||{T ∗

j }||Y ∗→Rad(Y ∗).

If X is K-convex with K-convexity constant KX ,3 then i is an isomorphism of Banach 
spaces with ||i−1|| ≤ KX (see [24]), so that

||{Tj}||Y→Rad(Y ) = ||T||B(Y,Rad(Y )) = ||T∗||B(Rad(Y )∗,Y ∗) = ||{T ∗
j } ◦ i−1||B(Rad(Y )∗,Y ∗)

≤ KX ||{T ∗
j }||B(Rad(Y ∗),Y ∗) = KX ||{T ∗

j }||Rad(Y ∗)→Y ∗ .

Proposition 3.3. Let Y be a Banach space and let {Uj}j∈N and {Vj}j∈N be two sequences 
of operators in B(Y ).

(i) The following inequalities hold true:

R({Uj}) ≤ ||{Uj}||Rad(Y )→Y ≤ ||{Uj}||Rad(B(Y )) ≤ sup
n

sup
εj=±1

∣∣∣∣∣∣ n∑
j=0

εjUj

∣∣∣∣∣∣, (14)

R({Uj}) ≤ ||{Uj}||Y→Rad(Y ) ≤ ||{Uj}||Rad(B(Y )) ≤ sup
n

sup
εj=±1

∣∣∣∣∣∣ n∑
j=0

εjUj

∣∣∣∣∣∣ (15)

and

||{UjVj}j∈N||Rad(Y )→Y ≤ ||{Uj}j∈N||Rad(B(Y ))R({Vj}j∈N). (16)

(ii) Suppose that E has property (Δ). If

C1 := ||{Uj}j∈N||Rad(Y )→Y < ∞ and C2 := ||{Vj}j∈N||Y→Rad(Y ) < ∞,

then {
∑n

j=0 UkVk} is R-bounded with R-bound ≤ ΔEC1C2.

Proof. Except for (15), where we follow the estimates from the proof of [39, Lemma 4.1], 
the proposition follows easily by inspection of the proof of [26, Theorem 3.3]. Let us 
provide the details for the convenience of the reader.

(i) The third inequality in (14) is trivial and the second inequality in (14) is just the 
inequality (16) with Vj = I for all j. For the first inequality in (14), let y0, . . . , yn ∈ Y . 
For every {εj}j∈N ∈ {−1, 1}n+1 we have

3 For the definition of K-convexity we refer to [23,32]. All UMD spaces are K-convex.
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∣∣∣∣∣∣ n∑
j=0

εjUjyj

∣∣∣∣∣∣
Y
≤ ||{Uj}j∈N||Rad(Y )→Y

∣∣∣∣∣∣ n∑
j=0

εjyj

∣∣∣∣∣∣
L2(Ω;Y )

because {εj}nj=0 and {εjεj}nj=0 are identically distributed. Plugging in εj = εj(ω) and 
taking L2-norms with respect to ω ∈ Ω, the desired inequality follows.

In (15) we only need to prove the first inequality; the other two inequalities are 
trivial. For this we use the fact [15, Lemma 3.12] that for any {yj,k}nj,k=0 ⊂ Y one has 
the inequality

∣∣∣∣∣∣ n∑
j=0

εjyj,j

∣∣∣∣∣∣
L2(Ω;Y )

≤
∣∣∣∣∣∣ n∑

j,k=0

εjε
′
kyj,k

∣∣∣∣∣∣
L2(Ω×Ω′;Y )

. (17)

Now let y0, . . . , yn ∈ Y . Denote by {Ũj} ⊂ B(L2(Ω; Y )) the sequence of operators point-
wise induced by {Uj}. Using Fubini one easily sees that ||{Ũj}||L2(Ω;Y )→Rad(L2(Ω;Y )) ≤
||{Uj}||Y→Rad(Y ). Invoking (17) with yj,k = Ukyj , we thus find

∣∣∣∣∣∣ n∑
j=0

εjUjyj

∣∣∣∣∣∣
L2(Ω;Y )

≤
∣∣∣∣∣∣ n∑

j,k=0

εjε
′
kUkyj

∣∣∣∣∣∣
L2(Ω×Ω′;Y )

=
∣∣∣∣∣∣ n∑

k=0

ε′kŨk

( n∑
j=0

εjyj

)∣∣∣∣∣∣
L2(Ω′;L2(Ω;Y ))

≤ ||{Uj}||Y→Rad(Y )

∣∣∣∣∣∣ n∑
j=0

εjyj

∣∣∣∣∣∣
L2(Ω;Y )

.

For (16) note that if y0, . . . , yn ∈ Y , then

∣∣∣∣∣∣ n∑
j=0

UjVjyj

∣∣∣∣∣∣
Y

=

∥∥∥∥∥∥E
⎡⎣⎛⎝ n∑

j=0
εjUj

⎞⎠ ⎛⎝ n∑
j=0

εjVjyj

⎞⎠⎤⎦∥∥∥∥∥∥
Y

≤
∣∣∣∣∣∣ n∑

j=0
εjUj

∣∣∣∣∣∣
L2(Ω;B(Y ))

∣∣∣∣∣∣ n∑
j=0

εjVjyj

∣∣∣∣∣∣
L2(Ω;Y )

≤ ||{Uj}||Rad(B(Y ))R({Vj})
∣∣∣∣∣∣ n∑

j=0
εjyj

∣∣∣∣∣∣
L2(Ω;Y )

.

(ii) Write Sk :=
∑k

j=0 UjVj for each k ∈ N. For all y0, . . . , yn ∈ Y we have

∣∣∣∣∣∣ n∑
k=0

εkSkyk

∣∣∣∣∣∣
L2(Ω;Y )

=
∣∣∣∣∣∣ n∑

j=0
Uj

n∑
k=j

εkVjyk

∣∣∣∣∣∣
L2(Ω;Y )

≤ C1

∣∣∣∣∣∣ n∑
ε′j

n∑
εkVjyk

∣∣∣∣∣∣
L2(Ω;L2(Ω′;Y ))
j=0 k=j
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≤ ΔY C1

∣∣∣∣∣∣ n∑
j=0

ε′jVj

n∑
k=0

εkyk

∣∣∣∣∣∣
L2(Ω;L2(Ω′;Y ))

≤ ΔY C1C2

∣∣∣∣∣∣ n∑
k=0

εkyk

∣∣∣∣∣∣
L2(Ω;;Y )

,

which proves the required R-bound. �
For later reference it will be convenient to record the following immediate corollary 

to the estimates (14) and (15) in (i) of the above proposition:

Corollary 3.4. Let X be a Banach space, p ∈ (1, ∞) and w ∈ Ap(Rd). Let {mj}j∈N ⊂
Mp,w(X) be a sequence of symbols such that

K := sup
n

sup
εj=±1

∣∣∣∣∣∣ n∑
j=0

εjmj

∣∣∣∣∣∣
Mp,w(X)

< ∞. (18)

Then {mj}j∈N defines an R-bounded sequence of Fourier multiplier operators {Tmj
}j∈N

on Y = Lp(Rd, w; X) with R-bound

R({Tmj
}) ≤ ||{Tj}||Rad(Y )→Y ∨ ||{Tj}||Y→Rad(Y ) ≤ ||{Tj}||Rad(B(Y )) ≤ K.

If X is a UMD space, p ∈ (1, ∞) and w ∈ Ap(Rd), then we have Md+2(Rd) ↪→
Mp,w(X). So the number K from (18) can be explicitly bounded via the Mihlin condition 
defining Md+2(Rd). In particular, for a bounded sequence in Md+2(Rd) which is locally 
finite in a uniform way we find:

Corollary 3.5. Let X be a UMD space, p ∈ (1, ∞) and w ∈ Ap(Rd). Let {mj}j∈N ⊂
L∞(Rd) be a sequence of symbols such that:

(a) There exists N ∈ N such that every ξ ∈ Rd \ {0} possesses an open neighborhood 
U ⊂ Rd \ {0} with the property that #{j : mj |U �= 0} ≤ N .

(b) {mj}j∈N is a bounded sequence in Md+2(Rd).

Then {mj}j∈N defines an R-bounded sequence of Fourier multiplier operators {Tmj
}j∈N

on Lp(Rd, w; X) with R-bound

R({Tmj
}) ≤ sup

n
sup

εj=±1

∣∣∣∣∣∣ n∑
j=0

εjmj

∣∣∣∣∣∣
Mp,w(X)

� CX,p,d([w]Ap
)N sup

j∈N

||mj ||Md+2 ,

where CX,p,d : [1, ∞) −→ (0, ∞) is some increasing function only depending on X, p
and d.
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An example for the ‘uniform locally finiteness condition’ (a) from the above corollary 
is a kind of dyadic corona condition on the supports of the symbols:

Example 3.6. Suppose that {mj}j∈N ⊂ L∞(Rd) satisfies the support condition

suppm0 ⊂ {ξ : |ξ| ≤ c} and suppmj ⊂ {ξ : c3−12j−J+1 ≤ |ξ| ≤ c2j}, j ≥ 1, (19)

for some c > 0 and J ∈ Z>0. Then suppmj ∩ suppmk = ∅ for all j, k ∈ N with 
|j − k| ≥ J + 1. In particular, condition (a) of Corollary 3.5 is satisfied with N = J .

Example 3.7. Suppose that m0 ∈ Cd+2
c (Rd) and m1 ∈ Cd+2

c (Rd\{0}). Set mj := m(2−j · )
for each j ≥ 2. Then {mj}j∈N fulfills the conditions (a) and (b) of Corollary 3.5, where (a) 
follows from Example 3.6 and (b) from the dilation invariance of the Mihlin condition 
defining Md+2(Rd). In particular, given ϕ = {ϕj}j∈N ∈ Φ(Rd), Corollary 3.5 can be 
applied to the sequence of symbols {mj}j∈N = {ϕ̂j}j∈N, whose associated sequence of 
Fourier multiplier operators is {Sj}j∈N.

