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INTRODUCTION 

The object of the present thesis is to elucidate a number of 
problems connected with the diffusion of irregularly moving par
ticles, such as are found in particular when particles are suspended 
in a fluid in turbulent motion. For this purpose it was necessary to 
consider the general theory of dispersion phenomena in order to find 
out by which quantities the diffusion is characterized; then the 
values to be assigned to these quantities had to be derived from data 
characterizing the irregular motion of the liquid. A number of 
theorems on mean values and on correlation problems were neces
sary in order to make it possible to calculate the quantities involved. 

The motion of small particles suspended in a liquid in turbulent 
motion in its theoretical aspect is a statistical problem, referring to 
the movements of a great number of particles, each of which is 
subjected to the irregular influences derived from the motion of the 
elements of volume of the fluid. The behaviour of an individual 
particle as k function of the time can be used as a starting point, 
but it would be impossible to consider every particle individually. 
It is necessary therefore to find the common properties of a multi
tude of particles; these can be obtained in part by considering the 
simultaneous behaviour of the particles belonging to a certain group; 
in part by following a single particle during a longer interval of 
time and calculating mean values over this interval. 

In the first part of the investigation certain probability functions, 
referring to the displacements of particles or to their velocities at 
a given instant, will be used. These functions will be called dispersion 
functions. Such functions have been introduced already by various 
authors ^); we shall base our investigation principally on the method 
developed by K o l m o g o r o f f . 

') The application of probability and dispersion functions to kinetic problems has been 
started by v. S m o l u c h o w s k i and b y S . C h a p m a n ; see: M. v. S m o 1 u-
c h o w s k i , Bull. Ac. Cracovie, (1913); Gottinger Vortrdge uber kinetische Theorie der 
Materie, 87, (1914), Leipzig; S. C h a p m a n , Proc. Roy. Soc, A 119, 34, (1928). 

Analytical investigations of the properties of such functions are due to K o 1 rn o g o-

1 



2 INTRODUCTION 

In investigating diffusion phenomena by means of dispersion 
functions, it appeared useful to introduce two new points of view. 
In the first place the special case of dispersion in a system of con
stant density revealed the existence in such a case of a relation 
between the mean displacement and the mean square displacement, 
which makes itself felt by the appearence of a systematic flow 
of particles when the intensity of the turbulence is not a constant 
over the whole field. In view of the importance of this case the 
special name ..isomeric dispersion" has been given to dispersion of 
this nature. Secondly it was found possible to introduce an extended 
form of the dispersion function which gives evidence concerning 
the distribution of the^velocities at the end of the interval considered; 
with its aid a certain expression for the current of transportation 
could be formed in which this current appears as the resultant of a 
flow of dispersion in the direction of the gradient of turbulence, and 
a flow of concentration in the opposite direction. In isomeric dis
persion these two flows compensate eachfother, so that in that case 
there is no resulting current. 

The consideration of these problems forms the subject matter of 
Chapter 1, while in Chapter 2 some examples of dispersion functions 
are treated, illustrating the properties derived in Chapter 1. 

In the 3rd Chapter the motion of a single particle is followed and 
time mean values are introduced. The most important time mean 
values are those of the square of the velocity, of the square of the 
length of the path, and of the product of the length of the path into 
the velocity at the endpoint. T a y l o r ^ ) has shown the fun
damental relation between the latter quantities and the average 
duration of correlation. In cases of steady mean flow the interval 
of time used in the calculation of time mean values can be taken 
of arbitrary length; difficulties, however, arise, when the flow is 
variable, or when particles wander into regions with a different 
intensity of turbulence. At a certain point of the investigation 
it becomes necessary therefore to return to mean values referring 

r o f f , H o s t i n s k J ? ; see: A. K o l m o g o r o f f , .l/a«A. /!«»., 104, 45-458, (1931); 
108, 149-160, (1933); B. H o s t i n s k 3̂ , Mém. des Sc. Math. Fase. 52; Ann. de I'lnst. 
Henri Poincaré, (1932) and (1937), and Bull. Intern, del'Acad. Tchèque des Sciences, (1940). 

A summary of K o 1 m o g o r o f f's work with applications to ergodical systems has 
been given by: H. G e b e I e i n, Ann. der Physik (5), 1», 533, (1934). 

') G. I. T a y l o r , Proc. Land. .Math. Sac, (2), 20, 196-212, (1922). 



INTRODUCTION 3 

to a great number of particles, or ,,ensemble mean values", and to 
investigate their relation to the time mean values. This forms the 
subject of the latter part of Chapter 3 (sections 3.3-3.34). 

Next in Chapter 4, the relation between the motion of a single 
particle and that of the surrounding liquid is considered. For 
this purpose an equation is necessary, derived by B a s s e t , by 
B o u s s i n e s q and by O s e e n, which is the extension of 
S t o k e s ' resistance formula to cases of variable motion. The par
ticle is taken to be spherical, as for other shapes the relevant for
mulae have not been deduced or would be far too complicated- | 
Some attention is given to the particular case of a periodic field, 
although this cannot represent the effect of the irregular fields 
occurring in reality; further it has been indicated in which way the 
equations can be extended to cases of motion where the exact 
linear resistance law fails. 

On the basis of the results obtained in this Chapter, the quantities 
occurring in the investigation of time mean values as developed in 
Chapter 3 have been calculated in Chapter 5. As the behaviour of 
suspended particles presents a certain analogy with that of colloidal 
particles or the like in Brownian motion, in section 5.5 a comparison 
is made between certain formulae occurring in the two theories. 
It is found that the mean value of the product of the length of the 
path of a particle into the irregular force acting upon it, a quantity 
which is assumed to be zero in L a n g e v i n's theory of the 
Brownian motion, cannot be neglected under all circumstances, so 
that in the case of the particles considered here it must be taken 
into account. 

In Chapter 6 the results obtained in the preceding Chapters are 
applied to the derivation of the equation governing the diffusion of 
the particles; in connection with this, various details of the reasoning 
are reviewed in order to point out where hypotheses had to be 
introduced or unsolved difficulties remain, in connection with the 
fact that in turbulent motion the intervals of time to be used 
in deducing mean values cannot be increased sufficiently in order 
to make them always considerably exceed the duration of correla
tion of the motion. An interesting problem in the diffusion of par
ticles is connected with this matter, viz. whether in a case where the 
concentration of the particles is originally constant over the whole 
field, inequalities in the turbulent motion of the liquid can evoke 
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differences in concentration, in such a way that the particles would 
tend to wander towards regions of weak turbulence. This problem, 
however, cannot be fully settled in view of the difficulties mentioned. 
Finally the dispersion equation obtained has been applied to some 
simple cases. 

In so far as the formulae used depend upon the hydrodynamical 
equations, it has been assumed that the liquid or fluid in which the 
particles are suspended, is of constant density. This does not, how
ever, exclude the application of the results to the dispersion of 
particles suspended in a gas, provided the velocities of the motion 
remain small in comparison with the velocity of sound in the gas. 

Besides its interest from the theoretical side, the problem of the 
motion of suspended particles and of mean values and correlations 
connected with it, has a practical interest in investigations on the 
turbulence of a fluid; it is often attempted to deduce the character 
of the turbulent field from the measurements on the motion of 
suspended foreign matter used as an ,,indicator of turbulence". 
Moreover, hydraulic engineers are interested in the phenomena of 
diffusion, presented by the particles in a given field of turbulent 
flow, as this leads to a knowledge of the distribution of solid matter 
in a current, whichisof great importance. The reverse problem of the 
reaction of the particles upon the motion of the liquid, e.g. upon the 
transfer of momentum between adjacent layers of the latter, which 
may influence the velocity distribution of the main flow, will also be 
of interest in Hydraulics. This problem, however, has not been 
treated here and must be left for further researches. 

Notation used for sections and subsections and numbering 
of tlie equations. 

Sections and subsections will be numbered decimally, e.g. the 
second subsection of section 4 of Chapter 3 will be numbered 3.42. 
Equations are numbered consecutively afresh in every subsection 
(or section); references in the same subsection (or section) are 
made by mentioning the number of the equation (written between 
brackets) only; references to equations given in other subsections 
(or sections) will be preceded by the indication of the section or 
subsection. In this way the 3rd equation of subsection 3.42 will be 
referred to as 3.42(3). • - . •. •• 



••i ••••-:-•'' CHAPTER 1 ' - • •" _ 

STATISTICAL CONSIDERATIONS CONCERNING T H E 
DISPERSION OF PARTICLES IN IRREGULAR MOTION >) 

1.1. Definition of the dispersion function 
In problems concerning the motion of particles as occurring in 

Mechanics and Physics, we can distinguish 2 types: 
(1) problems relating to completely determina,te systems; 
(2) problems relating to irregular systems, 
In the problems of the first type the motion of the particles is 

completely controlled by certain known equations, so that the 
whole course of the motion can be derived from prescribed initial 
conditions. I t is evident that the motion can be calculated for in
creasing time as well as for decreasing time. It is the usual aim of 
Classical Mechanics to investigate problems of this type. 

In the problems of the 2nd type, on the contrary, the motion of 
the particles cannot exactly be determined, for we never know the 
detailed initial conditions nor all the complicated irregular influences 
to which the particles may be subjected. Such motions are found 
when particles are subjected, for instance, to the irregular in
fluences of mutual impacts or of impacts with the molecules of the 
medium iii which they are embedded; examples are found in tur
bulent motion, Brownian motion, and the motion of particles con
sidered in the kinetic theory of gases. For these motions it is only 
possible to calculate a distribution of the chances for the occurrence 
of particular positions and velocities of the particles at a later in
stant, assuming that certain initial conditions have been given. 
Such systems can be called irregular systems; in some publications 

') This chapter in the main follows the exposition given in a paper ,,Enige wiskundige 
betrekkingen welke een rol spelen in diffusieproblemen" by the present author, Versl. 
Ned. Akad. v. Wetensch.. afd. Natuurk. 53, 400—410, (1944). The treatment of the 
problems, however, has been extended in various points. 
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they are denoted also as Stochastical systems. It is the aim of Sta
tistical Mechanics to investigate problems of this type. 

We will take the simplest case where the position of a particle 
is characterized by one coordinate y only. Provisionally the velocity 
which the particle possesses at any instant will not be introduced 
as an explicit variable; an extension to the case where explicit 
attention is given to the velocities is deferred until section 1.7. It is 
assumed that at a given instant t,, there are many particles with 
positions between y^ and y^ -f- dyg. Let the number of these particles 
be: 

Kio.y'o^yo' (U 

where n will be called the particle density. 
Let 

p[to,yo:i,y)dy (2) 

be the probability for a particle which at the instant t^ started from 
the region {y^. Vo + dy^). to arrive in the region (y, y + dy) at the 
instant /. The probability function p will be called the probability 
function of displacement. I t controls the dispersion process of par
ticles as due to the irregular motion, hence it can also be called 
the dispersion function. 

The function p must satisfy the relation 

4- oo 

jdy p[to.y^;t.y) = \. (3) 
CO 

Here and in following formulae the limits of integration for 
convenience are given as — oo, -)- oo; the meaning of the formulae is 
that the integration is carried out over the whole available domain 
of y-values, which often may be of limited extent. Formula (3) 
expresses the condition that all the particles coming out of the region 
dy^ must find their place in the totality of the elements dy forming 
the available domain of the variable y. — As will be explained in 
1.2, the picture of dispersing particles can be extended in such a 
way that it can be applied to the dispersion of the elements of volume 
of a liquid in turbulent motion. 

Let the number of particles which at the instant t are situated in 
the region (y, y -f dy) be n[t, y)dy. When at the instant t^ the number 
of particles «(<<,, yo)<̂ yo is given for all intervals rfy^, it is evident 
that the number of particles n{t, y)dy can be deduced from the 
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relation 
I oo 

n{t, y) = / dyo n(t„. y„) p{to, y^-.t. y). (4) 
—oo 

Evidently 
-! oo • oo 

/ dy n{t. y) = j dy^ n[t^, y^). (5) 
•—^OO — C O <• 

When for the function n we choose such a unit that 

\ dyo n{ta. Vo) = 1 ; j dy n[t. y) = 1, 
— o o —oo 

then n[t.y). which previously has been called the density of the 
particles, can be considered as the probability for the particles to 
be situated in the region (y, y -t- dy) at the instant t. 

1.11. Further properties of the dispersion function 
An important problem in the theory of dispersion functions is to 

determine the minimum value to which the interval of time t ^t^ 
may decrease before it becomes impossible to assume that the dis
turbing actions (due to impacts and the like) experienced by the 
particles exercise sufficiently strong influences in order to allow the 
application of probability considerations. In our case where the 
initial velocity is not introduced as a separate parameter, the par
ticles which are situated in dy^ at the initial instant tg will possess 
unequal velocities, so that already immediately a dispersion may 
be expected. In general, however, we must assume that the inter
val t — tg shall be of sufficient length in order that every particle 
may haye suffered a serious disturbance of its movement. This can 
be expressed in other words by requiring that / — t^ shall exceed 
the duration (or better still the upper measure ê) of the correlation 
to be found in the course of the velocity function for a single par
ticle, a quantity which will be introduced in Chapter 3 (sections 
3.121 and 3.13). 

In order to be able to deduce a set of differential equations 
K o l m o g o r o f f has assumed that the dispersion function can be 
treated as an analytic function for arbitrarily small intervals 
of t — ifl^). There seems to be little objection to such a procedure 

') Compare: A. K o 1 m o g o r n f f, ,,tiber die analytischen Methoden in der Wahr^ 
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when the functions to which it is applied vary sufficiently slowly 
with the time in order to make differential quotients a satisfactory 
approximation to difference quotients, calculated for an increase 
of time sufficiently exceeding the correlation measure mentioned 
above. However, as there may be certain cases in which some care is 
required in dealing with small intervals, we shall provisionally 
retain several equations in the form of difference equations with 
respect to the time, indicating the corresponding differential equa
tions in those cases where this appears to be of importance. 

