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Abstract

Nowadays structured overlay networks are used in controlled environments like
company wide area networks. Even though these structured overlay networks are
usually closed, there is still the risk that one or more nodesget compromised by
attackers. When these networks provide business critical services, serious harm can
be done by a compromised node. Because these networks are company controlled,
properties like available bandwidth and latency times are much better known than
in a general wide area network like the Internet. This knowledge can be used to
create a system where malicious nodes in the network can be detected and located
in a relatively short period of time and with little overhead. This thesis describes the
design and implementation of the Sphinx protocol that provides this functionality.
We show that it is possible to detect and locate malicious nodes in a distributed
hash table in a short period of time, with little overhead, and with high sensitivity.
We are able to detect and locate the nodes that cause latency deviations, dropping
of messages, mis-routing of messages, and changing of the message payload.
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Chapter 1

Introduction

Peer-to-Peer (P2P) networks are decentralised networks where no node has a com-
plete overview of the network, i.e., nodes can find eachotherand communicate
with each other with no central server involved. P2P networks became popular
with the sharing of files. One of the first real, i.e., completely decentralised P2P
protocols deployed and widely used was Gnutella. Gnutella however, was a non-
structured overlay network. Non-structured overlay networks cannot provide guar-
antees whether stored objects can be found in the network. Structured overlays on
the other hand allow a node to find another node or object in a deterministic way in
relatively few steps. Distributed hash tables (DHTs) are a class of structured over-
lays where (key,value) pairs are stored in a distributed way. DHTs provide a way
to reliably store and retrieve data in a non-centralised way. With no single point of
failure the data are also highly available. For this reason,companies start deploy-
ing DHTs in corporate environments to provide reliable business critical services.
For instance, Amazon created the Dynamo system, a DHT [2] forhighly available
key-value storage, to be used for their web shop. By using a DHT, Amazon is able
to deliver the optimal user experience: quick response times and high availability.

These DHTs usually run in a company owned and controlled widearea networks
(WAN). Even though these DHTs run in closed networks, history teaches us that
even closed networks may get intruded by non-authorised people. Although the
odds are low that the network gets intruded, the consequences may be severe when
it happens. When an intruder is able to replace nodes with specially crafted nodes
to disrupt the traffic in the DHT, serious harm can be done. Critical messages
can be dropped or delayed, disrupting the reliability and/or speed of the DHT.
Hence, we need a solution to cope with these attacks on DHTs running in corporate
environments. Fortunately, the fact that the DHT runs in a company controlled
WAN, gives us a number of advantages: network properties, like latency and round
trip times, are much better known than the network properties of general WANs
like the Internet. With this information, it is easier to determine whether latency is
“natural” or deliberately caused.

This thesis describes the design and implementation of the Sphinx algorithm. The
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Sphinx algorithm successfully detects malicious behaviour, and locates the nodes
that causes this behaviour, within a DHT, in a scalable way and with a reasonable
amount of overhead. The experiments conducted show that it is possible to de-
tect and locate malicious behaviour with a high sensitivity. The Sphinx algorithm
is able to detect and locate malicious nodes causing messagedroppage, forward
delays, misrouting and tampering with the message’s payload.
This thesis is structured as follows. In Chapter 2 we will give an overview of the
functioning of DHTs. We will discuss key-based-routing anddistributed hash ta-
bles, and the Chimera protocol upon which the Sphinx algorithm is implemented.
We will also discuss the environments in which our targeted DHTs reside. We
will end this chapter with the problem statement. In Chapter3 we present and
explain how the Sphinx algorithm detects and locates malicious behaviour. We
will describe the use of signed acknowledgements as “proofsof innocence”. We
will present a reputation management system to keep track ofdetected malicious
behaviour. We finish with issues important for the functioning of the Sphinx al-
gorithm. In Chapter 4 we present the experiments conducted and their results to
prove the correct functioning of the Sphinx algorithm. Finally, in Chapter 5 we will
conclude with a summary, conclusions, and recommendationsfor future work.
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Chapter 2

Problem Setting

In this chapter the reader is introduced to the problem setting for this thesis. Nowa-
days, companies start to deploy their own DHT networks to provide reliable and
highly available services to their customers. These DHTs operate in closed envi-
ronments, owned and controlled by the company. However, history has made it
clear that even protected closed networks can be intruded bynon-authorised peo-
ple. Even though this is unlikely to happen, we need to take the possibility into
consideration, because when an intruder gets access to a DHTthat supports busi-
ness critical services, he can do serious harm to the functioning of the DHT.
In Section 2.1 we argue why we want to protect corporate DHTs.In Section 2.2
we present an overview of structured overlays. This sectionis taken from [14]. In
Section 2.3 we describe the Chimera protocol on which the Sphinx algorithm is im-
plemented. In Section 2.4 an introduction is given to the environment setting. Here
we give a description of corporate networks and their properties and reliability. In
Section 2.5, we describe the problem statement of this thesis.

2.1 Why Corporate DHTs?

Besides the clear commercial interests of protecting business critical applications,
corporate network environments have the advantage that their properties are better
known than the properties of general wide area networks (WAN) like the Internet.
Added to that, corporate networks are much more reliable than WANs like the
Internet. Therefore, it is harder for a malicious node to shift responsibility for
dropped or delayed packets to the underlying network and therefore guilt can be
more reliably determined. And, because corporate networksare closed networks,
it is unlikely that a large fraction of the nodes get compromised. These conditions
make it possible to create an algorithm that can protect DHTsby detecting and
locating these few compromised nodes in the network withoutcreating too much
overhead, and thereby taking into account the possibility of collusion. Hence, we
need to develop an algorithm that is a solution to the following problem: When
there is a structured overlay network running in a closed corporate environment
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where network properties are better known and more stable than on the Internet,
how can we detect and locate (colluding) malicious nodes in an efficient manner?

2.2 Structured Overlays

In this section structured overlay networks are introduced. We give the reader an
idea of how these overlays build a decentralised network andhow messages are
routed in such networks. We start by giving a brief introduction to unstructured
overlays and we explain why structured overlays are needed.
Subsequently we discuss the base of every structured overlay and we conclude with
a few examples.

2.2.1 Unstructured Overlays

In the early days of P2P networking the pioneers like Napster1, Gnutella [9] and
Freenet [1] proved that decentralised services like file sharing and distributed stor-
age have a huge potential in today’s society. However, to letthe peers contact each
other Napster depended on a centralised server which indexed the files the users
had available to share. This dependency on a centralised server made Napster not
very scalable and vulnerable for a single point of failure attack (in the case of Nap-
ster this was a legal attack). The Gnutella network, which isa typical example of
an unstructured overlay network, has no dependencies on centralised services, but
it cannot guarantee that a file that is available in the network can be found by ev-
ery user. The search method for Gnutella is to broadcast a search request to every
neighbour in a node’s connection table. The neighbours on their turn re-broadcast
the search query to their neighbours. Every re-transmission the time-to-live (TTL)
value is decreased. If the node that owns the particular file,is not found within
the maximum TTL, the search query returns nothing. Besides that, it is clear that
broadcasting search queries to every possible neighbour isnot very network effi-
cient. Gnutella is an unstructured overlay and cannot even in a fault free network
provide guarantees that stored objects will be found. Structured overlays on the
other hand allow a node to find another node or object in a deterministic way in a
relatively small amount of steps.

2.2.2 Key Based Routing & DHT

The base of every structured overlay is Key-Based-Routing (KBR) [7]. In KBR a
messageM with destination keyK is routed toward the root for keyK, where the
root is the node that owns keyK. The root usually is the node that isclosestto key
K. Closestin this case is protocol specific, e.g., it can be the smallestexclusive-or
distance between key and node id. A key is owned by just one node at the same
time. A key is an-bit string. Every node identifier is of the same type as a key.

1www.napster.com
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With every step in the routing path the message gets closer tothe destination, i.e.,
the message is forwarded to a node with an id closer to keyK.
A distributed hash table (DHT) implements key-value storage on top of KBR. To
store a value with keyK, a message like [PUT, value] can be sent to keyK. The
root then stores the key-value pair and any time it receives aGET message sent to
keyK it returns the stored value.

Figure 2.1: Example 2-d coordinate overlay with 5 nodes [8].

Content Addressable Network One of the first structured overlay networks pub-
lished is the Content Addressable Network (CAN) [8]. CAN is based on ad-
dimensional Cartesian Coordinate space on ad-torus. Every key-value pair that
needs to be stored is mapped onto a zone by hashing the key to coordinateP . Ev-
ery zone is owned by a node that stores the keys. Messages are greedily forwarded
to the neighbour whose coordinate space is closer to the intended destination. This
is achieved by keeping all the neighbours (all zones that share d − 1 dimensions)
addresses. Nodes can join the network by randomly choosing apoint P and send-
ing a JOIN message toP . The node responsible for the zone containingP then
splits its zone and makes the joining node responsible for half the zone by trans-
ferring all the key-value pairs that fall in the new zone. Their own routing tables
are updated and messages are sent to the new and old neighbours to make them up-
date their routing tables. The average routing path length for a CAN withn nodes,
with zones of equal size (which can be obtained by an uniform hash function on
both node IDs and keys) is(d/4)(n1/d). Every node maintains routing information
about their2d neighbours.

