
 
 

Delft University of Technology

Correct generation of the bound set-down for surface gravity wave groups in laboratory
experiments of intermediate to shallow depth

Mortimer, William; Raby, Alison; Antonini, Alessandro; Greaves, Deborah; van den Bremer, Ton S.

DOI
10.1016/j.coastaleng.2022.104121
Publication date
2022
Document Version
Final published version
Published in
Coastal Engineering

Citation (APA)
Mortimer, W., Raby, A., Antonini, A., Greaves, D., & van den Bremer, T. S. (2022). Correct generation of the
bound set-down for surface gravity wave groups in laboratory experiments of intermediate to shallow depth.
Coastal Engineering, 174, Article 104121. https://doi.org/10.1016/j.coastaleng.2022.104121

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.coastaleng.2022.104121
https://doi.org/10.1016/j.coastaleng.2022.104121


Coastal Engineering 174 (2022) 104121

Available online 30 March 2022
0378-3839/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Correct generation of the bound set-down for surface gravity wave groups 
in laboratory experiments of intermediate to shallow depth 

William Mortimer a,b, Alison Raby a, Alessandro Antonini c, Deborah Greaves a, 
Ton S. van den Bremer c,d,* 

a Faculty of Science and Engineering, University of Plymouth, Plymouth, PL4 8AA, UK 
b JBA Consulting Ltd., Newcastle-upon-Tyne, NE1 5JE, UK 
c Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, 2628, CD, the Netherlands 
d Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK   

A R T I C L E  I N F O   

Keywords: 
Focused wave groups 
Second-order wave generation 
Harmonic decomposition 
Set-down 
Error waves 

A B S T R A C T   

Using linear (first-order) wave generation theory in laboratory experiments, leads to significant contamination of 
the wave field by free non-linear (second-order) error waves, increasingly so at shallower depths. Second-order 
wave generation theory has previously been established, and so has correct generation of the bound set-down, 
made up from second-order bound waves in the sub-harmonic part of the spectrum, for bichromatic and 
irregular wave fields in shallow to intermediate depth. In the present work, different from previous studies, we 
validate second-order wave theory explicitly for isolated wave groups, which provide a demanding test on the 
correct generation of sub-harmonic bound waves and the stroke length of the wavemaker. We do so for shallow 
to intermediate water depth, where some previous attempts at full elimination of sub-harmonic error waves have 
been hampered by limited paddle stroke. We overcome these limitations by applying second-order wavemaker 
theory to a piston-type paddle with an extended paddle stroke that can thence generate the bound set-down 
correctly. We show that sub-harmonic error waves are eliminated by considering wave groups in relative 
depths k0d = 0.6–1.1, with important applications in coastal engineering experiments, such as run-up and 
overtopping.   

1. Introduction 

Occurrence of wave-induced coastal flooding is expected to increase 
due to the combined effects of sea level rise (Taherkhani et al., 2020) 
and more frequent occurrence of large transient waves in the coastal 
environment (Cattrell et al., 2019; Young and Ribal, 2019). Large 
transient waves events can pose significant threat to coastal assets, 
primarily due to their ability to damage and overtop coastal flood de-
fences (see Dawson et al. (2016)). Such waves are highly nonlinear and 
highly transient, yet they are a key design condition for coastal engi-
neering schemes (Van der Meer et al., 2018) and therefore require ac-
curate estimation by coastal engineers. 

Focused wave groups provide an efficient approach to approximate 
large transient wave events using a compact wave group of select 
component frequencies. They have been widely used in coastal engi-
neering research (Longuet-Higgins, 1974; Chan and Melville, 1988; 
Drazen et al., 2008; Tian et al., 2011; Fernández et al., 2014; Antonini 

et al., 2017; Abroug et al., 2020; Fang et al., 2020) and have been 
suggested as a design wave in industry-recommended practice (Det 
Norske Veritas, 2010; ISO:19 901-1:2015). 

In general, wave-driven structural responses of interest to coastal 
engineers are related to the most severe waves of a sea state. Focused 
wave groups offer the ability to recreate these wave conditions through 
judicious selection of the underlying energy spectrum, permitting 
assessment of the associated structural responses in a time efficient and 
highly repeatable manner (e.g., Borthwick et al. (2006); Hofland et al. 
(2014)), when compared with irregular wave tests. Focused wave 
groups are used within a framework known both as NewWave theory 
(Tromans et al., 1991; Jonathan and Taylor, 1997; Walker and Taylor, 
2004; Taylor and Williams, 2004; Borthwick et al., 2006; Whittaker 
et al., 2016; Chen et al., 2018) and the theory of quasi-determinism (QD) 
(Boccotti, 1983, 1989, 2000), based on the statistical underpinnings of 
Lindgren (1970). In this framework, the average shape of an extreme 
wave crest in a linear random Gaussian sea (i.e., the linear surface 
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elevation follows a Gaussian distribution) can be approximated by the 
scaled autocorrelation function of the underlying free surface. 

Use of focused wave groups in deep-water scenarios is well estab-
lished, and application in shallower-water scenarios is becoming com-
mon. Whittaker et al. (2016) demonstrated that a NewWave/QD group 
that is corrected for second-order bound waves can reproduce the 
average shape of the largest wave crests in shallow water (k0d < 0.5). 
Borthwick et al. (2006); Orszaghova et al. (2014); Whittaker et al. 
(2017), and Judge et al. (2019) used similar groups to investigate flow 
kinematics and wave run-up on plane beaches. Hunt (2003); Orszaghova 
et al. (2014); Hofland et al. (2014), and Antonini et al. (2017) examined 
wave overtopping and Whittaker et al. (2018) and Chen et al. (2018) 
wave forcing on inclined to vertical coastal structures and 
surface-piercing columns. Karmpadakis and Swan (2020) found that 
when assessing storm-sea time series for the largest (e.g., 1%) wave 
crests, there is a likelihood that the breaking status of the waves is 
neglected. Therefore, comparing a focused wave group profile to the 
average shape of the largest crests could reach an inappropriate 
conclusion. They found that a focused wave group, specifically in the 
form of the NewWave/QD framework, provides good approximation of 
large wave shapes in finite depth. Yet, they note that such wave crest 
statistics are significantly amplified by high-order nonlinear wave-wave 
interactions (above second-order), where the nonlinear amplification of 
wave crests in very steep sea states has poor agreement with the New-
Wave/QD framework. 