I t is in the nature of the phenomena of motion, whether regular 
or irregular, that we must expect 

iim p{to, yo: t, y) = 0 ior y — y^j^O. (1) 

As nevertheless relation 1.1(3) must remain valid, it is necessary 
to assume that for y = yo the function p{tQ. y^; t. y) will take an 
integrable infinite value when t tends indefinitely to 4 : 

•.;••;;• lim ;/!)(̂ o, yo;/ , y) = 00 fory —yo = 0. (2) 
., , - . t — tü . / _; '. 

In order to conform to the laws of diffusion phenomena, the dis
persion function moreover must .satisfy the condition • •• 

— 00 

p{io.y^-.t.y) -jdy" p{to.yo:i",y") Pit".y":i.y)> (3) 
— o o ' ' ' • . 

where to < t" < t. This equation guarantees that the diffusion 
process due to the irregular motion is integrable, which means 
that the dispersion of the particles in the interval of time t — IQ, 
as controled by the function p{tQ.yo',t,y) can be obtained by 
calculating first the dispersion in an interval of time t" — t^ and 
then in the adjoining interval t — t", t" being an arbitrary inter
mediary instant within the interval t — t^. In principle it may be 
regarded as a self evident relation, or as an equation defining 
p{to, yo', t, y), when the functions occurring under the integral sign 

scheinlichkeitsrechnung", .Mathem. Ann. 10-4, 415, (1931); ,,Zur Theorie der stetigen 
zufiilligen Prozesse", iétó. 108, 149, [\923); Annals of Mathem. 3a, 116,(1934). 

An outline of K o 1 m o g o r o f f's formulae (with applications to problems concer
ning ergodical systems) is given by: H. G e b e 1 e i n, .4nn. der Physik (5), 19, 533, (1934). 
Compare also: M. v o n S m o l u c h o w s k i , Ann. der Physik (4), iS, 1106, (1915); and" 
H. C. B u r g e r , Versl. Kon. Akad. v. Wetensch., Amsterdam, 25, 1106 and 1482, 1917, 
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have been given. Equation (3), however, becomes of importance 
when it is required that all three ^-functions occurring in it shall be 
of the same form with respect to their arguments. It is possible to 
extend the condition by considering not one intermediate instant t", 
but more such instants: 

"• • " • "+00 +oo' 

P{h,yo:t>y) =jdy"jdy"' 
—oo —oo 

.'• : • ' •'• . . Pit", y": t'". y'") . . . . /)(<(»', y(»); t. y). (4) 

1.12. Mean values connected with the dispersion process 
In all di,spersion problems an important part is played by the 

mean values of the displacement and of its second and higher powers, 
We introduce the notation: 

,. . . /m = j dy (y — Vo)'" p[to. yo \t,y). (1) 
—oo 

The mean value of the displacement itself, l. will be zero in the case 
of symmetrical dispersion; in other cases i t can be expected to be 
•of the order of the time interval t — t^. The mean value of the square 
of the displacement, l^, for large values of the interval t — t^ usually 
may be expected to increase proportionally with {t — O^^)- For 
small values of this interval (but still exceeding the correlation 
measure ^)), however, we must not expect it to vanish proportionally 
with [t — ô)̂  • in consequence of the circumstance that even for 
small values oi t — t^ there is a finite possibility for large (positive 
and negative) values of the displacement, /̂  can be of the order 
oit — IQ for small values of this interval. This can be seen when as 
example for p we take G a u s s ' function: 

J, = \ ^ i~^v-y>)'lk[t—t,)^ ' ^2) 
Vnk{t—to) ' ' 

k being a constant. — That the finite possibility for the occurrence 
of large values of the displacement need not affect the order of 
magnitude of l, is due to the circumstance that large positive and 

') This is not always true; compare Chapter 2, equation 2.3(7), 
") Seedefinitionin3.12Iand3.13. 

••\dy^-^ Pito.yo-.l",y") .[ 
— 0 0 
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large negative displacements may practically cancel each others 
contributions towards this quantity. 

G a u s s ' function, which usually is considered as a typical 
example of a dispersion function, further has the property that the 
mean values of higher powers of the displacement, as P etc., for 
small intervals t — tf, are small compared with t — t^. Following 
K o l m o g o r o f f we shall assume this to be a general property 
of the dispersion functions to be considered here. We must leave 
open the question whether there exist other types of dispersion 
functions which do not possess this property. 

K o l m o g o r o f f moreover assumes that the ratios: 

- . ll{t — to) and l^/{t — to) 

approach to constant values when the interval t — to is decreased 
indefinitely. It is not certain that this always will be the case; indeed 
when the interval t — to is decreased below the correlation measure 
we must expect that the probability considerations which form the 
basis for the introduction of the dispersion function will not apply. 
Circumspection therefore is necessary when we wish to make use of 
such an assumption. In the case of G a u s s ' function it does apply, 
which is a consequence of the fact that this function is a limiting. 
type for zero correlation measure. . . -• 

1.13. Series development of the dispersion function 
In G a u s s ' function the parameters to. yo, t, y figure exclusively 

in the form of the differences t — to. y — yo- I " functions of general 
type, however, to, VQ themselves (or in another representation, /, y) 
must also be present. 

Let : 
t — to = T;y — yo = / . (') 

then we can write the dispersion function p{to. yo', t, y) as a function 
P of [to, yo; T, /) or of (< — x.y — /; T, / ) : 

p[to. .-Vo; i. y) = P'yio. yo •.r,l) = P{t — T, y — l'.r,l). (2) 

This second mode of writing is useful when we want to express 
that a dispersion function varies more slowly with ^o, yo than with 
T, /. In particular this will be the case when T is small: 

.. . dP/dyo<dP/dl fo r t small. (3) 
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In order to make calculations with the aid of the functions 
p and P. it will be of importance to know whether they can be 
developed into â  T a y l o r series. I t will be assumed that when 
t — to — rh not a small quantity, the function p can be developed 
into a T a y l o r series with respect to the variable yo, as well as 
to the variable y. For example we shall write (as will be used in 
1.3 and 1.31): : . 

' dS ' I- dH 

p{to, yo + i; t.y) = pito, yo'. ̂ 'y) + ^"a^ + 2 " ^ + •"^'^'^ 

p{to, yo: t, y — i)^ Pito. yo: '̂ >*) - ^ I f + y 0 - • • • (5) 

When t — to — r is a small quantity, then in connection with 
1.1 H2), the case may exist that dpjdyo in (4) resp. dpjdy in (5) will 
be large and the series (4) resp. (5) will be very badly convergent or 
even may cease to be convergent. In this case it will be assumed that 
if the dispersion function is written in the form P [form. (2)], a 
development of P will still be possible into a T a y l o r series with 
respect to y: 

• ' • ?P /'- ?-P 
P^t —r.v —I: T,l)=P(t~ r.v.r. I)—1^ + ~ ^ —...(6) 

• ' oy 2 cy-

This development of P into a T a y l o r series with respect to y 
means a development of ^(/o,yo;^, y) into a series proceeding 
simultaneously with respect to yo and to y, with equal increments 
of both variables. 

Under the conditions stated in 1.1—1.13 it appears that the func
tion p will satisfy two equations with derivatives of the second order 
with respect to y, which have originally been given by K o l m o 
g o r o f f in the form of partial differential equations. The second 
one of these partial differential equations, which is the most im
portant one, is derived- by K o l m o g o r o f f with the aid of a 
process which does not seem to be quite exact. In the following 
pages, independently from K o 1 m o g o r o f f's methods, we will 
first develop some formulae concerning mean values, and then re
turn to these partial differential equations. 

By a similar process as used in the derivation of the equations 
for p we can obtain an equation for the function n. This equation 
appears to be of a similar type as one derived by F o k k e r and 
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by P l a n c k in an investigation connected with Quantum Theory. 
It is to be remarked that along with the above mentioned dis

persion function which refers to increasing time, the inverse problem 
might be formulated: we could ask from which preceding distribu
tion an observed distribution of particles may have originated. 
Such ,,inverse dispersion functions", however, present special 
difficulties. 

1.2. Problems with constant density 
An important subdivision of the systems considered above is 

obtained in the case where the quantity n, which represents the 
local density of the particles, is a constant, independent of t as well 
as of y. In this case we shall speak of isomeric dispersion and cor
respondingly of isomeric dispersion functions. We can give an illustra
tion of such a case by supposing that in a two-dimensional field 
occupied by a liquid of constant density, there exists an irregular 
motion, the components v and w of which are functions of y. z 
and of the time t. while satisfying the equation of continuity. Such 
a motion will produce a never ending change of position of the ele
ments of volume of the liquid. Schematically its effect can be re
presented by imagining the whole field to be divided into square 
elements of equal area, and supposing that these elements are con
tinually permuted over the field in such a way that at each permuta
tion not only contiguous elements may interchange places, but also 
elements at arbitrary distances from each other. When now we 
restrict 'to the registration of the displacements in the direction of y, 
in this case again we obtain a system to which the probability for
mulae of the preceding sections can be applied, as for any element 
with a given value of the coordinate yj at the instant 4 if still is 
a matter of pure chance what will be it? displacement in the inter
val from toiot. 

In the case of a real liquid in turbulent motion the elements of 
area displaced by the irregular movements will be unequal in form 
and magnitude. The case could be reduced to the one considered 
above by subdividing the actual elements in such a way that equal 
squares or cubes would be obtained. However, we will not go into 
an investigation of the implications which may be connected with 
such a subdivision, and in the following considerations we will 
assume that all elements are equal in form and magnitude so tha t 
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they can take the place of particles. I t is necessary of course to 
assume that these permutations be perforrned so quickly that in a 
small interval of time T = < — to a certain diffusion already takes 
place, in order to comply with the considerations developed in 
1.1, 1.11 and 1.12. In such a system the number of particles in an 
interval dy^ will be equal to dyo multiplied by a constant factor de
pending upon the breadth in the 2-direction. The system thus 
obtained can serve as an image of the diffusion of the volume 
elements of an incompressible fluid or other substratum in turbulent 
motion. , • 

From 1.1(4) there now follows ' ' , 

-' oo 

j dyoP{to.yo:f,y) = i . " ' ' ( i ) 
—oo 

Hence the integral of an isomeric dispersion function with respect 
to dyo gives the value 1, just as did the integral with respect to dy 
in 1.1(3). 

From the general formula 1.1 (4) in which n was not supposed 
to be a constant, we read how the total number of particles which 
are situated in dy at the instant t is composed of contributions 
coming from everywhere in the whole region. Therefore we may 
con.sider , . 

., ^ P'{to,yo:t.y) = '^^p{fo,yo:\y) -^(2) 

as the probability for a particle to have started from dyo at the in
stant to, given its situation dy at the instant t. In a certain sense the 
function p' represents a kind of inverse function of the dispersion 
function p. However, p' is dependent upon the particles really 
present and has no independent meaning such as was the case for 
the function p. In order to prevent any possible confusion with 
real inverse dispersion functions as mentioned in 1.13 we will pro-
visorily call p' the ..retrograde dispersion function". 

When we restrict to the case of isomeric dispersion, n disappears 
from the above formula and we obtain 

P'{to,yo:i,y) = p{to,yo:i,y)- (3) 

Hence an isomeric dispersion function is identical with its own 
retrograde function. 
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1.21. Quantities which are characteristic for the mean 
displacement of the particles 

In the present section we write t — to = r. y — yo = A as was 
done already in 1.13(1); for convenience we omit the indices in to yo-
Hence the dispersion function for particles coming from the region 
between y and y ^ dy at the instant t — for the sake of brevity 
we may speak of the particles starting from [t, y) — will be written 

, . . ' p{t, y:t + X, y^l) = Pyt. y; r, /). •.,' - (l) 

In all following integrals the limits are to be read — <», -)- oo, 
which means that they are extended over the whole domain avail
able for y or, what comes to the same, for /. Now we introduce the 
quantities: - . 

' : • 7 = I dllPyt.y.T.l). ,, ~ \ (2) 

I = 
1 

n(t, y) . 

¥= I dlPP{t.y;T,l). 

\ dlln{t-^r.y~-l)P{t — 

... 

.y~~l'.r.l). 

r.y — l'.T.l). 

(3) 

(4) 

(5) /2 = —j-r- I dl /2 n(t — t.v — l) Pit n(t,y) J .. / . 

Here / determines the mean value of the displacement in the 
interval of time t ^-1 -i- r of the particles starting frorn (t, y). 
In the same way l^ gives the mean square of the displacements 
On the contrary / gives the mean value of the displacement of the 
particles at t. y in the preceding interval t — r^^t. While / and l^ 
refer to the dispersion process starting from y, the quantity / may 
be considered as referring to the ,,concentration process" towards y; 
hence we shall call / mean displacement of dispersion and I mean 
displacement of concentration. The corresponding mean square 
displacement is represented by P. 

By introducing a ,,retrograde dispersion function" 

P'i.t, y: r, I) = „,v-^^V7Y^(^'>-= ^' ^)' 6̂) 

n\t -|- r, y -r /) 

form. (2)—(5) also may be written: " . 
\t. y) = - T ^ T I dlln(t + r.y + I) P'{t, y; r, /), (7) 
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Ht, y) = —--— / dl l^ n{t + T, y + /) P'{t.y: r, /), (8) 
n\t, y]. 

