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On the Effects of Team Size and Communication Load on the
Performance in Exploration Games
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Abstract: Exploration games are games where agents (or robots) need to search resources and retrieve these resources.
In principle, performance in such games can be improved either by adding more agents or by exchanging
more messages. However, both measures are not free of cost and it is important to be able to assess the
trade-off between these costs and the potential performance gain. The focus of this paper is on improving our
understanding of the performance gain that can be achieved either by adding more agents or by increasing
the communication load. Performance gain moreover is studied by taking several other important factors
into account such as environment topology and size, resource-redundancy, and task size. Our results suggest
that there does not exist a decision function that dominates all other decision functions, i.e. is optimal for
all conditions. Instead we find that (i) for different team sizes and communication strategies different agent
decision functions perform optimal, and that (ii) optimality of decision functions also depends on environment
and task parameters. We also find that it pays off to optimize for environment topologies.

1 INTRODUCTION

Exploration games are games where agents (or ro-
bots) need to search for resources and retrieve these
resources (Hindriks and Dix, 2014). Many real-life
applications are instances of such games including,
for example, package delivery problems (which so-
metimes only require minimal search) to search and
rescue missions (where search typically takes most of
the time). A task in an exploration game is defined
by a specific finite (sub)set of all available resources
that need to be located and retrieved in a particular
order (a task is defined as a sequence of resource ty-
pes). The order imposed on the items to be retrieved
is a key difference with typical foraging tasks. We as-
sume that the map (i.e., topology of the environment)
that needs to be explored is finite and known but that
the initial distribution of resources is unknown. In this
paper, performance in exploration games is measured
by the time to complete a given task.

Task performance in exploration games can be im-
proved by adding more agents because, in principle,
they can perform tasks in paralelle. This is true even if
agents do not communicate with each other. If resour-
ces are sufficiently available and agents act rationally,
it is possible to solve an exploration game without any

communication. The “only” condition that agents that
do not communicate need to satisfy is that they do
not waste resources (they need to ensure that resource
consumption is necessary to complete the task). The
performance gain of adding one more agent, however,
decreases relative to the number of agents that are al-
ready deployed. Even worse, if physical size of robots
and the space they occupy is also taken into account,
there typically is a point where adding more robots
will decrease performance again as robots become ob-
stacles blocking each other’s movement (Rosenfeld
et al., 2006). But even if we abstract from such ‘na-
vigational issues’, as we will do in this paper, and we
can safely assume that adding more agents will not
decrease performance, we cannot assume that adding
more agents to the mix will increase performance. Fi-
nite tasks that can be completed can only require at
most a finite amount of effort, which means that there
must be a point at which adding another agent will not
yield any performance gain any more.

Besides by adding more agents, performance can
usually also be improved by adding communication
between agents. Communication, for example, can
be used to avoid duplication of effort. If agents in-
form each other about the locations they have visi-
ted, for example, agents can avoid exploring that lo-
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cation twice. Similarly, by communicating about the
targets agents set themselves (their goals) agents can
avoid retrieving the same type of resource twice. It
is known from the literature that even a limited ex-
change of messages can already have a huge impact
on performance, see e.g., (Farinelli et al., 2004). Gi-
ven that exploration games are finite, it also is clear
that there is some point at which more communica-
tion does not lead to any performance gains any more.
A team of agents will only be able to perform better
if they can further improve the coordination of their
actions by communicating more. We aim to increase
our understanding of how much communication can
contribute to the performance of an agent team in ex-
ploration games.

Like foraging games, optimal solutions are
unknown for exploration games in general and the-
refore agent-based simulation approaches are used to
empirically establish the performance of a coordina-
tion strategy (Zedadra et al., 2017). The results from
this empirical research can then be used to design bet-
ter and more efficient coordination strategies for dif-
ferent types of exploration games. Our work is moti-
vated by this and aims to provide guidelines that can
inform this design. As a designer, it is particularly
useful to understand how much performance can be
improved by either adding another agent to the mix
or by increasing the communication load for a given
number of agents. The number of agents (robots) and
number of messages exchanged between agents on
average can be viewed as a budget that is available
to a designer. It is useful for a designer to better un-
derstand the return on investment of adding another
agent or increased the communication load.