Nonlinear free error waves are an inherent product of first-order 
wave generation (Barthel et al., 1983; Schäffer, 1996). Error waves 
are widely discussed in literature, where they are also referred to as 
parasitic or spurious waves (e.g., Hunt (2003); Orszaghova et al. (2014); 
Aknin and Spinneken (2017); Vyzikas et al. (2018), and Pierella et al. 
(2021)). They are created through a disparity between bound sub- and 
super-harmonics present in the wave field and the first-order boundary 
condition at the wavemaker’s face (e.g., Schäffer (1996)). In 
multi-frequency wave fields, such as focused wave groups, error waves 
at sub- and super-harmonic frequencies are produced as an instanta-
neous correction for the absence of bound nonlinearities in the wave-
maker displacement. Free error waves satisfy the linear dispersion 
relation, so freely disperse at a celerity defined by their frequency. 
Generally, sub-harmonic error waves travel faster than the first-order 
wave group and are first to arrive at the domain of interest, whereas 
super-harmonic error waves travel more slowly and trail behind (e.g., 
Hunt (2003)). Therefore, due to their faster speeds and long wave 
lengths, sub-harmonic error waves present the most persistent challenge 
to experimentalists. 

Orszaghova et al. (2014) found major discrepancy in run-up and 
overtopping induced by wave groups due to the presence of 
sub-harmonic error waves. Their Boussinesq-type numerical model 
showed sub-harmonic error waves increased run-up by 18–57% and 
overtopping volumes by 25–83%. Borthwick et al. (2006); Hunt-Raby 
et al. (2011); Buldakov et al. (2017), and Calvert et al. (2019) also 

Table 1 
Studies that have implemented second-order wave generation.  

Authors of study Method Used k0d Wave types used in 
study 

Validated in 
freq. 

Validated in 
time 

Assessment of agreement between theory and 
experiments in the time and frequency. 

Barthel et al. (1983)  0.6 Bichromatic ✓ ✓ Excellent agreement in time. Reasonable       
agreement in frequency with some under-       
prediction of magnitude. 

Barthel et al. (1983)  1.1 Bichromatic ✓ ✓ Partial agreement in time and poor agreement       
in frequency with significant under-       
prediction of magnitude. 

Barthel et al. (1983)  0.7 Irregular ✓ ✓ Excellent agreement in time       
and frequency. 

Barthel et al. (1983)  0.9 Irregular ✓ ✓ No improvement in agreement in time       
and worse agreement in frequency with       
second-order generation. 

Schäffer (1996) Includes correction of  
Barthel et al. (1983) 

0.6–1.2 Bichromatic × ✓ Good agreement in time across k0d range,       

correcting the results of Barthel et al. (1983)       
for k0d = 1.1, less good agreement when non-       
linearity is large. No comparison in frequency. 

Schäffer (1996) Includes correction of  
Barthel et al. (1983) 

0.7 and 
0.9 

Irregular × ✓ Excellent agreement in time including cross-       

correlation analysis. No comparison in       
frequency. 

Van Leeuwen and 
Klopman (1996)  

1.0–1.2 Bichromatic ✓ ✓ Good agreement shown in comparison between       

amplitudes of bound components. 
Van Leeuwen and 

Klopman (1996)  
1.0 Irregular ✓ × Reasonable agreement in frequency with       

some remaining free waves present probably       
due to noise, also for broad-banded       
spectra. No comparison in time. 

Boers (1996); Battjes 
et al. (2004) 

Van Leeuwen and Klopman 
(1996) 

0.5–0.9 Irregular × × No validation presented. 

Baldock et al. (2000) Barthel et al. (1983) 1.4–3.4 Bichromatic ✓ ✓ Validation of amplitudes only. 
Sriram et al. (2015) Schäffer (1996) 1.5 Isolated groups × ✓ Excellent agreement in time. 
Sriram et al. (2015) Schäffer (1996) 3.4 Isolated groups × × No validation presented. 
Whittaker et al. (2017) Schäffer (1996) 0.7 Isolated groups × × Limited agreement in time, achieving a       

reduction of 60% in the sub-harmonic       
error wave amplitude due to constraints       
on paddle stroke. 

Martins et al. (2021) 
(GLOBEX) 

Van Leeuwen and Klopman 
(1996) 

0.9–1.5 Irregular & 
bichromatic 

× × No validation presented. 

Present study Van Leeuwen and Klopman 
(1996) 

0.6–1.1 Isolated groups ✓ ✓ Excellent agreement in time and frequency       

across k0d range.  
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document how sub-harmonic error waves affect laboratory results. 
Calvert et al. (2019) notes that in deep-water experiments, 
sub-harmonic error waves are found to have a negligible affect, so the 
considerable effort required to mitigate them is often not worthwhile, 
yet in finite water depth, the effect is much more pronounced and so 
their mitigation becomes essential. 

Second-order wave generation theory has been well established for 
nearly three decades (Barthel et al., 1983; Schäffer, 1996; Van Leeuwen 
and Klopman, 1996), and numerous studies have implemented the 
theory to a varying degree of success. Barthel et al. (1983) provided the 
first results of second-order correct wave generation based on a 
broad-banded approach, but did not account for evanescent modes 
interaction terms in the paddle transfer function. Schäffer (1996) 
developed the work of Barthel et al. and included correction for 
evanescent modes; their effect was investigated in Schäffer (1994). Van 
Leeuwen and Klopman (1996) derived a simpler result for the 
second-order sub-harmonic paddle signal based on a narrow-bandwidth 
assumption, making use of the method of multiple scales. 