T{t.y)= I dllP'[t — r,y~l',r.l). (9) 

T'[t. y) = I dl r- P'(t — r.y — l: r. I). (10) 

In the particular case of isomeric dispersion there are found some 
simple relations between 1.1^. and/. Inthisca.se, as follows from 1.2(3), 
eqs. (4), (5) simpHfy to: 

I dllP{i — T,y — l;r,l)\ f '(11) 

_ ,- I (w constant), i 
l'^ = I dll^P{t~r.y — l',r.l) J I 12) 

In all following deductions it is supposed that with increasing 
values of I / I the function P decreases sufficiently quickly in order 
that terms with the factors P etc. may be neglected in comparison 
with terms with the factors I or l^. This requires of course that T is 
small; compare the considerations developed in connection with eq. 
1.12(1). 

We start from eq. 1.2(1), which applies to isomeric functions and 
which can be written: -

\dlP{t~x,y-—l;x.l) = \. • (13) 

In accordance with 1.13(6) we develop P into a T a y l o r series, 
restricting to the terms of the orders I and P) we then obtain: 

cP . F d^P\ .idl[Pii~x.r,r,l)^l^^ + L^^} 

According to 1.1 (3) the integral of the first term is equal to 1, 
independently of the value of x. The integrals of the remaining terms 
taken together therefore must be equal to zero. Applying eqs. (2), (3) 
given above we arrive at the result: 

-1 -^^(1) - - ' • • •^ 
In this way a relation is obtained between the mean displacement 
and the mean square displacement, for small x, valid for isomeric 

\ r . 

http://Inthisca.se
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dispersion. Integration with respect to y gives: 

The integration constant which has been written as f\to. t) in this 
equation, in many cases can be put equal to zero, e.g. when the domain 
where the diffusion takes place gradually passes into a region in 
which there are no appreciable displacements of the particles. This 
requires the absence of any peculiar motion produced by the action 
of exterior forces such as e.g. gravity^ (the integration constant also 
could be eliminated by superposing a general translation with the 
appropriate velocity). For the present we shall assume that this is the 
case, intending to return to the more general case in 1.6; we thus 
have: 

.̂... v . . . V. - 1 ( 1 ) - ::v-.:; .:- .:o6) 
We next apply a similar development to form. (11) by means of 

which / was defined. This gives: \-, , •; 

1 = j dl I iP[t — x.y'.x.l)—l^\, . . . : : , 

•which reduces to : • • -. 

In an analogous way it can be found tha t : • ' >.-.:= ';•' 

: • F = / ^ •• " •- ' • (18) 

where P is defined by (12). I t is to be noted that in the derivation of 
these formulae no use has been made of the integral relation 1.11 (3); 
hence they hold good independently of it. • , ; ' 

Equation (17) also can be written: . •: > .,-•. '; -

•{-]. • • • •• • (17«) 
• . • dy 

Consider the case of a turbulent field where the turbulence in
creases with increasing values of y, so tha t : " .. 

• : : ' ; ; • ; • . i #>o. ;;.::":;.•••••:: 
• • • • • - • • • dy • • ' 
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Elements diffusing out bi a definite region dy will take ever greater 
movements when they are displaced in the positive direction. Hence 
they will have greater chances to be dispersed further away than 
elements displaced in the opposite direction, and at the end of a 
small interval of time there will result a mean displacement / in the 
positive direction proportional to the gradient of the turbulence. 
This is the meaning of the relation (16). The fact that even in the 
absence of a peculiar motion produced by exterior forces, there can 
appear a mean displacement of diffusion I of the same order of magni
tude as the time interval t — to. is an important feature of a field 
with inhomogeneous turbulence. Although deduced here for the case 
of isomeric dispersion, it may be found likewise in other cases of 
inhomogeneous fields. 

By the departure of the dispersed elements the region dy would 
gradually be emptied. In the case of isomeric dispersion, however, it 
must be refilled at the same time by other elements.The mean displace
ment of the elements diffusing into dy is given by the quantity I. the 
value of which is determined by relation (17fl). The fact that for 
isomeric dispersion the ,,mean displacement of dispersion" / (the 
mean displacement of the elements diffusing out of dy) and the 
,,mean displacement of concentration" I (the mean displacement of 
the elements diffusing into dy) are equal and opposite, ensures equili
brium. We consequently may consider it as a characteristic of isome
ric diffusion that simultaneously with a flow of dispersion there is a 
flow of concentration. An example illustrating the relation between 
/ and P for isomeric dispersion will be given in Chapter 2. 

For certain purposes it is convenient to denote the quantity / (or 
the corresponding mean velocity //T) , which has already been called 
the ,,mean displacement of dispersion", as the systematic motion 
(resp. systematic velocity), independently whether its presence is due 
to inhomogeneous turbulence or to the action of exterior forces. 
When exterior forces are active, we shall call their contribution 
to I (resp. Ijx) the peculiar motion. In the phenomenological treat
ment given here it is only the systematic motion which can be 
distinguished. 

2 
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1.3. Derivation of two equations satisfied by the dispersion 
function 

We will now make use of the 'property expressed by 1.11 (3) 

P{to, Vo: t. y) =fdy" Pito. yo:t". y") pit", y"; /, y), (1) 

with to < t" < t. by which, when added to the condition that the 
function p shall always be of the same form with respect to its argu
ments and can be subjected to differentiation with respect to them, 
the dispersion function is subjected to rather .severe conditions. In 
this expression let t" — to = x represent a small quantity. When 
t — to is not particularly small, this neither will be the case with 
t — t" =^ t — to — T. When we write y" = yo + / and take into 
account what has been as.sumed in 1.11, we may develop 

pit".y"',t.y) ^p[t".yo + l:t.y) 

i n t o a T a y l o r .series: •. •' - ' ' • f ; . '•• 

Pit", yo + l'.t. y) = Pit". Vo '^'y)^^J~ + -2^+ ••-

Substituting this value into (1), and applying form. 1.1(3) and 
1.12(1) we obtain: •• ;' ' _ ' ' ' ': 

P(io, yo: t, y) =Jdipito. yo: t", .Vo + 0 Pit", yo + i: i, y) =" 

= / dipito. Vo', t", Vo + I) {pit". yo',t. y) + I ̂ - + ~ ^ } = 

dp P d^p 
dyo + "2 dyl 

Now we shall write: 

.-=pit",yo:t,y) + iiio.yo}^+ . .„2 

pit". Volt, y) — pito. yo:t, y) = Sopito, yo; t, y). 

Then we find: 

«So Pito, yo: t. y) = - lito, yo) g ^ - ^ ^^^ • (2) 

This is the equation for the change of p with initial time t^. 
In the second place we put t" = t — x. y" = y — /, and write (1) 

in the form: ^ 

pito, yo: t, y) = fdl pHo, yo: t", y — /) Pit". y — i;x,l). (3) 
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As now t" — to is not a small quantity, we may develop the product 
Pito, 3'o; t", y — I) Pit" .y — l:x.l), according to what has been as
sumed in 1.11, into the series 

:2 

Pito,yo:t",y) Pii".y:x.l) ^i(^^)+o-£. dv 2 dy^ ipP)-

Substituting this into (3) we obtain, after integration with respect 
to<^/: 

Pito, yo: t, y) - PHo, yo: t", y ) - ^ W', y) fi + - ^ ^' 

Hence it we write 

dv"" 

Pito' yo:t. y) — Pito, yo: t", y) = <5 p[to, yo :t,y), 

there follows: 
d^ 

'Pit 0' ,'0 t. y) = 
a •-^ 
^WM) / ] + a^ 

p 
P (4) 

where on account of the smallness of T = / — t". we have written 
lit, y) instead of lit", y). This is the equation for the change of p with 
final time t. 

In the derivation of (2) and (4) use has been made exclusively of 
formulae which are valid for variable n as well as for constant n; 
hence it follows that the equations hold good for both ca.ses. 

When now we introduce K o l m o g o r o f f ' s assumptions that 
p—1 I 1 

for indefinitely decreasing values of x the ratio's Ijx and P/x assume 
constant values, we can replace eqs. (2) and (4), after division by x. 
by the partial differential equations: 

^P^tp.yo'.t.y) 
dto 

?'Pito.yo:t,y) 
dt 

^ I, \^P --ito.yo)-é-
X dVo 

P c^p 

2 T M ' 

dy - it, y) P + ay2 
p 
2x 

(5) 

(6) 

1.31. Equations for isomeric dispersion functions 
When we restrict to isomeric functions as considered in 1.2 we can 

apply 1.2(1), 1.21(11) and 1.21(12) to the transformation of the 
integral equation 1.11 (3). By putting t" = to + x, y" = Vo 4- I this 
equation can be written: 

P'io. yo: t, y) = / dl Pito. yo:T.I) pito + x,yo + l:t,y). (i; 
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As t is small and t — tg — x remains finite, the product - :, .. 

,:. • . Pito, yo: f.t) Pito + T^,yo+t:t,y) 

can be developed into a T a y l o r series according to the consider
ations already applied in 1.21, and we can write: 

Pito. yo:t. y)=\dl jP(/o, yo —/; 1.1) />('« ^ r, yo:t. y) -h^'.-

\ . ^ ' + ^8^(^^^+TM^ '̂'̂ / 

= Pito + T. yo; t. y) + -J— [I'i", Vo) p] + ^'rn-
'^yo ". '0 

Hence we obtain: 

P 

d - \P 
^0Pito, yo: t, >') = — av^ t̂ >̂ 'o. Vo) Ï̂ J ~ a ^ [ y ^ (2) 

where lito. yo) has been substituted iorlj", yg). -
On the other hand when we put t" = t — x. y" = y — /, the inte

gral equation 1.11(3) can be written as: , . , \ 

Pito. yo:t. y) = / dl />(/„, Vo; ̂  — r. y — /) pit — x. y — l;t. y). (3) 

As t — T — tgis not small the first factor can be developed into the 
series [see 1.13(5)]: , . . " _ ' , . ', v. ;..-

. . \, ' . ' ^ ( ' o ; y o ; ^ - ^ r , y ) - / | - f | | ^ . : , . , . : . . ^ ^ 

Substituting this value into (3) and applying form. 1.2(1)̂  
1.21(11), 1.21(12) we obtain: _ 

- dé P d'^p 
Pito,yo:t, y) = Pito, Vo'-t-r.y)-iit.>-) a^ + "2 " a ^ ' 

from which follows: . -

• èp[to,yo:t,y) = —iit,y)'^^ + 
dp , p d'-p 

2 ?v2 
(4) 

Introduction of K o m o g o r o f f's assumptions makes it pos
sible to transform (2) and (4) into the partial differential equations: 

^Pito,yo:t,y) 
'' â o 

dp[to,yo:t.y) 
dt 

d. 

Vo z ito' yo) P dyl 1 2r 

I , .^P , I- d^p 
~~ X ^^' ^' dv ' 2T dv'-

15) 

(6) 
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1.4. Equation for the particle-density ' 
We return to the case of variable n. so that I. P resp. are defined by 

1.21(4), 1.21(5). 
By developing the product «(/ — x. y — I) Pit — x. y — l, x. I) 

into a T a y l o r series and substituting the result into 1.21 (4) we 
obtain: > , 

v"v- .:.,,. ••: ' n'l=^nT—^inP). -'•. - •'• :A'̂  (1) 

This formula now replaces 1.21 (17). Properly speaking the quantities 
in the right hand member refer to the instant of time t — x. whereas 
the left hand member refers to the instant i; it is probable, however, 
that this difference can be neglected. To the same order of approxi
mation: _ 

nP = nP, (2) 

where the factor n can be dropped, so that this formula is the same 
as 1.21.(18). 

A partial differential equation for n can now be derived in two 
ways. In the first place we can start from 1.1 (4), which can be writ
ten as follows (with /„ = t,— T̂  yo = y — /) : . . . . 

:'\:''['nii.y)=\dtnit'—i'.y-—l)Pit — x.y — l]x.i).'' ' (3) 

Here the integrand can be developed into the series; 

nit ~~ X..y) Pit - X. y ',x,l)-l-^ (nP) + ™ | ^ inP). 

Hence if from now onward we make at once use of K o 1 m o g o-
r o f f's assumptions and pass to the limit T - > 0: , . ^ 

i H. ..V . i - g ^ . ' '• ' d'I 7 \ 32 / p\ '"-'•• -

^-^-:-;:-W=^-^a7r7J+a^r27J- (̂^ 
This method of derivation (4) is the analogue of that used before in 

the derivation of 1.3(6). The equation in this form has already been 
obtained by F o k k e r and by P l a n c k ; hence the name of 
equation of F o k k e r and P l a n c k ^ ) . 

1) .'\. D. F o k k e r, Ann. d. Physik (IV) 4:{, 812, (1914); and in particular: ,,Sur les 
mouveraents Browniens dans le champ du rayonnement noir", Archives Ncerlandaises 
des Sciences exactes, etc. (IIIA), 4, 379, (1918). 

M. P l a n c k , ,,Über einen Satz der statistischen Dynamik und seine Erweiterung in 
der Quantentheorie", Sitz. Ber. Berliner .Akademie, 324, (1917). 
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We can start, however, also from the identity which follows from 
1.1(3): 

n[to, y) = / dl nitg. y) PUg. y; x, I). ,\-. • (5) 

Here we can develop the integrand into the series: 

nito. y~l) Pito, y-l:x.l) + l ^inP) + ^~^ inP). 

Substitution of this development into (5), remembering that 
tg = / — rand making use of (3), 1.21(4) and 1.21(5), gives: 

'n(to,y)=n{t.y)+±inJ) + ^{n^). 

so that at the limit T -^ 0: . . 

u . ^ = - 9 7 ( ^ 7 . ) - 3 F r 2 r ) - :. . , .„ ':: (̂ ) 

The equivalence between (4) and (6).is guaranteed by (1) and (2). 
Equation (6), however, has a formal significance only, as / itself is 
defined through the intermediary of n and dnidy according to (1). 

