
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2018

MSc THESIS

An FPGA-based Snappy Decompressor-Filter

Yang Qiao

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2018-04

New interfaces to interconnect CPUs and accelerators at memory-
class bandwidth pose new opportunities and challenges for the design
of accelerators. This thesis studies one such accelerator, a decom-
pressor for Parquet files compressed with the Snappy library. Our
design targets reconfigurable logic (FPGAs) attached via the open
coherent accelerator processor interface(OpenCAPI) at 25.6GB/s.
We give an overview of the previous research in hardware-based
(de)compression engines and present and analyze our design. Much
of the challenge of designing the decompression engine stems from
the need to process more than one token per cycle. In our design, a
single engine can process two tokens per cycle. A Xilinx KU15P
FPGA is expected to support multiple such engines. The input
throughput and the output throughput ranges of a single engine are
3.9∼6.3 bytes/cycle and 8.3∼15 bytes/cycle, respectively. Based on
the implementation results, a single engine of the proposed design
could work at 140MHz, meaning 0.51∼0.82 GB/s input throughput
or 1.08∼1.96 GB/s output throughput. The Parquet format enables
the parallel decompression of multiple blocks when multiple units
are instantiated. With the latest generation of FPGAs, we estimate
at most 28 units can be supported leading to a total input/output

bandwidth of 14.28/30.24 to 22.96/54.88 GB/s. Because the output bandwidth can exceed the interface
bandwidth if multiple engines are supported, the design is especially effective when combined with a filter
engine that reduces the output size.





An FPGA-based Snappy Decompressor-Filter

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

by

Yang Qiao
born in Jinan, China

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology





An FPGA-based Snappy Decompressor-Filter

by Yang Qiao

Abstract

New interfaces to interconnect CPUs and accelerators at memory-class bandwidth pose
new opportunities and challenges for the design of accelerators. This thesis studies one such
accelerator, a decompressor for Parquet files compressed with the Snappy library. Our design
targets reconfigurable logic (FPGAs) attached via the open coherent accelerator processor inter-
face(OpenCAPI) at 25.6GB/s. We give an overview of the previous research in hardware-based
(de)compression engines and present and analyze our design. Much of the challenge of designing
the decompression engine stems from the need to process more than one token per cycle. In our
design, a single engine can process two tokens per cycle. A Xilinx KU15P FPGA is expected
to support multiple such engines. The input throughput and the output throughput ranges of
a single engine are 3.9∼6.3 bytes/cycle and 8.3∼15 bytes/cycle, respectively. Based on the im-
plementation results, a single engine of the proposed design could work at 140MHz, meaning
0.51∼0.82 GB/s input throughput or 1.08∼1.96 GB/s output throughput. The Parquet format
enables the parallel decompression of multiple blocks when multiple units are instantiated. With
the latest generation of FPGAs, we estimate at most 28 units can be supported leading to a total
input/output bandwidth of 14.28/30.24 to 22.96/54.88 GB/s. Because the output bandwidth
can exceed the interface bandwidth if multiple engines are supported, the design is especially
effective when combined with a filter engine that reduces the output size.

Laboratory : Computer Engineering
Codenumber : CE-MS-2018-04

Committee Members :

Advisor: Prof. Dr. H.P. Hofstee, CE, TU Delft

Chairperson: Prof. Dr. H.P. Hofstee, CE, TU Delft

Member: Dr. Ir. Z. Al-Ars, CE, TU Delft

Member: Dr. Ir. A. Bossche, EI, TU Delft

i



ii



Dedicated to my family and friends

iii



iv



Contents

List of Figures viii

List of Tables ix

List of Acronyms xi

Acknowledgements xiii

1 Introduction 1

1.1 Research background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Motivation and objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and related work 3

2.1 Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 OpenCAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Parquet and columnar storage . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Snappy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Snappy compression . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.2 Snappy decompression . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Method Analysis 17

3.1 Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Analysis of Block RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 SDP and TDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 BRAM latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Byte-wide write enable . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Data dependency and address conflict . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Data dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Address conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 FPGA logic resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Special copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 The choice of write mode of BRAM . . . . . . . . . . . . . . . . . 29

v



4 Implementation 31
4.1 System level design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Filter module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.3 CRC32 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.4 Architecture of a single decompression engine . . . . . . . . . . . . 33

4.2 Module design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Parser module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 FIFO module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Conflict detector module . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.4 Alignment module . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.5 BRAM module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Experimental Results 49
5.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Experiment platform . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Modules used for behavior simulation . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Compressed file transform module . . . . . . . . . . . . . . . . . . 50
5.2.2 Read file module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.3 Write file module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.4 Uncompressed file transform module . . . . . . . . . . . . . . . . . 52
5.2.5 Correction module . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Behavior simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Synthesis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Place and Route (Implementation) . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusion and Future Work 55
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 58

vi



List of Figures

2.1 Processing efficiency [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 GPU vs FPGA qualitative comparison [1] . . . . . . . . . . . . . . . . . 4

2.3 Parquet format [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Parquet metadata [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Input/output file of Snappy compression . . . . . . . . . . . . . . . . . . 8

2.6 Structure of literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Structure of copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8 Parallel compression of Gompresso [3] . . . . . . . . . . . . . . . . . . . 11

2.9 Parallel decompression of Gompresso [3] . . . . . . . . . . . . . . . . . . 12

2.10 MRR execution [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.11 Block diagram of decoder/decompressor [4] . . . . . . . . . . . . . . . . 13

2.12 Spill-over of bits [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.13 Aligner logic [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.14 Scheme of expand-and-filter [5] . . . . . . . . . . . . . . . . . . . . . . . 14

2.15 Embodiment of a system for accelerated decompression [6] . . . . . . . . 15

3.1 RAMB36 usage in a TDP data flow [7] . . . . . . . . . . . . . . . . . . . 19

3.2 RAMB36 usage in an SDP data flow [7] . . . . . . . . . . . . . . . . . . 19

3.3 WRITE FIRST Mode waveforms [7] . . . . . . . . . . . . . . . . . . . . 20

3.4 READ FIRST Mode waveforms [7] . . . . . . . . . . . . . . . . . . . . . 21

3.5 NO CHANGE Mode waveforms [7] . . . . . . . . . . . . . . . . . . . . . 21

3.6 Scheme of four-stage structure . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Block diagram of four-stage structure . . . . . . . . . . . . . . . . . . . . 22

3.8 Scheme of three-stage structure . . . . . . . . . . . . . . . . . . . . . . . 23

3.9 Block diagram of three-stage structure . . . . . . . . . . . . . . . . . . . 23

3.10 Read conflicts as a function of granularity . . . . . . . . . . . . . . . . . 26

3.11 Write conflicts as a function of granularity . . . . . . . . . . . . . . . . . 28

4.1 System level diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Single engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 I/O ports of parser module . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Internal structure of parser module . . . . . . . . . . . . . . . . . . . . . 36

4.5 Two types of the token being cut . . . . . . . . . . . . . . . . . . . . . . 38

4.6 I/O ports of FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Internal structure of FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 I/O ports of conflict detector . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 Three-stage structure of conflict detector . . . . . . . . . . . . . . . . . . 42

4.10 Three possible values of conflict type . . . . . . . . . . . . . . . . . . . . 43

4.11 I/O ports of the alignment module . . . . . . . . . . . . . . . . . . . . . 44

4.12 Internal structure of the alignment module . . . . . . . . . . . . . . . . . 45

4.13 Modified simple dual port RAM . . . . . . . . . . . . . . . . . . . . . . . 46

4.14 BRAM block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



4.15 Interconnection between BRAM blocks . . . . . . . . . . . . . . . . . . . 47

5.1 Interconnection between hardware and simulation modules . . . . . . . . 50
5.2 File format of the output of compressed file transform module . . . . . . 51
5.3 Read file module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Write file module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



List of Tables

3.1 Basic information of test files . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Parity use scenarios [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Statistics about the frequency of the read address conflict . . . . . . . . 26
3.4 Statistics about the frequency of write address conflict . . . . . . . . . . 27
3.5 Special copy statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Basic information of benchmarks . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Behavior simulation results of benchmarks . . . . . . . . . . . . . . . . . 53
5.3 Post-synthesis utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Post-implementation utilization . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Timing summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



x



List of Acronyms

BRAM Block random access memory

FPGA Field programmable gate array

AFU Accelerator functional unit

OpenCAPI Open coherent accelerator processor interface

SDP Simple dual port

TDP True dual port

LUT Look-up table

FIFO First in, first out

CRC Cyclic redundancy check

CLB Configurable logic block

FF Flip-flop

SIMD Single instruction multiple data

MRR Multi-round resolution

HWM High-water mark

xi



xii



Acknowledgements

Firstly, I want to express my sincere gratitude to my supervisor, Prof.Dr.H.Peter Hofstee,
he had spent much time on my thesis project and gave me much constructive advice.
He is very patient with me even if I do not have too much fundamental knowledge.
Undoubtedly, I have learned a lot during this year. Thank you, Peter!

Secondly, I would thank my committee members for spending much time on my
thesis, giving me feedback, and attending my thesis defense even if they are very busy.

Thirdly, I need to thank my daily supervisor, Jian Fang, who introduced me to this
group and taught me much useful knowledge. He is a Ph.D. student now, so I hope he
could gain the Ph.D. degree as soon as possible and make more contribution to academic
field.

Many thanks to Jinho Lee and Yvo Mulder who spend time helping me the project.
I am also grateful to all my friends at TU Delft; I would not have such a happy life

in the Netherlands without your company.
Last but most important, I sincerely thank my family, especially my parents, for

giving me the chance to study at TU Delft and supporting me whenever I was in trouble.
Thanks!

Yang Qiao
Delft, The Netherlands
January 23, 2018

xiii



xiv



Introduction 1
With the development of silicon technology, the integration level has improved dramati-
cally. However, in recent years, the (power-limited) switching frequency of transistors has
saturated, which indeed constrains the processing speed of some applications, especially,
in Big Data.

1.1 Research background

With the development of Big Data, data volume is rapidly increasing, so data compres-
sion that can substantially reduce physical storage requirements is important due to the
high cost of storage. However, improvements in CPU performance do not keep pace with
the fast increases in data volumes. The compressed data has to be decompressed before
doing operations on it. Thus, a fast decompression or a high decompression through-
put is necessary. Therefore, much research focuses on hardware accelerators to improve
processing rates.

Much research has focused on how to achieve efficient compression, a high compres-
sion ratio, and fast compression. Decompression speed is also important because data is
compressed only once when being stored but is repeatedly read and decompressed. Espe-
cially in the era of Big Data, repeated decompression requires very high throughput [3].
With many data warehousing applications moving from spinning disk to in-memory,
there is a challenge to operate at memory bandwidths rather than storage bandwidths
for decompression.

1.2 Problems

There is some research concentrating on a hardware decompression accelerator, either
FPGA or GPU. [3] proposed a GPU-based method called “Gompresso/Byte” that
achieves a relatively high decompression speed. If not considering the bandwidth of
PCIe, its decompression throughput was up to 16GB/s. However, if taking PCIe(both
input and output) into account, it can only achieve the speed up to about 10GB/s.
Therefore, decompression can be an I/O-bound operation.

1.3 Motivation and objective

From a traditional point of view, PCIe is one of the fastest interfaces. However, recently,
a new class of interface has been proposed that significantly improves over PCIe on
bandwidth and latency. One such interface is the open coherent accelerator processor

1



2 CHAPTER 1. INTRODUCTION

interface (OpenCAPI), which can achieve high bandwidth up to 25.6GB/s (8 lanes, bi-
directional). Future versions of this interface will support 32 lanes and even higher
frequencies per lane [8]. Therefore, these new interfaces provide a chance to improve the
decompression speed further [9]. Most prior work focuses on hardware decompression
based on Gzip [10], but there is little prior work focusing on hardware (de)compression
on Snappy [11, 6].

The goal of this thesis is to maximize Snappy decompression rates on an FPGA
attached to OpenCAPI. Optimizing the use of FPGA BRAM resources leads us to im-
plement a hardware Snappy decompression accelerator that can process at most two
tokens per cycle.

1.4 Contributions

This thesis gives an overview of prior work on (de)compression acceleration. We also
propose an FPGA-based hardware architecture of a Snappy decompression engine. A
single decompression engine is designed to process at most two tokens per cycle. The
correct uncompressed files are obtained via behavior simulation. The expected input
and output throughput of a single engine reach up to 0.82 GB/s and 1.96 GB/s. The
working frequency (via implementation) of this architecture is 140MHz. A single engine
consumes 91089, namely, 17.43% look-up table (LUT) resource and 128KB Block RAM
resource of Xilinx KU15P FPGA.

1.5 Outline

Chapter 2 introduces the background knowledge and previous work on hardware accel-
eration of (de)compression. Chapter 3 presents an analysis of the Snappy compressed
test files and motivates some design choices. Chapter 4 provides details of the imple-
mentation of our proposed hardware architecture and explains the function of each of
the modules that make up the design. Chapter 5 gives the experimental results of this
project and evaluates the performance.

build 0.18



Background and related work 2
This chapter motivates the use of accelerators and provides background on OpenCAPI,
the Parquet file format, the Snappy algorithm and related work.

