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Abstract

Nowadays structured overlay networks are used in contr@la/ironments like
company wide area networks. Even though these structuredagwnetworks are
usually closed, there is still the risk that one or more nagitscompromised by
attackers. When these networks provide business crigcaices, serious harm can
be done by a compromised node. Because these networks gpamprontrolled,
properties like available bandwidth and latency times anehbetter known than
in a general wide area network like the Internet. This knodgkecan be used to
create a system where malicious nodes in the network canteetee and located
in a relatively short period of time and with little overhedthis thesis describes the
design and implementation of the Sphinx protocol that glesithis functionality.
We show that it is possible to detect and locate maliciousesad a distributed
hash table in a short period of time, with little overheadj aith high sensitivity.
We are able to detect and locate the nodes that cause lateviejiohs, dropping
of messages, mis-routing of messages, and changing of tbsage payload.
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Chapter 1

Introduction

Peer-to-Peer (P2P) networks are decentralised networksewio node has a com-
plete overview of the network, i.e., nodes can find eachoéimekr communicate
with each other with no central server involved. P2P netwdr&came popular
with the sharing of files. One of the first real, i.e., comgiettecentralised P2P
protocols deployed and widely used was Gnutella. Gnutellgever, was a non-
structured overlay network. Non-structured overlay neks@annot provide guar-
antees whether stored objects can be found in the netwarkctSted overlays on
the other hand allow a node to find another node or object ineamaistic way in
relatively few steps. Distributed hash tables (DHTSs) arkascof structured over-
lays where (key,value) pairs are stored in a distributed. iildyTs provide a way
to reliably store and retrieve data in a non-centralised. Wiith no single point of
failure the data are also highly available. For this reasompanies start deploy-
ing DHTSs in corporate environments to provide reliable bass critical services.
For instance, Amazon created the Dynamo system, a DHT []ifnly available
key-value storage, to be used for their web shop. By using & Birhazon is able
to deliver the optimal user experience: quick responsediamel high availability.

These DHTs usually run in a company owned and controlled aida networks
(WAN). Even though these DHTSs run in closed networks, hjsteaches us that
even closed networks may get intruded by non-authoriseglped\lthough the
odds are low that the network gets intruded, the conseqaaneg be severe when
it happens. When an intruder is able to replace nodes wittiafecrafted nodes
to disrupt the traffic in the DHT, serious harm can be done.ticatimessages
can be dropped or delayed, disrupting the reliability andfmeed of the DHT.
Hence, we need a solution to cope with these attacks on DHifs@iin corporate
environments. Fortunately, the fact that the DHT runs in mgany controlled
WAN, gives us a number of advantages: network properties Jditency and round
trip times, are much better known than the network propemiegeneral WANs
like the Internet. With this information, it is easier to eiehine whether latency is
“natural” or deliberately caused.

This thesis describes the design and implementation of phan$ algorithm. The



Sphinx algorithm successfully detects malicious behayiand locates the nodes
that causes this behaviour, within a DHT, in a scalable walwith a reasonable
amount of overhead. The experiments conducted show thatpibssible to de-
tect and locate malicious behaviour with a high sensitivitile Sphinx algorithm
is able to detect and locate malicious nodes causing messagpage, forward
delays, misrouting and tampering with the message’s pédyloa

This thesis is structured as follows. In Chapter 2 we willegan overview of the
functioning of DHTs. We will discuss key-based-routing atistributed hash ta-
bles, and the Chimera protocol upon which the Sphinx algariis implemented.
We will also discuss the environments in which our targetédlTB reside. We
will end this chapter with the problem statement. In Chagteve present and
explain how the Sphinx algorithm detects and locates nmalgcibehaviour. We
will describe the use of signed acknowledgements as “probisnocence”. We
will present a reputation management system to keep tradeteicted malicious
behaviour. We finish with issues important for the functigniof the Sphinx al-
gorithm. In Chapter 4 we present the experiments conducatddreeir results to
prove the correct functioning of the Sphinx algorithm. Hiyan Chapter 5 we will
conclude with a summary, conclusions, and recommendatiorigture work.



Chapter 2

Problem Setting

In this chapter the reader is introduced to the problemrggttr this thesis. Nowa-
days, companies start to deploy their own DHT networks taigereliable and
highly available services to their customers. These DHIsaip in closed envi-
ronments, owned and controlled by the company. Howevetpryisias made it
clear that even protected closed networks can be intrudetbi®authorised peo-
ple. Even though this is unlikely to happen, we need to takeptbssibility into
consideration, because when an intruder gets access to attiSupports busi-
ness critical services, he can do serious harm to the funiogjoof the DHT.

In Section 2.1 we argue why we want to protect corporate DHiiSection 2.2
we present an overview of structured overlays. This secsidgaken from [14]. In
Section 2.3 we describe the Chimera protocol on which theRgtgorithm is im-
plemented. In Section 2.4 an introduction is given to therenment setting. Here
we give a description of corporate networks and their prioggeand reliability. In
Section 2.5, we describe the problem statement of thisghesi

2.1 Why Corporate DHTSs?

Besides the clear commercial interests of protecting lessircritical applications,
corporate network environments have the advantage thaiptioperties are better
known than the properties of general wide area networks (Y& the Internet.

Added to that, corporate networks are much more reliabla IWANSs like the

Internet. Therefore, it is harder for a malicious node tdtgteisponsibility for

dropped or delayed packets to the underlying network anetfive guilt can be
more reliably determined. And, because corporate netwamkslosed networks,
it is unlikely that a large fraction of the nodes get compreeni These conditions
make it possible to create an algorithm that can protect DbiTdetecting and
locating these few compromised nodes in the network witlcoggiting too much
overhead, and thereby taking into account the possibifigotusion. Hence, we
need to develop an algorithm that is a solution to the follmmproblem: When
there is a structured overlay network running in a closegpa@te environment
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where network properties are better known and more stabie @h the Internet,
how can we detect and locate (colluding) malicious nodes iefficient manner?

2.2 Structured Overlays

In this section structured overlay networks are introdudaf give the reader an
idea of how these overlays build a decentralised networkremwd messages are
routed in such networks. We start by giving a brief introduetto unstructured

overlays and we explain why structured overlays are needed.

Subsequently we discuss the base of every structured guarthwe conclude with

a few examples.

2.2.1 Unstructured Overlays

In the early days of P2P networking the pioneers like Napst@nutella [9] and
Freenet [1] proved that decentralised services like fileisgand distributed stor-
age have a huge potential in today’s society. However, tthé&epeers contact each
other Napster depended on a centralised server which iddbxeefiles the users
had available to share. This dependency on a centralisedrseade Napster not
very scalable and vulnerable for a single point of failutaek (in the case of Nap-
ster this was a legal attack). The Gnutella network, which tigpical example of
an unstructured overlay network, has no dependencies draised services, but
it cannot guarantee that a file that is available in the ndtwean be found by ev-
ery user. The search method for Gnutella is to broadcastretsesguest to every
neighbour in a node’s connection table. The neighbours ein tilrn re-broadcast
the search query to their neighbours. Every re-transnmgsie time-to-live (TTL)
value is decreased. If the node that owns the particularigilapt found within
the maximum TTL, the search query returns nothing. Besidas it is clear that
broadcasting search queries to every possible neighbawt igery network effi-
cient. Gnutella is an unstructured overlay and cannot avenfault free network
provide guarantees that stored objects will be found. 8trad overlays on the
other hand allow a node to find another node or object in a métestic way in a
relatively small amount of steps.

2.2.2 Key Based Routing & DHT

The base of every structured overlay is Key-Based-Rout®R) [7]. In KBR a
messagél/ with destination keyk is routed toward the root for kel(, where the
root is the node that owns kdy. The root usually is the node thatdsesto key

K. Closestin this case is protocol specific, e.g., it can be the smatbedusive-or
distance between key and node id. A key is owned by just one abthe same
time. A key is an-bit string. Every node identifier is of the same type as a key.

Lwww.napster.com



With every step in the routing path the message gets clogbetdestination, i.e.,
the message is forwarded to a node with an id closer tafkey

A distributed hash table (DHT) implements key-value sterag top of KBR. To
store a value with keys, a message like [PUT, value] can be sent to keyThe
root then stores the key-value pair and any time it recei@& @ message sent to
key K it returns the stored value.

C
(0-0.5,0.5-1)

(T-5°0'SL°0-G'0)
o
(1-S'0'1-SL'0)
m

A B
(0-0.5,0-0.5) {(0.5-1.0,0-0.5)

Figure 2.1: Example 2-d coordinate overlay with 5 nodes [8].

Content Addressable Network One of the first structured overlay networks pub-
lished is the Content Addressable Network (CAN) [8]. CAN &séd on al-
dimensional Cartesian Coordinate space afitarus. Every key-value pair that
needs to be stored is mapped onto a zone by hashing the kegrttirate P. Ev-
ery zone is owned by a node that stores the keys. Messageearklygforwarded
to the neighbour whose coordinate space is closer to thedatedestination. This
is achieved by keeping all the neighbours (all zones thakesha 1 dimensions)
addresses. Nodes can join the network by randomly choogigné P and send-
ing a JOIN message tB. The node responsible for the zone containinghen
splits its zone and makes the joining node responsible flbrtha zone by trans-
ferring all the key-value pairs that fall in the new zone. ifteevn routing tables
are updated and messages are sent to the new and old negtdbmake them up-
date their routing tables. The average routing path lerggth ©AN withn nodes,
with zones of equal size (which can be obtained by an unifaashtunction on
both node IDs and keys) igl/4)(n!/?). Every node maintains routing information
about their2d neighbours.