It may be remarked that eq. (4) could be read as a relation bet
ween the two quantities / and P for the case of variable n; thus 
replacing eq. 1.21(14) for the isomeric case. Formula (4), however, 
involves n and its derivatives in a complicated way and as a relation 
between I and P can have no more than a formal significance. In the 
case of variable n the phenomenological treatment does not give a 
direct relation between / and Ẑ  which could be used to simplify the 
equations. For constant n in independent of / as well as of yj eq. (4) 
of course automatica Uy passes into 1.21(14), while eq. (6) passes into 
a relation between I and P. 

Equations (4) and (6) can be written in the form of an equation of 
continuity: •-• ' .̂  • 

dt dy' ^ ' 

where q. the intensity of the current, is defined by: 

- ^ ^ i 'i^\ tas 
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In con.sequence of eq. (1) above we can write: 

^ = 2 ( 7 + 7 ) ' (̂ ) 
hence it follows that the mean velocity of transportation of the par
ticles can be defined by: 

;- " = ^ - = y ( ^ + ^ ) - ' • ;• (10) 

n 2\x xl ^ ' 

It thus appears that the diffusion again can be defined by a combi

nation of a flow of dispersion and a flow of concentration. 
1.5. Partial [differential equation for any property attached 

to the particles -< .<̂  
We will assume that the particles the dispersion of which is con

trolled by the function p, are carriers of some property w. for example 
a temperature, or a quantity of suspended materials or the like. It is 
assumed that every particle in all its displacements takes the value w 
with it and keeps this value unchanged. (We can extend the con.sidera-
tions if necessary by supposing that the property mentioned is in
fluenced at the same time by exterior agents. Since their action can 
be expressed by adding certain terms to the equations derived, we 
will leave aside this case for the moment). 

We suppose that the various values of w which are carried by the 
particles at (ig, yg), possess a certain probability distribution, in such 
a way that giw; tg. yg) dw will give the probability that the value of w 
is to be found between two assigned limits w and w -)- div. The 
function g'must satisfy the condition 

- l -co • " • • - > . " ' ' • ' 

\dW giW.tg.Vg) = 1. . . ^ -
- 0 0 • • ' .; • 

The mean value of w for the particles at itg, y^ will then be given 

by ^ • . : • 
• "' -• +00 

W{tg,yg)=\dwwgiw;to.yo)- .^ (1) 
— 0 0 

Since w(<o> yo) '̂ yo particles are present in dvg. we can define the 
total amount of the property as: 

Witg.Vg) nito,yo)dyo. 
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As the property is carried along by the particles, the function W 
must satisfy the relation 

+ 0 0 . ' ~ ' - • • , 

, . .; Wit. y) _ n(t. y) = j dyo Wito. yo) Kto. yo) Pito. Vo: t, v). (2) 
— 0 0 

This relation'is an extension of form. 1.1(4). It can also be written 
in the following form: 

4- oo : : . . - • - . . ' 

Wit.y) nit, y) = j dl W(to. y — l) n[to. y — /) P(/o, y — /; r,'/)'. (3) 
— o o 

When we apply tlie same development as was done in the deriva
tion of 1.4(4), the following partial differential equation for W is 
obtained: • ' • ' • " ' •'• 

Here again we can introduce an intensity of the current Q, defined 
by- - ^ _ 

Equation (4) can be written in the form of an equation of conti
nuity: . -

s 

-.;-|(«i^)=-f - ''•::y--Zyr\ ^'^ 

1.51. Isomeric diffusion; coefficient of diffusion 
Equations 1.5(2); 1.5(4); 1.5(5); 1.5(6) remain valid-when we 

return to the case of constant density. They can be simplified in that 
case by omitting the constant factor n. so that 1.5(2) and 1.5(4) resp. 
become: «. 

Wit. y) = jdvo Wito, Vo) pito.yo:t.y), ' • (1) 
and -°° . 

dw d i 1 „A , c2 / p 
dt , --iiv'^j+^f^-^)-,. : î> 

As these equations respectively are of the same form as 1.1 (4) or 
1.4(3) and 1.4(4), it is seen that the assumption of isomeric dispersion 
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does not lead to a serious restriction of the domain of applicability of 
the formulae. Equation 1.4(4) indeed can be retained also for isome
ric dispersion when it is understood that n does not denote the 
number of diffusing elements of fluid per unit volume of space, but 
e.g. the number of suspended particles per unit volume of the fluid, 
whereas, I. P etc. refer to the movements of the elements of this fluid, and 
thus are connected by eqs. 1.21(16), 1.21(17) and 1.21(18). This is a 
valuable result, which makes i t possible to make use of these rela
tions in many cases. They show that in the case of isomeric disper
sion, the degree of turbulence can be completely characterized by one 
quantity, viz. the mean square displacement P. In view of its central 
importance we shall write: 

:.. • . . . . . . : • • ...5?.,., . .....;. ' :., . - . . ' ; , ; • . . 

. ••v;-- -. ,;.;: : ^ -i^ = ,̂ • - ^ ; •, • • .̂ . •; p) 
.•r '1- • • - . • • - . ; • • • ZX , • I , • , • - -. •. - - ' , - , ' 

then: ^ :_J.t:,,',:,.• • ^ ' _ •. -. -̂  i • "' • 

T dy ' X dy ' -

Introduction of the function cp into eq. (2) transforms it into: 

dw •• d i dw\ -•• 

The intensity of the current now assumes the value:, ; • . . • • . 

Q ^ . ^ n . p ^ . . . . (6) 

The factor 95 evidently plays the part of a .^coefficient of diffusion". 

1.6. Diffusion of particles due to irregular movements c o m 
bined with a peculiar motion produced by exterior forces 

The assumption that the particles, apart from being subjected to 
irregular motions as considered before,'moreover suffer the influence 
of some exterior force such as for example gravity, which by itself 
will cause a velocity V. in the greater part of the preceding deduc
tions does not make much difference. In particular with regard to 
the general case of variable w formulae 1.3(2)—1.3(6), 1.4(1), 1.4(4), 
1.4(7)—1.4(10), 1.5(4)—1.5(6) remain valid, as in the derivation of 
these formulae no suppositions have been introduced concerning 
either absence or presence of a peculiar motion. • , ' ^ ^ 

Equations 1.21(14) and 1.51(2) for isomeric dispersion likewise 
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retain their validity. However, the function /(/Q, t) in cq. 1.21 (15) now 
will not be zero, but must take the value V. as in a domain of the 
field where P has a constant value the only cause which can produce 
a mean displacement in a definite direction is the peculiar motion. 
Hence we shall ha.ve: __, • • 

for isomeric dispersion. This can be seen also when we eliminate the 
peculiar motion by introducing a system of coordinates itself moving 
with the velocity V. Relatively to this system we have irregular 
motions only with displacements I' related to / by the equation: 

r = 1 — Vx. (2) 

Formula 1.21(16) and those following it now remain applicable if 
we read / ' for I, provided x is sufficiently small in order that we may 
neglect I'V and VH in comparison with I'^jx. Evidently we have 
both for variable andfor constant n: 

T T 

n p 
2x 2x ' 

I' _ I 
X T 

n P 
2x 2x 

V. (3) 

(4) 

If for isomeric dispersion we again make use of 1.51(3), we must 
replace 1.51(4) by .-, 

1=^+1 
from which: 

dy 
dtp 
dy + V. 

2 \ x ^ X l) = 
Equation 1.51(2) now can be written: 

dW _ d 
dt ~ dy 

or in slightly different form: 

.. dW 

ivt+''l'^ + 1 ^ ('•»''• 

a, — «̂''«T + i i - f V 
The intensity of the current Q then is given by, 

Q^n\^-+V]W n^icpW) VW — ' 
dw\ 
dy / • 

(5) 

(6) 

7̂) 

(8) 

(9) 
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The fact that in formulae (5), (7) and (9) the peculiar velocity V 
appears in combination with dqijdy, while evident from the way in 
which these formula have been obtained, deserves to be noted. We 
have seen already before that a systematic motion (not due to 
exterior forces) makes its appearance, when the intensity of the 
turbulence as represented by 99 = Pjlx is a function of y. 

1.7. Introduction of a dispersion function which contains 
the velocity of the particles 

In extension of our former considerations we introduce a new type 
of dispersion function: 

m(t. y.t + x. y -f /; v) dldv. (1) 

or in a different notation: - " ", 

Üit.y\x,l;v)dldv ; •- ' ' (2) 

which will denote the probability with which particles situated 
between y and y -\- dy at the instant t, will suffer displacements 
between / and I + dl in the interval from,^ till t -\- x, and at the 
instant t + x will have velocities between v and v -\- dv. This func
tion must satisfy the conditions: ^ 

/ dv (oit. y:t + x.y + l:v) = pit. y.t + x.y + I). (3) 

/ dv I dl w(/, y;t + x.y + l',v) = 1 .. , \ . (4) 

where in these and in all following formulae the integrations are 
extended over the whole domain of available values for v and / 
respectively. 

We define the following mean values: 

7 = / dv I dll ui't. y.t-^x.y \ l;v). (5) 

P = fdvl dlPo), (6) 

V = I dv j dl V oj, (7) 

W = j dv I dlv loj. '•' ' "••' ' • (8) 

Equations (5) and (6), in which the integration with respect to v 
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immediately can be carried out, of course are equivalent to 1.21(2) 
and 1.21(3). 

From the relation between the values of v and I for every individual 
particle and from the fact that the mean values defined in (5)—(8) 
all refer to the same set of particles, it follows tha t : 

^ dT ^J ,dP ' " ' ' \ Q X 

Now when K o 1 m o g o r o f f's assumptions can be applied, we 
may write 

• • ' " ' '^^ ^ , dP P "• • '•-'""• .,^, 
= — and --— = — . (10) 

(11) 

/; • ' dx' X 

Hence we obtain: 

, ' V = ^ : 

and consequently for isomeric 

• .,^i^^.'V, ,-•>.•'•' ', • ' . •. • . • 7 = 

dx 

2 T 

dispersion: 

= - 1 - vl. 
dy : -

(12) 

1.71. Expression for the current 
The mean velocity v of the particles present in the element bet

ween y and y -|- rfy at the instant t, for the general case of variable 
n. is given by the formula: -

nit.y) v= I dv I dl v nit — x.y — /) Qit — x.y — I'.x.l'.v). (1) 

When we develop the product n(i — x. y — I) Qit — x. y — i ; T, I; v) 
into the series: ' '• ' 

a /2 â  

7t{t — T, y) Qit — T, y; T, l; v) — I ~ inQ) +'2-^ i^^). 

we obtain: 
.-, a r^ 32 ,-^ - • • • • _ 

nv = nv—-i~ in vl) A-^ ^r-^ in vP). 
,\- dy oy- . , 

Properly speaking the right hand side of this equation refers to the 
instant t — x. but again we take no account of this difference. Fur
ther we discard i)̂ ,̂ as this must be equal to | ( i Pjdx).-which will be 
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of the order P/3x, and thus according to K o 1 m o g o r o f f's 
assumptions is negligible for small values of x. Finally nv. from the 
definition of v. must be equal to the intensity of the current q. 
Hence we obtain; 

• , • • • • . . ^ a r-. . - . . • , , • 

• ; • . q^nv — ^invl). ^ J ;\ ; ,,„ (2) 

Having regard to eqs. 1.7(11) it will be seen that this formula 
indeed is identical with 1.4(8). 

1.72. On the part played by the systematic velocity 
It has been remarked in 1.6 that the appearance of a mean dis

placement of disperson I different from zero can be the result of two 
effects, viz. the presence of a ,^peculiar velocity" V due to exterior 
forces as e.g. gravity, and the inhomogenity of the turbulence which 
makes P a function of y. In view of 1.7(11) we therefore must con
clude that in general v will be different from V. This likewise is 
indicated in the original form of the equation of F o k k e r and 
P l a n c k as given by these authors. The point is of importance, as 
in a paper on the distinction between irregular and systematic 
motion in diffusion problems B u r g e r s apparently started from 
the idea that a systematic motion always should be the con.sequence of 
the action of exterior forces or of flow in the medium in which the 
particles are dispersed ^). B u r g e r s did not make the distinction 
between ,,systematic" and ,,peculiar" motion as introduced at the 
end of section 1.21, and seems to have assumed that in the absence of 
exterior forces there would be no systematic motion. This clearly 
cannot be true under all circumstances, for in that case the first term 
on the right hand side of 1.71(2) would vanish so that q would re
duce to : ' , • 

In the case of constant n but variable intensity of turbulence this 
equation would still lead to a transportation of particles. From the 
equation of continuity 

' • '" - '• •-. !• 1 ; 3?? _ S? ,; • ,: • •:.•: •:•• . , ' 

, >..>-.-V .••.•••,. ^ ' ~ ' ^y.- •>.. : • ? • ^ ^ . , ;•:;.;•: ^-vf,. tV/ 

') J. ^!. B u r g e r s , ,,On the distinction between irregular an<i systematic inotión 
in diffusion problems". Proc. Acad. Amsterilam.i-i, 344,.{I94i). '; ' ': . . ;ii:r iii 
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it would then follow that the density of the particles could vary in 
the course of time, and a stationary state could be reached only when 
the product n vl should be a linear function of y. In the case of a 
liquid with con.stant density subjected to the permutation process 
described in section 1.2 this would lead to a contradiction. This 
contradiction of course is obviated when we observe that in the case 
of a liquid of constant density according to eqs. 1.7'! 1) and 1.6(1) 
the relation exists: , . 