In general, from a design perspective, it is sim-
pler to add another agent to a system than to incre-
ase the messages that agents exchange. Exchanging
more messages typically requires a more complicated
coordination strategy to be effective and thus compli-
cates system design because interdependencies bet-
ween agents are increased. A more complicated coor-
dination strategy, moreover, comes at the cost of hig-
her processing power, additional requirements on har-
dware, and higher risks of failure. Additional design
complexity, however, may be justified when commu-
nication can yield dramatic performance gains. This
is sometimes the case, as we noted above, but to un-
derstand when requires an insight into when such per-
formance gains are to be expected. Providing this
kind of insight is one of the aims of this paper.

The main contributions of our paper are (i) that we
provide convincing evidence that there is not a single
coordination strategy that is optimal for all cases and

(ii) show which type of coordination strategies are
best suited for optimizing performance for specific
map topologies of an exploration game. We also show
how the performance of different strategies depends
on team size and communication load, and how per-
formance is influenced by additional factors such as
map and task size, and resource redundancy.

The remainder of the paper is organised as fol-
lows. Section 2 discusses related work. In Section
3 we introduce our approach and discuss the agent
decision functions used in our simulations. Section
4 presents the experimental set-up we have used to
study performance gains. In Section 5 we discuss our
results. Section 6 concludes the paper.

2 RELATED WORK

The effects of coordination and communication on
performance have extensively been studied empiri-
cally for real robot systems; (Farinelli et al., 2004)
provides a good survey. This survey presents a de-
tailed overview of coordination mechanisms that have
been proposed and concludes that to obtain reasona-
ble performance in most cases little communication is
required. However, none of the reported studies pro-
vides a detailed study of the trade-off between com-
munication, team-size, and performance.

(Pitonakova et al., 2016) demonstrates the value
of coordination by showing that both social and non-
social coordination mechanisms, i.e. with and wit-
hout communication, can improve a robot team’s effi-
ciency. (Pini et al., 2013) studies coordination mecha-
nisms in relation to how tasks are partitioned. They
conclude that communication is beneficial to avoid
duplication of effort, but has the drawback of biasing
the exploration, even slowing it down in some cases as
a result. These works focus on issues such as avoiding
collisions and path finding, whereas our focus is more
on task related coordination issues, such as avoiding
duplication of effort and efficient destination alloca-
tion. Our results, moreover, go beyond these studies
by providing a more detailed overview of which per-
formance gains can be achieved by means of incre-
asing communication and team-size, while taking the
influence of various environment factors into account.

(Liemhetcharat et al., 2015) uses a set-up similar
to ours, but studies heterogeneous teams instead of
homogeneous teams as we do, and a setting where re-
sources are replenished instead of consumed as is the
case in our work. Our focus, moreover, is on commu-
nication load and we take more environmental factors
into account.

Several simulation-based studies that also investi-
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gate the relation between team-size, communication,
and performance have used the Blocks World for Te-
ams (BW4T) simulation environment. BW4T is a tes-
tbed for exploration games (Johnson et al., 2009) with
blocks of different colors as resources and has been
specifically designed for analysing and evaluating the
ability to cooperate in multi-agent teams. Both (Har-
bers et al., 2012) and (Wei et al., 2014) use BW4T to
investigate the impact of different types of communi-
cation on team performance. These works examined
agents that use four different communication proto-
cols: (i) agents that do not communicate, (ii) agents
that only exchange information about the knowledge
they have about the environment, i.e. the location of
resources, (iii) agents that only communicate their in-
tentions, i.e. what they plan to do, and (iv) agents
that both communicate about their knowledge and in-
tentions. (Harbers et al., 2012) concludes that it is
more effective to communicate about intentions than
about knowledge. (Wei et al., 2014) shows, moreover,
that interference between robots can diminish the po-
sitive effects of communication. Running simulations
using BW4T takes time, however, which has limited
the size of the experiments that could be run to less
than 10 agents and small environments. In contrast,
we vary the size and topologies of environments in
our experiments, systematically explore the impact of
various other environment parameters, and vary team
sizes from 1 to a 100 agents.

