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Abstract: Due to increased energy demand, it is vital to enhance the recovery from existing oilfields.
Polymer flooding is the most frequently used chemical enhanced oil recovery (cEOR) method in field
applications that increases the oil sweep and displacement efficiencies. In recent years, there has been
growing interest to assess the use of polymer flooding in an increasing number of field applications.
This is due to the improved properties of polymers at high-salinity and high-temperature conditions
and an increased understanding of the transport mechanisms of water-soluble polymers in porous
media. In this review, we present an overview of the latest research into the application of polymers
for cEOR, including mechanisms of oil recovery improvement and transport mechanisms in porous
media. We focus on the recent advances that have been made to develop polymers that are suitable
for high-salinity and high-temperature conditions and shed light on new insights into the flow of
water-soluble polymers in porous media. We observed that the viscoelastic behavior of polymers in
porous media (e.g., shear thickening and elastic turbulence) is the most recently debated polymer
flow mechanism in cEOR applications. Moreover, advanced water-soluble polymers, including
hydrophobically modified polymers and salt- and temperature-tolerant modified polyacrylamides,
have shown promising results at high-salinity and high-temperature conditions.

Keywords: chemical enhanced oil recovery (cEOR); polymer; nanoparticles; high salinity; high temperature

1. Introduction

With the increasing world population, meeting the growing energy demand in a safe
and environmentally responsible manner is a vital challenge. In 2040, oil and natural gas
will still account for over 50% of the world’s energy consumption [1], yet the contribution of
renewable energy resources appears to be inadequate in meeting the rising energy demand.
Due to increased energy demand, it is imperative to maximize the recovery from existing
oilfields. The recovery factor of mature oilfields is nearly 30% [2,3], which means a large
proportion of “original oil in place” (OOIP) is left behind in the subsurface. This increases
the potential for enhanced oil recovery (EOR) methods. These include thermal, gas, and
chemical methods [4–9]. The latter is also known as chemical enhanced oil recovery (cEOR).

Polymer flooding is a tertiary oil recovery technique, typically employed after water
flooding, where a small amount of a water-soluble polymer is added to water (brine) to
increase its viscosity. The presence of polymer macromolecules in water reduces its mobility
and consequently reduces the fractional flow of water. This in turn helps with the reduction
of viscous fingering and increases the volumetric sweep efficiency [4]. The concept of
polymer injection was first established by Pye [10] and Sandiford [11] in 1964, when they
observed that water mobility was reduced and oil recovery was improved by water-soluble
polymers; these included the extended family of acrylamide polymers. Several pilots
and field applications were then reported in the USA during the 1970s and 1980s [12–16]
and, since the mid-1990s, polymer flooding has also been implemented in China with
success [17–20]. Several review articles have discussed the application of conventional
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cEOR polymers for full-scale polymer floods and the knowledge and learning related
to the logistics of field execution, process development, and key concepts for successful
implementation of the technology [12,13,21–30].

In the past decade, the application of water-soluble polymers has been considered for
use in an increasing number of field projects [31]. This is because of (a) recent improvements
in the properties of polymers at high-salinity and high-temperature conditions compared
with conventional cEOR polymers and (b) an improved understanding of mechanisms
behind water-soluble polymers’ flow in porous media.

Partially hydrolyzed polyacrylamide (known as HPAM) and xanthan gum, which
are the two most common polymers used in field applications, have shown challenges
at high salinities and temperatures. At high salinities, electrostatic repulsions between
the negative charges of the carboxylate groups present along the HPAM backbone can
be screened due to the presence of di- or monovalent cations, which leads to a reduction
in the viscosity [32–34]. This effect is worsened by an increase in temperature because
the acrylamide monomers are further hydrolyzed [35]. Even though the xanthan gum
is more resistant to high salinities and temperatures, it is very susceptible to bacterial
degradation [36,37] and its solution contains some cellular debris that can cause pore
clogging [32]. Recently, several researchers have focused on synthesizing water-soluble
polymers with improved rheological properties at high salinities and temperatures [38–42].

Furthermore, in recent years, several studies have shed light on the flow mechanisms
of water-soluble polymers in porous media that are still the subject of debate among
researchers. Several mechanisms have been discussed, among which are the anomalous
shear-thickening behavior of synthetic polymers at high share rates and the reduction of
residual oil saturation due to the viscoelastic properties of synthetic polymers [43–47].

In light of these developments, a comprehensive study is needed to address the
recent progress in the flow of water-soluble polymers in porous media and to highlight
any remaining challenges. The objective of this review is to revisit the fundamentals of
polymer flow in porous media and to present the recent progress. There have been several
reviews over the past three years that discuss the application of polymers for enhanced
oil recovery [23,24,30,48–50]. In this review, we focus on the development of advanced
polymers for high-salinity and high-temperature conditions and shed light on new insights
into the flow mechanisms of water-soluble polymers in porous media.

An overview of this paper is given in Figure 1. Firstly, we discuss the oil recovery
improvement mechanisms due to the polymer macromolecules present in water. Thereafter,
the experimental, analytical, and numerical approaches to study polymer rheology and
retention in porous media are discussed. In particular, several theoretical and experimental
observations are presented to explain the anomalous shear-thickening behavior of synthetic
polymers in porous media. Furthermore, a critical overview of the impact of several
parameters on polymer transport mechanisms in porous media is given. Emphasis is
placed on the impact of salinity and temperature on polymer performance in porous
media, which hinders the applications of classic EOR polymers in field applications in
harsh conditions. Therefore, we discuss the approaches that have focused on pushing
the envelope for polymers towards high-salinity and high-temperature conditions. These
include the hydrophobic modification of the conventional polymers or the incorporation
of salt- and temperature-tolerant monomers to the HPAM backbone. Finally, a hybrid of
polymer and nanoparticles is discussed as an innovative approach for improved viscosity
and enhanced stability at high-salinity and high-temperature conditions.
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Figure 1. Oil recovery and transport mechanisms of water-soluble polymers, as will be discussed in 
this paper. (a) The decrease in water mobility due to the presence of polymer macromolecules in the 
water. Adapted with permission from [51]. (b) Polymer retention mechanisms in porous media. 
Adapted with permission from [52]. (c) Polymer rheology in porous media. Adapted with permis-
sion from [53]. (d) Shear-thickening behavior of polymers caused by elastic instabilities. Adapted 
with permission from [54]. (e) Improved rheological properties in harsh conditions by dispersions 
composed of a hybrid of nanoparticles and water-soluble thermo-responsive polymers. Adapted 
with permission from [55]. 
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2.1. Mobility Control 
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stability of the front depends on the balance of forces (e.g., gravity, capillary, and viscous 
forces, and dispersion) on the interface. When the destabilizing forces (e.g., viscous forces) 
are superior to the stabilizing forces (e.g., the dispersive and capillary forces), the micro-
scopic perturbations, which are a result of small-scale heterogeneities, cause the formation 
of tongues of water at the interface, a phenomenon known as viscous fingering (see Figure 
1a). This results in the bypassing of the oil and thus an early breakthrough of water fol-
lowed by a long period of two-phase production. 

It is conventionally believed that the oil recovery improvement observed in polymer 
flooding can be attributed to the concept of the mobility ratio [4,52,56], as defined by Equa-
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the mobility ratio (M) is unfavorable (i.e., M > 1), there is a macroscopic sweep inefficiency 
that triggers an early breakthrough of water. The presence of polymer macromolecules in 
the water increases the volumetric sweep efficiency of the system. This is achieved 
through two mechanisms: (a) by reducing the drive water mobility and (b) by the reduc-
tion in disproportionate permeability. 

Increasing the drive water viscosity reduces M to values lower than 1 (i.e., M < 1). As 
a result, the fractional flow of water is reduced and the fractional flow curve shifts right-
ward. Consequently, the average water saturation increases. This leads to a piston-like 

Figure 1. Oil recovery and transport mechanisms of water-soluble polymers, as will be discussed
in this paper. (a) The decrease in water mobility due to the presence of polymer macromolecules
in the water. Adapted with permission from [51]. (b) Polymer retention mechanisms in porous
media. Adapted with permission from [52]. (c) Polymer rheology in porous media. Adapted with
permission from [53]. (d) Shear-thickening behavior of polymers caused by elastic instabilities.
Adapted with permission from [54]. (e) Improved rheological properties in harsh conditions by
dispersions composed of a hybrid of nanoparticles and water-soluble thermo-responsive polymers.
Adapted with permission from [55].

2. Polymer Flooding Mechanisms
2.1. Mobility Control

During water flooding, the front of the water moves more easily than the oil. The stabil-
ity of the front depends on the balance of forces (e.g., gravity, capillary, and viscous forces,
and dispersion) on the interface. When the destabilizing forces (e.g., viscous forces) are
superior to the stabilizing forces (e.g., the dispersive and capillary forces), the microscopic
perturbations, which are a result of small-scale heterogeneities, cause the formation of
tongues of water at the interface, a phenomenon known as viscous fingering (see Figure 1a).
This results in the bypassing of the oil and thus an early breakthrough of water followed by
a long period of two-phase production.