2.1 Accelerators

CPUs are optimized for the execution of general-purpose sequential programs. However,
when a high performance or a high-speed computation is required, a CPU shows the
drawback of being optimized for low degrees of parallelism.

Hardware acceleration is the use of computer hardware to perform some functions
more efficiently than is possible in software running on a more general-purpose CPU [12].
Both FPGAs and GPUs can be used as accelerators of CPUs. However, FPGAs and
GPUs are suitable for different applications due to different pros and cons.

2.1.1 FPGA

An FPGA is an application specific processor which supports higher degrees of paral-
lelism than that of a CPU. An FPGA can be configured by a customer or a designer for
a dedicated application.

2.1.2 GPU

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly
manipulate and alter memory to accelerate the creation of images in a frame buffer
intended for output to a display device. More recently the thread processing engines in
GPUs have been generalized, allowing GPUs to be used for a variety of applications with
high degrees of concurrency [13].

2.1.3 Comparison

Several aspects can be used to determine the choice. For example, power efficiency and
cost efficiency which can be seen in Figure 2.1. Other qualitative comparisons among
different characteristics are shown in Figure 2.2.

3



4 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Processing efficiency [1]

Figure 2.2: GPU vs FPGA qualitative comparison [1]

As can be seen from the Figure 2.1 and 2.2, FPGA is more power efficient while
GPU is more cost efficient. Interfaces are another strong point for FPGAs. With GPUs
typically limited to PCIe, interfacing with devices implementing any other standard
or custom interfaces will require additional electronics. An FPGA has huge interface

build 0.18



2.2. OPENCAPI 5

flexibility, recently improved by the integration of programmable logic with CPUs and
standard peripherals in SoC devices. Finally, RTL-based design enables an FPGA to be
used as technology path to ASIC development. [1].

Also, in the era of Big Data, data center applications face a challenge of high power
consumption of CPUs. FPGAs are power efficient and have huge interface flexibility. It
would be a good choice to use FPGAs as accelerators to improve the performance and
reduce the power consumption.

2.2 OpenCAPI

OpenCAPI is an open interface architecture that allows any microprocessor to attach to
an accelerator or I/O device at high bandwidth and provide coherent access to shared
memory [8]. The OpenCAPI Consortium is an open forum to manage the OpenCAPI
specification and ecosystem. OpenCAPI was founded by Google, IBM, AMD and other
companies. Some research works on the OpenCAPI protocol [14].

Traditional bus interfaces, such as PCIe, result in very high CPU overhead when
applications communicate with I/O or accelerator devices at the necessary performance
levels. Systems must be able to integrate multiple memory technologies with different
access methods and performance attributes [8].

OpenCAPI can achieve a very high transfer rate of up to 25.6Gbps (single chan-
nel, bi-directional). Multi-channel is also supported by OpenCAPI. In conclusion, Open
CAPI has four advantages compared to traditional I/O architecture, which is high per-
formance, not occupying CPU resource, good compatibility and being a completely open
consortium.

2.3 Parquet and columnar storage

Apache Parquet [15] is a columnar storage format; it is open-sourced and free to any
project in the Hadoop ecosystem. With the development of Big Data, in many or even
most cases, the number of fields (columns) is considerable, that is to say, a row tends to
contain more data than before. However, most queries only focus on some of the records
(rows). By storing data in columns rather than rows, the database can more precisely
access the data it needs to answer a query rather than scanning and discarding unwanted
data in rows. Query performance is often increased as a result, particularly in huge data
sets [16]. Specifically, the columnar format has two advantages. The first one is that a
subset of one column can be extracted when reading the data stored in the column, which
significantly reduces the number of required I/O operations because for data stored in
a row-based format the entire record must be read even if only a few of columns are
needed. The second advantage is that it is easy to achieve a high compression ratio in
a columnar storage file. Because all data within one column is of the same data type,
and there are many methods of encoding, such as run length encoding (RLE), dictionary
encoding, bit packing and plain encoding that effectively compress a column. Within
the Parquet format definition, after encoding, the data can be further compressed, there
are five options for Parquet which are Snappy, Gzip, LZO, Brotli and uncompressed.

build 0.18



6 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3: Parquet format [2]

A Parquet file is composed of a file header, one or more blocks (also called row groups),
and a file footer. The header is a 4-byte magic number “PAR1” used to indicate Parquet
file type. The footer contains the file metadata such as version information, schema, row
group metadata and column metadata. At the end of the footer, there are 4 bytes of
footer length and a 4-byte magic number “PAR1”. Readers are expected first to read
the file metadata to find all the column chunks they are interested. The columns chunks
should then be read sequentially. The row group is several and fixed rows of data. One
row group contains many column chunks. Each column in a row group is stored into
one column chunk. One column chunk contains many pages. A page is the unit of
encoding or compression. Parquet metadata is encoded according to Apache Thrift [17].
Figure 2.3 shows the Parquet format and detailed information about metadata can be
seen in Figure 2.4.

Parquet adopts the Dremel encoding [18] with definition and repetition levels to
encode nested data. According to Apache Thrift, there are three field repetition types,
which are required(cannot be null), optional(can be null) and repeated. The field is
required, and each record has exactly one value. The field is optional, and each record
has 0 or 1 values. The field is repeated and can contain 0 or more values. Definition

build 0.18



2.3. PARQUET AND COLUMNAR STORAGE 7

Figure 2.4: Parquet metadata [2]

levels specify how many optional fields in the path for the column are defined. Repetition
levels specify at what repeated field in the path has the value repeated.

There are three types of pages, which are data page, index page(not supported by
the current version) and dictionary page. A data page is composed of a repetition level,
a definition level, and encoded values. The pages share a common header, and the pages
can be skipped over if they are not interested in. The data for the page follows the header
and can be compressed and/or encoded. The compression and encoding is specified in
the page metadata. The compression dictionary is stored in dictionary page, and each
column chunk could contain at most one dictionary page. The recommended row group
size and page size are 512MB∼1GB and 8KB, respectively [15]. In addition, there is a
“i32 crc”, which is used to validate whether decompression is correct, in “PageHeader”
in Figure 2.4.

build 0.18



8 CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Snappy algorithm

Snappy is a compression/decompression algorithm developed by Google based on
LZ77 [19] and open-sourced in 2011. It is very fast but it compromises on the com-
pression ratio. Snappy encoding is not bit-oriented with variable, data-dependent com-
pressed symbols, but uses a fixed encoding and is byte-oriented, which means a byte is
the unit of operation. On a single core of Core i7, its compression and decompression
rate can reach up to 250MB/s and 500MB/s, respectively [20].

2.4.1 Snappy compression

During compression, the input file (uncompressed file) is no larger than 4GB and is
cut into many equally-sized blocks, each of which is 64KB, except for the last block
whose size is no larger than 64KB. Blocks are independent of each other, each block is
compressed, and can, therefore, be decompressed, independently.

The size of the uncompressed file is stored as little-endian varint format into the first
several bytes (no larger than 5 bytes) of the output file (compressed file), then these bytes
are followed by compressed data blocks, the size of different compressed data blocks may
not be the same. The simplified input and output file of Snappy compression is shown
in Figure 2.5.

Figure 2.5: Input/output file of Snappy compression

Within each data block, the algorithm constantly finds matches. If it has found a
4-byte match, then it continues to find whether the match length can be longer than 4.
Next, the compressor will output this match to the compressed file. Any match whose
length is larger than 64 bytes will be cut into sub-matches and then output. Thus,
the match length of each sub-match is no larger than 64 bytes. A match is also called
a “copy”. If the compressor cannot find a match whose length is larger than 3 bytes
within a specific range, then the content will be directly output as a literal.

Thus, there are two types of tokens; literal and copy. Literal means that the data
is not compressed and the header (tag byte + extra bytes) is followed by several bytes
of literal content. The copy means that the data is compressed as a pair of length and

build 0.18



2.4. SNAPPY ALGORITHM 9

offset. If “op” is the start output address of this copy, a copy operation needs to read
“length” bytes from the output file starting from the address of “op - offset”. Figure 2.6
and 2.7 indicate the structure of a token. The tag byte is always the start point of a
token. For literals, the header is composed of a tag byte and extra bytes. While for copy,
the header is the copy itself.

Figure 2.6: Structure of literal

Figure 2.7: Structure of copy

As can be seen from Figure 2.6 and Figure 2.7, the lower two bits of tag byte indicate
the token type, “00” represents literal and “01” or “10” represents copy. The extra
bytes of literal represent the literal length, and those of copy indicate copy offset. Literal
content means the uncompressed data itself.

For the literal type, as can be seen in Figure 2.6, when the higher six bits is less

build 0.18



10 CHAPTER 2. BACKGROUND AND RELATED WORK

than 60 (decimal system), the number of extra bytes is zero, and these six bits indicate
“length-1”. If the six bits have a value of 60 or 61, this indicates one extra byte or two
extra bytes, respectively. The extra bytes are used to represent the value of “length-1”.

Figure 2.7 shows the cases of the copy type. If the lower two bits are “01”, then it
means that the copy has one extra byte, the copy length is less than 12, and the offset
is less than 2048. Otherwise, it indicates that there are two extra bytes, the copy length
is represented by the higher 6 bits of the tag byte, and the extra bytes of copy are used
to describe the offset.

2.4.2 Snappy decompression

During decompression, the input file is a compressed file and output file is the corre-
sponding uncompressed file. When the decompression program runs on a single core of
a CPU, at first, the size of the uncompressed file stored into the first several (less than
six) bytes is extracted. If the most significant bit (MSB) of a byte is 1, it means the next
byte is also used to describe the uncompressed file size. Otherwise, the current byte is
the last byte indicating the uncompressed file size. After this procedure, the start and
end address of the output file can be determined.

Second, the data is sequentially read and processed. The tag byte is parsed to
determine the token type and the number of extra bytes, and then literal length (for
literal type), or copy length and offset (for copy type) are determined.

The third step is the read and the write operation. For literals, the data is directly
copied from the input file into the output file, and for copy, memory copy is performed,
data is moved from one position to another position in the output file according to the
copy length and offset.

After the third step, the decompressor will go to the second step again to find the
tag byte of the next token. This procedure is repeatedly executed until reaching the
end of input file. After that, the entire input file is decompressed completely, and an
uncompressed output file can be obtained.

2.5 Related work

There is some research focusing on hardware decompression [3] [11] [6]. Although most
decompression algorithms are related to DEFLATE [21] which is often used in Gzip
and ZIP file formats, this could still provide some inspiration for this thesis project.
DEFLATE uses the LZ77 [19] compression algorithm followed by Huffman encoding [22].
To decompress a Gzip file, firstly the decompressor should decode the Huffman coding
and then decompress the LZ77 compressed data. LZ77 is a sliding dictionary-based
compression algorithm. This thesis focuses on the Snappy algorithm based on LZ77. The
Snappy algorithm also uses a dictionary or history, but the difference between Snappy
and LZ77 is that the dictionary of Snappy is not a sliding window but a fixed 64KB
history.

[3] presents a decompression technique called Gompresso/Bit which is used for com-
pressed files like Gzip, and also presents Gompresso/Byte which is based on LZ77 with
byte-level encodings such as Snappy. Gompresso/Byte can achieve decompression rates

build 0.18



2.5. RELATED WORK 11

up to about 10GB/s. There are two kinds of parallelism which are inter-block parallelism
and intra-block parallelism. Different blocks do not depend on each other. This paper
also gives relative changes between compression ratio and decompression speed to show
the tradeoff between them. This paper enlightens the author on the idea of multi-engine
architecture.

Gompresso/Byte mainly contains two steps, The first step is parallel compression; the
input file is split into equally-sized data blocks which are then independent compressed.
This step makes inter-block parallelism feasible. Figure 2.8 illustrates the scheme of
parallel compression.

Figure 2.8: Parallel compression of Gompresso [3]

In this thesis, we also propose the similar architecture, because Snappy compression
itself has already included splitting file into equal-sized data blocks which makes inter-
block parallelism possible. For a Parquet file, there is still similar parallelism available.
For example, data pages are compressed independently.

The second step of Gompresso/Byte is parallel decompression which is shown in
Figure 2.9. One GPU warp (32 threads operating in lock-step) is responsible for the
decompression of a data block, and because each thread decompresses one sub-block of
one data block, the starting offset of sub-blocks can be computed from the file header.

build 0.18



12 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.9: Parallel decompression of Gompresso [3]

However, within a compressed data block, there is too much data dependency. This
paper proposed two methods to improve intra-block parallelism, the one is exploiting the
SIMD-like architecture of a GPU, which is called multi-round resolution(MRR). Data
dependencies occur when a copy in one thread needs to read data from another copy
in a former thread. In this case, the later copy should wait for the former copy. Thus,
MRR first emits all of the literals. Then MRR emits copies without data dependencies.
Afterwards, the last step is repeated until all of the tokens are decompressed. There is
a flag called the “high-water mark”(HWM) determining whether dependency is resolved
that is updated at the end of each iteration. Figure 2.10 describes how MRR works. The
other method is eliminating data dependency during compression.