3 SIMULATION APPROACH

We use a discrete simulation model to empirically
investigate performance of various agent decision
functions for exploration games. In our approach we
systematically vary parameters that define exploration
games, including map topology and size, distribution
of different types of resources, task size, and num-
ber of agents (team size) deployed for completing the
task. We also systematically vary basic tactics that
agents use for exploration and coordination.

3.1 Simulator

We use a very fast multi-agent system simulator
for exploration games developed in MATLAB cal-
led MEG (short for Matlab Exploration Game). The
map topology of an exploration game is modelled by
a (symmetric) distance matrix that consists of distan-
ces between each pair of locations on the map. We
assume that a unique location is singled out on the
map as the target location where resources need to be
delivered called the drop zone. Even though a single

drop zone somewhat simplifies the task, we believe
this constraint is reasonable for the purposes of this
paper and also limits the number of topologies that
we need to simulate to a feasible number. The simu-
lator keeps track of which resources are being retrie-
ved and moved to other locations. Each time an ex-
ploration game is loaded and initialized the simulator
randomly distributes a pre-defined amount of resour-
ces on locations on the map. The initialization of the
task sequence is based on the redundancy of resources
and on task length parameters. All agents initially are
located in the drop zone.

MEG is a discrete event simulator where all agents
perform actions simultaneously at a discrete point in
time T and the effects of these actions on the envi-
ronment are computed at the end of each time step.
After each step the global clock T is increased to
T + 1. Agents maintain a model of the environment
(their beliefs) and set targets (goals to go somewhere
or retrieve a known resource). The simulator auto-
matically updates the beliefs of agents based on the
resources perceived at the location an agent is at and
the messages received from other agents at the end of
each time step. The performance of the simulator thus
effectively only depends on the time needed to com-
pute a decision on which action to perform next for
each agent and to compute the effects of performing
these actions simultaneously on the environment. Our
simulator is fast enough to run millions of simulations
in a reasonable time (compared with, for example, a
real-time simulator such as the BW4T we gain a speed
increase of roughly a factor 25,000).

Figure 1 shows the control flow that is executed by
the simulator. Choices are in blue, actions are in gray,
and for each time step T the green block repeats the
same cycle again by executing all agents for as long
as the task set has not been completed yet. For each
agent a, the simulator keeps track of two important
parameters: the target location R(a) and N(a) the time
that agent a is estimated to arrive at and occupy that
location. As long as N(a)> T , at a time step an agent
performs one step towards its target location lowering
the distance that still needs to be travelled. Once an
agent reaches its target location, i.e. N(a) = T , it gets
access to this location if it is not occupied by another
agent. If the agent gets access, it occupies the location
and the boolean mapping occupied is updated to mo-
del this fact. We note that agent movement is not ob-
structed by locations that are already occupied but can
move freely past such locations. An agent that occu-
pies a target location either drops a resource that it
retrieved previously, retrieves a resource that is avail-
able at the location if it believes that resource still
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Figure 1: Control Flow of MEG Simulator.

needs to be delivered at the drop zone, or otherwise
selects a (different) target location. Selection of a tar-
get location depends on the agent’s exploration stra-
tegy. If the agent cannot access the location yet, the
estimated time of arrival N(a) is increased with one
and at the next time step it is checked again whether
the agent can access the location.

At a target location agents can observe which re-
sources are available at that location. At the beginning
of each turn agents are updated on task progress, i.e.
on the resource types that still need to be delivered.
The simulator also allows agents to communicate up-
dates on perceived resources (belief updates) as well
as changes to the targets that they set for themsel-
ves (their goals) to all other agents. That is, agents
can broadcast their belief updates and goals. Whether
agents do so depends on the decision function they
use. Messages sent to an agent are available to that
agent at the beginning of the next turn.

The output of a simulation run consists of the
number of turns, i.e. T , that were needed to retrieve
and deliver all resources required to complete the task
and the average number of messages each agent sent.

3.2 Environment and Task Parameters

The simulation model allows for varying a number of
parameters, including the following:

• Size of the map, i.e. the number of locations;

• Map topology, or structure of the map, i.e. whet-
her locations are connected and, if so, what the
distance between these locations is;

• Task size, or the length of the task sequence, i.e.
the number and order of the resource types that
need to be located and retrieved;

• Resource redundancy, i.e. a multiplier r that
ensures that a the number of items of a particu-
lar resource type available on the map is r times
the number that is actually needed to complete the
task; r = 1 means that the resources available ex-
actly match what is needed.

