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Abstract—The works [20], [21] have demonstrated the power of
combining deep neural networks with Watkins Q learning. They
introduce deep Q networks (DQN) that learn to associate High
dimensional inputs with Q values in order to produce discrete
actions, allowing the system to learn complex strategies and play
Atari games such as Breakout and Space invaders. Although
powerful the system is limited to discrete actions. If we wish to
control more complex systems like robots we need the ability to
output multidimensional continuous actions. In this paper we
investigate how to combine deep neural networks with actor
critic models which have the ability to output multidimensional
continuous actions. We name this class of systems deep actor
critic networks (DACN) following the DQN naming convention.
We derive and experiment with four methods to update the actor.
We then consolidate the actor and critic networks into one unified
network which we name consolidated deep actor critic networks
(C-DACN). We hypothesize that consolidating the actor and critic
networks might lead to faster convergence. We test the system
in two environments named Acrobot (under actuated double
pendulum) and Bounce (continuous action Atari Breakout look
alike).

Index Terms—reinforcement learning, actor critic models,
artificial neural networks, convolution networks, deep learning,
experience replay

I. INTRODUCTION

A wide range of problems can be modeled as Markov
decision processes (MDPs). These systems can be viewed as
a modification of the markov process where the transition
probability from the current state to the next is influenced
by a decision or action that can be selected. A reward is
associated with each state transition and the goal is to learn
the best decision/action for each state called the policy as to
maximize the accumulated rewards. algorithms that learn such
policies are called reinforcement learning (RL) algorithms.
For a detailed introduction to reinforcement learning see [32].
In order to apply RL to problems with a high dimensional
input space, function approximators (FAs) are used. The most
successful of these are based on simple linear FAs and hand
crafted features, the construction of which heavily relies on
experience and domain expertise. Advances in the field of
artificial neural networks (ANN) and deep learning has made it
possible to train large and deep networks which can be used
as FA for RL. For a detailed introduction to deep learning
see [3]. The benefit of these FAs is that they learn features
autonomously eliminating the need for feature engineering and
limit the need for domain knowledge. The deep Q network
(DQN) [20], [21] is the first successful system that combines
RL and ANN and applies this system in order to learn
to play Atari 2600 games with human level performance.
Although impressive the DQN system is limited to discrete
actions only. If we wish to control more complex environments

such in the case of robotics we require the ability to output
multidimensional continuous actions. A class of RL algorithms
called actor critic models (ACM) have been devised that can
deal with multidimensional continuous action spaces. They do
this by parameterizing the policy separately from the value
function. The policy is named the actor and the value function
is called the critic. In this paper we adapt the fundamental
ideas comprising the DQN system to actor critic models. We
derive a new system we call Deep Actor Critic Networks in
line with the DQN naming convention. We derive four methods
for updating the parameters of the actor. We also experiment
with consolidating the NN of the actor and the critic allowing
them to share common features. We hypothesize that this
might lead to faster convergence. Both variants and all four
update methods are then evaluated based on two environments
with continuous action spaces called Bounce and Acrobot.

II. MARKOV DECISION PROCESS

A discrete time Markov process (DT-MP) [12] consists of
a pair (S,P) where S defines the set of all possible states
the agent can be in at time t (st ∈ S). This set can be
finite or infinite in which case we talk about a discrete time
finite state Markov process or a discrete time infinite state
Markov process respectively. The set P is a probabilistic
mapping P : S×S→ [0, 1] which represent the probability of
transitioning from the current state st to st+1. For the DT-MP,
time is defined to start at zero and runs in whole integer
steps (t ∈ N+). The DT-MP obeys the Markov Property
which states that the the next state st+1 only depends on
the previous state st at any time t. An example would be a
DT-MP model of a particle in space being pushed around
by other particles. The agent represents the particle in space
that transitions from it’s current state/position to the next
state/position based on a multinomial Gaussian around it’s
current position.

A discrete time Markov decision process (DT-MDP)
extends the DT-MP with decision theory in order to model
sequential decision problems. It does this by extending the
DT-MP with actions and rewards. The DT-MDP is defined
by the tuple (S,A,R,P). S is the set of all possible states
as we have seen before. A is the set of all actions that the
agent can perform in time step t (at ∈ A). R(st, at, st+1) is
a mapping R : S × A × S → R which represents the reward
the agent gains associated with a transition from state st to
st+1 and action at. P(st, at, st+1) is a probabilistic mapping
P : S × A × S → [0, 1] which represent the probability
of transitioning from state st to st+1 based on the action
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at selected by the agent. Note that the sets in the tuple
(S,A,R,P) defining the DT-MDP is fixed and independent
of time. Because of this fact we say that the DT-MDP is
stationary. An example of a MDP is Grid World. Grid world
consists of an agent that lives in a finite state space in the form
of a finite grid. The agent can move from it’s current state/cell
to one of the adjacent states/cells in each time step. The
agent gains positive or negative reward by moving to specific
squares on the grid. In decision theory we are interested
in making one or more decisions as to maximize expected
utility, reward or negative Loss. In the case of DT-MDP we
wish to maximize the expected discounted cumulative reward
under the deterministic policy π which maps states to actions
(π : S → A). The difference between DT-MDP and standard
decision theory lies in the fact that we use a policy which
uses state information and is capable of recovering from
bad decisions. Using standard decision theory we can only
make decisions ahead of time which is called planning. The
decisions will be independent of the current state and hence
cannot recover from bad decisions. The expected cumulative
discounted reward (ECDR) is defined as:

Vπ(s) = EP[

T∑
k=0

γkrt+k+1|s = st, π]

Here rt is the reward received at time t. The discount factor
γ is bounded (0 ≤ γ < 1) and bounds the ECDR to the set of
real numbers in the infinite horizon case T → ∞ given that
the reward signal is bounded:

min(R)

1− γ
≤ Vπ(st) ≤

max(R)

1− γ

The discount factor can also be thought of as a parameter that
specifies the importance between long and short term rewards.

