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Abstract

In this note, we briefly rectify oversights in the works of several authors
on sr(Kk), the Ramsey parameter introduced by Burr, Erdős and Lovász
in 1976, which is defined as the smallest minimum degree of a graph G
such that any r-colouring of the edges of G contains a monochromatic
Kk, whereas no proper subgraph of G has this property. We show that
sr(Kk+1) = O(k3r3 ln3 k), improving the best known bounds when k > 8
and k2 6 r 6 O(k4/ ln6 k).

1 Introduction

A graph G is called r-Ramsey for another graph H, denoted by G → (H)r, if every
r-colouring of the edges of G contains a monochromatic copy of H. Observe that
if G → (H)r, then every graph containing G as a subgraph is also r-Ramsey for H.
Some very interesting questions arise when we study graphs G which are minimal
with respect to G → (H)r, that is, G → (H)r but there is no proper subgraph G′

of G such that G′ → (H)r. We call such graphs r-Ramsey minimal for H, and we
denote the set of all r-Ramsey minimal graphs for H by Mr(H). It follows from the
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classical result of Ramsey [12] that Mr(H) is non-empty for any choices of graph H
and positive integer r.

Many questions on Mr(H) have been explored; for example, the Ramsey number
Rr(H) denotes the smallest number of vertices of any graph in Mr(H) and the size
Ramsey number R̂r(H) denotes the smallest number of edges. We refer the reader
to [2, 4, 10, 13] for various results on Ramsey minimal problems. In this paper, we
will be interested in the smallest minimum degree of an r-Ramsey minimal graph,
defined by

sr(H) := min
G∈Mr(H)

δ(G),

for a finite graph H and positive integer r, where δ(G) denotes the minimum degree of
G. Trivially, we have sr(H) 6 Rr(H)−1, since the complete graph on Rr(H) vertices
is r-Ramsey for H and is (Rr(H)− 1)-regular (taking minimal Ramsey subgraphs of
this graph cannot increase the minimum degree). This parameter was introduced by
Burr, Erdős and Lovász [3] in 1976. They were able to show the rather surprising
exact result, s2(Kk+1) = k2, where Kk+1 is the complete graph on k + 1 vertices,
which is far away from the trivial exponential bound of s2(Kk+1) 6 R2(k + 1) − 1.

While no precise values are known for sr(Kk+1) for r > 2, Fox, Grinshpun, Liebe-
nau, Person, and Szabó [6] showed that sr(Kk+1) is quadratic in r, up to a polylog-
arithmic factor, when the size of the clique is fixed. Formally, they showed that for
all k > 2 there exist constants ck, Ck > 0 such that for all r > 3, we have

ckr
2 ln r

ln ln r
6 sr(Kk+1) 6 Ckr

2(ln r)8k
2

. (1.1)

When k = 2, Guo and Warnke [7] settled the exact polylogarithmic factor, fol-
lowing earlier work in [6]. The constant in the upper bound of (1.1) is rather large
(Ck ∼ k228k2), and in particular not polynomial in k. To remedy this, Fox, Grinshpun,
Liebenau, Person, and Szabó [6] also proved an upper bound which is polynomial in
both k and r and is applicable for small values of r and k.

Theorem 1.1 (Fox, Grinshpun, Liebenau, Person, Szabó). For all k > 2, r > 3,
sr(Kk+1) 6 8k6r3.

In the other regime, when the number of colours is fixed, Hàn, Rödl, and Szabó [8]
showed that sr(Kk+1) is quadratic in the clique size k, up to a polylogarithmic factor.
They showed that there exists a constant k0 such that for every k > k0 and r < k2,
we have sr(Kk+1) 6 803(r ln r)3(k ln k)2. Combined with (1.1), this result implies the
existence of a large absolute constant C and a polynomial upper bound for sr(Kk+1).

Theorem 1.2 (Hàn, Rödl, Szabó). There exists an absolute constant C such that
for every k > 2 and r < k2,

sr(Kk+1) 6 C(r ln r)3(k ln k)2.

Finally, using a group theoretic model of generalised quadrangles introduced by
Kantor in 1980 [9], Bamberg and the authors [1] proved another polynomial bound,
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reducing the dependency in r, and improving on Theorem 1.1 for any k, r and on
Theorem 1.2 when r > k6.

Theorem 1.3 (Bamberg, Bishnoi, Lesgourgues). There exists an absolute constant
C such that for all k > 2, r > 3, sr(Kk+1) 6 Ck5r5/2.