Chord Chord [13] is another structured overlay that, just as CAd¢, the disad-
vantage that it does not attempt to proximate real netwatadces in its topology
construction [16]. Chord creates a ring topology where gamte is assigned an
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id by hashing a node’s IP-address. To create a balanced &gipdtion, keys are
also generated by hashing an identifier, such as a filenamey A is mapped to
the node whose id is the successokdin other words, the key is mapped to the
first node clockwise after kek).

successor(1) =1

successor(6) =0 successor(2) = 3

Figure 2.2: An Chord identifier circle consisting of threedes 0,1, and 3. In this
example, key 1 is located at node 1, key 2 at node 3, and keyddat®[13].

Every node maintains a routing table (called finger tablehim driginal paper)
with at mostm entries, wheren is the maximum number of bits in the key/node
identifiers. Hence, a node maintains the addresses of tlvessar nodes of the
keysn + 2° for every0 < i < m. A message is routed to kéyby routing the
message to the node in the table whose id precédethis makes the average
routing path lengthO (log n).

A node join is realised by sending a JOIN message to a boptstide containing
the new node’s id. The bootstrap node finds#heuccessors to fill up the node’s
finger table. Finally, the other nodes finger tables are @od@te refer the reader
to [13] for the exact algorithm).

Pastry Pastry [10] is an overlay network based on prefix routingntifiers are
seen as a sequence of digits with basewhereb is a system wide configuration
parameter. In every routing step the current node forwdnelsrtessage to the node
f, where nodef is the node in its routing table whose id shares a prefix with ke
k of at least one more digit than the current node shares withkdly. Hence,
the routing path is less thdiog,, N| under normal operation, and therefore every
node must maintain a routing table witlvg,, N'| rows, each row containingf — 1
entries. Every entry at row contains a node that shares a prefix of lengthith
the present node’s id and whose- 1th digit is the column number (that is, one of
the2® — 1 possible values other than thet 1th digit of the present node).

For every entry one of many possible nodes can be chosenattige a node is
chosen that is close in terms of latency to the present notls provides Pastry
with good locality properties in contrast to CAN and Chord. néde joins the
network by sending a JOIN message with a key equal to its ovio &bootstrap
node. This message will arrive at the node with an id clogesid joining node’s

6



Pastry Node ID 0213
0 | 1322 2043 | 3231
0032| 0112 2 | 0330
0201| 1 | 0223|0231
0211 3

Table 2.1: The routing table of a hypothetical Pastry nodé i 0213, with base
4 and length 4. The bold humbers in each row show the correépgiigit of the
current pastry node id.

id. All nodes encountered on this path from the bootstraperiodiestination node
will send their state tables to the joining node. In this wlag foining node can
build its own routing table.

Kademlia The Kademlia [5] overlay is one of the many other structureer-o
lays, except that it is one of the few that are extensively usemillions of users
[12]. File sharing applications like eMfleand aMulé based their protocols on
Kademlia.

One of the basic principles of Kademlia is that it must be dasynderstand. In
contrast to many other protocols, Kademlia uses just assialgjorithm from the
beginning to the end. Protocols like Pastry often use a seatgorithm based on
numerical difference when a target is almost reached. Kédambased on the
notion of exclusive or (XOR) distance, i.e., the distanceveen noder andy is
defined asi(z,y) =z ® y.

For eachl < i < [, wherel is the identifier length, each node keeps a list with
pointers to a maximum of nodes of distance betweéf and2!*!. This redun-
dancy is implemented so that every node can start a look-epydn parallel to
avoid time delays from failed nodes. These lists are cdlipdckets, wheré is a
system wide configuration parameter. In evirpucket the nodes are kept sorted
by the time last seen (the most recently seen at the tail). Véheode receives a
message, the sender is placed at the tail. If the sender y&niot thek-bucket and
the bucket is full, the least recently seen node is pingedhéakif it is still alive.

If it answers, it is placed at the tail of the bucket. If the aatbes not answer, it is
replaced by the new sender.

The Kademlia protocol works in an iterative way, i.e., it jas the closest nodes to
atarget for even closer nodes. When it receives closer nadggries them again,
etc., until it reaches the desired target. The routing tabkenode is a binary tree,
initially consisting of one node containing ohducket. When a new node arrives,
it is inserted in thek-bucket. When thé:-bucket is full, the bucket is split. It is
shown that most operations takiegn | + ¢ time [5], wherec is a small constant.

2www.emule.org
Swww.amule.org



2.3 Chimera

This section describes the Chimera protocol. We use thi®@obto implement

and test the additions we will design to detect and locatdcinak nodes in a
structured overlay network. Chimera is an implementatiotmé language c, of the
routing and location parts of the Tapestry protocol [16]alepged at the University
of California Santa Barbara (UCSB). Tapestry is an ovemdéastructure designed
to enable the creation of scalable, fault-tolerant apptoa in dynamic wide area
networks.

2.3.1 Fault Tolerant Routing

Tapestry is similar to Pastry. It uses prefix routing and lsiminsertion/deletion
algorithms. There are several key differences betweenstigpand Pastry in the
way objects are stored and duplicated. We will not elabavatthis, since it is not
relevant because Chimera only implements the routing paidpestry.

Besides a routing table, every Chimera node keeps two l¢gf shich are lists
of the L closest nodes the node is aware of at each side, whésea predefined
constant. Hence, the left leaf set contains Eh@ closest nodes with a key lower
than its own. And, the right leaf set contains thg2 closest nodes higher than
its own. The leaf sets are used to directly forward a messagetnode with the
smallest numerical distance to the destination key.

To realise fault-tolerant routing, Chimera nodes keep timeiting tables reliable by
sending periodic ping messages to the nodes in their rotallg and leaf set. For
every node in the routing table and leaf set a success ragpis kKhe success rate
is calculated by taking the average success of thellastessages sent to a node,
whereM is a predefined constant usually set to 20. Success is definetidther
an acknowledgement of a message for a node is received aifitedefined period
of time or not. Each entry in the routing table contains twokog nodes in with
the same shared prefix. On failure these nodes can be used.

Chimera implements surrogate routing to find a root node fmaréicular key. To
find the destination node for a key, messages are forward#tetoode with the
same id as that key as if such a node exists. When a node cammethe message
to a closer node, it is the destination node.

2.3.2 Node insertion

When a new node wants to join the Chimera network, it first generates its aivn i
key by SHA-1 hashing the concatenation of its host name atehing port. The
new node must be aware of a bootstrap node it can connect ter édnnecting

to bootstrap nodér, noden attempts to route a JOIN message. As the destination
of the JOIN message, it uses its own id key. The JOIN messalydinaily be
received by the node with the closest id to the id of nhedeWhen the JOIN
message traverses the routing path, every node on thegquaih sends the row

8



from its routing table that matches the longest prefix of the@fin to n. With
every step the common prefix of the key of the current node thiétkey of node:
becomes one position larger. Hence, with every step nogiets a new row for its
routing table. Afterl steps node. should have received a complete routing table,
where isl is the predefined length of a key.

Root Node

O O

Bootstrap Node

>
L - — —
Joining Node

Routing Table
Joining Node

Figure 2.3: Joining node sends JOIN message to current oolet of own key.

When the message arrives at the current root node of the idddm, it replies
with a JOINACK message and sends its leaf set.tdVhen noden receives the
JOINACK message, it updates its leaf set and announcesiitaldo all nodes in its
routing table and leaf set by sending them an UPDATE messHgye neighbours
update their routing tables. Nodehas joined.

2.4 Corporate Overlay Networks

In this section we introduce the reader to the context of ooblem. The environ-
ments in which our problem occurs are corporate overlay ordsy i.e., overlay
networks running in a corporate WAN. Corporate networksilgwonsist of fully
controlled data-centres, which are connected with leaa&llthes with a guaran-
teed available bandwidth.



2.4.1 Properties of Corporate Networks

A corporate overlay network is an overlay network within beindaries of a cor-
porate WAN. A corporate WAN has multiple advantages over aNAiRe the Inter-
net. Where for the Internet there are no guarantees at alt &tamsmission times,
latency and reception, there are some assumptions we cas abakit corporate
WANSs. First, a corporate WAN typically consists of multipata centres con-
nected with leased lines. Therefore, realistic estimaa@sbe made about latency
and transmission times. Whenever the actual numbers ddviah the estimates,
it is possible to blame nodes with much more certainty. Heifoge deploy an
overlay network in such an environment, we can detect anatdomalicious be-
haviour of participating nodes. Second, corporate WANsustelly closed sys-
tems. Therefore, it is unlikely that malicious code is rutha network. However,
we should still keep in mind that it is possible that nodesagehpromised by an
attacker. Hence, it is unlikely that malicious nodes regidithe network, but we
should seriously consider the possibility and whenevesyiidens we should detect
and locate the nodes before serious damage can be done &t

2.4.2 Dynamo

An example of a structured overlay network running in a coaenvironment is
Amazon'’s highly available key-value storage system cdllgdamo [2]. Dynamo
is a highly available and scalable distributed data stofefouAmazon’s platform.

It is a completely decentralised system where nodes can dedaahd removed
without requiring any manual partitioning or redistritarti Dynamo is used to
store the state of services that have very high reliabiktyuirements and need
tight control over the trade offs between availability, siatency, cost-effectiveness
and performance. To meet the stringent latency requiresriiiat 99.9% of all
read and write operations are performed within a few hundnéliseconds, the
designers wanted to avoid routing requests through meltipldes. Hence, each
node maintains enough routing information to route a relgteesn appropriate
node directly.