Table 1 compares a selection of experimental studies in which 
second-order wave generation has been implemented. The table in-
cludes the key contributions to the development and validation of (sub- 
harmonic) second-order wave generation from various studies. The table 
includes the relative water depth, k0d, and the wave types used 
(bichromatic, irregular or isolated groups) in the study. Furthermore, we 
note whether validation has been carried out in the frequency and/or 
the time domain. This distinction is important for isolated groups as 
time-domain comparisons allow a comparison of the amplitude, shape 
and alignment of the set-down, whereas frequency-domain comparison 
allow assessment of whether all wave periods are correctly represented, 
including the longer waves, which may suffer from paddle stroke limi-
tations the most. 

Summarising, Barthel et al. (1983) were able to obtain good agree-
ment between the theory they developed and experiments for both 
bichromatic and irregular waves for shallow water (k0d = 0.6–0.7), but 
not in intermediate water (k0d = 0.9–1.1). The theory by Barthel et al. 
(1983) was corrected by Schäffer (1996), who derived a full 

multi-chromatic theory for wave generation. Schäffer found good 
agreement for bichromatic and irregular wave fields in both shallow and 
intermediate water depths (k0d = 0.6–1.2). By considering 
narrow-banded packets, Van Leeuwen and Klopman (1996) were able to 
validate their result for both bichromatic and irregular waves in inter-
mediate water depths (k0d = 1.0–1.2). Furthermore, Van Leeuwen and 
Klopman note that their method is also applicable to large bandwidths in 
practice despite the theoretical narrow-bandwidth limit their results rely 
on (a conclusion findings in the present paper will support). Only Sriram 
et al. (2015) (for their shallowest case) and Whittaker et al. (2017) 
(partially) have validated second-order wave generation for isolated 
wave groups, with Sriram et al. (2015) examining wave groups in in-
termediate to deep water and Whittaker et al. (2017) only achieving a 
60% reduction of the sub-harmonic free error wave amplitude in 
shallow water depths. 

Schäffer (1996), builds upon the work of Barthel et al. (1983), and 
derived a formulation for the complete (i.e., no bandwidth limitations) 
second-order paddle displacement signals for both piston and pivot-type 
wavemakers, which is based on a traditional, multi-frequency Stokes--
type perturbation expansion. Schäffer’s theory dictates that the paddle’s 
(sub-harmonic) backward stroke length increases as k0d decreases. This 
means that in shallow water depths, not only is the effect of error waves 
greater, but also the required paddle sub-harmonic stroke length is 
greater too. Schäffer presents experimental results in water depths of, 
k0d = 0.6 up to 1.1. 

Herein, we focus on sub-harmonic generation, yet we note for 
completeness that Spinneken and Swan (2009a,b); Aknin and Spinneken 
(2017) derived and successfully implemented second-order theory using 
force-feedback wavemaker control. The complexity of the method 
meant it is only applicable to mitigating super-harmonic error waves in 
regular wave fields. Moreover, we do not examine wave absorption. We 
note that for irregular or long-duration cases absorption is essential and 
has been successfully implemented. 

For isolated focused wave groups, such as those given by the New-
Wave/QD framework, the time signal of the wave group corresponds to 
an infinite repeat period and an infinitesimal frequency discretization, 

Fig. 1. Example second-order accurate wavemaker displacement time series for a Gaussian group: (a) first-order, (b) second-order, decomposed into super-harmonic 
X(+2)

p , periodic sub-harmonic X(− 2)
p,periodic and non-periodic sub-harmonic X(− 2)

p , and (c) the complete second-order accurate wavemaker displacements. 
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where the signals are constructed from periodic Fourier components, 
such as in the theory of Schäffer (1996). This means that the resulting 
paddle displacements in Schäffer (1996) are, in practice (unless an 
infinite number of Fourier components is used), always periodic, and 
slow forwards movement is required before and after the first-order 
group generation. The periodic paddle displacement resembles a 
saw-tooth displacement profile (displayed in Fig. 1). In the laboratory, 
relatively long signals (much longer than the wave group itself) need to 
be created in order for the finite repeat period (as an arbitrary time scale 
to be chosen by the experimentalist) not to result in additional 
sub-harmonic energy being created and interfering with the correct 
generation of the sub-harmonic bound waves. 

Finer frequency discretization can be used to mitigate this unwanted 
response in the sub-harmonic wavemaker displacement. In the narrow- 
banded theory of Van Leeuwen and Klopman (1996), which makes uses 
of the method of multiple scales, isolated wave groups with an infinite 
repeat period are readily obtained in the time domain. Second-order 
wavemaker theory then encompasses a net (sub-harmonic) backwards 
movement of the paddle during wave group generation. The 
sub-harmonic wavemaker signal is readily evaluated in the form of an 
integral of the (square of the) wave group envelope in the time domain, 
which is inexpensive to compute. 

In this paper, we apply the second-order wave generation theory 
derived by Van Leeuwen and Klopman (1996) to a prototype, 
piston-type wavemaker to generate isolated wave groups. The 

wavemaker has a long stroke length, allowing second-order (sub--
harmonic) wave generation to be applied to shallow to intermediate 
water depths of k0d = 0.6–1.1. We present surface elevation measure-
ments of a range of focused wave groups, comparing cases with 
first-order and second-order accurate wave generation. Our work aims 
to provide a simple methodology that can be employed by coastal en-
gineers in future experimental campaigns concerned with 
wave-structure interaction studies using focused wave groups or to 
validate the efficacy of existing wavemakers with built-in second-order 
generation. 

2. Review of the wavemaker theory 

We begin by reviewing the second-order wavemaker theory we 
implement to control our new long-stroke, piston-type wavemaker. A 
piston-type paddle operates with its paddle face moving horizontally 
through the entire water column in response to a predetermined 
displacement time series. This second-order accurate paddle signal is 
denoted as 

Xp(t) = X(1)
p + X(2)

p , (1)  

where the superscript corresponds to the order in steepness. The second- 
order displacement is the sum of sub and super-harmonic displacements 
(X(2)

p = X(− 2)
p + X(+2)

p ). 