7 = ^ ( v / ) + V. •• [ (*) 

by means of which 1.71 (2) is transformed into: 

;. -.. .- g = nV—vl~ - ...-V (**) 
dy 

which properly vanishes when V is zero and n is constant. 
We cannot assume general validity for the relations (*) and (**) in 

all cases. In fact it is known that in the case of a gas in which a non 
homogeneous field of temperature is kept in existence the condition 
of equality of pressure necessary for a stationary state requires a 
non-homogeneous distribution of the density. It consequently can
not be true that the current should depend exclusively upon (a) 
exterior action as evident in V; and (&) the gradient of the density 
dn/dy; in a number of cases the gradient of the turbulence must play 
an explicit part. We might describe this in general terms by speaking 
of some kind of ,,osmotic pressure", which depends in part upon the 
density of the particles, in part upon their state of motion. In the 
case of the liquid of constant density this ,,osmotic pressure" comes 
into play at the slightest tendency towards a deviation of the density 
from its normal value; in other cases, e.g. in a gas, it depends both 
upon the density and upon the thermal agitation. It must be thought 
possible therefore that in the case of particles suspended in a liquid 
of constant density, inequalities in the field of turbulence, while 
leaving unaffected the density of the liquid itself, nevertheless may 
produce an unequal distribution of the particle density, in such a 
way that particles are driven from the regions of strong turbulence 
and tend to concentrate in regions of weak turbulence. 

Whether such an effect will occur in any specific case can be foun^ 
when the dispersion function pitg, yg] t, y) is given, by calculating 
the values of / and P and inserting them into eq. 1.4(8). As has been 
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stated already the dispersion function, however, is not more than a 
purely phenomenological description of what happens, and there is 
no possibility of distinguishing between the effect of exterior forces 
and the effect of inequalities of turbulence in producing a non-homo
geneous density distribution from a knowledge of this function alone. 
We must accept it as it stands, combining within itself the result of 
both,effects; it is impossible to calculate the value of V from this 
function and so to separate out the part played by a peculiar motion, 
when no other data are available. 

Nor does the extended function coitg. yg'. t, y; v) introduced in 
section 1.7 promise direct help in this respect. It can be used in order 
to calculate the values of t and ;;/; but as is seen from 1.7(9) these 
values do not give a new feature, as they can be obtained just as well 
from the function pitg. yg'. t, y). The function w may be used also to 
calculate quantities like v^; to decide, however, whether such quanti
ties will reveal to us features of the dispersion process which could be 
used to make a distinction between effects of inhomogeneous turbu
lence and peculiar motion, will be possible only when a physical 
theory is available, which gives us a real insight into what is happe
ning and not a mere phenomenological description of the results of 
this process. 



CHAPTER 2 

EXAMPLES OF DISPERSION FUNCTIONS ILLUSTRATING 
CERTAIN PROPERTIES DEDUCED IN CHAPTER I 

2.1. An elementary example of isomeric dispersion 
The differential equation 1.4(4) for the particle-density and the 

relation 1.21(16) which must be fulfilled by the quantities / and P in 
order that this equation should admit the solution n =.constant. can 
be illustrated by constructing some simple examples of diffusion 
processes. 

An elementary case is obtained as follows: let us take, at / = 0, a 
system of particles, lying with a constant density Wo on the positive 
side of the plane y = 0. To the particles lying between y and y -}- dy 
we first give displacements: . 

/ = i / ? y , • ' (1) 

where /3 is a constant smaller than 1, one half of the particles being 
displaced in the positive direction, the other half in the negative 
direction. We suppose the dimensions of the particles co be so small 
in comparison with their distances, that no attention need be given 
to collisions. 

In this case we shall have: , • 

7 = 0 , F=/S2y2, •,. ' . .. (2) 

hence the relation 1.21(16) is not fulfilled. Equation 1.4(4) taken in 
its original form ^^ , 

- < • , ^^ = - | 7 ( ^ " ^ H - ^ ( « „ y ) ^ ) • :(3) 
gives: 

^n=^[ng^] = no^\ \ , . (4) 

>) In this form the validity of the integral relation 1.11(3) is not involved, a,̂  no as
sumption has tieen used concerning a time dependence of the dispersion. 
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The iftcrease in density thus calculated, can be verified directly. 
In consequence of the displacements (1) for half of the particles the 
density is decreased to 

ng 
I + ,« ' 

while for the other half it is increased to 

« n . • ' . • 

1 - /9 • • . ' 

Hence the average density of the .system becomes 

' 0 / 1 , 1 \ _ '̂ 0 
2 \ \ + fi ' [ —^! \ —p'-' 

so that : 
ng^ 

1 _ ^ 2 "" 1 _ ^ : ^« = T T ^ ^ - «0 = i ^ ^ ^ ng(i^' (5)-

if /5 is sufficiently small. 
It will be evident how we can construct a case in which the density 

remains constant, viz. by giving to all particles an additional dis
placement . • 

ta = + ^^y, 

by which an expansion is produced which brings back the density to 
ng. The resulting displacements of the particles now become: 

• / = (/3 + i3^)y and / = ( _ ^ + ^2) y, (6) 

with equal chances for -(- and — signs. In this case: 

1= fi^y; 'P mp^y\ (7) 

In the expression for P a term j8*ŷ  again has been neglcjcted in 
comparison with /3*y ;̂ it appears that to this order of approximation 
(which corresponds to that observed in Chapter 1) the relation 
1.21(16) between 7and /«"is fulfilled. 

Equation (3) now reduces to: • > - . . •.. 

a a^ / B^v^ \ 
^« = -^ («o^^) + 3 ^ ( . o ^ ) . 

which for constant ng gives 

dn = 0. 

so that the dispersion described by eqs. (6) in fact is isomeric. 
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The fact that the introduction of the additional displacement/^^y in 
this case is an arbitrary procedure, illustrates the purely phenomeno
logical character of the dispersion function,which can be constructed 
for any case we choose. 

2.2. Generalization ' 
We can generalize the example of the preceding section by starting 

from a dispersion function of the typ?: 

/,„ = - — _ _ , - ¥^i7r. (1) 
^^ V(.Vo) . _ -.. V. . . . 

This function fulfils the relation . , 
•?r +00 

jdyPo^\ . (2) 

and gives: - • . 

, . • ^ = y - y o = 0; F = ( y - y o ) = ^ = ^ ^ . i3) 

We suppose a to be a large quantity (of the order T~*) ; the func
tion rp on the contrary will be of normal magnitude. 

From eq. 2.1(3), again starting with a constant density «o. we 
deduce: 

32 / ^2 

The change of the density can be eliminated by giving to each 
element of volume dy an expansion in the ratio 

. .̂  ^ a y 2 \ 4 a V ' 

which leads to an extra displacement: ' ' . ' "̂  • 

which is of the order of magnitude x~^ (or T). Writing for the sake 
of brevity: , . 

^ = l & ' ^ (̂ «̂  
we next consider the dispersion function: ' ' ' . 

Q, _ a'lw—y.—x(».)}' 
• - P = — = e ?<i^)' . - • . (6) 

', , •• . • 'Vn fiVo) •-/•'.' 
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This function again fulfils: . .; 

' ;., jdyp= 1, .;' . . '^ (7) 

while now: 
v ' J „ Ï ; . V* 

/ = y-.vo = r ^^=t̂  + ^^^i^. (8) 
as ;̂ '' (which is of the order a"* or x^) may be neglected in comparison 
with y)2/2a*. 

If the above reasoning is correct, then the function p defined by 
(6) should fulfil the relation: 

• \dyoP=\: . . / (9) 
—oo 

In verifying this relation we take note of the circumstance that 
the domain of values of yo which give a substantial contribution to 
the integral, will be small, as yo — y at most will be of the order a-^. 
Consequently we shall make use of series developments in which we 
restrict to terms of the order a^^ (which also is the order of x)- In the 
first place we have: 

â {y - Vo - xiyo"^)' = '^^{xiy) + (yo -y)i^+x) + Ï (y» - y)^ xT. 
where here and in what follows the functions •/.. y. X ^tc. when writ
ten without any argument will refer to the argument y. The expres
sion between { } can be simplified by introducing a new variable e 
so tha t : 

' _ _ le — x) 
••• ^..'- .... . ^ V ^ (1 +x') ' ^- - , - . . - - . < • • 

As fi can- be treated as being of the order a~ ,̂ the expression con
sidered reduces to : . . . . 

the terms discarded being at least of the order a~ .̂ The exponent can 
then be written: 

Ivlv) + (.yo — y) v' + 4(yo — yf ¥V 

= -~-r + ^ -^(3v.^-V.V)-

Leaving the first term apart the rest of the exponent is at most of 
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the order a~^; hence the exponential function corresponding to it can 
be developed into: 

-. • . 2i.H\e — x^'^>' , 2a*e"'v''̂  «^e* /-, -» 
xp* \p^ %p^ 

We further develop the factor \\xp{ygj occurring in the integrand 
before the exponential functions as follows: 

——- = — < I ^ -\ 5- (v — kw )} • 
ipiyo) f '. w w ) • • 

The integral finally takes the form: 

V ^ (1 + / ) V-' "• 'V • V 
—oo yj* + ^iw' — -lw) + -^/~ — —4" i-v" — W' ))• 

Working out the integration we obtain the result: 

1 ^ y' + ^ + ^ ' ' " 
2y.'^ 2a' 

This will be equal to 1 provided: ; 

.' = ^ È r - . . • : (10)' 
which is equivalent to (5a) above ^). 

2.3. Dispersion function fulfilling the integral condition 
1.11(3) 

In the construction of the dispersion functions mentioned in the 
preceding sections, no attention has been given to the condition of 

') An isomeric dispersion function can also be obtained by means of the following 
formula: 

/, = i l ] A ,-fc(,-i/.)' 
dy y n 

where ft is a function of y^, while ?; is a function of y defined by: 

f-^^°} 7-''""'"''• 
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integrability which was brought forward in 1.11 (3). A function satis
fying this condition is given e.g. by the formula: 

dy 

where k is a constant; x = t — tg: ri = f{t.y). i.e. an arbitrary 
function of t and y; while »;o = /('o> yo)- This function p at the same 
time fulfils the condition: 

• jpdy= 1. \2) 
'—oo 

Integration with respect to dyg. however, in general will hot give 
the value unity, and hence the dispersion process described by this 
function will not be isomeric. By way of example we take: 

V = y ' " : no = no''. ' - i^) 
so that 

k .- 'Évlh^yli')' 

This function will be applied over the whole domain from y = —oo 
to y = -|- oo, assuming that rj = y"'' is negative when v is negative, 
whereas y''» always will be positive. The singularity of p for y = 0 
will be considered as unimportant, as p remains integrable; it pro
bably can be obviated by taking a more complicated function for y, 
but this would make all calculations rather cumbersome. 

Integrations to be performed on the function p with respect to y 
can be carried out most conveniently by observing tha t : 

, / IT - ̂ 'J-Tsl!. 
pdy = 2,pifdr)=y JLe -̂  dt]. (5) 

' JIX 

As: 

^ = y — yo = I»? — % ) ' + 3(»; — no? no + ^\n — %) nl. . 

we find • 

. / • 

dlip^^^'lf. [6) 

I'd/ 72 y, - '5 r3 45 ^2^2 9 ^Jr ' . 
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Hsnce for r ^- 0, writing y for yg, we obtain: . , -

:::. • -i-i?- ;• / <" 
Direct calculation shows that with these values the partial diffe
rential equations 1.3(5) and 1.3(6) for the function p are fulfilled. 

The relation 1.21(16) evidently is not fulfilled. The expression for 
the current becomes: 

3 v''' d (9 y'l' \ • • \ 

A stationary density distribution] can be obtained when q is inde
pendent of y. The solution of eq. (10) for this ca.se is: , 

« = CiV-'/' + C^y-'i', • • ' (11) 
with: • , 

The expression ^7) for P shows that for large values of the time 
interval the mean square displacement, in this example, increases 
proportionally with T*. 

2.4. Dispersion function fulfilling the three conditions: 

• • '. {dyg p=\. \ \ ; • •' (2) 

• -' P'U yo: t, y) =- \dz pitg, yg; t", z) pit", z: t, y) (3) 

where tg < t" < t. When a dispersion function fulfils these condi
tions simultaneously, the mean displacements /, / and the mean 
square displacement P derived from it must fulfil the relations: 

1 — 7 • - : . <*' 
T 3y ^ 2T , 

Because of the importance of the isomeric dispersion process for 
the study of incompressible fluids it may be worth while to find an 
example of a dispersion function which fulfils the conditions and 
properties above, and which allows us to study, in a more concrete 

http://ca.se
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way, the properties of isomeric dispersion functions and of mean 
values in connection with the results obtained in Chapter 1. 

The simple-st case of a dispersion function fulfilling equations (1) 
^3) is G a u s s ' function: 

1 (y—i/o)' 

where è is a constant. However, as, in consequence of its symmetrical 
character, it gives: 

/ = 0, / = 0 and -— = constant, (7) 

it presents a rather trivial case. All dispersion functions which have 
a symmetrical character are useless for our purpose. After a number 
of preliminary attempts it was finally found possible, however, by 
introducing a generalised form of (6), of ynsymmetrical character, to 
obtain a satisfactory result. As it is useful to be also able to verify the 
relations of section 1.7, we shall, at once, start with the to-function, 
from which the /«-function is obtained by means of formula 1.7(3). 
For this w-function we shall take the expression: 

<,) dv dy = y ^ Y ^ n + |5oT + yo^ + ögk^) e^ T '̂̂ c^ »'• dv dy. (8) 

the notations having the following meanings: 
1] = monotonous function of y, varying just as y from — oo to 

+ oo, with finite derivatives and drj/dy different from zero 
for all values of y, 

T = (t — tg). (numerical factor); it is assumed to be a very small 
quantity, 

.A = rj — r]g; it is practically restricted to a region having a width of 
the order of \^x. 

jig. Yg, d'g, 6 == functious of yo, to be determined from the conditions 
+ 0 0 

which must be fulfilled hy p = /dv M and by m itself; it will be 
—00 

found that they are given by the following expressions: 

no . 