It is conventionally believed that the oil recovery improvement observed in polymer
flooding can be attributed to the concept of the mobility ratio [4,52,56], as defined by
Equation (1):

M =
λw

λo
=

ke
rwµo

ke
roµw

(1)

where λ, ke
r, and µ are the mobility, endpoint relative permeability, and viscosity, respec-

tively, and where the subscripts o and w refer to oil and water, respectively. When the
mobility ratio (M) is unfavorable (i.e., M > 1), there is a macroscopic sweep inefficiency that
triggers an early breakthrough of water. The presence of polymer macromolecules in the
water increases the volumetric sweep efficiency of the system. This is achieved through
two mechanisms: (a) by reducing the drive water mobility and (b) by the reduction in
disproportionate permeability.
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Increasing the drive water viscosity reduces M to values lower than 1 (i.e., M < 1).
As a result, the fractional flow of water is reduced and the fractional flow curve shifts
rightward. Consequently, the average water saturation increases. This leads to a piston-
like displacement of the oil (i.e., more oil is displaced). Drive water mobility can also be
reduced due to polymer retention in porous media. Doda [57] showed that the reduction
of water relative permeability because of polymer blockage in porous media reduces
the mobility ratio.

The reduction in disproportionate permeability means that the water relative per-
meability is significantly reduced, while there is a minimum decrease in the oil relative
permeability [58,59]. To achieve this, a crosslinking polymer is injected that propagates
deep into the reservoir where it forms a gel. This can substantially reduce the permeability
of thief zones and improve the vertical sweep efficiency. As a result, the drive water in the
oil-bearing zones is diverted. The disproportionate permeability reduction results from
the formation of an adsorbed layer of polymer on the pore wall and the segregation of
the oil and water flow pathways [60–65]. The decrease in disproportionate permeability
leads to a reduction in excessive water production while improving the oil recovery [66]. It
should be pointed out that the importance of disproportionate permeability reduction is
more significant for water control than for polymer flooding.

2.2. Effect of Polymer on Residual Oil Saturation

Until recently, it was believed that water-soluble polymers merely improved the
macroscopic sweep efficiency with no impact on the microscopic displacement efficiency.
However, an unexpected increase in the recovery factor from the Daqing oil field, of 13%
of OOIP, generated questions about whether this could be explained by only considering
the macroscopic efficiency [67]. Recent studies have suggested that polymer flooding may
also improve the microscopic displacement efficiency [47,68]. This is accomplished by
mobilizing and displacing the residual oil trapped by capillary forces and is attributed
to the viscoelastic properties of the synthetic polymers used for cEOR. It takes place due
to changes in the steady-state-flow profile and is due to the pulling effect, the thread
formation, and the oil stripping [43].

During the flow of a viscoelastic polymer solution through the dead ends in porous
media, normal stresses between oil and polymer solution are generated in addition to the
shear stresses which exist due to long polymer chains. Therefore, polymer chains apply a
larger force on the oil droplets and grab their upper part. As a result, the oil droplets are
detached from the surface of dead ends [69]. It is argued that an increase in the level of
elasticity of polymer reduces the amount of oil droplets trapped in the dead ends [70].

When the polymer molecules flow downstream, they aggregate with oil droplets that
are trapped by capillary forces. As a result, they are likely to pull the oil droplets out
into oil columns forming oil threads. Due to high interfacial tension between oil droplets
and polymer molecules, the oil column will be destabilized and break down into smaller
droplets. These smaller droplets can then become re-entrapped by capillary forces. The use
of elastic polymers is reported as a method to avoid this situation, as the normal stresses
stabilize the oil thread [71].

The stripping effect refers to the movement of the adsorbed oil layer along the surface
in oil-wet rocks. Near the capillary wall, the velocity gradient of a non-Newtonian fluid,
such as a polymer solution, is larger than that of a Newtonian fluid, such as water [72].
As a result, when flowing near the capillary wall, the polymer solution exerts a greater
force than water does, which then induces the movement of oil droplets [73]. Xie et al. [74]
argued that the oscillation induced by the viscoelastic memory effect is the main reason for
the recovery of nonwetting fluids by using a viscoelastic polymer solution [75].

Clarke et al. [46] showed a mechanism of flow fluctuations at low Reynolds numbers
as a result of the flow of viscoelastic polymer solutions in porous media. They argued
that these fluctuations in the flow explain both the enhanced capillary-desaturation curves
and the observation of apparent flow thickening (this will be discussed in more detail
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in Section 3.1). As a result of fluctuations in the flow, fluctuating pressure fields are
generated that destabilize the trapped oil drops, or ganglia, and thus improve the oil
recovery. Vermolen et al. [45] reported that for crude oil of high viscosity (~300 cP), no
additional oil was recovered due to polymer viscoelasticity (even with increases in the
polymer solution viscosity and flow rate), whereas for crude oil of low viscosity (~9 cP)
additional oil was recovered upon increasing the viscosity and/or flow rate of the polymer
of high elasticity.

Erincik et al. [76] performed a series of core-flood experiments in which the core was
first waterflooded, followed by a viscous-glycerin flood, a low-salinity polymer flood, and
a high-salinity polymer flood with the same viscosity. The low-salinity polymer flooding
was performed at high Deborah numbers (see Section 3.1 for the definition of the Deborah
number), whereas the high-salinity polymer flooding was performed at low Deborah
numbers. The authors found that the low-salinity polymer flooding led to the reduction of
residual oil saturation. However, the high-salinity polymer flooding unexpectedly resulted
in a further reduction of the residual oil saturation. This was attributed to the relatively
high-pressure gradients that could mobilize the oil bank, even though the capillary numbers
were lower than the critical capillary number. Qi et al. [77] observed an average residual-
oil reduction of 5% OOIP during HPAM polymer floods for Deborah numbers ranging
from 0.6 to 25.

3. Polymer Rheology in Porous Media
3.1. Polymer Viscoelasticity in Porous Media

The flow of polymer solution in the microscopic structures of a porous medium is
much more complex than the flow in the well-defined geometries of a classical rotational
rheometer [52]. HPAM is known to show viscoelastic behavior in porous media, meaning
that the HPAM solution behaves as a liquid and a solid simultaneously at certain shear
rates. This viscoelastic behavior for HPAM is most likely to be observed at high polymer
molecular weights and high concentrations. When the polymer solution flows into the
pores, it is forced to change its speed so it can maintain a fixed volumetric rate. This results
in the formation of extensional forces along the flow path near the pore walls while the
polymer molecules are also under shear forces [49].

To characterize the viscoelastic properties of a polymer solution at various flow ge-
ometries, dimensionless numbers such as the Weissenberg number (Wi) and the Deborah
number (De) have been used [78]. Wi, which is the product of relaxation time and strain
rate, describes the non-isotropic arrangement of the polymer under shear stress. Hence,
it provides insight into the mechanical properties of the fluid and quantifies its elasticity.
For a Weissenberg number equal to zero, the fluid only shows viscous behavior, while at
Weissenberg numbers higher than zero the fluid shows viscoelastic behavior. De is the ratio
of relaxation time to the characteristic flow time and allows for quantification of the elastic
strain. For Deborah numbers lower than 1, the polymer solution behaves like a viscous
liquid, whereas for De > 1 it shows elastic characteristics as well [74,79].

In the literature, the flow behaviors that are related to the viscoelastic nature of a
polymer solution in porous media are classified as shear-thinning and shear-thickening.
For increasing shear rates, the apparent viscosity of polymer solutions versus the shear
rate in porous media exhibits three main regions. At low shear rates, the polymer viscosity
is independent of the shear rate (Newtonian behavior). Above a critical shear rate, the
polymer viscosity decreases with an increasing shear rate because of the reduction in the
number of interchain associations (shear-thinning or pseudo-plastic behavior). Finally,
above a second critical shear rate, the polymer viscosity increases with the shear rate due to
the stretching of the individual chains, which generates interchain bonding by coagulation
(shear-thickening or dilatant behavior) (see Figure 1c) [6].

The shear-thickening behavior of polymer solutions has been investigated by flow
experiments in a capillary as a very simple model porous media [80,81]. During the flow
through capillaries, polymer solutions experience both shear stresses and extensional
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stresses, the latter being essentially confined to the entry and exit zones of the capillary.
Figure 2 compares the shear viscosity, measured by a rheometer, and the apparent viscosities
in capillaries with varying lengths for an HPAM solution [82]. Below the second critical
shear rate, the apparent and shear viscosities are identical. However, above this shear rate,
high-pressure drops are observed in the capillaries, which results in the deviation of the
apparent viscosity from the shear viscosity. The observed pressure drops can be expressed
as a sum of three elements: (1) pressure drop at the entry, (2) pressure drop at the exit, and
(3) pressure drop caused by the polymer friction with the wall. In capillaries with equal
diameter, pressure drops at the entry and exit are almost equal and are independent of the
capillary length, while the pressure drop due to the polymer friction with the wall increases
with capillary length [83]. This results in an increase in apparent viscosity because the entry
and exit effects become more significant as the length to radius ratio (l/r) decreases [84].
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Figure 2. Comparison of shear and apparent viscosities in capillaries with different lengths. The
experiments were performed at 30 °C with 0.034 wt% HPAM dissolved in a brine containing 2 wt%
NaCl (1 wt% = 10,000 ppm). The radius (r) of the capillary was 1 mm and the length (l) varied.
Adapted with permission from [82].