If we cannot completely observe the state but instead
can only observe a part of the state the MDP model no longer
suffices. In this case the environment should be modeled as
a partially observable Markov decision process (POMDP).
If adversarial agents are present a MDP is also no longer
sufficient as the policy of the adversary is not necessarily
fixed. In such a case a stochastic game (SG) [27] can be used
to model the environment. In this work we limit our selfs to a
MDP environment. Note that learning a deterministic policy is
sufficient to solve a MDP. A deterministic policy is however
insufficient to solve SG’s and can improve performance on
POMDP’s [30].

III. REINFORCEMENT LEARNING

A. Bellman equation

The Bellman equation allows us to solve the MDP by
means of dynamic programming (DP). It defines the value
function V in the current state as the ECDR under the current
deterministic policy π:

Vπ(s) = EP[

∞∑
k=0

γkrt+k+1|s = st, π]

= EP[rt+1 + γ ·
∞∑
k=0

γkrt+k+2|π]

=
∑
s′∈S

P(s, π(s), s′)[R(s, π(s), s′) +

γ · EP[

∞∑
k=0

γk · rt+k+2|π]]

=
∑
s′∈S

P(s, π(s), s′)[R(s, π(s), s′) + γ ·Vπ(s′)]

The Bellman equation shows the value function under the
current policy can be decomposed in terms of itself. This
makes solving for V under the current policy π amenable to
DP. In order to find the optimal policy π∗, we look for the
policy that maximizes the value function:

V∗(s) = max
π

Vπ(s)

= max
π(s)

∑
s′∈S

P(s, π(s), s′)[R(s, π(s), s′) + γV∗(s′)]

This last equation is called the Bellman optimality equation.
Given that we computed V∗ the optimal policy is now equal
to selecting the action with the highest value:

π∗(s) = argmax
a

∑
s′∈S

P(s, a, s′)[R(s, a, s′) + γV∗(s′)]

These equations were as the name implies first derived by
Richard Bellman in 1957 [2].

B. Value iteration

Its clear we require the optimal value function in order to
find the optimal policy. Although the value function can be
solved for exactly using DP, it can also be approximated using
value iteration (VI). VI works by using a look up table V̂ with
a value for each state often initialized to zero. We iterate over
each state and compute the next value of V̂ based on the
Bellman optimality equation. The new values of V̂ now lay
closer to the optimal value V∗:

V̂(s)← max
a

∑
s′∈S

P(s, a, s′)[R(s, a, s′) + γV̂(s′)]

The policy is selected based on our estimate V̂ :

π̂(s) = argmax
a

∑
s′∈S

P(s, a, s′)[R(s, a, s′) + γV̂(s′)]
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C. Q iteration

Note that in order to execute the current policy π we
are required to compute the action that leads to the highest
expected value by looking on step forward using the DT-MDP.
We can eliminate this computational overhead, trading it for
a higher memory requirement, by defining a value function
dependent both on the current state and action. This value
function is known as the Q value (Q : S×A→ R). First we
remove the maximum action argument using the Q function:

Q∗(s, a) =
∑
s′∈S

P(s, a, s′)[R(s, a, s′) + γV∗(s′)]

Notice that V∗(s′) = maxa′ Q
∗(s′, a′) hence we can replace

the optimal value function and get an expression solely in
terms of Q:

Q∗(s, a) =
∑
s′∈S

P(s, a, s′)[R(s, a, s′) + γmax
a′

Q∗(s′, a′)]

The equivalent to value iteration for Q learning is called Q
iteration (QI ):

Q̂(s, a)←
∑
s′∈S

P(s, a, s′)[R(s, a, s′) + γmax
a′

Q̂(s′, a′)]

Finding the optimal policy in the current state s now comes
down to a lookup which does not require explicit knowledge
of the model:

π̂(s) = argmax
a

Q̂(s, a)

Q iteration was introduced by Watkins in 1989 [37] together
with Q learning which we introduce in the next subsection.
A clear limitation of QI is the action selection by the policy.
The policy operates by finding the action with the maximum
Q value. For finite size action sets of small size finding the
action with the maximum Q value is not a problem. However
for large to infinite sized action sets finding the action with a
maximum Q value becomes intractable.

D. Temporal difference learning

QI requires knowledge of all the possible states S, the
transition function P and reward function R in order to find a
good estimate of Q∗. The standard QI algorithm is thus model
dependent. temporal difference learning (TDL) allows us to
perform QI without explicit knowledge of S, P, R by means
of sampling experience tuples (s, a, r, s′). By exploring the
unknown DT-MDP by means of following the current policy
or some behavioral distribution β the agent receives for each
time step a experience tuple. This tuple consists of s ∈ S,
a ∈ A, r ∈ R, s′ ∈ S and provides enough information to
perform a temporal difference update. The temporal difference
update is based on the temporal difference error δ. The error
is based on the difference between the old value and the newly
computed value. temporal difference learning can be used to
learn the Q function as followed:

δ = r + γmax
a′

Q̂(s′, a′)− Q̂(s, a)

Q̂(s, a) ← Q̂(s, a) + αδ

Where α is called the learning rate (0 < α < 1) and is used
to keep a running average in order to take into account the
transition probability P . In order to converge to the correct Q
value, the learning rate α should decay as t → ∞. Note that
the sum over states falls away because experience tuples are
automatically sampled according to the transition probability
distribution P. The policy remains the same as before:

π̂(s) = argmax
a

Q̂(s, a)

This method is called Q learning (QL). Q learning is said
to be model free, on-line and off-policy. It is model free as
it does not requires a explicit model of the DT-MDP and
on-line because it only utilizes the latest required experience
tuple to update it’s Q values, after which the experience tuple
is discarded. QL is off-policy because it can act according
to a behavioral distribution β and is not constrained to act
based on it’s policy π. Choosing between acting according
to some behavioral distribution or the current policy is called
exploration and exploitation respectively. The choice of acting
according to the behavioral distribution or current policy
determines the quality of the samples leading to a better policy
estimate and the total accumulated reward gathered in one
episode of play. The choice when to select between exploration
and exploitation is called the exploration exploitation trade-
off. Different methods of choosing between exploration and
exploitation have been developed with different properties.