Figure 2.10: MRR execution [3]

[4] proposes a hardware decompression architecture based on DEFLATE. The input

build 0.18



2.5. RELATED WORK 13

line of data is a portion of the variable length encoded(Huffman encoded) data stream.
Thus, the difficulty is how to identify the boundary between symbols. The block diagram
of decoder/decompressor is shown in Figure 2.11. The input is M bytes per cycle and
the output is N bytes per cycle.

Figure 2.11: Block diagram of decoder/decompressor [4]

Because the input is fixed length and Huffman encoding is a variable length encoding,
a symbol may be cut by the boundary of each input line, as can be seen in Figure 2.12.

Figure 2.12: Spill-over of bits [4]

Hence, an aligner logic is used to detect and rearrange the symbols. Figure 2.13 shows
how the aligner logic works. CL is computation logic used to decode one symbol and
update an accumulative shift amount. Hmin and Hmax are the minimum and maximum
length of a Huffman code, respectively. So the pipeline depth is 8*M/Hmin and there
are Hmax ways of possible solutions. In this way, the first symbol will be found at the
end of the first cycle. In the end, the “bit spill” will select only one of Hmax ways as
actual output.

build 0.18



14 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.13: Aligner logic [4]

Afterwards, the correct aligned data line will be transferred to tokenizer logic. The
tokenizer extracts the symbol data from the compressed symbols in the aligned input line.
Finally, output generator logic takes the tokens from the tokenizer logic and generates
decoded/decompressed data of N bytes per cycle.

Jinho Lee proposed a framework, named ExtraV, for near-storage graph process-
ing [5]. In this paper, the expand-and-filter combines the decompressor with filter,
which is shown in Figure 2.14. The expand phase is decompression, the bandwidth of
the storage device is amplified by the compression ratio. The data will get larger due to
decompression, which increases the bandwidth requirement of CPU-AFU interface. The
filter here could normally reduce the bandwidth requirement of the AFU-CPU interface.

Figure 2.14: Scheme of expand-and-filter [5]

build 0.18



2.5. RELATED WORK 15

Snappy (de)compression is developed by Google, and Google has published two
patents about hardware acceleration for LZ77-based algorithms including Snappy [11, 6].
[11] proposes a general idea for data decompression. The symbol can be decoded using
either a fast-path routine or a slow-path routine. The slow-path routine includes a
branch prediction hardware. Next, [6] is based on this idea and proposes a hardware
and software architecture with interconnections of the whole system. The embodiment
of a system for accelerated decompression is shown in Figure 2.15. Generally, the ar-
chitecture includes memory, processor core, and accelerator. The compressed stream,
uncompressed stream, and fast and slow processing code are stored in memory. The ac-
celerator reads compressed data from compressed stream, gets decoded data and outputs
intermediate records, formats an intermediate record into a token, and emits fixed-length
tokens (e.g. 5 bytes). Next, the execution units of the processor core would do specific
memory operations to generate uncompressed data. In this system, the accelerator and
the execution units act as a front-end and a back-end, respectively.

Figure 2.15: Embodiment of a system for accelerated decompression [6]

build 0.18



16 CHAPTER 2. BACKGROUND AND RELATED WORK

build 0.18



Method Analysis 3
3.1 Requirement

According to the background knowledge in section 2.2, an accelerator functional unit
(AFU) could get 25.6 Gb/s per lane via OpenCAPI. So far, eight lanes can be provided;
the bandwidth limit can be improved up to 25.6 GB/s. Assuming that the working
frequency for our target Xilinx FPGA (KU15P) is 200MHz, this means an AFU could
get 128 bytes per cycle via OpenCAPI. The Xilinx KU15P has 34.6Mbit block RAM
(BRAM), 1045K CLB flip-flops, and 523K CLB LUTs [7]. To make the design rea-
sonable, the first thing that should be determined is how many tokens are included in
128 bytes of data on average. Therefore, statistic data of test files need to be gathered.
Table 3.1 illustrates basic statistics of test files, where “num token” means the total num-
ber of tokens of the test file, which is also the sum of “num literal” and “num copy”.
Besides, “av size input” and “av size output” are average sizes per token of the com-
pressed and the uncompressed file, respectively. TPCH is a text file generated by the
author, while the other files are biological data from National Center for Biotechnology
Information(NCBI) [23].

Table 3.1: Basic information of test files

Test

File

compressed

size (byte)

uncompressed

size (byte)

compression

ratio (x)

num copy num literal num token av size input av size output

TPCH 4628431 11728193 2.534 1448929 255612 1704541 2.715 6.881

gbbct162.aso 114302958 269396757 2.357 10368744 5106536 15475280 7.386 17.41

gbbct168.aso 101890399 262320412 2.575 9848745 4638536 14487281 7.033 18.11

gbbct1.aso 79093036 262144601 3.314 9942758 3706722 13649480 5.795 19.21

From the Table 3.1, general conclusions can be drawn. One token in the compressed
file occupies approximately 3∼7 bytes. The compression ratio of the Snappy algorithm
is about 2x. Although an AFU gets 128 bytes of data per cycle via OpenCAPI, it is not
realistic that the AFU could process all of the tokens included in the 128 bytes within
one cycle. Therefore, a multi-engine architecture is reasonable, where each engine does
not have to process too many tokens per cycle.

Several factors constrain the number of engines. The first factor is the BRAM re-
source needed per engine. For each compressed block, in principle, a 64KB BRAM block
is the minimum requirement so that a Xilinx KU15P could provide at most 67 groups of
64KB BRAM blocks. The second factor is the average input throughput. Because input

17



18 CHAPTER 3. METHOD ANALYSIS

files get larger after decompression and different files have different compression ratios,
it is more reasonable to consider the input throughput. Assuming that each engine con-
sumes N bytes input data per cycle on average, then our design needs 128/N cycles to
consume 128 bytes data completely. At the (128/N+1)-th cycle, the engine could obtain
new 128 bytes data via OpenCAPI. Thus, 128/N gives an estimated value of the number
of engines. Another factor is the hardware resource utilization per engine.

As is mentioned in section 1.3, the engine is designed to process two tokens per cycle.
A token occupies at least two bytes according to Figure 2.6 and 2.7. Normally, the size of
data being processed is the M-th power of two, where M is a non-negative integer. Four
bytes are usually less than the average length of one token. 8 bytes could contain 1∼4
tokens, and the average number of tokens is two. 16 bytes could contain 1∼8 tokens,
and the average number of tokens is four, which is more than needed. Hence, initially,
each engine is designed to consume 8 bytes, which include an average two tokens, per
cycle. The number of engines is initially set to 16.

Because a Snappy compressed file does not have any dependencies between com-
pressed blocks, different engines should be responsible for different compressed blocks,
which is much simpler than having different engines process the same compressed block.
The page is the unit of compression according to the Parquet format, and the page size
is recommended to be set to a small number such as 8KB for the purpose of fine-grained
reading [15]. According to the Snappy algorithm, each compressed block has a 64KB
history window. Hence, the parallel unit could be a data page. Thus, the multi-engine
architecture could also make inter-block parallelism [3] possible.

3.2 Analysis of Block RAM

Block RAM (BRAM) is a configurable memory module that attaches to a variety of
BRAM interface controllers [24]. BRAM is a clock triggered device, after the rising edge
of a cycle, a line of data can be written, and another line of data can be read in the
same cycle. If the two lines are the same line, it is called address collision, which will be
discussed in section 3.2.2.

3.2.1 SDP and TDP

Normally, a BRAM primitive can be configured as simple dual port ram (SDP, see
Figure 3.1) or true dual port ram (TDP, see Figure 3.2). There are two independent
ports (A and B) in TDP RAM mode and each of port A or port B has a read port and
a write port. In an SDP RAM mode, there are also two ports. However, port A only
works as a read port and port B only works as a write port. Hence, for a given size of
the primitive, the primitive configured as SDP RAM is able to reach a larger port width
than that configured as TDP RAM.

Additionally, there are two kinds of primitives, RAMB18E2 and RAMB36E2 (see
Table 3.2), which means the port width of port A or B can be up to 18 bits and 36
bits, respectively. In order to get a larger read and write port width, the RAMB36E2
configured as SDP RAM is preferred. In this way, the width of the read and write port
can reach up to 64 bits per BRAM primitive.

build 0.18



3.2. ANALYSIS OF BLOCK RAM 19

Figure 3.1: RAMB36 usage in a TDP data flow [7]

Figure 3.2: RAMB36 usage in an SDP data flow [7]

build 0.18



20 CHAPTER 3. METHOD ANALYSIS

Table 3.2: Parity use scenarios [7]

Primitive
Settings

Effective Read Width Effective Write Width
Read Width Write Width

RAMB18E2 1, 2, or 4 9 or 18 Same as setting 8 or 16

RAMB18E2 9 or 18 1, 2, or 4 8 or 16 Same as setting

RAMB18E2 1, 2, or 4 1, 2, or 4 Same as setting Same as setting

RAMB18E2 9 or 18 9 or 18 Same as setting Same as setting

RAMB36E2 1, 2, or 4 9, 18, or 36 Same as setting 8, 16, or 32

RAMB36E2 9, 18, or 36 1, 2, or 4 8, 16, or 32 Same as setting

RAMB36E2 1, 2, or 4 1, 2, or 4 Same as setting Same as setting

RAMB36E2 9, 18, or 36 9, 18, or 36 Same as setting Same as setting

3.2.2 Write mode

If the read and write address of a BRAM primitive are not the same, the BRAM can
be independently written and read a line of data within one cycle. Otherwise, there are
three write modes showing different behaviors when faced to address collision, which
are WRITE FIRST mode, READ FIRST mode, and NO CHANGE mode. When an
address collision happens, BRAM working in WRITE FIRST mode outputs the newly
written data, BRAM working in READ FIRST mode outputs previously stored data
while new data is being written, BRAM working in NO CHANGE mode maintains the
output previously generated by a read operation [7]. Figure 3.3, 3.4 and 3.5 illustrate
the waveforms of the three write modes.

Figure 3.3: WRITE FIRST Mode waveforms [7]

For a simple dual port ram, the write port always successfully commits the data into
memory. However, the read port data is deterministic only for common clock designs
(both read and write clocks are driven by the same clock buffer) and the write port
is in READ FIRST mode [7]. Although the WRITE FIRST mode looks the best, in
this thesis, the clock is a common clock. Thus, the write mode of a primitive cannot
be configured in WRITE FIRST mode but in READ FIRST mode. An improvement

build 0.18



3.2. ANALYSIS OF BLOCK RAM 21

Figure 3.4: READ FIRST Mode waveforms [7]

Figure 3.5: NO CHANGE Mode waveforms [7]

method, through which the BRAM works just like in WRITE FIRST mode, is adopted.
More detailed discussion about this is shown in section 3.4.2 and 4.2.5.

3.2.3 BRAM latency

In Figure 3.3, 3.4 and 3.5, read enable and read address signals arrive at the input port of
BRAM before the first rising edge, and then the data, MEM(aa), appears at DOUT after
the first rising edge. If the previous module of BRAM is also clock triggered, then it can
only read the MEM(aa) after the second rising edge. Hence, it takes one extra cycle to
read MEM(aa). Write operation has the same story. In this way, the scheme describing
a single engine is drawn in Figure 3.6, and the corresponding block diagram is drawn in
Figure 3.7, respectively. “X” means not doing any operation because literal does not need
to read data from BRAM, it only needs to write the input data into BRAM. Unknown
module refers to the module before BRAM. Figure 3.6 describes a four-stage pipeline
structure. The second stage named “Read Out/X” is simple and will not consume too
much resource. However, this four-stage pipeline structure would introduce inter-stage
data dependencies and intra-stage data dependencies. The intra-stage data dependency

build 0.18



22 CHAPTER 3. METHOD ANALYSIS

Figure 3.6: Scheme of four-stage structure

Figure 3.7: Block diagram of four-stage structure

is the dependency between two tokens from the same stage. Inter-stage data dependency
means a dependency among tokens from different pipeline stages.

Things are different for WRITE FIRST mode and READ FIRST mode. For
WRITE FIRST mode, for example, there is no dependency between token6 and to-
ken3 even if token6 has to read data from token3. Because the cycle when token6 emits
the read signals and the cycle when token3 emits the write signals is the same cycle,
4th cycle. According to the mechanism of the WRITE FIRST mode, the read operation
always reads the newly written data from BRAM. However, for READ FIRST mode
the same scenario has a different result. For READ FIRST mode, token6 cannot read
the newly written data of token3 so that a data dependency can exist. However, the
inter-stage dependency between adjacent two stages may still happen in the case of both
WRITE FIRST mode and READ FIRST mode. Therefore, this four-stage structure is
not a good solution.

Another good and feasible solution is combining the second stage with the third stage
into one stage. If the module before BRAM is not sequential logic but combinational
logic, the output data of BRAM could be sensed and processed before the next rising
edge. That is to say, the MEM(aa) can be read and processed before the second rising
edge in Figure 3.3, 3.4 and 3.5. The resulting scheme and block diagram are illustrated
in Figure 3.8 and Figure 3.9. Figure 3.8 shows a three-stage pipeline structure which
reduces the logic complexity. The unknown module is the alignment module described

build 0.18



3.2. ANALYSIS OF BLOCK RAM 23

Figure 3.8: Scheme of three-stage structure

Figure 3.9: Block diagram of three-stage structure

in section 4.2.4.