2.1. First-order wave generation X(1)
p 

The surface elevation of a linearly focused wave group, composed of 
N frequencies, is given as 

η(1)(x, t) =
∑N

n=1
ancos

(
kn(x − xf ) − ωn(t − tf ) + φf

)
, (2)  

where x denotes location in a flume away from the wave generation 
origin at x = 0, t is time, xf and tf note the desired spatial and temporal 
focus locations, an is the amplitude, kn the wavenumber, and ωn the 
angular frequency of the nth component. Phasing of the nth component 
is determined by frequency dependent linear dispersion (ω2

n =

gkntanh  (knd), where d is water depth). The desired shape of the wave 

Fig. 2. (a) Experimental set-up: (a) overview of the 20 m-flume with the wave gauge x-locations noted in the table (bottom right), (b) zoomed-in schematic rep-
resentation of the wavemaker and its operating system, (c) photograph of the wavemaker. 

Table 2 
Experimental input matrix.  

Expt. f0 

[Hz] 
a0 

[m] 
σ 
[m] 

cg,0 

[m/s] 
ΔX(− 2)

p,total 

[m] 

k0d ε =
k0a0 

ν 

1 0.6 0.034 4.70 1.27 − 0.57 0.61 0.09 0.10 
2 0.6 0.034 2.51 1.27 − 0.31 0.61 0.09 0.19 
3 0.6 0.034 1.51 1.27 − 0.18 0.61 0.09 0.32 
4 0.8 0.024 3.37 1.11 − 0.11 0.85 0.09 0.09 
5 0.8 0.024 1.80 1.11 − 0.07 0.85 0.09 0.17 
6 0.8 0.024 1.08 1.11 − 0.04 0.85 0.09 0.29 
7 1.0 0.040 2.53 0.94 − 0.03 1.14 0.20 0.08 
8 1.0 0.040 1.35 0.94 − 0.02 1.14 0.20 0.16 
9 1.0 0.040 0.81 0.94 − 0.01 1.14 0.20 0.26  
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group at focus dictates the phasing of the component waves. A crest- 
focused group is produced when φf = 0◦, a trough-focused group 
when φf = 180◦ and up or down crossings at focus when φf = 90◦ or 
270◦, respectively. The paddle displacement for a first-order wave group 
is 90◦ out of phase with the surface elevation field and given as 

X(1)
p =

∑N

n=1
ap,nsin

(
kn(x − xf ) − ωn(t − tf ) + φf

)
, (3)  

where ap,n is the amplitude of paddle displacement related to an through 
the paddle transfer function. The first-order paddle transfer function for 
a piston-type wavemaker is given as (e.g., Biésel and Suquet (1951); 
Ursell et al. (1960); Flick and Guza (1980); Sand and Donslund (1985)) 

an

ap,n
= knd

tanh(knd)
Dn(knd)

with  Dn(knd) =
knd
2

(
knd

sinh(knd)cosh(knd)
+ 1
)

.

(4) 

The first-order wave field comprises a progressive wave, matching 
the intended surface elevation, eq. (2), away from x = 0, and evanescent 
modes, which are products of the disparity between the paddle face’s 
flat geometry and the local depth-varying velocity profile. Evanescent 
modes decay rapidly away from the paddle, typically becoming 

negligible at a distance of x = 3d (e.g., Dean and Dalrymple (1991)). 

2.2. Second-order wave generation X(2)
p 

To apply the wavemaker theory of Van Leeuwen and Klopman 
(1996), we must rewrite eq. (2) using the narrow-bandwidth approxi-
mation made in Van Leeuwen and Klopman (1996). To do so, we first 
express eq. (2) using complex notation 

η(1)(x, t) = Re

[
∑N

n=1
anei(kn(x− xf )− ωn(t− tf )+φf )

]

. (5) 

Approximating the linear dispersion relationship as ωn ≈ ω0 + cg,0(kn 
− k0) with cg,0 = ∂ω/∂k|k0

, consistent with the narrow-bandwidth 
approximation, eq. (5) can be rewritten as 

η(1)(x, t) = Re
[
A(x − cg,0t)ei(k0(x− xf )− ω0(t− tf )+φf )

]
(6)  

with 

A =
∑N

n=1
anei((kn − k0)((x− xf )− cg,0(t− tf ))), (7) 

Fig. 3. Illustration of the symmetry-based harmonic separation between crest-focused (η0) and trough-focused (η180) groups. The left panels (a,c,e,g,i) show surface 
elevation time series. The right panels (b,d,f,h,j) show corresponding amplitude spectra. Panel a shows two inverted time series, composed of first-order, second-order 
(sub and super-harmonic) and third-order components. Panel b shows the frequency domain result of two combinations of the inverted groups. The subsequent panels 
below show individually isolated harmonics in time and frequency domain. 
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where ω0 and k0 are now the carrier wave’s angular frequency and 
wavenumber, respectively, chosen to correspond to the spectral peak, 
and the (complex) envelope A(x − cg,0t) travels with the group velocity 
(without focusing, consistent with the narrow-bandwidth approxima-
tion). The group velocity is given by cg,0 = ncp,0 with 

n =
1
2
+

k0d
sinh(2k0d)

. (8) 

The envelope (or modulation) A varies on much greater spatial and 
temporal scales than the carrier wave. 

Mei (1989) gives the compatible (i.e., narrow-banded) second-order 
sub-harmonic surface elevation as 

η(− 2) = −
g|A|2

2(gd − c2
g,0)

(
2cg,0

cp,0
−

1
2

)

, (9)  

where cp,0 = ω0/k0 is the phase speed of the carrier wave. The second- 
order sub-harmonic (or ‘wave-averaged’) surface elevation eq. (9) has 
the appearance of a wide trough and is known as the set-down (Lon-
guet-Higgins and Stewart, 1962). The set-down is forced by and slaved 
to the first-order wave group A and can therefore be described as bound, 
propagating at the group celerity cg,0 with the first-order wave group A. 

The occurrence of a set-down can be readily explained, using the 
unsteady Bernoulli equation, as the surface manifestation of the wave- 
induced return flow running beneath the wave group in the negative 
x-direction (e.g., Calvert et al. (2019)) or in terms of radiation stresses 
(Longuet-Higgins and Stewart, 1962). In shallower water depths, the 
return flow, which is driven by the divergence of the Stokes transport on 
the scale of the wave group, must be ‘returned’ or ‘funneled’ through a 
shallower depth, increasing the magnitudes of the (negative) return flow 
velocity and thus of the set-down. 