E. Temporal difference learning using function approximation

TDL makes use of lookup tables to capture the Q values.
This method of computing Q values becomes unpractical as
the number of possible states grows very large. In fact it
becomes impossible to use when the state space is continuous
and hence the set of possible states S is infinite. In these cases
we can represent the Q values using a function approximator
(FA). A FA makes use of a parameter vector w to shape the
approximator. The goal is to shape the FA in order to match
the true underlying Q values as good as possible. The error
between the estimate of the FA and the experience tuple is
called the temporal difference error:

δ = r + γ ·max
a′

Q̂w(s
′, a′)− Q̂w(s, a)

Gradient descent can be used to train the FA. This is done by
performing gradient descent on some loss function based on
the temporal difference error δ, for example the mean squared
error loss function:

L =
1

2
δ2

Applying gradient descent we get the following update rule
for the FA parameter vector w:
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w ← w + αw · δ ·
∂L

∂w
Q̂w(s, a)

FAs applied to TDL suffer from the following problems:
1) Catastrophic Forgetting: Many FAs trained on one func-

tion, then trained on a second function tend to forget
the first function. The same holds when trained on
parts of one function in sequential order. This becomes
problematic in the context of on-line TDL using a FA,
because the FA is trained in the same order as experience
tuples are observed. Due to the ordering the FA tends
to forget it’s previously learned Q values. Catastrophic
Forgetting is predominantly problematic in ANN as
modifying the parameters in one layer may effect the
layer above [28].

2) Oscillations: Updating Q values may corrupt other Q
values. Correcting these Q values may corrupt the Q
values we updated in the first place. This interplay
between updating and corrupting can cause oscillations
in the Q values stopping the learning process.

3) Divergence: The parameters of FAs trained on the
temporal difference error using gradient descent are
susceptible to divergence. The problem is best illustrated
by the star network introduced in the work [1]. Figure 1
shows the star network, which consists of 6 states with
a reward function that is always zero. The FA is linear
in parameters w0 to w6 and should learn to set all it’s
parameters to 0. Each state is approximated by a linear
combination of two parameters. During training each
transition is observed equally often. All the values of the
parameters are initialized positive. Parameter w6 initial
value is much larger than the other parameter initial
values. When the system is trained w0 will be updated
and increased 5 times while w6 is updated only once,
causing all the parameters to diverge to positive infinity
while parameter w6 will diverge to negative infinity.

v(1)=
w0+2w1

v(2)=
w0+2w2

v(3)=
w0+2w3

v(4)=
w0+2w4

v(5)=
w0+2w5

v(6)=
w0+2w6

Figure 1: The Star problem

The problem of catastrophic Forgetting in RL was addressed
by Lin in 93 [17] who introduced the concept of experience
replay which can be seen as a version of Sweep Rehearsal
[22] applied to RL. The idea behind experience replay
is to build a database of experience tuples called replay
memory. Batches of experience tuples are sampled randomly
from replay memory in order to brake correlations between
experience tuples. These batches are used to train the FA,

the act of which is called experience replay. This way old
experiences are no longer forgotten by the FA as they are
replayed.

The second and third problem of oscillation and divergence
was solved by Gordon in 95,99 [10], [11]. His technique
called fitted value iteration (FVI), which separates value
iteration from the act of function approximation. Instead of
interleaving value iteration and function approximation one
after another, he proposed to first do a step of value iteration
to compute the target values and then do multiple steps of
function approximation to fit the FA to the target values. The
stopping criteria can then be a error threshold or a maximum
number of iterations. The same method can also be used for
Q learning, called fitted Q iteration (FQI) [7].

IV. DEEP LEARNING

Many standard FAs make use of a combination of a lin-
ear mapping with parameter matrix W , input vector x and
a element wise non-linear function φ in order to produce
approximated values (ŷ : RN → RM ) which maps an N
dimensional input space to a M dimensional output space:

ŷ(x) = φ(WTx)

Note that if we want to use a bias terms we add another row of
parameters to W and append the constant 1 to the the end of
the input vector x. In case we are interested in approximation
of multiple inputs simultaneously the input x and the output
ŷ become matrices:

Ŷ = φ(WTX)

The parameters of this general form of FAs are often adjusted
using Gradient Descent based on a chosen Loss function L in
order to better approximate a given data set D of input output
pairs:

D = {(x(1),y(1)), (x(2),y(2)), ..., (x(n),y(n))}

Gradient Descent is performed by computing the gradient
of the parameters W with respect too the Loss function L.
After which the parameters are updated by adding the negative
gradient weighted by a constant learning rate α too the current
parameters:

Wi ←Wi − α
∂L

∂Wi

Examples of such systems are linear regression, were the
activation function is the identity function and the loss function
equal to the mean squared error. Another example is logistic
regression where the activation is equal to the logistic function
and the loss function equal to the log likelihood. The more
popular FA called the support vector machine/regression is
also an example of this general form.
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A. Artificial Neural Networks

One way of interpreting artificial neural networks (ANN)
is to look at ANN as an extension of the general form by
stacking these individual FAs on top of each other were the
output of the previous layer forms the input for the next layer.
The equation for the l’th layer is defined as:

ŷl(ŷl−1) = φ(WT
l ŷl−1)

ŷ0 = x

Such a layer is also referred to as a fully connected layer
for reasons that will clear in a later section. The ANN is
thus defined as a stack of arbitrary many general FAs with
an arbitrary number of outputs per layer. The output off the
complete ANN is computed by passing the input through
the layers to the top layer, the process of which is called
forward propagation. Again we can chose an arbitrary loss
function and use gradient descent for optimization. In order
to utilize gradient descent we must compute the gradient
with respect to the parameters of each layer. This is less
trivial then before as the parameters of one layer are now
dependent on the layers above. The algorithm for computing
the gradient of the parameters with respect to the loss is
called the backpropagation algorithm the invention of which
often credited to Werbos in 74 [39] and comes down to
applying the chain rule for each layer.