The map size and topology parameters determine
the cost of travelling to a location. By varying the
distances between locations we aim to establish when
a random exploration tactic will perform better than
a greedy tactic. If, for example, the distance bet-
ween any two locations is the same, then randomly
selecting a room cannot result in increasing the tra-
velling costs. If, on the other hand, some locations
are much more distant than other locations, then at
some point it may become more efficient to apply a
greedy tactic and select the closest location to avoid
having to travel long distances.

By increasing the task size, we aim to establish
which tactics will increase the efficiency of larger te-
ams more because they facilitate multiple agents to
perform more subtasks effectively in parallel. Finally,
we aim to verify whether a higher resource redun-
dancy factor r will favour greedy and communication
tactics because resources can be assumed to be avai-
lable closer to an agent’s current location.

3.3 Agent Decision Functions

In order to complete a task, agents need to explore and
coordinate their efforts to locate and retrieve resour-
ces. We therefore specify basic tactics for exploration
and coordination which can be combined to obtain
different types of agent decision functions. In this
work we assume agent teams are homogeneous, i.e.
all agents use the same strategy, and do not consider
heterogeneous teams.

Exploration Tactics The basic tactics that we con-
sider for exploration are a greedy and a random tactic.
We assume that agents are always greedy, i.e. select
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the closest location, if they know a location where a
resource can be found that is needed next. (Recall
that we assume the map is known.) If an agent uses
the greedy exploration tactic it will also select the clo-
sest location that has not yet been visited. By default,
we assume that an agent is a greedy explorer. The
random tactic instead selects a random location from
those that have not been visited yet. We further diffe-
rentiate by considering when the random exploration
tactic is applied: at the beginning of a game (random
start tactic) and thereafter during the rest of the game
(random exploration tactic). Of course, an agent may
both select a target location randomly at the start as
well as during the game, thus effectively applying the
combination of both tactics. Furthermore, we assume
that our agents are persistent: They will keep trying to
get access to a location until it becomes available and
will not select a new target location before they have
gained access to their current target location. We thus
have two tactics that an agent can use instead of the
default greedy exploration tactic:

• Random Start Tactic. At T = 0, agents randomly
select a location that has not yet been visited to go
to instead of going to the closest location first.

• Random Exploration Tactic. At T > 0, agents
randomly choose a target location that has not
been visited to explore next.

The effect of randomly selecting an (initial) tar-
get location is that agents will more evenly distribute
over the map. This usually will reduce duplication of
effort as fewer agents will try to visit the same room.
The downside of an agent that applies a random tactic
is that on average it will increase the distance travel-
led compared to an agent that uses a greedy tactic.
The random start tactic will only initially give rise
to a more even distribution on the map whereas the
random exploration tactic will ensure exploration of
all parts of the map more evenly later on in the game.

Coordination Tactics. Agents that are careful not
to waste resources do not need communication to
complete a task in an exploration game. By default,
we therefore assume that agents do not communicate.
Agents, however, can coordinate their efforts better
when they exchange information. We consider two
communication tactics. First, agents that use the up-
dates communication tactic exchange updates on the
locations that they visit: They inform other agents
about which locations they have visited and share the
information about resources found at those locations
with other agents. Other agents use this information
to not (re)visit a location already visited by another
agent and to (greedily) select locations where resour-

ces needed can be retrieved by using the information
about resources they thus obtain. In contract with ex-
ploration tactics, which only affect the agent’s own
behaviour, it is important to realize that communica-
tion tactics have an effect on the behaviour of other
agents. Second, agents that use the target communi-
cation tactic share with other agents which resource
they are delivering when they retrieve that resource
at a location. Other agents use this information to not
also then target the delivery of that same resource type
but instead will focus on delivering the resource nee-
ded next.

• Updates Communication Tactic. Agents com-
municate about which locations they have visited,
and about which resources are (no longer) availa-
ble at a location. Other agents will not consider
exploring locations that have been explored alre-
ady and will retrieve resources based on informa-
tion received from other agents.