The exact mechanism of shear-thickening behavior in porous media has been a subject
of much research and debate among researchers [44,85–89]. Several studies have demon-
strated that the presence of extensional flow (also referred to as elongational flow) leads to
a shear-thickening behavior [34,90–93]. Nonetheless, there is no consensus about the mech-
anism responsible for the extensional flow of polymer solutions in porous media. There
are two difficulties in describing polymer flow through porous media: (1) the topological
complexity of the pore network and the geometric complexity of the pore space and (2) the
complex behavior of polymer molecules in extensional flows.

The first of the issues was studied by using simplified geometries such as (converging–
diverging) capillaries to isolate the effects of the extensional flow [90,92,93] and the second
was addressed in more recent studies using microfluidic devices that enabled simultaneous
measurements of the apparent viscosity and the visualization of the polymer deformations
due to extensional flows [54]. Here, we present the three main theories found in the
literature that justify the increase in the viscosity of polymer solutions at high flow rates:
(a) the coil–stretch theory, (b) the transient network theory, and (c) the presence of elastic
flow instabilities.
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In the coil–stretch theory, as De Gennes [94] predicted, the randomly coiled polymers
will become fully extended at a critical strain rate (

.
εc) larger than the rate of relaxation and

the coil–stretch transition will occur. This is the same as a Weissenberg number more than
1. However, a theoretical calculation based on the generalized Zimm model [95] and a
numerical calculation by Larson and Magda [96] have shown that the commencement of
the coil–stretch transition occurs when Wi > 0.5. Notably, single molecule experiments (by
the DNA visualization) combined with microfluidics were used to verify the onset of the
coil–stretch transition through flow at Wi > 0.5 [97–99].

In the transient network theory, the shear-thickening behavior of polymer solutions is
related to the formation of transient networks of polymer chains. Such transient networks
exist when entanglements among polymer chains become mechanically effective (i.e., both
ends of a chain are incorporated in the network) at timescales shorter than the disentan-
glement time [100,101]. Shear-thickening effects were observed in (nearly) non-inertial
flows for very dilute polymer solutions that would usually disfavor the transient network
concept. However, if the polymer molecules are in a stretched state, the probability of
forming locally transient networks will increase considerably.

The shear-thickening behavior has also been recently ascribed to the onset of an elastic
instability at a negligible inertial effect, arising from the buildup of polymer-induced elastic
stresses during transport in porous media [102–104]. As a result of such instabilities, chaotic
flow fields can be generated, which are reminiscent of the instabilities witnessed in inertial
turbulence, often referred to as elastic turbulence. These instabilities are principally a
result of inhomogeneous flow fields, which in turn depend on the rheology of the polymer
solution and the geometry of flow fields.

Kawale et al. [54], using microfluidics, found that flowing an HPAM solution in the
presence of salt through porous media leads to two elastic instabilities. The first elastic
instability exists during an apparent shear-thinning regime at Wi∼80 (see the left-hand
side picture in Figure 1d) where stationary dead zones were formed around the obstacles.
By increasing the flow rate to Wi∼626 (see the right-hand side picture in Figure 1d), the
second elastic instability was observed where the dead zones became unstable. This was
accompanied by strong temporal fluctuations in both pressure drop and flow field. The
authors attributed the onset of shear-thickening to the second type of elastic instability.

Browne and Datta [105], using direct flow visualization in a 3D porous medium,
showed that shear thickening is due to the onset of elastic instability in which the flow
exhibits strong spatiotemporal fluctuations. They argued that the viscous dissipation
caused by flow fluctuations leads to the anomalous increase in the apparent viscosity (ηapp).
They also quantitatively linked these flow fluctuations and the increase in the apparent
viscosity using the following equation:

ηapp(Q/A)

k
≈

η
( .
γI
)
(Q/A)

k
+
〈χ〉t, V

(Q/A)
(2)

The first term on the right-hand side denotes Darcy’s law for a laminar steady flow
(

.
γI is the interstitial shear rate, Q is the flow rate, and A is the cross-sectional area). The

second term denotes the additional contribution to the macroscopic pressure drop from
viscous dissipation by the solvent, induced due to unstable flow fluctuations. 〈χ〉t, V is
the average rate of added dissipation as a result of flow fluctuations, which is measured
using flow visualization over all the imaged pores. As expected, the overall rate of added
dissipation increases as more pores become unstable, which leads to an increase in the
apparent viscosity of the polymer solution.

3.2. Rheological Models for Polymer Flow through Porous Media

Most of the studies that have looked at modeling polymer rheology in porous me-
dia [31,106–110] have been based on the analytical and numerical solutions of non-Newtonian
fluids. Comprehensive reviews on this subject have been given by Savins [111] and
Sochi [112]. According to Sochi [112], there is no general methodology yet that can deal
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with all cases of non-Newtonian flow in porous media. In the absence of a general approach,
the continuum approach, capillary bundle models, and pore-scale network modeling have
received greater attention. These approaches are briefly described below.

Continuum approach: In this model, the porous media is considered a continuum and
its microscopic properties are translated into Darcy-scale parameters such as permeability.
The Darcy and Blake–Kozeny–Carman equations are examples of continuum models. For a
non-Newtonian flow such as a polymer solution, Darcy’s law can be used to determine the
polymer apparent viscosity (ηapp) according to Equation (3):

ηapp =
k

Vs

∆P
L

(3)

where k is the permeability, ∆P is the pressure drop across a porous medium with length L,
and Vs is the superficial velocity in the porous medium. It should be noted that Darcy’s
law is valid only at a low Reynolds number where the flow is laminar. In addition, it
considers only the viscous term and ignores the inertial term. However, at high superficial
velocities, inertial effects are no longer negligible. Modifications to Darcy’s equation are
available to include these non-linearities using the homogenization or volume averaging
method [113,114].

A semi-empirical Blake–Kozeny–Carman model is a microscopic approach that is used
in fluid dynamics to determine the pressure drop from the superficial velocity of a fluid
flowing through a granular packed bed of solids. According to this model, the polymer
apparent viscosity can be calculated according to Equation (4):

ηapp =
φ3

(1− φ)

L
∆P

ψ2 D2

150
1
Vs

(4)

where φ is the bed porosity, ψ is the sphericity of the particles in the packed bed, and D is
the diameter of the spherical particle [115].

Capillary bundle models: In this approach, it is assumed that the porous medium
consists of parallel capillaries. For the simplest case where the capillaries are uniform and
all have the same radius and length, the permeability is given by [116]:

k =
φR2

8
(5)

where R is the radius of each tube and φ is the porosity of the medium. This is a very
simple approach to the porous medium. However, it works very well for the flow of
(quasi-) Newtonian fluids. Nonetheless, this simplicity ignores several characteristics of the
porous medium such as heterogeneity, converging–diverging nature, and morphology of
pore space (e.g., pore size distribution and the tortuous character of any flow path). These
ignored characteristics can be very important in modeling the flow behavior of the polymer
solution in porous media. For instance, the tortuous character of the flow path causes the
polymer molecules to be accelerated and decelerated and the converging–diverging nature
of pore space strongly affects the flow of viscoelastic polymer solutions [112]. Capillary
bundle models have been modified by considering a bundle of capillaries of varying
cross-sections [117] to account for the tortuosity [118] and pore size distribution of porous
media [119].

Pore-scale network modeling: The focus of the above two approaches is on providing
an analytical solution for non-Newtonian fluid flow through porous media. However, the
microscopic features of porous media are overlooked, as mentioned above. The modeling
of viscoelastic behavior on the pore scale aims to take into account both macroscopic and
microscopic features. Typically, in pore-scale network modeling, the porous media is con-
sidered as a connected network of capillaries [5]. To depict the flow through the network,
a simplified form of flow equations is used. Then, to solve a system with multiple flow
equations, in order to determine the flow field, a numerical approach is typically exploited.
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Applying this methodology to a particular random network gives the macroscopic prop-
erties (e.g., the apparent viscosity) as a function of flow rate. Generally, the rheology of
the polymer solution in the bulk phase and a pore space depiction of the porous media
are used as inputs to the model. The pore-scale simulation begins with solving the flow
equation for one single capillary as described in Equation (6):

Q = H∆P (6)

where Q is the volumetric flow rate, ∆P is the pressure drop along the capillary, and H is
the flow conductance that is dependent on the viscosity and pressure drop. To find the
apparent viscosity of the polymer solution, a set of flow equations is solved for a connected
network of capillaries with the assumption that mass conservation is satisfied. The inlet
and outlet pressures of the network are set as boundary conditions. In Equation (6), the
viscosity is pressure-dependent and unknown. Therefore, to begin, an initial guess for the
viscosity is considered. Thereafter, the pressure field is solved iteratively and the viscosity is
updated after each iteration cycle, up to the point where the convergence is achieved [120].

Pore-scale modeling of non-Newtonian fluid displacement in porous media based
on a multiphase Lattice Boltzmann (LB) framework has also received attention in the
literature [121–123]. According to Xie et al. [123], to account for the viscoelastic effects,
the momentum equation is corrected by Maxwell’s constitutive relation. This leads to the
modification of the LB evolution equation for Maxwell fluids by removing the normal, but
excess, viscous term. Their simulation results indicated that increasing either the intrinsic
viscosity of the polymer solution or the elastic modulus leads to an improvement in oil
recovery. Based on an LB model, Xie et al. [121] reported important mechanisms for the in-
crease in the apparent viscosity of a viscoelastic fluid at high shear rates. These mechanisms
consist of a decrease in the conductivity due to stagnant fluid, the compressed effective flow
region, and more pronounced energy dissipations because of the viscoelastic instability.