0 -- •̂ 
2%T 

nl n'ó^^ 
Qn'o' 2rj'oh • 

a very small constant, at most of the order of the minimum, 
value to be allowed for T. • 
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By carrying out the integration with respect to v we oDtain the 
dispersion function for the displacements alone, as follows: 

dl] \' 
P= ldvco=-^^i\+PgX + yo^ + öoP)e r, (9) 

OO 

We shall investigate the relations (̂ 1)—(5) with the aid of this 
formula. 

2.41. Relations fulfilled by the function/) 
I. For constant yo (and therefore also constant rjo. fto, Yo, ^o) '• 

-i-oo -f-oo 

-. ;"• •• j'dy p = I'd?. : ^ (1 + ôT + Yo^- + ^0^') e~r = 
—oo —oo 

; . = 1 +/5ot + i V - • 

In order that this expression shall be equal to 1, it is necessary 
that • 

ô = - i V 0) 
II. We calculate I and P Dy the following formulae: 

-J-OO ^ -f-OO 

• T=jdyiy-yg)p. P = [dyiy~Vg)^p. 
oo —OO 

Here y can be considered as a function of ?., which can be deve
loped into the series: . 

y ^ < ' + % 2 ,^3 él^M ^^5J- 12) 

With the approximation that terms with higher powers than X^ are 
negligible we find: 

' ^ ^ Yo no . l^ ^ 1 
X 2r,o ' Ari'g^ ' 2x Ari'g^ ' 

The relation 

T dyo\2x) 
consequently requires: 

Hence: 

^ 0 = - ^ ^ : ^ 

X 2rio^ ' 2 T <%3 14) 

/ ^ 
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II I . In the calculation oi f dyg p, y must be considered as a con-
— oo 

stant. Now yo can be considered as a function of X. which can be 
developed into the following series: 

A 
3'o = y - y -

;.2 ri" }? 

2 »?'» + 6 
in'" U'" 

3»?"2 
^'5 

Here r] . tj". r]'" refer to the constant value of y and consequently 
are likewise constants. We also require corresponding developments 
of jSo, yo' ^0- However, in the factor {1 -(- figx + yo-'' + ^o^^} it is 
sufficient to develop yo only; we have: 

Yo = Y + Y i.vn — y) = y — —T"' • - . 

so that the factor becomes: 

We now have to calculate: 
A' •f oo ^ 

- -oo 

After simple integrations of G a u s s ' functions, the expression 
reduces to unity, .so that, indeed: 

I oo 

l'dygp=]. • • / • - (5) 
— o o ' 

IV. For isomeric dispersion we have: 
I-oo 

't= jdyg[y — yg)p = 

= jIxU - A ^ ; - - - -1(4 + 1-%) (1 -r yA)^^^ = I'^'i. (6) 
./ \ 'ij ^ )\T} 2 T] ^ J \/7ix 2r]^ 

so tha t : 
J T 
X X 2ri'^ 

V. We finally calculate the integral of the product in 2.4(3): 

(7) 

-1 oo __ /\r 

fdy,^ (I + figx, + Yo^r + MÏ) ^ = J • 
J ay I \/ TTTj 

A.' 

• ^ H + ^ i T 2 + y A + V . | ) ' 
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where 

- ^ • -^1"-»/i — »?o. h = n — nv ' • •• 

When we put : 

, ' I in'^i+no'^i) 

we have: -

Ai = // -h (»? — no) "^ = /^ + ''i- ' . • • ' 

; ' ^-1 = —li + in'^no)-:^ = —li + ^i, 

and the exponent in the e-function becomes: . • 

2 _ I (*?•— >/o)' .= ;••. • ,'̂  

Further /SQ. YO. ^O '""^ constant, while ft, yj, ój are variable; from 
the latter y^ only has to be developed: 

v.^ - yi = 70 + (.Vl—yo)yó = yo + -̂i B" • • ' . 

After substitution for Ai, Ag we must calculate: 

OO 

/ 

+ ( ? + 7̂0 ) ( - /'-' - Z'»-! + /«''2 + ''l''2) + 
, : . , •- Vo 

-K <5o',2/̂ 2 + 2/iVi — 2//,v2 +vl + vl) | . e' ' ' -.-. " - = 

+ f ri + 4 ) '̂i". + \A + 'D - (ŷ  + 5 - 200)"̂ }̂ -

In order that the right hand member shall be equal to p. it is 
necessary that the expression between {....} take the value: 

1 +/5oT-ryo' '? — W + «^o'»?—'7o)̂ - . . . 



2.41; 2.42] DISPERSION FUNCTION FULFILLING ALL CONDITIONS 43 

This will be the case if 

,so tha t : 
2^ 2rj' ' 

III c "*> 

s no , 5 tjo^ 
' « - 4 , ; 3 + 8 , i * - , 

. -: (8) 

; • ' (9) 

We observe that with the value (8) of d. we obtain: 

(1 + ^oT, + yo^i + V l ) (1 + ftr^ + Yi^2 + ^^l) = 

- . = 1 + ôT + Yo'n — no) + Kn — %)'- (lo) 

Hence the dispersion function 2.4(9) fulfils all the conditions and 
properties required. 

2.42. Integro-differential equation fulfilled by the function 

w(/o. yoi^. y;^') 
We now return to the function co. which involves the velocities of 

the particles at the instant t. In order to find the value to be assigned 
to the quantity 6. we shall first deduce an integro-differential equa
tion to be fulfilled by w in order to guarantee the proper connection 
between v and /. We consider a large number N of particles which a t 
the instant tg have started from the region between yo and yo -j- ^Vo-
The values of the position coordinate y and of the velocity v which 
these particles have acquired at the instant t can be represented by 
means of points in a diagram, having y and v as coordinates. The 
number of points in any element dy dv of this diagram will be equal 
to A'̂  (oitg. yg', t. y, v) dy dv. 

The particles which at the instant t have their representative 
points in an element dy dv, at the earlier instant 1^ = 1 — dt will have 
had their representative points in other elements t̂ ŷ  dv^ of the .same 
diagram, in such a way that the difference of position coordinates 
y — yi can be taken equal to v.^dt, where Vy^ is the velocity of the 
particle at the instant t — dt. It is not possible to give a relation 
between the velocity v^ at this instant and the velocity v at the 
instant t, as the velocity in general will have suffered irregular 
changes in the interval dt, in no way correlated with the values of 
fj or yj. It is assumed, however, that these changes are of the order 
of dt. or at least that their mean value is of the order of dt, so that 
the expression v^dt is a sufficient approximation to the value of 
y — Vj. Hence all the particles which at the instant t have their 
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representative points in the element dydv. at the earlier instant will 
have had their representative points distributed over a series of 
elements dy^dv^. determined by the equation: y^ = y'—v.^ dt. We 
shall call this series of elements dy^dv.^ the series II . 

When we consider another element dy dv of the y, iv-diagram for 
the instant t, having the same value of y as the element dy dv consider
ed first, and ask for the positions of the representative points of the 
particles at the earlier instant t — dt, we shall find that these repre-
.sentative points were situated in the .same series II of elements 
dy^ dvi- It follows that the total number of particles 

' r •' • ' ' +00 ' ••' ' 

- N dy dv coitg, yg] t, y.v). 
— 0 0 

which at the instant t have their representative points in a series of 
elements dy dv all belonging to one definite value of y (but corres
ponding to all the various possible values of v), which series we shall 
indicate as the series 1, at the earlier instant t — dt will have their 
representative points in elements of the series 11. 

On the other hand when we consider any one of the elements dy^dv^ 
of the series II , we shall find that the particles which, at the instant 
t — dt, had their representative points in such an element, at the 
later instant t will have their representative points moved to ele
ments dy dv for which y = yi + v^ dt, while the values of v may have 
changed in an irregular way. That is to say, the representative points 
of these particles have moved to elements of the series I. 

From this we conclude that all the particles which at the instant 
t — dt had their representative points in elements of the series I I , 
will have their representative points in elements of the series I at 
the later instant t'. while, on the contrary, all particles which have 
their representative points in elements dy dv of the series I at the 
instant t, must have come'from the elements of the series II . It follows 
that the total number of representative points in both series of 
elements must be the same. As evidently the number N plays no 
part in these considerations, and dy.^ = dy for constant v. we have 
the relation: 

-i-oo -i- 00 

j dv coitg. yo; t. y. v) = j dv^ coito, y»; t — dt.y — v^dt; v^). (1) 



2.42; 2.43] DISPERSION FUNCTION FULFILLING ALL CONDITIONS 45 

from which 

— o o 

Making use of the relation ~ » 
-(-oo 

' '•^°'' ' fdvvco^^pe (3) 
— O O 

we obtain: 

'± + ^ipO) = 0. (4) 

This equation can be used to 
calculate Ö. After substitution 

Fig. 2.42. for p. this equation gives the 
following approximate expression for Ö, keeping to terms of the 

orders -—=- and 1 (detailed calculations will be omitted): 

- 2 ^ ; T Qn'o' 2f]'oH • , - W) 

2.43. Some mean values involving the velocities 
By putting x = t — ô- t = y — yo. Pito, yo: t, y) can be written 

as pitg. yg: to + T, yo + /), and eq. 2.42(4) becomes: 

dp 
' , 'd^ ' dl 

When we multiply both terms in the left hand member of this 
equation by I and integrate with respect to /, we find: 

-i oo '• oo , , 

, ^ fdll^ ^ ' • ' • ' • ^^ 
I dx 

+ ^ipo) 0. 

dx dx 
fdllp 

dx 

-I-oo -l-oo -I-oo 

j dll~ipe) =lpd --j dlpO. 

- o o — o o 

The first term of the right hand member is zero, as p vanishes for 
/ = -j- oo. The~second term, according to 2.42(3), is equal to : 

4-00 -f-oo 

— dl dv V CO 

- o o •—oo 

and thus, in consequence of 1.7(7) has the value: — v . 
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(I) 
Hence it follows tha t : 

In an analogous way 

. 1 1 ••• • • • • • 

we 

/ • 

dl 
dx ^ 

obtain: 

ct 

- V. 

dp 
'dx' 

+°° '• •• •" "•• ',. • -. 

I'dip^ipd)=~27i, : .. • 
so that ^°° ^ 

Equations (1) and (2) are the relations between the mean values 
involving the displacements on one side and the mean values in
volving the velocities on the other. They can be checked easily by 
calculating explicitly the values of the integrals 1.7(7) and 1.7(8); 
we find as results (detailed calculations being omitted): 

-t oo 

^=l-dipö = ~^^%, ^ ' (3) 
-•• - — o o 

'. - ' •• • -l-oo 

,.:. .,,.Vl = fdlpdl = -^., ,,. , . . , / . ,: (4) 
.' ~nn 
- - O O , , I I 

By comparing these values with those of l/x and P/2x found in 
2.41(4) we see that relations (1) and (2) are verified. 

In 1.71 we have already defined the resulting velocity of tran.s-
portation by: 
* -̂  - f oo ; oo 

V = I dy I dv V p'{tQ, VQ ; t, r , v). / . .̂.,̂  
—-OO — o o 

In the present case of isomeric dispersion, where p' = p, we find: 
-)- oo -i- oo 

; = [dyg [dv , | / -A g (1 + fi^r + yoA + V^) T^'-'•"'-"'", 
- o o — o o 

here fig. YO, ^O ^"d d all vary with Vo- Integration with respect to v 
gives: +oo 

v= [dyg~^'^i\+figX + Yo^ + dgX') c ^̂ 9 = . • • • • 
^ o o - f o o A' 

• - f^^^,i<+>f-•••)('+lir + yi+••'•)• 
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After effectuation of the various Gaussian integrals we obtain: 

,• v = 0. (5) 

This is correct because in an isomeric dispersion, there is no diffu
sion flow q = nv. The result is in accordance with the formula 
1-4(10): / . • ; . . : ^ . . - ^ . . : . . „ , 

because: / = — /. 
Finally: 

-Hoo i-oo 

5? = jdl[dv v^ CO ^jdl (-^^ + 0^) ^ = 2^ + g ^ . (6) 

—oo —oo 

This formula shows that v^ increases when x decreases. However, 
we cannot decrease x indefinitely to zero, as there is a finite interval 
of correlation. When k is very small in comparison with the value of 
r, then v^ will be practically constant. 

2.44. Investigation of the product integral for the function <o 
Let us write: 

« = y ^ ' ï ' O + /̂ ô  + y<^ + ^0^') ^"'̂ ^"'•^ '̂•; 

'^i = j /^ajT ' ï i t l -I- figXi -f yo^i 4- V l ) « 

A „ 'M , « , , . . : , A 52^ - ^ ^ - M f - Ö , ) ' 
^•' = y^n'i^ + ftT^2 + yî 2 + ^A) e 

A,' 

with: 
A = ?; —j/o, Ai = ;?i —>?o, ^2 = n ~ nü 

fig, Yg. dg = functions of rjg or Vg'. ,, 

fti'Yi,^i=^ functions of rj^ or y^: 

^1 no no^^ . a ^ ^i Vl ni^^ 
" 2ri'gXi eifg^ 2r]'gHi ' " ' 2»?;T2 8J?;3 2r][H2 ' 

It is asked to prove that the integral 

- 0 0 -J-00 

I rfvj / dvy Oil ojii = (u (1) 
— 0 0 — 0 0 , ' 

for constant values of yo, y and v. ., 
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By the integration with respect to v^, the factor 

t k ^-M.,-
n 

disappears from the product cojcon. In the integration with respect 
to yi we must take into account that terms of higher orders than x 
can be neglected; therefore we can write: 

yi = yo + yó(yi — y) = yo + yo -r: 
no 

ft = /5o; 

yi = yo -

^1 = ^0." 