The three-stage structure could eliminate inter-stage data dependency for
WRITE FIRST mode and reduce one source of inter-stage data dependencies for
READ FIRST mode. The intra-stage data dependency cannot be removed.

3.2.4 Byte-wide write enable

There is a byte-wide write enable input port named “WE” for each BRAM primitive, it
is an 8-bit wide port if the write port of a BRAM primitive is 64 bits, where each bit can
be set or reset independently. The value of one bit indicates whether the corresponding
byte of input data can be written into BRAM.

build 0.18



24 CHAPTER 3. METHOD ANALYSIS

3.3 Data dependency and address conflict

The definition of data dependency has already been introduced. Address conflicts can
be further divided into two subcategories, the first one is the read address conflict, which
means two or more tokens need to simultaneously read different lines of the same BRAM
primitive. The second one is the write address conflict, which means two or more tokens
have to write data into different lines of the same BRAM primitive.

3.3.1 Data dependency

Data dependency can only happen between a copy and a token(copy or literal). The
root of data dependency is a copy needs to read data that has not been written into
BRAM. There are two types of data dependency, which are inter-stage dependency and
intra-stage dependency.

However, the BRAMs working in different write modes have different numbers of
potential data dependencies. The BRAM working in NO CHANGE mode would have
more data dependencies than that working in READ FIRST mode. Because once address
collision of one BRAM happens, the BRAM working in READ FIRST mode could still
read the data stored in that line even if it is the old data, and in many cases, there is
still a portion of so-called old data being useful.

A BRAM working in READ FIRST mode usually has more data dependencies than
one working in WRITE FIRST mode, which has been discussed in section 3.2.3. The
data dependency that happens on the BRAM working in READ FIRST mode could be
solved by forwarding. Forwarding means that if we look at the example in Figure 3.8
and token4 is assumed to be a copy that has to read data from token2 and token3, the
data of token2 and token3 is prepared well before the rising edge of the 4th cycle, so it
can be transferred to the second stage of token4 and then used by token4.

In conclusion, the BRAM working in READ FIRST mode has an extra source of data
dependency which could be solved by forwarding. However, the forwarding technique
would consume much more resource which will be mentioned in section 3.4.2.

3.3.2 Address conflict

As mentioned above, address conflicts consist of read address conflicts and write address
conflicts. No matter which kind of address conflict it is, the reason it happens is that
for a BRAM primitive configured as SDP RAM, it only has one read port and one write
port, so it cannot accept two different address signals at the same time.

Both read address conflicts and write address conflicts only happen when both tokens
that are going to be emitted are copies. For read address conflicts, the reason is that the
literal does not need a read operation. For write address conflicts, if one of the tokens
is literal, then the sum of the length of two tokens is no larger than 8+64=72 bytes.
Because each literal that to be emitted is no larger than 8 bytes, an engine is designed
to read 8 bytes per cycle. The long literal will be split into many short literals. In our
design, the write address conflict may only happen when the sum of length of two tokens
is larger than 121 bytes.

build 0.18



3.3. DATA DEPENDENCY AND ADDRESS CONFLICT 25

For each compressed block, one 64KB BRAM block is necessary according to the
Snappy algorithm in section 2.4. Note that a BRAM block is composed of many BRAM
primitives. As is shown in Table 3.2, if the choice of primitive is not just limited to
RAMB36, then a primitive can be configured as an SDP RAM with the port width of
one byte, two bytes, four bytes and eight bytes. The port width of a primitive is called
granularity. The capacity of a primitive is fixed, and the size of RAMB36 and that of
RAMB18 are 36Kbit and 18Kbit, respectively. Thus, a larger port width also means a
smaller depth.

The statistics about the read and write address conflicts is given in section 3.3.2.1
and 3.3.2.2. It is noted that the statistic data of address conflicts in Table 3.3 and Ta-
ble 3.4 does not represent the actual situation because it is hard to determine which two
successive tokens would be processed within one cycle during the actual hardware decom-
pression. The statistics shown in Table 3.3 and Table 3.4 reveal a general distribution
or frequency of conflicts.

3.3.2.1 Read address conflict

The read ranges of two copies are random, so read address conflicts will always have the
possibility of occurrence as long as there is only one BRAM block whose size is 64KB
being used for one compressed block. As is known above, the sum of the length of two
copies is no larger than 128 bytes. Hence, the width of one BRAM block is initially set
as 128 bytes, namely, 1024 bits. Table 3.3 gives statistics about the frequency of the
read address conflict of some test files, which is based on the change of granularity.

“num primitive per BRAM block” is the number of primitives standing side by side
in one BRAM block. Because the port width of a BRAM block is fixed to 128 bytes, the
product of granularity and “num primitive per BRAM block” is a constant. “num copy”
is the total number of copies in the sample file. “num consecutive copy” is the number
of consecutive copies, consecutive copy means any two successive copies. The statistics
about the same lines of one or more primitives. “num read conflict” is the number of the
read address conflict which means two successive copies will read different lines of at least
one primitive. Finally, “num no conflict” is the number for which there is no overlap or
read address conflict between two copies. Each of “num overlap”, “num read conflict”,
and “num no conflict” will be divided by “num consecutive copy” to get the correspond-
ing percentage and the sum of three percentages should add up to one. The case of
overlap can always be solved by some alignment operations.

A conclusion can be drawn from the Table 3.3 that the percentage of the read address
conflicts decreases with the decreasing granularity, which is reasonable because one read
address points to a line of data in one primitive, and if the width of one primitive gets
shorter then the read address conflict is less likely to happen. However, read conflicts
cannot be eliminated even if the granularity is one byte. Figure 3.10 shows this trend.

Unfortunately, if the granularity gets smaller, the BRAM resource usage will become
larger. For example, if the granularity is one byte, then a BRAM block needs 128
primitives. If the primitive is RAMB18 whose effective size is 2KB, then 256KB of BRAM
resource is necessary in order to obtain one BRAM block. However, only 64KB of which
can be effectively used as history or dictionary. This method would waste lots of BRAM

build 0.18



26 CHAPTER 3. METHOD ANALYSIS

Table 3.3: Statistics about the frequency of the read address conflict

Test

File

granularity

(byte)

num

primitive

per

BRAM

block

num copy

num

consecutive

copy

num overlap % overlap num read conflict % read conflict num no conflict % no conflict

TPCH 8 16 1448929 1193496 2947 0.2469216 191749 16.06616193 998800 83.68691642

4 32 1448929 1193496 2066 0.1731049 155857 13.05886237 1035573 86.76803274

2 64 1448929 1193496 1518 0.1271894 138111 11.57197008 1053867 88.30084056

1 128 1448929 1193496 918 0.0769169 129132 10.81964246 1063446 89.10344065

gbbct162.aso 8 16 10368744 5264676 479603 9.1098294 1675033 31.81644986 3110040 59.07372078

4 32 10368744 5264676 441218 8.3807247 1463162 27.79206166 3360296 63.82721368

2 64 10368744 5264676 311122 5.9096134 1282409 24.35874496 3671145 69.73164161

1 128 10368744 5264676 5352 0.1016587 1068120 20.28842801 4191204 79.60991332

gbbct168.aso 8 16 9848745 5212445 511804 9.8188854 1767606 33.91126429 2933035 56.26985033

4 32 9848745 5212445 462117 8.8656475 1552619 29.78676993 3197709 61.34758256

2 64 9848745 5212445 321227 6.1626933 1354932 25.99417356 3536286 67.84313312

1 128 9848745 5212445 5713 0.1096031 1083247 20.78193631 4123485 79.10846062

gbbct1.aso 8 16 9942758 6237715 406697 6.5199676 2296628 36.81841828 3534390 56.66161407

4 32 9942758 6237715 353140 5.661368 1976992 31.69417006 3907583 62.64446195

2 64 9942758 6237715 238071 3.816638 1546814 24.79776649 4452830 71.38559553

1 128 9942758 6237715 17647 0.2829081 776172 12.44321037 5443896 87.27388154

Figure 3.10: Read conflicts as a function of granularity

build 0.18



3.3. DATA DEPENDENCY AND ADDRESS CONFLICT 27

resource. Therefore, we propose a solution that gets a balance between the frequency of
the read address conflicts and required BRAM resources in the section 3.3.2.2.

3.3.2.2 Write address conflict

The write operation is not random but continuous. Write address conflicts can also only
happen when both consecutive tokens are copies. Table 3.4 gives statistics about the
frequency of write address conflicts of some test files as a function of granularity. Also,
Figure 3.11 shows the trend of how write address conflicts change when minimizing the
granularity.

Table 3.4: Statistics about the frequency of write address conflict

Test

File

granularity

(byte)

num

primitive

per

BRAM

block

num copy

num

consecutive

copy

num overlap % overlap num write conflict % write conflict num no conflict % no conflict

TPCH 8 16 1448929 1193496 1044625 87.526477 0 0 148871 12.47352316

4 32 1448929 1193496 895461 75.028404 0 0 298035 24.97159605

2 64 1448929 1193496 597730 50.082279 0 0 595766 49.91772071

1 128 1448929 1193496 0 0 0 0 1193496 100

gbbct162.aso 8 16 10368744 5264676 4217839 80.115832 390771 7.422508052 656066 12.46165956

4 32 10368744 5264676 3646379 69.261223 303389 5.762728799 1314908 24.97604791

2 64 10368744 5264676 2446054 46.461625 185500 3.523483686 2633122 50.0148917

1 128 10368744 5264676 0 0 0 0 5264676 100

gbbct168.aso 8 16 9848745 5212445 4085311 78.376098 476292 9.137592819 650842 12.48630921

4 32 9848745 5212445 3526422 67.653894 382261 7.333621746 1303762 25.01248454

2 64 9848745 5212445 2362382 45.321955 241490 4.632950564 2608573 50.045094

1 128 9848745 5212445 0 0 0 0 5212445 100

gbbct1.aso 8 16 9942758 6237715 4150553 66.539638 1309013 20.98545701 778149 12.47490467

4 32 9942758 6237715 3567521 57.192754 1112470 17.83457564 1557724 24.97267028

2 64 9942758 6237715 2381668 38.181738 742764 11.90762964 3113283 49.91063234

1 128 9942758 6237715 0 0 0 0 6237715 100

The labels in Table 3.4 have similar definitions to those in Table 3.3. A conclusion can
be obtained that the percentage of write address conflicts also decreases with decreasing
granularity. Furthermore, the possibility of write address conflicts can be eliminated only
if the granularity is one byte. That is because each byte of data has its own address.
So granularity is indeed the minimum size of data that can be addressed. However, just
as is mentioned in the previous section, the smaller the granularity is, the more BRAM
resource is used and wasted. Assumed that granularity is one byte, so all of write address
conflicts and many read address conflicts can be eliminated. But each engine requires
256KB of BRAM as computed in section 3.3.2.1, and the system is designed to have 16

build 0.18



28 CHAPTER 3. METHOD ANALYSIS

Figure 3.11: Write conflicts as a function of granularity

engines, yields 4MB of BRAM, which is a huge consumption and waste of resource. For
the Xilinx KU15P, there is only about 4MB of BRAM resource being supported.

If we examine Table 3.3 and Table 3.4 more deeply, the statistics show that there
are much more read address conflicts than write address conflicts. Also, the decrease
of granularity has little effect on write address conflicts. Thus, we propose a structure
that could eliminate all of the read address conflicts but does not affect write address
conflicts. In this structure, two identical BRAM blocks of 64KB each will be used, and
the granularity is 8 bytes, so 16 primitives of RAMB36 form a BRAM block. Two BRAM
blocks share their write ports but have independent read ports, which can guarantee that
at any time the data written into two BRAM blocks is the same. Besides, independent
read ports make independent read operations of two copies possible.

3.4 FPGA logic resource

3.4.1 Special copy

Normally, assuming that for the output file, the start output address of a copy is denoted
as “op”. A copy contains information about offset and length, denoted as (offset, length),
then the copy needs to read data from output file itself. It reads “length” bytes of data
from the start address of “op-offset” in the output file.

However, the possibility that the offset is less than the length exists, which means
that copy can only read “offset” bytes of data because the following data is the copy
itself and has not been written into the output file. In this case, the number of bytes
being read varies from 1 to 63, and the range of copy length is from 4 to 64. Hence,
there are lots of combinations of offset and length which will consume a large number
of hardware resources. To solve this issue appropriately, at first the frequency that this
problem occurs should be gathered as statistics. Table 3.5 gives the frequency of special

build 0.18



3.4. FPGA LOGIC RESOURCE 29

copy in several sample files.
As can be seen from the Table 3.5, the frequency where the offset is less than the

length is extremely low. It is not reasonable or realistic to consume too much hardware
resource for this problem. Thus, an extra software module that can preprocess the
compressed file could be added before hardware decompression. This module will be
implemented via software on the CPU. Its function is splitting a special copy into many
sub-copies, for example, a special copy with the offset of 3 and the length of 7; then it
will be cut into three copies, which are (3,3), (3,3) and (3,1). However, a copy whose
length is less than 4 bytes is not supported by the Snappy algorithm, which is mentioned
in section 2.4. Some small changes can be made on compression program for solving this
problem. For example, for type “01” copy, the 2∼4 bits may not represent “length-4”
but represent “length-1”. Alternatively, we could even add a new type of copy to indicate
this special case.