Even though pore-scale network modeling is capable of envisaging the general trend
of polymer flow through porous media, it still cannot comprise all the complexities. The
limitations of this approach include the difficulty in identifying the deformation history
of the polymer in the pore throats, the compromise in the viscoelasticity of the polymer
solution due to the idealization of the void space, and the adoption of the no-slip-at-wall
condition [112].

4. Polymer Retention in Porous Media

Polymer retention results from the interaction between polymer molecules in the
solution and the porous media itself. It leads to the loss of polymer and, if this loss is
significant, to a reduction in the viscosity of the polymer solution which in turn results in a
decline in oil recovery. Therefore, polymer retention can have an enormous impact on the
technical feasibility and economic viability of commercial polymer flooding projects.

4.1. Polymer Retention Mechanisms

There are three mechanisms for the retention of polymer in porous media: mechanical
entrapment, hydrodynamic retention, and adsorption (see Figure 1b). Retention by mechan-
ical entrapment occurs in porous media when larger polymer molecules become lodged
in narrow pore throats [124]. This happens when polymer molecules are smaller than the
inlet of the pore throats but larger than their outlet [125,126]. When polymer molecules
become trapped in narrow pores, the pore size decreases, which increases the probability
of trapping the smaller polymer molecules. This self-amplifying process ultimately leads
to pore clogging.

Hydrodynamic retention is caused by an increase in the hydrodynamic forces acting
upon the polymer molecules. Once equilibrium in polymer retention is reached, a sudden
increase in flow rate will result in extra polymer loss in the porous media as some of the
polymer molecules are trapped in stagnant flow regions by hydrodynamic drag forces.
When the flow rate is reduced or flow is completely stopped, polymer molecules may
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diffuse back to the main flow channels and the newly retained polymer molecules will be
released; therefore, this phenomenon is reversible [124,127,128].

Adsorption takes place when there is an attractive interaction between the polymer
molecules and the rock surface. Polymer adsorption onto the rock is considered a physical
phenomenon and is a result of the high affinity of the polymer due to van der Waals forces
and hydrogen bonding [129–131]. The polymer chain that is adsorbed forms a sequence of
trains, loops, and tails. The trains are the polar groups along the polymer chain that are
attached to the various polar points on the rock surface. The loops are those segments of
the chain that are present between two trains and that stretch out into the solution. The
tails exist at the ends of the polymer chain and have merely one end attached to the rock
surface [56,132]. Even though some of the trains of the polymer chain might detach from the
surface of the rock, other trains will remain in place. Once other trains detach, the formerly
detached trains may reattach to the surface of the rock. Therefore, it is statistically very
unlikely that a polymer chain would release all the attachment points simultaneously. This
was explained by Zitha et al. [133] using a mechanism comprised of the following stages:
(a) chain stretching in the zones where the flow is strongly extensional, (b) a transport short
enough for the stretched chains not to be relaxed, and (c) adsorption by the formation of
bridges across the smallest pore restrictions. If the ends of the molecules attach to the rock,
a plugging or increased resistance to flow can develop.

Among the above three mechanisms, hydrodynamic retention is probably the one
that contributes the least and is often neglected [6]. The relative importance of mechanical
entrapment and adsorption depends on the ratio between the hydrodynamic radius of the
polymer coil (Rh) and the pore radius (Rp). For Rp > 50Rh, which is almost always the
case for high-permeability sands [128], polymer adsorption is the dominant mechanism,
while for Rp < 3Rh, which is typical of low-permeability rocks, mechanical entrapment is
dominant [124,126,128]. However, there are exceptions to this criterion. For instance, only
35.2% of the retention of an HPAM solution in a high-permeability silica pack (5.6 Darcy)
was accounted for by adsorption and the remaining retention was attributed to mechanical
entrapment and hydrodynamic retention. This discrepancy can be accounted for by the
high heterogeneity of the tested silica pack [134].

4.2. Polymer Depletion and Inaccessible Pore Volume

If the size of the polymer chain is not negligible compared with the pore size, which
is the case for low permeability rocks, the following consequences for polymer rheology
may be expected: (a) in a non-adsorbent porous media, pore wall depletion excludes the
polymer macromolecules from the slowest streamlines near the wall, thus giving a polymer
velocity higher than the solvent velocity; (b) in an adsorbent porous media, the flow is
modified due to adsorbed layer thickness [34].

The inaccessible pore volume (IPV) [124,135] accounts for the volume of the pores
through which the large polymer molecules cannot flow. Several models and mechanisms
have been proposed in the literature to explain the occurrence of IPV, including the relative
size of pore throats, pore wall exclusion, and entropic effects [136–140]. As a result of the
existence of IPV, polymer adsorption is reduced as there will be less contact between the
polymer molecules and the rock surface.

4.3. Measurement of Polymer Retention in Porous Media

The measurement of polymer retention in the laboratory can be done in bulk or core-
flood experiments. Bulk tests are usually referred to as static adsorption tests, which
measure the change in polymer concentration when it is mixed with a crushed rock sample.
Polymer retention in core-flood experiments is referred to as dynamic adsorption (DA).
A polymer solution, together with a non-adsorbing tracer (commonly potassium iodide),
is injected into the cores and the effluent is collected over time. Thereafter, the effluent
is analyzed to determine the variation in the tracer and polymer with time and, thus, to
find the level of adsorption (i.e., the comparison of the effluent concentration to the initial
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polymer concentration). The two most frequently used methods in the literature to measure
dynamic adsorption are described below.

In the first method, which is known as the single injection method, the polymer and
tracer are co-injected and their normalized concentrations (i.e., the effluent concentration
divided by the initial concentration) are plotted as a function of pore volumes (PV) injected.
The DA is then determined by calculating the area between the polymer and the tracer
curves and subtracting the IPV [135]. Alternatively, the DA can be calculated by reading the
pore volumes of the injected tracer and the polymer where their normalized concentration
is 0.5 and subtracting the IPV [124]. The disadvantage of the single injection method is that
the IPV must be known in order to obtain an accurate result.

The second method, known as the double injection or extended injectivity method,
is proposed by several authors [141–143]. In this method, two injection steps are taken.
An illustration of these two injection steps is shown in Figure 3. In the first step, the
polymer and tracer are co-injected. In this step, the tracer leads the polymer because of the
polymer adsorption that delays the polymer advancement through the porous medium.
The assumption here is that the injection of many pore volumes of the polymer solution
leads to saturation of all the adsorption sites on the rock surface by the polymer molecules.
In the second step, brine is first injected to displace all the mobile polymer and tracer,
followed by the co-injection of polymer and tracer once again. In this step, adsorption no
longer plays a role. Since some of the pores are not accessible to the polymer molecules
but are to the tracer, the polymer leads the tracer. Consequently, the IPV is determined
during the second step by calculating the difference between the areas of the tracer and the
polymer curves according to Equation (7):

IPV = Σ

[((
C
C0

)
p
−
(

C
C0

)
t

)
× ∆PV

]
(7)

where C and C0 are the effluent and initial polymer concentration respectively, ∆PV is the pore
volume increment for each effluent sample, and where subscripts p and t refer to polymer
and tracer, respectively. It should be noted that this IPV, measured in the presence of adsorbed
polymer, could be different from the IPV of the bare porous medium before any adsorption
has taken place. The DA is then determined from the first injection step by using Equation (8):

DA =

Σ
[(((

C
C0

)
p
−
(

C
C0

)
t

)
× ∆PV

)
+ IPV

]
× (C0)p × PV

m
(8)

where m is the rock mass.

1 

 

 

Figure 3. The tracer and polymer normalized concentration profiles in the effluent in the double-injection
method for polymer retention measurement in porous media. Adapted with permission from [142].



Energies 2022, 15, 8575 12 of 33

4.4. Modeling of Polymer Retention

To model the polymer retention in porous media, simulators such as UTCHEM
and Eclipse consider a Langmuir type isotherm. In this approach, polymer retention
is modeled as a function of polymer concentration, salinity, and permeability according to
Equation (9) [144]:

Ĉ4 = min

C̃4,
a4

(
C̃4 − Ĉ4

)
1 + b4

(
C̃4 − Ĉ4

)
 (9)

where Ĉ4 and C̃4 are the polymer retention and concentration, respectively. The minimum
is taken to ensure that the polymer retention is smaller than the total polymer concentration.
a4 is defined as:

a4 = (a41 + a42CSEP)

( kre f

k

)0.5

(10)

CSEP is the effective salinity that is described as follows:

CSEP =
C51 +

(
βp − 1

)
C61

C11
(11)

where C51, C61, and C11 are the anion, divalent cation, and water concentrations in the
aqueous phase and βp is the covalent coefficient that is known from laboratory experiments.
The value of a4/b4 characterizes the highest amount of adsorbed polymer and b4 controls
the curvature of the isotherm. The reference permeability (kre f ) is the permeability at which
the input adsorption parameters are stated.