• Target Communication Tactic. Agents commu-
nicate about which resource they are delivering
when they retrieve a resource at a location that is
required next to complete the task sequence. Ot-
her agents will anticipate and not deliver the same
resource.1

The cost of communication is based on the total
count of all messages that are sent from one agent
to another agent. That is, all individual messages
are counted instead of counting the single broadcast
action that sends a message to all other agents as a sin-
gle message. We do so because each individual mes-
sage demands resources and requires establishing the
reliability of the transmission of a message from one
agent to another agent. Generally speaking, the target
communication tactic results in fewer messages being
sent than the updates communication tactic. The for-
mer tactic only requires one message to be sent for
each resource needed to complete the task whereas
for implementing the latter tactic a message needs to
be sent for every resource discovered and each room
that is visited for the first time.

Admittedly, our tactics are quite basic and can be
refined to obtain more sophisticated variants of these
tactics. We believe, however, that for our purposes
these tactics are useful as they provide for basic but
fundamentally different strategies to complete tasks

1Since communication is only available at the beginning
of the next turn this introduces a new issue: Multiple agents
can decide to deliver the same resource. Therefore, at the
drop zone, agents also check if their resource is still required
eventually. If not, they will abandon it and continue with the
remainder of the task.
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in an exploration game. They allow us to establish
the effects of almost completely opposite tactics, i.e.
those of greedy versus random exploration tactics and
of no communication versus the communication of
updates and chosen target locations. For exploration,
for example, we thus can establish whether focus (on
nearby locations) versus spread (aiming for visiting
as many different locations as possible) improves per-
formance in an exploration game. This allows us to
investigate the efficiency of tactics that are generally
applicable to robots that are tasked with exploration
rather than to focus on details of very specific instan-
ces of exploration games.

Table 1: Labels of agent decision functions.

Random Random Updates Target Optimal
Start Exploration Comm. Comm. (Sometimes)

A Yes
B X Yes
C X No
D X X No
E X Yes
F X X Yes
G X X No
H X X X No
I X Yes
J X X No
K X X Yes
L X X X No
M X X Yes
N X X X Yes
O X X X Yes
P X X X X No

Decision Functions. The four tactics introduced
above can be used to create variations of the default
greedy exploration agent that does not communicate
at all. This gives rise to 16 different agent decision
functions. Table 1 introduces labels (single letters)
used to reference these decision functions in the re-
mainder of the paper. For example, agents that use
decision function G initially choose to visit the loca-
tion closest to it and then randomly visit unexplored
locations until a resource that is needed is located;
upon retrieving a resource they communicate to all
other agents that they will deliver this resource but
do not update other agents about locations visited and
resources discovered. The last column in the table in-
dicates whether a decision function is optimal at least
some of the time, i.e. dominates other decision functi-
ons for a specific experimental condition. Decision
functions that are never optimal are always outperfor-
med by another decision function.

Table 2: Topologies used in our simulations.

Equidistant Manhattan

Circle Straight line

4 EXPERIMENTAL SETUP

In our simulation experiments we varied the parame-
ters discussed in Section 3.2. For map size, we varied
the number of locations and used 10, 20 and 40 loca-
tions. We defined 4 different topologies illustrated
in Table 2. Edges that connect locations in Table 2
have a distance of one.2 In the equidistant topology
the distance to every other location is the same. In the
Manhattan topology all locations are placed on a grid
with the drop zone located in a corner of the grid. In
the circle topology all locations are placed in a circle
around the drop zone. Finally, in the straight line to-
pology all locations are placed on a straight line with
the drop zone located at either end of that line.

We varied task size and used sequences with
length 3, 6 or 12 resources. In our simulations we
used 7 resource types. A task sequence of 7 resources
thus could require agents to retrieve resource items
each of a different type in a particular order. The con-
straint that resources need to be delivered to the drop
zone in a particular order complicates the task if mul-
tiple agents work on it in parallel as coordination may
be required to avoid duplication of effort. Resources
needed are randomly distributed over available locati-
ons with a redundancy factor of 1, 2 or 4. If, for ex-
ample, the task requires 2 resource items of type τ and
the redundancy factor is 4, then 8 resource items of
type τ wil be made available on the map. The choice
of resources that need to be collected to complete a
task and the distribution of resources in the environ-

2This may not always result in a feasible geometry in 3d
space using only straight lines; we use these structures to
demonstrate coordination issues related to connectivity and
distance.
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ment, moreover, was randomized for each simulation
run. Finally, we varied team size and performed simu-
lations with 1, 2, 3, 5, 10, 20, 30, 50, and 100 agents
and used all 16 agent decision functions specified in
Section 3.3.