Both methods would lead to a throughput penalty, extra cycles are needed to process
each particular copy, but this penalty is small and acceptable due to the low frequency
of occurrence. Also, in a future implementation, the preprocessing done by the CPU
could be transferred to the FPGA.

Table 3.5: Special copy statistics

Test
File

num copy num literal num token num offset<len % offset<len

TPCH 1448929 255612 1704541 425 0.02933201

gbbct162.aso 10368744 5106536 15475280 382786 3.691729683

gbbct168.aso 9848745 4638536 14487281 335142 3.402890419

gbbct1.aso 9942758 3706722 13649480 505973 5.08885965

In this thesis, we do not implement this software module due to time reason. This
part of work is not difficult or complex. During behavior simulation, to get a correct
uncompressed file, we unblock the VHDL code that would consume too much resource
and is used to solve the special copy. However, during synthesis and implementation,
we assume that the special copy issue has been solved and we block the related VHDL
code.

3.4.2 The choice of write mode of BRAM

As is discussed in section 3.3.1, the architecture whose BRAMs working in READ FIRST
mode has more potential data dependencies than that whose BRAMs working in
WRITE FIRST mode. Therefore, the modules related to data dependency and shown
in section 4.2.3 and 4.2.4 would get much more complex. The section 3.3.1 also men-
tions that a primitive cannot be configured in WRITE FIRST mode for a common clock
design. Thus, a wrapper is added outside of each primitive to make BRAM behave just
like in WRITE FIRST mode. The BRAM primitive itself still works in READ FIRST
mode.

In the initial design of this thesis, the wrapper is not used, and each primitive is
configured in READ FIRST mode, which leads to the whole hardware architecture ex-

build 0.18



30 CHAPTER 3. METHOD ANALYSIS

cept for BRAM blocks consuming 81% of look-up table(LUT) resource of Xilinx KU15P.
However, after changing write mode with so-called WRITE FIRST mode, it only con-
sumes 17.43% of LUT resource. It is reasonable to save such a huge logic consumption
at the cost of a little logic resource of BRAM. Hence, in this thesis, write mode is con-
figured in pseudo WRITE FIRST mode. The detailed configuration method is shown in
section 4.2.5.

build 0.18



Implementation 4
This chapter introduces how the architecture is implemented and the function of each
module. The implementation mainly focuses on the design of a single engine which can
process at most two tokens per cycle. The hardware module is implemented by VHDL.

4.1 System level design

There are 16 decompression engines, in total, in the system. The AFU can get 128 bytes
per cycle via OpenCAPI from main memory and then the data needs to be transferred
to one of the engines. Each decompression engine can read 8 bytes per cycle from its
128 bytes of the input buffer. As discussed in chapter 3, different engines are responsible
for different compressed blocks, so in principle, there is no dependency between any two
engines. An engine emits a read request to show that it has already consumed the 128
bytes of data and is ready to read new data. An engine also emits a write request only
after the corresponding compressed block is completely decompressed. If there is only
one engine emitting a request at one cycle, then the arbiter will respond to its request.
However, the possibility that more than one engine emit request exists. Then, an arbiter
that decides which engine could get data is necessary. Figure 4.1 illustrates the system
level diagram.

Figure 4.1: System level diagram

31



32 CHAPTER 4. IMPLEMENTATION

The upper arbiter in Figure 4.1 is responsible for read requests, each time, it selects
one of the engines emitting read requests and transfers the input data to the input buffer
of that engine. Once a read request from an engine is responded to, the AFU needs to
fetch the 128 bytes data from the compressed block corresponding to that engine.

The other arbiter in Figure 4.1 processes write requests. It selects one of the engines
emitting write requests as an output. Once a write request from an engine is responded,
the corresponding engine would read a line of data, starting from the first line of BRAM
block, per cycle. Each line of a BRAM block occupies 128 bytes, and each BRAM
block contains 512 lines. The data that is read will first pass through a CRC32 module.
Finally, the data passes a filter, and the filtered output reaches the OpenCAPI. After
the whole uncompressed data is emitted, the result of CRC32 module will be compared
with the CRC code of the original file.

4.1.1 Arbiter

Two types of arbiters are common: the Round-Robin arbiter and Fixed-Priority arbiter.
If the priorities of engines are given an initial condition, for example, the engine whose
subscript is smaller has a higher priority. When multiple engines emit a request simul-
taneously, a Round-Robin Arbiter will first respond to the engine whose priority is the
highest. Next, the arbiter will update its priorities; all of the engines except for the one
that has been responded to increase their priorities by one. The engine that has been
responded to would be assigned the lowest priority. However, a Fixed-Priority arbiter
will never update the priorities of engines.

In this thesis project, each kind of arbiters is feasible, but Round-Robin arbiter
is more suitable because, generally, the engine that was just responded to still needs
multiple cycles to process the data.

4.1.2 Filter module

The filter can select a part of the data according to a specific filter algorithm. In this
thesis, output data rate of 16 decompression engines tends to exceed the bandwidth
requirement of OpenCAPI. The filter is used to reduce the output throughput to make
the design meet the bandwidth requirement.

The filter is not a main or important module in this thesis. Thus, the function of
filter does not have to be too complex. To filter the correct uncompressed data, a filter
can be enabled after an entire compressed block is completely decompressed. At that
time, the filter needs to read data from BRAM, filter the data, and output filtered data.
For simplicity, the function of the filter is selecting characters from “0” to “9”, which
corresponds to the binary codes from 30H to 39H.

4.1.3 CRC32 module

A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital
networks and storage devices to detect accidental changes to raw data. CRCs are popular
because they are simple to implement in binary hardware, easy to analyze mathemati-

build 0.18



4.1. SYSTEM LEVEL DESIGN 33

cally, and particularly good at detecting common errors caused by noise in transmission
channels [25].

There is a constant called generator polynomial working as the divisor. The most
commonly used polynomial lengths are 9 bits (CRC-8), 17 bits (CRC-16), 33 bits (CRC-
32), and 65 bits (CRC-64). In this thesis, our final target file is Parquet file, and each
page header includes an “i32 crc”, which is shown in Figure 2.4. Hence, CRC-32 is
preferred, and the corresponding generator polynomial is 0x04C11DB7 (a public value).
Because the MSB of a generator polynomials is one, the MSB is omitted. That is why
CRC-r could represent r+1 bits.

The raw data (before compression) in a column chunk of Parquet file is divided by
the generator polynomial, the resulted remainder is so-called CRC code or check value,
which is stored in “i32 crc”. The decompressed data also goes through the process that
the raw data goes through, after that, a remainder is also obtained. Finally, “i32 crc” is
compared with that remainder, if they are equal, then decompression is considered to be
correct. Otherwise, the decompression is considered to be wrong. One thing to note is
that CRC cannot 100% detect whether the decompression is correct, but its accuracy is
extremely high. Although the accuracy depends on the selection of generator polynomial,
the well-known value is feasible without doubt.

4.1.4 Architecture of a single decompression engine

Figure 4.2 shows the block diagram of a single engine that can be divided into five parts,
which are the parser, FIFO, conflict detector, alignment module and BRAM module.

Figure 4.2: Single engine

The parser reads 8 bytes per cycle from the input buffer whose size is 128 bytes if
the parser receives the enable signal from the FIFO. Then the parser can output four
groups of signals which are used to describe the information of at most four tokens.

The FIFO has 4 data input ports and 2 data output ports. At each cycle, at most
four tokens can be written into the FIFO and at most two tokens can be read from the
FIFO. The FIFO will also give an almost full signal that can be used as the enable signal
to the previous module.

The conflict detector reads at most two tokens from the FIFO module, and detects

build 0.18



34 CHAPTER 4. IMPLEMENTATION

the data dependency and write address conflicts between two tokens. It emits the same
write signals to both of BRAM blocks but emits independent read signals to the BRAM
blocks. Other signals used for describing the token or conflict will be transferred to the
alignment module.

The alignment module is a combinational logic module. It receives signals from both
BRAM blocks and the conflict detector. It has only one output which is connected to
the data input ports of BRAM blocks.

There are 2 BRAM blocks within one engine, with each containing a copy of the
decompressed output block up to 64KB. The BRAMs have common write ports but
independent read ports to ensure that at any time the data stored in the two BRAMs
is same. After a whole compressed block is decompressed completely, the uncompressed
data in one of BRAM blocks is read out to the filter module. Because the data can be
read out to the filter module at 256 bytes per cycle if both BRAMs are used and data is
produced, on average, at 8.3∼15 bytes per cycle, the engine is available for decompression
90% percent of the time.

4.2 Module design

In this section, I/O ports and the detailed function of each module is introduced. All of
modules in this section are implemented by VHDL.

4.2.1 Parser module

The parser is a two-stage pipeline structure. To successfully decompress a token accord-
ing to the data format of the compressed file, first, the copy length and offset have to be
obtained for a copy, and the literal length and literal content itself have to be obtained
for a literal. The parser is just used to parse the compressed data, extract this informa-
tion from the input, and emit the decoded tokens. Figure 4.3 shows the I/O ports of the
parser module.

As can be seen in Figure 4.3, “en” comes from FIFO module. The parser is enabled
when the number of data stored in FIFO module does not exceed the threshold value.
“ip start” is 16-bit wide, it means the start input address of a compressed block, and
its initial value is zero. “ip limit” means the size of compressed data in a compressed
block. In a compressed block, the first several bytes indicate the uncompressed size of
the compressed block, which will not be considered into “ip limit”. These two input
ports would be given by the CPU. “din” is the 8 bytes of data being read from 128 bytes
of input buffer.

A token occupies at least two bytes, and the parser reads 8 bytes per cycle. Hence,
there are at most four tokens within one cycle, that is to say, the effective number of
parsed tokens varies from 0 to 4. Thus, the outputs of the parser contain information for
at most four tokens. Each output port is an array that has four elements, one per token.
“writer en” is 4-bit wide and each bit of it indicates whether the corresponding token is
valid. Each bit of “writer token type” shows the token type of the corresponding token,
where 0 and 1 represent literal and copy, respectively. “writer len” indicates how many
bytes of literal content or copy can be written into BRAMs. “writer offset” indicates

build 0.18



4.2. MODULE DESIGN 35

Figure 4.3: I/O ports of parser module

the offset of a copy, it equals zero for a literal. At last, “dout” only represents the literal
content itself that has to be written into BRAMs, for a copy, it is equal to zero. Hence, to
completely describe a token, a 98-bit wide data is necessary, where 98=1+1+16+16+64.
That is why the width of the FIFO module is 98 bits. The internal function and structure
of parser is shown in Figure 4.4.

As can be seen from the Figure 4.4, the parser module contains two stages.

• Stage 1

During the first stage, each byte of the input bytes is considered as a possible tag byte.
The input 8 bytes are transferred to each of 8 decoders and then decoded independently.
Assuming that n is an integer from 0 to 7. The n-th decoder receives the input 8
bytes and considers the n-th byte of input 8 bytes as a tag byte. Next, it extracts the
information according to the input data from the n-th byte to the 7-th byte. That is to
say, the data before the n-th byte will not be considered. After the decoding, 8 groups
of possible decoded data can be obtained, one per token, where each group contains 7
signals, which are “maybe token type”, “maybe len”, “maybe offset”, “maybe extra”,
“maybe header finish”, “maybe data” and “maybe next tag”. The detailed definition is
as follows.

The first five signals are used to describe a possible token. “maybe token type” is a
1-bit signal, where 0 represents literal and 1 means copy. “maybe len” indicates literal
length for the literal or copy length for the copy. “maybe offset” represents the offset of
the copy, if the token is a literal, then it equals zero. “maybe extra” equals the number
of extra bytes. The number of extra bytes of a literal ranges from 0 to 2, while that of
a copy can only be 1 or 2. “maybe header finish” is also a 1-bit signal that indicates
whether the header of this token is cut by the boundary of 8 bytes of input data, 1 means
that the header of the token is not cut by boundary, while 0 means that the header of the

build 0.18



36 CHAPTER 4. IMPLEMENTATION

Figure 4.4: Internal structure of parser module

token is cut off, and there will be remaining parts of header in the input of next cycle.
“maybe data” is the input data after being right shifted; because there are 8 groups of
data, the input data should be logically shifted rightwards from 0 to 7 bytes. This signal
is only used to transfer the literal content if the content of one or more literals is included
in the input 8 bytes, then the “maybe data” can contain all of the possible situations. At
last, “maybe next tag” indicates the address of next tag byte in the compressed block.

The working principle of a decoder is based on the structure of a compressed token,
which is shown in Figure 2.6 and 2.7. The decoder can directly obtain the information
about the token type, the number of extra bytes, the token length and the copy offset.
The “maybe header finish” can be determined by both the number of extra bytes and the
position of the byte considered as a tag byte. The “maybe next tag” can be computed
from the position of the tag byte, the number of extra bytes, and literal length (only if
the token is a literal).