5. Factors Influencing Polymer Performance in Porous Media
5.1. Polymer Type

As discussed, high molecular weight synthetic polymers such as HPAM exhibit shear-
thickening behavior in porous media due to their flexible coil conformation. However, such
shear-thickening behavior is absent for biopolymers such as xanthan gum and scleroglucan
due to their rigid rod-like conformation. They are likely to align in the flow field and to
remain shear-thinning instead of showing viscoelastic behavior [145–147]. Biopolymers
have also shown significantly lower retention in porous media compared with synthetic
polymers [52,56]. For synthetic polyacrylamides, the degree of hydrolysis plays an im-
portant role in polymer retention and, as it increases, the polymer retention in porous
media decreases [148]. Lecourtier et al. [149] observed that the retention of a non-ionic
polyacrylamide (PAM) solution with pH 7 onto a SiC surface was dramatically higher
than that of HPAM with a degree of hydrolysis of 30%. This was because the negatively
charged surface of SiC at pH 7 gives rise to a repulsion term once it interacts with the
negative charges present in the HPAM chain. The retention of PAM and HMPM were
comparable only at a salinity of 2.4 wt% (24,000 ppm), where the negative charges along
the HPAM are screened.

Modifying the polymers (as will be discussed in Section 6) can also influence polymer
adsorption and retention. Szabo [150] showed that the adsorption of poly(2-acrylamido-
2-methyl-1-propanesulfonic acid) commonly known as AMPS, is lower than HPAM. Ver-
molen et al. [151] also reported that the incorporation of AMPS, as well as N-vinyl pyrroli-
done (N-VP) into HPAM, can dramatically reduce its retention.

5.2. Polymer Molecular Weight

Higher molecular weight, i.e., longer polymer chains, implies higher viscosifying
power and potentially higher resistance to flow in porous media. However, flow resistance,
also referred to as injectivity decline, can be a time-dependent phenomenon [125,152], as
higher molecular weight polymers are more sensitive to mechanical degradation. Mechani-
cal degradation will be more likely to occur in extensional flow fields, but some degradation
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of polymer chains with very high molecular weight (or degree of polymerization) may
also occur in pure shear flows [153]. Odell et al. [154] predicted that in the dilute regime,
when there is a continuous increase of stress on the middle of the polymer chain, mid-chain
scission will occur, beyond a critical strain rate referred to as the critical fracture (

.
ε f ). As

the relaxation time increases with the length of the polymer chain, Wi is larger for the
longest chains compared with the shortest chains. Therefore, the higher molecular weight
polymers are more likely to experience the mid-chain scission than the lower molecular
weight ones. Several experimental papers have shown that mid-chain scission is induced
by a transient extensional flow field [155,156] as well as an ultrasonic cavitation [157,158].

The effect of molecular weight on polymer retention has also received attention.
Dang et al. [159] reported a simulation study showing that the maximum adsorption
of HPAM was obtained with the lowest molecular weight in good agreement with an
experimental study [160], in which adsorption of HPAM on Berea sandstone decreased
with increasing molecular weight. In some studies, however, with increasing molecular
weight, the adsorption level first increased and then became constant [161,162].

5.3. Polymer Concentration Regimes

Depending on the target viscosity, polymer solutions may be used at different con-
centrations. Several authors have proposed that HPAM retention is dependent on the
polymer concentration regime [126,135,163,164]. In the semi-dilute regime, polymer re-
tention increases with increasing concentration, and Szabo and Corp [126] suggested that
the concentration dependence of HPAM adsorption in the semi-dilute regime is linear.
In the dilute and concentrated regimes, on the other hand, polymer retention is basically
concentration-independent [163]. This implies that a Langmuir isotherm can describe the
concentration dependency of the polymer retention [165] (see Section 4.4). Furthermore,
polymer chain scission is also concentration-dependent. In the dilute regime, beyond the
critical fracture, the mid-chain scission occurs and the polymer chain is broken almost
precisely in half, whereas in the semi-dilute regime, with increasing the polymer concen-
tration, the chain scission does not occur in the center of the chain and is increasingly
randomized [166].

5.4. Porous Media Permeability

When the retained polymer molecules form an adsorption layer on the rock surface, the
effective pore size is reduced, resulting in a decrease in the rock permeability or an increase
in the residual resistance factor. This phenomenon typically becomes more severe when
the rock permeability is smaller than 500 mD [167–170]. In such lower-permeable rocks
(<500 mD), the polymer retention also increases dramatically with decreasing permeability.
Vela et al. [168] measured the polymer retention from the material balance of injected and
produced fluids and found that the retention of HPAM increases from ~12 µg/g in 137 mD
sandstone to ~130 µg/g in 12 mD sandstone. In contrast, in higher permeability rocks,
polymer retention is generally insensitive to permeability [65].

5.5. Residual Oil Saturation

In water-wet cores, the presence of residual oil in the core has little effect on the
polymer retention [171], or even reduces it [126,142,172], compared with oil-free 100%
brine-saturated cores. However, in contradiction to these findings, Hughes et al. [142]
observed that the retention of xanthan gum in 127 mD Berea sandstone increased in
the presence of residual oil. The authors ascribed this phenomenon to the increase in
polymer trapping caused by the reduction, due to the presence of the oil, of the core
permeability. The effect of residual oil on polymer retention may be different in oil-wet
cores. Broseta et al. [171] described that the existence of residual oil (iso-octane) saturation
in oil-wet cores significantly decreased the HPAM retention by a factor of 2–5.
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5.6. Iron and Clay Content

The presence of iron and clay can strongly affect the surface properties of the core [173]. The
point of zero charge (PZC) for pure quartz is reported to be 1–3 [149,174,175]. Farooq et al. [176]
reported that the PZCs of Bentheimer and Berea sandstone samples were approximately 3.0
and 8.2, respectively. In their experiments, the quartz fractions for Bentheimer and Berea
sandstone samples were found to be approximately 98.0% and 82.5%, respectively, whereas
the clay fractions were approximately 0.5% and 9.0%, respectively. Peksa et al. [177], whose
Bentheimer sample had a quartz fraction of approximately 92%, measured a PZC of nearly
8. This unexpectedly high PZC was attributed to the presence of clay (~2.7%) and iron
particles (~0.2%) distributed within the sample.

Clay particles are well distributed in sandstone and become mobile in contact with
fluids at a pH higher than 8 [178,179]. The higher the pH, the more visible the effect is. In
addition, the effect of the iron minerals, such as goethite and hematite, present in sandstone
on the PZC was observed. Iron oxides represent a PZC in the range of 8.5–11 [180]. This
suggests that even a small proportion of iron and clay content, if well distributed in the
rock, can dramatically increase the PZC of the sandstones. Further work on the effect of
iron and clay particles on the PZC of sandstone is needed. A PZC of 8 for sandstone leads
to a positively charged rock surface at an injected water pH of around 7, which results in
increased interactions with negatively charged polymers such as HPAM or xanthan gum.

5.7. Salinity and Hardness

Salinity and hardness have been associated with two major effects on polymer perfor-
mance in the literature: viscosity loss and polymer precipitation. For synthetic polymers,
namely HPAM, the viscosity loss at high salinities has been ascribed to the shielding of the
electric charges along the polymer chain [181]. Since high molecular weight HPAM has
a flexible coil conformation, it responds strongly to the ionic strength of the aqueous sol-
vent [52]. At high salinities, the negative charges along the HPAM backbone are screened,
leading to a reduction in electrostatic repulsion and a shrinking of the polymer coils in the
solvent. The end result of this process is a relatively lower hydrodynamic radius of the
polymer coils. The reduction of the hydrodynamic radius of the polymer coils results in
viscosity loss.

In addition, a major challenge for the use of HPAM at high salinities is the presence
of a high concentration of divalent cations such as Ca2+ and Mg2+. In the presence of the
divalent cations, polyion–metal complexes can be formed, which in turn leads to polymer
precipitation due to the complexing ability of the carboxylate groups of HPAM [182,183].

Biopolymers, such as xanthan gum, have shown less sensitivity to salinity and hard-
ness compared with synthetic polymers. At high salinities, the structure of the xanthan
gum backbone experiences a conformational alteration from a disordered conformation
to an ordered and more rigid structure (coil–helix transition) [184–186]. As a result of the
rigidity of the polymer chain, xanthan gum is less sensitive to the presence of ions in the
solvent compared with HPAM.

5.8. Temperature

High salinity and hardness in oil reservoirs are often accompanied by high tempera-
tures. Viscosity loss and polymer precipitation of HPAM become more severe at elevated
temperatures, as the further hydrolysis of the polymer backbone is promoted. This causes
additional interaction between the charged polymer backbone and the ions in the solvent.
Moradi-Araghi and Doe [187] suggested a temperature stability limit for HPAM based on
the cloud point and the rate of hydrolysis. They demonstrated a “safe” limit of approxi-
mately 75, 88, 96, and 204 °C for HPAM in brines containing 2000, 500, 270, and 20 ppm
hardness, respectively. They suggest that even a small concentration of divalent cations at
high temperatures can substantially hinder the use of HPAM.

A helix–coil transition occurs in the structure of xanthan gum at high temperatures,
which causes a reduction in the viscosity. However, compared with HPAM, xanthan gum
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is more resistant to high temperatures due to its more rigid backbone. Long-term stability
experiments carried out using a commercial xanthan gum showed that the solution viscosity
remained almost unchanged for about 2 years at 80 °C [188].

A common way of assessing the long-term stability (ageing) of polymers at combined
high salinity, hardness, and temperature is to keep the samples in an oven for up to one
year and monitor the viscosity loss or polymer precipitation over time. Alternatively,
thermal gravimetric analysis (TGA) can be used to assess the polymer resistance to thermal
degradation [189–191]. For long-term stability experiments, the polymer samples should
be completely de-oxygenated (i.e., the experiments should be performed in anaerobic
conditions). This is needed to ensure that viscosity loss is only due to the effect of high
salinity, hardness, and temperature rather than the effect of a free radical attack caused by
the presence of oxygen in the samples.