0 -. 1 '. " «'i2 

g ^ H _ îA2»? _ no noh 
' 2»?;T2 '2r]g^x^ 8f]g^ 2tjóh^ ' 

We shall omit the detailed calculations anÖ mention only that the 
following transformation of variables is introduced: 

Ti -f- Tj = X, Ai = II + I'l, A2 = /J + V-. 

where: . . ' 

"1 = in — no)-^. •^2 = in — no) ~f. vi + v-i = n ~ no-

Then according to 2.41 (10): 

(1 + /̂ o î + Yoh + ^A) (1 + ft^2 + yi^2 + M i ) = 

= 1 -f- /?oT -(- yo(»? — no) + K'^ — no)'^-

This factor is thus a constant and has the form needed in the 
resulting function co. The exponent becomes: 

Al , A2 -(f + f)-kiv-e,)^ = 

= ~fi^-^—kiv-^ a.fj, ~d)^ in~no)^ 

2»?ó^2 2??Ó*T, 
'̂ ''̂ ''« = order i ; 

Q ̂  in — no^ __ nl _ nlin — %)^ 
2)?ó^ 8»?ó* 2»?;3T 
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The left hand member of (1) consequently takes the following 
lorm: 

• - . - ; • 4-00 

] / ~ ^ (1 + /Sor + yoA + dgP) e-"^ [df^ r ? ; Ï ; - « ' ' - ' ^ - - ' ' > * = 

where 

k* = k"^^i^(= order '^ 
X 

In the end result we see that there is still an influence of x^ and x^ 
in the distribution of velocities. However, integration with respect 
to V gives the right result for p. as terms depending on TJ, X^ 
will then disappear. Further if k has been taken very small with 
respect to T, the influence of TJ, TJ will be very much reduced and 
becomes practically unimportant. 

2.5. Isomeric dispersion function constructed from Gauss' 
error function by introducing a discontinuous change 
in b 

It has been attempted to construct a dispersion function by 
solving the partial differential equations: 

(1) 

(2) 

where cp isa given function, for which the following course has been 
taken: 

't n * ' ' " . 

for y < 0 : cp = ~ 

for y > 0 : q> = ~r, , '" '•-
4 

a and b being constants. The expression for p obtained in this way 
has different forms, depending upon the signs of y and yg. We 

4 

dp 
dt '^ 

dp 
dig 

d 
dy ?it. 

d 

3yo 

, dpi 
y) a 

dy 
' 

H'«'^»'l^l 
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therefore write: 

j y < 0 : /., 
Vo < 0 j 

V > 0 : i>„ - , 
I * Vnbx 

V: 
(i/—i/o)' j \ (w-ry . ) ' 

e ar _| - ^ _ - e ' ar 
TtiX \ 71.XX 

B 

yo>o 

y<0: PX = 

y>0: pt 

B* 

Vnax 

( i / - g ) ' 

nbx 

_ I t rM' A* - 'î +y»'' 

Vnbx 

(4) 

(5) 

(6) 

(7) 

In order to determine the values to be given to the coefficients 
A, B, A*, B*, a, a*, condition 2.4(1) furnishes two equations (one 
for Vo < 0 and one for yo > 0), while the circumstance that both 
the ^-function itself and the function cp dpjdy must be continuous at 
y = 0 furnishes 4 other equations: 

Pi=-p2: PX==Pl 

•'"(^f)r(^llM^I*)r(^ f )/'.•:-

These 6 equations determine the 6 coefficients; we find: 

B 

\/a 4- \/b 

2Vb 

A* 

B* 

\^a -f- \/b 

• \/a — \/b 

V^ + v^ 
2-\/a 

•\/a -f v 'è 

A + B = \. 

A *+ B* = \. 

'b 
= ^yo where k = V - iy-g < 0) 

la 

(8> 

• ..•" a* =/ t*y„ where ^ * _ = | / ^ (yo > 0). 

For the function .so defined we have investigated whether the 
relations 2.4(1)—2.4(5) are fulfilled. This was easily found to be 
the case for 2.4(1)—2.4(3). 
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More attention was necessary in the case of 2.4(4) and 2.4(5). 
It was found that Ijx, Ijx and djdyiPj2x) all become zero for T = 0 , 
so that formally eqs. 2.4(4) and 2.4(5) appear to be fulfilled. Equa
tion 2.4(4) is moreover fulfilled for small non zero values of x. This 
is not the case, however, with tq. 2.4(5). This result was somewhat 
disappointing; it may be connected with the discontinuity in 9?. 
Perhaps it must be considered as a warning that K o 1 m o g o-
r o f f's assumptions are still somewhat schematic. As the integra
tions already in the present case become very cumbersome, the 
calculation will not reproduced here; for the same reason we have 
refrained from seeking other forms for p. 



CHAPTER 3 , . ^ 

TIME MEAN VALUES CONNECTED WITH THE 
MOTION OF A PARTICLE 

3.1. Introductory remarks 
We may distinguish between two methods for investigating the 

irregular motion of particles. The first one is to consider a great 
number of particles simultaneously and to introduce a probability 
function for the distribution of the displacements or for that of the 
velocities. In this method the behaviour of every individual particle 
is not considered. This is the statistical method applied in Chapter 1. 

In the second method the history Of a single particle will be stu
died. For this purpose the velocity v of the particle must be consider
ed as a more or less irregular function of the time t, and the mean 
value will be calculated over a certain interval of time for this parti
cular particle. I t is the object of the present chapter to investigate 
mean values of this kind. An important problem will then be to find 
a connection between the two methods. 

Along with the function v(<) itself we have to consider functions 
of V, say Giv), obtained by performing certain operations upon v. 
We must distinguish between functions containing only v and its 
derivatives, and functions containing also integrals of v, as for ins
tance the displacement of the particle. The necessity for this dis
tinction is to be found in the circumstance that provided a certain 
central assumption is fulfilled, any non fractional function G(w) 
containing the velocity or derivatives of the velocities always 
remains finite, whereas a function containing the displacement 
may increase indefinitely with the time. 

3.11. Central assumption concerning the behaviour of the 
function vit) 

Consider a more or less irregularly oscillating function of the time, 
vH). It will be assumed that this function presents a stationary 
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character in the statistical sense. This assumption will form the basis 
of all deductions given in this chapter. Though its general meaning 
is not difficult to be .seen, it contains so much that it is not easy to 
express it by means of any single formula. It leads to an infinity of 
consequences, apparently independent from each other, every one 
of which illustrates an aspect of the stationary statistical character 
oivit). 

A very general category of these aspects can be described as fol
lows : Let Giv) be an] arbitrary function of v and its derivatives 
iv, V, . . )•, but not containing any integral of- v. At every instant t the 
function G must have a finite and definite yalue. We then calculate 
the quanti ty: ~ , , 

i, + T 

Gifo. T) = ^^j dt,G{ti)- (1) 
t, 

to be called the mean value of G. The assumption concerning the 
stationary character of vit) in the statistical sense then requires that 
the quantity G, with sufficient approximation, can be considered as 
constant, independent of both to and T, provided T surpasses a 
certain limit T'. The words ,,with sufficient approximation" mean 
that the variations of G with respect to ô and T must remain below 
certain limits, sufficiently small (in view of the purpose of the 
calculations) in comparison either with G or with the amplituds of 
the oscillations of Git). 

The .simplest cases are obtained by putting G respectively equal 
to v^, v^, v^, Then we must require e.g. that the variations of 
the quantity: ;,; - ' 

. t.+ T 

- ' ^ V^ ^ ^j dt,{vit^f ' " • ^ (2) 

are sufficiently small in comparison with ŵ  itself. An analogous 
condition can be given with respect to v^. v^. 

It can be expected that when the condition is fulfilled with 
G = resp. v^, v^. v^. .. .., it automatically will,also be fulfilled for 
G = resp. \ V \, \ v \. \ v \. . . . . and tor G = v. v. v. .... ; likewise 
for G = vv, etc. 

The class of functions of v which are enclosed in the form of G 
considered above does not contain all functions without integrals 
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of V which we have to introduce in' statistical investigations. We 
have also to consider functions of the type: 

vit) vit + rj). 

and we must require that the mean value of such a function likewise 
will be independent of tg and T, provided T > T'. This, however, 
will be a consequence of the^assumptions already made, as is easy to 
prove by a development of î (; -j- rj) into a series proceeding accord
ing to the increasing powers of rj. 

3.12. Correlations 
Consider the mean value: 

S rj) = vit) v^t + rj) - i . / dt^ vit,) v[t, + r,)- (•) 

t, 

This function will be called the correlation of the function vit) for 

the interval rj. Evidently when rj is zero, we shall have: 

Sio) = 7^. (2) 

We introduce the coefficient of correlation, Rirj), by means of the 
formula: 

Rirj) = ^mL±^ ^ ^ . (3) 
i'(/j^ Sio) 

It can easily be proved that Sit]) [and similarly, Rirj)] is an even 
function of rj. Indeed, as Sirj) is independent of tg. we have the 
identity: 

S^n) - -fl dt, v[t,) vit, + r,)^-^J dt, vit,) vit, f r,) =-• 

ta t„-^TJ 

- .'»+^' 

= YJ *2 ''('a — n> <t.,) == .9 (— rj). (4) 
' . . • . . - „ - - , . < . 

3.121. Functions with limited duration of correlation 
An important class of functions vit) is of such nature that the 

correlation Sirj) has a value appreciably differing from zero only for 
a limited domain of values of the time interval rj. so that we can 
write: 

Sirj) = 0 for ri>i}. (1) 
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In this case the new quantity j?, [which is smaller than T' (usually 
T' must be chosen much larger than §). is the so-called upper measure 
of correlation to be found in the course of v{t). 

The degree of approximation of eq. (1) must be such that 
oo 

ƒ drj S'rj) is convergent. (2) 
0 

In many cases it is possible to define ê in such a way that it can be 
taken as upper limit of the integral in (2) without impairing its value. 

In order that (1) may be valid we must have: 

jdt, vit,) vit, + tj) < m for y > ê (3) 
't., 

where m is a finite quantity such that mjT' is negligible in compari
son with v^: thisinequalitymustapplyforarbitrary valuesof^o^"^ ^• 

Introducing the coefficient of correlation Rirj) we shall write: 
oo & 

0 = I drj Rirj) m j drj Rirj). (4) 

This quantity has the [dimension of a timic and will be called the 
average duration of correlation. As Rirj) < 1, we have 0 < &. 

It is useful aLso to introduce the correlation integral: 

oo 

^ l' _ 
vv = j drj v{ti vit +, rj) = v^ 0. (5) 

3.122. Corol lary 
Consider the integral: 

r, • T 

Iirj)=^^ \dt,vit,)vit,±rj).. (1) 

where it is assumed that T > T' as before. The integral will reduce 
to the type already considered, when the denominator before the 
integral is changed into T — r]. We therefore write: 

m = ^ ^ Y^n I '^^' "^^'^ ''̂ '̂ + '̂^ = ^~T^- ̂ ^''^• *̂ ) 
t.+i; 
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This formula will hold as long as T —»; is sufficiently large (larger 
than T'). Now 5(>;) will differ from zero only when ?; < ^, in which 
case r] <^T.In that case we can replace (T — rj)jThy unity, so that: 

lirj) = Sirj) = v"^ Rirj). (3) 

For large values of tj the functions Sirj) and Rirj) vani.sh. This will 
also be the case with lirj), as can be seen from formula (1) by 
observing that the integral itself will be smaller than m when rj 
surpasses •&. and that mjT can be neglected in comparison to v^. 
Hence formula (2) and even formula (3) may be used generally for 
all values of rj. 

3.123. Proof that w = 0 for functions fulfilling 3.l2l(l) 
It will be evident that 3.121(1) and 3.121(3) can be valid only 

when vit) changes sign sufficiently often in such a way that neither 
positive nor negative values will be 
preponderant. It can be proved 
indeed that the mean value of v 
must be zero in this case. We have: 

«. i '/• 

I dt,vit,), 

and consequently • • '' 
/.-i-7' 

iv)^={-^ldt,vit,)]' = 
[T. 

= -^l dt.J di,vit,)vit,). 
f 2 Fig. 3.123. 

In the double integral new variables tg. rj are introduced, in such 
a way that: rj = t, — t^: t^ = t, — tg. Having regard to the relation 
^in. tajjdit,, /a) = 1, the double integral is transformed into: 

7' T • • 

(«)' = ^ 1 drj I dt., vitg + <3 -r,) vitg + t,) =2 ¥' ^- . 