To generate this set-down (i.e., eq. (9)), Van Leeuwen and Klopman 
(1996) (see also Klopman and Van Leeuwen (1990)) show that the 
sub-harmonic paddle displacement signal (for a piston wavemaker) is 
given as 

X(− 2)
p,periodic = −

gcg,0

2d(c2
g,0 − gd)

(

2n −
1
2

)∫ t

− T/2

(
|A(τ)|2 − |A|2

)
dτ, (10)  

where we have set x = 0 (cf. the wavemaker’s location) in the envelope 
A and we have chosen a time-periodic signal t = (− T/2, T/2) with repeat 

period T. In eq. (10), the term |A|2 = (1 /T)
∫ T/2
− T/2 |A|

2dτ ensures the sub- 
harmonic paddle signal is periodic, and the paddle returns to its original 
position after generating the wave. For isolated wave groups, which 

Fig. 4. Measured first-order surface elevations at wave gauge 2 (black lines) for the nine experiments with the group envelopes (blue lines) obtained using a 
Hilbert transform. 
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correspond to the limit of an infinite repeat period (i.e., T → ∞), this 
term can be ignored, and the non-periodic sub-harmonic paddle signal is 
given by 

X(− 2)
p = −

gcg,0

2d(c2
g,0 − gd)

(

2n −
1
2

)∫ t

− ∞
|A(τ)|2dτ, (11) 

We can obtain the net (backward) paddle displacement accumulated 
over the course of generating an isolated wave group by letting t → ∞ in 
eq. (11). 

Fig. 1 illustrates the first and second-order paddle displacement 
times series for a Gaussian wave group. Fig. 1a shows the first-order 
paddle displacement X(1)

p as a function of time, which shows the iso-

lated wave group. Fig. 1b compares the periodic X(− 2)
p,periodic (for T = 32 s) 

and non-periodic X(− 2)
p sub-harmonic paddle displacement. Although it 

is evident that the periodic and non-periodic sub-harmonic signals both 
display a backward motion at the same speed at the centre of the group 
(at t = 0), the periodic signal readily returns to zero on both sides of the 
group, giving rise to a saw-tooth-like profile. Such a periodic signal can 
create the set-down correctly for isolated groups (Orszaghova et al., 
2014), but requires a long repeat period for the paddle’s restoration to 
zero not to generate significant sub-harmonic motion of its own. In our 
experiments, we used the non-periodic sub-harmonic paddle signal, and 
then restored the paddle position to zero after each experiment. Finally, 
Fig. 1c shows the summation of first and second-order paddle 
displacement. Also shown in Fig. 1 are the second-order super-harmonic 
paddle displacements X(+2)

p , which we include in all our experiments, 
but do not focus on in this paper (see Van Leeuwen and Klopman (1996) 
for details). 

2.3. Error waves 

If the correct sub-harmonic paddle displacement is not included, the 
physical response to the disparity in the boundary condition at second 
order is the formation of an error wave in the form of a sub-harmonic 
hump, which cancels out the set-down at the wave maker. Unlike the 
set-down, the error wave satisfies the linear dispersion relation, and 
propagates at the shallow-water wave speed (

̅̅̅̅̅
gd

√
). This results in the 

error wave being ‘free’ to propagate ahead of the linear wave group. In 

practice, the finite length of experimental flumes means that the sub- 
harmonic error wave typically does not have time to separate out 
from the linear group (e.g., Calvert et al. (2019)) and instead appears 
superimposed on the group set-down. 

For completeness, we note that, as well as a low-frequency sub- 
harmonic error waves, a high-frequency super-harmonic error is formed 
in case of first-order generation. The super-harmonic error wave prop-
agates slower than the linear group, and is therefore typically of much 
less concern in coastal engineering experiments that use wave groups. 

3. Experimental methodology 

3.1. Experimental set-up 

The present experiments were conducted in a wave flume in the 
COAST (Coastal, Ocean And Sediment Transport) Laboratory, at the 
University of Plymouth, UK. The flume is 20 m in length, 0.6 m in width, 
with a constant water depth of 0.23 m. Fig. 2a shows the experimental 
set-up. The wavemaker (photograph in Fig. 2c) is situated at one end of 
the flume and a 3 m-long energy dissipating beach with a 1 : 2.5 uniform 
slope at the other end. Current circulation ducts at each end of the flume 
were completely sealed off to avoid unwanted flow. All experimental 
locations are referenced from the paddle resting position at x = 0 m. In 
between the wavemaker and beach, eight resistance-type wave gauges 
measured the free surface elevation at 128 Hz. The gauges were located 
along the central line of the flume, and their x-locations are denoted in 
the table in Fig. 2. A three-point gauge calibration, over a vertical range 
of 10 cm, was performed each morning prior to tests. Data acquisition 
from all eight wave gauges was triggered simultaneously with the wave 
paddle displacement time series. 

3.2. Prototype wavemaker 

The wavemaker (photograph in Fig. 2c) was designed and built by 
Edinburgh Designs Ltd (EDL) and has an x-displacement range of ±0.8 
m. It is wet-back and comprises a carriage with four independent wheels 
connected to two stainless steel rails mounted on the sides of the flume. 
The carriage is driven by an electrical motor with a rack and pinion 
system. The paddle is operated through displacement control according 
to a pre-defined paddle displacement time series. This allows for 

Fig. 5. Non-dimensional total backward paddle displacement: (a) as a function of relative water depth k0d and steepness ε for fixed bandwidth ν and (b) as a function 
of relative water depth k0d and bandwidth ν for fixed steepness ε. The present experimental range is indicated with red squares. The region in which the Ursell 
number is greater than 40 is blanked out and indicated as Ur > 40. 

W. Mortimer et al.                                                                                                                                                                                                                              



Coastal Engineering 174 (2022) 104121

8

generation of non-periodic paddle signals, such as used in our experi-
ments for isolated wave groups. 