Combined, these variations of parameters define
3 ∗ 4 ∗ 3 ∗ 3 ∗ 9 ∗ 16 = 15,552 conditions. Each type
of simulation condition is repeated a 100 times to
average out variation, thus giving a total of 1,555,200
different simulation runs that were performed.

The parameter settings that we have chosen for
our simulations allow us to evaluate the efficiency of
a range of coordination strategies and tactics in the
smallest possible environments that are still interes-
ting as well as in very complex environments. We
have also included team sizes that are more than twice
as large as the largest number of locations which ensu-
res we will reach a saturation point in which all locati-
ons will be permanently occupied and adding another
agent can at best only have a marginal effect.

4.1 Performance Normalization

The main performance measure of a simulation run is
the number of time steps T it takes to finish a task.
The value T for a specific run depends on environ-
ment and task parameters, tactics, and team size and
therefore these values can differ widely for different
simulation runs. To be able to compare the perfor-
mance for different parameter sets we normalize T by
scaling it to a value between 0 and 1. We do so by me-
ans of the theoretically minimal time needed to com-
plete a task Topt , i.e. the optimal lower bound to com-
plete the task possible, and use the average time Tsingle
to complete a task by a single greedy agent as an up-
per bound. It is reasonable to assume that multiple
agents should be able to outperform a single greedy
agent and would need fewer than Tsingle steps.

We can compute the lower bound Topt analytically
by assuming that the locations of all resources are
known and the agents available perform sub-tasks in
parallel. Of course, without prior knowledge of re-
source locations it is very hard to get close to this
theoretical optimum as it requires each agent to tra-
vel directly to the right locations. We determine the
upper bound Tsingle empirically by running simulati-
ons for each set of environment and task parameters
also for a single agent. We use the greedy agent A (see
Table 1) as our results show that it is most efficient if
we use only a single agent to complete a task.

The normalized performance measure Tnorm then
is computed for each team size consisting of a specific
type of agent as follows:

Tnorm =
T −Topt

TSingle−TOpt
(1)

Note that we must always have Topt < Tsingle for tasks
of length > 1 as multiple agents can perform subtasks
in parallel. The value Tnorm is independent from en-
vironment and task parameters and therefore provides
an indication of the ability of the agents to coordinate
their efforts.

5 RESULTS AND DISCUSSION

We computed the average performance measure Tnorm
and the communication load of agents (i.e., the num-
ber of messages exchanged per agent) for each si-
mulation condition that was run a 100 times. We
thus obtained performance measures for different ty-
pes of budgets (i.e., different investments of number
of agents and communication load). We plotted these
outcomes in a 3D point cloud with coordinates per-
formance, team size, and communication load. For
each configuration of agent type, task size, and en-
vironment type (map size, topology, resource distri-
bution), an optimal performance point can be found
in this cloud for any team size and communication
load coordinate. We averaged the best performance
for each of these coordinates and linearly interpolated
between the data points to obtain the 2D heat map of
Figure 2, assuming that performance never degrades
when more resources are invested. The colours in this
map show the best performance Tnorm that we found
for each type of budget. Blue corresponds with a lo-
wer Tnorm value, i.e. better performance, and red with
a higher Tnorm value. The color of each point in this
map thus indicates the best possible performance for
a given budget of agents and messages.

Figure 2 shows different bands of the same co-
lour, e.g., green for Tnorm = 0.5, where performance
is the same. These iso-performance frontiers or per-
formance levels visualize the trade-off between the in-
vestment of more agents or communication resources
that designers of a multi-robot system can make to
obtain a desired performance. For example, the figure
shows that a performance of .4 can be achieved with
about 20 agents but also with only 7 agents that com-
municate with each other. Interestingly, all of these
frontiers show a more or less sharp edge around 20
messages per agent. This suggests that agents with on
average that kind of communication load are a good
choice to obtain a desired performance level. The
performance gain of investing more agents that com-
municate less is small and increasing the communica-
tion load would still require almost the same number
of robots to achieve a similar or better performance.
Our results thus suggest that providing agents with ba-
sic communication skills can significantly reduce the
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Figure 2: Performance heatmap with optimal agent types.

number of robots that are needed to achieve a specific
performance level.