Many services on Amazon’s platform that need these pr@sersuch as those that
provide shopping carts and best seller lists only need pyirkay access. A re-
lational database cannot provide the required propertegioned. Every service
that uses Dynamo runs its own Dynamo instances.

Dynamo uses consistent hashing [4] to partition the datBoumly. In consistent
hashing a ring is created by wrapping the largest hash vatuend the smallest
hash value. Objects are stored under a certain key on thedidst with a larger
identifier than that key. To prevent heterogeneity in thdfgoerance of nodes,
Dynamo uses the concept of “virtual nodes”, i.e., every naemultiple identities
uniformly distributed over the ring. Hence, when a node bee® unavailable the
load handled by this node is evenly dispersed across thememaodes.

Dynamo uses replication to achieve high availability arlihbdity. Data is repli-
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cated overV nodes. A node responsible for a certain kégtores an object locally
and on itsN — 1 clockwise successor nodes. To prevent objects to be stored o
virtual nodes belonging to the same physical nhode someigusiin the ring are
skipped. Partitioning and placement information propagé a gossip-based pro-
tocol. Hence, each node can forward a key’s read/write tiperdirectly to the
correct node.

The authors assume that most node failures are temporarghandd not result
in re-balancing of the partion assignment. Hence, the asitbbose to use an
explicit mechanism to add or remove nodes. For failure diel@®ynamo uses
a purely local detection mechanism. When notldoes not get a response from
node B, node A considers node3 failed, even if node”' can still reach nodds.
Node A now uses alternative nodes to service requests that mapstpartition.
Periodically nodeA retries B to check for a recovery.

2.5 Problem statement

DHT networks within a corporate environment have certavaathges over DHT
networks in an open environment. First, the nodes in theoritare all controlled,

i.e., the network consists of trusted nodes. However, egeiesin a closed net-
work can be attacked by an intruder. When a non-authorisdiglidual succeeds
in taking over a node or creating nodes he controls, withéndlesed DHT, these
nodes are able to disrupt the functioning of the DHT. Eslgoiehen such a DHT

is used in a production environment and needs to be highijaéla and reliable,

this can have disastrous consequences.

In this thesis we present the design and implementationeoSiphinx algorithm

that protects DHTs when intruders get access to the netdiogarticular, Sphinx

will have the following capabilities:

1. When an intruder creates new nodes especially designdidrtgt the cor-
rect functioning of the network, it needs these nodes totjegmetwork. Our
algorithm prevents the joining of any unauthorised node.

2. An intruder that is able to take over a node can replace dhgpoomised
node with a malicious node with the same identity. This nialis node can
disrupt the correct functioning of the DHT by dropping megsait should
have forwarded. A malicious node may also deliberatelyydel@ssages,
change messages, or route messages the wrong way. The &jgurniihm
detects this malicious behaviour and locates the sourdesofrtalicious be-
haviour. In summary, the Sphinx algorithm must be able teaeind locate
the following malicious behaviour:

e Dropping of messages
e Delaying of messages
e Misrouting of message, i.e., forwarding messages to thegvnode.

11



e Changing the payload of messages

Hence, the Sphinx algorithm must be able to detect malidi@iviour in an ef-
fective and efficient way. When this behaviour is detectld, $phinx algorithm
must be able to locate the node that causes this malicio@visein. This detecting
and locating must be achieved within a reasonable amouirhef thile minimis-
ing overhead costs. When there is a trade off between datespieed and overhead
minimisation, the emphasis in Sphinx is on overhead miraiios.

12



Chapter 3

The Sphinx algorithm

In this chapter we present the Sphinx algorithm for detgctind locating ma-
licious nodes in a structured overlay network running in gpocate WAN in a
scalable way. In Section 3.1 we present an overview of hovsfttenx algorithm
works. In Section 3.2 we describe how and why signing ackedggéments is the
foundation of the Sphinx algorithm. In Section 3.3 the bameration of how
malicious nodes are detected and located by the Sphinxithligois explained. In
Section 3.4 we discuss how we manage the reputations of nottesnetwork and
keep track of malicious behaviour. In Section 3.5 a few reingiissues, like in-
creasing signing speed, time synchronisation and smeafingdes are discussed,
and the solutions Sphinx uses for these issues are presented

3.1 Overview

In order to detect malicious behaviour in message passitd)Jacate malicious
nodes in a DHT network in an effective and efficient way, th&iBp algorithm
relies on the presumption that every node in the network rnastble to prove
its innocence when malicious behaviour is detected. Wheressage is trans-
ferred along a path of nodes, every node must be able to phatettforwarded
the message correctly to the following node on a path. ThenSigorithm re-
alises this by letting every node request a timestampeddigaknowledgement
from the node it forwarded a message to. When malicious hetlnais detected,
this signed acknowledgement can function as a “proof of gence”, i.e., when
an investigator (that is the node that wants to locate thécioa node) wants to
locate the malicious nodes it iterates through the patkirsgeat the first hop it sent
the message to, repeatedly requesting a “proof of innoéekdleen a node cannot
present a signed acknowledgement, or only a timestampeddigcknowledge-
ment which does not correspond to the expected propertigge aforporate WAN
it can be considered malicious.
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3.2 Signed Acknowledgements

We now give a detailed description of the Sphinx algorithmdetecting and lo-
cating malicious nodes in a structured overlay network.

The base of the Sphinx algorithm is a public-key infrasuitet(PKI). The PKI
is used for two purposes. First, the PKI is used to preventitinagised nodes
from joining the Sphinx DHT. Second, the PKI is used to let emdend each
other signed acknowledgements, i.e., acknowledgememi®iong a signature
that proves the acknowledgement was created by the seratergpudiation).
One part of the PKl is a centralised trusted Certificate Aty ¢CA). Every node
that wants to join the Sphinx network must possess a diggdificate handed out
by a CA. This certificate contains the following information

e The key of the joining node, which is generated by the CA. ThBeuSes a
secure hash function like SHA-1 to generate uniformly disted keys.

e The IP address and port of the joining node. This preventsethesage of a
certificate by a different node.

e The public key of the node. The private part of the publicipe key pair
will be needed by the joining node to sign messages. With thigpkey,
other nodes are able to verify the validity of messages tteasigned by the
joining node.

The certificate is signed by the CA. Every node in the Sphirbwak is in pos-
session of the public key of the CA and therefore is able tdyw#ra certificate is
valid.

When a node wants to join the network, it must present théficate it received
from the CA. Every node that wants to add the joining nodedaauting tables
should verify the validity of this certificate.

Certificates are manually created by the operator of thearktwhen a new node
joins the network. By using a PKI, an intruder will not be aldecreate new
nodes to join the network because it cannot create its owtificates. However,
an attacker that is able to take control over an already ngnnode will be able
to use the identity of that node. With this stolen identitg #ttacker can create a
node that disrupts the functioning of the DHT.

The heart of the Sphinx algorithm is that every node must e tabprove it is
behaving correctly. When a node is not able to do so, it isidensd malicious.

To be able to prove that a node is not malicious the node ex@esigned ac-
knowledgement for every message it sends or forwards fresuitcessor node in
the message path. Therefore, the receiver of a messages;re@ns and sends
an acknowledgement. Table 3.1 shows a Sphinx acknowledgestracture. The
acknowledgement contains:

e Sequence # and source of the message, to uniquely identifyneassage.
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Sequence #
Key of Source of Messag
Receive Time
MD5 hash
Key of Signing Node
RSA Signature

112

Table 3.1: Acknowledgement Structure.

A time-stamp containing the receive time, to detect forwatency.

¢ A hash of the content, to prove the message’s payload is ndifiexh.

The identity key of the acknowledging node, to show who igtiet respon-
sible node and to detect misrouting.

The RSA signature, to ensure non-repudiation.

This process is shown in Figure 3.1

Reply

cigned Ack cigned Ack cigned Ack cigned Ack

O -0Oa-0a-Oa-¢

Source Destination

Figure 3.1: The operation of the Sphinx algorithm: A mesdaderwarded from
source to destination. Every node in the path acknowledgesriessage to its
predecessor in the path.

With this signed acknowledgement a node can prove it foraduithe message
correctly and on time to the node that acknowledged the rmgessa whoever is
interested in questioning the node’s innocence. In othadsyathis signed ac-
knowledgement is its “proof of innocence” for this part@umessage. Therefore
a node must check if all these 5 properties of the signed adkdgement are cor-
rect. In short, the only thing a node should worry about igiggtthis “proof of
innocence” for every message it forwarded.

If the receiving node does not acknowledge a message, tteewbére the mes-
sage is currently residing has the responsibility to seedhessage to a different
neighbour. The only concern a node should have is to recebignad acknowl-
edgement that relieves him from the burden of being resptan&ir that message.
Therefore we presume that a node has alternative nodesroutiag table to for-
ward a message to, which is the case in every DHT.

A few conditions must be met for the Sphinx algorithm to work:
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1. A node must not have the ability to create its own iderstitif a node can
create identities, it can reenter the network with a diffiéid. Since a node
needs a certificate issued by the CA this is not possible ggdsrthe CA
can be trusted.

2. When a node encounters a node that does not return coctettvaledge-
ments, it is important that it stops forwarding messages#b particular
node. It should therefore remove the node from its routibteta

3. Even in a corporate environment, the network is not 1000 ke. There-
fore, when a node seems non-cooperative, it does not nedgssaan that
a node is malicious, even though it is likely. Hence, we naedlgorithm to
distinguish malicious behaviour from network malfunctian

3.2.1 Malicious Behaviour

When a malicious node resides in a Sphinx DHT and it wants tdaton, its
options are now limited, because malicious behaviour vélldetected. It has a
number of strategies to disrupt the functioning of the DHT:

1. Not taking responsibility for a message by not returnirgigaed acknowl-
edgement. With this strategy however, the malicious nodebeiquickly
detected and removed from its neighbours routing tables.

2. Another strategy is to accept its responsibility by neitag an acknowledge-
ment but after that dropping or delaying the message. Titesly however,
is even worse, because now the node can be blamed but it garovet its
innocence.

3. A third strategy is claiming that it is the root node. Alsderred to as iden-
tity theft. For this strategy we could use the solution pagabby Ganesh
et al. [3], i.e., using “proof managers” and proof of existen For more
information we refer the reader to the article.

3.3 Detecting Malicious Nodes

In the Sphinx algorithm it is always the source node of a ngesthat detects
malicious behaviour and locates the malicious node. Theréa reasons to start
locating a malicious node:

1. First, when a source node does not receive an expectgdfrepl the desti-
nation within a certain period of time or at all, it can sudglat somewhere
in the path from the source to the destination a maliciougmesdides. How-
ever, waiting for a reply from the destination requires tegler the sent
message causes a reply (like a read operation) or the &lgodtways ac-
knowledges every message to the source node.
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2. The second method, is to randomly start the locating dkgorfor everyL-th
message, wherk is a system wide parameter. The advantage of this method
of random checks is that not only malicious behaviour candieated and
located, but path statistics can be obtained as well. Thasistis can be
used to monitor the performance of the network in general.ifstance, to
calculate expected values for latency times.

When the source node suspects malicious behaviour for airtenessage some-
where in the message path, using one of the two methods loedcit starts query-
ing the first node in the path the message was sent to, sinsdlieionly node
in the message path it knows about. This first node respongsdsenting the
signed acknowledgement it received from its successohetsdurce. This signed
acknowledgement contains the identity of the successeiVitb5 hash of the mes-
sage and the receive time. By comparing the MD5 hash to tHedfake original
message, the source can detect if the message’s payloadtizsen modified.

cigned Ack cigned Ack

‘/\

O O 0 0O
® J <+ O O

12
Qo oo
Proof Inno<

Req Proof innocence

Figure 3.2: A message is dropped by node 3. The source nodiegfer signed
acknowledgements. Node 3 cannot present a signed ackrgemeht and is con-
sidered malicious.

By comparing the receive time of the successor of the firseriadthe path to

the receive time in the acknowledgement received by theceaunde, the source
node can calculate the forward time. If the forward time @ MD5 hash do not

comply with the expectations, the first node in the path maynbécious. Or at

least it displayed malicious-like behaviour. If malicidushaviour is not detected,
the source node queries the next node in the path until theeseoeaches a node
that cannot present a signed acknowledgement which pros/@mocence. Now
the node causing the anomaly, is located.
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3.4 Reputation Management

When malicious behaviour is detected, we need a way to st énformation to
calculate the reputation of a particular node. The stordgi@i®information needs
to be done in a scalable way. The reputatiasf a node is represented as a number
between 0 and 1, and is equal to the probability that a nomcimas node would
display the behaviour the particular node displays. Hewtenr is close to 0, a
node is likely to be malicious, and whenis close to 1, a node is unlikely to be
malicious.

3.4.1 Reputation Managers

To store reputations in a scalable way, every node in thenQ@HT has 3 other
nodes that keep track of its reputation. We call these nodgmitation managers”.
Hence, reputation managers are nodes that store and ¢altiwareputations of
other nodes in the network. Sphinx uses three reputatioragean for each node
to prevent a malicious reputation manager from propagatirgng reputations.
When a reputation for a node needs to be retrieved, the tepegation managers
are queried, and the two reputations closest to each othavaraged. To deter-
mine which three nodes in the network are the reputation gexsaor a certain
noden, the key of node: is hashed three times by using SHA-1, each time concate-
nated with a different salt: 0, 1 or 2. The reputation managee the root nodes
for these three keys. Hence, each node has three differeutate®on managers,
which are uniformly distributed over the DHT. Therefore, anerage, every node
is a reputation manager for three other nodes in the netwidnik. also implies that
the reputation storage and calculation load is uniformstridiuted over the DHT,
S0, this mechanism is scalable.

3.4.2 The Blame Process

Figure 3.3 shows how a Sphinx node acts when malicious betnais detected:
When the source node, detects malicious behaviour somewhere in the message
path, it starts to locate the node that caused this anomadgssibed in Section
3.3. When node,, is identified as the node that caused the malicious behaviour
noden; sends a BLAME message to the three reputation managers efnodf

a latency violation is detected, the BLAME message contawossigned acknowl-
edgements to prove the latency deviation: The acknowledgemneceived by the
predecessor node of the blamed node, in this case, npdand the acknowl-
edgement received by the blamed node. In the case thatrmodiel not forward
message 1, and therefore can not provide a signed ackncewhenlg from node
ng, only one acknowledgement is sent along with the BLAME mgss&lowever,
now the reputation managers should also request a signedwigddgement from
the accused node to verify this claim.
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Figure 3.3: The blaming of malicious nodg by noden;. Blame messages are
sent to the reputation managers of nede

The reputation managers now store the BLAME message andla@dhe new
reputation of the blamed node.

3.4.3 The Reputation Calculation
The reputation calculation consists of three parts:
¢ Verification of the accusation
e Querying for messages sent by blamed nodes

e Calculation of the new reputation

Verification

When a reputation manager receives a BLAME message fora@cerde, it first
checks if it did not receive a BLAME message for the same noideimthe last
T seconds, wher#' is the system wide time out parameter. Because a node needs
T seconds to find out whether a message is not acknowledgeanen iti could
have forwarded more messages to the same non-responsiénrtbeé mean time.
Hence, if the reputation manager did receive an accusdimiast?” seconds for
this node, it drops the current accusation.

Second, the reputation manager checks whether the acnusatjenuine. If the
node is accused of latency violation, the accusation shbalédccompanied by
two signed acknowledgements. If the node is accused of drgppessages, the
accusation should be accompanied by one signed acknowhenige To verify
that the accused node indeed dropped the message, theimmpatanager should
request the second signed acknowledgement from the acoaded |f the accused
node cannot provide the second signed acknowledgemeptdgi$ of innocence),
then the accusation is valid.
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Querying

To calculate the probability of a node being malicious, dmeutd know the num-
ber of messages forwarded by the node, besides the numbaenty violations.
However, the number of message$orwarded by the blamed node, is unknown
by the reputation manager. Hence, the blamed node needsdoebied for this
number. Taken into account that a malicious node has evaspneto exaggerate
this number, we need a non-forgeable way to retrieve thisheum

The easiest way to query this number is by requesting theedigicknowledge-
ments for every message the node forwarded. However, ttig@s a large net-
work traffic overhead when is high. E.g, if a node forwardet)* messages, this
means it should transmit0* - 134 = 1.34 MB in the worst case, where every
single message is acknowledged separately. And 284 KB ibakecase, where
all messages sent are acknowledged in groups. See Sed@ibrf@. details. All
acknowledgements also need to be sent to each of the thrgatiep managers.
This is unfeasible, and therefore, we need to use a randoak chethod.

For a random check method however, we need claims we actcafyverify.
Hence, a blamed node should give all the identities of thesages it forwarded.
A message can be uniquely identified by its source and itsesegunumber, re-
spectively 20 and 4 bytes. After receiving the message ifiEnst the reputation
managers can query multiple signed acknowledgementsridoraly chosen mes-
sages. In cas€0* messages have been forwarded, the total data to transmit now
equals10* - 24 = 240KB, plus the transmitted data needed for the requests and
the returned acknowledgements. This is a major improventertstill a lot of
overhead. To further reduce the overhead, we use the foltpwiethod we called
“divide and expose’. This method directs the blamed nodedertain timeframe
where the node finally should be able to present a valid sigokdowledgement.

1. Reputation managerqueries blamed nodifor number of messages for-
wardedn, since the last blame message received for rhode

2. Nodeb responds with a numbet and a timestamp that divides the for-
warded messages in two equal parts.

3. Reputation managerrandomly selects one half to research further. It now
requests nodeé to return a timestamp that divides the messages in the se-
lected half into two.

4. The reputation manager repeats step 2 affd@n| times in total.

5. Finally, when one message is singled out, the accompgmagdgknowledge-
ment is requested. If nodecannot present a signed acknowledgement for a
message sent in the last selected time frame, it is clear insdmalicious.

This method works, because the blamed node does not knowhvahki€ will be
selected by the reputation manager on each iteration. Héncannot direct the
querying to a given outcome.
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time frame

0 45 100
32 32
0 30 45
16 16
30 40 45
") 8 8
C
°
©
E 40 43 45
4 4
40 42 43
2 2
40 41 42
Y 1 1

Figure 3.4: An example of a non-parallelised “divide andasgy query in which
the blamed node sent 64 messages in period [0,100].

The probability of catching an exaggerating nodé is (n/n’), wheren' is the
exaggerated value amdthe real value. To increase the probability that a malicious
node gets caught when exaggerating the number of messdgesfdarwarded, we
choose to use multiple “divide and expose” sessions in lghral

The overhead generated by this method is calculated asvillé timestamp is

an 8 byte floating point number, and to indicate which halffautation manager
wants to research further 1 bit is enough. Hence the totasinéssion overhead
generated i$logan |- (8p+ [p/8]), wherep is the number of parallel sessions. For
instance, whem = 10* andp = 8, the total overhead generated is as low as 910
bytes, which is more than 240 times less than the normal tnancheck” method.
Figure 3.4 shows an example of non-parallelised “divide exmbse” query.