However, two things should be kept in mind. The first thing is that the possible tag
byte may not be an actual tag byte, because the tag byte of literal or copy has its range
of values, for example, if the lower 2 bits of the possible tag byte is “11” then this byte
cannot be an actual tag byte anymore. The second thing is that the header of a possible
token may be cut off by the boundary of the 8 bytes. The header (tag byte + extra
bytes) of a token occupies at most 3 bytes. Hence, the decoder6 and the decoder7 may
not give the completely decoded data, which does not matter. It is feasible for these two
decoders to give decoded information as much as possible. The incompletely decoded
data will be recorded and then recomputed again in the second stage.

build 0.18



4.2. MODULE DESIGN 37

• Stage 2

The second stage is related to 5 selectors, from selector0 to selector 4. Although we
assume that each byte is a tag byte of a token in the 1st stage, it is impossible for 8 bytes
of data to contain 8 tokens. Namely, it is impossible that all the decoders give a correct
and real group of data. As is discussed before, 8 bytes of data can contain at most 4
tokens. That is why only 4 of 5 selectors can output their results, which is reasonable
and sufficient. Each selector has 5 outputs, “writer en”, “writer len”, “writer offset”,
“writer token type” and “dout”, but only 4 of 5 selectors are able to transfer these
signals to next module. All the selectors are able to have access to the outputs of the
1st stage.

During the second stage, there is a strict order among 5 selectors. The selector with
a lower index would execute its function first. The selector0 can output its results only
if the final token at previous cycle is cut by the boundary. Otherwise, if the first byte
at this cycle is not a hypothetical but an actual tag byte, selector0 would not output its
results. There is a 1-bit signal named “selector0 flag” indicating whether selector0 could
output its results. If “selector0 flag” is 0, then selector1∼selector4 could output their
results, otherwise, selector0∼selector3 could output their results.

A selector being able to emit its results does not mean the results are valid. Specifi-
cally, from selector1 to selector4, the selector whose index is smaller has a higher priority,
which means, for example, if the selector1 cannot output a valid token, then the selec-
tors after that cannot, neither. Things are different between selector0 and selector1, if
selector0 can output its valid results, then the address of next tag byte computed from
selector0 would decide whether selector1 could output a valid token. Otherwise, as dis-
cussed above, selector1 can output a valid token, because the first byte in the 8 bytes
of data at this cycle is a tag byte. A valid literal means that the literal being emitted
should includes at least one byte of literal content. A valid copy means the length and
offset are complete and correct.

If a token is cut by the boundary, there are 2 types of cutting, the one is that the
header of a token is cut, the other one is the literal content of a literal is cut. Concrete
examples can be seen in Figure 4.5.

As is known that a token may be cut by the boundary of 8 bytes of data. Thus,
storing the information of boundary and how the unfinished token is cut by boundary
is very important for correct selection in the next cycle. 8 signals describing boundary
information are stored in the boundary information register, and then transferred to
the parser module itself at next cycle, so that the selectors could adopt corresponding
operations according to boundary information at next cycle.

The 8 signals that will be transferred to parser module itself are “un-
finish extra byte”, “unfinish offset”, “unfinish token type”, “unfinish len”, “unfin-
ish next tag”, “unfinish tag offset”, “literal finish” and “header finish”. “unfin-
ish extra byte”, “unfinish offset”, and “unfinish token type” describe the number of ex-
tra bytes, copy offset, and token type of the token that is cut by the boundary. If the
header of a token is cut, “unfinish len” represents the length of that token, if the literal
content is cut, “unfinish len” represents how many bytes left that have to be written.
“unfinish next tag” indicates the address in the compressed block of next tag byte. “un-

build 0.18



38 CHAPTER 4. IMPLEMENTATION

Figure 4.5: Two types of the token being cut

finish tag offset” is used to record the position, in the 8 bytes of input data, of the tag
byte of unfinished token, which ranges from 0 to 7. “literal finish” and “header finish”
describe whether the literal content and the header of a token are cut by boundary,
respectively. It should be noted that in some cases the value of “unfinish next tag”,
“unfinish offset” and “unfinish len” may not be correctly computed. There are only 2
cases that would lead to the wrong computation. The one is that the header of a copy
is cut, which leads to wrong computation of “unfinish offset”. The other one is that the
header of a literal is cut, which leads to wrong computations of “unfinish next tag” and
“unfinish offset”. Even so, there is no need to worry about that, all useful information
is temporally stored in corresponding signals, and selector0 will continue to compute the
correct value of them at next cycle.

Because the minimum length of a token is 2 bytes, general conclusions can be obtained
as follows. The second token can only start from one of the bytes after byte0. The third
token can only start from one of the bytes after byte2. The fourth token can only start
from one of the bytes after byte4. Although byte7 may be the tag byte of the fifth token,
the token cannot be emitted to next module. Because the complete information cannot
be obtained only from the tag byte. Even if the token is a literal without extra bytes,
the literal content itself is still unknown so that the following modules will not know
what to write.

Finally, the detailed function of selectors is introduced. When starting to parse a
compressed block, the boundary information is initially set to values, which guarantees
that the selector0 is not used. The boundary information will be updated before the

build 0.18



4.2. MODULE DESIGN 39

Figure 4.6: I/O ports of FIFO

end of each cycle, thus, if the very first cycle of 8 bytes data can be correctly parsed,
then, the following data will also be correctly parsed. selector0 is only used to process the
unfinished token, it can recompute the incomplete signals from the boundary information
register to obtain a correct value. Each of selectors from selector1 to selector4 will
compute and transfer a signal, which indicates whether the next tag byte is still in the
current 8 bytes of input data, to the next selector.

4.2.2 FIFO module

The FIFO module is an asymmetrically circular FIFO which has four write ports and two
read ports. Because the parser module outputs at most four effectively parsed tokens per
cycle, and the following module, the conflict detector module, reads at most two tokens
per cycle. Hence, this FIFO has four write ports and two read ports. The FIFO width is
98 bits containing 64-bit wide “din”, 16-bit wide “writer len”, 16-bit wide “writer offset”,
1-bit wide “writer token type” and 1-bit wide “writer en”. FIFO depth is 16 (4 bits).
Figure 4.6 illustrates the I/O ports of the FIFO. The “we” port is connected to the
“writer en” port of the parser module. “din” is an array containing 4 elements and is
connected to parser module, besides, each element is 98-bit wide. “re” and “dout” are
connected to the conflict detector. “fifo not full” equals 1 when internal count of tokens
is less than 8.

build 0.18



40 CHAPTER 4. IMPLEMENTATION

Figure 4.7: Internal structure of FIFO

Although there is more than one read or write port, the read ports or the write ports
do have different priorities. That is because, as is mentioned in section 4.2.1, the five
selectors also have different priorities, which also affects their outputs.

The FIFO module is a circular FIFO, which means the read pointer, denoted as
“rpointer”, does not have to be always smaller than the write pointer, denoted as
“wpointer”. Figure 4.7 shows how the internal count is computed and how the almost
full signal is obtained.

“rpointer”, “wpointer” and “internal count” are 4-bit wide. Before the end of each
cycle, “wpointer” and “rpointer” may increase by 0∼4 and 0∼2, respectively. If the value
of “rpointer” or “wpointer” is “1111B”, then it will be 0 after increasing by 1. There
is an internal signal named “internal count” counting the effective number of tokens
stored in FIFO. The comparator outputs one if “wpointer” is larger than “rpointer”,
otherwise, it outputs 0. Next, the MUX will select one of two inputs as output according
to the relationship between “wpointer” and “rpointer”. The “internal count” is further
compared with 8, if it is less than 8, the comparator outputs 1, otherwise, it outputs
0. To be more precise, it is an almost full signal with a threshold of 8. The threshold
value sufficiently considers the latency between FIFO and the modules before FIFO. The
FIFO should have sufficient space to store tokens of one extra cycle after “fifo not full”
becoming 0. In the worst case, assuming that the “internal count” becomes seven after
one cycle, then the FIFO could still be written into by at most eight tokens. If the
width of address is n bits, the threshold value can always be set as 2n-8. Hence, 4 is the
minimum value of n, which could also save many resources. “fifo not full” is used as the
enable signal of the parser module.

For write ports, four groups of input data are always written into the FIFO. However,
the value of “wpointer” may increase by 0∼4 only according to “we”. “we” is a 4-bit
port connected to “writer en” port of the parser module. From the lowest significant bit
(LSB) to the most significant bit (MSB) of “we”, only continuous “1” can be computed

build 0.18



4.2. MODULE DESIGN 41

into the increment of “wpointer”. For example, if “we” equals “1101B”, then only the
first token is valid and “wpointer” is increased by one.

Things are different for read ports, the increment of “rpointer” has to be determined
by both “re” and “internal count”. Even if “re” equals “11”, it does not mean that two
valid outputs can be read, because “internal count” may be less than 2. Therefore, read
ports cannot always output two valid tokens stored in the FIFO. If valid tokens cannot
be read, the FIFO would output an all-zero signal for that read port to indicate that the
output is invalid.

4.2.3 Conflict detector module

The conflict detector detects the type of data dependency, determines whether a write
address conflict exists, and emits read and write signals to the BRAM blocks. Figure 4.8
illustrates the I/O ports of the conflict detector.

Figure 4.8: I/O ports of conflict detector

As can be seen in Figure 4.8, the ports from “writer en” to “din” are connected to the
FIFO module. These ports contain the information of two tokens. “uncompressed len”
is given by CPU and it means the size of the uncompressed file which can be obtained
from the first several bytes of each compressed block. As for output ports, the ports from
“re” to “we” are connected to corresponding ports of two BRAM blocks. The ports from
“cur writer en” to “cur op” are connected to alignment module. “fifo re” is connected
to the “re” port of FIFO module. “finish” indicates whether the compressed block is
completely decompressed. “cur op” means the start byte address of the first token of
two tokens which are going to be emitted to BRAM.

build 0.18



42 CHAPTER 4. IMPLEMENTATION

Figure 4.9: Three-stage structure of conflict detector

Normally, a single engine needs to process two tokens per cycle, that is to say, the
conflict detector reads two tokens per cycle from the FIFO module. The two tokens have
4 possible combinations, literal/copy, literal/literal, copy/literal and copy/copy. Each
literal can emit at most 8 bytes per cycle because the input data of the parser is 8 bytes
per cycle, long literals will be cut into many sub-literals. Therefore each copy can write
at most 64 bytes. The conflict detector has a three-stage pipeline architecture, which
is illustrated in Figure 4.9. The first stage detects data dependencies and write address
conflicts, the second stage emits read signals, and the third stage emits write signals. The
signals include “1d” and “2d” meaning one cycle delay and two cycles delay, respectively.

The function of the first stage is detecting data dependencies and write address
conflicts. There is a special internal FIFO inside this stage. The depth of internal FIFO
is 8 (3 bits) and the width of FIFO is 98 bits. The internal FIFO is also a circular FIFO
just like the FIFO module. The FIFO is used to store tokens that are stalled due to write
address conflicts. Therefore, at the same cycle, the tokens stored in the internal FIFO
have a higher priority than those being read from FIFO module. In the internal FIFO,
the token that is stored earlier has a higher priority. “internal count” is the number of
effective tokens stored in the internal FIFO.

There are two sources of tokens that can be emitted. The first source is the input
tokens of the conflict detector. The second source is the tokens stored in the internal
FIFO. Not all the tokens from the two sources are valid. The first stage of the conflict
detector selects two tokens from the two sources. If the “internal count” is larger than
one, both tokens are from the internal FIFO, if the “internal count” is one, the first
token comes from the internal FIFO and the second one comes from the input tokens,
if the “internal count” is zero, both tokens are from the input tokens. Next, the exact
number of tokens that can be emitted has to be determined, possible values are 0, 1, and
2. 0 means both tokens are invalid. There are two cases for the value of 1. One case is
that both tokens are valid. However, the write address conflict exists, then the conflict
detector only emits the first one of two tokens and stores the other one into the internal

build 0.18



4.2. MODULE DESIGN 43

FIFO. The other case is that only the first token is valid. 2 means that both tokens are
valid and there is no write address conflict between them. Only for the value of 2, data
dependencies have to be considered.

There are two signals about data dependency, which are “conflict type” and “con-
flict offset”. “conflict type” has 3 possible values which are 0, 1, and 2. The range of
“conflict offset” is from 0 to 63. Figure 4.10 gives examples of three types of data de-
pendency, where “token0” and “token1” represent the first and the second token at the
current cycle. The token1 in this Figure is assumed to be a copy, if it is a literal, then
the conflict type is 0.

Figure 4.10: Three possible values of conflict type

The arrows in Figure 4.10 indicate the direction of data flow of a copy. The data
of previous tokens has already be written into BRAM. When the conflict type is 0, the
data dependency does not exist between token0 and token1. If conflict type is 1, then it

build 0.18



44 CHAPTER 4. IMPLEMENTATION

means that the token1 has to read data from both previous tokens and token0. If conflict
type is 2, namely, the token1 only reads data from token0, thus, a read operation for
BRAM is not needed.

If the BRAM start read address of token1 is denoted as “rd st1”, then the “con-
flict offset” is equal to the absolute value of the difference between “op” and “rd st1”,
where “op” is the start write address of the token0, and “op” is updated before the end
of each cycle. If the token1 is a literal, the “conflict offset” is also 0. Hence, if both
“conflict type” and “conflict offset” are known, then everything about data dependency
can be determined so that related operations can be performed.