Fig. 2b shows the impermeable seal placed around the edges and 
base of the paddle face. The seal was designed to retain a head of water 
across the paddle face for an extended period of time. A key finding from 
preliminary calibration experiments is that to generate the sub- 
harmonic surface elevation correctly, it is critical to maintain the vol-
ume of water behind the paddle, preventing water leaking forwards 
around the paddle face, which can result in additional sub-harmonic 
error waves at late times. The final seal design comprised a dual layer 
of semi-rigid plastic film with petroleum grease lubricating the bound-
ary with the flume wall. After each experiment, the paddle position was 
restored to x = 0 m. A 10 min settling period was held between each 
experiment to let residual energy dissipate. A small foam dissipative 
beach installed behind the paddle face reduced seiche effects in the wet- 
back area. 

3.3. Experimental matrix 

Table 2 shows the experimental matrix of the nine wave group ex-
periments we have conducted. Each experimental case was generated 

twice, once using purely first-order paddle displacement and again with 
the additional second-order correction applied, where we use a non- 
periodic sub-harmonic signal eq. (11). We chose signals with Gaussian 
wave groups of the form 

A = a0exp

(

−

( (
x − xf ) − cg,0(t − tf )

)2

2σ2

)

, (12)  

where σ is the characteristic length scale of the wave group. Three non- 
dimensional numbers characterise each experiment: the non- 
dimensional water depth k0d, the steepness ε = k0a0 and the band-

width ν =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m2m0/m2
1 − 1

√

, where mn is the nth moment of the energy 
spectrum. For Gaussian groups, the energy spectrum S(ω) of the surface 
elevation can be readily evaluated in closed form: 

S(ω) =
σ2a2

0

4
̅̅̅
π

√
cg,0

exp

(

−
(ω − ω0)

2σ2

4c2
g,0

)

, (13) 

from which the bandwidth parameter ν can be obtained: ν =
̅̅̅
2

√
cg,0/

(σω0) =
̅̅̅
2

√
n/(k0σ). 

Fig. 6. Sub-harmonic surface elevation at wave gauge 2 for the nine experiments showing results for first-order generation (dotted black lines), second-order 
generation (solid black lines), and the theoretically predicted set-down of Mei (1989) (dashed red lines) computed using eq. (9). 
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Fig. 7. Frequency spectra for the sub-harmonic contribution to all nine experiments showing results for first-order generation (dotted black lines), second-order 
generation (solid black lines), and the theoretically predicted set-down of Mei (1989) (dashed red lines) computed using eq. (9). 

Fig. 8. The sub-harmonic measured surface elevation with second-order generation after filtering with the same high-pass limits as in Janssen et al. (2003).  
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Our experimental matrix consisted of three peak frequencies (f0 =

0.6, 0.8, 1.0 Hz), corresponding to shallow to intermediate relative 
water depths (k0d = 0.6, 0.9, 1.1). For each frequency, we considered 
three bandwidths. The bandwidths were chosen so that the groups 
remained quasi-monochromatic, but sufficiently compact in time and 
space for any sub-harmonic error waves to separate out from the first- 
order group. Each experimental run had a duration of T = 128 s, xf =

4.5 m, and tf = T/2. 

3.4. Separation of harmonics 

To separate the second-order sub-harmonic waves from the first- 
order waves, we use the so-called two-phase harmonic extraction (or 
phase inversion) technique (Baldock et al. (1996), see also Hunt (2003)). 
To do so, we carry out each experiment in duplicate form, with a group 
focusing to a crest (η0(t)) and a group focusing to a trough (η180(t)). 
Specific combinations of the two inverted group time-series can yield the 

odd and even powers in amplitude, such that: 

ηodd =
η0 − η180

2
and ηeven =

η0 + η180

2
. (14) 

To leading order, ηodd is dominated by the first-order (in steepness) 
signal, and ηeven by the second-order (in steepness) signal in an under-
lying Stokes expansion. The latter is made up from bound waves and free 
error waves at second-order. 

Fig. 3 illustrates the separation of harmonics method. Each harmonic 
contribution is displayed in both the time and the frequency domain. 
The top left (Fig. 3a) shows a crest-focused (η0) and trough-focused 
(η180) wave group measured within the flume. The top right (Fig. 3b) 
shows the decomposition of the amplitude spectrum into odd (ηodd) and 
even (ηeven) components. The subsequent panels (Fig. 3c–j) separately 
display the different components, which have been isolated using a 
band-pass filter. The components are divided up into: second-order sub- 
harmonic components (η(− 2)) obtained from band-pass filtering ηeven 

Fig. 9. Sub-harmonic surface elevation for experiment 9 at all 8 wave gauges (WG) showing the two different generation methods: first-order generation (dotted 
black lines) and second-order generation (solid black lines). Also shown is the theoretically predicted set-down of Mei (1989) (dashed red lines) computed using 
eq. (9). 
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between 0 and 0.5 Hz; first-order components (η(1)) obtained from band- 
pass filtering ηodd between 0.5f0 − 1.5f0; second-order super-harmonic 
components (η(+2)) obtained from band-pass filtering ηeven between 
1.5f0 − 2.5f0; and third- (or higher) order components (η(3)) obtained 
from band-pass filtering ηodd between 2.5f0 − 3.5f0. For the sub- 
harmonic time series thus obtained, the error wave crest is labelled, 
preceding ahead of the set-down trough in Fig. 3c for this first-order 
generated group. Fig. 3i–j illustrate the negligible contribution at third 
order. 

3.5. First-order wave groups 

Fig. 4 shows the linearised wave groups at wave gauge 2 for all nine 
experimental cases with the envelopes obtained using a Hilbert trans-
form also shown. Moving from left to right, the groups have increasing 
bandwidth, evident in the time domain as a group that is made up from 
fewer waves. The first-order surface elevations measured are equivalent 
for both the first and second-order generation methods. 

3.6. Maximum paddle displacement 

As shown in Equation (11), we obtain the net (backward) paddle 
displacement over the course of generating an isolated wave group by 
letting t → ∞ (i.e., ΔX(− 2)

p,total = X(− 2)
p (t →∞)): 

ΔX(− 2)
p,total

a0
= −

̅̅̅
π
2

√
εn
ν

2n − 1

(k0d)2
(

tanh 2(kh)
kh n2 − 1

), (15)  

where we have used the properties of a Gaussian group to evaluate the 
integral in eq. (11) in closed form. Equation (15) gives the non- 
dimensional total backward paddle displacement ΔX(− 2)

p,total/a0 as a func-
tion of three non-dimensional groups (nb. n = n(k0d) through eq. (8)): 
the relative depth k0d, the steepness ε, and the bandwidth parameter ν. 

Table 2 gives the total backward paddle displacement for the 
different experiments, demonstrating the paddle displacement is great-
est for the shallowest (smallest k0d) and most narrow-banded (smallest 
ν) experiments. Fig. 5 shows the non-dimensional total backward paddle 
displacement X(− 2)

p,total/a0 as a function of relative water depth k0d and 

Fig. 10. For first-order accurate generation, spatio-temporal evolution of the sub-harmonic surface elevation at each wave gauge, vertically offset by the gauge 
location (xg). The continuous red lines indicate sub-harmonic error wave speed (ce =

̅̅̅̅̅
gd

√
), the black lines indicate the group width (2σ), travelling at the group 

speed (cg,0); the dashed lines indicate their respective reflections. 
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steepness ε for fixed bandwidth ν (Fig. 5a) as a function of relative water 
depth k0d and bandwidth ν for fixed steepness ε (see, Fig. 5b). It is 
evident from Fig. 5 that the total net backward paddle displacement can 
be significantly larger than the linear wave amplitude, up to seventeen 
times observed in experiment 1, and increases rapidly as the relative 
water depth becomes shallower or the bandwidth decreases. 

Within both panels of Fig. 5, values of the total backward displace-
ment are not shown for Ursell numbers greater than 40, with the Ursell 
number defined as 

Ur =
Hλ2

0

d3 =
8π2ε
(k0d)3, (16)  

where λ0 = 2π/k0. The Ursell number indicates the relative importance 
of nonlinearity in shallow water depths. Ur > 40 typically indicates 
regions where nonlinearity beyond second order becomes important and 
cnoidal wave theories need to be considered, which is beyond the scope 
of the present paper. 

4. Results 

4.1. Bound second-order set-down 

Fig. 6 shows the measured sub-harmonic surface elevations for both 
first-order and second-order accurate wave generation compared to the 
theoretically predicted set-down according to Mei (1989) given in eq. 
(9). It is worth noting that the theoretical set-down given by Mei’s 
expression is congruent with the set-down given by the full second-order 
(broad-banded) theory for all our experimental cases (shown in fig. B14, 
included as an appendix). The measurements in Fig. 6 are recorded at 
wave gauge 2 (x = 4.5 m). The second-order generated sub-harmonics 
appear to match the theoretical set-down by Mei (1989) very well, 
especially at the centre of the group. The second-order generated cases 
do not show the preceding free error wave, which is clearly present as a 
set-up for the first-order generated cases. The first-order generated 
sub-harmonics shows poor agreement with the theoretical set-down. 
The free error wave is shown to be contaminating the first-order set--
down in all nine cases, appearing as a set-up between t = − 4.0 and − 2.0 
s. After the group has passed, the second-order generated sub-harmonic 
surface elevation returns to the original still water level. The slight 

Fig. 11. For second-order accurate generation, spatio-temporal evolution of the sub-harmonic surface elevation at each wave gauge, vertically offset by the gauge 
location (xg). The continuous red lines indicate sub-harmonic error wave speed (ce =

̅̅̅̅̅
gd

√
), the black lines indicate the group width, travelling at the group speed 

(cg,0); the dashed lines indicate their respective reflections. 
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increase in the water level after the group has passed is likely caused by a 
slow leaking forwards of the water held behind the wave paddle. 

Fig. 7 shows the sub-harmonic frequency contributions of the same 
nine experimental cases as displayed in Fig. 6. Again, the figure com-
pares first-order generated, second-order generated, and theoretically 
derived subharmonic for of the nine wave group cases. The figure shows 
that, just as in time (e.g., Fig. 6) there is good agreement in frequency 
space between the second-order generated groups and the theoretical 
prediction given by Mei (1989). Whereas, the first-order generated 
groups are seen to have poor agreement with theory. 

Fig. 8 shows how limited stroke length can lead to unacceptable 
errors. We have demonstrated this by applying the same limits (fp/5 and 
fp/10, where fp is the peak frequency) in a high-pass filter to the 
measured sub-harmonic surface elevation η(− 2) as Janssen et al. (2003), 
who applied these limits in view of restrictions imposed by the limited 
excursion of the wave board in their experiments. The figure shows that 
applying a frequency filter based on those frequencies identified by 
Janssen et al. (2003) as potentially affected by paddle stroke limitations 
leads to a significant departure between the measured and the theoret-
ically predicted set-down for our experiments. This departure is of 
course greater for fp/5 than for fp/10. The effect also clearly depends on 
the band-width of the group. Broad-banded groups (Fig. 8c,f,i) are 
affected much less than narrow-banded groups (Fig. 8a,d,g), which is 
explained by the fact that sub-harmonic bound waves for broad-banded 
waves are spread over a much broader range of frequencies and 
comparatively less energy is consequently removed by a high-pass filter. 
In the spatial domain, the correct sub-harmonic for narrow-banded 
groups simply requires a much greater stroke length (see Fig. 5). 

Fig. 9 shows results from experiment 9 (the case with the narrowest 
characteristic group width σ and the slowest linear group speed cg,0) at 
wave gauge 2, and gives the best view of incident wave sub-harmonics 
prior to contamination by reflections. In the first-order generated sub- 
harmonic time series, we see the superposition of the error wave upon 
the set-down, and disagreement with the theoretical result of Mei 
(1989). Fig. 9 shows the error wave separating out ahead of the set-down 
at progressive wave gauge locations; eventually, the set-down magni-
tudes of both first-order and second-order generation begin to match the 
theory once the error wave has separated out ahead, but before 

reflections become dominant. 
Fig. 10 and Fig. 11 respectively show the spatio-temporal evolution 

of the sub-harmonic surface elevation for the first-order and the second- 
order generated cases. It is evident from both figures that the bound set- 
down propagates with the same celerity as the linearised wave group cg,0 
(continuous black line at a distance of 2σ apart corresponding to char-
acteristic group width). Fig. 10 shows the free error wave satisfies the 
dispersion relation and propagates with the speed of a shallow-water 
wave ce =

̅̅̅̅̅
gd

√
(continuous red line). These two speeds (i.e., cg,0 and 

ce =
̅̅̅̅̅
gd

√
) are similar in magnitude for the shallower cases, so that the 

error wave no longer separates out. The reflections of the error wave and 
set-down are indicated by dashed lines in their respective colours. The 
absence of error waves and their reflections in Fig. 11 confirms second- 
order accurate generation has been successful in all nine experiments. 

Fig. 12 compares the measured set-down amplitude η(− 2)
min,Measured of 

both first-order (red dots) and second-order (black dots) generated wave 
groups with theoretically predicted second-order correct amplitude 
η(− 2)

min,Theory, all normalized by k0a2
0. The relative water depths of our ex-

periments are indicated on the plot as well as a one to one agreement 
between measurements and theory (red dashed line). Error bars mark 

±2 standard deviations around the mean obtained from 5 repeats. 
Fig. 12 shows that in our deepest cases (k0d = 1.14) we see only a slight 
difference between the set-down amplitude produced by first and 
second-order generation, and generally good agreement with theory. 
Yet, in shallower cases (k0d = 0.6–0.85) we see an increasing difference 
between first- and second-order generated cases. Measured second-order 
generated cases shows excellent agreement with theory at all depths, 
whereas the measured first-order generated cases are increasingly in 
disagreement with theory at shallower depths. 

Appendix A displays the repeatability of five repeats of experiments 
#1–6. The red-dashed line again shows the theoretical set-down given 
by Mei (1989) with the mean of the five repeats and two standard de-
viations around the mean. The repeatability is shown to be excellent in 
all cases. 

5. Conclusion 

Second-order wave generation theory has been established for nearly 
three decades, and numerous studies have partially or fully imple-
mented the theory for bichromatic and irregular wave experiments. 
Different from previous studies, we validate second-order wave theory 
explicitly for isolated wave groups in shallow to intermediate water 
depth (k0d = 0.6–1.1). Previously this has only been achieved in deeper 
water with Sriram et al. (2015) only examining wave groups in inter-
mediate to deep water (k0d = 1.5–3.4) and Whittaker et al. (2017) only 
achieving a 60% reduction of the sub-harmonic free error wave ampli-
tude in shallow water (k0d = 0.7). 

As water depth is reduced, stroke-length of the wavemaker becomes 
an important limiter in applying second-order wave theory, as noted by 
Whittaker et al. (2017). This is due to the required backward displace-
ment of the wavemaker to correctly reproduce the set-down. We show 
that this backward displacement can readily exceed seventeen times the 
amplitude of the first-order group in shallow cases. In the present work, 
we have implemented a prototype wavemaker with an extended paddle 
stroke to enable us to reproduce the correct set-down for isolated groups 
in shallow water depths. To do so, we have applied the narrow-banded 
second-order wavemaker theory of Van Leeuwen and Klopman (1996), 
which has proven to be simple and efficient to compute in closed form, 
making its implementation to a laboratory wavemaker highly suitable to 
a broad range of users for different coastal engineering applications. 
Particularly, studies using isolated wavepackets as a design conditions 
for extreme wave-structure interactions. 

Through analysis of the harmonic structure of a range of wave 
groups, varying in peak frequency and spectral bandwidth, we have 

Fig. 12. Measured set-down amplitude η(− 2)
min,Measured against the theoretical 

prediction η(− 2)
min,Theory for all nine first-order and second-order generated cases. 

Error bars indicate ±2 standard deviation around the mean, obtained from 
five repeats. 
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shown that the measured sub-harmonics are in excellent agreement with 
the theoretically predicted sub-harmonic free surface elevation (e.g., 
Mei (1989)). As further evidence of this agreement, the sub-harmonic 
error wave that normally travels ahead of the first-order group and 
contaminates experimental wave fields using first-order generation (e. 
g., Orszaghova et al. (2014)) are entirely eliminated. During our appli-
cation of second-order correct paddle displacement, we have found it to 
be essential to have a seal around the paddle face, to maintain a water 
head during the paddle’s movement and prevent leakage of water 
around the paddle face. 

Future work will use the newly implemented paddle and theory to 
quantify the implications of second-order correct focused wave groups, 
free of second-order error waves, for wave-structure interaction studies, 
in particular, run-up and wave loading on vertical structures. 
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Appendix A. Repeatability 

To assess repeatability and obtain an estimate of experimental error, fig. A13 shows the mean sub-harmonic free-surface elevation taken from five 
repeats of second-order generated wave groups, measured at wave gauge 2 (black lines), a confidence band of ±2 standard deviations around the 
mean (blue lines) and the theoretically predicted set-down according to Mei (1989) (red lines) for experiment 1–6. The six experimental cases show 
excellent repeatability, even when the sub-harmonic amplitude is < 3 mm. The confidence bands of all six experimental cases capture the magnitude 
of theoretical set-down maximum well with minor differences in shape in the time-domain between the measured and predicted set-down.

Fig. A.13. Sub-harmonic second-order generation repeatability in experiments 1–6. The mean of five repeats (black line), 2 standard deviations (±2std) around the 
mean (blue lines), the theoretical set-down according to Mei (1989) (red dashed line). 
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Appendix B. Narrow and broad-banded set-down comparison 

Figure B14 is similar to the previously seen Fig. 6, but includes the broad-banded second-order free surface, which is given as the wave-averaged 
free-surface of a broad banded group in eq. (2.4) in McAllister et al. (2018). Figure B14, shows that there is a high degree of congruence between the 
broad-banded and narrow-banded second-order subharmonic.

Fig. B.14. Similar to Fig. 6 but with the broad-banded second-order sub-harmonic surface elevation also included (blue dashed lines).  
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