We considered the fact that a malicious node can alwaysdgsere by sending
garbage messages to its neighbours, and therefore regsigned acknowledge-
ments. However, checking if sent messages are useful ohnatdsbe handled in
the application layer, so, we will not elaborate on that.

Calculation

After verification of the BLAME message, the reputation ngersstores the BLAME
message accompanied by the signed acknowledgements, datksiphe current
reputation of the accused node. As mentioned above, theatépu equals the

21



Number of Number of
messages sentviolations allowed

100 4
1000 10
10000 30
100000 156
1000000 1169

Table 3.2: Number of latency violations allowed for diffete@alues of the number
of messages sent before reaching the reputation threshold.

probability that a node displays its current behaviour withbeing malicious.
Whenever this probability drops below a certain threshdbgre it is very unlikely
that a non-malicious node would display this behaviour, ribde is considered
malicious. The Sphinx algorithm us@8~" as this threshold. Hence, that is the
probability a node gets the false reputation of being malisi Once a node is con-
sidered malicious there is no way to increase its reputatiod therefore, it stays
malicious.

The probability that a node displays the behaviour it daesalculated as follows.
The Sphinx algorithm considers the maximum allowed lateayhe 99.9th per-
centile of the latencies measured for the current networkndd, the probability
of latency violation without maliciousnessjis= 10~3. The probabilityr,, that a
latency violation will happen at leasttimes after sending messages is given by:

Ty = n)pZ 1—p) (3.1)
> (5)pa-n
To be sensitive, the period of time that is taken into accshould be small. How-
ever, a small period of time allows a malicious node to camirsly cause the
maximum number of latency violations it can afford (repuatatwise). Therefore,
the Sphinx algorithm calculates the probability of Eq. 3.1 over different peri-
ods of time: respectively, for the las0?, 103 , 10%, 10°, and10° messages sent.
A reputation manager can do this because it knows the nunibaessages sent
between successive BLAME message it received for a node.réfheation will
equal the lowest of the five values gf calculated above.
Table 3.2 shows how many latency violations are allowed ififergnt values o
before the threshold df0~" is reached.

3.5 Issues

In this section we describe the issues that are importarh&correct functioning
of the Sphinx algorithm. In Section 3.5.1 the problem of wdihg nodes in dis-
cussed. In Section 3.5.2 we discuss the timing issues céysie forward speed
enforcement functionality. In Section 3.5.3 we present mmethods to overcome
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the problem of signing being compute intensive. Sectiomd3ne describes how
Sphinx handles smearing of nodes. In Section 3.5.5 we givtaled description
of the overhead generated by the Sphinx algorithm.

3.5.1 Colluding Nodes

When an intruder manages to take over multiple nodes, he setiup these nodes
to disrupt the functioning of the DHT by colluding.

Traditional colluding attacks, like the eclipse attack]jldre not possible because
the CA uniformly distributed identities between the nodEse only attack feasible
for colluding nodes as shown in Figure 3.5 is presenting mensigned acknowl-
edgements to each other, i.e., one malicious node protecthexr malicious node
by taking over its responsibility.

However, by taking over the responsibility from another eathe last node in the
colluding group will be blamed for the malicious behaviotttence, a colluding
group of nodes can only disturb the operation of the strectaverlay for as long
as not all colluding nodes are detected and located. If thepgconsists of a large
number of malicious nodes taking over responsibility froacte other, or nodes
possess a large number of identities, that makes sense veigecause identities
have to be created by a certificate authority there are nonlmited number of
identities available. An intruder can only join the DHT witke identities of nodes
that have been taken over.

Of course, a researching node must detect loops in the ngespsgh to prevent
malicious nodes from delaying a message by sending eachsitireed acknowl-
edgements.

Signed Ack Signed Ack Signed Ack

VY RN

O——O—2% I 0O

Signed Ack

Signed Ack

request proof
of innoncence

Request proof of innocence

Request proof of innocence

Figure 3.5: Node 4 backs node 3 by providing signed ack. Nocendonly do so
by sacrificing himself.

Besides the problem for the colluding group that always auderwill be blamed,
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each malicious node in the group should also take into addiwa it can only
forward messages to a node closer to the destination keyce;len average only
half of the colluding group can be used, because the idestdf the nodes are
uniformly distributed.

3.5.2 Timing

Because Sphinx does not only require nodes to take theiomegplity by for-
warding messages, but also by doing so within a certain gerfidime, we add a
timestamp to the signed acknowledgement. For this purposeeéving node adds
the time it received the message from its predecessor tckmoaledgement. The
forwarding node checks if this time-stamp relieves itsadfri the burden of bear-
ing the responsibility for the current message, i.e., if denocan prove it forwarded
the message within the defined maximum period of time. Heifice received
acknowledgement does not relieve the forwarder it must nsake it sends the
message to an alternative node.

To be able to implement “forward speed enforcement”, theustrbe global time
synchronisation. The Network Time Protocol (NTP) [6] is aallent way to
achieve global time synchronisation. NTP can reach an acguf several mil-
liseconds [6]. Hence, a node can substantiate its forwgrejieed with that given
accuracy.

A few problems arise when using “forward speed enforcemehifst, if a node
forwards a message to a malicious node who does not ackngevimdtime or at
all, it must re-forward the message to an alternative nodewd¥er, the time it
waited for the first acknowledgement is lost and the node nosy mave violated
the enforced forwarding latency itself. Therefore, we neaahe sort of reputation
system, that take these cases into account. Section 3.ddesbow Sphinx im-
plements a reputation system for cases like these. In dbontarding delays are
accepted if it does not happen too often. And, if a node causktiple forwarding
delays within a short period of time, only for the first delag hode will be blamed

3.5.3 Signing

One of the practical problems we encounter with the Sphigaréghm is that sign-
ing messages is compute intensive, and therefore we mayenable to reach a
high throughput. The Sphinx algorithm implements a numbesotutions to de-
crease the needed computation, and therefore increagrigrttughput:

1. Signing groups of messagdastead of acknowledging every single message

received from a preceding node in a message path, the Splgaritlam
acknowledges multiple messages at the same time. EVenyessages or

everyT seconds, all messages received from the same node and with th

same source are acknowledged at once, whérand T are system wide
parameters. By acknowledging groups of messages at the tfamdess
signatures have to be created.
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We can increase the efficiency by grouping these messagé®inysburce.
When the created signed acknowledgement is requested lsptinee node
for detection purposes as described in Section 3.3, it iney has a com-
plete group of relevant acknowledgements. The same phinafplies when
a signed acknowledgement is used to acknowledge the reneptimes-
sages to the source by the destination. And last, as deddnbihe next
item, when acknowledgements are forwarded it is very likbt messages
received with the same source, traversed the same patheHedecreases
the total number of acknowledgements that needs to be fdesar

2. Forwarding signed acknowledgemeassshown in Figure 3.6. Because mes-
sages are not acknowledged immediately, but only e¥esgconds it is very
likely that at the moment a node wants to create an acknowtedgt, it
already received a signed acknowledgement from its suocessle in the
path. When this indeed happened, the node can forward thiatedge-
ment instead of creating a new one. For the receiving nodees not matter
if it can present a signed acknowledgement from its directassor or from
a node further in the path, because with this forwarded agledgement it
can also prove it forwarded the message. With this methotbthksigning
of messages can be reduced, and therefore the maximum lipaucan be
increased.

gorward Ack igned Ack corward Ack igned Ack

O—0CO—0—0O—0
Figure 3.6: Signed acknowledgements are created by nodets5 and forwarded

by nodes 2 and 4.

Signing groups of messages has the disadvantage that a emalees its “proof

of innocence” only aftefl’ seconds oV messages. Hence, malicious nodes can

corrupt N messages before being detected. However, the period oirimvkich
detection and location of a malicious node is realised mdgriger, but the amount
of computation needed can be drastically reduced. And ihidelfy complies with
the design goal of detecting malicious nodes in a reasorabtaint of time and
with a reasonable amount of overhead.

When a node receives a forwarded signed acknowledgementhe acknowledge-
ment is not signed by the host it sent the message to, but pemioost further
down the path, it possesses an acknowledgement that ischedeive times of
the signing node, and not the receive times of its successie im the message
path. Therefore, the forwarding latency the node can praildogically increase,
because the message traversed multiple hops within thafagérod.

For example, when node 1 in Figure 3.6 wants to detect thedialiwg latency
of node 3, it compares the timestamps in the signed ackngetadnts received
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by node 2 and node 3. Node 3 however, possesses the acknemledgnode 5
created. Hence, the difference between the timestampsaiedi the latency time
for two hops.

Therefore, when a node forwards a signed acknowledgemshbiild take into
account that the receiving node will not violate the forvagdatency maximum.
However, this can only be done when a node is aware of theviegdime of its
predecessor node. Therefore, the Sphinx algorithm addsestamp to each mes-
sage sent, that indicates when the sending node receivedabsage itself. Now,
a node checks if forwarding a signed acknowledgement wilkeaa latency viola-
tion for its predecessor node. If it would, then the node sigmacknowledgement
itself, instead of forwarding the signed acknowledgeméhis policy will not in-
fluence the forwarding of signed acknowledgements mosteofithe, because in
the Sphinx algorithm, we set the maximum latency to the 89@trcentile of the
measured latencies of the network.