Chord Chord [13] is another structured overlay that, just as CAN, has the disad-
vantage that it does not attempt to proximate real network distances in its topology
construction [16]. Chord creates a ring topology where eachnode is assigned an
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id by hashing a node’s IP-address. To create a balanced key distribution, keys are
also generated by hashing an identifier, such as a filename. A key k is mapped to
the node whose id is the successor ofk (in other words, the key is mapped to the
first node clockwise after keyk).

Figure 2.2: An Chord identifier circle consisting of three nodes 0,1, and 3. In this
example, key 1 is located at node 1, key 2 at node 3, and key 6 at node 0 [13].

Every node maintains a routing table (called finger table in the original paper)
with at mostm entries, wherem is the maximum number of bits in the key/node
identifiers. Hence, a node maintains the addresses of the successor nodes of the
keysn + 2i for every0 ≤ i < m. A message is routed to keyk by routing the
message to the node in the table whose id precedesk. This makes the average
routing path lengthO(log n).
A node join is realised by sending a JOIN message to a bootstrap node containing
the new node’s id. The bootstrap node finds them successors to fill up the node’s
finger table. Finally, the other nodes finger tables are updated (we refer the reader
to [13] for the exact algorithm).

Pastry Pastry [10] is an overlay network based on prefix routing. Identifiers are
seen as a sequence of digits with base2b, whereb is a system wide configuration
parameter. In every routing step the current node forwards the message to the node
f , where nodef is the node in its routing table whose id shares a prefix with key
k of at least one more digit than the current node shares with the key. Hence,
the routing path is less than⌈log2b N⌉ under normal operation, and therefore every
node must maintain a routing table with⌈log2b N⌉ rows, each row containing2b−1
entries. Every entry at rown contains a node that shares a prefix of lengthn with
the present node’s id and whosen + 1th digit is the column number (that is, one of
the2b − 1 possible values other than then + 1th digit of the present node).
For every entry one of many possible nodes can be chosen. In practice a node is
chosen that is close in terms of latency to the present node. This provides Pastry
with good locality properties in contrast to CAN and Chord. Anode joins the
network by sending a JOIN message with a key equal to its own idto a bootstrap
node. This message will arrive at the node with an id closest to the joining node’s

6



Pastry Node ID 0213
0 1322 2043 3231

0032 0112 2 0330
0201 1 0223 0231

0211 3

Table 2.1: The routing table of a hypothetical Pastry node with id 0213, with base
4 and length 4. The bold numbers in each row show the corresponding digit of the
current pastry node id.

id. All nodes encountered on this path from the bootstrap node to destination node
will send their state tables to the joining node. In this way the joining node can
build its own routing table.

Kademlia The Kademlia [5] overlay is one of the many other structured over-
lays, except that it is one of the few that are extensively used by millions of users
[12]. File sharing applications like eMule2 and aMule3 based their protocols on
Kademlia.
One of the basic principles of Kademlia is that it must be easyto understand. In
contrast to many other protocols, Kademlia uses just a single algorithm from the
beginning to the end. Protocols like Pastry often use a second algorithm based on
numerical difference when a target is almost reached. Kademlia is based on the
notion of exclusive or (XOR) distance, i.e., the distance between nodex andy is
defined asd(x, y) = x ⊕ y.
For each1 ≤ i < l, wherel is the identifier length, each node keeps a list with
pointers to a maximum ofk nodes of distance between2i and2i+1. This redun-
dancy is implemented so that every node can start a look-up query in parallel to
avoid time delays from failed nodes. These lists are calledk-buckets, wherek is a
system wide configuration parameter. In everyk-bucket the nodes are kept sorted
by the time last seen (the most recently seen at the tail). When a node receives a
message, the sender is placed at the tail. If the sender is notyet in thek-bucket and
the bucket is full, the least recently seen node is pinged to check if it is still alive.
If it answers, it is placed at the tail of the bucket. If the node does not answer, it is
replaced by the new sender.
The Kademlia protocol works in an iterative way, i.e., it queries the closest nodes to
a target for even closer nodes. When it receives closer nodes, it queries them again,
etc., until it reaches the desired target. The routing tableof a node is a binary tree,
initially consisting of one node containing onek-bucket. When a new node arrives,
it is inserted in thek-bucket. When thek-bucket is full, the bucket is split. It is
shown that most operations take⌈logn⌉ + c time [5], wherec is a small constant.

2www.emule.org
3www.amule.org
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2.3 Chimera

This section describes the Chimera protocol. We use this protocol to implement
and test the additions we will design to detect and locate malicious nodes in a
structured overlay network. Chimera is an implementation in the language c, of the
routing and location parts of the Tapestry protocol [16] developed at the University
of California Santa Barbara (UCSB). Tapestry is an overlay infrastructure designed
to enable the creation of scalable, fault-tolerant applications in dynamic wide area
networks.

2.3.1 Fault Tolerant Routing

Tapestry is similar to Pastry. It uses prefix routing and similar insertion/deletion
algorithms. There are several key differences between Tapestry and Pastry in the
way objects are stored and duplicated. We will not elaborateon this, since it is not
relevant because Chimera only implements the routing part of Tapestry.
Besides a routing table, every Chimera node keeps two leaf sets, which are lists
of theL closest nodes the node is aware of at each side, whereL is a predefined
constant. Hence, the left leaf set contains theL/2 closest nodes with a key lower
than its own. And, the right leaf set contains theL/2 closest nodes higher than
its own. The leaf sets are used to directly forward a message to the node with the
smallest numerical distance to the destination key.
To realise fault-tolerant routing, Chimera nodes keep their routing tables reliable by
sending periodic ping messages to the nodes in their routingtable and leaf set. For
every node in the routing table and leaf set a success rate is kept. The success rate
is calculated by taking the average success of the lastM messages sent to a node,
whereM is a predefined constant usually set to 20. Success is defined by whether
an acknowledgement of a message for a node is received withina predefined period
of time or not. Each entry in the routing table contains two backup nodes in with
the same shared prefix. On failure these nodes can be used.
Chimera implements surrogate routing to find a root node for aparticular key. To
find the destination node for a key, messages are forwarded tothe node with the
same id as that key as if such a node exists. When a node cannot route the message
to a closer node, it is the destination node.

2.3.2 Node insertion

When a new noden wants to join the Chimera network, it first generates its own id
key by SHA-1 hashing the concatenation of its host name and listening port. The
new node must be aware of a bootstrap node it can connect to. After connecting
to bootstrap nodeG, noden attempts to route a JOIN message. As the destination
of the JOIN message, it uses its own id key. The JOIN message will finally be
received by the node with the closest id to the id of noden. When the JOIN
message traverses the routing path, every node on the routing path sends the row
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from its routing table that matches the longest prefix of the id of n to n. With
every step the common prefix of the key of the current node withthe key of noden
becomes one position larger. Hence, with every step noden gets a new row for its
routing table. Afterl steps noden should have received a complete routing table,
where isl is the predefined length of a key.

Joining Node

Bootstrap Node

Root Node

Routing Table 
Joining Node

Figure 2.3: Joining node sends JOIN message to current root node of own key.

When the message arrives at the current root node of the id of noden, it replies
with a JOINACK message and sends its leaf set ton. When noden receives the
JOINACK message, it updates its leaf set and announces its arrival to all nodes in its
routing table and leaf set by sending them an UPDATE message.The neighbours
update their routing tables. Noden has joined.

2.4 Corporate Overlay Networks

In this section we introduce the reader to the context of our problem. The environ-
ments in which our problem occurs are corporate overlay networks, i.e., overlay
networks running in a corporate WAN. Corporate networks usually consist of fully
controlled data-centres, which are connected with leased data lines with a guaran-
teed available bandwidth.

9



2.4.1 Properties of Corporate Networks

A corporate overlay network is an overlay network within theboundaries of a cor-
porate WAN. A corporate WAN has multiple advantages over a WAN like the Inter-
net. Where for the Internet there are no guarantees at all about transmission times,
latency and reception, there are some assumptions we can make about corporate
WANs. First, a corporate WAN typically consists of multipledata centres con-
nected with leased lines. Therefore, realistic estimates can be made about latency
and transmission times. Whenever the actual numbers deviate from the estimates,
it is possible to blame nodes with much more certainty. Hence, if we deploy an
overlay network in such an environment, we can detect and locate malicious be-
haviour of participating nodes. Second, corporate WANs areusually closed sys-
tems. Therefore, it is unlikely that malicious code is run inthe network. However,
we should still keep in mind that it is possible that nodes getcompromised by an
attacker. Hence, it is unlikely that malicious nodes residein the network, but we
should seriously consider the possibility and whenever it happens we should detect
and locate the nodes before serious damage can be done to the network.

2.4.2 Dynamo

An example of a structured overlay network running in a corporate environment is
Amazon’s highly available key-value storage system calledDynamo [2]. Dynamo
is a highly available and scalable distributed data store built for Amazon’s platform.
It is a completely decentralised system where nodes can be added and removed
without requiring any manual partitioning or redistribution. Dynamo is used to
store the state of services that have very high reliability requirements and need
tight control over the trade offs between availability, consistency, cost-effectiveness
and performance. To meet the stringent latency requirements that 99.9% of all
read and write operations are performed within a few hundredmilliseconds, the
designers wanted to avoid routing requests through multiple nodes. Hence, each
node maintains enough routing information to route a request to an appropriate
node directly.
Many services on Amazon’s platform that need these properties, such as those that
provide shopping carts and best seller lists only need primary key access. A re-
lational database cannot provide the required properties mentioned. Every service
that uses Dynamo runs its own Dynamo instances.
Dynamo uses consistent hashing [4] to partition the data uniformly. In consistent
hashing a ring is created by wrapping the largest hash value around the smallest
hash value. Objects are stored under a certain key on the firstnode with a larger
identifier than that key. To prevent heterogeneity in the performance of nodes,
Dynamo uses the concept of “virtual nodes”, i.e., every nodehas multiple identities
uniformly distributed over the ring. Hence, when a node becomes unavailable the
load handled by this node is evenly dispersed across the remaining nodes.
Dynamo uses replication to achieve high availability and reliability. Data is repli-
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cated overN nodes. A node responsible for a certain keyK stores an object locally
and on itsN − 1 clockwise successor nodes. To prevent objects to be stored on
virtual nodes belonging to the same physical node some positions in the ring are
skipped. Partitioning and placement information propagate via a gossip-based pro-
tocol. Hence, each node can forward a key’s read/write operation directly to the
correct node.
The authors assume that most node failures are temporary andshould not result
in re-balancing of the partion assignment. Hence, the authors chose to use an
explicit mechanism to add or remove nodes. For failure detection Dynamo uses
a purely local detection mechanism. When nodeA does not get a response from
nodeB, nodeA considers nodeB failed, even if nodeC can still reach nodeB.
NodeA now uses alternative nodes to service requests that map toB’s partition.
Periodically nodeA retriesB to check for a recovery.

2.5 Problem statement

DHT networks within a corporate environment have certain advantages over DHT
networks in an open environment. First, the nodes in the network are all controlled,
i.e., the network consists of trusted nodes. However, even nodes in a closed net-
work can be attacked by an intruder. When a non-authorised individual succeeds
in taking over a node or creating nodes he controls, within the closed DHT, these
nodes are able to disrupt the functioning of the DHT. Especially when such a DHT
is used in a production environment and needs to be highly available and reliable,
this can have disastrous consequences.
In this thesis we present the design and implementation of the Sphinx algorithm
that protects DHTs when intruders get access to the network.In particular, Sphinx
will have the following capabilities:

1. When an intruder creates new nodes especially designed todisrupt the cor-
rect functioning of the network, it needs these nodes to jointhe network. Our
algorithm prevents the joining of any unauthorised node.

2. An intruder that is able to take over a node can replace the compromised
node with a malicious node with the same identity. This malicious node can
disrupt the correct functioning of the DHT by dropping messages it should
have forwarded. A malicious node may also deliberately delay messages,
change messages, or route messages the wrong way. The Sphinxalgorithm
detects this malicious behaviour and locates the source of this malicious be-
haviour. In summary, the Sphinx algorithm must be able to detect and locate
the following malicious behaviour:

• Dropping of messages

• Delaying of messages

• Misrouting of message, i.e., forwarding messages to the wrong node.
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• Changing the payload of messages

Hence, the Sphinx algorithm must be able to detect maliciousbehaviour in an ef-
fective and efficient way. When this behaviour is detected, the Sphinx algorithm
must be able to locate the node that causes this malicious behaviour. This detecting
and locating must be achieved within a reasonable amount of time, while minimis-
ing overhead costs. When there is a trade off between detection speed and overhead
minimisation, the emphasis in Sphinx is on overhead minimisation.
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Chapter 3

The Sphinx algorithm

In this chapter we present the Sphinx algorithm for detecting and locating ma-
licious nodes in a structured overlay network running in a corporate WAN in a
scalable way. In Section 3.1 we present an overview of how theSphinx algorithm
works. In Section 3.2 we describe how and why signing acknowledgements is the
foundation of the Sphinx algorithm. In Section 3.3 the basicoperation of how
malicious nodes are detected and located by the Sphinx algorithm is explained. In
Section 3.4 we discuss how we manage the reputations of nodesin the network and
keep track of malicious behaviour. In Section 3.5 a few remaining issues, like in-
creasing signing speed, time synchronisation and smearingof nodes are discussed,
and the solutions Sphinx uses for these issues are presented.

3.1 Overview

In order to detect malicious behaviour in message passing, and locate malicious
nodes in a DHT network in an effective and efficient way, the Sphinx algorithm
relies on the presumption that every node in the network mustbe able to prove
its innocence when malicious behaviour is detected. When a message is trans-
ferred along a path of nodes, every node must be able to prove that it forwarded
the message correctly to the following node on a path. The Sphinx algorithm re-
alises this by letting every node request a timestamped signed acknowledgement
from the node it forwarded a message to. When malicious behaviour is detected,
this signed acknowledgement can function as a “proof of innocence”, i.e., when
an investigator (that is the node that wants to locate the malicious node) wants to
locate the malicious nodes it iterates through the path starting at the first hop it sent
the message to, repeatedly requesting a “proof of innocence”. When a node cannot
present a signed acknowledgement, or only a timestamped signed acknowledge-
ment which does not correspond to the expected properties ofthe corporate WAN
it can be considered malicious.
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3.2 Signed Acknowledgements

We now give a detailed description of the Sphinx algorithm for detecting and lo-
cating malicious nodes in a structured overlay network.
The base of the Sphinx algorithm is a public-key infrastructure (PKI). The PKI
is used for two purposes. First, the PKI is used to prevent unauthorised nodes
from joining the Sphinx DHT. Second, the PKI is used to let nodes send each
other signed acknowledgements, i.e., acknowledgements containing a signature
that proves the acknowledgement was created by the sender (non-repudiation).
One part of the PKI is a centralised trusted Certificate Authority (CA). Every node
that wants to join the Sphinx network must possess a digital certificate handed out
by a CA. This certificate contains the following information:

• The key of the joining node, which is generated by the CA. The CA uses a
secure hash function like SHA-1 to generate uniformly distributed keys.

• The IP address and port of the joining node. This prevents there-usage of a
certificate by a different node.

• The public key of the node. The private part of the public/private key pair
will be needed by the joining node to sign messages. With the public key,
other nodes are able to verify the validity of messages that are signed by the
joining node.

The certificate is signed by the CA. Every node in the Sphinx network is in pos-
session of the public key of the CA and therefore is able to verify if a certificate is
valid.
When a node wants to join the network, it must present the certificate it received
from the CA. Every node that wants to add the joining node to its routing tables
should verify the validity of this certificate.
Certificates are manually created by the operator of the network when a new node
joins the network. By using a PKI, an intruder will not be ableto create new
nodes to join the network because it cannot create its own certificates. However,
an attacker that is able to take control over an already running node will be able
to use the identity of that node. With this stolen identity the attacker can create a
node that disrupts the functioning of the DHT.
The heart of the Sphinx algorithm is that every node must be able to prove it is
behaving correctly. When a node is not able to do so, it is considered malicious.
To be able to prove that a node is not malicious the node expects a signed ac-
knowledgement for every message it sends or forwards from its successor node in
the message path. Therefore, the receiver of a message creates, signs and sends
an acknowledgement. Table 3.1 shows a Sphinx acknowledgement structure. The
acknowledgement contains:

• Sequence # and source of the message, to uniquely identify each message.
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Sequence #
Key of Source of Message

Receive Time
MD5 hash

Key of Signing Node
RSA Signature

Table 3.1: Acknowledgement Structure.

• A time-stamp containing the receive time, to detect forwardlatency.

• A hash of the content, to prove the message’s payload is not modified.

• The identity key of the acknowledging node, to show who is thenext respon-
sible node and to detect misrouting.

• The RSA signature, to ensure non-repudiation.

This process is shown in Figure 3.1

Figure 3.1: The operation of the Sphinx algorithm: A messageis forwarded from
source to destination. Every node in the path acknowledges the message to its
predecessor in the path.

With this signed acknowledgement a node can prove it forwarded the message
correctly and on time to the node that acknowledged the message, to whoever is
interested in questioning the node’s innocence. In other words, this signed ac-
knowledgement is its “proof of innocence” for this particular message. Therefore
a node must check if all these 5 properties of the signed acknowledgement are cor-
rect. In short, the only thing a node should worry about is getting this “proof of
innocence” for every message it forwarded.
If the receiving node does not acknowledge a message, the node where the mes-
sage is currently residing has the responsibility to send the message to a different
neighbour. The only concern a node should have is to receive asigned acknowl-
edgement that relieves him from the burden of being responsible for that message.
Therefore we presume that a node has alternative nodes in itsrouting table to for-
ward a message to, which is the case in every DHT.
A few conditions must be met for the Sphinx algorithm to work:
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1. A node must not have the ability to create its own identities. If a node can
create identities, it can reenter the network with a different id. Since a node
needs a certificate issued by the CA this is not possible as long as the CA
can be trusted.

2. When a node encounters a node that does not return correct acknowledge-
ments, it is important that it stops forwarding messages to that particular
node. It should therefore remove the node from its routing tables.

3. Even in a corporate environment, the network is not 100% reliable. There-
fore, when a node seems non-cooperative, it does not necessarily mean that
a node is malicious, even though it is likely. Hence, we need an algorithm to
distinguish malicious behaviour from network malfunctioning.

3.2.1 Malicious Behaviour

When a malicious node resides in a Sphinx DHT and it wants to doharm, its
options are now limited, because malicious behaviour will be detected. It has a
number of strategies to disrupt the functioning of the DHT:

1. Not taking responsibility for a message by not returning asigned acknowl-
edgement. With this strategy however, the malicious node will be quickly
detected and removed from its neighbours routing tables.

2. Another strategy is to accept its responsibility by returning an acknowledge-
ment but after that dropping or delaying the message. This strategy however,
is even worse, because now the node can be blamed but it cannotprove its
innocence.

3. A third strategy is claiming that it is the root node. Also referred to as iden-
tity theft. For this strategy we could use the solution proposed by Ganesh
et al. [3], i.e., using “proof managers” and proof of existence. For more
information we refer the reader to the article.

3.3 Detecting Malicious Nodes

In the Sphinx algorithm it is always the source node of a message that detects
malicious behaviour and locates the malicious node. There are two reasons to start
locating a malicious node:

1. First, when a source node does not receive an expected reply from the desti-
nation within a certain period of time or at all, it can suspect that somewhere
in the path from the source to the destination a malicious node resides. How-
ever, waiting for a reply from the destination requires thateither the sent
message causes a reply (like a read operation) or the algorithm always ac-
knowledges every message to the source node.
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2. The second method, is to randomly start the locating algorithm for everyL-th
message, whereL is a system wide parameter. The advantage of this method
of random checks is that not only malicious behaviour can be detected and
located, but path statistics can be obtained as well. These statistics can be
used to monitor the performance of the network in general. For instance, to
calculate expected values for latency times.

When the source node suspects malicious behaviour for a certain message some-
where in the message path, using one of the two methods described, it starts query-
ing the first node in the path the message was sent to, since it is the only node
in the message path it knows about. This first node responds bypresenting the
signed acknowledgement it received from its successor, to the source. This signed
acknowledgement contains the identity of the successor, the MD5 hash of the mes-
sage and the receive time. By comparing the MD5 hash to the hash of the original
message, the source can detect if the message’s payload has not been modified.

Figure 3.2: A message is dropped by node 3. The source node queries for signed
acknowledgements. Node 3 cannot present a signed acknowledgement and is con-
sidered malicious.

By comparing the receive time of the successor of the first node in the path to
the receive time in the acknowledgement received by the source node, the source
node can calculate the forward time. If the forward time or the MD5 hash do not
comply with the expectations, the first node in the path may bemalicious. Or at
least it displayed malicious-like behaviour. If maliciousbehaviour is not detected,
the source node queries the next node in the path until the source reaches a node
that cannot present a signed acknowledgement which proves its innocence. Now
the node causing the anomaly, is located.
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3.4 Reputation Management

When malicious behaviour is detected, we need a way to store this information to
calculate the reputation of a particular node. The storage of this information needs
to be done in a scalable way. The reputationr of a node is represented as a number
between 0 and 1, and is equal to the probability that a non-malicious node would
display the behaviour the particular node displays. Hence,whenr is close to 0, a
node is likely to be malicious, and whenr is close to 1, a node is unlikely to be
malicious.

3.4.1 Reputation Managers

To store reputations in a scalable way, every node in the Sphinx DHT has 3 other
nodes that keep track of its reputation. We call these nodes “reputation managers”.
Hence, reputation managers are nodes that store and calculate the reputations of
other nodes in the network. Sphinx uses three reputation managers for each node
to prevent a malicious reputation manager from propagatingwrong reputations.
When a reputation for a node needs to be retrieved, the three reputation managers
are queried, and the two reputations closest to each other are averaged. To deter-
mine which three nodes in the network are the reputation managers for a certain
noden, the key of noden is hashed three times by using SHA-1, each time concate-
nated with a different salt: 0, 1 or 2. The reputation managers are the root nodes
for these three keys. Hence, each node has three different reputation managers,
which are uniformly distributed over the DHT. Therefore, onaverage, every node
is a reputation manager for three other nodes in the network.This also implies that
the reputation storage and calculation load is uniformly distributed over the DHT,
so, this mechanism is scalable.

3.4.2 The Blame Process

Figure 3.3 shows how a Sphinx node acts when malicious behaviour is detected:
When the source noden1 detects malicious behaviour somewhere in the message
path, it starts to locate the node that caused this anomaly asdescribed in Section
3.3. When noden2 is identified as the node that caused the malicious behaviour,
noden1 sends a BLAME message to the three reputation managers of node n2. If
a latency violation is detected, the BLAME message containstwo signed acknowl-
edgements to prove the latency deviation: The acknowledgement received by the
predecessor node of the blamed node, in this case, noden1, and the acknowl-
edgement received by the blamed node. In the case that noden2 did not forward
message 1, and therefore can not provide a signed acknowledgement from node
n3, only one acknowledgement is sent along with the BLAME message. However,
now the reputation managers should also request a signed acknowledgement from
the accused node to verify this claim.
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Figure 3.3: The blaming of malicious noden2 by noden1. Blame messages are
sent to the reputation managers of noden2.

The reputation managers now store the BLAME message and calculate the new
reputation of the blamed node.

3.4.3 The Reputation Calculation

The reputation calculation consists of three parts:

• Verification of the accusation

• Querying for messages sent by blamed nodes

• Calculation of the new reputation

Verification

When a reputation manager receives a BLAME message for a certain node, it first
checks if it did not receive a BLAME message for the same node within the last
T seconds, whereT is the system wide time out parameter. Because a node needs
T seconds to find out whether a message is not acknowledged on time, it could
have forwarded more messages to the same non-responsive node in the mean time.
Hence, if the reputation manager did receive an accusation the lastT seconds for
this node, it drops the current accusation.
Second, the reputation manager checks whether the accusation is genuine. If the
node is accused of latency violation, the accusation shouldbe accompanied by
two signed acknowledgements. If the node is accused of dropping messages, the
accusation should be accompanied by one signed acknowledgement. To verify
that the accused node indeed dropped the message, the reputation manager should
request the second signed acknowledgement from the accusednode. If the accused
node cannot provide the second signed acknowledgement (itsproof of innocence),
then the accusation is valid.
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Querying

To calculate the probability of a node being malicious, one should know the num-
ber of messages forwarded by the node, besides the number of latency violations.
However, the number of messagesn forwarded by the blamed node, is unknown
by the reputation manager. Hence, the blamed node needs to bequeried for this
number. Taken into account that a malicious node has every reason to exaggerate
this number, we need a non-forgeable way to retrieve this number.
The easiest way to query this number is by requesting the signed acknowledge-
ments for every message the node forwarded. However, this induces a large net-
work traffic overhead whenn is high. E.g, if a node forwarded104 messages, this
means it should transmit104 · 134 = 1.34 MB in the worst case, where every
single message is acknowledged separately. And 284 KB in thebest case, where
all messages sent are acknowledged in groups. See Section 3.5.5 for details. All
acknowledgements also need to be sent to each of the three reputation managers.
This is unfeasible, and therefore, we need to use a random check method.
For a random check method however, we need claims we actuallycan verify.
Hence, a blamed node should give all the identities of the messages it forwarded.
A message can be uniquely identified by its source and its sequence number, re-
spectively 20 and 4 bytes. After receiving the message identifiers, the reputation
managers can query multiple signed acknowledgements for randomly chosen mes-
sages. In case104 messages have been forwarded, the total data to transmit now
equals104 · 24 = 240KB, plus the transmitted data needed for the requests and
the returned acknowledgements. This is a major improvement, but still a lot of
overhead. To further reduce the overhead, we use the following method we called
“divide and expose’. This method directs the blamed node to acertain timeframe
where the node finally should be able to present a valid signedacknowledgement.

1. Reputation managerr queries blamed nodeb for number of messages for-
wardedn, since the last blame message received for nodeb.

2. Nodeb responds with a numbern and a timestampt that divides the for-
warded messages in two equal parts.

3. Reputation managerr randomly selects one half to research further. It now
requests nodeb to return a timestamp that divides the messages in the se-
lected half into two.

4. The reputation manager repeats step 2 and 3⌈log2n⌉ times in total.

5. Finally, when one message is singled out, the accompanying acknowledge-
ment is requested. If nodeb cannot present a signed acknowledgement for a
message sent in the last selected time frame, it is clear nodeb is malicious.

This method works, because the blamed node does not know which half will be
selected by the reputation manager on each iteration. Hence, it cannot direct the
querying to a given outcome.
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Figure 3.4: An example of a non-parallelised “divide and expose” query in which
the blamed node sent 64 messages in period [0,100].

The probability of catching an exaggerating node is1 − (n/n′), wheren′ is the
exaggerated value andn the real value. To increase the probability that a malicious
node gets caught when exaggerating the number of messages ithas forwarded, we
choose to use multiple “divide and expose” sessions in parallel.
The overhead generated by this method is calculated as follows: A timestamp is
an 8 byte floating point number, and to indicate which half a reputation manager
wants to research further 1 bit is enough. Hence the total transmission overhead
generated is⌈log2n⌉ · (8p+⌈p/8⌉), wherep is the number of parallel sessions. For
instance, whenn = 104 andp = 8, the total overhead generated is as low as 910
bytes, which is more than 240 times less than the normal “random check” method.
Figure 3.4 shows an example of non-parallelised “divide andexpose” query.
We considered the fact that a malicious node can always increasen by sending
garbage messages to its neighbours, and therefore receiving signed acknowledge-
ments. However, checking if sent messages are useful or not should be handled in
the application layer, so, we will not elaborate on that.

Calculation

After verification of the BLAME message, the reputation manager stores the BLAME
message accompanied by the signed acknowledgements, and updates the current
reputation of the accused node. As mentioned above, the reputation equals the
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Number of
messages sent

Number of
violations allowed

100 4
1000 10
10000 30
100000 156
1000000 1169

Table 3.2: Number of latency violations allowed for different values of the number
of messages sent before reaching the reputation threshold.

probability that a node displays its current behaviour without being malicious.
Whenever this probability drops below a certain threshold where it is very unlikely
that a non-malicious node would display this behaviour, thenode is considered
malicious. The Sphinx algorithm uses10−7 as this threshold. Hence, that is the
probability a node gets the false reputation of being malicious. Once a node is con-
sidered malicious there is no way to increase its reputation, and therefore, it stays
malicious.
The probability that a node displays the behaviour it does, is calculated as follows.
The Sphinx algorithm considers the maximum allowed latencyas the 99.9th per-
centile of the latencies measured for the current network. Hence, the probability
of latency violation without maliciousness isp = 10−3. The probabilityrn that a
latency violation will happen at leastk times after sendingn messages is given by:

rn =

n
∑

i=k

(

n

i

)

pi(1 − p)n−i (3.1)

To be sensitive, the period of time that is taken into accountshould be small. How-
ever, a small period of time allows a malicious node to continuously cause the
maximum number of latency violations it can afford (reputation-wise). Therefore,
the Sphinx algorithm calculates the probabilityrn of Eq. 3.1 over different peri-
ods of time: respectively, for the last102, 103 , 104, 105, and106 messages sent.
A reputation manager can do this because it knows the number of messages sent
between successive BLAME message it received for a node. Thereputation will
equal the lowest of the five values ofrn calculated above.
Table 3.2 shows how many latency violations are allowed for different values ofn
before the threshold of10−7 is reached.

3.5 Issues

In this section we describe the issues that are important forthe correct functioning
of the Sphinx algorithm. In Section 3.5.1 the problem of colluding nodes in dis-
cussed. In Section 3.5.2 we discuss the timing issues causedby the forward speed
enforcement functionality. In Section 3.5.3 we present twomethods to overcome
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the problem of signing being compute intensive. Section 3.5.4 we describes how
Sphinx handles smearing of nodes. In Section 3.5.5 we give a detailed description
of the overhead generated by the Sphinx algorithm.

3.5.1 Colluding Nodes

When an intruder manages to take over multiple nodes, he could set up these nodes
to disrupt the functioning of the DHT by colluding.
Traditional colluding attacks, like the eclipse attack [11], are not possible because
the CA uniformly distributed identities between the nodes.The only attack feasible
for colluding nodes as shown in Figure 3.5 is presenting genuine signed acknowl-
edgements to each other, i.e., one malicious node protects another malicious node
by taking over its responsibility.
However, by taking over the responsibility from another node, the last node in the
colluding group will be blamed for the malicious behaviour.Hence, a colluding
group of nodes can only disturb the operation of the structured overlay for as long
as not all colluding nodes are detected and located. If the group consists of a large
number of malicious nodes taking over responsibility from each other, or nodes
possess a large number of identities, that makes sense. However, because identities
have to be created by a certificate authority there are not an unlimited number of
identities available. An intruder can only join the DHT withthe identities of nodes
that have been taken over.
Of course, a researching node must detect loops in the messsage path to prevent
malicious nodes from delaying a message by sending eachother signed acknowl-
edgements.

Figure 3.5: Node 4 backs node 3 by providing signed ack. Node 4can only do so
by sacrificing himself.

Besides the problem for the colluding group that always one node will be blamed,

23



each malicious node in the group should also take into account that it can only
forward messages to a node closer to the destination key. Hence, on average only
half of the colluding group can be used, because the identities of the nodes are
uniformly distributed.

3.5.2 Timing

Because Sphinx does not only require nodes to take their responsibility by for-
warding messages, but also by doing so within a certain period of time, we add a
timestamp to the signed acknowledgement. For this purpose areceiving node adds
the time it received the message from its predecessor to the acknowledgement. The
forwarding node checks if this time-stamp relieves itself from the burden of bear-
ing the responsibility for the current message, i.e., if a node can prove it forwarded
the message within the defined maximum period of time. Hence,if a received
acknowledgement does not relieve the forwarder it must makesure it sends the
message to an alternative node.
To be able to implement “forward speed enforcement”, there must be global time
synchronisation. The Network Time Protocol (NTP) [6] is an excellent way to
achieve global time synchronisation. NTP can reach an accuracy of several mil-
liseconds [6]. Hence, a node can substantiate its forwarding speed with that given
accuracy.
A few problems arise when using “forward speed enforcement”. First, if a node
forwards a message to a malicious node who does not acknowledge on time or at
all, it must re-forward the message to an alternative node. However, the time it
waited for the first acknowledgement is lost and the node may now have violated
the enforced forwarding latency itself. Therefore, we needsome sort of reputation
system, that take these cases into account. Section 3.4 described how Sphinx im-
plements a reputation system for cases like these. In short,forwarding delays are
accepted if it does not happen too often. And, if a node causesmultiple forwarding
delays within a short period of time, only for the first delay the node will be blamed

3.5.3 Signing

One of the practical problems we encounter with the Sphinx algorithm is that sign-
ing messages is compute intensive, and therefore we may not be able to reach a
high throughput. The Sphinx algorithm implements a number of solutions to de-
crease the needed computation, and therefore increasing the throughput:

1. Signing groups of messages. Instead of acknowledging every single message
received from a preceding node in a message path, the Sphinx algorithm
acknowledges multiple messages at the same time. EveryN messages or
everyT seconds, all messages received from the same node and with the
same source are acknowledged at once, whereN andT are system wide
parameters. By acknowledging groups of messages at the sametime less
signatures have to be created.
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We can increase the efficiency by grouping these messages by their source.
When the created signed acknowledgement is requested by thesource node
for detection purposes as described in Section 3.3, it immediately has a com-
plete group of relevant acknowledgements. The same principle applies when
a signed acknowledgement is used to acknowledge the reception of mes-
sages to the source by the destination. And last, as described in the next
item, when acknowledgements are forwarded it is very likelythat messages
received with the same source, traversed the same path. Hence, it decreases
the total number of acknowledgements that needs to be forwarded.

2. Forwarding signed acknowledgementsas shown in Figure 3.6. Because mes-
sages are not acknowledged immediately, but only everyT seconds it is very
likely that at the moment a node wants to create an acknowledgement, it
already received a signed acknowledgement from its successor node in the
path. When this indeed happened, the node can forward this acknowledge-
ment instead of creating a new one. For the receiving node, itdoes not matter
if it can present a signed acknowledgement from its direct successor or from
a node further in the path, because with this forwarded acknowledgement it
can also prove it forwarded the message. With this method thetotal signing
of messages can be reduced, and therefore the maximum throughput can be
increased.

Figure 3.6: Signed acknowledgements are created by nodes 3 and 5, and forwarded
by nodes 2 and 4.

Signing groups of messages has the disadvantage that a node receives its “proof
of innocence” only afterT seconds orN messages. Hence, malicious nodes can
corruptN messages before being detected. However, the period of timein which
detection and location of a malicious node is realised may belarger, but the amount
of computation needed can be drastically reduced. And it definitely complies with
the design goal of detecting malicious nodes in a reasonableamount of time and
with a reasonable amount of overhead.
When a node receives a forwarded signed acknowledgement, i.e., the acknowledge-
ment is not signed by the host it sent the message to, but by another host further
down the path, it possesses an acknowledgement that includes receive times of
the signing node, and not the receive times of its successor node in the message
path. Therefore, the forwarding latency the node can prove will logically increase,
because the message traversed multiple hops within that time period.
For example, when node 1 in Figure 3.6 wants to detect the forwarding latency
of node 3, it compares the timestamps in the signed acknowledgements received
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by node 2 and node 3. Node 3 however, possesses the acknowledgement node 5
created. Hence, the difference between the timestamps indicates the latency time
for two hops.

Therefore, when a node forwards a signed acknowledgement itshould take into
account that the receiving node will not violate the forwarding latency maximum.
However, this can only be done when a node is aware of the receiving time of its
predecessor node. Therefore, the Sphinx algorithm adds a timestamp to each mes-
sage sent, that indicates when the sending node received themessage itself. Now,
a node checks if forwarding a signed acknowledgement will cause a latency viola-
tion for its predecessor node. If it would, then the node signs an acknowledgement
itself, instead of forwarding the signed acknowledgement.This policy will not in-
fluence the forwarding of signed acknowledgements most of the time, because in
the Sphinx algorithm, we set the maximum latency to the 99.9th percentile of the
measured latencies of the network.

3.5.4 Smearing of nodes

In the Sphinx network there is only one way for a malicious node tosmeara non-
malicious node, i.e, to make a non-malicious node look malicious, or more pre-
cisely, to make sure a non-malicious node will be saddled with an invalid signed
acknowledgement. Because, when a malicious node can inducesuch a situation,
the non-malicious node cannot prove its innocence.

When a malicious node does not return a (valid) signed acknowledgement to a
non-malicious node, the non-malicious should resend the message to a different
node. However, now the non-malicious node will possess a signed acknowledge-
ment that indicates a latency violation. This situation canoccur, because signed
acknowledgements are not returned immediately.

By the time the non-malicious node detects the maliciousness of its neighbour, it
is likely that it already sent more messages to exactly that same neighbour. Hence,
a non-malicious node may not be able to present correct acknowledgements for
a period of timeT , whereT is the system wide time out parameter. Therefore,
when a node cannot present a correctly timestamped signed acknowledgement for
messageM , it cannot be blamed for the other messages forwarded to the same
node within time periodT after the node forwardedM . But only if it can present a
signed acknowledgement at all. So, when a node does not receive a correct signed
acknowledgement, it must immediately resend all messages sent to a malicious
host to an alternative host.

The downside of this smearing prevention is that it gives themalicious nodes the
ability to delay messages in a period ofT for a maximum ofT seconds. To still
satisfy our design properties and to prevent malicious nodes from continuously
delaying traffic, the Sphinx algorithm implements a reputation management policy,
as described in Section 3.4

26



3.5.5 Overhead and Memory Usage

The overhead of the Sphinx algorithm in addition to the Chimera algorithm de-
pends on several system wide parameters, such as the time andnumber of mes-
sagesN after which signed acknowledgements are sent, and the average size of
the messages sent.
The Sphinx overhead consists of two parts. First, the overhead generated because
every node needs to send an acknowledgement to its predecessor node. Second,
the overhead generated for the detection of malicious behaviour. There are two
detection methods: either the destination node acknowledges the source node or the
source node randomly starts the location procedure. Both methods are described
in Section 3.3.
For the first part, we need to know the exact structure of the signed acknowledge-
ment, to determine the generated overhead. Table 3.3 shows the structure of a
signed acknowledgement. The bottom four fields only appear once in a signed ac-
knowledgements. The greyed row indicates a record that willbe included in the
acknowledgement for each message the signed acknowledgement acknowledges.
Hence the overhead expressed as a percentage of the message sizeS can be calcu-
lated as

(106 + 28N)/N

S
.

...
Sequence # - 4 byte Receive Time - 8 byte MD5 hash - 16 byte

Number of messages acknowledged (2 bytes)
Key of Source of Message (20 byte)

Key of Signing Node (20 byte)
512 bit RSA Signature of Data (64 byte)

Table 3.3: Acknowledge Message Structure.

For the second part, the overhead generated by monitoring the network for mali-
cious nodes with the different detection methods as is as follows:

• When the destination acknowledges every message to the source node, the
destination sends the same acknowledgement it sent to its predecessor node,
to the source node. Hence, here the overhead also depends on the number of
messages covered by one acknowledgement.

The overhead also depends on the path lengthP . Hence, the extra overhead
generated by this method expressed in bytes is

(106 + 28N)/N

P
.

• Using random checks: Using this method, randomly everyL-th message is
checked for correct delivery. Every node in the path is queried for a signed
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acknowledgement. The requests is a 4 bytes message sequencenumber, and
the reply is a signed acknowledgement message as in Table 3.3. The over-
head expressed in bytes per message sent is

4 + (106 + 28)

L
=

138

L
.
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Figure 3.7: Overhead for different detection methods (based on a message size of
1000 bytes).

Figure 3.7 shows the total overhead by using one of the methods, with an average
message sizeS of 1000 byte and a variable numberN of messages covered in an
acknowledgement.
A Sphinx node has to store all the signed acknowledgements for the messages it
forwarded since the last query it received from its reputation managers. Hence, on
average it has to store 1000 acknowledgements. It is very unlikely it ever has to
store more than 15000 acknowledgements, because the probability that it does not
get blamed after sending 15000 messages equals10−7.

3.6 Implementation Details

This section describes some of the implementation details of Sphinx.
A sent message contains the following data:

1. The Message Type: An integer containing the type of the message, clients
using the chimera library can register callback functions for each message
type.

2. The Destination Key: A destination key to route the message to.
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Payload
Receive Time - 8 bytes

Secure Flag - 1 byte
Sequence Number - 4 bytes

Source Key - 20 bytes
Destination Key - 20 bytes
Size of Payload - 4 bytes
Message Type - 2 bytes

Table 3.4: The Sphinx message structure. The greyed fields are added for the
Sphinx protocol.

3. The Source Key: This field stores the key of the source node of the messages.
By storing this information we can keep track of the path information, e.g.,
when a source node requests a signed acknowledgement from a certain host,
it queries the node by sending the node its key and sequence number. The
node queried has stored this signed acknowledgement in a priority queue
under the source key and sequence number.

4. The Sequence Number: Every node increases this sequence number with
every message sent.

5. A boolean indicating the message is a secure message: Depending on this
boolean, messages are sent secure (following the Sphinx protocol) or unse-
cure (following the Chimera protocol).

6. The receive time: When a message gets forwarded, this fieldcontains the
receive time of the message by the node that forwarded the message.

For every message sent an entry is created in a special sign inqueue. This entry
contains the time the message was sent, so that action can be undertaken when a
signed acknowledgement is not received on time. A field indicating if the message
is acknowledged already. The host the message was sent to, when a message is not
acknowledged correctly this host can be removed from the routing tables. A copy
of the message sent, to send the message to another host when no acknowledgement
is received. EveryD seconds a special thread checks all entries in the sign in queue
for an occurred time out, whereD is a system wide configuration parameter. When
a time out occurred, the thread is responsible for resendingthe message.
For every message received an entry is created and stored in asign out queue. This
entry contains the data of the message and a timestamp of whenthe message was
received. EveryT seconds a special signing thread signs all messages in this queue,
whereT is a global system parameter. Before signing a message the node’s sign in
queue is first checked for acknowledgements for this same message to implement
acknowledgement forwarding as described in Section 3.5.3.
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Because the signing thread only signs messages everyT seconds it is possible to
sign more messages at the same time, and in that way increasing the throughput
speed and decreasing the network overhead. The drawback of this method is the
higherT , the later time outs are detected. The Sphinx algorithm configuresT as 1
second.

30



Chapter 4

Experiments and Results

In this chapter we present the results of our experiments fortesting the Sphinx algo-
rithm. In Section 4.1 we describe the experiments we performand the environment
in which they are performed. In Section 4.2 we measure the latency and the max-
imum time difference between nodes in our testbed. In Section 4.3 we measure
the maximum bandwidth in terms of bytes per seconds that can be processed by
a node. In Section 4.4 we test the correct operation of a Sphinx DHT under nor-
mal conditions. In Section 4.5 we test the detection and locating properties of the
Sphinx DHT when malicious behaviour enters the DHT.

4.1 Experimental Setup

The testbed we use as an instance of a corporate WAN is the third-generation Dis-
tributed ASCI Supercomputer (DAS-3), which is a wide-area computer system in
the Netherlands that is used for research on parallel, distributed, and grid com-
puting. It consists of five clusters of in total 272 dual-processor AMD Opteron
compute nodes. The distribution of the nodes over the clusters and their speed is
given in Table 4.1. As can be seen, the DAS-3 has a relatively minor level of pro-
cessor speed heterogeneity. The clusters are connected by both 10 Gb/s Ethernet
and 10 Gb/s Myri-10G links for wide-area and for local-area communications, ex-
cept for the cluster in Delft, which has only 1 Gb/s Ethernet links. On each of the
DAS-3 clusters, the Sun Grid Engine (SGE) is used as the localresource manager.
SGE has been configured to run applications on the nodes in an exclusive fashion,
i.e., in space-shared mode. As the storage facility, NFS is available on each of the
clusters.
In order to test the Sphinx algorithm, we will conduct the following four experi-
ments on our testbed:

1. To determine the maximum allowed latency needed for the detection of la-
tency violations, we measure the NTP properties and latencyproperties of
the DAS-3 network.
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Table 4.1: Properties of the DAS-3 clusters.

Cluster Location Nodes Speed Interconnect

Vrije University (VU) 85 2.4 GHz Myri-10G & GbE
U. of Amsterdam (UoA) 41 2.2 GHz Myri-10G & GbE
Delft University (DU) 68 2.4 GHz GbE
MultimediaN (MN) 46 2.4 GHz Myri-10G & GbE

Leiden University (LU) 32 2.6 GHz Myri-10G & GbE

2. Because the Sphinx algorithm relies on the signing and hashing of messages,
which is compute intensive and therefore will influence the bandwidth of
a node, we will perform several tests to measure the speed of signing and
hashing of messages. We will test the signing and hashing speed of a DAS-3
node, and deduce the maximum bandwidth of a node out of these numbers.

3. To test the Sphinx algorithm under normal conditions where no malicious
nodes are in the network, we will set up a Sphinx DHT network consisting
of non-malicious nodes, and randomly send messages throughthe network
to test if no node gets the reputation of being malicious.

4. We will test the sensitivity of the Sphinx algorithm by testing how fast a
node will be detected and located when it starts to drop, delay, or change
the payload of messages. We will use the results of the test where malicious
nodes do not return acknowledgements also to prove that the crashing of
nodes will not ruin the reputation of its neighbours, because this is essentially
the same: crashing nodes also stop returning acknowledgements. In both
cases, we need guarantees that the malicious nodes/crashing nodes will not
influence the reputation of their neighbours , i.e., no othernodes must get the
reputation of being malicious.

4.2 Time Properties of the DAS-3

In this section we derive the time properties of the DAS-3 testbed by measuring the
local time differences between nodes, and the round-trip-times (RTT) between the
nodes. We need these values to determine the maximum allowedforward latency
between nodes.
To get a grip on the expected latency times between nodes, we performed several
measurements. We started by measuring the RTTs between the clusters, which
is shown in Figure 4.1. Because the network links between theclusters are het-
erogeneous, we must calibrate the maximum allowed latency on the slowest link,
which is the connection between the Delft University cluster and Leiden University
cluster.
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Figure 4.1: Average RTTs in ms between DAS-3 clusters.

Between these two clusters we send 180,000 ICMP-echo packets to measure the
RTTs. Figure 4.2(a) shows the cumulative distribution of these RTTs. We also
measured the RTTs between the two clusters using an application sending UDP
messages. The 99.9th percentile for the ICMP measured RTTs is 3.1 ms, and for
the UDP measured RTTs is 5.7 ms. It can be seen that processingdata at the
application layer influences the latency times, therefore we expect the processing
time to be the bottleneck in our testbed.
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Figure 4.2: CDF of RTTs between two nodes in the DU and LU cluster for (a)
ICMP-echo messages, and (b) application layer messages

Every node in the DAS-3 testbed synchronises its time via an NTP server. By
using NTP, the time difference between any two nodes in the whole system should
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not be more than a few milliseconds [6]. We tested this claim by considering the
time differences between one fixed node and 24 random nodes ina DAS-3 cluster.
The experiment consists of one node querying the other 24 nodes every second for
their local times, by sending them an UDP packet. The nodes return their local
times in an UDP packet. By subtracting half the RTT for the messages, from their
local times, we get the time differences between the fixed node and the queried
node. By plotting these time differences in a graph, we can see the maximum time
differences between any two nodes over time..
Figure 4.3 shows the time difference for each of the 24 nodes in relation to the
querying node. We can see that the time difference between any two nodes varies
between 6 and 2 ms.
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Figure 4.3: Graph shows the time difference between DAS-3 nodes. Every line
shows the time difference between one of the 24 random nodes and fixed querying
node. The greyed area shows the time difference between the two nodes furthest
apart at any time.

Based on these measurements, we set the maximum allowed latency for checking
maliciousness to 13 ms, that is, 3 ms forwarding time, 6 ms global time difference
and 4 ms processing time.

4.3 Signing and Hashing Speed

The maximum bandwidth of a node depends on the signing and hashing speed,
because for every single message forwarded, a node creates ahash. Every ac-
knowledgement sent needs a signature and every acknowledgement received needs
to be verified. Hence, the maximum bandwidth of node is definedas the number
of messages that can be hashed, signed and verified per second.
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We measured the speed of several hashing and signing algorithms performed by a
DAS-3 node. The results are shown in Table 4.2. As the hash method, the Sphinx
algorithm uses the MD5 algorithm as a good trade-off betweensecurity and speed:
even though MD5 is proven to be unsecure [15], a hash cannot beforged within the
set time boundaries of milliseconds. For the signing algorithm, we choose to use
the RSA algorithm, because verification is much faster usingthe RSA algorithm
than using the DSA algorithm, and verification of signaturesis more often used
than creating signatures, because every node in a message path always needs to
verify a received acknowledgement.
As shown in Table 4.2(b), signing is very compute intensive.For instance, us-
ing the RSA 512 algorithm with an average packet size of 512 bytes on a DAS-3
node, the bandwidth is3800 · 512 ≈ 1900KB. Because in the Sphinx algorithm an
acknowledgement can cover multiple messages, the bandwidth can be increased.
However, this bandwidth cannot be increased linearly, because every single mes-
sage still needs to be hashed to prove the correct reception of the message to the
previous node in the message path.

(a) The bandwidth of different hash algorithms (KB/s)

Packet Size (bytes)
Algorithm 16 64 256 1024 8192

MD4 23973 81716 229079 416150 550865
MD5 18498 60908 158363 261065 324501

SHA-1 21248 59442 126422 174665 198391

(b) Sign speed

Algorithm # Sign/s # Verify/s

RSA-512 3800.0 46996.5
RSA-1024 1019.5 19228.8
RSA-2048 183.3 6514.3
RSA-4096 29.2 1933.7
DSA-512 6012.8 5245.3
DSA-1024 2243.9 1884.9
DSA-2048 714.8 588.8

Table 4.2: Speed of hashing (a) and signing (b) algorithms performed on a 2.6 Ghz
DAS-3 node using the OpenSSL implementation.

Figure 4.4 shows the theoretical bandwidth a node can reach using the MD5 hash
method and the RSA signing algorithm with different messagesizes, as the number
of messages covered by one acknowledgement increases .
The forwarding of signed acknowledgements (Section 3.2) does not increase the
maximum throughput in a message path since there is always atleast one node
that needs to sign the messages and therefore is the bottleneck. However, it does
increase the maximum throughput in a node, because the totalnumber of signatures
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calculated will be reduced.
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Figure 4.4: The theoretical maximum throughput for a node with different message
sizes as a function of the number of messages covered per acknowledgement.

4.4 No Malicious Behaviour

In this section we will test whether normal functioning of the Sphinx DHT will
result in nodes getting the reputation of being malicious, which should not occur.
Based on our measurements performed in Section 4.2 we set themaximum allowed
forwarding time to 13 ms. We set up a DHT network with 28 CPUs onevery clus-
ter. On every CPU we run 8 nodes. Hence, in total we create a DHTwith 1120
nodes. We run the DHT for 3600 seconds. After a startup periodof 300 seconds,
each node starts sending a secure 100-byte message to a random destination, every
second. Each node measures the number of latency violationsfor the messages
it sent or forwarded. We record the number of messages sent and forwarded, the
number of BLAME messages sent, the number of latency violations, and the rep-
utation of every node. To detect malicious behaviour, we usethe reply-to-source
method, and not the random-check method. The reply-to-source method is more
sensitive in detecting malicious behaviour and will sufficein proving the correct
functioning of the algorithm. In the test we use only one reputation manager per
node and the querying of the messages sent is not done with the“divide and ex-
pose” method, but a node will reliably provide the correct number.
It can be seen that in Table 4.3 and Figure 4.5 that 1833 latency violations occurred
on a total of9.5·106 messages sent and the lowest reputation did not get below 0.22.
Hence, the minimum threshold of10−7 is not reached and therefore no node got
a false reputation of being malicious. The number of latencyviolations is higher
than the number of BLAME messages sent, because every node records latency
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violations. Also the the source nodes of messages, and a source node will never
blame itself. We contribute the fact that the number of latency violations is less
than a fraction of10−3 to the uncertainty of the global time differences, processing
time, and network heterogeneity.

One hour Sphinx DHT run - 1120 nodes
Messages sent 3540562
Messages forwarded intra-cluster 1312188
Messages forwarded inter-cluster 4665973
Latency Violations 1833
BLAME messages sent 754
Lowest reputation in DHT 0.022

Table 4.3: The number of messages sent, the number of latencyviolations, and the
number of BLAME messages sent in an one-hour run of a Sphinx DHT with 1120
nodes.

4.5 Malicious Behaviour

In this section we present the results of the experiments conducted with malicious
nodes.
We tested four different kinds of malicious behaviour:

1. Dropping messages

2. Delaying the forwarding of messages

3. Not acknowledging messages

4. Changing the payload of messages

4.5.1 Dropping messages

We will test how fast a malicious node will be detected and located when it starts
dropping messages, but still returns signed acknowledgements, i.e., it accepts the
responsibility for a message.
We set up a Sphinx DHT running on 4 DAS-3 clusters: VU, LU, UoA and DU. In
every cluster we use 30 CPU, and on every CPU we run 8 Sphinx nodes. Hence,
in total we use 960 nodes. After a startup period of 200 seconds we let every node
send a 100-byte message to a random destination. At a predefined time, we let
one random node become malicious in the network. From the moment it becomes
malicious, the node stops forwarding messages, but still sends signed acknowl-
edgements. The malicious node is not sophisticated; it drops every message it
receives. When the reputation of a node drops below10−7, we consider a node
malicious.
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Figure 4.5: Histogram of the number of blame messages and latency violations per
minute, and a graph of the reputation of the node with the worst reputation in a
normal run of Sphinx with 1120 nodes and a maximum allowed latency of 13ms.