In order to compute the derivative of the parameters
with respect tot the loss we start by realizing that the loss of
a arbitrary layer l is dependent on the actual loss function
and the layers above L(ŷl). If we take this loss function for
the layers above as given we can compute the gradient of the
parameters with respect to this loss function as followed:

∂L

∂Wl,i,j
=

∂L

∂ŷl,i
· ∂ŷl,i
∂Wl,i,j

=
∂L

∂ŷl,i
· φ′(wTl,iŷl−1) ·

∂wTl,iŷl−1

∂Wl,i,j

=
∂L

∂ŷl,i
· φ′(wTl,iŷl−1) · ŷl−1,j

Note that wTl,i denotes the i’th transposed column of the matrix
Wl. We see that in order to compute the gradient of the
parameters we require the derivative of loss function with
respect to the layers above ( ∂L∂ŷl

). If we compute the derivative
of the loss function from the point of view of the layer above
l + 1, we see that we can express the derivative of the loss
function ( ∂L∂ŷl

) in terms of the derivative of derivative of the
loss function of the layer above ( ∂L

∂ŷl+1
):

∂L

∂ŷl
=

∂L

∂ŷl+1
· ∂ŷl+1

∂ŷl

=
∂L

∂ŷl+1
·Diag[φ′(WT

l+1ŷl)] ·
∂WT

l+1ŷl

∂ŷl

=
∂L

∂ŷl+1
·Diag[φ′(WT

l+1ŷl)] ·WT
l+1

This forms the core of the backpropagation algorithm as
we can start at the top layer, compute the derivative of
the loss function and then propagate this derivative down
to compute the local loss for each layer based on the
known derivative of the loss in the layer above. The local
loss is then used to compute gradients with respect to
the parameters. The schematic in Figure 2 exemplifies the
process for a 3 layer ANN. ANNs form a complete end to

Figure 2: Example of forward and backpropagation in a 3
layer neural network used for computing the output ŷ3 and
the derivative of the parameters with respect to loss.

end differentiable learning system. Theoretically they can
solve any approximation problem as shown by the universal
approximation theorem [5]. In practice however ANNs
performed suboptimal compared to other methods such as
support vector machine/regression (SVM/SVR) by Vapnik
[4]. Using hand engineered features and or using kernels,
the SVM/SVR allowed for superior performance over ANNs
on many tasks. Around 2009 ANNs made a comeback with
superior performance on several benchmark datasets.

This resurgence is mainly due to three important aspects that
kept ANN performance down initially:

1) Computational Power: In order to gain good perfor-
mance on interesting datasets large ANN with multiple
layers are required. In the early days of ANN devel-
opment the computational power to construct and learn
such ANN was not available. Due to the exponential
increase in computing power and the introduction of
GPU computing it became possible to train the large
ANN required for good performance.

2) Dataset Size: It turns out that the size of the dataset
used to tune the ANN is important. In the classic case
were we combine feature engineering and the SVM/SVR
humans utilize their knowledge of the world to extract
suitable features for the SVM which leads to good
performance. The ANN has no such knowledge of the
world and therefore requires larger amounts of training
examples to learn the same features.

3) Gradient Saturation: It was discovered that the activa-
tion function used at each layer of the ANN can hamper
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learning performance. This was most predominantly
noticeable with the two most widely used activation
functions, the sigmoid and TANH activation functions.
In the backpropagation process we compute the new
derivative of the loss function for the layer below the
current layer by multiplying with the derivative of the
activation function φ′(WT

l+1ŷl). If this derivative is very
small in each layer the derivative of the loss function for
each layer will also become small and cause extremely
slow learning rates or cause the gradient to die out
completely. Small gradients can also cause numerical
instability. Several methods have been developed to
counteract this problem. Examples of such methods are
ReLU [23] which due to there linearity do not suffer
from gradient saturation, proper parameter initialization
[31] which avoids regions where the gradient saturates
and Batch Normalization [14] which adds another learn-
able parameter which is used to escape from saturated
gradients.

Deep learning is a branch of machine learning which came into
being together with the resurgence of ANNs. Deep learning
refers to the concept of learning hierarchies of structure or
computation. The aspect of ANNs referred to as deep learning
are the layers of general FAs. The idea is that features in a
layer will be based on features in lower layers leading to a
system that is combinatorial in nature.

B. Convolution neural networks

Convolution neural networks were inspired by the work
of Hubel and Wiesel [13] on the cats visual cortex. They
showed neurons in the visual cortex that fired based on simple
patterns like edges in subregions of the visual field. Neurons
that detect the same pattern tiled over the visual field were
found. Different neural network models which replicated
this behavior were invented the first often accredited too
Fukushima in 1980 [9] and the more well known version
[16]. With convolution artificial neural network (CANN) we
indicate a ANN which makes use of one or more convolution
layers (CL). The idea behind a CL is based on the observation
that if we train a ANN for example on image data, we find
by means of inspection that each layer specializes in the
detection of certain patterns or structures the kinds of which
depends on the topology of the ANN. So each element in
the co-domain of each layer outputs a value that indicates if
a certain feature, structure or pattern is present in the layer
below. The features learned display two kinds of properties,
the first of which is called locality. Locality refers to the idea
that these features are triggered by patterns in the input that
are near each other. For example, if the input is a image and
we inspect the co-domain of the first layer of the ANN a value
in the co-domain might be triggered that detects a diagonal
edge feature in the upper right corner. The feature ignores
all other information in the image and only looks at the
upper right corner of the image setting all other parameters
associated with the rest of the image to zero (Figure 3).

The second aspect is parameter duplication, which refers to

Figure 3: The figure shows a hypothetical case where the
parameters of two element from the first layer learned to
detect approximately the same diagonal edge in two different
locations of the input image.

the same features being learned in different locations of the
input and hence have the same parameters. For example if
we go back to the example which detects a diagonal edge in
the upper right corner we might find another feature detector
which also detects a diagonal edge but in the lower right
corner of the input image (Figure 3).

Convolution artificial neural networks exploits these
redundancies by learning local position invariant features by
means of convolution. It works by specifying the size of the
feature window which is convolved over the input with a
specified stride. Each window has it’s own parameters and
outputs the result of the convolution with the input for the
next layer to process. One can liken the process too applying
the general FA for a smaller input many times over the input
in different locations to produce the new output. Because the
input to the CL can have different structures for example a
2d input structure in the case of image data or a 3d structure
in the case of voxel data the convolution layer is defined
in terms of tensors. However for simplicity and clarity we
derive the equations over a one dimensional input using one
filter which reduces to discrete 1D convolution:

ŷl(ŷl−1) = φ(wl ∗ ŷl−1)
ŷ0 = x

Because a CL uses convolution, the number of window param-
eters wl can be set very small leading to a radically reduced
number of parameters compared to the original fully connected
layer. This leads to a significant increase in learning speed
and allows us to construct much larger networks. Training
a convolution layer like a fully connected layer requires
computation of the gradient of the loss function with respect
to the parameters, which is done in the following manner:
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∂L

∂wl,i
=

∂L

∂ŷl
· ∂ŷl
∂wl,i

=
∂L

∂ŷl
·Diag[φ′(wl ∗ ŷl−1)] ·

∂wl ∗ ŷl−1
∂wl,i

=
∂L

∂ŷl,i
·Diag[φ′(wl ∗ ŷl−1)] ·

 ŷl−1,N−i+1

...
ŷl−1,M−i+1


In order to compute the gradient of the parameters with respect
to the loss we again need to compute the derivative of the loss
with respect to the layers above the current layer ∂L

∂ŷl
:

∂L

∂ŷl
=

∂L

∂ŷl+1
· ∂ŷl+1

∂ŷl

=
∂L

∂ŷl+1
·Diag[φ′(wl+1 ∗ ŷl)] ·

∂wl+1 ∗ ŷl
∂ŷl

=
∂L

∂ŷl+1
·Diag[φ′(wl+1 ∗ ŷl)] ·

 flip[wT
l+1]

...
flip[wT

l+1]


Apart from multi-dimensional convolution and multiple output
filters we can also use a stride larger then 1 for convolution.
A stride larger then 1 allows for a faster computation time at
the cost of accuracy. In our example we have use convolution
without padding, which leads to a accuracy loss around the
edges.

V. DEEP Q NETWORKS

Many have worked on combining ANN and RL algorithms.
A very successful system was created by Tesauro in 95 called
TD-GAMMON [34] which combined VI, TD learning and
ANNs to learn to play backgammon and achieved top human
level play. In 93 Lin combined WQL with robotics and
introduced the concept of experience replay [17]. Although
impressive the lack of computational resources meant that the
system could only deal with low complexity environments.
FQI was combined with ANNs in a system called neural
fitted Q iteration (NFQI) [25] which allowed for more
accurate approximations of Q values. All these systems were
successful combining ANN and RL on a small scale. A
truly impressive result on a large scale was achieved by
DeepMind in 2014[20], [21] who utilized GPU’s and new
developments in ANN such as ReLU to create a system
that learns to play Atari 2600 games often with human
level performance by capturing the last four frames of the
screen as the current state/input. They combined Q learning,
experience replay, a modified version of FQI and CANN
to build a powerful system called deep Q networks (DQN).
DQNs use a modified version of FQI where instead of using
a separate preconstructed target value set two neural networks
are used. The first neural network Q̂ with parameters θ−

produces the target values while the second neural network
Q̂ with parameters θ is trained on these target values. After a
fixed number of iterations C the parameters θ− are replaced
with the updated parameters θ. Ignoring specifics such as

pre-processing and initialization and using gradient descent
for illustrative purposes we get algorithm 1.

Algorithm 1 DQN
For t = 1 to ∞ do:

1) With probability ε select a random action at.
Otherwise select at = argmaxa Q̂(st, a|θ)

2) Execute action at and observe reward rt and state st+1.
3) Store experience tuple (st, at, rt, st+1) in D.
4) Sample a random experience tuple from replay memory

(s, a, r, s′) ∼ D.
5) Compute δ = r + γ ·maxa Q̂(s′, a|θ−)− Q̂(s, a|θ).
6) Update parameters:

θ ← θ + α ·
∂ 1

2 ||δ||
2
2

∂θ

7) Every C steps transfer parameters θ− ← θ.

DQNs makes use of a deep CANN the architecture of
which van be seen in Figure 4. Because the replay memory
is not fixed but instead grows dynamically standard gradient
descent wont work properly as the required learning rate
depends on the size and variability of the target values.
The NFQI algorithm dealt with this by utilizing the RPROP
algorithm by Riedmiller [26] which is far more robust to
dynamically changing training sets. The DQN algorithm
uses a batch variant of this algorithm called the RMSPROP
algorithm invented by Tieleman but never officially published
[35]. An interesting aspect of the DQN system is that we can

4×84×84 32×20×20 64×9×9 64×7×7 512

8×8@4×4 4×4@2×2 3×3@1×1

|A|

s

Q(s,a)

Figure 4: The DQN architecture is composed of three con-
volution layers and two fully connected layer. All layers
use the ReLU activation function except for the last layer
which uses the identity activation function. The input consists
of 4 temporal sequential 84 × 84 black and white images
of the game and the output layer generates the Q values
associated with each possible action. The bottom shows the
output dimensions of the layer and the top shows the window
and stride used in the convolution.

utilize ANN architectures developed for different domains
such as Object Detection and speech recognition and with a
few modifications incorporate them directly into the DQN
system. This then allows one to design agent that operate in
different domains dealing with with different types of inputs
received from the environment.
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VI. ACTOR CRITIC MODELS

The DQN system showed immense success at learning
to play Atari 2600 games. However the system is based on
WQL and thus can only deal with discrete actions. If we wish
to control continuous action systems like robots we cannot
use the DQN system. The bottleneck of WQL in combination
with continuous actions is the need to select the maximum
action for our policy. In a limited sized discrete action set
this operation is fast but with continuous actions finding the
maximum action is intractable.

Actor critic models (ACM) [8] are a class of RL models that
separate the policy from the value approximation process by
parameterizing the policy separately. The parameterization of
the value function is called the critic and the parameterization
of the policy is called the actor. The actor is updated based
on the critic which can be done in different ways, while
the critic is update based on the current policy provided by
the actor. This creates coupling between the two systems.
The standard ACM uses a parameterized stochastic policy
π : S × A → [0, 1] for the actor which is learned by using
the temporal difference error provided by the critic. The
temporal difference error is used to make the executed action
for the current state more or less probable in the positive and
negative case respectively. An example of this would be using
the standard value function and a stochastic policy based on
the Gibbs softmax method. The temporal difference error is
defined as:

δ = rt + γV(st+1)−V(st)

The policy uses the Gibbs softmax parametrization defined as:

π(s, a) = Pr[at = a|s = st] =
eκ(s,a)∑
a′ e

κ(s,a′)

Updating the stochastic policy is based on the temporal
difference error:

κ(st, at)← κ(st, at) + α · δ

The next action is drawn according to the stochastic policy:

π(st) ∼ π(st, ·)

Although successful in combination with different FAs it is
impractical to combine the standard ACM with ANNs. The
reason for this is the stochastic policy. The Bellman equation
using a stochastic policy and a continuous action space is equal
to:

Vπ(s) =

ˆ
a∈A

π(s, a)
∑
s′∈S

P(s, a, s′)[R(s, a, s′) + γ ·Vπ(s′)]

We see that we need not only sum over all possible states
but we also need to integrate over all possible actions. This
means that in order to use TD learning the experience tuple
(st, at, rt, st+1) must be drawn according to the current
policy. This in turn means that the method has to be on-line
and on-policy in order to work. This prohibits us from using

experience replay in it’s current form.

The work by Degris & Sutton [6] introduce a off-policy
ACM which uses a fixed behavioral distribution β for
exploration in combination with importance sampling1 (IS).
When exploration is performed actions are drawn from
the behavioral distribution and IS is used to transform
these samples into samples drawn from the current policy
distribution. We can use this system to implement experience
replay by saving the parameters of the actor (κ) within the
experience tuple (st, at, rt, st+1,κ) it is then possible to use
IS to transform the sample from the old policy into a sample
drawn from the current policy. Although possible there are
significant problems associated with this approach:

1) We need to save the parameters of the actor κ inside the
experience tuple. If we make use of ANNs with a large
number of parameters this becomes impractical.

2) IS can introduce bias resulting in poor estimates of the
current policy derailing the learning process.

3) It makes learning from a physical teacher impossible as
the teachers behavioral distribution β cannot be known.

Nonetheless systems have been constructed based on this
principle, utilizing small ANNs [38], [19].

VII. DEEP ACTOR CRITIC NETWORK

Due to the complexities associated with stochastic policies
we make use of a deterministic policy. This means we give
up the possibility to produce a mixed optimal strategy when
dealing with adversarial agents as described in section 2. This
does however opens up the possibility to use the off-policy
temporal difference error as described before together with
experience replay and FQI to update the Q values. A added
benefit of this method is the fact we can use an external teacher
to train the system. Apart from fixing the Q values we now
also fix the policy produced by the actor:

δC = r + γ · Q̂(s′,π(s|κ−)|θ−)− Q̂(s,a|θ) (1)

Both the critic and the actor are parameterized using a neural
network. We can use a modified version of the DQN ar-
chitecture (Figure 4) for both the actor and critic networks.
This will however introduce a redundancy as there will be a
large overlap between the features learned in the convolution
layers of both the actor and the critic networks. In order
to save computation power and potentially improve learning
speed we consolidate the convolution layers of the actor and
critic networks leading to the architecture in Figure 5. This
allows the critic and actor to share learned features from
the convolution layers. Although consolidation of the actor
and critic networks might seem straight forward it introduces
another form of coupling between the actor and and critic
which might interfere with update process. Apart from up-
dating the critic Q values we also need to update the actor
policy. We identify one method to update the actor based on
the critics gradient and two new methods based on sampling

1Importance sampling is a technique used to generate samples from a
distribution A using samples drawn from a distribution B.
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4×84×84 64×20×20 64×9×9 64×7×7 256

8×8@4×4 4×4@2×2 3×3@1×1

Q(s,a)

π(s)

a

256 128
N

N

s

128
1

Figure 5: The DACN architecture is composed similarly to
the DQN architecture (Figure 4). The main difference lays
in the last layers were we split into two separate networks
representing the actor and critic respectively. We also use leaky
ReLU [18] instead of the standard ReLU in order to combat
dead units. The parameters of the convolution layers are thus
shared between the actor and the critic. Note that N indicates
the action dimensionality.

and the temporal difference. We also invent a new hybrid
method which combines the sample and gradient based update
methods. These actor update methods are described in the
next sub sections. Combining everything together we derive
algorithm 2. Note that the algorithm uses a single experience
tuple to update the network and gradient descent for illustrative
purposes. In our implementation we use batch updates as well
as ADAM [15] as our optimization technique.

Algorithm 2 (C)-DACN-(S,TD,G,H)
For t = 0 to ∞ do:

1) With probability ε select random action at.
Otherwise select at = π(st|κ).

2) Execute action at and observe reward rt and state st+1.
Store experience tuple (st,at, rt, st+1) in D.

3) Sample a random experience tuple (s,a, r, s′) ∼ D.
4) Compute δC according to eq. (1).
5) Compute δA according to eq. (2, 3, 4 or 5).
6) Update the actor:

κ← κ+ β ·
∂ 1

2 ||δA||
2
2

∂κ

7) Update the critic:

θ ← θ + α ·
∂ 1

2 ||δC ||
2
2

∂θ

8) Every C steps transfer actor critic parameters
(θ− ← θ , κ− ← κ).

A. Actor Updating, Sample - S

The simplest method uses samples from the experience
replay directly by comparing the value of the sampled action
Q̂(s,a) and the value produced by the policy Q̂(s,π(s)). If
the Q value associated to the sampled action is strictly larger

Q̂(s,a) > Q̂(s,π(s)) we update the parameters towards this
action. We update according to the slope of the secant between
the sample action and policy action in terms of the Q̂ values:

δA = 1
Q̂(s,a)>Q̂(s,π(s))

· Q̂(s,a)− Q̂(s,π(s))

a− π(s)
(2)

Note that the devision is element wise with respect to the
denominator. Using the slope of the secant rather then the
difference between actions allows us to break the symmetry
in cases where the current policy is caught between two peaks
of equal breadth but different height. We expect the rate at
which the policy is learned to diminish over time as the
policy approaches the optimal policy due to the number of
samples drawn from replay memory with a strictly larger Q̂
value becomes less probable. The effectiveness of this update
method is highly dependent on the exploration strategy used.

B. Actor updating, temporal difference - TD

Going one step further we can use the temporal difference
to update the actor by moving towards or away from actions
associated with positive or negative reward respectively ac-
cording to the magnitude of the temporal difference:

δA = δC ·
a− π(s)
||a− π(s)||2

Work by [36] however suggests that better performance can
be obtained only updating when δC > 0. We found this could
be relevant even though they use a stochastic policy.

δA = 1
δC>0

· δC ·
a− π(s)
||a− π(s)||2

(3)

They also suggest using the sign of the temporal difference to
update the actor, i.e. neglecting the magnitude of the temporal
difference. This was done in order to make the learning
parameter of the actor invariant to the variation of the reward
function adding stability to the learning process. This in our
case is not needed as the use of the ADAM optimization
algorithm [15] already makes the learning parameter of the
actor invariant to variation of the reward function.

C. Actor updating, gradient - G

The last way of updating the actor is by directly applying
gradient ascent on the Q̂ function. The gradient of Q̂ can be
calculated by using the backpropagation mechanism. This is
done by backpropagating the constant 1 through the network
down to the input actions. The actor is updated as followed:

δA =
∂Q̂(s,a)

∂a

∣∣∣∣
a=π(s)

(4)

This method is called action dependent heuristic dynamic
programming (ADHDP) and was developed by Prokhorov &
Wunsch in 1997 [24]. As one can imagine it could be possible
that this method becomes stuck in a local optima, converging
to a suboptimal policy. Although possible one can also imagine
cases where due to the strong coupling between actor and
critic, in the case where the actor gets stuck in a local optima,
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a "in between" policy is learned which causes the critic values
to change and the actor to escape the local optima. There
might also exist multiple optimal policies as well as many near
optimal policies which would make this method practical.

D. Actor updating, sample/gradient hybrid - H

In a effort to improve upon the above primary update
methods we add one extra update method that combines both
the sample based and the gradient based update methods into
one hybrid method. In this hybrid method we use the sample
based method in case the Q value of the sample is larger then
the Q value of the policy and otherwise we use the gradient
to update method. The rational behind this approach is that
the sample based method might be less susceptible to get
stuck in a local optimum, but has a hard time converging to
the exact optimum. Hence we use sample based updating to
move towards a global optimum and gradient based updating
to converge locally. Of course there is still no guaranty we
reach the optimum policy. Combining both method results in
the following hybrid update method:

δA =


Q̂(s,a)−Q̂(s,π(s))

a−π(s) Q̂(s,a) > Q̂(s,π(s))

∂Q̂(s,a)
∂a

∣∣∣∣
a=π(s)

Q̂(s,a) ≤ Q̂(s,π(s))
(5)

What makes this method interesting is that the sample update
is a crude approximation of the derivative and hence of the
same order of magnitude as the derivative which leads to a
smooth integration of both methods.

E. Deterministic Policy Gradient Theorem

David Silver in the paper [29] derives a deterministic policy
version of the gradient theorem for actor critic models. This
theorem shows that the deterministic policy gradient is a
limiting case of the stochastic policy gradient as the variance of
the stochastic gradient goes to zero. If we fix the parameters
of all layers except for the top layer and use the gradient
based actor update eq. 4 the deterministic policy gradient
theorem holds for our system and the system will convergence.
Although we don’t fix the parameters of the lower layers, this
is a interesting fact to note.

VIII. EXPERIMENTS

In order to compare the three update methods we ran exper-
iments using two environments (Figure 6). The first environ-
ment is called Bounce and is inspired by the classic Atari game
Breakout. The goal is too Bounce the ball using the paddle in
such a way that it stays inside the environment while hitting
the correct blocks and avoiding other blocks. The Bounce
environment models a continuous action environment with
delayed rewards. The second environment is called Acrobot
which is a classic problem in control. The environment models
a double pendulum with a actuator attached between the two
arms (middle vertex). The goal is to find the policy which
let’s the double pendulum balance upright with both arms. The
Acrobot environment models a continuous action environment

(a) Acrobot (b) Bounce

Figure 6: Acrobot and Bounce testing environments.

with direct reward feedback. We test a consolidated and non-
consolidated version of the network for each of the four
algorithms described in the previous section surmounting to
8 versions in total. We use a discount factor of γ = 0.9 for
the Acrobot environment and a discount factor of γ = 0.96
for the Bounce environment. The learning rates were set to
α, β = 0.000025 for both the actor and the critic. We use a
batch size of b = 32 and swap the parameters of the network
every C = 512 cycles. We linearly decay the exploration rate ε
from 1.0 to 0.0 over 100000 iterations. In between every 2000
iterations we run 2000 evaluation steps without exploration
and learning in order to evaluate the current policy. The policy
is evaluated by recording the average rewards and Q values.
For the ADAM optimization method we set both decay rates
to 0.95 and the correction term to 10−11.