Up to now we have only exploited Proposition 3.3(i) in order to get R-boundedness 
of a sequence of Fourier multipliers. However, in many situations the condition (18) is 
too strong. It is for example not fulfilled by the sequence {mj = m(2−j · )}j∈N, where 
m ∈ C∞

c (Rd) is a given symbol which is non-zero in the origin; this follows from the 
fact that Mp,w(X) ↪→ L∞(Rd). The case that m is constant on a neighborhood of the 
origin can be handled by the following proposition (see Corollary 3.10), of which the 
main ingredient is Proposition 3.3(ii):

Proposition 3.8. Let X be a UMD space, p ∈ (1, ∞) and w ∈ Ap(Rd). Let {mj}j∈N ⊂
Mp,w(X) be a sequence of Fourier multiplier symbols which satisfies the support condition 
(19) for some c > 0 and J ∈ N. Write Tj = Tmj

for the Fourier multiplier operator on 
Y = Lp(Rd, w; X) associated with mj for each j ∈ N. If

K := ||{Tj}||Rad(Y )→Y ∧ ||{Tj}||Y→Rad(Y ) < ∞, (20)

then the collection of partial sums {
∑n

j=0 Tj : n ∈ N} is R-bounded with R-bound ≤
(2J + 1)CX,p,d([w]Ap

) K for some increasing function CX,p,d : [1, ∞) −→ (0, ∞) only 
depending on X, p and d.

Proof. Due to scaling invariance of the Ap-characteristic, we may without loss of gen-
erality assume that c = 3

2 . Fix ϕ = (ϕj)j∈N ∈ Φ1, 32 (Rd) and denote by {Sj}j∈N the 
corresponding convolution operators. For convenience of notation we put ϕj := 0 and 
Sj := 0 for every j ∈ Z<0. For each j ∈ N we define Rj :=

∑J
�=−J Sj+�. By Example 3.7

(and Corollary 3.5), there exists an increasing function C̃X,p,d : [1, ∞) −→ (0, ∞), only 
depending on X, p and d, such that
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||{Sj}||Rad(Y )→Y ∨ ||{Sj}||Y→Rad(Y )
(14), (15)

≤ C̃X,p,d([w]Ap
),

and thus

||{Rj}||Rad(Y )→Y ∨ ||{Rj}||Y→Rad(Y ) ≤ (2J + 1)C̃X,p,d([w]Ap
). (21)

As a consequence of the support condition (19) and the fact that

J∑
�=−J

ϕ̂�(ξ) = 1 for |ξ| ≤ 3
2 and

J∑
�=−J

ϕ̂j+�(ξ) = 1 for 2j−J ≤ |ξ| ≤ 3
22j , j ≥ 1,

we have TjRj = RjTj = Tj for every j ∈ N. Since {Tj} and {Rj} are commuting and 
since ΔY �p ΔY,p = ΔX,p < ∞ (X being a UMD space), the required R-bound follows 
from an application of Proposition 3.3(ii) with either Uj = Tj and Vj = Rj or Uj = Rj

and Vj = Tj . �
Remark 3.9. The condition (20) in Proposition 3.8 may be replaced by the condition 
that {Tj} is R-bounded with R-bound K: under this modification, it can be shown that 
the collection of partial sums is R-bounded with R-bound ≤ (2J + 1)2CX,p,d([w]Ap

) K
for some increasing function CX,p,d : [1, ∞) −→ (0, ∞) only depending on X, p and d. 
Indeed, in the notation of the proof above, we have

||{Tj}||Rad(Y )→Y = ||{RjTj}||Rad(Y )→Y

(16)
≤ ||{Rj}||Rad(B(Y ))R({Tj})

(21)
≤ (2J + 1)C̃X,p,d([w]Ap

)R({Tj}).

An alternative approach for the R-boundedness condition would be to modify the 
proof of [8, Theorem 3.9] (or [62, Theorem 2.4.3]), which is a generalization of the 
vector-valued Stein inequality to the setting of unconditional Schauder decompositions. 
Via this approach one would get linear dependence on J instead of quadratic.

Corollary 3.10. Let X be a UMD space, p ∈ (1, ∞) and w ∈ Ap(Rd). Suppose that M ∈
Cd+2

c (Rd) is constant on a neighborhood of 0 and put Mj := M(2−j · ) for each j ∈ Z. 
Then {Mj}j∈Z defines an R-bounded sequence of Fourier multiplier operators {TMj

}j∈Z

in B(Lp(Rd, w; X)) with R-bound �M CX,p,d([w]Ap
), where CX,p,d is the function from 

Proposition 3.8.

Proof. By the scaling invariance of the Ap-characteristic, it suffices to prove the 
R-boundedness statement for {Mj}j∈N instead of {Mj}j∈Z. Indeed, for each K ∈ Z<0
we then in particular have that {Mj}j∈N defines an R-bounded sequence of Fourier mul-
tiplier operators {TMj

}j∈N in B(Lp(Rd, w(2−K · ); X)) with R-bound �M CX,p,d([w]Ap
), 

or equivalently, that {Mj}j≥K defines an R-bounded sequence of Fourier multiplier op-
erators {TMj

}j≥K in B(Lp(Rd, w(2K · ); X)) with R-bound �M CX,p,d([w]Ap
).
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Define the sequence of symbols {mj}j∈N by m0 := M , m1 := m0(2−1 · ) − m0, and 
mj := m1(2−j+1 · ) for j ≥ 2. Then {mj}j∈N is a bounded sequence in Md+2 which 
satisfies the support condition (19). By a combination of Corollary 3.5, Example 3.6 and 
Proposition 3.8, the collection of partial sums {TMi

: i ∈ N} = {
∑i

k=0 Tmk
: i ∈ N} is 

R-bounded in B(Lp(Rd, w; X)) (with the required dependence of the R-bound). �
With the following theorem we can in particular treat dilations of symbols M belong-

ing to the Schwartz class S(Rd) without any further restrictions. Note that this would 
be immediate from Proposition 3.1(i) in case of property (α).

Theorem 3.11. Let X be a UMD space, p ∈ (1, ∞) and w ∈ Ap(Rd). Let M ∈ C(Rd) ∩
Cd+2(Rd\{0}) and set Mj := M(2−j · ) for each j ∈ Z. Suppose that there exist δ0, δ∞ >

0 such that

C0 := sup
0<|ξ|≤1

|ξ|−δ0 |M(ξ) −M(0)| ∨ sup
1≤|α|≤d+2

sup
0<|ξ|≤1

|ξ||α|−δ0
∣∣DαM(ξ)

∣∣ < ∞ (22)

and

C∞ := sup
|α|≤d+2

sup
|ξ|≥1

|ξ||α|+δ∞ |DαM(ξ)| < ∞. (23)

Then {Mj}j∈Z defines an R-bounded sequence of Fourier multiplier operators {TMj
}j∈Z

in B(Lp(Rd, w; X)) with R-bound ≤ CX,d,p,δ0,δ∞([w]Ap
)[||M ||∞ ∨ C0 ∨ C∞], where 

CX,d,p,δ0,δ∞ : [1, ∞) −→ (0, ∞) is some increasing function only depending on X, p, 
d, δ0 and δ∞.

Remark 3.12. In the proof of Theorem 3.11 we use the Mihlin multiplier theorem 
Md+2 ↪→ Mp,w(X). The availability of better multiplier theorems would lead to 
weaker conditions on M . For example, using the classical Mihlin multiplier condition 
|Dαm| � |ξ||α|, α ∈ {0, 1}d, we could treat symbols M ∈ C(Rd) ∩Cd(Rd \{0}) satisfying 
(22) and (23) with the suprema taken over α ∈ {0, 1}d instead of |α| ≤ d + 2; as in the 
unweighted case, for w ∈ Arec

p (Rd) it can be shown that this classical Mihlin condition is 
sufficient for m to be a Fourier multiplier on Lp(Rd, w; X) (see [31, Chapter 4]). In the 
unweighted case one could even use multiplier theorems which incorporate information 
of the Banach space under consideration [15,19]. In Theorem 3.14 (and Corollary 3.15) 
we will actually use the Mihlin–Hölder condition from [19, Theorem 3.1] (which is weaker 
than the Mihlin–Hörmander condition) for the one-dimensional case d = 1.

Proof. As in the proof of Corollary 3.10, it is enough to establish the R-boundedness of 
{Mj}j∈N. Put C := ||M ||∞∨C0∨C∞. Pick ζ ∈ C∞

c (Rd) with the property that χ(ξ) = 1
if |ξ| ≤ 1 and ζ(ξ) = 0 if |ξ| ≥ 3/2. Then

M := M(0)ζ + ζ(M −M(0)ζ) + (1 − ζ)(M −M(0)ζ) =: M [1] + M [2] + M [3].
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For each i ∈ {1, 2, 3} we define {M [i]
j }j∈N by M

[i]
j := M i(2−j · ). By Corol-

lary 3.10, {M [1]
j }j∈N defines an R-bounded sequence of Fourier multiplier operators in 

B(Lp(Rd, w; X)) with R-bound �X,d,p,w,ζ |M(0)| ≤ C. In order to get R-boundedness 
for i = 2, 3 we use Corollary 3.4 (in combination with Md+2 ↪→ Mp,w(X)). To this end, 
let ε = {εj}Nj=0 ∈ {−1, 1}N+1, N ∈ N, and put M [i]

ε :=
∑N

j=0 εjM
[i]
j for each i ∈ {2, 3}. 