3.5.4 Smearing of nodes

In the Sphinx network there is only one way for a maliciousentmsmeara non-
malicious node, i.e, to make a non-malicious node look rmal&; or more pre-
cisely, to make sure a non-malicious node will be saddled wait invalid signed
acknowledgement. Because, when a malicious node can irslietea situation,
the non-malicious node cannot prove its innocence.

When a malicious node does not return a (valid) signed aclatggment to a

non-malicious node, the non-malicious should resend thesage to a different
node. However, now the non-malicious node will possessradigcknowledge-

ment that indicates a latency violation. This situation oanur, because signed
acknowledgements are not returned immediately.

By the time the non-malicious node detects the maliciousoéds neighbour, it

is likely that it already sent more messages to exactly @naiesneighbour. Hence,
a non-malicious node may not be able to present correct adgkdgements for

a period of timeT", whereT is the system wide time out parameter. Therefore,
when a node cannot present a correctly timestamped sighedwledgement for
messageV/, it cannot be blamed for the other messages forwarded toatime s
node within time period” after the node forwardedl/. But only if it can present a
signed acknowledgement at all. So, when a node does noveszeorrect signed
acknowledgement, it must immediately resend all messaggsts a malicious
host to an alternative host.

The downside of this smearing prevention is that it givesnifadicious nodes the
ability to delay messages in a periodBffor a maximum ofI" seconds. To still
satisfy our design properties and to prevent malicious sidd®En continuously
delaying traffic, the Sphinx algorithm implements a repgatatnanagement policy,
as described in Section 3.4
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3.5.5 Overhead and Memory Usage

The overhead of the Sphinx algorithm in addition to the Chiamagorithm de-
pends on several system wide parameters, such as the timeuarizer of mes-
sagesN after which signed acknowledgements are sent, and thegvsiae of
the messages sent.

The Sphinx overhead consists of two parts. First, the oeetlgenerated because
every node needs to send an acknowledgement to its predeceste. Second,
the overhead generated for the detection of malicious betwavThere are two
detection methods: either the destination node acknowketlee source node or the
source node randomly starts the location procedure. Bothode are described
in Section 3.3.

For the first part, we need to know the exact structure of tpeesl acknowledge-
ment, to determine the generated overhead. Table 3.3 sh@istriucture of a
signed acknowledgement. The bottom four fields only appeee i a signed ac-
knowledgements. The greyed row indicates a record thatbeilincluded in the
acknowledgement for each message the signed acknowledgaokmowledges.
Hence the overhead expressed as a percentage of the magsajeam be calcu-
lated as

(106 + 28N) /N
S .

Sequence # - 4 byt{ Receive Time - 8 byt MD5 hash - 16 byte
Number of messages acknowledged (2 bytes)
Key of Source of Message (20 byte)
Key of Signing Node (20 byte)
512 bit RSA Signature of Data (64 byte)

Table 3.3: Acknowledge Message Structure.

For the second part, the overhead generated by monitorengdtwork for mali-
cious nodes with the different detection methods as is sl

e When the destination acknowledges every message to theesnade, the
destination sends the same acknowledgement it sent teeilepessor node,
to the source node. Hence, here the overhead also depertus mmiber of
messages covered by one acknowledgement.

The overhead also depends on the path le@iythlence, the extra overhead
generated by this method expressed in bytes is

(106 + 28N) /N
> .

e Using random checks: Using this method, randomly eveti message is
checked for correct delivery. Every node in the path is quefor a signed
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acknowledgement. The requests is a 4 bytes message sequenicer, and
the reply is a signed acknowledgement message as in TabldBe3over-
head expressed in bytes per message sent is

44 (106 +28) 138

L L

30 T

Signing + IDes;t->SourceI Reply Overrlmead
Signing + Random Check Overhead

25 | :
20 | B

15 |+ y

Overhead (%)

10 H g

0 1 1 1 1 1
50 100 150 200 250

# Messages in acknowledgement

Figure 3.7: Overhead for different detection methods (th@sea message size of
1000 bytes).

Figure 3.7 shows the total overhead by using one of the mettwith an average
message siz8 of 1000 byte and a variable numb&r of messages covered in an
acknowledgement.

A Sphinx node has to store all the signed acknowledgementhéomessages it
forwarded since the last query it received from its repatatnanagers. Hence, on
average it has to store 1000 acknowledgements. It is veilgalylit ever has to
store more than 15000 acknowledgements, because the pitgldakt it does not
get blamed after sending 15000 messages edo0als

3.6 Implementation Details

This section describes some of the implementation detafipbinx.
A sent message contains the following data:

1. The Message Type: An integer containing the type of thesawss clients
using the chimera library can register callback functiomsdach message

type.

2. The Destination Key: A destination key to route the messag
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Payload

Receive Time - 8 bytes

Secure Flag - 1 byte
Sequence Number - 4 bytes

Source Key - 20 bytes
Destination Key - 20 bytes
Size of Payload - 4 bytes
Message Type - 2 bytes

Table 3.4: The Sphinx message structure. The greyed fieldsadded for the
Sphinx protocol.

3. The Source Key: This field stores the key of the source nbtieonessages.
By storing this information we can keep track of the path infation, e.g.,
when a source node requests a signed acknowledgement freraedost,
it queries the node by sending the node its key and sequemabeanu The
node queried has stored this signed acknowledgement inodtprgueue
under the source key and sequence number.

4. The Sequence Number: Every node increases this sequandaenwith
every message sent.

5. A boolean indicating the message is a secure messagendiegen this
boolean, messages are sent secure (following the Sphitecpipor unse-
cure (following the Chimera protocol).

6. The receive time: When a message gets forwarded, thisduglthins the
receive time of the message by the node that forwarded theages

For every message sent an entry is created in a special sigyreire. This entry
contains the time the message was sent, so that action camlbgaken when a
signed acknowledgement is not received on time. A field etihig if the message
is acknowledged already. The host the message was sentdn,avhessage is not
acknowledged correctly this host can be removed from thénguables. A copy
of the message sent, to send the message to another hostavdeknowledgement
is received. Evenp seconds a special thread checks all entries in the sign ireque
for an occurred time out, wheiR is a system wide configuration parameter. When
a time out occurred, the thread is responsible for reserttimgnessage.

For every message received an entry is created and storesign aut queue. This
entry contains the data of the message and a timestamp of tvbenessage was
received. Every’ seconds a special signing thread signs all messages iruhie(
whereT is a global system parameter. Before signing a message tesrgign in
queue is first checked for acknowledgements for this sameagedo implement
acknowledgement forwarding as described in Section 3.5.3.
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Because the signing thread only signs messages &vegconds it is possible to
sigh more messages at the same time, and in that way inayetsirthroughput
speed and decreasing the network overhead. The drawbahlsahéthod is the
higherT, the later time outs are detected. The Sphinx algorithm gordsT" as 1
second.
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Chapter 4

Experiments and Results

In this chapter we present the results of our experimentefting the Sphinx algo-
rithm. In Section 4.1 we describe the experiments we permththe environment
in which they are performed. In Section 4.2 we measure tleadgtand the max-
imum time difference between nodes in our testbed. In Seeti8 we measure
the maximum bandwidth in terms of bytes per seconds that egordcessed by
a node. In Section 4.4 we test the correct operation of a SADHIT under nor-

mal conditions. In Section 4.5 we test the detection andiloggroperties of the
Sphinx DHT when malicious behaviour enters the DHT.

4.1 Experimental Setup

The testbed we use as an instance of a corporate WAN is tliegaireration Dis-
tributed ASCI Supercomputer (DAS-3), which is a wide-aremputer system in
the Netherlands that is used for research on parallel,ilistd, and grid com-
puting. It consists of five clusters of in total 272 dual-gssor AMD Opteron
compute nodes. The distribution of the nodes over the clisted their speed is
given in Table 4.1. As can be seen, the DAS-3 has a relativatpmtevel of pro-
cessor speed heterogeneity. The clusters are connecteuttby ® Gb/s Ethernet
and 10 Gb/s Myri-10G links for wide-area and for local-areenmunications, ex-
cept for the cluster in Delft, which has only 1 Gb/s Etherigtd. On each of the
DAS-3 clusters, the Sun Grid Engine (SGE) is used as the tesalirce manager.
SGE has been configured to run applications on the nodes ixchusire fashion,
i.e., in space-shared mode. As the storage facility, NF8d#able on each of the
clusters.

In order to test the Sphinx algorithm, we will conduct thedaling four experi-
ments on our testbed:

1. To determine the maximum allowed latency needed for thecten of la-
tency violations, we measure the NTP properties and latpnoyerties of
the DAS-3 network.
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Table 4.1: Properties of the DAS-3 clusters.

Cluster Location Nodes Speed Interconnect

Vrije University (VU) 85 2.4GHz Myri-10G & GbE
U. of Amsterdam (UoA) 41 2.2 GHz Myri-10G & GbE
Delft University (DU) 68 2.4GHz GbE
MultimediaN (MN) 46 2.4 GHz Myri-10G & GbE
Leiden University (LU) 32 2.6 GHz Myri-10G & GbE

2. Because the Sphinx algorithm relies on the signing ankithg®f messages,
which is compute intensive and therefore will influence tlaedwidth of
a node, we will perform several tests to measure the speegrihg and
hashing of messages. We will test the signing and hashiregdspiea DAS-3
node, and deduce the maximum bandwidth of a node out of thesbers.

3. To test the Sphinx algorithm under normal conditions whews malicious
nodes are in the network, we will set up a Sphinx DHT netwonksigting
of non-malicious nodes, and randomly send messages thtbeghetwork
to test if no node gets the reputation of being malicious.

4. We will test the sensitivity of the Sphinx algorithm by tieg how fast a
node will be detected and located when it starts to drop,ydelachange
the payload of messages. We will use the results of the testearnalicious
nodes do not return acknowledgements also to prove thatrdshiog of
nodes will not ruin the reputation of its neighbours, beeahss is essentially
the same: crashing nodes also stop returning acknowleddsemé both
cases, we need guarantees that the malicious nodes/grasides will not
influence the reputation of their neighbours , i.e., no otteetes must get the
reputation of being malicious.

4.2 Time Properties of the DAS-3

In this section we derive the time properties of the DAS-8xed by measuring the
local time differences between nodes, and the rounditripg (RTT) between the
nodes. We need these values to determine the maximum allimmedrd latency

between nodes.

To get a grip on the expected latency times between nodeserf@med several
measurements. We started by measuring the RTTs betweenusiers, which

is shown in Figure 4.1. Because the network links betweerclimters are het-
erogeneous, we must calibrate the maximum allowed latendh® slowest link,

which is the connection between the Delft University clusted Leiden University
cluster.
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Figure 4.1: Average RTTs in ms between DAS-3 clusters.

Between these two clusters we send 180,000 ICMP-echo gattketeasure the
RTTs. Figure 4.2(a) shows the cumulative distribution afsih RTTs. We also
measured the RTTs between the two clusters using an appticsgnding UDP

messages. The 99.9th percentile for the ICMP measured RT3.4 ims, and for

the UDP measured RTTs is 5.7 ms. It can be seen that procedatagat the

application layer influences the latency times, therefoeeewpect the processing
time to be the bottleneck in our testbed.
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Figure 4.2: CDF of RTTs between two nodes in the DU and LU elugtr (a)
ICMP-echo messages, and (b) application layer messages

Every node in the DAS-3 testbed synchronises its time via &R Nerver. By
using NTP, the time difference between any two nodes in th@ewystem should
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not be more than a few milliseconds [6]. We tested this clayncdnsidering the
time differences between one fixed node and 24 random nodeBAS-3 cluster.
The experiment consists of one node querying the other 2dsnexdkry second for
their local times, by sending them an UDP packet. The nodesnré¢heir local
times in an UDP packet. By subtracting half the RTT for the sages, from their
local times, we get the time differences between the fixeceraotl the queried
node. By plotting these time differences in a graph, we cartlse maximum time
differences between any two nodes over time..

Figure 4.3 shows the time difference for each of the 24 nodeeglation to the
querying node. We can see that the time difference betwegtwannodes varies
between 6 and 2 ms.

Time Difference (ms)

Time (hours)

Figure 4.3: Graph shows the time difference between DASees0 Every line
shows the time difference between one of the 24 random noakBx@d querying
node. The greyed area shows the time difference betweemvithaddes furthest
apart at any time.

Based on these measurements, we set the maximum allowadyldte checking
maliciousness to 13 ms, that is, 3 ms forwarding time, 6 mbajlome difference
and 4 ms processing time.

4.3 Signing and Hashing Speed

The maximum bandwidth of a node depends on the signing artungaspeed,

because for every single message forwarded, a node credtgsha Every ac-

knowledgement sent needs a signature and every acknowhetgeeceived needs
to be verified. Hence, the maximum bandwidth of node is defaswthe number
of messages that can be hashed, signed and verified per second
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We measured the speed of several hashing and signing hlgsrjterformed by a
DAS-3 node. The results are shown in Table 4.2. As the hashadgthe Sphinx
algorithm uses the MD5 algorithm as a good trade-off betvesenrity and speed:
even though MD5 is proven to be unsecure [15], a hash canrfotdped within the
set time boundaries of milliseconds. For the signing atborj we choose to use
the RSA algorithm, because verification is much faster uiegRSA algorithm
than using the DSA algorithm, and verification of signatusemore often used
than creating signatures, because every node in a messtigalpays needs to
verify a received acknowledgement.

As shown in Table 4.2(b), signing is very compute intensi#@r instance, us-
ing the RSA 512 algorithm with an average packet size of 512dgn a DAS-3
node, the bandwidth 8300 - 512 ~ 1900KB. Because in the Sphinx algorithm an
acknowledgement can cover multiple messages, the baridadait be increased.
However, this bandwidth cannot be increased linearly, seavery single mes-
sage still needs to be hashed to prove the correct receptitre anessage to the
previous node in the message path.

(a) The bandwidth of different hash algorithms (KB/s)

Packet Size (bytes)
Algorithm 16 | 64 | 256 | 1024 | 8192

MD4 23973 | 81716 | 229079 | 416150 | 550865
MD5 18498 | 60908 | 158363 | 261065 | 324501
SHA-1 21248 | 59442 | 126422 | 174665 | 198391
(b) Sign speed
|Algorithm | # Sign/s | # Verify/s |
RSA-512 3800.0 46996.5
RSA-1024 1019.5 19228.8
RSA-2048 183.3 6514.3
RSA-4096 29.2 1933.7
DSA-512 6012.8 5245.3
DSA-1024 2243.9 1884.9
DSA-2048 714.8 588.8

Table 4.2: Speed of hashing (a) and signing (b) algorithm®peaed on a 2.6 Ghz
DAS-3 node using the OpenSSL implementation.

Figure 4.4 shows the theoretical bandwidth a node can resioly the MD5 hash

method and the RSA signing algorithm with different messages, as the number
of messages covered by one acknowledgement increases .

The forwarding of signed acknowledgements (Section 3.2sdwt increase the
maximum throughput in a message path since there is alwalgmstt one node

that needs to sign the messages and therefore is the bokleHewever, it does

increase the maximum throughput in a node, because thetotdler of signatures
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calculated will be reduced.
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Figure 4.4: The theoretical maximum throughput for a nodé different message
sizes as a function of the number of messages covered penvalekiyement.

4.4 No Malicious Behaviour

In this section we will test whether normal functioning o&tBphinx DHT will
result in nodes getting the reputation of being maliciousicv should not occur.
Based on our measurements performed in Section 4.2 we sestkimmum allowed
forwarding time to 13 ms. We set up a DHT network with 28 CPUgwery clus-
ter. On every CPU we run 8 nodes. Hence, in total we create a Withr1120
nodes. We run the DHT for 3600 seconds. After a startup peric@&D0 seconds,
each node starts sending a secure 100-byte message to mrdeskination, every
second. Each node measures the number of latency violdtiortee messages
it sent or forwarded. We record the number of messages sdrfoamarded, the
number of BLAME messages sent, the number of latency viniatiand the rep-
utation of every node. To detect malicious behaviour, wethseaeply-to-source
method, and not the random-check method. The reply-toesonrethod is more
sensitive in detecting malicious behaviour and will sufficgroving the correct
functioning of the algorithm. In the test we use only one tepon manager per
node and the querying of the messages sent is not done witlditiigde and ex-
pose” method, but a node will reliably provide the correaniver.

It can be seen that in Table 4.3 and Figure 4.5 that 1833 hatgalations occurred
on atotal 00.5-10° messages sent and the lowest reputation did not get bel@w 0.2
Hence, the minimum threshold @07 is not reached and therefore no node got
a false reputation of being malicious. The number of lateriolations is higher
than the number of BLAME messages sent, because every nodelsdatency
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violations. Also the the source nodes of messages, and aesaode will never
blame itself. We contribute the fact that the number of leyeviolations is less
than a fraction o0~ to the uncertainty of the global time differences, proaagsi
time, and network heterogeneity.

One hour Sphinx DHT run - 1120 nodes
Messages sent 3540562
Messages forwarded intra-cluster 1312188
Messages forwarded inter-cluster 4665973
Latency Violations 1833
BLAME messages sent 74
Lowest reputation in DHT 0.022

Table 4.3: The number of messages sent, the number of lat@layions, and the
number of BLAME messages sent in an one-hour run of a Sphink @kh 1120
nodes.

4.5 Malicious Behaviour

In this section we present the results of the experimentduaiad with malicious
nodes.
We tested four different kinds of malicious behaviour:

1. Dropping messages
2. Delaying the forwarding of messages
3. Not acknowledging messages

4. Changing the payload of messages

4.5.1 Dropping messages

We will test how fast a malicious node will be detected andted when it starts
dropping messages, but still returns signed acknowledgemee., it accepts the
responsibility for a message.

We set up a Sphinx DHT running on 4 DAS-3 clusters: VU, LU, Uagal®U. In
every cluster we use 30 CPU, and on every CPU we run 8 Sphingsnddence,
in total we use 960 nodes. After a startup period of 200 sexamlet every node
send a 100-byte message to a random destination. At a preddfine, we let
one random node become malicious in the network. From theenbinbecomes
malicious, the node stops forwarding messages, but stillssigned acknowl-
edgements. The malicious node is not sophisticated; itsdemMery message it
receives. When the reputation of a node drops below’, we consider a node
malicious.
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Figure 4.5: Histogram of the number of blame messages agwchaviolations per
minute, and a graph of the reputation of the node with the wwejutation in a
normal run of Sphinx with 1120 nodes and a maximum alloweshiat of 13ms.

As described in Section 3.4, a node cannot drop more than dages of the last
100 messages it forwarded, before its reputation dropsiibkethreshold of0~7.

It can be seen in Figure 4.6 that as soon as the malicious naddcdrop mes-

sages, BLAME messages are being sent. Figure 4.6 also shatthé reputation
of the malicious node indeed drops below the threshold irepsst The node is
now considered malicious. It takes 11 seconds before thiioed node is de-
tected as malicious. In this period of time the maliciousenads able to drop 7
messages. The number of latency violations do not increasauise the malicious
node correctly acknowledges every message.

On average it takes between 4 and 5 seconds for a node to bedkier drop-

ping a message. This period of time consists of the 2 secapilg time-out con-

figuration parameter, and the 2 seconds time period withegaest for a signed
acknowledgement has to be answered. These time-out periedgry accommo-
dating and could be shortened to improve detection times.

4.5.2 Delaying messages

This test shows how fast a malicious node will be detected@saded after it starts
delaying messages. Again, we set up a Sphinx DHT running oA3-Bclusters:
VU, LU, UoA and DU. In every cluster we use 30 CPUs, and on e&PJ we
run 8 Sphinx nodes for a total of 960 nodes. After a startupgesf 200 seconds,
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Figure 4.6: Histogram of the number of blame messages aaddatviolations

per 15 seconds, a graph of the reputation of the maliciougs pbgs the number
of dropped messages in a run of Sphinx with 960 nodes and ammaxiallowed

latency of 13ms. The random node becomes malicious at 408ps dts first

message at 412 s, and has a reputation of being malicioug &t 42

we let every node send a message each second to a randomatit@stii/e let one
random node become malicious in the network and let it delayyemessage, it
should forward, for 13ms.

Figure 4.7 shows that within 7 seconds the malicious nodetesotied, located and
marked as being malicious. In this period of time, the maiisinode was able to
delay 13 messages. It can be seen that blame messages tstétesknt when the
malicious node starts to delay messages. The latency iviadatlo not increase
because the malicious node correctly acknowledges evesagesThis test shows
that the Sphinx algorithm is able to detect minor fluctuationforwarding laten-
cies, and to locate the perpetrator.

It should be noted that in this test, the malicious node espinmediately when
a source node requests a signed acknowledgement to ddutylaleviations.
However, the best strategy for a malicious node would be t@ravide a signed
acknowledgement at all to delay the malicious behaviouedi®n. This is only
makes sense because dropping of messages will not influsneputation more
than delaying of messages. Therefore, in future versiotBeoSphinx algorithm
the different probabilities for different kinds of behaufoshould be taken into
account.
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Figure 4.7: Histogram of the number of blame messages aaddatviolations

per 15 seconds, a graph of the reputation of the malicious aod the number
of delayed messages in a run of Sphinx with 960 nodes and anmaxiallowed

latency of 13ms. The random node becomes malicious at 40&layddits first

message at 402 s, and has a reputation of being maliciou® &t 40

4.5.3 Not acknowledging messages/ Crashing Nodes

When a malicious node stops acknowledging messages, iinflilence the rep-
utation of its direct neighbours, because neighbours fatiwg a message to the
malicious node will need to re-forward the message to ardiffenode. We will
set up a test to show that no neighbouring node’s reputatirdrep below the
threshold ofl0~". Since the crashing of a node in the DHT is essentially thessam
as a node that does not return acknowledgements, this tesisei show whether
crashing nodes influence the reputation of their neighbtmarsnuch or not.

Figure 4.8 shows that the number of messages not acknovdestiggly discrease,
this means that the malicious node slowly disappears franrditing tables of
all other nodes. Because a node always removes a non caongenatde from
its routing tables it will not send another message to theaiaks node. The
removal out of the routing tables of all the malicious nodeghbours, however,
can take a while. Therefore, we recommend as an improveroefttire versions
of Sphinx, to inform the reputation managers of this miskb&ha. The reputation
managers could then check whether the blamed node indesshdbacknowledge
the messages it gets. Of course, the blamed node should raavdre if it is a
reputation manager that is testing him. Therefore, a réipatananager should not

40



100 T T T T 3 1
Latency Violation ——
Blame Message

Worst Reputation

Messages Not Acked

< 0.1
80

- 0.01

60

0.001

Frequency (per 15 s)
1

Reputation

- 0.0001

40

- 1e-05

20

- 1e-06

0 s il

0 100 200 300 400 500 600 700 800 900
Time (s)

Figure 4.8: Histogram of blame messages, latency violatiand messages not
acknowledged, and a graph of the reputation of the neiglitgurode with the
worst reputation, of a Sphinx DHT run with a malicious nodé acknowledging
messages.

directly send a message to the blamed node, but througheanatde.

4.5.4 Changing payload

Because the changing of messages should never happen, pveokeene-strike-
is-out policy. Hence, when the destination replies to thes® the source detects
that the MD5 sum of the message does not equal the MD5 hadoutatzd itself.
The source now starts the locating the node that changedttegul as described
in Section 3.3. We will not create an extra graph to show theati®en of this
malicious behaviour, because the detection and locati@ssgntially the same
as detecting forward delays. Only, instead of inspectirgrdteive times in in
the signed acknowledgement, the source node should ingEebtD5 sum in the
signed acknowledgements.

4.5.5 Multiple Malicious Nodes

In this section we test how many of the malicious nodes arectisd, when we
slowly increase the fraction of malicious nodes in the DHE ¥t up a DHT con-
taining in total a 1000 nodes. Every node sends a 100-bytsagedo a random
destination each second. Every malicious node in the n&twaturns acknowl-
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Figure 4.9: Graph of the fraction of malicious node deteeted function of the
fraction of malicious nodes in the DHT.

edgements, but drops the messages it receives. By stilbad&dging messages, a
malicious node will not be removed from its neighbours nogtiables directly. A
malicious node also ignores the BLAME messages it recetreth& nodes it is the
reputation manager for. Every nodes has three reputatiorageas, and a node is
detected as malicious if two of its three reputation marggatitle it as malicious.
Figure 4.9 shows the results of this test. It can be seen dhat fraction smaller
than 10% it is unlikely that a malicious node will not get detéel. This complies
with our design goals. We did not let malicious reputatiomagers label non-
malicious nodes as malicious, but it can be expected thatntninber will be the
inverse of the graph shown in Figure 4.9.

42



Chapter 5

Conclusion

In this chapter we will give a summary of the design and imm@etation of the
Sphinx protocol. After this summary we will present the dasions of this thesis,
and we will end with recommendations for future work.

5.1 Summary and Conclusions

In this master thesis we have presented the design and snafiyse Sphinx algo-
rithm, a scalable and robust algorithm capable of dete@imlocating malicious
nodes in corporate DHTs. We focused on corporate DHTS, lsecduese DHTs
often provide business critical services, and because tbéfT's usually run in
closed corporate WANs. These WANs are company owned andotiedt there-
fore the network properties are much better known than foegg WANS like
the Internet. The knowledge of these network propertiestmamnised to detect
deviations in routing behaviour of nodes. The Sphinx proltas able to detect
the following malicious behaviour: dropping of messagesdaying of messages,
misrouting of messages, and tampering with the payload ekages. Detection
and location are both realised within seconds. The hearfptotocol is the
use of signed acknowledgements. Nodes that forward messdgelld receive
sighed acknowledgements from the next node in the messaige Tlaese signed
acknowledgements function as 'proofs of innocence’. Thebée a node to prove
a message is forwarded on time and to the right node. Sigaingry compute in-
tensive, therefore the Sphinx protocol implements two vedysducing the signing
of messages: forwarding of acknowledgements, and the ad&dging of multiple
messages simultaneously. The Sphinx protocol also preddealable reputation
system, to keep track of the reputations of the nodes in ttveonk.

From the results of our experiments we can conclude that:

e The use of signed acknowledgements as ’'proofs of innocdaedeasible
when acknowledgement forwarding and acknowledgemenipgngus used.
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e The Sphinx algorithm is able to detect malicious delays dfiseconds in

forwarding latency.

The detection and locating of malicious behaviour can bleseghwith minor
overhead and in a relatively short period of time.

This means that it is possible to protect corporate DHTSs frdrmaders by minimis-
ing the damage that can be done by detecting malicious nadeseiatively short
period of time, while the correct functioning of the DHT une®rmal conditions
is not disturbed because of the little overhead generated.

5.2

Recommendations

To improve the functioning of the Sphinx DHT, we present tbkofving recom-
mendations:

The Sphinx algorithm currently only determines whether denis malicious
or not. To make effective use of Sphinx, nodes should querydputation
managers for the reputations of the nodes in their routibtesarepeatedly,
or reputation managers should notify neighbours of a nmlgnode. In this
way malicious nodes can quickly be removed from the routaigets, and
therefore from the DHT.

The Sphinx algorithm does not yet handle the exchange dficatés that
are necessary to verify the signed acknowledgements. $pbifes should
exchange certificates with their neighbours, and thereldhmeia protocol
for requesting certificates when these are needed.

When malicious nodes do not return signed acknowledgemirgiee is no
hard proof of the maliciousness of a node. Hence, when thiavieur is
detected, the reputation managers of the malicious nodddhbe informed
and the reputation managers should start a procedure tardeteif the
accused node indeed does not return acknowledgements. ofTb@urse,
should be done in such a way that the malicious node is notea@fdreing
tested.

The statistics to determine whether a node is malicious brcao be im-
proved. Currently, every latency violation gets assigiedsame probability,
while larger latencies are of course less likely to occuntraaller latencies.
In this way, more accurate estimates can be made about tigouahess of
a node.

Currently, the Sphinx algorithm does not handle networkiogteneity well:
The maximum allowed latency should always be calibratecdbam the
worst network link. However, one could think of ways whereteies be-
tween different subnets can be measured and adjusted iramityway. For
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instance, nodes could distribute their average measutewidna gossip
protocol through the network. Then, nodes that violate Kpeeted latency
times, can be blamed. This dynamic measuring of network pirdperties
may even give us the opportunity to use the Sphinx algorithmaore gen-
eral WANS like the Internet.
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