5.1 Performance and Tactics

Figure 2 also identifies for a given budget which agent
types (see Table 1) are able to perform best and at
what performance level. It is interesting to observe
that for different budgets different agent types per-
form best. In other words, there is no single agent type
that dominates all others and performs bests for arbi-
trary budgets. For example, for budgets with less than
10 agents, agent types A, B, E, and F perform best
but performance is rather low with a normalized per-
formance Tnorm > .6, whereas for budgets with more
than 10 agents types K, M, N, and O perform nearly-
optimal. For small budgets agent type E, a greedy
agent that communicates about target delivery, seems
a particularly attractive choice. For larger budgets M,
a greedy agent with random start and target commu-
nication tactics, is a particularly attractive choice.

If we average over environment and task parame-
ters, moreover, we can conclude that 7 of our 16 agent
types are dominated by some other agent type. Gene-
rally speaking, we find that an initial random distri-
bution of agents becomes more important when team
size becomes larger and that target communication
makes a larger team more effective. Somewhat remar-
kably the updates communication tactic is only useful
for small budgets; this appears to be the case because
the target communication tactic provides sufficient in-
formation for coordinating larger agent teams. Note,
however, that if we do not average over all parameters

Figure 3: Heatmaps for different topologies.

Figure 4: Heatmaps for environment parameters.

other tactics may become relevant again. For exam-
ple, for specific topologies such as e.g. the equidistant
topology and for small budgets the random explora-
tion tactic (agent type G, see Figure 3) can outperform
other tactics.
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5.2 Environment Influence

Figures 3 and 4 show how different environment and
task parameters influence the performance for diffe-
rent budgets. These figures show best performance
for specific values of a parameter while averaging
over all other parameter settings. For example, the
left-upper heatmap in Figure 3 shows the performance
heat map for the equidistant topology.

By comparing heat maps for different redundancy
factors, we can conclude that impact of redundancy
on performance is rather small; there is less need for
communication for higher redundancy factors. The
impact of map size on performance is as one would
expect: larger maps require more agents to achieve
similar performance levels. In contrast, if the task size
is increased, more communication between agents is
needed to achieve similar performance levels.

Finally, we find that the type of topology has a rat-
her large effect on the shape of the performance levels
that are visible in the heat maps (see Figure 3). Most
notably, whereas for most parameters the agent types
that perform best match those of Figure 2, this turns
out to be not the case for different topologies. The
heat map for the Manhattan topology matches best
with the heat map of Figure 2 averaging over all pa-
rameters. But for other topologies the heat maps are
quite different. For example, we find that on a line and
equidistant topology the target communication tactic
can significantly increase efficiency (agent I versus M
and K versus O), but the update communication tactic
only yields significant performance gains on a Man-
hattan topology. We conclude that it is particularly in-
teresting to fine-tune and optimize an agent decision
function for a specific topology.

6 CONCLUSIONS

This paper investigates what the best performance is
that can be achieved with a given budget, i.e. an in-
vestment of a specific number of agents and commu-
nication load per agent. We use a simulation approach
and a discrete event simulator for exploration games
to empirically obtain insights in how performance de-
pends on different tactics used for composing a stra-
tegy for deciding what to do next. Several explora-
tion tactics including greedy and random exploration
tactics and several communication tactics are evalua-
ted. We find that there does not exist one dominant
strategy but that for different budgets different sets of
tactics perform best.

Our results can inform designers of multi-agent
systems for exploration game type applications. First,

our results can inform the choice of budget itself and
can be used to make a trade-off between budgets and
performance. Moreover, we found that certain combi-
nations of tactics are outperformed by other strategies
and thus are best avoided. Finally, we have shown
that for different environment and task parameters dif-
ferent strategies perform best. In particular, we found
that fine-tuning of agent coordination strategies is par-
ticularly useful if agents only have to handle a specific
type of environment topology.

In future work we plan to refine and evaluate the
agent tactics used in this paper and to study particu-
lar mechanisms for optimizing performance in speci-
fic types of environment topologies.
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