In order to obtain a uniform bound for M [i]
ε in Md+2, we note that:

• M [2] ∈ C(Rd) ∩ Cd+2(Rd \ {0}) with suppM [2] ⊂ B(0, 2) and

C [2] := sup
|α|≤d+2

sup
ξ �=0

|ξ||α|−δ0 |DαM [2](ξ)| �ζ,δ0,δ∞ C;

• M [3] ∈ Cd+2(Rd) with M [3](ξ) = 0 for |ξ| ≤ 1 and

C [3] := sup
|α|≤d+2

sup
ξ �=0

|ξ||α|+δ∞ |DαM [2](ξ)| �ζ,δ0,δ∞ C.

For notational convenience, for each j ≥ N + 1 we write εj = 0.
The case i = 2: Let |α| ≤ d + 2. For ξ ∈ B̄(0, 2) we have

|ξ||α||DαM [2]
ε (ξ)| ≤

∞∑
j=0

|ξ||α||DαM
[2]
j (ξ)| =

∞∑
j=0

|2−jξ||α||DαM [2](2−jξ)|

≤ C [2]
∞∑
j=0

|2−jξ|δ0 = C [2]

⎛⎝ ∞∑
j=0

2−jδ0

⎞⎠ |ξ|δ0

≤ C [2] 2δ0
1 − 2−δ0

and for ξ ∈ B(0, 2l+1) \B̄(0, 2l), l ∈ N, we similarly have, now using the support condition 
suppM [2] ⊂ B(0, 2),

|ξ||α||DαM [2]
ε (ξ)| ≤

∞∑
j=0

|ξ||α||DαM
[2]
j (ξ)| =

∞∑
j=0

|2−jξ||α||DαM [2](2−jξ)|

=
∞∑
j=l

|2−jξ||α||DαM
[2]
j (2−jξ)| ≤ C [2]

∞∑
j=l

|2−jξ|δ0

= C [2]

⎛⎝ ∞∑
j=l

2−jδ0

⎞⎠ |ξ|δ0 ≤ C [2] 2δ0
1 − 2−δ0

.

Hence, ||M [2]
ε ||Md+2 ≤ C [2]2δ0(1 − 2−δ0)−1.
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The case i = 3: Fix l ∈ N. Since M [3] ≡ 0 on B(0, 1), we have

M [3]
ε (ξ) =

l∑
j=0

εjM
[3]
j (ξ), ξ ∈ B(0, 2l) \ B̄(0, 2l−1).

For all |α| ≤ d + 2 and ξ ∈ B(0, 2l) \ B̄(0, 2l−1) we thus find

|ξ||α||DαM [3]
ε (ξ)| = |ξ||α|

∣∣∣ l∑
j=0

εjD
αM

[3]
j (ξ)

∣∣∣ ≤ l∑
j=0

|ξ||α||DαM [3](ξ)|

=
l∑

j=0
|2−jξ||α||DαM [3](2−jξ)| ≤ C [3]

l∑
j=0

|2−jξ|−δ∞

≤ C [3]
l∑

j=0
(2−j+l−1)−δ∞ = C [3]2δ∞

l∑
j=0

2−δ∞(l−j)

= C [3]2δ∞
l∑

k=0

2−δ∞k ≤ C [3] 2δ∞
1 − 2−δ∞

.

As l ∈ N was arbitrary and M [3]
ε ≡ 0 on B(0, 1), this shows that ||M [3]

ε ||Md+2 ≤
C [3]2δ∞(1 − 2−δ∞)−1. �

Note that Theorem 3.11 does not cover the symbol M(ξ) =
∏d

j=1 sinc(ξj), where 

sinc is the function given by sinc(t) = sin(t)
t for t �= 0 and sinc(0) = 1; see the end of 

Section 4.2 for the relevance of this symbol, which is the Fourier transform of 2−d1[−1,1]d . 
However, as already mentioned in Remark 3.12, in the unweighted one-dimensional case 
we can use the Mihlin–Hölder multiplier theorem [21, Theorem 3.1] in order to relax the 
conditions from Theorem 3.11. This will lead to a criterion (Corollary 3.15) which covers 
the symbol M = sinc; see Example 4.5.

For each k ∈ Z and j ∈ {−1, 1} we define Ik,j := j [2k−2, 2k+2]. For γ ∈ (0, 1) and 
M ∈ Cb(R \ {0}) we put

[M ]γ := sup
k∈Z,j=±1

2kγ [M |Ik,j
]Cγ(Ik,j) and |||M |||γ := ||M ||∞ + [M ]γ .

Since

|M(ξ) −M(ξ − h)| ≤ 4[M ]γ |h|γ |ξ|−γ , |ξ| > 2|h|,

the following lemma is a direct corollary of the vector-valued Mihlin–Hölder multiplier 
theorem [21, Theorem 3.1]:
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Lemma 3.13. Let X be a UMD space and p ∈ (1, ∞). Then there exists γX ∈ (0, 1), only 
depending on X, such that the following holds true: if γ ∈ (γX , 1) and if M ∈ Cb(R \{0})
satisfies |||M |||γ < ∞, then M defines a Fourier multiplier operator TM on Lp(R; X) of 
norm ||TM ||B(Lp(R;X)) �X,p,γ |||M |||γ .4

Using this lemma, we find the following variant of Theorem 3.11:

Theorem 3.14. Let X be a UMD space p ∈ (1, ∞). Let γ ∈ (γX , 1), where γX ∈ (0, 1) is 
from Lemma 3.13. Let M ∈ Cb(R) and set Mn := M(2−n · ) for each n ∈ Z. Suppose 
that there exist δ0, δ∞ > 0 such that

C0 := sup
0<|ξ|≤1

|ξ|−δ0 |M(ξ) −M(0)| ∨ sup
k≤−1,j=±1

2k(γ−δ0)[M |Ik,j
]Cγ(Ik,j) < ∞

and

C∞ := sup
|ξ|≥1

|ξ|δ∞ |M(ξ)| ∨ sup
k≥0,j=±1

2k(γ+δ∞)[M |Ik,j
]Cγ(Ik,j) < ∞.

Then {Mn}n∈Z defines an R-bounded sequence of Fourier multiplier operators {TMn
}n∈Z

in B(Lp(R; X)) with R-bound �X,p,τ,q,γ,δ0,δ∞ [||M ||∞ ∨ C0 ∨ C∞].

Proof. This can be shown in a similar fashion as Theorem 3.11, now using the (Mihlin–
Hölder multiplier theorem in the form of) Lemma 3.13 to treat the cases i = 2, 3. �
Corollary 3.15. Let X be a UMD space p ∈ (1, ∞). Let γ ∈ (γX , 1), where γX ∈ (0, 1)
is from Lemma 3.13. Let M ∈ Cb(R) ∩ C1(R \ {0}) and set Mn := M(2−n · ) for each 
n ∈ Z. Suppose that there exist δ0, δ∞ > 0 and θ ∈ [0, 1] such that

C0 := sup
0<|ξ|≤1

|ξ|−δ0 |M(ξ) −M(0)| ∨ sup
|ξ|≤1

|ξ|1−δ0 |M ′(ξ)| < ∞ (24)

and

C∞ := sup
|ξ|≥1

|ξ|max
{
δ∞,(γ+δ∞) 1−θ

1−γ

}
|M(ξ)| ∨ sup

|ξ|≥1
|ξ|(γ+δ∞) θ

γ |M ′(ξ)| < ∞. (25)

Then {Mn}n∈Z defines an R-bounded sequence of Fourier multiplier operators {TMn
}n∈Z

in B(Lp(R; X)) with R-bound �X,p,τ,q,γ,δ0,δ∞ [||M ||∞ ∨ C0 ∨ C∞].

Proof. For every k ∈ Z and j ∈ {−1, 1} we have

2k(γ−δ0)[M |Ik,j
]Cγ(Ik,j) �γ 2k(γ−δ0)2k(1−γ)||M ′|Ik,j

||∞ � sup
ξ∈Ik,j

|ξ|1−δ0 |M ′(ξ)|

4 One can take γX = τ ∨q′, where τ ∈ (1, 2] and q ∈ [2, ∞) denote the type and cotype of X, respectively. 
Here one needs the fact that X, as a UMD space, has non-trivial type and finite cotype; see [23].
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and

2k(γ+δ∞)[M |Ik,j
]Cγ(Ik,j) ≤ 2k(γ+δ∞) 21−γ ||M |Ik,j

||1−γ
∞ ||M ′|Ik,j

||γ∞

�γ 2k(γ+δ∞) 1−θ
1−γ ||M |Ik,j

||∞ + 2k(γ+δ∞) θ
γ ||M ′|Ik,j

||∞

� sup
ξ∈Ik,j

|ξ|(γ+δ∞) 1−θ
1−γ |M(ξ)| + sup

ξ∈Ik,j

|ξ|(γ+δ∞) θ
γ |M ′(ξ)|.

The result now easily follows from Theorem 3.14. �
4. Difference norms

4.1. Notation

Let X be a Banach space. For each m ∈ Z≥1 and h ∈ Rd we define difference operator 
Δm

h on L0(Rd; X) by Δm
h := (Lh− I)m =

∑m
j=0(−1)j

(
m
j

)
L(m−j)h, where Lh denotes the 

left translation by h:

Δm
h f(x) =

m∑
j=0

(−1)j
(
m

j

)
f(x + (m− j)h), f ∈ L0(Rd;X), x ∈ Rd.