The second stage transfers intermediate signals to the third stage and emits three
read signals, which are “raddr0”, “raddr1” and “re”, to the two BRAM blocks.

The third stage transfers intermediate signals to outputs that are connected to the
next module (alignment module), in addition, it also emit three write signals, which are
“waddr”, “wren” and “we”, to the two BRAM blocks. Finally, “finish” shows whether
the compressed block is completely decompressed according to the comparison result of
“op 2d” and “uncompressed len”.

4.2.4 Alignment module

The alignment module is a combinational module. It receives signals from both the
conflict detector and BRAMs, and it only has one output which is connected to the data
input port of BRAMs. The I/O ports of the alignment module can be seen in Figure 4.11.

Figure 4.11: I/O ports of the alignment module

As is shown in Figure 4.11, the ports excluding “rst” at the left side are connected
to the conflict detector, the “rd buf0” and “rd buf1” are connected to the data output
port of two BRAM blocks, respectively. The “bram in” is connected to the data input
port of both BRAM blocks.

build 0.18



4.2. MODULE DESIGN 45

Specifically, because the BRAM works in WRITE FIRST mode, only the intra-stage
data dependency exists. The design of the alignment module is illustrated in Figure 4.12,
where “CL” means computational logic.

Figure 4.12: Internal structure of the alignment module

The “inputs” contain all the information of two tokens. “cur writer en” indicates
whether two tokens are valid or not. “CL0” and “CL1” are computation units to obtain
the content of token0 and token1, respectively. The function of “stitch” is integrating
the content of token0 and token1 into one buffer. The “shifter” shifts the data in the
write buffer to fit the data input port of BRAM blocks. Finally, the MUX will select one
of inputs as the output according to “cur writer en”. For the cases that “cur writer en”
equals “10” or “00”, “bram in” remains unchanged. The order of “CL0” and “CL1”
shows the data dependency between token0 and token1.

4.2.5 BRAM module

In this thesis project, 16 RAMB36 configured as SDP RAMs form a BRAM block whose
data port width is 128 bytes, and each SDP RAM supports a 64-bit port width. Although
each RAM occupies 36Kbit, the actual space that can be used to store data is 32Kbit,
yielding 512 (depth) x 64 (width).

As is discussed in section 3.4.2, a Xilinx KU15P does not support WRITE FIRST
mode for a common clock. Thus, an improvement method that we add a wrapper for
each SDP RAM to make it work just like in WRITE FIRST mode in the case of common
clock is proposed. The BRAM primitive itself still works in the READ FIRST mode.
The modified SDP RAM is illustrated in Figure 4.13.

build 0.18



46 CHAPTER 4. IMPLEMENTATION

Figure 4.13: Modified simple dual port RAM

The D flip-flop maintains the input signals unchanged after the rising edge of clock.
The comparator denoted by “C” outputs “1” only when its inputs are equal. Hence, the
“write first” indicates whether the address collision exists. Bit expansion expands “we”
up to 64 bits. Each bit of “we” shows whether the corresponding byte of “din” is written
into BRAM. Therefore, each bit becomes 8 bits after bit expansion, the value of the 8
bits can only be 00H or FFH according to the value of the bit before bit expansion. The
“temp dout” always gives the old data because the SDP RAM works in READ FIRST
mode. The output of OR gate gives the newly written data, and then the MUX selects
one of inputs according to “write first”. In conclusion, the modified SDP RAM works
just like in WRITE FIRST mode. Figure 4.14 shows the structure of one BRAM block.
This Figure shows that one BRAM block contains 16 modified SDP RAM.

There are two identical BRAM blocks which share their data input, write enable,
byte-wide write enable and write address. However, they have independent data output,
read enable and read address. The interconnection of two BRAM blocks can be seen in
Figure 4.15. Some ports contain two brackets with each having a number in it. The first
number indicates the number of elements of the array, while the second one is the size
of an element.

As can be seen in Figure 4.11 and Figure 4.2, “wren”, “we” and “waddr” of both
BRAM blocks are connected to the third stage of the conflict detector module. The
“re” and “raddr” ports of two BRAM blocks are independent and are connected to the
second stage of the conflict detector. The “din” is connected to the “bram in” port of
alignment module. The “dout” port of BRAM block0 and BRAM block1 are connected
to the “rd buf0” and “rd buf1” of alignment module, respectively.

build 0.18



4.2. MODULE DESIGN 47

Figure 4.14: BRAM block

Figure 4.15: Interconnection between BRAM blocks

build 0.18



48 CHAPTER 4. IMPLEMENTATION

build 0.18



Experimental Results 5
In this chapter, some extra modules that are only used for simulation are introduced.
Simulation and synthesis results are also presented. The statistics and experimental
results of several benchmarks are shown and discussed. The type of FPGA is the Xilinx
KU15P.

5.1 Experiment setup

5.1.1 Experiment platform

Xilinx KU15P FPGA supports 34.5Mbit Block RAM resource, 522720 CLB LUTs, and
1045440 CLB registers. Modelsim SE-64 10.4 is used for behavior simulation. The
clock period of behavior simulation is 10ns. Vivado 2017.1 is used for synthesis and
implementation. The initial clock frequency is constrained to 200MHz. The flatten
hierarchy is configured as none, and other settings of synthesis are default values. For
implementation, only the opt design is enabled.

5.1.2 Benchmarks

The behavior simulation uses 8 benchmarks. “SampleTextFile 50KB.txt”, “Sample-
SQL-File-500-Rows.sql”, “SampleCSVFile 11kb.csv” and “SampleXLSFile 38kb.xls”
are from [26]. “embl.txt”, “HIV Dataset.txt”, “FastaSeqCL.txt”, and “Beck-
man Sample.txt” are from [27]. “embl.txt” is a bionumerics sample text file for import.
“Beckman Sample.txt” is a VNTR sample peak table. Table 5.1 shows the statistics of
these benchmarks.

Table 5.1: Basic information of benchmarks

Benchmark
compressed

size (byte)

uncompressed

size (byte)

compression

ratio (x)

num copy num literal num token av size input av size output

SampleXLSFile 38kb.xls 18618 38912 2.090 3804 2060 5864 3.175 6.636

SampleTextFile 50KB.txt 19335 50537 2.613 6931 658 7589 2.548 6.659

Sample-SQL-File-500-Rows.sql 25775 43511 1.688 4621 1584 6205 4.154 7.012

SampleCSVFile 11kb.csv 6535 10998 1.683 833 524 1357 4.816 8.105

Beckman Sample.txt 12514 26770 2.139 2940 1173 4113 3.042 6.509

embl.txt 19647 63003 3.207 6291 729 7020 2.799 8.975

HIV Dataset.txt 23343 60475 2.591 10493 387 10880 2.145 5.558

FastaSeqCL.txt 10202 21263 2.084 4514 198 4712 2.165 4.513

49



50 CHAPTER 5. EXPERIMENTAL RESULTS

5.2 Modules used for behavior simulation

In this section, the modules that are used for simulation are introduced. The intercon-
nection among these modules and hardware modules is shown in Figure 5.1.

Figure 5.1: Interconnection between hardware and simulation modules

Specifically, first, raw data (uncompressed or original file) is compressed by the
Snappy algorithm on the CPU. Then, the compressed file is transformed to a text file,
where each character represents a bit in the compressed file. The reason why this module
exists is that VHDL can read text files through the TEXTIO package. Next, the read
file module reads in transformed data from the output file of the previous module line
by line. Each line represents 8 bytes of compressed data. After the whole compressed
block is decompressed, the write file module reads data from BRAM module line by
line and writes it into the output file. Each line occupies 128 bytes. The next module
after write file module transforms each character into a bit. Finally, a decompressed file
in binary code is obtained. The correction module is used to verify the correctness of
decompression.

5.2.1 Compressed file transform module

This module is implemented by software on the CPU. First, it reads the compressed file
and parses the first several bytes of the input file, by which the uncompressed file size
and input file size (excluding first several bytes that represents uncompressed file size)
can be obtained, and these two variables are noted as uncompressed len and ip limit,
respectively. Both of them are written to the first line of the output file (text format).
From the very first byte that is not related to the uncompressed file size until the end of
the input file, every 8 bytes of input data is written as a line into the output file. There
is a transform inside this module; each binary bit is transformed into an ASCII code,
“0” or “1”, and then stored in output text file. After every 8 bytes are transformed, an
extra line feed character is written, because the following module can only read data in

build 0.18



5.2. MODULES USED FOR BEHAVIOR SIMULATION 51

units of a line. In this way, each line of text file contains 64 characters. An example of
output format of this module is illustrated in Figure 5.2.

Figure 5.2: File format of the output of compressed file transform module

5.2.2 Read file module

This module is designed via VHDL using TEXTIO package, after the rising edge of
the clock, the module will read the input file (text format) line by line and transfer
the data to next module once the enable signal is set. At the first cycle, the first
line indicating uncompressed len and ip limit is transferred to two different ports of
the following module. After the first cycle, the output is the compressed data itself.
Figure 5.3 shows the I/O ports of this module.

Figure 5.3: Read file module Figure 5.4: Write file module

5.2.3 Write file module

The write file module is also designed via VHDL using TEXTIO package. This module
is used to read uncompressed data from the BRAM block and write into a text file. Once
all the input data is decompressed, the conflict detector produces a flag named “finish”
which is used as the enable signal of the write file module. The write file module reads
128 bytes from the BRAM block per cycle and writes them into a line of the text file.

build 0.18



52 CHAPTER 5. EXPERIMENTAL RESULTS

“raddr” increases by one before the end of each cycle in order to get the next line of
uncompressed data from the BRAM block. There is a transform in this module that
transforms each bit of 128 bytes data into an ASCII code of a character, “0” or “1”, and
then stores this in the text file, which has the similar format shown in Figure 5.2. The
difference is that each line of the output file of this module contains 1024 characters.
Figure 5.4 illustrates the I/O ports of this module.

5.2.4 Uncompressed file transform module

Each line of the text file contains 128 bytes, but they are displayed and stored as ASCII
codes. Therefore, this module transforms ASCII code into binary code, and every 8 char-
acters are transformed into a byte. This procedure is an inverse process of the compressed
file transform module. The output file of this module should be the uncompressed file
itself. This module is implemented via C language on the CPU.

5.2.5 Correction module

This module is also implemented on the CPU. It can read two binary files. The one is
the original file before compression. The other one is output file of the uncompressed file
transform module. It then compares each corresponding byte of the two files until the end
of the original file. Once a mismatch is found, then a conclusion that decompression is
wrong can be drawn. All of the files listed in the Table 5.1 are successfully decompressed
by our design.

5.3 Behavior simulation results

Each benchmark is compressed, transformed, parsed, decompressed, then read out. The
simulation results in this section shows how many cycles the decompression procedure
takes and how many cycles the reading out procedure takes. In principle, in our design,
each BRAM block contains 512 lines with each line having the port width of 128 bytes.
Hence, the reading out procedure would take at most 512 cycles. The simulation period
in this section is 10ns.

The clock period of the behavior simulation is 10ns, and the system in behavior
simulation starts to work at 25ns. Hence, the input and output throughput and be
computed, and is shown in Table 5.2.

“num cycle decompression” is the number of cycles that the decompression procedure
spends, which is denoted as T1. However, the uncompressed data has to be read out
from BRAM blocks to memory. Thus, “num cycle readout” is the number of cycles
that the decompression procedure and reading out procedure consume, which is denoted
as T2. The input and output throughput are computed according to T2, because T2
represents the whole procedure.

As can be seen from the Table 5.2, the input throughput of a single engine varies
from 3.9 bytes/cycle to 6.3 bytes/cycle, and the output throughput of a single engine
varies from 8.3 bytes/cycle to 15.0 bytes/cycle. If the working frequency of FPGA could
reach up to 200MHz, then, the corresponding input throughput and output throughput

build 0.18



5.4. SYNTHESIS RESULTS 53

Table 5.2: Behavior simulation results of benchmarks

Benchmark
compressed

size (byte)

uncompressed

size (byte)

num

cycle

decompression

num

cycle

readout

input

throughput

(B/cycle)

output

throughput

(B/cycle)

SampleXLSFile 38kb.xls 18618 38912 3340 3647 5.1 10.7

SampleTextFile 50KB.txt 19335 50537 3891 4288 4.5 11.8

Sample-SQL-File-500-Rows.sql 25775 43511 3857 4199 6.1 10.4

SampleCSVFile 11kb.csv 6535 10998 945 1033 6.3 10.6

Beckman Sample.txt 12514 26770 2231 2443 5.1 11.0

embl.txt 19647 63003 3710 4205 4.7 15.0

HIV Dataset.txt 23343 60475 5473 5948 3.9 10.2

FastaSeqCL.txt 10202 21263 2394 2563 4.0 8.3

are 0.73∼1.17 GB/s and 1.55∼2.80 GB/s, respectively. If an FPGA could support 16
such engines, then, the input throughput and output throughput of the whole system
are 11.68∼18.72 GB/s and 24.8∼44.8 GB/s, respectively. Hence, a filter used to reduce
the output bandwidth required is desirable.