6. Advanced Water-Soluble Polymers

The synthesis of advanced water-soluble polymers, with higher temperature and/or
salt tolerance, has been reported by several authors. These modified polymers are listed
in Table 1. They were typically obtained by hydrophobically modifying conventional
polymers or by the incorporation of salt- and temperature-tolerant monomers such as
2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and n-vinyl pyrrolidone (N-VP) to
the HPAM backbone.

In the literature, the experiments that investigate the effectiveness of modified poly-
mers at high-salinity and high-temperature conditions fall into the following three cat-
egories: (a) the viscosity of the modified polymer is compared with the viscosity of a
conventional polymer such as HPAM, both dissolved in brine [189,192], (b) the viscosity of
the modified polymer dissolved in brine is compared with its viscosity in de-ionized (DI)
water [147,193,194], and (c) the viscosity of the modified polymer is measured in brine with
different compositions and ionic strengths [147,189,193,195]. Such experiments are often
performed at various temperatures and consider both short- and long-term temperature
effects on the performance of the modified polymers. In the following sections, a summary
of these investigations is given and the mechanisms for the enhanced performance of
polymers at high salinity and high temperature are discussed.

6.1. Hydrophobically Modified Polymers

Hydrophobically modified polyacrylamides (HMPAM), also known as associative
polymers, differ from the conventional polyacrylamides used for cEOR, as they have small
hydrophobic units in the polymer chain. Several hydrophobic monomers, for example,
acrylate or alkyl groups with different topologies and number of carbons, have been used
as the hydrophobic units of these polymers [196–198]. The fraction of hydrophobic units
should be minimized to ensure the solubility of the polymer in water. However, even a
small hydrophobic fraction can significantly change polymer properties.

Hydrophobically modified polyacrylamides are synthesized using different techniques
such as micellar [199–201], homogeneous, and heterogeneous polymerization [199]. The hy-
drophobic units may be distributed in various ways through the polymer, such as randomly
or block-like [40,197,199,202–205], and they can be coupled at one or both ends [206–211].
The distribution of the hydrophobic groups as a result of micellar copolymerization is
block-like, while solution copolymerization results in a random distribution.

(a) General properties

Hydrophobic–hydrophobic interactions among the polymer chains result in either
intra- or inter-molecular associations or their combination. An illustration of the concept
of intra- or inter-molecular associations for a hydrophobically modified polyacrylamide
is shown in Figure 4. The dominance of either association type depends on the poly-
mer concentration and has a strong impact on the viscosity of the polymer solution. In
the dilute regime, HMPAM forms more intra-molecular associations than intermolecular
ones, twisting the macromolecular chains and reducing the hydrodynamic radius, thus
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reducing the viscosity. At concentrations higher than the critical association concentration
(CAC), inter-molecular associations become more dominant, which abruptly increases the
hydrodynamic radius of the polyacrylamides [212–216].
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(b) Effect of salinity

Several authors have reported that the addition of salt can enhance the viscosity of
hydrophobically modified polyacrylamides [197,217,218]. The reason for this appears to
be that, by screening the electric charges along the chains with the salts, the electrostatic
interactions are suppressed. As a result, the hydrophobic associations are less likely to
be disrupted by electrostatic interactions and this results in a higher solution polarity.
The higher polarity leads, in turn, to the reinforcement of the hydrophobic associations,
which allows the formation of aggregates and a stronger network through inter-molecular
hydrophobic associations [219]. Therefore, an increase in the viscosity of the solution is
expected in the presence of salt (see polymers 1, 2, 3, and 4 in Table 1).

However, upon a further increase in salinity, the hydrophobic aggregates become
more compact. These condensed aggregates then associate to form larger aggregates, which
results in the phase separation of the polymer and a reduction in the viscosity [197,220]. For
instance, Al Sabagh et al. [221] reported a rheological study of three HMPAMs [222] at 30 °C.
The authors found that, first, the viscosity increases with increasing NaCl concentration up
to 2.9 wt% (salt thickening) and, then, above this value, the viscosity decreases as the NaCl
concentration increases (salt thinning) (see Figure 5a). Rather similar behavior was observed
for CaCl2 concentration. However, the transition from salt-thickening to salt-thinning
behavior occurs at a much lower concentration for CaCl2 (0.2 wt%) (see Figure 5b). Zhong
et al. [223] suggested that salt-thickening behavior can occur at two ranges of salinities
(2–3 wt% and 5–9 wt%) but, at salinities higher than 9 wt%, the viscosity decreased.

More recently, Mirzaie Yegane et al. [224] showed that HMPAM in a brine containing
20 wt% NaCl and 1.5 wt% Ca2+ has a viscosity some 55% higher than its viscosity in DI
water, regardless of HMPAM concentration. This exceptional viscosity increase at high
salinity was attributed to the excellent solubility of the HMPAM in both brine and DI
water, as well as the increase in solvent viscosity, which was measured to be 0.9 ± 0.1
and 1.4 ± 0.1 mPa s for DI water and brine, respectively. It is our understanding that the
solubility of the hydrophobic group plays a key role in maintaining the viscosity with
increasing salinity and hardness. Therefore, it is recommended to estimate the solubility
limit of the hydrophobic comonomers prior to polymerization to decide on (a) the type of
hydrophobic group and (b) the fraction of hydrophobic units to be incorporated into the
polymer backbone.
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(c) Effect of temperature

For both compositional and structural reasons, the behavior of the HMPAMs is signifi-
cantly affected by temperature. An increase in temperature improves the solvent quality
of the hydrophilic segments of the HMPAM. This will tend to increase the hydrodynamic
radius of the chains. At the same time, the solvent quality for the hydrophobic segments
will deteriorate. Therefore, the hydrophobic units will have an increased tendency to form
stable networks. Both effects could lead to an increase in viscosity as temperature increases.

The increase in the viscosity of the HMPAMs with increasing temperature is also
explained by the concept of so-called thermo-thickening copolymers (also known as thermo-
associative and thermo-stimulated copolymers) [225–227]. This concept is based on the
switch properties of polymers characterized by a lower critical solution temperature (LCST).
These polymers have a highly water-soluble macromolecular backbone, with some LCST
side chains or blocks (see Figure 6). With increasing temperature, these thermo-sensitive
moieties can undergo reversible micro-phase segregation. Above the CAC, this change
results in an increase in the solution viscosity through inter-molecular associations. It is
noteworthy that the thermo-thickening behavior of the polymer solution is more evident at
low salinities and shear rates [228].
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The viscosities of solutions of polymer numbers 5 or 6 in Table 1 are not significantly
dependent on the temperature when in the range of 30–60 °C [229,230]. The intrinsic
viscosity of a solution containing polymer number 7, rose from 6.5 to 8.5 dL/g as the
temperature increased from 25 to 60 °C [231]. Thermo-thickening behavior at low ionic
strength and shear rate was observed with polymer number 8 [232]. This was ascribed
to the increase in the concentration of poly(propylene oxide) (PPO) in the hydrophobic
micro-domains. This resulted in an increase in chain mobility at fairly high temperatures.
With a further increase in the temperature, the viscosity of the hydrophobically modified
polymers is expected to decrease. This is ascribed to the loss in the network connectivity
because of changes in the hydrophobic micro-domains.

Even though hydrophobically modified polymers can enhance the solution viscosity at
moderately high salinity and temperature, their application at higher salinity (>5 wt% TDS)
and higher temperature (>80 °C) is challenging. This becomes more difficult, in particular
when high salinity and high temperature coexist in a reservoir where the polymer solution
viscosity will potentially be strongly reduced.

6.2. Salt- and Temperature-Tolerant Modified Polyacrylamides

Several researchers have attempted to synthesize modified polyacrylamides with both
salt- and temperature-tolerant comonomers, in order to enlarge the envelope of polymer
flooding at high-salinity and high-temperature conditions. The synthesis attempts were
based on the modification of polyacrylamide by the incorporation of one or more of the
monomers that can enhance the stability of the polymer in such conditions (see polymer
numbers 9 through 16 in Table 1). For instance, the incorporation of AMPS or acrylamido-
tert-butyl-sulfonate (ATBS) to polyacrylamide increases the tolerance to high salinity and
hardness [41,233,234]. The incorporation of N-VP to polyacrylamide, on the other hand,
seems to protect the polyacrylamide units against hydrolysis.

Stahl et al. [235] studied a wide range of synthetic and biopolymers at an elevated
temperature and moderately high salinity (121 °C and 3.3 wt% TDS). They found that
the incorporation of N-VP in acrylamide prevents precipitation of the polymer at this
temperature. They also observed that N-VP limits the level of acrylamide hydrolysis and
argued that this gives the copolymer its enhanced stability in high salinity and hardness
brines. Vermolen et al. [151] studied the effect of HPAM modification with AMPS and/or
N-VP monomers, with the aim of maintaining the viscosity at an elevated temperature
(120 °C) and high salinity (20 wt% TDS) in both the absence and presence of divalent ions
(up to 1.8 wt%). They found that, in the absence of divalent ions (no hardness), HPAM
is stable for more than 180 days. Unfortunately, the incorporation of 20–25 mol% AMPS
to HPAM did not enhance the resistance against the presence of divalent ions at high
temperatures. However, a terpolymer including acrylamide, 20–25 mol% AMPS, and
35–50 mol% N-VP monomers did stabilize the polymer in such harsh conditions.