Let p ∈ (1, ∞), w ∈ Ap(Rd), m ∈ Z≥1, and K ∈ K (Rd). For every c > 0, K̃c =
cdK(−c · ) ∈ K (Rd) gives rise to a (well-defined) bounded convolution operator f �→
K̃c ∗ f on Lp(Rd, w; X) of norm �p,d,w ||K̃c||K (Rd) = ||K||K (Rd), which is given by the 
formula

K̃c ∗ f (x) =
ˆ

Rd

K̃c(x− y)f(y) dy =
ˆ

Rd

K(h)Lc−1hf(x) dh, x ∈ Rd;

see the last part of Section 2.2. Defining KΔm :=
∑m−1

j=0 (−1)j
(
m
j

)
K̃[(m−j)]−1 ∈ K (Rd), 

for each t > 0 the operator

f �→ Km(t, f) := KΔm

t−1 ∗f+(−1)mK̂(0)f =
m−1∑
j=0

(−1)j
(
m

j

)
K̃[(m−j)t]−1 ∗f+(−1)mK̂(0)f

is bounded on Lp(Rd, w; X) of norm �p,d,w,m ||K||K (Rd), and the following identity 
holds

Km(t, f)(x) =
ˆ

Rd

K(h)Δm
thf(x) dh, x ∈ Rd.

Given f ∈ Lp(Rd, w; X), the functions Km(t, f) may be interpreted as weighted means 
of differences of f .



1458 N. Lindemulder / Journal of Functional Analysis 272 (2017) 1435–1476
For f ∈ Lp(Rd, w; X) we set

[f ](m,K)
Hs

p(Rd,w;X) := sup
J∈N

∣∣∣∣∣∣ J∑
j=1

εj2jsKm(2−j , f)
∣∣∣∣∣∣
Lp(Ω;Lp(Rd,w;X))

and

|||f |||(m,K)
Hs

p(Rd,w;X) := ||f ||Lp(Rd,w;X) + [f ](m,K)
Hs

p(Rd,w;X).

4.2. Statement of the main result

The following theorem is the main result of this paper. As already announced in 
the introduction, it is (indeed) a more general version of Theorem 1.1 thanks to the 
R-boundedness results Theorem 3.11 and Corollary 3.15; see Examples 4.4 and 4.5.

Theorem 4.1. Let X be a UMD Banach space, s > 0, p ∈ (1, ∞), w ∈ Ap(Rd), m ∈ Z≥1
and K ∈ K (Rd).

(i) Suppose that K ∈ L1(Rd, (1 +| · |)d+2) and that KΔm fulfills the Tauberian condition

|FKΔm

(ξ)| ≥ c, ξ ∈ Rd,
ε

2 < |ξ| < 2ε, (26)

for some ε, c > 0. Then we have the estimate

||f ||Hs
p(Rd,w;X) � |||f |||(m,K)

Hs
p(Rd,w;X) , f ∈ Lp(Rd, w;X). (27)

(ii) Suppose that m > s, K ∈ L1(Rd, (1 + | · |)(d+3)m), and that {f �→ Km(2−j , f) : j ∈
Z≥1} ⊂ B(Lp(Rd, w; X)) is R-bounded. Then we have the estimate

|||f |||(m,K)
Hs

p(Rd,w;X) � ||f ||Hs
p(Rd,w;X), f ∈ Lp(Rd, w;X). (28)

Remark 4.2. The R-boundedness condition in (ii) of the above theorem may be replaced 
by the (at first sight) weaker condition that

∣∣∣∣∣∣ N∑
j=1

εjKm(2−j , gj)
∣∣∣∣∣∣
Lp(Ω;Lp(Rd,w;X))

�
∣∣∣∣∣∣ N∑

j=1
εjgj

∣∣∣∣∣∣
Lp(Ω;Lp(Rd,w;X))

, N ∈ N,

for all {gj}j≥1 ⊂ Lp(Rd, w; X) with Fourier support supp ĝj ⊂ {ξ : |ξ| ≥ c2j}, 
where c > 0 is some fixed number. But the R-boundedness condition in (ii) is in 
fact implied by this condition. Indeed, this condition implies the R-boundedness of 
the sequence of Fourier multiplier operators associated with the sequence of symbols 
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{
[(1 − ζ)K̂Δm ](2−j · )

}
j≥1, where ζ ∈ C∞

c (Rd) is a bump function which is 1 on a neigh-

borhood of the set {ξ : |ξ| ≥ c}. On the other hand, we have ζK̂Δm ∈ Cd+2
c (Rd) in view 

of K̂Δm ⊂ FL1(Rd, (1 + | · |)d+2) ⊂ Cd+2
b (Rd), so that we can apply Theorem 3.11 to 

the symbol ζK̂Δm . We thus find that the sequence of symbols 
{
K̂Δm

2j = K̂Δm(2−j · )
}
j≥1

defines an R-bounded sequence of Fourier multiplier operators on Lp(Rd, w; X), which 
is of course equivalent to the R-boundedness condition in (ii).

Remark 4.3. Let X be a Banach space, s > 0, p ∈ (1, ∞) and w ∈ Ap(Rd). For each 
f ∈ Lp(Rd, w; X) we put

[f ](m,K);Z
Hs

p(Rd,w;X) := sup
J∈N

∣∣∣∣∣∣ J∑
j=−J

εj2jsεj2jsKm(2−j , f)
∣∣∣∣∣∣
Lp(Ω;Lp(Rd,w;X))

.

On the one hand, [ · ](m,K)
Hs

p(Rd,w;X) ≤ [ · ](m,K);Z
Hs

p(Rd,w;X) thanks to the contraction principle (7). 

On the other hand, [ · ](m,K);Z
Hs

p(Rd,w;X) � || · ||Lp(Rd,w;X) + [ · ](m,K)
Hs

p(Rd,w;X) because s > 0 and 

{f �→ Km(2−j , f) : j ∈ Z} is a uniformly bounded family in B(Lp(Rd, w; X)). In Theo-
rem 4.1 we may thus replace ||| · |||(m,K)

Hs
p(Rd,w;X) by || · ||Lp(Rd,w;X) + [ · ](m,K);Z

Hs
p(Rd,w;X).

Example 4.4. Let K ∈ K (Rd) and m ∈ Z≥1.

(i) Note that FKΔm ∈ Cb(Rd) with FKΔm(0) =
∑m−1

j=0 (−1)j
(
m
j

)
K̂(0) =

(−1)m+1K̂(0). So for KΔm to fulfill the Tauberian condition (26) for some ε, c > 0
it is sufficient that K̂(0) �= 0.

(ii) Let X be a UMD space, p ∈ (1, ∞) and w ∈ Ap(Rd). Note that the R-boundedness 
condition in Theorem 4.1(ii) is equivalent to the R-boundedness of the convolution 
operators {f �→ KΔm

2j ∗ f : j ∈ Z≥1} ⊂ B(Lp(Rd, w; X)). By Theorem 3.11, for the 
latter it is sufficient that K ∈ L1(Rd, (1 + | · |)d+2) ⊂ F−1Cd+2

b (Rd) fulfills the 
condition

sup
|α|≤d+2

sup
ξ∈Rd

(1 + |ξ|)|α|+δ|DαK̂(ξ)| < ∞ (29)

for some δ > 0; in particular, it is sufficient that K ∈ S(Rd).

Under the availability of better multiplier theorems than Md+2(Rd) ↪→ Mp,w(X), the 
condition (29) can be weakened; see Remark 3.12. For example, in the one-dimensional 
case d = 1 we can use M1(R) ↪→ Mp,w(X), resulting in the weaker condition that

sup
k=0,1

(1 + |ξ|)k+δ|K̂(k)(ξ)| < ∞

for some δ > 0. However, this condition is still to strong to handle the kernel K =
2−11[−1,1] ∈ L∞

c (Rd) ⊂ K (Rd) ∩ F−1C∞
0 (Rd) with Fourier transform K̂ = sinc, where 
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sinc(t) = sin(t)/t for t �= 0 and sinc(0) = 1. As already announced, in the unweighted 
case this K can be handled by Corollary 3.15:

Example 4.5. Let X be a UMD Banach space, p ∈ (1, ∞) and K = 2−d1Q[0,1]. For every 
m ∈ Z≥1 it holds that {f �→ Km(2−j , f) : j ∈ Z} ⊂ B(Lp(Rd; X)) is R-bounded.

Proof. It is enough to show that {TK̂(�2−j · ) : j ∈ Z, � ∈ {1, . . . , m}} = {f �→ K�−12j ∗f :
j ∈ Z, � ∈ {1, . . . , m}} is R-bounded in B(Lp(Rd; X)). By the product structure of K
it suffices to consider the case d = 1. So we only need to check that M := sinc =
F 1

21[−1,1] ∈ C∞
0 (R) satisfies the conditions from Corollary 3.15. In the notation of 

Corollary 3.15, let γ ∈ (γX , 1) be fixed. The condition (24) is fulfilled for δ0 = 1 because 
sinc is a C1-function on [−1, 1]. Furthermore, the condition (25) is fulfilled for any 
δ∞ ∈ (0, 1 − γ) and θ = γ. �

Still consider K = 2−d1Q[0,1] ∈ L∞
c (Rd) ⊂ K (Rd). The R-boundedness condition 

from Theorem 4.1(ii) is fulfilled provided that, for each � ∈ {1, . . . , m}, the set of con-
volution operators {f �→ Kt ∗ f : t = �−12j , j ∈ Z≥1} ⊂ B(Lp(Rd, w; X)) is R-bounded. 
A nice way to look at the convolution operator f �→ Kr−1 ∗ f , r > 0, is as the averaging 
operator Ar ∈ B(Lp(Rd, w; X)) given by

Arf(x) :=
 

Q[x,r]

f(y) dy, f ∈ Lp(Rd, w;X), x ∈ Rd.