As described in Section 3.4, a node cannot drop more than 4 messages of the last
100 messages it forwarded, before its reputation drops below the threshold of10−7.
It can be seen in Figure 4.6 that as soon as the malicious node start to drop mes-
sages, BLAME messages are being sent. Figure 4.6 also shows that the reputation
of the malicious node indeed drops below the threshold in 5 steps. The node is
now considered malicious. It takes 11 seconds before the malicious node is de-
tected as malicious. In this period of time the malicious node was able to drop 7
messages. The number of latency violations do not increase because the malicious
node correctly acknowledges every message.
On average it takes between 4 and 5 seconds for a node to be blamed after drop-
ping a message. This period of time consists of the 2 seconds reply time-out con-
figuration parameter, and the 2 seconds time period within a request for a signed
acknowledgement has to be answered. These time-out periodsare very accommo-
dating and could be shortened to improve detection times.

4.5.2 Delaying messages

This test shows how fast a malicious node will be detected andlocated after it starts
delaying messages. Again, we set up a Sphinx DHT running on 4 DAS-3 clusters:
VU, LU, UoA and DU. In every cluster we use 30 CPUs, and on everyCPU we
run 8 Sphinx nodes for a total of 960 nodes. After a startup period of 200 seconds,
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Figure 4.6: Histogram of the number of blame messages and latency violations
per 15 seconds, a graph of the reputation of the malicious node plus the number
of dropped messages in a run of Sphinx with 960 nodes and a maximum allowed
latency of 13ms. The random node becomes malicious at 403 s, drops its first
message at 412 s, and has a reputation of being malicious at 423 s.

we let every node send a message each second to a random destination. We let one
random node become malicious in the network and let it delay every message, it
should forward, for 13ms.

Figure 4.7 shows that within 7 seconds the malicious node is detected, located and
marked as being malicious. In this period of time, the malicious node was able to
delay 13 messages. It can be seen that blame messages startedto be sent when the
malicious node starts to delay messages. The latency violations do not increase
because the malicious node correctly acknowledges ever message. This test shows
that the Sphinx algorithm is able to detect minor fluctuations in forwarding laten-
cies, and to locate the perpetrator.

It should be noted that in this test, the malicious node replies immediately when
a source node requests a signed acknowledgement to detect latency deviations.
However, the best strategy for a malicious node would be to not provide a signed
acknowledgement at all to delay the malicious behaviour detection. This is only
makes sense because dropping of messages will not influence its reputation more
than delaying of messages. Therefore, in future versions ofthe Sphinx algorithm
the different probabilities for different kinds of behaviour should be taken into
account.
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Figure 4.7: Histogram of the number of blame messages and latency violations
per 15 seconds, a graph of the reputation of the malicious node and the number
of delayed messages in a run of Sphinx with 960 nodes and a maximum allowed
latency of 13ms. The random node becomes malicious at 401 s, delays its first
message at 402 s, and has a reputation of being malicious at 409 s.

4.5.3 Not acknowledging messages/ Crashing Nodes

When a malicious node stops acknowledging messages, it willinfluence the rep-
utation of its direct neighbours, because neighbours forwarding a message to the
malicious node will need to re-forward the message to a different node. We will
set up a test to show that no neighbouring node’s reputation will drop below the
threshold of10−7. Since the crashing of a node in the DHT is essentially the same
as a node that does not return acknowledgements, this test will also show whether
crashing nodes influence the reputation of their neighbourstoo much or not.
Figure 4.8 shows that the number of messages not acknowledged slowly discrease,
this means that the malicious node slowly disappears from the routing tables of
all other nodes. Because a node always removes a non cooperating node from
its routing tables it will not send another message to the malicious node. The
removal out of the routing tables of all the malicious node’sneighbours, however,
can take a while. Therefore, we recommend as an improvement for future versions
of Sphinx, to inform the reputation managers of this misbehaviour. The reputation
managers could then check whether the blamed node indeed does not acknowledge
the messages it gets. Of course, the blamed node should not beaware if it is a
reputation manager that is testing him. Therefore, a reputation manager should not
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Figure 4.8: Histogram of blame messages, latency violations, and messages not
acknowledged, and a graph of the reputation of the neighbouring node with the
worst reputation, of a Sphinx DHT run with a malicious node not acknowledging
messages.

directly send a message to the blamed node, but through another node.

4.5.4 Changing payload

Because the changing of messages should never happen, we keep to a one-strike-
is-out policy. Hence, when the destination replies to the source, the source detects
that the MD5 sum of the message does not equal the MD5 hash it calculated itself.
The source now starts the locating the node that changed the payload as described
in Section 3.3. We will not create an extra graph to show the detection of this
malicious behaviour, because the detection and location isessentially the same
as detecting forward delays. Only, instead of inspecting the receive times in in
the signed acknowledgement, the source node should inspectthe MD5 sum in the
signed acknowledgements.

4.5.5 Multiple Malicious Nodes

In this section we test how many of the malicious nodes are detected, when we
slowly increase the fraction of malicious nodes in the DHT. We set up a DHT con-
taining in total a 1000 nodes. Every node sends a 100-byte message to a random
destination each second. Every malicious node in the network returns acknowl-
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Figure 4.9: Graph of the fraction of malicious node detectedas a function of the
fraction of malicious nodes in the DHT.

edgements, but drops the messages it receives. By still acknowledging messages, a
malicious node will not be removed from its neighbours routing tables directly. A
malicious node also ignores the BLAME messages it receives for the nodes it is the
reputation manager for. Every nodes has three reputation managers, and a node is
detected as malicious if two of its three reputation managers entitle it as malicious.
Figure 4.9 shows the results of this test. It can be seen that for a fraction smaller
than 10% it is unlikely that a malicious node will not get detected. This complies
with our design goals. We did not let malicious reputation managers label non-
malicious nodes as malicious, but it can be expected that this number will be the
inverse of the graph shown in Figure 4.9.
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Chapter 5

Conclusion

In this chapter we will give a summary of the design and implementation of the
Sphinx protocol. After this summary we will present the conclusions of this thesis,
and we will end with recommendations for future work.

5.1 Summary and Conclusions

In this master thesis we have presented the design and analysis of the Sphinx algo-
rithm, a scalable and robust algorithm capable of detectingand locating malicious
nodes in corporate DHTs. We focused on corporate DHTs, because these DHTs
often provide business critical services, and because these DHTs usually run in
closed corporate WANs. These WANs are company owned and controlled, there-
fore the network properties are much better known than for general WANs like
the Internet. The knowledge of these network properties canbe used to detect
deviations in routing behaviour of nodes. The Sphinx protocol is able to detect
the following malicious behaviour: dropping of messages, delaying of messages,
misrouting of messages, and tampering with the payload of messages. Detection
and location are both realised within seconds. The heart of the protocol is the
use of signed acknowledgements. Nodes that forward messages should receive
signed acknowledgements from the next node in the message path. These signed
acknowledgements function as ’proofs of innocence’. They enable a node to prove
a message is forwarded on time and to the right node. Signing is very compute in-
tensive, therefore the Sphinx protocol implements two waysof reducing the signing
of messages: forwarding of acknowledgements, and the acknowledging of multiple
messages simultaneously. The Sphinx protocol also provides a scalable reputation
system, to keep track of the reputations of the nodes in the network.
From the results of our experiments we can conclude that:

• The use of signed acknowledgements as ’proofs of innocence’is feasible
when acknowledgement forwarding and acknowledgement grouping is used.
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• The Sphinx algorithm is able to detect malicious delays of milliseconds in
forwarding latency.

• The detection and locating of malicious behaviour can be realised with minor
overhead and in a relatively short period of time.

This means that it is possible to protect corporate DHTs fromintruders by minimis-
ing the damage that can be done by detecting malicious nodes in a relatively short
period of time, while the correct functioning of the DHT under normal conditions
is not disturbed because of the little overhead generated.

5.2 Recommendations

To improve the functioning of the Sphinx DHT, we present the following recom-
mendations:

• The Sphinx algorithm currently only determines whether a node is malicious
or not. To make effective use of Sphinx, nodes should query the reputation
managers for the reputations of the nodes in their routing tables repeatedly,
or reputation managers should notify neighbours of a malicious node. In this
way malicious nodes can quickly be removed from the routing tables, and
therefore from the DHT.

• The Sphinx algorithm does not yet handle the exchange of certificates that
are necessary to verify the signed acknowledgements. Sphinx nodes should
exchange certificates with their neighbours, and there should be a protocol
for requesting certificates when these are needed.

• When malicious nodes do not return signed acknowledgements, there is no
hard proof of the maliciousness of a node. Hence, when this behaviour is
detected, the reputation managers of the malicious node should be informed
and the reputation managers should start a procedure to determine if the
accused node indeed does not return acknowledgements. Thisof course,
should be done in such a way that the malicious node is not aware of being
tested.

• The statistics to determine whether a node is malicious or not can be im-
proved. Currently, every latency violation gets assigned the same probability,
while larger latencies are of course less likely to occur than smaller latencies.
In this way, more accurate estimates can be made about the maliciousness of
a node.

• Currently, the Sphinx algorithm does not handle network heterogeneity well:
The maximum allowed latency should always be calibrated based on the
worst network link. However, one could think of ways where latencies be-
tween different subnets can be measured and adjusted in a dynamic way. For
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instance, nodes could distribute their average measurement with a gossip
protocol through the network. Then, nodes that violate the expected latency
times, can be blamed. This dynamic measuring of network linkproperties
may even give us the opportunity to use the Sphinx algorithm in more gen-
eral WANs like the Internet.
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