Table 1. Polymers stable at high salinity and/or high temperature.

Polymer Salinity (ppm) Temperature (°C) Ref.

No.1 Hydrophobically modified polyacrylamide with methylene 100,000 25 [236]

No.2 Hydrophobically modified polyacrylic acid with alkyl acrylate 40,000 25 [237]

No.3

Hydrophobically modified polyacrylic acid with
2-(N-ethylperfluorooctanesulfoamido)

ethyl acrylate (FA) or 2-(N-ethylperfluorooctanesulfoamido)
ethyl methacrylate (FMA)

19,000 25 [219]

No.4 Hydrophobically modified polyacrylamide with
N-phenethylacrylamide 90,000 25 [238]

No.5

Terpolymers of acrylamide
(AM) with sodium 3-acrylamido-3-methylbutanoate

(Na-AMB) and 2-acrylamido-
2methylpropanedimethylammonium chloride (AMPDAC)

30,000 30–60 [229]
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Table 1. Cont.

Polymer Salinity (ppm) Temperature (°C) Ref.

No.6 Hydrophobically modified polyacrylic acid with
3-pentadecylcyclohexylamine (3-PDCA) 0 30–60 [230]

No.7
Hydrophobically modified polyacrylamide

3-(2-acrylamido-2-methylpropanedimethylammonio)-
l-propanesulfonate (AMPDAPS)

0 25–60 [231]

No.8 Poly(propylene oxide) methacrylate 0 25–70 [232]

No.9

Thermoviscosifying
polymers (TVP) mainly based on thermosensitive

poly(N-isopropylacrylamide) (PNIPAM) and
polyethylene (PEO)

33,000 (TDS),
900 (DC) 90 [239]

No.10 Copolymer of hydrolyzed polyacrylamide (HPAM) and
2-acrylamido-2-methylpropane sulfonic acid (AMPS) 50,000 80 [233]

No.11
Incorporation of Acrylamido-Tert-Butyl-Sulfonate (ATBS)

and/or N-vinyl pyrrolidone (N-VP) into hydrolyzed
polyacrylamide (HPAM)

500–100,000 85–140 [234]

No.12
Synergy of hydrolyzed polyacrylamide (HPAM) and
2-acrylamido-2-methylpropane sulfonic acid (AMPS)

with surfactant
172,000 95 [240]

No.13

Incorporation of sodium 2-acrylamido-2-methylpropane
sulfonic acid (Na-AMPS) and/or N-vinyl pyrrolidone (N-VP)

and/or sodium 3-acrylamid 3-methyl butyrate (N-AMB)
and/or N-vinyl amide (N-VAM) into hydrolyzed

polyacrylamide (HPAM)

34,600–180,000 (TDS) 90–120 [241]

No.14
Incorporation of Acrylamido-Tert-Butyl-Sulfonate (ATBS)

and/or N-vinyl pyrrolidone (N-VP) into hydrolyzed
polyacrylamide (HPAM)

13,000 (TDS),
7000 (DC) 85 [242]

No.15 Copolymer of 2-acrylamido-2-methylpropane sulfonic acid
(AMPS) and hydrolyzed polyacrylamide (HPAM)

170,000 (TDS),
17,000 (DC) 100 [41]

No.16
Incorporation of sodium 2-acrylamido-2-methylpropane

sulfonic acid (Na-AMPS) and/or N-vinyl pyrrolidone (N-VP)
into hydrolyzed polyacrylamide (HPAM)

43,700–179,800 (TDS),
2100–17,700 (DC) 120 [151]

6.3. Polymer–Nanoparticles Hybrid

An alternative approach is to use a hybrid of polymer and silica nanoparticles (NPs) to
create a hybrid system with enhanced rheological properties under harsh conditions [243].
This novel approach is based on the idea that the rheological properties of the hybrid can
be fine-tuned by controlling the interactions between the polymer and the silica NPs. Silica
NPs have been the most frequently used NPs for cEOR due to their potential to change
the rock wettability and to reduce the IFT [244]. The surface properties of silica NPs can
be changed from hydrophobic to hydrophilic by silanization with hydrophilic hydroxyl
groups, hydrophobic sulphonic acid, or hydrophilic polyethylene glycol [245]. Moreover,
silica NPs have shown a good thermal stability [246].

Silica NPs can also adjust the properties of the base fluid, for instance, the fluid density,
viscosity, and heat tolerance [247,248]. In particular, the addition of silica NPs to a polymer
solution can improve its viscosity and enhance its heat tolerance [249–251]. The interaction
between polymer molecules and silica NPs has mainly been attributed to hydrogen bonds
between the functional groups on polymer molecules including hydroxyl, amide, and
carboxylate groups and the silanol groups on the surface of silica NPs [250,252–254]. Hence,
silica NPs can act as physical crosslinkers between polymer chains, which reinforces the
molecular network structure. As a result, a structure with a larger hydrodynamic volume
will be formed and the movement of polymer chains becomes limited, which in turn results
in an increase in the polymer solution viscosity [224,254].

Some researchers have discussed that the hybrid networks based on reversible associ-
ations can be obtained by the inclusion of silica NPs into the macromolecular architecture
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of associative polymers [55,255–258]. Temperature and salting out can be employed to
adjust the viscoelastic properties of a hybrid network of polymers and NPs [255]. For
instance, Portehault et al. [55] reported that the addition of silica nanoparticles into a poly-
acrylamide having poly-(N-isopropylacrylamide) (PNIPA) as LCST side chains results in
specific interactions between the polymer side chains and the silanol groups on the surface
of nanoparticles, leading to a physical hybrid network in the whole temperature range.
Upon heating, unbound PNIPA grafts self-assemble into nanodomains and improve the
viscoelastic properties and connectivity of the hybrid (see Figure 1e).

Bhardwaj et al. [253] observed enhanced thermal stability for nano-size polyacrylamide–
silica composites. Maghzi et al. [259] showed the viscosity of a hybrid of polyacrylamide–
silica was larger than the viscosity of the polyacrylamide solution for salinities ranging
from 1.4 wt% to 8.4 wt% TDS. Hu et al. [252] noted the introduction of silica NPs signifi-
cantly enhanced the HPAM viscosity at salinities up to 8 wt% NaCl and temperatures up to
80 °C. Cao et al. [254] reported that the resistance of a copolymer of acrylamide and AMPS
against high-salinity and high-temperature conditions was enhanced upon the addition of
amino-functionalized silica NPs at salinities up to 8 wt% NaCl and 0.12 wt% CaCl2 at 70 °C.

However, the above approaches suffer from some drawbacks: (a) no polymer–NP
hybrid was studied for salinities higher than 8.4 wt%, (b) the colloidal stability of the hybrid
system at high salinities appears to be challenging, and (c) the effect of the concentration of
polymer on the rheological response of hybrids was not investigated.

To address these limitations, more recently it was proposed that enhanced stability
and increased viscosity can be achieved at very high salinity (20 wt% TDS), hardness
(1.5 wt% Ca2+), and elevated temperature (70 °C) by the hybridization of hydrophobically
modified polyacrylamide with hydrophobically modified silica NPs [224]. The surface of
hydrophilic silica NPs was coated by gamma-glycidoxypropyltrimethoxysilane (GPTMS), a
low-molecular-weight organic ligand where GPTMS covalently binds to the surface of NPs.
This not only offers steric stabilization and establishes colloidal stability at high salinities,
but it also shifts the surface of NPs from hydrophilic to hydrophobic. Hydrophobically
modified nanoparticles facilitate the bridging between hydrophobically modified polyacry-
lamide chains. As a result, in the semi-dilute regime, where polymer chains were closer to
one another, they could be bridged by NPs through hydrophobic–hydrophobic interactions.
This enlarges the hydrodynamic volume of the hybrid and therefore increases its viscosity.

The results found in the literature demonstrate the potential of a polymer–NP hybrid
as an alternate approach for enhanced oil recovery at high-salinity and high-temperature
conditions. However, long-term thermal stability at high temperatures, which is a vital
aspect of polymers in cEOR field applications, seems challenging. Even though organic
ligands can provide the colloidal stability of NPs at high salinities, the situation at high
temperatures in the long term can be different. The epoxy functional groups of an organic
ligand can react/open up at high temperatures [260]. This leads to a reduction of the
grafting density of the ligand and consequently a decrease in the steric potential. As a
result, NPs can aggregate to each other, which (a) reduces the viscosity of hybrids and
(b) makes their transport in porous media difficult and causes potential plugging and
injectivity problems [245]. Therefore, further research on the development of organic
ligands that are compatible with high-temperature conditions in the long term is essential.

7. Polymer Flooding in Practice

Several authors have proposed criteria for polymer flooding projects based on the
effects of the parameters discussed in Section 5. There is a consensus about the fact
that, prior to any field applications, laboratory experiments should be carried out to
assess the feasibility of a polymer flooding project and to estimate the probability of
success [261,262]. Specific criteria in laboratory experiments to enhance the chances of
success of a polymer flooding project include the following: (a) meeting the target viscosity
at reservoir conditions, (b) good filterability to ensure good injectivity, (c) suitable solubility
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in brine, and (d) maintaining stability and viscosity under the influence of degrading factors
such as shearing, heating, salinity, and hardness [261].