This leads to the following natural question:

Question 4.6. Given a UMD space X, p ∈ (1, ∞), w ∈ Ap(Rd) and c > 0, is the set of 
averaging operators {Ar : r = c2−j , j ∈ Z≥1} R-bounded in B(Lp(Rd, w; X))?

Three cases in which we can give a positive answer to this question are:

(i) X is a UMD space, p ∈ (1, ∞) and w = 1;
(ii) X is a UMD space with property (α), p ∈ (1, ∞) and w ∈ Arec

p (Rd);5
(iii) X is a UMD Banach function space, p ∈ (1, ∞) and w ∈ Ap(Rd).

Here case (i) follows similarly to the proof of Example 4.5, case (ii) follows from an 
application of Proposition 3.1(ii), and case (iii) can be treated via the Banach lattice 
version of the Hardy–Littlewood maximal function by using the fact that R-boundedness 
coincides with �2-boundedness in this situation (see Proposition 4.11 for a more general 
result in this direction). Note that in the cases (ii) and (iii) one in fact has R-boundedness 
of {Ar : r > 0} in B(Lp(Rd, w; X)).

5 Recall that Arec
p is the class of weights on Rd which are uniformly Ap in each of the coordinates 

separately.
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4.3. Proof of the main result

Below we will use the following notation:

Xp,w := Lp(Ω;Lp(Rd, w;X)) = Lp(Rd, w;Lp(Ω;X)),

Xp,w(Rd
±) := Lp(Ω;Lp(Rd

±, w;X)) = Lp(Rd
±, w;Lp(Ω;X)).

Proof of Theorem 4.1(i)

Lemma 4.7. Let X be a UMD space, s ∈ R, p ∈ (1, ∞) and w ∈ Ap(Rd). Suppose that 
k ∈ K (Rd) ∩ L1(Rd, (1 + | · |)d+2) fulfills the Tauberian condition

|k̂(ξ)| > 0, ξ ∈ Rd,
ε

2 < |ξ| < 2ε,

for some ε > 0. For f ∈ Lp(Rd, w; X) we can then estimate

||f ||Hs
p(Rd,w;X) � ||f ||Lp(Rd,w;X) + sup

J∈N

∣∣∣∣∣∣ J∑
j=1

εj2jskj ∗ f
∣∣∣∣∣∣
Xp,w

. (30)

Proof. Pick ϕ = (ϕj)j∈N ∈ Φ(Rd) such that supp ϕ̂1 ⊂ {ξ : |ξ| ≥ 2ε}; see (9). Using (13)
in combination with S0 ∈ B(Lp(Rd, w; X)), we get

||f ||Hs
p(Rd,w;X) � ||f ||Lp(Rd,w;X) + sup

J∈N

∣∣∣∣∣∣ J∑
j=1

εj2jsSjf
∣∣∣∣∣∣
Xp,w

.

In view of the contraction principle (7), it is thus enough to find an N ∈ N such that

∣∣∣∣∣∣ J∑
j=1

εj2jsSjf
∣∣∣∣∣∣
Xp,w

�
∣∣∣∣∣∣ J+N∑

j=1
εj2jskj ∗ f

∣∣∣∣∣∣
Xp,w

, f ∈ Lp(Rd, w;X), J ∈ N. (31)

In order to establish (31), pick η ∈ C∞
c (Rd) with supp η ⊂ B(0, 2ε) and η(ξ) = 1

for |ξ| ≤ 3ε
2 . Define m ∈ Cd+2

c (Rd) ⊂ Md+2(Rd) by m(ξ) := [η(ξ) − η(2ξ)]k̂(ξ)−1 if 
ε
2 < |ξ| < 2ε and m(ξ) := 0 otherwise; note that this gives a well-defined Cd+2-function 
on Rd because η− η(2 · ) is a smooth function supported in the set {ξ : ε

2 < |ξ| < 2ε} on 
which the function k̂ ∈ Cd+2(Rd) does not vanish, where the regularity k̂ ∈ Cd+2(Rd)
is a consequence of the assumption that k ∈ L1(Rd, (1 + | · |)d+2). By Example 3.7, 
the sequence of (dyadic) dilated symbols {mj := m(2−j · )}j≥1 defines an R-bounded 
sequence of Fourier multiplier operators {Tmj

}j≥1 on Lp(Rd, w; X). Furthermore, by 
construction we have

j+N∑
mlk̂l(ξ) = η(2−(j+N)ξ) − η(2−j+1ξ) = 1 for 2jε ≤ |ξ| ≤ 2j+N−13ε, j ≥ 1, N ∈ N.
l=j



1462 N. Lindemulder / Journal of Functional Analysis 272 (2017) 1435–1476
Since supp ϕ̂j ⊂ {ξ : 2jε ≤ |ξ| < 2jB} for every j ≥ 1 for some B > ε, there thus 
exists N ∈ N such that 

∑j+N
l=j mlk̂l ≡ 1 on supp ϕ̂j for all j ≥ 1. For each j ≥ 1 we 

consequently have

Sj = Tϕ̂j
= T

ϕ̂j

(∑j+N
l=j mlk̂l

)

=
j+N∑
l=j

Tϕ̂j
Tml

Tk̂l
=

N∑
l=0

SjTmj+l
[kj+l ∗ · ] in B(Lp(Rd, w;X)).

Using this together with the R-boundedness of {Sj}j∈N and {Tmj
}j≥1 (see Example 3.7), 

for each f ∈ Lp(Rd, w; X) we obtain the estimates

∣∣∣∣∣∣ J∑
j=1

εj2jsSjf
∣∣∣∣∣∣
Xp,w

≤
N∑
l=0

∣∣∣∣∣∣ J∑
j=1

εj2jsSjTmj+l
[kj+l ∗ f ]

∣∣∣∣∣∣
Xp,w

�
N∑
l=0

∣∣∣∣∣∣ J∑
j=1

εj2jskj+l ∗ f
∣∣∣∣∣∣
Xp,w

�
∣∣∣∣∣∣ J+N∑

j=1
εj2jskj ∗ f

∣∣∣∣∣∣
Xp,w

. �

Proof of Theorem 4.1(i). In view of (26) and the fact that FKΔm ∈ C0(Rd), there 
exists N ∈ N such that the function k ∈ K (Rd) ∩ L1(Rd, (1 + | · |)d+2) determined by 
k̂ = FKΔm(2−N · ) − FKΔm fulfills the Tauberian condition

|k̂(ξ)| ≥ c

2 > 0, ξ ∈ Rd,
δ

2 < |ξ| < 2δ,

for δ := 2N ε > 0. Since

kj ∗ f = [KΔm

2−(j+N) ∗ f + (−1)mK̂(0)f ] − [KΔm

2−j ∗ f + (−1)mK̂(0)f ]

= Km(2−(j+N), f) −Km(2−j , f), j ≥ 1,

with Lemma 4.7 it follows that

||f ||Hs
p(Rd,w;X) � ||f ||Lp(Rd,w;X) + sup

J

∣∣∣∣∣∣ J∑
j=1

εj2jskj ∗ f
∣∣∣∣∣∣
Xp,w

� ||f ||Lp(Rd,w;X) + sup
J

2−Ns
∣∣∣∣∣∣ J∑

εj2(j+N)sKm(2−(j+N), f)
∣∣∣∣∣∣
Xp,w
j=1
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+ sup
J

∣∣∣∣∣∣ J∑
j=1

εj2jsKm(2−j , f)
∣∣∣∣∣∣
Xp,w

(7)
≤ ||f ||Lp(Rd,w;X) + (2−Ns + 1)[f ](m,K)

Hs
p(Rd,w;X). �

Proof of Theorem 4.1(ii)

Lemma 4.8. Let X be a UMD space, p ∈ (1, ∞) and w ∈ Ap(Rd). Let χ ∈ C∞
c (Rd \ {0})

and η ∈ C∞
c (Rd). For each n ∈ Z≤0 and h ∈ Rd we define the sequence of symbols 

{Mh,n
j }j∈Z ⊂ L∞(Rd) by

Mh,n
j (ξ) :=

⎧⎪⎪⎨⎪⎪⎩
(eı2−jh·ξ − 1)χ(2−(n+j)ξ), n + j ≥ 1
(eı2−jh·ξ − 1)η(2−(n+j)ξ), n + j = 0
0, n + j ≤ −1

Then each symbol Mh,n
j defines a bounded Fourier multiplier operator Th,n

j = TMh,n
j

on 

Lp(Rd, w; X) such that the following R-bound is valid:

R{Th,n
j : j ∈ Z} � 2n(1 + |h|)d+3, h ∈ Rd, n ∈ Z≤0. (32)

Proof. By construction, {Mh,n
j }j∈Z ⊂ C∞

c (Rd) satisfies condition (a) of Corollary 3.5
for some N ∈ N independent of n ∈ Z≤0 and h ∈ Rd. Therefore, it is enough to show 
that

||Mh,n
j ||Md+2 � 2n(1 + |h|)d+3, h ∈ Rd, n ∈ Z≤0, j ∈ Z. (33)

We only consider the case n + j ≥ 1 in (33), the case n + j = 0 being completely
similar and the case n + j ≤ −1 being trivial. Let h ∈ Rd, n ∈ Z≤0 and j ∈ Z with 
n + j ≥ 1 be given. Fix a multi-index α ∈ Nd with |α| ≤ d + 2. Using the Leibniz rule, 
we compute

|ξ||α|DαMh,n
j (ξ) = |ξ||α|Dα

ξ

⎛⎜⎝ıh · ξ
2−jˆ

0

eısh·ξdsχ(2−(n+j)ξ)

⎞⎟⎠

= ı
∑

β+γ≤α

cαβ,γ |ξ||β|Dβ
ξ (h · ξ) |ξ||γ|Dγ

ξ

⎛⎜⎝ 2−jˆ

0

eısh·ξds

⎞⎟⎠ |ξ||α|−|β|−|γ|Dα−β−γ
ξ [χ(2−(n+j)ξ)]

= ı
∑
γ≤α

cα0,γ h · ξ |ξ||γ|
2−jˆ

(ısh)γeısh·ξds |2−(n+j)ξ||α|−|γ|[Dα−γχ](2−(n+j)ξ)

0
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+ ı
∑

β+γ≤α;|β|=1

cαβ,γ |ξ|hβ |ξ||γ|
2−jˆ

0

(ısh)γeısh·ξds

× |2−(n+j)ξ||α|−|β|−|γ|[Dα−β−γχ](2−(n+j)ξ).

Picking R > 0 such that suppχ ⊂ B(0, R), we can estimate

|ξ||α||DαMh,n
j (ξ)| �

∑
γ≤α

|h||γ|+12−j(|γ|+1) 1B(0,R)(2−(n+j)ξ) |ξ||γ|+1 ||χ||Md+2

+
∑

β+γ≤α;|β|=1

|h||γ|+12−j(|γ|+1) 1B(0,R)(2−(n+j)ξ) |ξ||γ|+1 ||χ||Md+2

≤ 2||χ||Md+2

∑
γ≤α

|h||γ|+12n(|γ|+1)R|γ|+1

n≤0
� 2n(1 + |h|)d+3.

This proves the required estimate (33). �
Proof of Theorem 4.1(ii). Given f ∈ Lp(Rd, w; X), write fn := Snf for n ∈ N and 
fn := 0 for n ∈ Z<0. For each j ∈ Z>0 we then have f =

∑
n∈Z

fn+j in Lp(Rd, w; X), 
from which it follows that

∣∣∣∣∣∣ J∑
j=1

εj2jsKm(2−j , f)
∣∣∣∣∣∣
Xp,w

≤
∑
n∈Z

∣∣∣∣∣∣ J∑
j=1

εj2jsKm(2−j , fn+j)
∣∣∣∣∣∣
Xp,w

. (34)

We first estimate the sum over n ∈ Z>0 in (34). Using the R-boundedness of {f �→
Km(2−j , f) : j ≥ 1}, we find

∣∣∣∣∣∣ J∑
j=1

εj2jsKm(2−j , fn+j)
∣∣∣∣∣∣
Xp,w

� 2−ns
∣∣∣∣∣∣ J∑

j=1
εj2(n+j)sfn+j

∣∣∣∣∣∣
Xp,w

≤ 2−ns||f ||Hs
p(Rd,w;X).

Since s > 0, it follows that the sum over n ∈ Z>0 in (34) can be estimated from above 
by C||f ||Hs

p(Rd,w;X) for some constant C independent of f and J .
Next we estimate the sum over n ∈ Z≤0 in (34). To this end, let χ ∈ C∞

c (Rd \ {0})
and η ∈ C∞

c be such that χ ≡ 1 on 1
2 supp ϕ̂1 and η ≡ 1 on supp ϕ̂0. For every λ ∈ C we 

define the function eλ : Rd → C by eλ(ξ) := eλ·ξ. For each n ≤ 0, h ∈ Rd and j ≥ 1, we 
then have
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Δm
2−jhfn+j = F−1[(eı2−jh − 1)mf̂n+j ]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F−1

[(
(eı2−jh − 1)χ(2−(n+j) · )

)m
f̂n+j

]
, n + j ≥ 1;

F−1
[(

(eı2−jh − 1)η(2−(n+j) · )
)m

f̂n+j

]
, n + j = 0;

0, n + j ≤ −1

= Tm
Mh,n

j

fn+j ,

where Mh,n
j is the Fourier multiplier symbol from Lemma 4.8. For each n ≤ 0 we thus 

get

∣∣∣∣∣∣ J∑
j=1

εj2jsKm(2−j , fn+j)
∣∣∣∣∣∣
Xp,w

≤
ˆ

Rd

|K(h)|
∣∣∣∣∣∣ J∑

j=1
εj2jsΔm

2−jhfn+j( · )
∣∣∣∣∣∣
Xp,w

dh

=
ˆ

Rd

|K(h)|
∣∣∣∣∣∣ J∑

j=1
εj2jsTm

Mh,n
j

fn+j

∣∣∣∣∣∣
Xp,w

dh

(32)
� 2n(m−s)

ˆ

Rd

|K(h)|(1 + |h|)(d+3)mdh

·
∣∣∣∣∣∣ J∑

j=1
εj2(n+j)sfn+j

∣∣∣∣∣∣
Xp,w

(13)
� 2n(m−s)||f ||Hs

p(Rd,w;X).

Since m − s > 0, it follows that the sum over n ∈ Z≤0 in (34) can be estimated from 
above by C||f ||Hs

p(Rd,w;X) for some constant C independent of f and J . �
The idea to do the estimate (34) and to treat the sum over n ∈ Z>0 and n ∈ Z≤0

separately is taken from the proof of [48, Proposition 6], which is concerned with a 
difference norm characterization for F s

p,q(Rd; X).

4.4. The special case of a Banach function space

In the special case that X is a Banach function space, we obtain the following corollary 
from the main result (Theorem 4.1):

Corollary 4.9. Let X be a UMD Banach function space, s > 0, p ∈ (1, ∞), w ∈ Ap(Rd)
and m ∈ N, m > s. Suppose that K ∈ K (Rd) ∩ L1(Rd, (1 + | · |)(d+3)m) satisfies the 
Tauberian condition (26) for some c, ε > 0. For all f ∈ Lp(Rd, w; X) we then have the 
equivalence of extended norms
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||f ||Hs
p(Rd,w;X) � ||f ||Lp(Rd,w;X) +

∣∣∣∣∣∣( ∞∑
j=1

|2jsKm(2−j , f)|2
)1/2∣∣∣∣∣∣

Lp(Rd,w;X)
. (35)

Proof. By the Khintchine–Maurey theorem, the right-hand side (RHS) of (35) defines 
an extended norm on Lp(Rd, w; X) which is equivalent to ||| · |||(m,K)

Hs
p(Rd,w;X). Therefore, 

we only need to check the R-boundedness condition in Theorem 4.1(ii). But this follows 
from Proposition 4.11 below (and the discussion after it). �
Remark 4.10. Let X be a UMD Banach function space, s > 0, p ∈ (1, ∞), w ∈ Ap(Rd)
and m ∈ N, m > s. Suppose K ∈ K (Rd)+ \ {0}. Then it is a natural question whether 
we can replace Km(2−j , f) by dmK(2−j , f) in the RHS of (35), where

dmK(t, f)(x) :=
ˆ

Rd

K(h)|Δm
h f(x)| dh, t > 0, x ∈ Rd.

In view of the domination |Km(t, f)| ≤ dmK(t, f), this is certainly true for the inequality 
‘�’ in (35). For the reverse inequality ‘�’ one could try to extend the maximal function 
techniques from [48, Proposition 6] to our setting via the square function variant of 
the Littlewood–Paley characterization (13); here one would have to replace the classical 
Hardy–Littlewood maximal function by the Banach lattice version from [4,13,45].

Proposition 4.11. Let X be a UMD Banach function space, p ∈ (1, ∞) and w ∈ Ap(Rd). 
Then K (Rd) ↪→ B(Lp(Rd, w; X)) maps bounded sets to R-bounded sets.

Proof. In the unweighted case w = 1 this can be found in [57, Section 4]. However, 
the Banach lattice version of the Hardy–Littlewood maximal operator is bounded on 
Lp(Rd, w; X(�2)) for general w ∈ Ap, which is implicitly contained [13]; also see [52]. 
Hence, the results from [57, Section 4] remain valid for general w ∈ Ap. �

Recall that, given k ∈ K (Rd), for all t > 0 we have kt = tdk(t · ) ∈ K (Rd) with 
||kt||K (Rd) = ||k||K (Rd). So, under the assumptions of the above proposition,

R{f �→ kt ∗ f : t > 0} �X,p,d,w ||k||K (Rd) in B(Lp(Rd, w;X)).

In particular, if m ∈ Z≥1 and K ∈ K (Rd), then the choice k = KΔm leads to the 
R-boundedness of {f �→ Km(t, f) : t > 0} in B(Lp(Rd, w; X)).

5. 1Rd
+

as pointwise multiplier

5.1. Proof of Theorem 1.4

Besides Theorem 1.1 (or Theorem 4.1), we need two lemmas for the proof of The-
orem 1.4. The first lemma says that the inclusion (5) automatically implies its vector-
valued version.
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Lemma 5.1. Let s ≥ 0, p ∈ (1, ∞) and w ∈ Ap(Rd). Let ws,p be the weight from Theo-
rem 1.4. If Hs

p(Rd, w) ↪→ Lp(Rd, ws,p), then there also is the inclusion

Hs
p(Rd, w;X) ↪→ Lp(Rd, ws,p;X) (36)

for any Banach space X.

Proof. This can be shown as in [37, Proof of Theorem 1.3, p. 8], which is based on 
the fact that the Bessel potential operator J−s (s ≥ 0) is positive as an operator from 
Lp(Rd, w) to Hs

p(Rd, w) (in the sense that J−sf ≥ 0 whenever f ≥ 0). �
The second lemma is very similar to Theorem 4.1(ii) and may be thought of as an 

Rd
+-version for the case m = 1.

Lemma 5.2. Let X be a UMD Banach space, s ∈ (0, 1), p ∈ (1, ∞) and w ∈ Ap(Rd). Let 
K ∈ K (Rd) ∩ L1(Rd, (1 + | · |)d+3). For each f ∈ Lp(Rd, w; X) we define

[f ]#
Hs

p(Rd
+,w;X) = [f ](K)

Hs
p(Rd

+,w;X) := sup
J∈N

∣∣∣∣∣∣ J∑
j=−J

εj2jsKRd
+
(2−j , f)

∣∣∣∣∣∣
Xp,w(Rd

+)
,

where we use the notation

KRd
+
(t, f)(x) :=

ˆ

{h1≥−x1t−1}

K(h)Δthf(x) dh, t > 0, x ∈ Rd
+.

If {f �→ K̃t ∗ f : t = 2−j , j ∈ Z≥1} ⊂ B(Lp(Rd, w; X)) is R-bounded, then we have the 
estimate

[f ]#
Hs

p(Rd
+,w;X) � ||f ||Hs

p(Rd,w;X), f ∈ Lp(Rd, w;X).

Proof. Note that, for each t > 0, f �→ KRd
+
(t, f) is a well-defined bounded linear operator 

on Lp(Rd, w; X) of norm �p,d,w ||K||K (Rd). Using that s > 0, for f ∈ Lp(Rd, w; X) we 
can thus estimate

∣∣∣∣∣∣ J∑
j=−J

εj2jsKRd
+
(2−j , f)

∣∣∣∣∣∣
Xp,w(Rd

+)
� ||f ||Lp(Rd,w;X) +

∣∣∣∣∣∣ J∑
j=1

εj2jsKRd
+
(2−j , f)

∣∣∣∣∣∣
Xp,w(Rd

+)
.

Now fix f ∈ Lp(Rd, w; X) and write fn := Snf for n ∈ N and fn := 0 for n ∈ Z<0. Then

∣∣∣∣∣∣ J∑
εj2jsKRd

+
(2−j , f)

∣∣∣∣∣∣
Xp,w(Rd

+)
≤
∑∣∣∣∣∣∣ J∑

εj2jsKRd
+
(2−j , fn+j)

∣∣∣∣∣∣
Xp,w

(37)

j=1 n∈Z j=1



1468 N. Lindemulder / Journal of Functional Analysis 272 (2017) 1435–1476
We first estimate the sum over n ∈ Z>0 in (37). Since

KRd
+
(2−j , fn+j)(x) = K̃2−j ∗ (1Rd

+
f) (x) +

⎛⎜⎝ ˆ

{h1≥−x12j}

K(h) dh

⎞⎟⎠ fn+j(x),

we can estimate

∣∣∣∣∣∣ J∑
j=1

εj2jsKRd
+
(2−j , fn+j)

∣∣∣∣∣∣
Xp,w

≤
∣∣∣∣∣∣ J∑

j=1
εj2jsK̃2−j ∗ (1Rd

+
fn+j)

∣∣∣∣∣∣
Xp,w

+
∣∣∣∣∣∣x �→

J∑
j=1

εj2js

⎛⎜⎝ ˆ

{h1≥−x12j}

K(h) dh

⎞⎟⎠ fn+j(x)
∣∣∣∣∣∣
Xp,w

.

For the first term we can use the assumed R-boundedness of the involved convolution 
operators and for the second term we can use the contraction principle, to obtain

∣∣∣∣∣∣ J∑
j=1

εj2jsKRd
+
(2−j , fn+j)

∣∣∣∣∣∣
Xp,w

�
∣∣∣∣∣∣ J∑

j=1
εj2js1Rd

+
fn+j

∣∣∣∣∣∣
Lp(Ω;Lp(Rd,w;X))

+
∣∣∣∣∣∣ J∑

j=1
εj2jsfn+j

∣∣∣∣∣∣
Xp,w

≤ 2 2−ns||
J∑

j=1
εj2(n+j)sfn+j ||Xp,w

� 2−ns||f ||Hs
p(Rd,w;X).

Since s > 0, it follows that the sum over n ∈ Z>0 in (37) can be estimated from above 
by C||f ||Hs

p(Rd,w;X) for some constant C independent of f and J .
We next estimate the sum over n ∈ Z≤0 in (37). For each n ≤ 0 we have

∣∣∣∣∣∣ J∑
j=1

εj2jsKRd
+
(2−j , fn+j)

∣∣∣∣∣∣
Xp,w

=
∣∣∣∣∣∣x �→

J∑
j=1

εj2js
ˆ

Rd

1[−2−jh1,∞)(x1)K(h)Δ2−jhfn+j(x) dh
∣∣∣∣∣∣
Xp,w

≤
ˆ

Rd

|K(h)|
∣∣∣∣∣∣x �→

J∑
j=1

εj2js1[−2−jh1,∞)(x1)Δ2−jhfn+j(x)
∣∣∣∣∣∣
Xp,w

dh

≤
ˆ

|K(h)|
∣∣∣∣∣∣x �→

J∑
j=1

εj2jsΔ2−jhfn+j(x)
∣∣∣∣∣∣
Xp,w

dh,
Rd
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where we used the contraction principle (7) in the last step. We can now proceed as in 
the proof of Theorem 4.1(ii) to estimate the sum over n ∈ Z≤0 in (37) by C||f ||Hs

p(Rd,w;X)
for some constant C independent of f and J . �
Proof of Theorem 1.4. In view of Lemma 5.1, we need to show that 1Rd

+
is a pointwise 

multiplier on Hs
p(Rd, w; X) if and only if there is the continuous inclusion (36). Defining 

w̄s,p as the weight on R × Rd−1 given by w̄s,p(x1, x′) := |x1|−spw(x1, x′), the inclusion 
(36) is equivalent to the inclusion

Hs
p(Rd, w;X) ↪→ Lp(Rd, w̄s,p;X) (38)

because Hs
p(Rd, w; X) ↪→ Lp(Rd, w; X). So we must show that 1Rd

+
is a pointwise multi-

plier on Hs
p(Rd, w; X) if and only if there is the continuous inclusion (38).

Step I. Let K ∈ S(Rd) satisfy K̂(0) �= 0. For a function g on Rd we write g� for the 
reflection in the hyperplane {0} × Rd−1, i.e. g�(x) := g(−x). Then 1Rd

+
is a pointwise 

multiplier on Hs
p(Rd, w; X) if and only if

∣∣∣∣∣∣x �→
(∑

j∈Z

∣∣∣2js ˆ

{h1≤−x12j}

k(h) dh
∣∣∣2)1/2

||f(x)||X
∣∣∣∣∣∣
Lp(Rd

+,v)
� ||f ||Hs

p(Rd,v;X) (39)

for f ∈ Lp(Rd, v; X), v ∈ {w, w�}, k ∈ {K, K�}.
Step I.(a) 1Rd

+
is a pointwise multiplier on Hs

p(Rd, w; X) if and only if

[1Rd
±
f ]Hs

p(Rd
±,w;X) � ||f ||Hs

p(Rd,w;X), f ∈ Lp(Rd, w;X), (40)

where

[f ]Hs
p(Rd

±,w;X) := sup
J∈N

∣∣∣∣∣∣ J∑
j=−J

εj2jsK1(2−j , f)
∣∣∣∣∣∣
Lp(Ω;Lp(Rd

±,w;X))
.6

Since [g](1,K);Z
Hs

p(Rd,w;X) =
(
[g]p

Hs
p(Rd

−,w;X) + [g]p
Hs

p(Rd
+,w;X)

)1/p
� [g]Hs

p(Rd
−,w;X) + [g]Hs

p(Rd
+,w;X)

for g ∈ Lp(Rd, w; X), it follows from Theorem 1.1 (and Remark 4.3) that

||g||Hs
p(Rd,w;X) � ||g||Lp(Rd,w;X) + [g]Hs

p(Rd
−,w;X)

+ [g]Hs
p(Rd

+,w;X), g ∈ Lp(Rd, w;X). (41)

First we assume that (40) holds true. For all f ∈ Lp(Rd, w; X) we can then estimate

6 Recall from Section 4.1 that K1(t, f)(x) =
´
Rd K(h)Δthf(x) dh.
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||1Rd
+
f ||Hs

p(Rd,w;X)

(41)
� ||1Rd

+
f ||Lp(Rd,w;X) + [1Rd

+
f ]Rd

−
+ [1Rd

+
f ]Rd

+

≤ ||f ||Lp(Rd,w;X) + [f ]Rd
−

+ [1Rd
−
f ]Rd

−
+ [1Rd

+
f ]Rd

+

(40), (41)
� ||f ||Hs

p(Rd,w;X).

Next we assume that 1Rd
+

is a pointwise multiplier on Hs
p(Rd, w; X). Then the in-

equality in (40) for Rd
+ follows directly from (41). Since 1Rd

−
= 1 − 1Rd

+
, the inequality 

in (40) for Rd
− follows as well.

Step I.(b) (39) ⇔ (40). We only show that the inequality in (40) for Rd
+ is equivalent 

to the inequality in (39) with v = w and k = K, the equivalence of the other inequalities 
being completely similar. We claim that the inequality in (40) for Rd

+ is equivalent to 
the estimate

sup
J∈N

∣∣∣∣∣∣x �→
J∑

j=−J

εj2js
ˆ

h1≤−x12j

K(h) dh f(x)
∣∣∣∣∣∣
Xp,w(Rd

+)

� ||f ||Hs
p(Rd,w;X), f ∈ Lp(Rd, w;X). (42)

Let us prove the claim. Note that, in view of the identity

K1(2−j , 1Rd
+
f)(x) = KRd

+
(2−j , f)(x) +

ˆ

{h1≤−x12j}

K(h) dh f(x),

we have the inequalities

[1Rd
+
f ]Hs

p(Rd
+,w;X) ≤ [f ]#

Hs
p(Rd

+,w;X)

+ sup
J∈N

∣∣∣∣∣∣x �→
J∑

j=−J

εj2js
ˆ

{h1≤−x12j}

K(h) dh f(x)
∣∣∣∣∣∣
Xp,w(Rd

+)
(43)

and

sup
J∈N

∣∣∣∣∣∣x �→
J∑

j=−J

εj2js
ˆ

{h1≤−x12j}

K(h) dh f(x)
∣∣∣∣∣∣
Xp,w(Rd

+)

≤ [1Rd
+
f ]Hs

p(Rd
+,w;X) + [f ]#

Hs
p(Rd

+,w;X). (44)

Furthermore, note that the R-boundedness condition from Lemma 5.2 is fulfilled since 
K ∈ S(Rd); see Example 4.4. Plugging the estimate from Lemma 5.2 into (43), we see 
that (42) implies the inequality in (40) for Rd

+. The reverse implication is obtained by 
plugging the estimate from Lemma 5.2 into (44).
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Using the claim, this step is now completed by the observation that

∣∣∣∣∣∣x �→
J∑

j=−J

εj2js
ˆ

{h1≤−x12j}

K(h) dh f(x)
∣∣∣∣∣∣
Xp,w(Rd

+)

=
∣∣∣∣∣∣x �→

∣∣∣∣∣∣ J∑
j=−J

εj2js
ˆ

{h1≤−x12j}

K(h) dh
∣∣∣∣∣∣
Lp(Ω)

||f(x)||X
∣∣∣∣∣∣
Lp(Rd

+,w)

=
∣∣∣∣∣∣x �→

( J∑
j∈−J

∣∣∣2js ˆ

{h1≤−x12j}

K(h) dh
∣∣∣2)1/2

||f(x)||X
∣∣∣∣∣∣
Lp(Rd

+,w)
.

Step II. Let K = K [1] ⊗K [2] ∈ C∞
c (Rd), where K [1] ∈ C∞

c (R) and K [2] ∈ C∞
c (Rd−1)

satisfy K [1] = K [1](− · ), 1[−1,1] ≤ K [1] ≤ 1[−2,2] and K̂ [2](0) = 1. Then (39) is equivalent 
to (38). In view of the reflection symmetry K = K�, we only need to show that

(∑
j∈Z

∣∣∣2js ˆ

{h1≤−y2j}

K(h) dh
∣∣∣2)1/2

� y−s, y ∈ R+. (45)

By the choice of K,

∣∣[−(1 ∧ y2j),−y2j ]
∣∣ ≤

ˆ

h1≤−y2j

K(h) dh ≤
∣∣[−(2 ∧ y2j),−y2j ]

∣∣, y ∈ R+.

For every b > 0 we have

(∑
j∈Z

[
2js
∣∣[−(b ∧ y2j),−y2j ]

∣∣]2)1/2
�

( ∞̂

0

t−2s∣∣[−(b ∧ yt−1),−yt−1]
∣∣2 dt

t

)1/2

=
( ∞̂

b−1y

t−2s(b− yt−1)2 dt

t

)1/2

= b−(s+1)y−s
( ∞̂

1

τ−2s−2(τ − 1)2 dτ

τ

)1/2

︸ ︷︷ ︸
<∞

.

So we obtain (45) by taking b = 1, 2. �
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5.2. A closer look at the inclusion Hs
p(Rd, w) ↪→ Lp(Rd, ws,p)

In this section we give explicit conditions, in terms of w, s and p, for which there is 
the continuous inclusion (5) from Theorem 1.4. These conditions will be obtained from 
the following embedding result.

Theorem 5.3. ([37, Theorem 1.2]) Let w0, w1 ∈ A∞(Rd), s0 > s1, 0 < p0 ≤ p1 < ∞, and 
q0, q1 ∈ (0, ∞]. Then there is the continuous inclusion

F s0
p0,q0(R

d, w0) ↪→ F s1
p1,q1(R

d, w1)

if and only if

sup
ν∈N,m∈Zd

2−ν(s0−s1)w0(Qν,m)−1/p0w1(Qν,m)1/p1 < ∞,

where Qν,m = Q[2−νm, 2−ν−1] ⊂ Rd denotes for ν ∈ N and m ∈ Zd the d-dimensional 
cube with sides parallel to the coordinate axes, centered at 2−νm and with side length 
2−ν .

Proposition 5.4. Let s > 0, p ∈ (1, ∞) and w ∈ Ap(Rd). Suppose that ws,p(x1, x′) =
|x1|−spw(x1, x′) defines an A∞-weight on Rd = R × Rd−1. If

sup
ν∈N,m∈{0}×Zd−1

2−νsp 1
w(Qν,m)

ˆ

Qν,m

|x1|−sp w(x) dx < ∞, (46)

then there is the continuous inclusion Hs
p(Rd, w) ↪→ Lp(Rd, ws,p). In case that ws,p ∈ Ap, 

the converse holds true as well.

Proof. For the inclusion Hs
p(Rd, w) ↪→ Lp(Rd, ws,p) it is sufficient that F s

p,2(Rd, w) ↪→
F 0
p,1(Rd, ws,p). This follows from the identity F s

p,2(Rd, w) (10)= Hs
p(Rd, w), denseness of 

S(Rd) in Hs
p(Rd, w), the inclusion (S(Rd), || · ||F 0

p,1(Rd,ws,p)) 
(12)
↪→ Lp(Rd, ws,p) and the 

fact that Hs
p(Rd, w) and Lp(Rd, ws,p) are both continuously included in the Haus-

dorff topological space L0(Rd). In the case that ws,p ∈ Ap, there are the identities 
F s
p,2(Rd, w) = Hs

p(Rd, w) and Lp(Rd, ws,p) = F 0
p,2(Rd, ws,p) (see (10)), so the inclusion 

Hs
p(Rd, w) ↪→ Lp(Rd, ws,p) just becomes F s

p,2(Rd, w) ↪→ F 0
p,2(Rd, ws,p). Therefore, in or-

der to prove the proposition, it is enough to show that, for every q ∈ [1, ∞], the inclusion

F s
p,2(Rd, w) ↪→ F 0

p,q(Rd, ws,p) (47)

is equivalent to the condition (46).
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By Theorem 5.3, the inclusion (47) holds true if and only if

sup
ν∈N,m∈Zd

2−νs||x �→ |x1|−s||
Lp

(
Qν,m, 1

w(Qν,m)w
) = sup

ν∈N,m∈Zd

2−νs

(
ws,p(Qν,m)
w(Qν,m)

)1/p

< ∞.

But this condition is equivalent to (46). Indeed, for every ν ∈ N and m ∈ Zd with m1 �= 0
we have

|x1| ≥ (|m1| − 1/2) 2−ν ≥ 1
2 |m1| 2−ν , x ∈ Qν,m,

implying that

2−νs||x �→ |x1|−s||
Lp

(
Qν,m, 1

w(Qν,m)w
) ≤ 2s|m1|−s ≤ 2s. �

Let d = n + k with n, k ∈ N. For α, β > −n we define the weight vα,β on Rd by

vα,β(x, y) :=
{
|x|α if |x| ≤ 1,
|x|β if |x| > 1,

(x, y) ∈ Rd = Rn × Rk. (48)

Given p ∈ (1, ∞), we have vα,β ∈ Ap if and only if α, β ∈ (−n, n(p − 1)); see [18, 
Proposition 2.6]. For n = 1 and k = d − 1, we have vγ,γ = wγ (3) for every γ > −1.

Example 5.5. Let s > 0 and p ∈ (1, ∞).

(i) Suppose w = w1 ⊗ w2 with w1 ∈ Ap(R) and w2 ∈ Ap(Rd−1). Then (46) reduces to 
the corresponding 1-dimensional condition on w1:

sup
ν∈N

2−νsp 1
w1(Qν,0)

ˆ

Qν,0

|t|−sp w1(t) dt < ∞ (49)

(ii) Let α, β ∈ (−1, p − 1). Consider the weight w = vα,β from (48) for n = 1 and 
k = d − 1. There is the inclusion Hs

p(Rd, w) ↪→ Lp(Rd, ws,p) if and only if s <
1+α
p . Given a UMD space X, by Theorem 1.4 we thus have that 1Rd

+
is a pointwise 

multiplier on Hs
p(Rd, vα,β ; X) if and only if s < 1+α

p . In the case α = β this is 
precisely [39, Theorem 1.1] restricted to positive smoothness; note that the general 
case α, β ∈ (−1, p − 1) can be deduced from the case α = β ∈ (−1, p − 1).

Proof of (ii). By (i) we may without loss of generality assume that d = 1. Note that ws,p

is the weight vα−sp,β (48) for n = 1 and k = 0.
First assume that there is the inclusion Hs

p(Rd, w) ↪→ Lp(Rd, ws,p). Since C∞
c (Rd) ⊂

Hs
p(Rd, w), it follows that vα−sp,β = ws,p ∈ L1

loc(Rd). Hence, α− sp > −1.
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Conversely, assume that s < 1+α
p . Then α−sp ∈ (−1, p −1), so that ws,p = vα−sp,β ∈

Ap. Using that s < 1+α
p , a simple computation shows that (49) holds true for w = vα,β . 

By Proposition 5.4 we thus obtain that Hs
p(Rd, w) ↪→ Lp(Rd, ws,p). �
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