5.4 Synthesis results

Synthesis results are obtained via Vivado, the target FPGA is Xilinx KU15P. The top
module contains the parser, FIFO module, conflict detector, alignment module, and two
BRAM blocks. These modules consume 89729 CLB LUTs and 8901 CLB registers, which
is shown in Table 5.3.

Table 5.3: Post-synthesis utilization

Site Type Used Available Utilization (%)

CLB LUTs 89729 522720 17.166
CLB Registers 8901 1045440 0.851
BlockRAM 32 984 3.252

The synthesis results also give a timing summary. The architecture can work at
145MHz. According to the resource utilization, Xilinx KU15P FPGA could support
about six decompression engines. The input and output throughput of a single engine
based on synthesis results are 0.53∼0.85 GB/s and 1.12∼2.03 GB/s, respectively.

build 0.18



54 CHAPTER 5. EXPERIMENTAL RESULTS

5.5 Place and Route (Implementation)

Without a wrapper around our module the I/O utilization exceeds the upper limit of a
KU15P. To obtain a result for Place and Route (P&R), we add another wrapper to reduce
the I/O ports, which introduces some extra resource consumption. The corresponding
resource utilization is shown in Table 5.4.

Table 5.4: Post-implementation utilization

Site Type Used Available Utilization (%)

CLB LUTs 91089 522720 17.42596419
CLB Registers 8901 1045440 0.851411846
BlockRAM 32 984 3.25203252

The implementation results also give a timing summary. The architecture can work
at 140MHz. Xilinx KU15P FPGA could support about six decompression engines. The
input and output throughput of a single engine based on implementation results are
0.51∼0.82 GB/s and 1.08∼1.96 GB/s, respectively. After Place and Route, the resource
utilization remains unchanged, while the working frequency gets a little bit worse than
synthesis results.

In conclusion, Table 5.5 indicates timing summary of behavior simulation, synthesis,
and implementation results.

Table 5.5: Timing summary

Type
Frequency

(MHz)

input throughput

(B/cycle)

output throughput

(B/cycle)

input throughput

(GB/s)

output throughput

(GB/s)

Simulation 200 3.9 ∼ 6.3 8.3 ∼ 15 0.73 ∼ 1.17 1.55 ∼ 2.80

Synthesis 145 3.9 ∼ 6.3 8.3 ∼ 15 0.53 ∼ 0.85 1.12 ∼ 2.03

Implementation 140 3.9 ∼ 6.3 8.3 ∼ 15 0.51 ∼ 0.82 1.08 ∼ 1.96

“input throughput (B/cycle)” indicates the input throughput in the unit of
bytes/cycle, which comes from the behavior simulation. Other tabs have the similar
definitions. The left and right values are the lowest and the highest values, respectively,
of corresponding tabs among the eight benchmarks.

build 0.18



Conclusion and Future Work 6
6.1 Conclusion

In this thesis, our goal is to build a Snappy decompressor trying to make use of the input
bandwidth of a new class of interfaces like OpenCAPI. We implement a single Snappy
decompression engine which can process at most two tokens per cycle. The design uses
multiple decoders to handle an uncertain token boundary, and is implemented with a
deep pipeline to obtain a high degree of parallelism. Correct uncompressed test files are
obtained through behavior simulation. The input throughput in for one engine reaches
3.9∼6.3 bytes per cycle. The output throughput reaches up to 8.3∼15 bytes per cycle.
According to synthesis results, a single engine architecture consumes 89729 LUT and
128KB BRAM resource and works at 145MHz. According to implementation results, a
single engine architecture consumes 91089 LUT and 128KB BRAM resource and works at
140MHz. According to either the post-synthesis utilization or the post-implementation
utilization, Xilinx KU15P FPGA can support approximately six such decompression
engines. We draw the following conclusions.

1. Based on the experimental results, our design is suitable to implement on an
FPGA. On a single core of Core i7, the decompression rate can reach up to 500 MB/s.
The input throughput of our single-engine Snappy decompressor can reach up to 0.82
GB/s at the frequency of 140MHz. The input throughput can be further improved after
frequency optimization. Furthermore, because we can place more engines in an FPGA, a
multi-engine architecture in an FPGA is more competitive when compared with a similar
size multi-core CPU. The FPGA is also more power efficient than the CPU.

2. The decompression performance is affected by the data dependency between to-
kens. A conflict detector is used to detect the data dependency between two tokens
within the same cycle, and forwarding the data of the first token to the next token if
necessary.

3. Address collisions frequently occur due to the characteristics of the Block RAM.
We gather the statistics and find that the frequency of occurrence of address collisions is
dependent on the port width (granularity) of each Block RAM primitive. The number
of address collisions gets smaller with the decreasing granularity. Hence, we adopt two
64KB Block RAMs to totally eliminate read address collisions. We temporarily store or
stall the token having the write address collision, because the frequency of occurrence of
write address collisions is far lower than that of read address collisions.

4. The critical paths occur in the cascading combinational logic, which limits the
working frequency, one of which is the multiple cascading selectors in the parser. The
other one is the long combinational logic connected to Block RAMs to solve the data
dependency. The combinational logic also consumes the most part of LUT utilization.

55



56 CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Future work

This section introduces several possible improvements for our design.
The first one is that the input of a single decompression engine is 8 bytes per cycle

which contain at most four tokens. Thus, as a next step, the design could be enhanced
to process at most four tokens per cycle.

The second possible improvement is increasing the working frequency from 140MHz
to the expected frequency at 200MHz. During place and route, the working frequency
of the second stage of the parser module itself is 140MHz, which means the critical path
of the parser is too long. Hence, the next step is to improve the frequency of the parser.

The architecture consumes 91089 (17.43%) LUT resource of a Xilinx KU15P FPGA,
which means KU15P could only support at most six engines. To increase the number
of engines, we could either choose another type of FPGA with larger LUT resource or
optimize our design to reduce the resource usage.

In our design, the benchmarks that we use are not Parquet files, because a Parquet
file cannot be directly compressed or decompressed via the standard Snappy algorithm.
Each page of Parquet file should be independently encoded and/or compressed. This
kind of operations is based on the database platform. Therefore, we could make Parquet
file as input file in the next step.

Finally, the whole system that we design is not just a single decompression engine.
Thus, we can put everything together and implement an architecture including multiple
decompression engines, filter, CRC32 modules, and arbiters. Moreover, the hardware
architecture would also be combined with OpenCAPI.

build 0.18



Bibliography

[1] BERTEN, “Gpu vs fpga performance comparison,” http://www.bertendsp.com/
pdf/whitepaper/BWP001 GPU vs FPGA Performance Comparison v1.0.pdf, ac-
cessed Dec 17, 2017.

[2] Apache, “Apache parquet format,” https://github.com/apache/parquet-format,
apache License, Version 2.0.

[3] E. Sitaridi, R. Mueller, T. Kaldewey, G. Lohman, and K. A. Ross, “Massively-
parallel lossless data decompression,” in Parallel Processing (ICPP), 2016 45th In-
ternational Conference on. IEEE, 2016, pp. 242–247.

[4] K. B. Agarwal, H. P. Hofstee, D. A. Jamsek, and A. K. Martin, “High bandwidth
decompression of variable length encoded data streams,” Aug. 12 2014, uS Patent
8,804,852.

[5] J. Lee, H. Kim, S. Yoo, K. Choi, H. P. Hofstee, G.-J. Nam, M. R. Nutter, and
D. Jamsek, “Extrav: boosting graph processing near storage with a coherent ac-
celerator,” Proceedings of the VLDB Endowment, vol. 10, no. 12, pp. 1706–1717,
2017.

[6] V. Gopal, J. D. Guilford, K. S. Yap, S. M. Gulley, and G. M. Wolrich, “Systems,
methods, and apparatuses for decompression using hardware and software,” Apr. 4
2017, uS Patent 9,614,544.

[7] Xilinx, “ug573,” https://www.xilinx.com/support/documentation/user guides/
ug573-ultrascale-memory-resources.pdf, accessed Dec 17, 2017.

[8] opencapi consortium, “Opencapi overview,” http://opencapi.org/wp-content/
uploads/2016/09/OpenCAPI-Overview.10.14.16.pdf, accessed Dec 17, 2017.

[9] J. Fang, Y. Mulder, K. Huang, Y. Qiao, X. Zeng, P. Hofstee, J. Lee, and J. Hidders,
“Adopting opencapi for high bandwidth database accelerators,” in Proc. 3rd Inter-
national Workshop on Heterogeneous High-performance Reconfigurable Computing,
Denver, USA, November 2017.

[10] L. P. Deutsch, “Gzip file format specification version 4.3,” 1996.

[11] V. Gopal, S. M. Gulley, and J. D. Guilford, “Technologies for efficient lz77-based
data decompression,” Sep. 24 2014, uS Patent 20160085555A1.

[12] Wikipedia, “Hardware acceleration,” https://en.wikipedia.org/wiki/Hardware
acceleration, accessed Dec 17, 2017.

[13] Revolvy, “Gpu,” https://www.revolvy.com/main/index.php?s=Graphics%
20processing%20unit, accessed Dec 17, 2017.

57

http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
https://github.com/apache/parquet-format
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
http://opencapi.org/wp-content/uploads/2016/09/OpenCAPI-Overview.10.14.16.pdf
http://opencapi.org/wp-content/uploads/2016/09/OpenCAPI-Overview.10.14.16.pdf
https://en.wikipedia.org/wiki/Hardware_acceleration
https://en.wikipedia.org/wiki/Hardware_acceleration
https://www.revolvy.com/main/index.php?s=Graphics%20processing%20unit
https://www.revolvy.com/main/index.php?s=Graphics%20processing%20unit


58 BIBLIOGRAPHY

[14] Y. Mulder, “Feeding high-bandwidth streaming-based fpga accelerators,” Master’s
thesis, Delft University of Technology, Delft, 2018.

[15] Apache, “Apache parquet configurations,” http://parquet.apache.org/
documentation/latest/, copyright 2014 Apache Software Foundation.

[16] Wikipedia, “Column oriented dbms,” https://en.wikipedia.org/wiki/
Column-oriented DBMS, accessed Dec 17, 2017.

[17] Apache, “Apache thrift,” https://thrift.apache.org/, apache License, Version 2.0.

[18] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and
T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,” Proceedings of
the VLDB Endowment, vol. 3, no. 1-2, pp. 330–339, 2010.

[19] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Transactions on information theory, vol. 23, no. 3, pp. 337–343, 1977.

[20] Google, “Snappy,” https://github.com/google/snappy, accessed Dec 17, 2017.

[21] L. P. Deutsch, “Deflate compressed data format specification version 1.3,” 1996.

[22] D. A. Huffman, “A method for the construction of minimum-redundancy codes,”
Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[23] NCBI, “test file,” ftp://ftp.ncbi.nlm.nih.gov/ncbi-asn1, accessed Dec 17, 2017.

[24] Xilinx, “Blockram,” https://www.xilinx.com/products/intellectual-property/
block ram.html, accessed Dec 17, 2017.

[25] Wikipedia, “Cyclic redundancy check,” https://en.wikipedia.org/wiki/Cyclic
redundancy check#Standards and common use.

[26] sample videos, “benchmark2,” http://www.sample-videos.com/
download-sample-text-file.php, accessed Dec 17, 2017.

[27] applied maths, “benchmark1,” http://www.applied-maths.com/download/
sample-data, accessed Dec 17, 2017.

build 0.18

http://parquet.apache.org/documentation/latest/
http://parquet.apache.org/documentation/latest/
https://en.wikipedia.org/wiki/Column-oriented_DBMS
https://en.wikipedia.org/wiki/Column-oriented_DBMS
https://thrift.apache.org/
https://github.com/google/snappy
ftp://ftp.ncbi.nlm.nih.gov/ncbi-asn1
https://www.xilinx.com/products/intellectual-property/block_ram.html
https://www.xilinx.com/products/intellectual-property/block_ram.html
https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Standards_and_common_use
https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Standards_and_common_use
http://www.sample-videos.com/download-sample-text-file.php
http://www.sample-videos.com/download-sample-text-file.php
http://www.applied-maths.com/download/sample-data
http://www.applied-maths.com/download/sample-data

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Research background
	Problems
	Motivation and objective
	Contributions
	Outline

	Background and related work
	Accelerators
	FPGA
	GPU
	Comparison

	OpenCAPI
	Parquet and columnar storage
	Snappy algorithm
	Snappy compression
	Snappy decompression

	Related work

	Method Analysis
	Requirement
	Analysis of Block RAM
	SDP and TDP
	Write mode
	BRAM latency
	Byte-wide write enable

	Data dependency and address conflict
	Data dependency
	Address conflict

	FPGA logic resource
	Special copy
	The choice of write mode of BRAM


	Implementation
	System level design
	Arbiter
	Filter module
	CRC32 module
	Architecture of a single decompression engine

	Module design
	Parser module
	FIFO module
	Conflict detector module
	Alignment module
	BRAM module


	Experimental Results
	Experiment setup
	Experiment platform
	Benchmarks

	Modules used for behavior simulation
	Compressed file transform module
	Read file module
	Write file module
	Uncompressed file transform module
	Correction module

	Behavior simulation results
	Synthesis results
	Place and Route (Implementation)

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography

