
Learning-based Co-design for Bio-inspired Quadrupeds
F.G.M. Boekel

Master Thesis Robotics



Learning-based Co-design for Bio-inspired Quadrupeds

Master of Science Thesis by

F.G.M. Boekel

In partial fulfillment of the requirements
for the degree of Master of Science in Robotics

at Delft University of Technology.

To be defended at January 9, 2025, on 11:00.

Supervisor: Dr. C. (Cosimo) Della Santina
Dr. J. (Jiatao) Ding

Author: Fabio G.M. Boekel
Student Number: 4855892
Faculty: Mechanical Engineering
Research Group: Learning & Autonomous Control Group
Date: December 25, 2024



3

Learning-based Co-design for Bio-inspired Quadrupeds
F.G.M. Boekel

Master Thesis Robotics

Abstract—Designing robotic systems such as quadrupeds is
challenging due to the intricate relationship between motion
and design, particularly when aiming to replicate the agility,
efficiency, and versatility of animals. Co-design simplifies robotic
development by simultaneously optimizing physical design and
control algorithms in an integrated way. While most prior
work validates co-design approaches in simulation, our research
bridges this gap by transitioning optimized designs to real-
world implementation. To achieve this, we developed a modular
quadruped platform with bio-inspired legs that enables the
physical implementation of the optimized designs. Our design
space, which includes leg segment lengths, spring stiffness, and
engagement angle, was optimized to maximize energy efficiency
for real-world tasks. We propose a simplified learning-based co-
design framework that combines reinforcement learning to create
a universal locomotion controller with Bayesian optimization to
select the best design. Real-world tests demonstrate a significant
reduction in the cost of transport—18.6% for inspection tasks
and 35.7% for payload tasks—compared to the nominal design
without springs. In simulations, the universal controller adapts
well across robot configurations, and the optimization process
remains consistent across runs. Although some discrepancies
between simulation and real-world performance remain, our
findings underscore the potential of co-design to address complex
trade-offs in real-world robotic system design.

I. INTRODUCTION

THE animal kingdom showcases an astounding array of
agile, efficient, and versatile creatures, surpassing even

the most advanced robots in their ability to adapt to complex
and dynamic environments. From the cheetah’s high-speed
sprint to the gecko’s nimble climbing, animals have evolved
bodies and brains to tackle diverse challenges. This remarkable
integration of physical form, cognitive function, and behavioral
adaptability serves as inspiration for roboticists striving to
create machines with similar capabilities.

Quadruped robots have made significant strides in areas
such as agile jumping [1], [2], efficient walking [3], and
show versatile performance in hiking [4] and parkour [5]–
[8]. However, a noticeable performance gap remains between
robots and their biological counterparts [9]. A contributing
factor is the difficulty of designing robotic systems, which
arises from the deep interconnection between a robot’s motion
and its design.

The traditional sequential approach to robot development,
treating the mechanical design as fixed and developing the
control system to fit it, can lead to suboptimal performance. In
this approach, the control system compensates for limitations
in the design. This can be fixed with iterative improvements to
both controllers and designs. However, this requires significant
time, resources, and expert knowledge. This raises a critical
question: How can we improve the way we design robots to
narrow this performance gap?

Fig. 1: The modular ”Dogger” hardware platform with bio-
inspired legs.

One way to design improved robotic systems is to exactly
replicate anatomical structures and proportions found in na-
ture, such as an ostrich-inspired robot for efficient movement
[10] and a rat-inspired robot for confined spaces [11]. How-
ever, this approach requires extensive expert knowledge and
is complicated by fundamental differences between current
robotic technologies and biological systems. For example,
robots typically rely on rotary motors, while animals use mus-
cles for movement. Rather than exactly replicating animals, we
propose optimizing both structure and movement concurrently
through co-design, similar to how mammals evolved diverse
abilities while sharing similar limb structures [12].

Co-design is an integrated method of robotic development
with the goal of optimizing the physical design and control
algorithms simultaneously. Co-design is especially effective
in complex design spaces with many parameters and trade-
offs. Therefore, we decided to apply co-design to optimize
bio-inspired legs. Our bio-inspired legs have elements seen
in biological leg structures of mammals, such as having three
segments and elasticity. The bio-inspired leg design introduces
a more extensive and complex design space compared to
traditional two-segment robotic legs, as certain parameters can
achieve similar effects; for example, reducing the shank length
decreases torque in the knee joint, but a comparable outcome
can also be achieved by increasing the stiffness in the knee
joint. In our work, we focus on co-designing the bio-inspired
legs and their motion to maximize energy efficiency.

II. RELATED WORK

A. Bio-inspired Robots

The bio-inspired leg design which we aim to optimize is
based on structures found in mammals, characterized by their



4

three-segment configuration. Most quadrupeds of the current
generation, including ANYmal [13], Go 1 [14], Spot [15],
Solo [16], and Mini Cheetah [17], have two-segment legs. The
three-segment leg can be seen in some older generation robots
such as the Cheetah [18] and the Cheetah Cub [19]. Three-
segment legs can reduce joint torque, and thereby help with
energy efficiency, compared to two-segment designs [20].

To emulate the natural elasticity found in biological systems,
we incorporate parallel elastic actuators (PEAs) into the knee
joints of our robot design. In a PEA, the spring is connected
in parallel with the motor. This means that a certain deviation
in the actuator’s joint angle will result in certain spring torque
exerted on the actuator. PEAs can contribute to the efficiency
of robot actuators by providing additional torques to the joint
[21]. This again helps to improve the energy efficiency of
quadrupeds. Currently, there are not many quadrupeds with
PEAs. In [22], a PEA was integrated directly into a robotic
leg, though not in a complete robot. Other existing hardware
platforms have been modified to include PEAs, such as in
the E-GO robot [23] and the ANYmal robot [24], to improve
energy efficiency. Building on these works, our bio-inspired
leg design incorporates PEAs from the outset.

B. Co-design
Co-design approaches in robotics can be outlined in what

kind of optimization algorithms they use. Following [25],
the distinction is made between evolutionary algorithm (EA)
based approaches, optimal control (OC) based approaches,
reinforcement learning (RL) based approaches, and hybrid
approaches which combine these techniques.

EA-based approaches are inspired by natural selection. In
[26], Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) is used to optimize design parameters such as link lengths
and torso dimensions and the parameters of a predefined pa-
rameterized gait trajectory. Thanks to co-design optimization,
higher walking speeds could be reached.

OC-based approaches added design parameters to the opti-
mization of state and control parameters. In [27], link lengths
and actuator placements were optimized along with motion
parameters such as actuator inputs and contact forces. This
method was validated in simulation and on physical robots,
showing a reduction in torque. Other OC-based approaches,
such as [20], [28], use a bilevel optimization strategy instead of
a monolithic strategy. Here, the lower level computes the state
and control trajectories based on task and design parameters,
and the upper level optimizes the design parameters using
gradient information from the lower level.

RL presents another promising method for co-design. Stud-
ies such as [29] and [30] have demonstrated the ability of RL-
based approaches to simultaneously optimize robot design and
control for tasks such as walking and navigating challenging
environments in a monolithic way. These approaches allow
design parameters, such as leg lengths, to be treated as part
of the policy optimization, ensuring that the design evolves
alongside the control strategy. However, these methods can
struggle with the exploration-exploitation trade-off, where the
RL agent may initially favor suboptimal design configurations
to prevent failure, such as standing still.

Hybrid approaches mix the above-based techniques. [31],
uses a bilevel approach, where CMA-ES is used to select
design parameters at the upper level and OC is used in the
lower level.

Recent advances have combined EA or Bayesian Opti-
mization (BO) with RL to address the challenges of design
optimization. In [32] and [24], a two-step method was used.
First, a universal policy capable of controlling a variety of
robot designs was trained, and then an optimization framework
selected the best design using the universal policy to control
it. These works built on top of [33], which showed that
a single policy could be trained to control a bipedal robot
with different body sizes. In [24], PEAs are optimized to
significantly reduce joint torques and energy consumption,
allowing longer operational times on a single battery charge.
The ANYmal robot optimized PEAs demonstrated a 30%
reduction in joint torques and a 11% increase in walking
distance compared to the robot without PEAs.

C. Contributions

Despite these advances, many co-design approaches are
only validated in simulation [20], [26], [29], [30], [32], raising
the question of how well these optimized designs will perform
in the real-world and highlighting the need for more compre-
hensive real-world testing.

When co-design is applied to a physical robot [27], the
approach is limited to simplified planar walking tasks. In
another case [24], the approach is restricted to modifications of
an existing quadrupedal hardware platform, where the design
space is restricted to components such as springs rather than
exploring the entire morphological design space, such as the
shapes of the legs.

The reason for this gap is the absence of a modular hardware
platform capable of implementing and validating optimized
physical designs. Our research aims to bridge this gap between
theoretical models and practical applications by transitioning
optimized designs from simulation to the real-world. We
aim to demonstrate that co-design can optimize the whole
leg structure of the bio-inspired legs for energy efficiency
in various tasks in the real-world. Our contributions are as
follows:

• A novel, modular hardware platform featuring bio-
inspired legs, allowing for the validation of optimized
designs.

• A simplified RL and BO co-design framework inspired
by [32] and [24], applied to a quadruped with bio-inspired
legs focused on energy efficiency.

• Sim-to-real transfer of optimized designs and controllers
with validation in real-world environments, ensuring
that our optimizations result in more energy efficient
quadrupeds.

Our approach advances how we can better design robot
structures and controllers, bringing us closer to creating robots
that match the agility, efficiency, and adaptability of their
biological counterparts.



5

III. METHODOLOGY

Our method integrates bio-inspired leg design, co-design op-
timization, and sim-to-real transfer to develop energy-efficient
quadruped robots. We start by detailing the design of the
modular bio-inspired legs, including their three-segment con-
figuration and PEAs. Next, we present a co-design framework
that jointly optimizes the physical leg design and control
policies leveraging RL and BO. Finally, we outline the steps
taken to ensure successful real-world implementation of the
optimized designs and share the implementation details.

A. Bio-inspired Leg Design

The bio-inspired leg consists of two main components: a
three-segment leg and a PEA at the knee joint. We selected
this bio-inspired setup to have a leg with diverse parameters,
which makes it more challenging to choose the correct ones.
We designed a modular leg that is easy to manufacture, so that
the optimized design can be quickly implemented.

The leg that will be optimized has the following design
parameters; the three link lengths (thigh, shank, and foot)
and the mechanical properties of the knee’s spring system
(rotational stiffness and engagement angle of the spring). The
link parameters are denoted as the three link scales: thigh (λ1),
shank (λ2), and foot (λ3). This means that the total length of
each link is the respective scaling factor multiplied by the
nominal length of each link in the leg (ln1 , ln2 , ln3 ). The rota-
tional joint stiffness and the engagement angle are controlled
by the wheel diameter (�) and spring offset (o). These five
parameters are shared over all four legs. A design d in the
design space D is parametrized as d = [λ1, λ2, λ3,�, o]T and
these parameters are visualized in Fig. 2.

1) Three-Segment Leg: To simplify the design of the three-
segment leg, we implement a parallel linkage for the third
segment instead of introducing an additional degree of free-
dom. This approach preserves the essential characteristics of
a three-segment leg while reducing mechanical complexity.

The leg structure is fully 3D printed and designed to exclude
any electronics and belts. Modifications to λ1, λ2, λ3 can be
made by reprinting individual parts. This modular design
allows the subcomponents of the leg to be easily interchanged.
In addition, the entire leg structure can be removed in one
piece without the need to detach a single motor, as can be
seen in Fig. 3. These features enable rapid and cost-effective
testing of the co-design approach.

Although an alternative design with adjustable link lengths
could potentially make experimentation easier, it would in-
crease both the robot’s complexity and mass, possibly in-
troducing more points of failure. Therefore, we opted for
the above-mentioned approach of reprinting individual leg
segments. By choosing this method, we maintain a simpler
and more robust system while still allowing for a wide range
of different leg configurations.

We selected the ranges of design parameters for the robot
link scales λ1, λ2, λ3 to be between 0.70 − 1.30. This range
was selected based on the minimum and maximum leg sizes
that could fit onto the robot body. Reducing the lower limit was
difficult because the parallel linkage joint in the thigh would

Fig. 2: Design parameters of the bio-inspired leg for co-design
optimization: The lengths of the leg’s links are scaled from
their nominal values (ln1 , ln2 , ln3 ) using their scaling factors (λ1,
λ2, λ3). The spring wheel’s diameter (�) determines the spring
stiffness, while the spring offset (o) specifies the engagement
angle.

Fig. 3: The “Dogger” hardware platform (Sec. III-D1) is shown
in the center, alongside the modular bio-inspired legs, which
can be swapped as entire modules without disconnecting elec-
tronics. Nearby are the interchangeable components, including
the thigh, shank, foot, and spring wheel.

interfere with the motor output axis. Increasing the upper limit
would result in a collision between the front and back legs of
the robot. The nominal length is centered within this range,
so that the nominal leg length scaling factor is 1.00.

2) Parallel Elastic Actuator (PEA): In addition to the leg
structure, we integrated a PEA into the knee joint to emulate



6

the elasticity found in biological systems.
Our PEA design draws inspiration from the spring wheel-

wire mechanism presented by [23], [24], [34]. Our design
consists of a spring connected to the thigh, with a wire attached
to the spring. This wire runs over a wheel located at the knee
joint, and both the wheel and the wire’s end are connected
to the shank. The diameter � of the wheel influences the
rotational stiffness of the joint. Since the wheel is 3D printed,
it can be easily swapped, enabling faster and cheaper co-
design experimentation as there is no need to purchase a new
spring each time the robot is optimized with a different spring
stiffness. The mechanism with different wheels can be seen
on the right side of Fig. 4.

Furthermore, the design allows for adjusting o by altering
the position of the clamps on the wire, effectively modifying
the leg angle at which the spring activates. The position of the
clamp can be changed by screwing or unscrewing the screw
on the clamp and moving it along the wire, making it easy to
select o. The clamps can be seen in the circle to the left of
Fig. 4.

The torque that will be exerted by the parallel spring on the
knee joint can be calculated by

τi(qi(t),�, cs) = max

(
1

4
�2cs(qi(t)) +

1

2
�cso, 0

)
, (1)

where τi(qi(t),�, cs) is the torque that is produced by the
spring on joint i which is dependent on the joint angle qi(t),
d and the stiffness of the spring cs.

For the PEAs, we choose a spring with a stiffness cs =
4180 N/m, and � range between 5 − 50mm and o between
0− 10mm. cs in combination with � and o, result in a wide
range of joint stiffnesses and engagement angles for the PEA.
With these ranges, we can achieve a rotational joint stiffness
between 0.03−2.62 Nm/rad and an initial torque on the knee
joint in the standing position between 0 − 5.62 Nm. With
these range combinations, we remain within the maximum
deviation of the springs before it is deformed plastically. For
example, with � and o set to the middle values, it is still
possible to fully collapse the leg. If � and o are chosen at the
maximum values, they can still compensate for gravity with
the maximum value of λ2 during a walking motion when the
robot carries a payload. Tab. I lists the respective ranges for
each parameter.

TABLE I: Parameter ranges and units.

Parameter Range Unit
Scale Length Thigh (λ1) 0.70− 1.30 [-]
Scale Length Shank (λ2) 0.70− 1.30 [-]
Scale Length Foot (λ3) 0.70− 1.30 [-]
Wheel Diameter (�) 5− 50 [mm]
Offset (o) 0− 10 [mm]

B. Co-design Approach

Our co-design approach uses a two-step optimization pro-
cess to optimize both the physical design and the controller.
This process consists of: 1) universal policy training using

Fig. 4: The spring wheel-wire mechanism on the bio-inspired
leg. On the left in the circle, the clamps to set o can be seen.
On the right three different setups for the spring wheel, where
� goes from large to small. The wire going to the top is
connected to the spring. The spring is not shown in this picture.

RL and 2) design selection through BO. Fig. 5 provides an
overview of this algorithm.

The universal policy πu is a policy that can control and is
well adapted to any robot design d in the design space D. In
the design selection step, we use πu to control the different
designs during the optimization process for a specific task k.
We end up with the best design for a task d∗k and a controller
(πu) that can control that design.

1) RL-based Universal Design-aware Policy: In the first
step, we use RL to train a single policy πu that can handle
any robot design d ∈ D. Formally, RL is framed as learning a
policy π(at|st) in a Markov Decision Process (MDP). At each
timestep t, the agent observes its state st, in our case a partial
observation ot, and takes an action at. This interaction causes
a transition to a new state st+1, and the agent receives a reward
rt that evaluates the quality of its action. Using the new state
st+1 and its policy π(at+1|st+1), the agent determines the
next action at+1. The goal of the RL algorithm is to optimize
the policy to maximize the cumulative rewards obtained over
time.

In our design-aware formulation, the agent’s observation ot

includes both the standard robot observations variables and
the current design parameters d. In this way, πu can adapt its
actions to different designs. At the start of training, a set of
robot designs D′ ⊂ D is sampled, and the agent is trained
across multiple environments, each with a randomly selected
design d ∈ D′. By exposing the policy to various designs,
we ensure that it can generalize and specialize across D. The
following sections describe the observation, action, reward,
and termination structures used during training.

a) Observation Space: The agent’s observation space
includes both the design parameters d and the remaining
portion of the observation. This portion is denoted as ô′

t and
consists of: the commanded x and y velocities, the commanded
yaw rate, the gravity vector of the robot’s body, the actual yaw
rate, the joint positions qmea

t , and the previous actions at

taken. Together, these elements form the current observation
o′
t = [d, ô′

t]
T . To incorporate temporal context, a 15-step



7

Step 1: Universal Policy Training Step 2: Design Selection

Training Policy update

EnvironmentEnvironmentEnvironment

Inference

EnvironmentEnvironmentEnvironment

Bayesian Optimization

AgentAgent

Fig. 5: Overview of the two-step co-design algorithm: Step 1 trains the universal policy πu by sampling a set of designs D′

from the design space D. During training, the agent observes ot (a 15-step temporal context of the current observation o′
t,

including design parameters d) and receives a reward rt, which includes the cost function J(d; k, πu) from Step 2 and the rest
of the reward r̂t, to update the policy, and takes action at+1. Step 2 uses the trained πu to generate trajectories for a selected
set of designs Dsel

i+1 and a task k in iteration i. Dsel
i+1 is chosen by the BO algorithm, which optimizes J(d; k, πu) to find the

best design d∗k.

history of o′
t is used, resulting in the full observation ot. See

Fig. 6 for an overview of the observations.
This approach of the temporal context follows the method

of [7], [35]. The inclusion of this removes the need to use the
linear velocity of the robot as an observation, which is often
included in other works [36], [37]. This makes it possible to
deploy the policy on hardware that has an affordable inertial
measurement unit (IMU).

b) Action Space: The action space represents the agent’s
direct control over the robot’s motion. At each timestep, the
policy outputs an action at+1 based on the observation ot. The
action at+1 is added to the predefined standing pose of the
robot qstand, resulting in the desired joint angles qdes

t+1. This
approach simplifies the learning process, since a zero action
corresponds to the standing pose.

The commands generated by the policy are executed by
the robot actuators, which operate using the internal propor-
tional derivative (PD) controller. The PD controller adjusts the
torques to track qdes

t+1. See Fig. 6 for an overview of how the
actions are processed.

Due to the smaller arm levers of the three-segment legs
compared to two-segment robot legs, there is less torque on
the knee motors. To facilitate learning and sim-to-real transfer,
we use different PD gains and action scales for the knee, thigh,
and hip motors.

c) Rewards: The reward function rt used during training
combines task-specific and regularization rewards. The task-
based reward is focused on tracking the velocity command.
The regularization rewards encourage smooth motion, base
stability, and reduced energy consumption. The reward struc-
ture is designed to avoid biasing the policy toward specific
designs. For example, by excluding reward terms such as body

height, which could bias a specific design. Note that the reward
structure also incorporates the cost function J(d; k, πu) from
Step 2, which ensures alignment between the training and
design selection objectives.

To address a requirement of one optimization task which re-
quired standing still (Sec. IV-A), the reward structure changes
for the zero-velocity command. Therefore, during training, a
zero command is sampled 10% of the time to learn to stand
still. In addition, a reward is given for keeping qdes

t+1 close
to qstand. Care is taken to ensure that this reward is not
excessively large, as the initial pose may not be optimal for
every leg design.

d) Termination: For the termination condition, the policy
training includes several conditions to prevent undesirable be-
haviors and to speed up the learning process. These conditions
include: the robot body flipping upside down, reaching joint
limits, or surpassing the maximum episode length. The agent
receives a negative reward if any of the first two conditions is
met.

We have a straightforward implementation in our design
choices; as in that we have a single fixed πu. Unlike [32],
which uses a meta-RL approach to adapt policies across dif-
ferent designs, our simpler approach demonstrates sufficiently
robust performance across all considered designs, thereby
simplifying the training pipeline (Sec. IV-D2). While [24] dis-
tinguishes between design-aware and deployment policies, we
use a single policy informed by design parameters, ensuring
that the deployment policy is also aware of the robot design.
In contrast to both papers [24], [32] we also do not use motion
primitives for the feet trajectories as part of the reward to give
the policy full freedom to explore the best motion for each
design.



8

Design:

Operator:
Command

Robot:
Gravity vector
Yaw rate

High Frequency PD Control

inference 𝟓𝟎 Hz

PD Controller

+

Calculate 

Fig. 6: Overview of the control diagram: Observations ot

includes information about the designs, command given by
robot operator, and robot data over a history. The universal
policy πu is a neural network that generates actions at+1

based on ot at timestep t. The desired joint angles qdes
t+1 are

obtained by adding at+1 to the standing joint angles qstand

and are tracked by a PD controller. For this tracking, the PD
controller uses the position and velocity measurements (qmea

t+1

and q̇mea
t+1 ) from the encoders in the actuators. To aid this

tracking ot provides the actual joint angles qmea
t , which are

used to calculate the feedforward torque τ ff
t+1 (Sec. III-C3).

This feedforward torque is combined with the PD control
output to generate the total torque τ t+1 on the joints. The
frequency of the PD loop is unknown.

2) BO-based Design Selection: After training πu, we pro-
ceed with design selection. In the second step, we use BO
to select the best design d∗k by optimizing a cost function
J(d; k, πu) for a specific task k.

This optimization process takes place over multiple itera-
tions i. At each iteration, the BO algorithm receives the cost
function scores of a batch of designs Dsel

i from the previous
iteration. Based on these scores, it selects a new batch of
designs Dsel

i+1. During each episode, the trained policy πu

performs inference to control the different designs in Dsel
i+1.

At the end of the episode, the scores of J(d; k, πu) for these
designs are returned to the BO algorithm. This process is
repeated for a set number of iterations to find the best design
d∗k.

The task k defines aspects of the environment or the
requirements of the robot. It can include a specific velocity
command that the robot must follow, a particular type of
terrain, disturbance levels, or variations in the robot, such as
a version with a payload.

The cost function J(d; k, πu) is not differentiable with

respect to d. Therefore, we use a derivative-free optimization
method. We chose a Bayesian method over an evolutionary
algorithm because of its sample efficiency.

Then we optimize this design space with a specific metric.
The co-design optimization framework allows for different
cost functions. In this paper, we focus on energy efficiency.
As energy efficiency metric, we choose the cost of transport
CoT . The aim is to minimize the cost function J(d; k, πu),
in our case the CoT , for a task k. The CoT is calculated by

CoT =
Etotal

∆s
=

∫ T

0
Ptotal(t)dt

∆s
, (2)

where the total energy usage of the robot Etotal is calculated
from the integration of the total power of the system Ptotal(t)
over time. ∆s is the total distance traveled and T the total time
of the test. CoT was chosen because its normalization by ∆s
enables fair comparisons across different velocity commands
and designs with varying velocity tracking performance.

In contrast to [24], [32], we use a more realistic power
model. This choice is motivated by the goal to optimize
robots for the real-world, where designs must be selected
in simulation based on realistic metrics. The total power
consumption, Ptotal(t), can be estimated by the power used
by the twelve motors and the constant power consumption
of other electronics, such as the NVIDIA Jetson computer.
This is necessary because, on the hardware platform, we can
only measure the total power consumption of the system. This
helps to compare performance between the real-world and
simulation. The motor power is denoted as Pmech(t) and other
electronics as Psystem. This results in

Ptotal(t) = Pmech(t) + Psystem. (3)

Measurements have shown that Psystem remains relatively
constant during operation and is therefore time independent.
For Pmech(t), we take inspiration from the power model used
in [38]. Pmech(t) can be estimated with

Pmech(t) =

n∑
i=1

Pmech,i(τi(t), q̇i(t))

=

n∑
i=1

[(
τi(t)

KT

)2

R+
Kvτi(t)q̇i(t)

KT

]
,

(4)

where τi(t) is the torque applied by the motor i, q̇i(t) is
the rotational speed, R is the motor’s winding resistance,
KT is the torque constant, and Kv is the velocity constant.
This equation accounts for both winding power dissipation,
proportional to τi(t)

2Ri, and rotational power, τi(t)q̇i(t).
More information about the derivation of the energy model
can be found in App. A.

An important consideration is that the CoT reflects the
total energy consumption of the system divided by distance
walked, including the energy consumption of the rest of
the electronics, such as the compute. This means that even
if the motors consumed no power, the maximum system
improvement achievable would not be 100% compared to the
nominal design. Therefore, we also introduce the mechanical



9

CoT , namely CoTmech for the results, which only accounts
for the power consumption of the motors.

C. Sim-to-real Transfer of Optimized Control and Design

To ensure successful sim-to-real transfer of both design
and controller, we use domain randomization, along with
disturbances and noise, during both the training of πu and
the design selection step. In addition, we implement the PEA
in a way that the policy does not have to learn the joint offsets
created by the springs.

1) Domain Randomization: Domain randomization is ap-
plied at the beginning of training, adjusting parameters such
as body weight and inertia, PD control constants of the motor,
and friction of the ground. This variability reduces the risk of
overfitting to the simulator and better prepares the model for
real-world conditions, where the exact values of the physical
properties differ from those used in simulation. The ranges for
these randomized parameters are selected based on testing on
the real robot, aiming to encompass the variability observed in
real-world environments. Note that this domain randomization
is not applied to the design selection step.

2) Disturbances and Noise: During πu training, random
velocity perturbations are introduced to simulate unexpected
disturbances that the robot may encounter in real environ-
ments. In addition, random noise is added to all of the
observation values except for the design parameters. There is
also noise added to the offset of the spring that changes every
100 environment steps. This process improves the robustness
of the control policy when deployed in real-world scenarios.

For the design selection step, the same disturbances and
noise are applied as during training. To ensure a fair com-
parison, we share the random seed across all tested designs,
ensuring that each design experiences identical noise and
disturbances during evaluation. We found that introducing
these disturbances and noise, in combination with making
the evaluation episodes long enough, is crucial for successful
optimized design transfer. Without them, the optimized de-
signs tend to overfit the simulation environment, leading to
suboptimal performance when applied in the real-world.

3) Implementation of PEA in the Policy: To ensure proper
transfer of the PEAs, we compute a torque feedforward τ ff

t+1

command to compensate for spring forces. This allows the
policy to focus on optimizing the gait and using the spring
effectively rather than compensating for spring-related devi-
ations on the joint. The feedforward torque exerted by the
springs on the knee joints is calculated using Eq. 1.

D. Implementation

1) Robot Hardware Platform Overview: To fully support
our custom-designed bio-inspired legs, we need a versatile
robotic platform that can accommodate these legs. Existing
platforms, such as the ODRI Solo 12 [39] or the Unitree
GO 1 [14], presented integration challenges due to physical
and software constraints for new leg designs. As a result,
we developed a custom platform from the ground up, named
“Dogger”, to seamlessly integrate our bio-inspired legs and
support our co-design approach.

A key feature of “Dogger” is its use of off-the-shelf elec-
tronics, alongside custom 3D printed mechanical parts made
from standard materials like PLA, PETG, and TPU that can
be printed on conventional FDM 3D printers. This design
choice ensures that fabrication and replication are accessible
to other researchers, while keeping costs low and supporting
adaptability for future modifications. The total material and
component cost is approximately 3000 euros, making “Dog-
ger” an affordable platform for quadrupedal robotics research.

Our quadrupedal robot with the nominal legs is sized
between the Unitree GO 1 [14] and the ODRI Solo 12 [39]. It
weighs 6.5 kg, with a front-to-back distance of 37 cm and a
width of 27 cm between the left and right legs. The actuators
used are Xiaomi Cybergears, operating at 24 V and producing
a peak output torque of 12 Nm per joint. A generic 2 Ah
Li-ion drill battery supplies power, distributed via the MJbots
power distribution board [40].

An NVIDIA Jetson Orin Nano [41] is used as the onboard
computer. Communication with the actuators is facilitated
through a PEAK M.2 CAN bus card [42] connected via the
PCIe port, with each leg having its own CAN bus. Over these
buses, joint position commands are sent, and joint position
estimates are retrieved. An additional CAN-FD USB dongle
(CANable 2.0) [43] enables communication with the power
distribution board to monitor the robot’s energy consumption.
The robot’s orientation is measured using an onboard IMU
(MPU-6050) [44] configured in DMP mode, communicating
over the I2C bus with the Jetson. By using the onboard DMP,
sensor fusion computations are offloaded to the IMU, reducing
the computational load on the Jetson. For more implementation
details of the physical robot, see App. B.

2) Training and Optimization Details: We use the Google
Brax [45] with the MuJoCo MJX [46] physics engine and use
a part of the quadruped environment from [7]. MuJoCo MJX
supports closed kinematic chains for the bio-inspired legs and
large-scale GPU parallelization to speed up training and design
evaluation.

For policy architecture, an actor critic setup is used in
which both the actor and the critic use a multilayer perceptron
(MLP) with five hidden layers, each containing 128 neurons,
and using Swish/Silu activation functions [47]. An input
normalization layer processes the observations, and a tanh
distribution is used in the last layer to produce the actions.
The policy runs at a frequency of 50Hz.

During training, 8192 agents, each with a different design,
are trained simultaneously. We use proximal policy optimiza-
tion (PPO) as the RL algorithm to update the policy weights,
using the implementation provided in the Google Brax envi-
ronment. Training πu requires 150 million environment steps
on flat terrain and this takes approximately 15 minutes on a
desktop GPU (RTX 4070). The policy runs at 50Hz.

For the design selection process, we use the tree-structured
parzen estimator (TPE) solver [48] because it is readily
available in the Optuna library [49]. The process begins with
a warm-up phase, where 100 random designs are validated in
parallel. Each design is tested for 6000 environment steps for
task 1 (Sec. IV-A) and 15000 environment steps for task 2
(Sec. IV-B). Following this, we perform 45 iterations with a



10

batch size of 20 designs per iteration, requiring approximately
45 minutes of computation on the same GPU. More training
and optimization details can be found in App. C

3) Cost Function Constants: For CoT (Eq. 2), the fol-
lowing constants are used. Measurements have estimated
Psystem = 16.2W. The constants used in Pmech(t) for the
Cybergear actuators are provided in the datasheet. These are
R = 0.45Ω, KT = 0.87Nm/A, and Kv = 0.53V/rad/s.

IV. EXPERIMENTAL VALIDATION

To evaluate the proposed co-design approach and assess
its performance improvements, experiments were conducted
both in simulation and in the real-world on the modular
hardware platform. We performed two design optimization
tasks, task 1 for efficient inspections, and task 2 for efficient
payload transport. For both experiments, the performance of
each optimized design is tested in simulation and in the real-
world. Cross-validation is performed to see how well each
optimized design performs in the other task in simulation and
in the real-world. In the last experiments performed only in
simulation, we look at how well πu performs compared to
specialized policies and look at the consistency of the co-
design optimization process.

The optimized designs are denoted as d∗1 for the optimized
design for task 1, and d∗2 as the optimized design for task
2. They will be compared to two baselines; dn1 , which is the
design with the link lengths set to the middle value and no
springs (λ1 = 1.00, λ2 = 1.00, λ3 = 1.00, � = 0 mm,
and o = 0 mm), and dn2 , which is the same leg design only
with the springs set to the middle values as well (λ1 = 1.00,
λ2 = 1.00, λ3 = 1.00, � = 25 mm, and o = 5 mm). An
overview of all designs can be found in App. D.

In real-world experiments, velocity commands are trans-
mitted from a remote computer to the robot via a TCP
connection. These commands are sent automatically according
to a predefined schedule, ensuring consistency across tests.
The robot samples all sensor information at 25Hz, including
proprioceptive data, energy consumption, temperatures, and
control inputs. These data is sent to a remote computer for
post-processing. We measure the real energy consumption on
the hardware platform and this represents the energy consump-
tion of the entire system. We emphasize this distinction, as
related work often estimates energy consumption using metrics
or by monitoring battery charge levels. In simulation, energy
consumption is estimated via Eq. 2, which is identical to the
metric used during design selection.

A. Task 1: Efficient Inspections

The first task is aimed at inspection routes, a task commonly
performed by quadrupedal robots. When the robot performs
an inspection route, it follows a fixed path, where it will
sometimes stop to take measurements.

For this task, we simplified this route so that the robot
moved in a straight line on flat terrain, alternating between
walking at 0.5m/s and standing still. Each test lasted 1 minute,
consisting of 30 s of walking and 30 s of being stationary. Eight
tests per design were performed in total. The environment

was a flat, smooth indoor surface. The walking distance was
measured using the floor plans of the hallway and a measuring
tape. This environment is shown in Fig. 7.

After optimization, the best resulting design was λ1 = 0.86,
λ2 = 1.02, λ3 = 1.28, � = 33mm, and o = 6mm which is
visualized in Fig. 9a and Fig. 9b. In simulation, this design, d∗1,
achieved a 12.0% reduction in CoT compared to dn1 . In real-
world tests, the same design achieved a reduction of 18.6%
±1.7% in CoT compared to dn1 . These results can be found
Fig. 9c.

Looking at the adjusted metric CoTmech, which only con-
siders motor power usage, d∗1 achieved a 25% reduction
compared to dn1 . More details of this experiment can be found
in App. E.

Fig. 7: Chronophotography of d∗2 performing task 1 (efficient
inspections): The frames are spaced to minimize overlap
between robots.

B. Task 2: Efficient Payload Transport

The second task focuses on another use case for quadrupeds,
namely carrying a payload, for example, for disaster response.
In this setting, we simplify the scenario again. The robot is re-
quired to execute omni-directional locomotion while carrying
a 2 kg payload (approximately 30% of its total mass). For the
optimization, 16 random velocity commands were sampled. In
the experiment, the robot received 16 different selected com-
mands of varying durations, totaling 2 minutes, to represent
a wide range of walking directions and velocities. Four tests
for each design were performed in total. The experiments were
carried out in a motion capture room to ensure precise distance
measurements. This test was also performed on a flat, smooth
indoor surface. Fig. 8 shows the environment and dn1 , d∗1, and
d∗2 motions during the experiment.

The optimized design for this task was λ1 = 1.30, λ2 =
0.70, λ3 = 1.30, � = 38mm, and o = 2mm and can be
seen in Fig. 9a and Fig. 9b. In simulation, this design, d∗2,
demonstrated a 33.8% reduction in CoT relative to dn1 . On
the hardware platform, the same configuration reduced CoT
by 35.7% ±3.1% relative to dn1 . These results can be found
Fig. 9d.



11

Fig. 8: Dogger hardware platform with bio-inspired legs performing task 2 (efficient payload transport): From top to bottom,
the rows show dn1 (top), d∗1 (middle), and d∗2 (bottom). Each sequence begins at the same time point, with the robot walking
sideways to the left at 0.25 m/s. Frames are spaced 0.12 seconds apart. Red arrows indicate the movement of individual feet.
The arrows point to the feet location at the next frame and the absence of an arrow means minimal movement.

Taking into account the adjusted metric CoTmech, the im-
provement reached 49% compared to dn1 , indicating substantial
gains in energy efficiency for payload-carrying tasks.

Even though there is a sim-to-real gap in CoT , these
results, together with the results of task 1, demonstrate that
the proposed co-design framework can effectively optimize the
robot design for both tasks. More details of this experiment
can be found in App. F.

C. Cross-validation of Optimized Designs

To further validate the robustness of the co-design approach,
we cross-validate optimized designs in both tasks. d∗2 is tested
in task 1 and d∗1 is tested in task 2.
d∗2 achieved a 7.0% improvement in CoT over dn1 in

simulation and a 13.5% ±3.3% improvement over dn1 in the
real-world for task 1. These results can be found Fig. 9c. Fur-
thermore, d∗1 improved CoT by 14.6% over dn1 in simulation
and 23.7% ±2.3% over dn1 in real-world tests for task 2. These
results can be found Fig. 9d.

These cross-validation results confirm that while the opti-
mized designs perform well when tested in other tasks, they
do not achieve the same level of performance as the designs
specifically optimized for their respective task. This outcome
underscores the effectiveness of the co-design approach: it
does not merely select designs that work slightly better across

tasks but identifies configurations that perform best for their
intended purpose.

Of course, further testing across a broader range of tasks
and environments is required to comprehensively validate this
conclusion. Nevertheless, the current results provide evidence
that the proposed co-design framework is capable of identify-
ing near-optimal solutions tailored to specific tasks.

D. Validation of the Co-design Framework

1) Consistency Across Multiple Runs: To assess the con-
sistency of the co-design optimization process, the design op-
timization step was repeated five times with different random
seeds that influenced the initial parameters and sampling for
BO, and noise and disturbances for both tasks. For task 2, the
seeds also influence the commands that are sampled.

For task 1, all optimized designs achieved CoT between
−0.03% and 1.97% compared to d∗1, which can be seen in
Fig. 10c. For task 2, all optimized designs achieved CoT
between 1.13% and 5.73% compared to d∗2, which can be
seen in Fig. 10d. In both cases, their specific parameter
configurations varied, which can be seen in Fig. 10a and
Fig. 10b. This shows that multiple near-optimal solutions exist,
reflecting the coupled nature of the design parameters and the
underlying trade-offs in the design space. It also shows that
our co-design approach consistently picks well-performing



12

(a) The four evaluated designs: dn1 , dn2 , d∗1, and d∗2. dn1 and dn2 share the same link parameters (λ1, λ2, λ3) and therefore share the picture
(left). dn1 has the diameter � of the wheel and the offset o set to zero, while dn2 uses mid-range values for these parameters and therefore
differ. d∗1 (center) and d∗2 (right) show the optimized designs.

λ1 [-]

0.85

1.00

1.15

1.30

λ2 [-]

0.85
1.00

1.15
1.30

λ3 [-]

0.85

1.00

1.15

1.30

� [mm]

12.50

25.00

37.50

50.00

o [mm]

2.50
5.00

7.50
10.00

(b) Design parameters visualized for the evaluated designs. dn1 is less
visible due to overlapping design values.

−20−15−10−50

Relative CoT change compared to dn1 [%]

dn2

d∗1

d∗2

Simulation
Real-World

(c) Relative performance for task 1.

−40−30−20−100

Relative CoT change compared to dn1 [%]

dn2

d∗1

d∗2

Simulation
Real-World

(d) Relative performance for task 2.

Fig. 9: Comparison of nominal and optimized designs across tasks. At the top, pictures of the designs (dn1 , dn2 , d∗1, d∗2) illustrate
their structural differences. Below-left, design parameters are shown in a visual comparison to better see the differences for the
PEAs (parallel elastic actuators). Below-right, relative CoT (cost of transport) gains over dn1 are presented for tasks 1 and 2,
evaluated in both simulation and real-world tests. Note that the CoT includes energy usage from both motors and electronics.
Design colors: purple (dn1 ), blue (dn2 ), green (d∗1), and yellow (d∗2).



13

λ1 [-]

0.85

1.00

1.15

1.30

λ2 [-]

0.85
1.00

1.15
1.30

λ3 [-]

0.85

1.00

1.15

1.30

� [mm]

12.50

25.00

37.50

50.00

o [mm]

2.50
5.00

7.50
10.00

(a) Design parameters for task 1 across different optimization runs.

λ1 [-]

0.85

1.00

1.15

1.30

λ2 [-]

0.85
1.00

1.15
1.30

λ3 [-]

0.85

1.00

1.15

1.30

� [mm]

12.50

25.00

37.50

50.00

o [mm]

2.50
5.00

7.50
10.00

(b) Design parameters for task 2 across different optimization runs.

0.0 0.5 1.0 1.5 2.0

Relative CoT change compared to d∗1 [%]

d∗,11

d∗,21

d∗,31

d∗,41

d∗,51

(c) Relative performance change for task 1 across optimizations.

0 2 4 6

Relative CoT change compared to d∗2 [%]

d∗,12

d∗,22

d∗,32

d∗,42

d∗,52

(d) Relative performance change for task 2 across optimizations.

Fig. 10: Consistency analysis of the co-design approach for tasks 1 and 2 across different random seeds. The left column
corresponds to task 1, and the right column corresponds to task 2. The top row visualizes design parameters across optimization
runs for each task, while the bottom row shows the relative CoT change compared to the optimized design for each task.

designs. The raw values of this experiment can be found in
App. G.

2) Universal Versus Specialized Policies: To determine
whether πu adapts well to various designs, separate specialized
policies πs were trained for dn1 , d

n
2 , d∗1, d∗2. πs use the same

hyperparameters and rewards as πu.
As illustrated in Fig. 11, the reward score for πu ranged

from −0.2% to 13.8% compared to πs. This shows that
πu adapts sufficiently to the nominal and optimized designs.
Consequently, this shows that we do not need separate policies
or fine-tuning for each configuration. This also shows that in
the design selection step, each robot design is evaluated in a
fair way because the policy is well adapted to each design.
The raw values of this experiment can be found in App. H.

−2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

πu relative reward compared to πs [%]

dn1

dn2

d∗1

d∗2

Fig. 11: Comparison of πu and πs reward for the four
evaluated designs: dn1 , dn2 , d∗1, and d∗2.



14

V. CONCLUSION

In this paper, we aimed to bridge the gap between theoretical
models and practical applications by transitioning optimized
designs from simulation to real-world implementation. A key
contribution to achieve this was the development of a mod-
ular, low-cost hardware platform with bio-inspired legs that
enabled rapid prototyping and testing of optimized designs. It
completed all experiments, tests, and demonstrations without
electronic failures and only one broken leg, which could easily
be reprinted and replaced.

We demonstrated that our simplified co-design approach,
using reinforcement learning (RL) combined with Bayesian
optimization, significantly enhanced the energy efficiency of
the bio-inspired quadruped robot. By concurrently optimizing
both the mechanical design and control strategies, we navi-
gated a complex design space where parameters like shank
length and spring stiffness presented conflicting trade-offs. Our
co-design approach found well-performing designs, leading to
a notable 18.6% and 35.7% reduction in CoT over the nominal
design without springs in real-world tests during inspection
and payload tasks respectively. Cross-validation showed that
our approach does not merely select designs that work slightly
better across tasks but identifies designs that perform best for
their intended purpose.

In addition to the real-world experiments, we conducted
further software validation to support our approach. First, the
universal policy, trained across various designs, performed
comparably to specialized policies tailored to specific designs,
demonstrating the effectiveness of the universal policy within
our co-design approach. Second, the design selection remained
consistent between different random seeds, indicating the
reliability of the proposed approach despite the complexity
of the design space.

However, challenges remain. First, the design selection is
based on simulation data, and due to the sim-to-real gap, the
question arises about whether this selected design is also the
best in real-world conditions. Second, the biases introduced
during RL training, such as those resulting from initial joint
configurations, can influence design preferences. Although
some of the above discrepancies between simulation and
real-world performance remain, our findings underscore the
potential of co-design to address complex trade-offs in real-
world robotic system design.

Future work should aim to ensure that the selected de-
sign is also the best design in the real-world. Additionally,
new metrics and tasks, such as optimizing jumping distance,
running speed, or walking endurance, should be explored.
Expanding the design space to include more factors, such
as body shape, gear ratios, and the spring setup of series
elastic actuators, could also lead to further advancements.
By continuing to refine the co-design process, we aim to
both simplify the design process of robots and make robots
that approach the agility, efficiency, and versatility of their
biological counterparts.

ACKNOWLEDGMENT

I would like to thank my supervisors, Dr. Jiatao Ding and
Dr. Cosimo Della Santina, for their guidance and support
throughout my master’s program, for the literature review,
the research assignment, and the thesis. Their feedback and
expertise were essential in shaping this work.

I am also grateful to Dr. Martijn Wisse for encouraging me
to explore the field of legged robotics for my thesis and for
his assistance in securing funding for the project.

Many thanks to my fellow robotics students and researchers
for their helpful discussions and support during experiments,
as well as to the lab technicians for their assistance with the
motion tracking system.

Finally, I would like to thank my father, brother, girlfriend,
and friends for their encouragement and support throughout
my studies.

REFERENCES

[1] V. Atanassov, J. Ding, J. Kober, I. Havoutis, and C. D. Santina,
“Curriculum-based reinforcement learning for quadrupedal jumping: A
reference-free design,” 2024. [Online]. Available: https://arxiv.org/abs/
2401.16337

[2] M. Chignoli, S. Morozov, and S. Kim, “Rapid and reliable quadruped
motion planning with omnidirectional jumping,” in 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
6621–6627.

[3] F. Stella, M. Achkar, C. Della Santina et al., “Paws: A synergy-based
robotic quadruped leveraging passivity for robustness and behavioural
diversity,” 9 2023. [Online]. Available: https://doi.org/10.21203/rs.3.
rs-3195331/v1

[4] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics,
vol. 5, no. 47, p. eabc5986, 2020.

[5] D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour:
Learning agile navigation for quadrupedal robots,” Science Robotics,
vol. 9, no. 88, p. eadi7566, 2024.

[6] Z. Zhuang, Z. Fu, J. Wang, C. G. Atkeson, S. Schwertfeger, C. Finn,
and H. Zhao, “Robot parkour learning,” in 7th Annual Conference on
Robot Learning, 2023.

[7] K. Caluwaerts, A. Iscen, J. C. Kew, W. Yu, T. Zhang, D. Freeman,
K.-H. Lee, L. Lee, S. Saliceti, V. Zhuang, N. Batchelor, S. Bohez,
F. Casarini, J. E. Chen, O. Cortes, E. Coumans, A. Dostmohamed,
G. Dulac-Arnold, A. Escontrela, E. Frey, R. Hafner, D. Jain, B. Jyenis,
Y. Kuang, E. Lee, L. Luu, O. Nachum, K. Oslund, J. Powell,
D. Reyes, F. Romano, F. Sadeghi, R. Sloat, B. Tabanpour, D. Zheng,
M. Neunert, R. Hadsell, N. Heess, F. Nori, J. Seto, C. Parada,
V. Sindhwani, V. Vanhoucke, and J. Tan, “Barkour: Benchmarking
animal-level agility with quadruped robots,” 2023. [Online]. Available:
https://arxiv.org/abs/2305.14654

[8] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2024, pp. 11 443–11 450.

[9] S. A. Burden, T. Libby, K. Jayaram, S. Sponberg, and J. M. Donelan,
“Why animals can outrun robots,” Science Robotics, vol. 9, no. 89, p.
eadi9754, 2024.

[10] A. Badri-Spröwitz, A. Aghamaleki Sarvestani, M. Sitti, and M. A. Daley,
“Birdbot achieves energy-efficient gait with minimal control using avian-
inspired leg clutching,” Science Robotics, vol. 7, no. 64, p. eabg4055,
2022.

[11] Q. Shi, J. Gao, S. Wang, X. Quan, G. Jia, Q. Huang, and T. Fukuda,
“Development of a small-sized quadruped robotic rat capable of mul-
timodal motions,” IEEE Transactions on Robotics, vol. 38, no. 5, pp.
3027–3043, 2022.

[12] J. K. Lungmus and K. D. Angielczyk, “Antiquity of forelimb eco-
morphological diversity in the mammalian stem lineage (synapsida),”
Proceedings of the National Academy of Sciences, vol. 116, no. 14, pp.
6903–6907, 2019.

https://arxiv.org/abs/2401.16337
https://arxiv.org/abs/2401.16337
https://doi.org/10.21203/rs.3.rs-3195331/v1
https://doi.org/10.21203/rs.3.rs-3195331/v1
https://arxiv.org/abs/2305.14654


15

[13] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch et al., “Anymal-a
highly mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ in-
ternational conference on intelligent robots and systems (IROS). IEEE,
2016, pp. 38–44.

[14] Unitree. Go1. Accessed: 2024-09-13. [Online]. Available: https:
//www.unitree.com/en/go1/

[15] Boston Dynamics. Spot. Accessed: 2024-09-13. [Online]. Available:
https://bostondynamics.com/products/spot/

[16] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols et al., “An
open torque-controlled modular robot architecture for legged locomotion
research,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3650–3657, 2020.

[17] B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for
pushing the limits of dynamic quadruped control,” in 2019 international
conference on robotics and automation (ICRA). IEEE, 2019, pp. 6295–
6301.

[18] P. M. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and S. Kim,
“Proprioceptive actuator design in the mit cheetah: Impact mitigation
and high-bandwidth physical interaction for dynamic legged robots,”
Ieee transactions on robotics, vol. 33, no. 3, pp. 509–522, 2017.

[19] A. Spröwitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, and
A. J. Ijspeert, “Towards dynamic trot gait locomotion: Design, control,
and experiments with cheetah-cub, a compliant quadruped robot,” The
International Journal of Robotics Research, vol. 32, no. 8, pp. 932–950,
2013.

[20] F. De Vincenti, D. Kang, and S. Coros, “Control-aware design optimiza-
tion for bio-inspired quadruped robots,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp.
1354–1361.

[21] A. M. Abate, “Mechanical design for robot locomotion,” 2018.
[Online]. Available: https://ir.library.oregonstate.edu/concern/graduate
thesis or dissertations/nk322k39g

[22] G. Kenneally and D. E. Koditschek, “Leg design for energy manage-
ment in an electromechanical robot,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015, pp.
5712–5718.

[23] J. Ding, P. Posthoorn, V. Atanassov, F. Boekel, J. Kober, and C. D.
Santina, “Quadrupedal locomotion with parallel compliance: E-go de-
sign, modeling, and control,” IEEE/ASME Transactions on Mechatron-
ics, vol. 29, no. 4, pp. 2839–2848, 2024.

[24] F. Bjelonic, J. Lee, P. Arm, D. Sako, D. Tateo, J. Peters, and M. Hutter,
“Learning-based design and control for quadrupedal robots with parallel-
elastic actuators,” IEEE Robotics and Automation Letters, vol. 8, no. 3,
pp. 1611–1618, 2023.

[25] G. Grandesso et al., “Reinforcement learning and trajectory optimization
for the concurrent design of high-performance robotic systems,” 2023.
[Online]. Available: https://iris.unitn.it/handle/11572/381949

[26] K. M. Digumarti, C. Gehring, S. Coros, J. Hwangbo, and R. Siegwart,
“Concurrent optimization of mechanical design and locomotion control
of a legged robot,” in Mobile Service Robotics. World Scientific, 2014,
pp. 315–323.

[27] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane, “Joint optimization
of robot design and motion parameters using the implicit function
theorem.” in Robotics: Science and systems, vol. 8, 2017.

[28] T. Dinev, C. Mastalli, V. Ivan, S. Tonneau, and S. Vijayakumar, “A
versatile co-design approach for dynamic legged robots,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 10 343–10 349.

[29] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter, “Jointly learning
to construct and control agents using deep reinforcement learning,” in
2019 International Conference on Robotics and Automation (ICRA),
2019, pp. 9798–9805.

[30] D. Ha, “Reinforcement learning for improving agent design,” Artificial
Life, vol. 25, no. 4, pp. 352–365, Nov. 2019.

[31] G. Fadini, S. Kumar, R. Kumar, T. Flayols, A. Del Prete, J. Carpentier,
and P. Souères, “Co-designing versatile quadruped robots for dynamic
and energy-efficient motions,” Robotica, pp. 1–22, 2023.

[32] Á. Belmonte-Baeza, J. Lee, G. Valsecchi, and M. Hutter, “Meta rein-
forcement learning for optimal design of legged robots,” IEEE Robotics
and Automation Letters, vol. 7, no. 4, pp. 12 134–12 141, 2022.

[33] J. Won and J. Lee, “Learning body shape variation in physics-based
characters,” ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp.
1–12, 2019.

[34] X. Liu, A. Rossi, and I. Poulakakis, “A switchable parallel elastic actu-
ator and its application to leg design for running robots,” IEEE/ASME
Transactions on Mechatronics, vol. 23, no. 6, pp. 2681–2692, 2018.

[35] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal, “Rapid
locomotion via reinforcement learning,” The International Journal of
Robotics Research, vol. 43, no. 4, pp. 572–587, 2024.

[36] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science robotics, vol. 7, no. 62, p. eabk2822, 2022.

[37] M. Aractingi, P.-A. Léziart, T. Flayols, J. Perez, T. Silander, and
P. Souères, “Controlling the solo12 quadruped robot with deep rein-
forcement learning,” scientific Reports, vol. 13, no. 1, p. 11945, 2023.

[38] G. Bellegarda, C. Nguyen, and Q. Nguyen, “Robust quadruped jumping
via deep reinforcement learning,” Robotics and Autonomous Systems,
vol. 182, p. 104799, 2024.

[39] P.-A. Léziart, T. Flayols, F. Grimminger, N. Mansard, and P. Souères,
“Implementation of a reactive walking controller for the new open-
hardware quadruped solo-12,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021, pp. 5007–5013.

[40] MJbots. Mjbots power distribution. Accessed: 2024-09-12. [Online].
Available: https://mjbots.com/products/mjbots-power-dist-r4-5b

[41] NVIDIA. Jetson orin. Accessed: 2024-09-12. [On-
line]. Available: https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-orin/

[42] PEAK. Pcan-m-2. Accessed: 2024-09-12. [Online]. Available: https:
//www.peak-system.com/PCAN-M-2.473.0.html?&L=1

[43] CANable. An open-source usb to can adapter. Accessed: 2024-09-12.
[Online]. Available: https://canable.io/

[44] Invensense. Mpu-6050. Accessed: 2024-09-12. [Online]. Available:
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/

[45] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and
O. Bachem. (2021) Brax - a differentiable physics engine for large scale
rigid body simulation. [Online]. Available: http://github.com/google/brax

[46] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[47] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” 2017. [Online]. Available: https://arxiv.org/abs/1710.05941

[48] Y. Ozaki, Y. Tanigaki, S. Watanabe, M. Nomura, and M. Onishi,
“Multiobjective tree-structured parzen estimator,” Journal of Artificial
Intelligence Research, vol. 73, pp. 1209–1250, 2022.

[49] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2019.

[50] NVIDIA. Nvidia tensorrt. Accessed: 2024-12-25. [Online]. Available:
https://developer.nvidia.com/tensorrt

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[52] J. Bai, F. Lu, K. Zhang et al. (2019) Onnx: Open neural network
exchange. https://github.com/onnx/onnx.

https://www.unitree.com/en/go1/
https://www.unitree.com/en/go1/
https://bostondynamics.com/products/spot/
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/nk322k39g
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/nk322k39g
https://iris.unitn.it/handle/11572/381949
https://mjbots.com/products/mjbots-power-dist-r4-5b
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.peak-system.com/PCAN-M-2.473.0.html?&L=1
https://www.peak-system.com/PCAN-M-2.473.0.html?&L=1
https://canable.io/
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
http://github.com/google/brax
https://arxiv.org/abs/1710.05941
https://developer.nvidia.com/tensorrt
https://github.com/onnx/onnx


16

APPENDIX A
ENERGY MODEL DERIVATION AND DETAILS

This section of the Appendix gives more information about
the energy model that is used.

A. Derivation Motor Power

The motor power Pmech(t) is calculated using the motor
voltage and current:

Pmech(t) =

n∑
i=1

Pmech,i(τi(t), q̇i(t))

=

n∑
i=1

Vm,i(τi(t), q̇i(t))Im,i(τi(t)),

(5)

where Pmech,i(τi(t), q̇i(t)) is the motor power of motor i, τi(t)
is the torque of motor i, q̇i(t) is the joint velocity of motor
i, Vm,i(τi, q̇i) is the voltage across motor i, Im,i(τi) is the
current through motor i. Im,i(τi(t)) is estimated by:

Im,i(τi(t)) =
τi(t)

KT
, (6)

here KT is the torque constant. Vm,i(τi(t), q̇i(t)) is calculated
as:

Vm,i(τi(t), q̇i(t)) = Im,i(τi(t))R+Kv q̇i(t), (7)

here R is the winding resistance of the motor and Kv is the
velocity constant of the motor. The first term represents the
voltage drop due to resistive losses in the motor windings, and
the second term accounts for the back-emf generated by the
motor’s rotation.

The total power Ptotal(t) is obtained by adding Pmech(t)
to Psystem. This is integrated to obtain the total energy of the
system Etotal. This integration is performed discretely using a
Riemann sum at each time step of the environment’s operation:

Etotal ≈
N−1∑
i=0

Ptotal(t) ·∆t, (8)

where ∆t is the duration of each time step. This provides
an estimate of the system’s total energy consumption over the
operational period.

B. Estimating Power Usage of System

To estimate the power usage of the other electronic com-
ponents Psystem, we measured the energy consumption of
the entire system with the software running but no power
applied to the motors for a duration of 8 minutes. As shown in
the plot, the power consumption remains constant. The total
energy usage of the robot system, measured in Wh over time,
is illustrated in Fig. 12.

0 100 200 300 400 500

t [s]

0.0

0.5

1.0

1.5

2.0

E
[W

h]

Fig. 12: Measured energy consumption over time for all
electronics with the actuators turned off for 8 minutes.

1) Verification of Energy Model: To ensure that our cost
function is based on an accurate energy model, we conducted
additional energy consumption tests on both the simulator and
the real robot, now focused purely on energy E and not on
CoT . Note that this test has been done with an older policy
than the tests in the main section of this report. In this test, we
take five different designs noted as dn1 , d

a
1 , d

b
1, d

c
1 and dd1 with

slight changes between them. Then the energy consumption is
measured for task 1 (efficient inspections) (Sec. III-D1) both in
the simulator and in the real-world. Fig. 13 shows the designs
on the radar chart and the comparison between the relative
simulation and real-world energy consumption compared to
dn1 . The raw values of the designs can be found in Tab. II.
There is still an offset between the energy measurements
obtained from the simulation and those from the real-world,
with the offset ranging from 4.16% to 6.08% in all designs.

TABLE II: Design parameter values for different designs of
the energy experiment.

Design λ1 [−] λ2 [−] λ3 [−] � [mm] o [mm]
dn1 1.00 1.00 1.00 0 0
da1 1.00 1.00 1.00 25 1
db1 1.00 1.00 1.00 50 1
dc1 1.00 1.00 1.30 50 1
dd1 1.00 1.00 1.30 50 5

Tab. III shows the raw energy consumption of the five
designs for simulation and the real-world. The first column
shows the energy consumption measured in the simulation.
The second column shows the energy consumption measured
in the real-world. The third column shows the relative differ-
ence between what is measured in the simulator and what is
measured in the real-world.

Tab. IV shows the difference in energy consumption for each
design compared to dn1 . The first column shows these relative
differences for the measured simulation energy consumption
for each design compared to dn1 . The second column shows
these relative differences for what is measured in the real-
world for each design compared to dn1 . The last column shows
the relative difference between these two relative differences
for each design compared to dn1 . This means that if we would



17

λ1 [-]

0.85

1.00

1.15

1.30

λ2 [-]

0.85
1.00

1.15
1.30

λ3 [-]

0.85

1.00

1.15

1.30

� [mm]

12.50

25.00

37.50

50.00

o [mm]

2.50
5.00

7.50
10.00

(a) Design parameters visualized for the evaluated designs.

−10−8−6−4−20

Relative E change compared to dn1 [%]

da1

db1

dc1

dd1

Simulation
Real-World

(b) Relative performance for task 1.

Fig. 13: Energy experiment. On the left the different tested designs are visualized. On the right the relative performance
differences compared to dn1 . The test is based on task 1, only a different metric is used.

TABLE III: Raw simulated and real-world energy consump-
tions for each design and their relative difference.

Design Sim. Energy [Wh] Real Energy [Wh] Diff. [%]
dn1 0.989 1.035 +4.70
da1 0.939 0.978 +4.16
db1 0.891 0.945 +6.08
dc1 0.909 0.955 +5.14
dd1 0.916 0.961 +4.92

TABLE IV: Relative differences between simulation and real-
ity compared to dn1 and the relative difference between those
two.

Design Sim. Diff. [%] Real Diff. [%] Rel. Sim.-Real Diff. [%]
dn1 +0.00 +0.00 +0.00
da1 −5.06 −5.55 −0.49
db1 −9.93 −8.74 +1.19
dc1 −8.11 −7.71 +0.39
dd1 −7.36 −7.16 +0.20

have the same relative improvement in the real world as the
simulator, that this sim-to-real difference is 0%. The relative
differences between the designs in the simulation compared to
the real world range from 0.00% to 1.19%. This last result is
important because it shows, despite having an offset between
the energy consumption measured between simulation and
reality, that the relative differences are small. This is less
compared to the sim-to-real differences in CoT seen in Sec.
IV-A and Sec. IV-B. This could be due to the smaller design
changes or by the exclusion of the walked distance.

APPENDIX B
IMPLEMENTATION DETAILS OF PHYSICAL ROBOT

This section of the Appendix provides additional details re-
garding the implementation of key components on the physical
robot. Although the scope of this project is broad and includes
aspects not covered in this work, such as creating MJCF
simulation models from CAD or developing tools for the RL
training pipelines, we include the following information to
highlight implementation details that are often not explained
in related work.

A. Data Collection on the Real Robot

Collecting data onboard the robot is a non-trivial task due
to the limited computational resources available. To address
this, the data collection pipeline is run asynchronously from
the main control loop at a frequency of 25 Hz. This setup
minimizes computational load on the main processes, which
operate at a fixed frequency of 50 Hz.

The data collection pipeline is run during periods when
the main loop is idle, which happens when waiting for the
time to keep the loop frequency fixed. During these idle
periods, all collected data are queued. The queued data are
then transmitted to a remote computer in batches every 2.5
seconds, after which the queue is reset. This batching strategy
prevents the overhead of frequent data transmissions.

B. Running Neural Networks Efficiently on the NVIDIA Jetson

To achieve efficient inference of the neural network on the
robot, we utilize NVIDIA TensorRT, which provides runtime
optimizations for neural networks [50]. The neural network,
initially developed in the Brax simulation environment using



18

JAX, underwent several transformations to enable deployment
on the NVIDIA Jetson platform.

First, the JAX-based model was converted to a PyTorch
model [51]. This was necessary for the export to the ONNX
(Open Neural Network Exchange) format [52]. This interme-
diate format was then used to create a TensorRT (TRT) model,
optimized for the Jetson platform. Finally, the TensorRT model
was executed using the PyCUDA framework in Python. This
pipeline ensured low-latency inference and enabled real-time
deployment of the neural network on the physical robot.

APPENDIX C
TRAINING DETAILS

This section of the Appendix, we go in more depth about
the training process of πu and design selection process. In
Tab. V the ranges can be found for the domain randomization.
In Tab. VI the hyperparameters can be found that are used in
the PPO algorithm. In Tab. VII the hyperparamters can be
found that are applied to the environment. In Tab. VIII the
rewards weights can be found for each reward. In Tab. IX
the hyperparameters can be found that are used for the BO
algorithm. Finally in Tab. X, the reward functions that are
used during training can be found with the symbol explanation
presented in Tab. XI.

TABLE V: Domain randomization ranges.

Parameter Range Unit Notes
λ1 [0.7, 1.3] [-] Factor
λ2 [0.7, 1.3] [-] Factor
λ3 [0.7, 1.3] [-] Factor
� [0, 50] [mm] -
o [0, 10] [mm] -
Friction [1.0, 2.0] [-] Factor
Position gain (Kp) [−2.5, 2.5] [Nmsrad−1] Addition
Derivative gain (Kd) [−0.2, 0.35] [Nmsrad−1] Addition
Joint Damping [0.0, 0.3] [Nmsrad−1] Addition
Torso Mass [0.75, 1.5] [-] Factor
Torso Inertia [0.5, 2.5] [-] Factor
Torso COM Position [0.035, 0.05] [m] Addition

TABLE VI: Training network hyperparameters.

Parameter Value
Number of Timesteps 150, 000, 000
Episode Length 1000
Normalize Observations True
Unroll Length 20
Number of Minibatches 32
Number of Updates per Batch 4
Discounting 0.97
Learning Rate 3.0× 10−4

Entropy Cost 1× 10−2

Number of Environments 8192
Batch Size 256
Policy Hidden Layer Sizes (128, 128, 128, 128)

TABLE VII: Environment hyperparameters.

Parameter Value
Velocity Command Bounds
Linear Velocity X [−0.6, 0.6]
Linear Velocity Y [−0.8, 0.6]
Angular Velocity Yaw [−1.0, 1.0]
Action Space Bounds
Lower Bounds [−1.0, 0.5, −1.75]
Upper Bounds [1.0, 2, 0]
Additional Reward Parameters
Observation Noise 0.065
Action Scale [0.4, 0.5, 1.2]
Kick Velocity 0.12
Foot Radius 0.02
Push Interval 10
Contact Threshold 0.001
Contact Threshold 0.01
Height Termination Threshold 0.18
Step Height Threshold 0.09
Probability of Zero Command 0.1

TABLE VIII: Reward weights.

Reward Component Weight
Tracking Reward Weights
Tracking Linear Velocity 1.5
Tracking Angular Velocity 0.8
Tracking Sigma 0.25
Regularization Reward Weights
Linear Velocity in Z −2.0
Angular Velocity in XY −0.05
Orientation −35.0
Torques −0.0015
Action Rate −0.1
Feet Air Time 10.0
Hip Close to Initial −0.20
Stand Still Close to Initial −0.15
Step Height −1.75
Termination −1.0
Foot Slip −0.1

TABLE IX: Bayesian solver hyperparameters.

Parameter Value
Selected Sampler tpe
Number of Trials 1000
Batch Size 20
Number of Startup Trials 100
Number of EI Candidates 192
Multivariate True
Group True



19

TABLE X: Reward functions.

Reward Component Expression
Tracking Reward Functions

Tracking Linear Velocity exp

(
− (vdes,x−vx)2+(vdes,y−vy)

2

σ

)
Tracking Angular Velocity exp

(
− (ωdes−ωz)

2

σ

)
Regularization Reward Functions
Linear Velocity in Z v2z
Angular Velocity in XY ω2

x + ω2
y

Orientation q2base,x + q2base,y
Torques cheatloss ·

∑12
i=1 τ

2
i + cmech power ·

∑12
i=1 (τi · q̇i)

Action Rate
∑12

i=1

(
ai − a−1

i

)2

Feet Air Time
∑4

i=1

(
(tairi − 0.1) · not contact filti

)
· ⊮(vdes = 0)

Hip Close to Initial
∑4

i=1

∣∣∣qhipi − qdefault act pose,hip
i

∣∣∣
Stand Still Close to Initial

∑12
i=1

∣∣∣qi − qdefault act pose
i

∣∣∣ · ⊮(vdes = 0)

Step Height
∑4

i=1 (step heighti − step height thresholdi)
2 · contact filti

Termination ⊮(done ∧ (step < 500))

Foot Slip
∑4

i=1

(
(vfoot,x,yi )2 · contact filti

)

TABLE XI: Symbol descriptions for reward functions table.

Symbol Description
q Joint position vector for all actuators.
qdefault act pose Default joint position vector for all actuators.
q̇i Angular velocity of the i-th actuator.
τi Torque applied to the i-th actuator.
ai Action command for the i-th actuator.
a−1
i Previous action command for the i-th actuator.

v Actual linear velocity vector.
vdes Desired linear velocity vector.
ω Actual angular velocity vector.
ωdes Desired angular velocity around the z axis.
qbase Orientation quaternion components representing pitch and roll of the base.
tairi Air time of the i-th foot.
not contact filti Boolean indicating if the i-th foot is not in contact with the ground.
contact filti Boolean indicating whether the i-th foot is in contact with the ground.
vfoot
i Linear velocity vector of the i-th foot in the x and y directions.

step heighti Step height of the i-th foot.
step height thresholdi Threshold step height for the i-th foot.
cheatloss Heat loss constant.
cmech power Mechanical power constant.
⊮(·) Indicator function (1 if the condition inside is true, 0 otherwise).
done Boolean indicating if the episode has terminated.
step Current simulation step.
σ Variance parameter controlling the sensitivity of the exponential function.



20

APPENDIX D
DESIGN OVERVIEW

In this section of the Appendix, the values for the design
parameters can be seen for the nominal and optimized designs
in Tab. XII.

TABLE XII: Design parameter values for nominal and opti-
mized designs.

Design λ1 [−] λ2 [−] λ3 [−] � [mm] o [mm]
dn1 1.00 1.00 1.00 0 0
dn2 1.00 1.00 1.00 25 5
d∗1 0.86 1.02 1.28 33 6
d∗2 1.30 0.70 1.30 38 2

APPENDIX E
HARDWARE EXPERIMENT TASK 1 EFFICIENT INSPECTIONS

DETAILS

In this section of the Appendix, more information can be
found about optimization experiment of task 1. The velocity
sequence given to the robot during the experiment can be seen
Fig. 16.

−0.5

0.0

0.5

v x
[m

/s
]

−0.5

0.0

0.5

v y
[m

/s
]

0 20 40 60 80 100 120

Time [s]

−0.5

0.0

0.5

ω
z

[r
ad

/s
]

Fig. 14: The velocity command sequence for x (vx), y (vy),
and yaw rate around z (ωz) for task 1.

A. Detailed Table of Inspection Route Experiment

Tab. XIII shows the detailed measurements collected on the
real robot. The columns show the four tested designs. For the
rows, it is split in five main areas: the distance measured ∆s,
the energy consumed E, adjusted energy consumption Emech,
the CoT and CoTmech. For each of these areas, the raw value
is displayed for each run, but also the average value is shown.
Note that this table shows 4 runs. Each run consists out of
two times a 1 minute run.

Emech is calculated by subtracting the energy usage of
Esystem from Etotal. Here, Esystem has been estimated to con-
sume 0.54Wh during the two-minute combined run. The
mechanical energy consumption is then divided by the actual
distance walked to obtain CoTmech. The key difference be-
tween CoT and CoTmech is that CoT accounts for the total
energy consumption of the entire system, while CoTmech only
considers the motor’s energy consumption.

Tab. XIV shows a similar table as Tab. XIII, only now with
the simulation data. Here, only one run is recorded.

TABLE XIII: Hardware results task 1. Comparison of distance
walked, energy consumed, energy mechanical, CoT , and CoT
mechanical for each design.

Metric dn1 dn2 d∗1 d∗2
∆s [m]
Run 1 29.82 31.64 32.47 29.72
Run 2 30.12 31.49 33.59 30.12
Run 3 30.22 31.97 33.47 30.02
Run 4 29.92 31.97 34.27 30.22
Average ∆s 30.02 31.77 33.45 30.02
E [Wh]
Run 1 1.06 1.02 0.97 0.92
Run 2 1.06 1.01 0.95 0.94
Run 3 1.06 1.02 0.96 0.94
Run 4 1.06 1.03 0.97 0.86
Average E 1.06 1.02 0.96 0.92
Emech [Wh]
Run 1 0.52 0.48 0.43 0.38
Run 2 0.52 0.47 0.41 0.40
Run 3 0.52 0.48 0.42 0.40
Run 4 0.52 0.49 0.43 0.32
Average Emech 0.52 0.48 0.42 0.38
CoT [J/m]
Run 1 127.47 115.67 107.00 111.81
Run 2 126.30 115.15 101.93 112.76
Run 3 126.33 114.65 102.96 112.28
Run 4 127.82 115.63 101.69 102.75
Average CoT 126.98 115.03 103.40 109.90
CoTmech [J/m]
Run 1 62.28 54.22 47.13 46.40
Run 2 61.76 53.41 44.05 48.21
Run 3 62.00 53.84 44.88 47.53
Run 4 62.84 54.83 44.96 38.42
Average CoTmech 62.22 54.08 45.26 45.14

TABLE XIV: Software results task 1. Comparison of distance
walked, energy consumed, and CoT for each design.

Metric dn1 dn2 d∗1 d∗2
∆s [m]
Run 1 32.75 32.28 33.57 29.66
E [Wh]
Run 1 1.06 0.97 0.96 0.89
CoT [J/m]
Run 1 116.68 107.76 102.68 108.56

B. Graphs Showing Energy Consumption and Torque over
Time

Fig. 15 shows two graphs. The measured energy consump-
tion over time and the effort for the knee motors. The colors



21

0 100 200 300 400 500

t [s]

0

1

2

3

4

E
[W

h]

dn1
dn2
d∗1
d∗2

−2.5

0.0

2.5

M
ot

or
E

ff
or

t[
N

m
]

Motor Knee FL Effort Over t (70-72.0) [s]

dn1
dn2
d∗1
d∗2

−2.5

0.0

2.5

M
ot

or
E

ff
or

t[
N

m
]

Motor Knee FR Effort Over t (70-72.0) [s]

dn1
dn2
d∗1
d∗2

−2.5

0.0

2.5

M
ot

or
E

ff
or

t[
N

m
]

Motor Knee RL Effort Over t (70-72.0) [s]

dn1
dn2
d∗1
d∗2

70.00 70.25 70.50 70.75 71.00 71.25 71.50 71.75 72.00

t [s]

−2.5

0.0

2.5

M
ot

or
E

ff
or

t[
N

m
]

Motor Knee RR Effort Over t (70-72.0) [s]

dn1
dn2
d∗1
d∗2

Fig. 15: Energy consumption and motor efforts for task 1. The top chart shows the energy consumption over eight trials for
the designs dn1 , dn2 , d∗1, and d∗2. The bottom chart provides a snapshot of the knee actuator efforts during a 2.5-second window
while the robot is walking. Actuator labels: FL = Front Left, FR = Front Right, RL = Rear Left, RR = Rear Right.



22

correspond to the colors of the designs of Sec. III-D1 (purple:
dn1 , blue: dn2 , green: d∗1 yellow: d∗2).

In the energy plot, one can see the difference when the robot
is walking (steeper part), and when the robot is standing still
(less steep part). Also, the optimized designs consume less
energy than dn1 , d

n
2 . Also, a small measurement mistake at the

end for d∗2 can be seen where the measurement stopped too
early.

In the motor effort plots, the torque of each knee motor is
plotted. Here, the effect of the PEA can be seen. For dn1 , the
design without PEA engaged, it can be seen that it has the
highest peak torques and that most torque is on one side of
the zero line (denoted as a dotted line). With PEA engaged,
one can see the torque shift, resulting in lower peak torques
and a more balanced torque graph on both sides of the zero
line for design dn2 , d

∗
1 and d∗2. The optimized designs d∗1 and

d∗2 have the most balanced line with the lowest peak torque.
This is important, because the motor torque has a squared
relationship with the motor power.

APPENDIX F
HARDWARE EXPERIMENT TASK 2 EFFICIENT PAYLOADS

DETAILS

In this section of the Appendix, more information can be
found about optimization experiment of task 2. The velocity
sequence given to the robot during the experiment can be seen
Fig. 16.

−0.5

0.0

0.5

v x
[m

/s
]

−0.5

0.0

0.5

v y
[m

/s
]

0 20 40 60 80 100 120

Time [s]

−0.5

0.0

0.5

ω
z

[r
ad

/s
]

Fig. 16: The velocity command sequence for x (vx), y (vy),
and yaw rate around z (ωz) for task 2.

Tab. XV shows the detailed measurements collected on the
real robot. The columns show the four tested designs. For the
rows, it is split in five main areas: the distance measured ∆s,
the energy consumed E, adjusted energy consumption Emech,
the CoT and CoTmech. For each of these areas, the raw value
is displayed for each run, but also the average value is shown.

See App. E to see how Emech and CoTmech are calculated.
Tab. XVI shows a similar table as Tab. XV, only now with

the simulation data. Here, only one run is recorded.

TABLE XV: Hardware task 2. Comparison of distance walked,
energy consumed, energy mechanical, CoT , and CoT me-
chanical for each design.

Metric dn1 dn2 d∗1 d∗2
∆s [m]
Run 1 24.02 24.10 25.33 32.49
Run 2 24.14 23.93 27.17 31.34
Run 3 23.88 23.74 26.67 29.24
Run 4 24.02 23.56 26.69 30.00
Average ∆s 24.02 23.83 26.47 30.77
E [Wh]
Run 1 1.45 1.28 1.22 1.17
Run 2 1.45 1.28 1.21 1.22
Run 3 1.46 1.29 1.22 1.20
Run 4 1.46 1.30 1.23 1.19
Average E 1.45 1.29 1.22 1.20
Emech [Wh]
Run 1 0.91 0.74 0.68 0.63
Run 2 0.91 0.74 0.67 0.68
Run 3 0.92 0.75 0.68 0.66
Run 4 0.92 0.76 0.69 0.65
Average Emech 0.91 0.75 0.68 0.66
CoT [J/m]
Run 1 217.47 191.22 173.24 130.06
Run 2 216.61 192.38 160.60 139.77
Run 3 219.60 195.64 164.81 148.01
Run 4 218.23 198.26 166.50 143.11
Average CoT 217.98 194.38 166.29 140.23
CoTmech [J/m]
Run 1 136.53 110.54 96.51 70.22
Run 2 136.09 111.15 89.05 77.74
Run 3 138.21 113.75 91.93 81.52
Run 4 137.30 115.75 93.67 78.30
Average CoTmech 137.03 112.80 92.79 76.95

TABLE XVI: Simulation data for task 2. Comparison of
distance walked, energy consumed, and CoT for each design.

Metric dn1 dn2 d∗1 d∗2
∆s [m]
Run 1 23.47 23.92 23.72 27.08
E [Wh]
Run 1 1.27 1.14 1.09 0.97
CoT [J/m]
Run 1 194.57 171.24 166.18 128.73

APPENDIX G
OPTIMIZED DESIGN CONSISTENCY DETAILS

This section of the Appendix gives more information about
the consistency experiment. Tab. XVII shows the five opti-
mized designs and scores that are optimized with different
random seeds for each task.

Note that the random seed influences a few things. For both
task 1 and task 2, it changes parameters of the BO algorithm,
the initial sampled designs, the noise, and the disturbances.
For task 2 it also influences the commands that are sampled.



23

TABLE XVII: Design parameter values and scores for each
policy.

Design λ1 [−] λ2 [−] λ3 [−] � [mm] o [mm] CoT [J/m]
d∗1 0.86 1.02 1.28 33 6 107.64
d∗1,1 0.79 1.02 1.30 40 2 109.02
d∗1,2 0.90 1.07 1.29 41 4 107.61
d∗1,3 0.90 0.97 1.30 33 7 109.76
d∗1,4 0.79 0.95 1.30 39 3 109.14
d∗1,5 0.89 0.96 1.30 32 8 108.79

d∗2 1.30 0.70 1.30 38 2 127.60
d∗2,1 1.30 0.72 1.29 40 0 130.34
d∗2,2 1.25 0.70 1.29 40 0 129.05
d∗2,3 1.20 0.71 1.30 39 0 131.37
d∗2,4 1.10 0.71 1.30 35 2 134.92
d∗2,5 1.29 0.70 1.23 37 0 129.66

APPENDIX H
UNIVERSAL VERSUS SPECIALIZED DETAILS

This section of the Appendix gives more information about
the universal versus specialized policy experiment. Tab. XVIII
shows the absolute reward scores for the specialized policy πs

and universal policy πu and their relative differences for the
four evaluated designs: dn1 , dn2 , d∗1, and d∗2. The specialized
policies are trained using the exact same hyperparameters as
the universal policy.

TABLE XVIII: Universal and specialized reward for each
design.

Design πu Reward[-] πs Reward[-]
dn1 251.08 253.00
dn2 252.73 252.31
d∗1 251.52 253.04
d∗2 248.36 218.19


	Introduction
	Related Work
	Bio-inspired Robots
	Co-design
	Contributions

	Methodology
	Bio-inspired Leg Design
	Three-Segment Leg
	Parallel Elastic Actuator (PEA)

	Co-design Approach
	RL-based Universal Design-aware Policy
	BO-based Design Selection

	Sim-to-real Transfer of Optimized Control and Design
	Domain Randomization
	Disturbances and Noise
	Implementation of PEA in the Policy

	Implementation
	Robot Hardware Platform Overview
	Training and Optimization Details
	Cost Function Constants


	Experimental Validation
	Task 1: Efficient Inspections
	Task 2: Efficient Payload Transport
	Cross-validation of Optimized Designs
	Validation of the Co-design Framework
	Consistency Across Multiple Runs
	Universal Versus Specialized Policies


	Conclusion
	References
	Appendix A: Energy Model Derivation and Details
	Derivation Motor Power
	Estimating Power Usage of System
	Verification of Energy Model


	Appendix B: Implementation Details of Physical Robot
	Data Collection on the Real Robot
	Running Neural Networks Efficiently on the NVIDIA Jetson

	Appendix C: Training Details
	Appendix D: Design Overview
	Appendix E: Hardware Experiment Task 1 Efficient Inspections Details
	Detailed Table of Inspection Route Experiment
	Graphs Showing Energy Consumption and Torque over Time

	Appendix F: Hardware Experiment Task 2 Efficient Payloads Details
	Appendix G: Optimized Design Consistency Details
	Appendix H: Universal versus Specialized Details