Table 2 shows the range of parameters for polymer flooding in laboratory experiments
compared with real field applications. Table 3 gives a summary of these parameters in
different field projects that have been performed recently.

Table 2. Range of parameters for polymer flooding in laboratory vs. field applications [22,261,262].

Parameter Laboratory Experiments Field Applications

Polymer type
HPAM

Xanthan gum
Associative polymer

HPAM
Xanthan gum

Associative polymer

Polymer molecular weight (g/mol) 1–25 × 106 12–25 × 106

Polymer concentration (ppm) 30–10,000 300–4000

Permeability (mD) 2.5–13,000 >50

Porosity (%) 10–47 4–37

Oil viscosity (cP) 1.7–5500 <5000

Lithology

Sandstone cores
Carbonate cores

Sand-packs
Micromodels

Majority in sandstone reservoirs
Very few in carbonate reservoirs

Water salinity (ppm) 250–186,000 Majority < 50,000

Temperature (◦C) 20–120 <99

A summary of the range of parameters in the laboratory experiments, as shown in
Table 2, is as follows. HPAM, xanthan gum, and associative polymers have been extensively
used in laboratory experiments. There is a wide range in both the molecular weight
(1–25 × 106 g/mol) and the concentration (from 30 up to 10,000 ppm) of these polymers in
the performed experiments. The salinity of the water, in which the polymers are dissolved,
is as high as 186,000 ppm. The experiments are performed at temperatures of up to 120 °C.
Moreover, in laboratory experiments, the behavior of the polymers is studied in various
types of model porous media, including sandstone and carbonate cores, sand-packs, and
microfluidics. The permeabilities of these porous media range from very low (<10 mD) to
very high (>13,000 mD) and the porosity ranged from 10 to 47%.

As can be seen in Table 3, in field applications, HPAM is the most commonly used
polymer by far and the associative polymers were used only in a few projects (SZ36-1 and
Bohai Bay in China, East Bodo and Mooney in Canada). As for the polymer molecular
weight and concentration, the selected range for field applications is more limited than
the laboratory experiments. The main motivation behind this is to avoid the injectivity
problems, which can be a result of the high concentration and molecular weight of the
injected polymer solution. The range of polymer molecular weights used is strongly
dependent on reservoir permeability. High-molecular-weight polymers (>17 × 106 g/mol)
have been used in reservoirs with an average to high permeability (>400 mD).

In contrast to the laboratory experiments, polymer injection has rarely been used in
carbonate reservoirs in field applications and its use is mainly limited to sandstone reser-
voirs. The salinity of the injected water in the majority of field applications is lower than
50,000 ppm. It should be noted that for the Dalia/Camelia field in Angola, the formation
water salinity was 117,000 ppm but the injected water salinity was 24,900 [263,264].

Song et al. [265] reviewed the most recent advances in polymer flooding projects in
China. They reported that several salt-resistance polymers were developed for field projects
in China, mostly for the Daqing field. These polymers include DS800, DS2500, and LH2500
with molecular weights of 8, 25, and 25 MDa, respectively. The chemical structure and
synthesis of these polymers are explained in [266,267].
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Successful field applications with very high salinity in the injected water are scarce. In
the Bockstedt field in Germany (54 °C, injection water at 186,000 ppm) schizophyllan was
used, but, despite good injectivity, considerable biological degradation was observed even
in the presence of biocide [268,269]. In the Asab field in the UAE (120 °C, injection water at
270,000 ppm), the use of an ATBS-modified polyacrylamide (SAV 10) resulted in a successful
injection in 2019 [270]. The lack of many successful projects in harsh conditions inspires the
need for polymers that are stable at high salinity, especially in situations where there are
high temperatures that can worsen the degradation effects. As discussed in Section 6, the
recent advanced water-soluble polymers for high-salinity and high-temperature conditions
can be good candidates for field projects in harsh conditions. However, more elaborative
experimental studies, including ensuring good injectivity in lower permeability reservoirs
and long-term stability tests that reflect the polymer lifetime in field projects, are needed to
ensure their successful application on the field scale.

Table 3. Range of parameters in recent polymer flooding field applications (1 MDa = 106 g/mol,
NR = not reported).

Country Field
Formation

Water Salinity
(ppm)

Temperature
(◦C)

Oil Viscosity
(cP) Polymer Type

Polymer
Concentration

(ppm)

Polymer
Viscosity (cP) Ref.

Canada

East Bodo
29,000 NR 417–2000 HPAM(F3630/F3830) 1500 50–60 [271]

25,00–27,000 27 600–2000 Associative polymer 1750 30–80 [272]

Pelican Lake 6853 23 1000–3000 HPAM (13.6 MDa) 600–3000 13–50 [273]

Mooney 28,700 29 300–1000 Associative polymer 2200 NR [272]

China

SZ36-1 6071 65 70 Associative polymer 600–2400 98 [274]

Daqing 6000 45 10–30 HPAM 1000–2500 40–300 [275,276]

Shengtuo 21,000 80 10–40 HPAM 1800 30–50 [261]

Bohai Bay

2873– 20,000 50–70 30–450 HPAM 1200–2500 98 [277]

6071–9347 65 24–452 Associative polymer
(AP-P4) 1750 131 [278]

Gudao 8207 65 50–150 HPAM 2000 350 [261]

ShuangHe 5060 72 7.8 HPAM 1090 93 [279]

Brazil
Buracica 41,000 60 7–20 HPAM (Flopam) 500 10 [280]

Carmopolis 17,091 50 10.5 HPAM (Flopam) 500 40 [281]

Oman Marmul 3000 46 80–90 HPAM (Nalco Q41F) 1000 15 [282,283]

Suriname Tambaredjo 5000 38 325–2209 HPAM (3630S) 1000–2500 45–140 [284]

India Mangala 5400 62 9–22 HPAM 2000–2500 20 [285,286]

Germany Bockstedt 186,000 54 11–29 Schizophyllan 300 25 [268,269]

Angola Dalia/Camelia 117,700 45–56 1–11 HPAM (18–20 MDa) 900 3 [263,264]

8. Final Remarks

Polymer flooding is a mature enhanced oil recovery technique that has proven to
be successful in field applications over the past 50 years. In recent years, there has been
growing interest in the application of water-soluble polymers for field projects. This is
because of the development of advanced polymers for high-salinity and high-temperature
conditions and an improved understanding of the flow mechanisms of polymers in porous
media. In this review, we attempted to give an overview of the latest research progress in
the application of water-soluble polymers for cEOR. However, there are other challenges
that currently exist in field applications. They include injectivity decline at low-permeability
formations, long-term stability at high-salinity and high-temperature conditions, and the
need for cost-effective and environmentally friendly polymers. Further review of such
topics is recommended to ensure a successful implementation of the technology.
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9. Summary and Outlook

In this review, we presented a critical overview of the state-of-the-art research on water-
soluble polymers for cEOR. The objective of this review was to revisit the fundamentals of
polymer flow in porous media and to present the recent progress made in (a) the improved
understanding of the flow behavior of water-soluble polymers in porous media (e.g.,
shear thickening, elastic turbulence) and (b) the development of advanced water-soluble
polymers for enhanced oil recovery at high-salinity and high-temperature conditions and
their use in field applications.

Polymers can improve oil recovery by increasing the viscosity of the aqueous phase,
thus reducing the mobility ratio. More recently, the improvement in oil recovery by
polymers is also attributed to their viscoelastic properties, due to which polymers can
displace the residual oil trapped by capillary forces. As a result of the flow of a viscoelastic
polymer in porous media, fluctuating pressure fields are generated, which destabilizes the
trapped oil ganglia and improves the oil recovery.

One of the most debated flow behaviors that is related to the viscoelastic nature of a
polymer solution in porous media, is the shear-thickening behavior. Shear thickening has
previously been explained by the coil–stretch transition and transient network theories and
more recently attributed to elastic instabilities at negligible inertial effect. Beyond the onset
of these elastic instabilities, the flow shows strong spatiotemporal fluctuations and causes
viscous dissipation which results in the anomalous increase in the apparent viscosity.

The performance of polymers in porous media (i.e., polymer rheology and retention)
is dependent on many parameters, including polymer type, polymer molecular weight and
concentration, porous media permeability, residual oil saturation, iron and clay content
of the rock, salinity, and temperature. The employment of conventional polymers at high-
salinity and high-temperature reservoirs is a challenge and there is limited success in field
applications. The modification of polyacrylamide hydrophobically or with monomers such
as AMPS and N-VP has shown promising results at high-temperature and high-salinity
conditions; however, these polymers are more expensive than conventional polymers used
for cEOR such as HPAM.

An alternative approach for achieving enhanced stability and high viscosity at high-
salinity and high-temperature conditions is combining polymers with silica nanoparticles.
The rheological properties of such a system can be controlled by finetuning the interactions
between polymers and nanoparticles. As a result, a molecular network structure with
a larger hydrodynamic volume will be formed, which in turn results in an increase in
the polymer solution viscosity. Despite success at high-salinity and high-temperature
conditions in the short term, the long-term stability for the polymer–nanoparticles hybrid
can be more challenging, since silica nanoparticles can partially lose their surface func-
tionalities at high temperatures in the long term, which can lead to their aggregation and
injectivity problems.
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