A. Acrobot
The Acrobot environment [33] represents an acrobat which

can swing by applying torque between its torso and legs
(Figure 6a). The goal of the Acrobot is to balance upright.
The state of the Acrobot is specified by the angle between the
base and the first arm (θ1), the angle between the first and the
second arm (θ2) and there angular velocities θ̇1 θ̇2. A torque
τ can be applied by a controller on the joint between the two
arms. The reward function is computed as:

r =
1

10
· 1
2
· (y1
l1

+
y2 − y1
l2

)

Where l1 and l2 denote the length of arm 1 and arm 2
respectively. Wee see that the reward is defined by the dot
product between the direction of each arm with the up vector.
This surmounts to a reward of 0.1 when the double pendulum
is still and upright and −0.1 when the double pendulum is
hanging down. The action space lays between a ∈ [−1.0, 1.0]
and corresponds to a torque between τ ∈ [−5.0, 5.0]. The
angular velocity is limited between θ̇1, θ̇2 ∈ [−5.0, 5.0]. The
experimental results for the Acrobot environment can be seen
in Figures 7, 8.

B. Bounce
The goal of the Bounce environment is to Bounce the ball in

such away it does not leave the environment and only hits the
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Figure 7: Experimental results for the Acrobot test environ-
ment using two separate networks for the actor and critic
respectively.

Figure 8: Experimental results for the Acrobot test environ-
ment using a single consolidated network for the actor and
critic.

right block (Figure 6b). The left block gives −1.125 reward
and the right blocks give +1.125 reward. When the ball leaves
the environment we get −2.25 reward. And the position of the
ball is reset to the center of the environment. The ball is then
given a random initial velocity downwards and a smaller initial
random velocity towards the sides. Three walls are present on
the left right and top to keep the ball inside the environment.
Thus the ball can only escape via the bottom. The paddle can
be moved left or right with a continuous amount represented
by the action values in the range a ∈ [−1, 1]. When the ball
and the paddle collide the ball inherits a bit of horizontal
velocity from the paddle which represents friction between the
ball and paddle. This allows the agent a level of directional
control over the ball. The experimental results for the Bounce
environment can be seen in Figures 9, 10.

Figure 9: Experimental results for the Bounce test environment
using two separate networks for the actor and critic respec-
tively.

Figure 10: Experimental results for the Bounce test environ-
ment using a consolidated network for the actor and critic.

IX. DISCUSSION

In Figure 7 we see the Acrobot environment experiments
using the separated network architecture. We see that the
sample, gradient and hybrid update methods clearly differ in
terms of finding the optimal policy. We expect the hybrid
method to perform best as it combines the sample and
gradient based update methods allowing the method to
potentially escape local minima’s while at the same time
converge locally. We then expect the gradient based update
method to converge as it always has a local gradient available
to update the actor parameters. Last we expect the sample
based method to converge as it can only update itself based
on samples with a Q̂ value strictly larger then it’s current Q̂
value and hence will update more slowly as it reaches the
optimum. The results in Figure 7 confirm these expectations.
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When we compare the results of the separated network
architecture in Figure 7 with the results of the consolidated
architecture in Figure 8 we see that the performance
differences between the three methods disappear. All methods
seem to perform equally well. We speculate that the reason
for this may be due to the fact that features are shared
between the actor and critic in the convolution layers (Figure
5). This feature sharing might allow the features required by
the actor to be formed by the critic equalizing the relative
performance of the three actor update methods.

We hypothesized that consolidating the actor and critic
networks would lead to faster convergence. However,
from Figures 7, 8 we see that initially the separated
and consolidated architectures perform equally well after
approximately 175000 iterations the separated architecture
outperforms the consolidated architecture. The cause for this
could be that the actor and critic might interfere with each
other in terms of opposite directional parameter updates in the
shared layers. This could lead to a kind of rope pulling effect
where the net resulting parameter updates become very small.
One definite benefit of the consolidated architecture opposed
to the separated architecture is the lower time complexity
which may decrease learning time.

Figures 7, 8, 9, 10 show that the temporal difference
update method for the actor does not perform well. This
result is unexpected and the reason is not clear but could be
explained by the fact that the critic temporal difference error
never reaches zero and oscillates around the optimal Q value.
This would cause the actor to always update no matter how
small the temporal difference error, in effect randomizing the
actor policy.

In Figure 9 we see the result for the Bounce environment
using a separated architecture. We see that there is no
difference between the hybrid, sample and gradient update
methods. This could be due to the nature of the Bounce
environment or due to inaccuracies associated with the size of
the stride used in the convolution layers limiting the accuracy
of the network causing suboptimal performance. It also does
not reach the optimal policy, visual inspection shows that the
agent hits the right block consistently but looses track of the
ball once in a while.

X. FUTURE RESEARCH

The results obtained through experiments show there are
differences between the update methods, but the experiments
are to limited in size in order to thoroughly determine which
method works best in what circumstance. In the future we
wish to do more experiments and theory to get clearer picture
as to which update methods work best. An example of such
a experiment would be a environment where the goal is to
select a white circle on the screen for a positive reward and a
negative reward for a selection outside the white circle. Such
an environment have a very sparse gradient and hence would
be a good test case for comparing the sample and gradient

based update methods. Due to the sparse gradients we would
expect the sample based update methods to outperform the
gradient based method.

Another interesting topic which requires more in depth
research is the reason why the consolidated architecture
converges later compared to the separated architecture. A
deeper understanding may lead to more effective update
methods improving performance which may make the
consolidated architecture preferable over the separated
architecture.

Lastly understanding the reason why the temporal difference
update method fails may lead to a modified more successful
version, which may potentially improve the convergence rate.

XI. CONCLUSION

In this paper we have presented a way combining deep
learning with actor critic models in order to deal with
continuous action spaces. We have investigated four methods
to update the actor as well as consolidating the actor critic
network architectures.

We hypothesized that consolidating the actor and critic
networks would allow for fewer learning iterations as features
between the two networks are shared. Limited experiments
however imply that it takes more iterations as supposed
to less. However the time complexity of the consolidated
architecture is lower and thus may proof more practical.

For the update methods we hypothesized that the hybrid
method would work best as it combined both global and local
convergence. After which the gradient method would perform
second best due to the availability of the gradient and lastly
the sample based method. Our experiments seem to indicate
this is also the case in practice when using a non consolidated
network for the actor and critic. For the consolidated version
however the differences between the methods disappear.

Experiments showed that the temporal difference update
method is not applicable in this context and failed to produce
a policy.
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