These theorems all use the equivalence between sr(Kk) and another extremal
function, called the r-colour k-clique packing number [6]. Theorems 1.1 and 1.3 fur-
ther use some ‘triangle-free’ point-line geometries, for which, under certain conditions
on their parameters, any packing of these geometries implies an upper bound on the
r-colour k-clique packing number. This argumentation, initially developed by Dudek
and Rödl [5] and then by Fox et al. in [6], has been slightly optimized by Bamberg et
al. in [1, Lemma 3.1], allowing for the use of more general geometries and optimising
the choice of some parameters. We then rectify the oversight of [1, 6], showing that,
by using the optimized argumentation in [1] and the finite geometric construction of
Fox et al. in [6], we immediately obtain the following upper bound, improving on the
best known bounds for k > 8 and r in the range k2 6 r 6 O(k4/ ln6 k).

Theorem 1.4. For all k > 2, r > 3, sr(Kk+1) 6 (8kr ln k)3.

Table 1 contains a summary of the bounds presented above, explaining which
theorem gives the best known upper bound for sr(Kk+1), depending on the range of
r as a function of k.

Range for r r < k2 k2 6 r 6 O(k4/ ln6 k) r = Ω(k4/ ln6 k)

Upper bound C(r ln r)3(k ln k)2 (8kr ln k)3 Ck5r5/2

Source Theorem 1.2 [8] Theorem 1.4 Theorem 1.3 [1]

Table 1: Upper bounds for sr(Kk+1).

2 Packing partial linear spaces

A partial linear space is an incidence structure of points P and lines L, with an
incidence relation such that there is at most one line through every pair of distinct
points. If every line is incident with exactly s + 1 points and every point is incident
with exactly t + 1 lines, then the partial linear space has order (s, t). If there are
no three distinct lines pairwise meeting each other in three distinct points, then the
partial linear space is triangle-free. Generalised quadrangles are standard examples
of triangle-free partial linear spaces, with the additional property that for every non-
incident point-line pair x, ℓ there exists a unique point x′ incident to ℓ such that x
and x′ are collinear (see the book by Payne and Thas [11] for a standard reference
on finite generalised quadrangles).

The next lemma can be found in [1, Lemma 3.1]. Its proof follows a methodology
initially developed by Dudek and Rödl [5], using the r-colour k-clique packing number
developed in [6].
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Lemma 2.1 (Bamberg, Bishnoi, Lesgourgues). Let r, k, s, t be positive integers. Say
there exists a family (Ii)

r
i=1 of triangle-free partial linear spaces of order (s, t), on

the same point set P and with pairwise disjoint line sets L1, . . . ,Lr, such that the
point-line geometry (P ,

⋃r
i=1 Li) is also a partial linear space. If s > 3rk ln k and

t > 3k(1 + ln r), then sr(Kk+1) 6 |P|.

While Theorem 1.1 from [6] was the motivation behind the general Lemma 2.1
and its use in conjunction with the new group-based construction in [1], the authors
did not check then the impact of their improved Lemma 2.1 directly on the moti-
vating construction of [6]. This note aims at rectifying this oversight. The following
lemma is a reformulation in the language of (triangle-free) partial linear space of the
construction that can be found in [6, Proof of Lemma 4.4]. Theorem 1.4 is then a
direct consequence of Lemmas 2.1 and 2.2.

Lemma 2.2. Let q be any prime power. There exists a family (Ii)
q−1
i=1 of triangle-

free partial linear spaces of order (q − 1, q − 2), on the same point set P of size q3

and with pairwise disjoint line-sets L1, . . . ,Lq−1, such that the point-line geometry
(

P ,
⋃q−1

i=1 Li

)

is also a partial linear space.

We include a short proof of Theorem 1.4 for completeness. We note again that
this is a replica of the proof of Fox et al. [6], with an optimal choice of q allowed
by the work of Bamberg et al [1] presented in Lemma 2.1. The proof of [6] (using
their own construction) works word by word if the prime q is chosen to be at least
Ckr ln k, for some constant C, instead of k2r as done [6].

Proof of Theorem 1.4. Let k > 2, r > 3, and let q be the smallest prime such that
q > 4kr ln k. By Bertrand’s postulate, q 6 8kr ln k. By Lemma 2.2, there exists
a family of r < q triangle-free partial linear spaces of order (q − 1, q − 2), on the
same point set P and pairwise disjoint line-sets L1, . . . ,Lr, such that the point-line
geometry (P ,

⋃r
i=1 Li) is also a partial linear space. Note that with k > 2 and r > 3,

we have q − 1 > 3rk ln k and q − 2 > 3k(1 + ln r). By Lemma 2.1, sr(Kk+1) 6 |P|,
and then |P| = q3 yields the desired bound.

A careful review of the arguments in [1, Lemma 3.1 and 5.2] would allow a small
optimisation on the multiplicative constant of this corollary. However, in light of the
conjectured quadratic upper bound [1, Conjecture 5.2], we did not push this further.
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