As v̂  and 0 are finite quantities, independent of T, (w)̂  can be 
made as small as we require by increasing T: Hence we conclude: 

- .-• - . : - iv)^ = 0; V = 0. • -,,-, ; ; ' • , . . ; (1) 
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3.13. Correlation when v is different from zero 
In the case where v is not equal to zero, we write: 

v'it) = vit)~l>. (1) 

The quantity v' may be called the fluctuation oi v. Formula (1) 
implies that _ 

v' = 0. (2) 

Instead of the quantity Sirj) introduced in 3.12(1) we define a 
new quantity: : -

t^+T 

a'rj) = v\t) v'it + ij) = ^1 dt, v'it,) v'it, + »;)- (3) 
u 

The coefficient of correlation then will be given by: 

, v'(t) v'it'+ rj) a[rj) 
Q n) = — ~ = —rr - (4) 

v'it)^- a(o) ^ ' 
The new functions a{rj) and p(»;) again will be even functions of»;; 
further the measure of correlation can be defined by the condition 

a[ri) = 0 iov r] > ê., . (5) 

or by: - ••• 
(«+Ï' - - • . • • . • ' - ' :• • 

I / dt, v'it,) v'it, + rj)\< m' for r)>ê, (6) 
't, • • 

while the average duration of correlation will be given by: 
oo 

- • ; • \ : . - _ ^ ^= \ drj Qirj). ' . _ ' . ' (7) 

-\ - ^- '"- '• • . Ö-.; "" ' . -' "' . • ••: ' 

In consequence of the assumption that w is a constant, the follow
ing relations exist between the functions Sitj) and aitj). resp. Rirj) 
and Qirj). which again are a consequence of the assumption that v is 
a constant: _ _ 

. ^ ^ . ^ , 2 ^ y ' 2 _ ^ (y)a _ ^ • ( 8 ) 

Sin) = <n) + iv)' = ^^ Q{n) + i^)' (9) 
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The function ©defined in 3.121 (4) with the upper limit oo is diver
gent, but for any finite value of t exceeding d we shall have: 

,'2 (^ )2 

0t^ drj Rirj) ^ ' ' ^ O + ^ t . (11) 
I) 

and likewise: 

vvi = / rfj; vit) v(t + rj) =V^d + iv)^ t. (12) 

0 

Finally we obtain the following extension of the corollary given in 
section 3.122: 

t,-\r („f7' 

lirj) = y / dt, vit,) vit' ± rj) = ^ \ dt, v'it,) v'it, ^ rj) ^ 

«.-• r 

+ -^j d\, (ï)-^ = ~~p^ cx-r,) + ^ ^ iv)'\ (13) 

In the first tetm, which differs from zero only for rj < &. we jïiay 
replace (T — rj)jT by unity. Hence: 

lirj) = arj) + ^ - ~ - ^ (?)2 = 5(^) - | . (̂ ^̂  = 

= i;̂  e;7?) 4- - 5 ^ ^ i~Ji2 =- 7^ /̂ (jy) — ^,- (?)2. (14) 

To shorten the notation we write: 

7^ ivV' 
- ^ - = V ' . - p ^ = l - v - (15) 

Then: 
R[n) = f Q'.n) + i^—w) (16) 

0t=rpe + i\~y,)t. (17) 

Important particular cases of these formulae are obtained: 
(a) when the fluctuations v' are very small in comparison to the 

mean value v. in which case y) will be a very small quantity; 
(6) when the mean value v is small in comparison to the amplitude 

of the fluctuations, in which case ^ will be nearly equal to unity. 
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3.14. Relative magnitudes of intervals of t ime 
In the preceding sections we have introduced two characteristic 

intervals of time: 
T' (in 3.11), being a lower limit for the duration over which time 

mean values are calculated according to form. 3.11 (1); 
ê (in 3.121), representing an upper mea.sure for the correlation in 

the cour.se of the function vit). 
The appropriate values to be given to T' and ^ are dependent upon 

the nature of vit). In view of the part played by T in our formulae 
the quantity T' must be chosen considerably larger than ^. In cases 
where the function vit) presents a stationary character in the sta
tistical sense, as has been assumed throughout the preceding deduc
tions, the value of T in form. 3.11(1) can be taken as large as we 
choose, so that there is no upper limit to T. This, however, will not 
be the case when vit) is not stationary in the statistical sense. In that 
ca.se mean values taken over a finite duration T > T' with various 
values of tg generally will differ amongst themselves, and the applica
tion of the preceding analy.sis becomes much more difficult. In cer
tain cases it may be possible to define the value of T' in such a way 
that minor fortuitous variations (variations of short period) are 
eliminated from the mean value G in a satisfactory way, while at the 
same time it can serve as an upper limit which must not be exceeded 
by T in order that important changes of 5" extending over longer 
periods are not lost sight of. 

T can be materially restricted to the order oi ê iT ^ ff), by con
sidering, according to a method to be introduced in 3.3, a great 
number of particles starting simultaneously at the instant to from 
the same element of volume, and then taking the average of the 
mean values referring to the individual particles. 

3.2. Mean values in which the displacement plays a part 
We assume the function vit) to represent the velocity of a particle 

and will investigate a number of relations in which the position of 
the particle is involved. 

When the posiiicn of the particle at any instant t is represented by 
yit). we have: dyjdt = vit). and inversely: 

t 

yit) = y ito) + I dt,vit,\ (1) 

http://cour.se
http://ca.se
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It is useful to introduce also the displacement: 

,. , t 

^} '^''•:'\. lito. t) = I dt, vit,) = yii) — yito). ^ (2) 
• • " " • • (i ' \" . 

From the expressions (1) and (2) for the position and the displace
ment we can calculate the following mean values, which frequently 
occur in statistical invesrigations: 

-... .̂  I, y; P. y^; vl. vy. 

3.21. Investigation of l a n d y 
For a first orientation it is useful to begin with the particular case 

V = constant = a; we then have: 

. , . , . I = ait —to): ,:'•.. : .. 

so that / increases indefinitely with T. The condition that vit) will 
have a stationary statistical character is clearly not sufficient to 
ensure the existence of a proper mean value for /. 

It can be surmised that this likewise will be the case, when v itself 
is not constant, but has a constant value v differing from zero. 

In fact by taking the mean value of /: 

, * • . fo+T t 

;•;.; .:.••..•:.;. Fitg] T) =-^^ I dt I dt, vit,), 

and differentiating / with respect to T we obtain: 

ta-.T -

~ = ~-Y + Y|dt^vit,)=~^+v, (2) 

which equation is valid provided T > T'.It may be considered as a 
differential equation for /, and we can obtain its integral in the form: 

where C is the integration constant, provided v{t) is stationary in the 
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statistical sense, so that v is constant. Hence for sufficiently large 
values of T we may generally assume: ^ 

. - . • • ' . - ^ = ^ • - - • , ' ' (4) 
T 2 . . ^^> 

As: y = / +y(<o)> ^^^d consequently • ' 

y = 7+ y(/ô , \ 
we have: _ _ * ' 

• a r = "2 • , , , . , . ^̂ ^ 

From this i t can be seen that the validity of the central assumption 
is not sufficient to ensure the existence of a constant mean value y; 
such a mean value is to be obtained only when the further condition 
iJ = 0 is fulfilled. 

This result reveals an instance of the difference in behaviour 
between functions depending exclusively upon v and its derivatives, 
and functions containing also integrals of v. It is, however, not the 
only difference, for whereas the condition w = 0 makes possible the 
existence of a constant mean value /, it will be .seen in the next sec
tion that even then P appears to increase linearly with T. 

3.22. Investigation of/2 
Equation 3.2(2) defining I can be written: 

t, 

1= \ drj vitg+ rj). (1) 
. 0 ' • " - ' ' 

wheret^ = t — tg; hence the mean square displacement is given by: 

• T t, h 

P =^-\ dt^ I drj, j dr]^ vitg + rj,) v^o -f Ĵ-j) = ' \ 

0 0 u . , • 

7' «, t., 

= Y I dt^l drj, I drj.^ vito + t^~ rj,) v'ytg + t,—- rj.,). (2) 
0 0 0 

The domain of integration is given by the quadrilateral pyramid 
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O.ABCD depicted in fig. 3.22, or, in consequence of the symmetry 
between rj, and rj^. by twice the triangular pyramid O.ABC. After 
introduction of new variables: 

^ t --= t^. r] = n,. Ö = ïj.j.— >]„ 

which make: . . 
d\t. rj. d) ^ J , • - ; • .. 

dit^. rj,. rj^) 

the triple integral changes into: 

P = 2 [do I 'drj [dt '^'^ + '-/^' '^'^ ^ - '̂  + ^̂  . (3) 

The integral with respect to t may be put equal to 

L-^v^Rid). 

. - • . V 
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This certainly is valid if T — rj> T'. The formula, however, can 
also be applied if rj approaches T. because then both the integral and 
the factor (T — r])jT tend to zero. 

Further integration and division by T now gives: 

T T T 

^^ _ n f JA 1,1... '^'— n Zi J?XS ^ Zi I'^J, (, 2 ( 5 , Ó2> 

f 
u 8 - \ 0 

2 / do I drj ̂ ^ v^ R,d) ^^v^jdd(\--^ + -|.^j Rid). (4) 

Now with the notation introduced in 3.13 we write: 

: . ^ Rè) =fQ',d) + (1—v»). ;.' •• -

where e(ó) = 0 for ó > ^. When T is much larger than &. effectua
tion of the integration in (4) gives: v . 

^^-^y^^^l ^6e',d) + i\-yi)^j dó(\~^^ + ^j = 
0 • Ü 

= y)V^ + li\ —y>)v^T. , ' • (5) 

This can also be written: . , , . . . 

^=7w+}iv)^T. . (6) 

In the case t; =-- 0 this reduces to: • ' . . 

• • ^ = ^ e . (7) 

Further it is not difficult to see, either by means of (6), or by 
direct differentiation that : 

' dp P - ' 
,- , ^ = -^ + .i('cfr. (8) 

3.23. Value of vl. 

Making use again of 3.2(2) we have: . ' -

t.+T t •', • , : 

•vl=^idti dt,vit)vit,). :.,': : . . (1) 
T. 

ta to 

By introducing variables t^, rj defined by: 

ti = t—tg; T] = t—/„ 

. ' ' I • 
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we find (compare 3.123): ' • 
T T 

. vl = YI dn I dt2 vitg + t^ — rj) v[tg + t^) = 
0 , . . . ; 

' ' , - . . • 7' • -

, •..- •, =\ drj^^^S{r,). by 3.13(13)= . -y 

0 

• T ''' 

. .>-^ ; ^[drj^^a[rj) + j dr, ^ ^ iv)^ = 

0 Ü 

• . " : . . ' • = ^ ö + ( ^ ) ^ y . / . (2) 

Further, as y = /-1-y(^o)'W'^ tind: 

- , / . ^ = 7l + vyitg)^^'0+iv)^^+vyito). (3) 

The more important results obtained in sections 3.22—3.23 can be 
summarised by the formulae: 

^ = ^(r2)=±,(y)^_~l^-^^e; (4) 

which are valid provided v=0. When t)=constant, these equalities 
no longer exist. 

3.3. Mean values taken over an interval of the order of 
the duration of correlation 

The mean values considered in the preceding sections all have 
been calculated over a long period T. which is large in comparison 
with the duration of correlation. This procedure is perfectly appli
cable in the case where the function vit) has a stationary character 
in the statistical sen.se, so that time mean values can be treated as 
constants. 

In many cases, however, the assumption of a rigorous stationary 
statistical character cannot be applied. In particular it may not be 
applicable to the motion of a single particle, even in the case where 
the general aspect of the field presents a stationary character, as the 
particle may wander from one part of the field to another. Mean 
values referring to a short interval of time in such cases will be much 

• .i£;..h>:.'.".".;>.^:-.;.\.;, >• 

http://sen.se
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more convenient. I t is possible to make use of such mean values, 
when instead of restricting to the motion of one single particle, we 
consider a great number of particles, starting simultaneously from 
the same element of volume, and take the average of the mean values 
referring to the individual partilces. The mean value of any quantity 
G then is obtained by means of the formula: 

G^^.^'zl.jdtGM. •• (1) 
to 

where the index i refers to the various individual particles over 
which the summation is extended. B u r g e r s has made the hypo
thesis that in this formula the interval T can be reduced to the upper 
measure of correlation •&. provided the number N is sufficiently 
large. 

Mean values calculated in this way will be distinguished by an 
asterisk, as indicated in (1). 

In order to be able to make use of this procedure it is necessary 
that there can be found a sufficient number of particles (or other 
entities) to which the quantity G may refer, and which all can start 
at the .same instant from the same place. In the case of particles 
suspended in a liquid we may take the particles which at the instant 
tg are found in the same element of volume of the field. This idea, 
however, cannot be applied to the fluid itself, as there are no diffe
rent individual elements occupying the same spot simultaneously. 
To overcome this difficulty we recur to an artifice and assume that 
the field considered is one of a large set of fields, which in the sta
tistical sense behave in identical fashion; we then follow the simiJ-
taneous life- histories of the elements of volume which at tg start 
from the same spot in all these fields. In this case the various ele
ments are even completely independent of each other. This method 
also makes it possible to introduce the notion of probability; we may 
speak for instance of the probability that the velocity of the element 
situated between y and y -\- dy at the instant t has a value between 
V and V -f- dv, or that the path described by the element in the inter
val from ttot-\-ê has a length between I and I + dl. _ 

Having introduced the ,,short interval group mean value" G# 
we define: • 

..-,: . G' =^.G~-G^. ... '-: . (2) 



66 GROUP MEAN VALUES [3.3; 3.31; 3.32 

We shall not introduce the assumption of a stationary statistical 
character of the field in a way analogous to the assumption of 
section 3.11, but content ourselves with the assumption that in an 
interval of time of the order •& the field changes sufficiently little in 
order that we may use the formula: 

, G; = 0. ; (3) 

3.31. Mean values of the velocity and correlations 
With the aid of formulae 3.3(n, 3.3(2) and 3.3(3) we define a mean 

value of the velocity v. the fluctuation v'. and the mean square 
values v'^ and v"^. 

We further introduce the quantities: 

. ' ' - '»+ï ' - - • • . - " 

S^in) = - ^ S ^jdt Viit) vS -f rj). : (1) 
• . • ' , • • , ^ <„ . - . - . 

t.+ T 

•_^ • a^{r,)=^i:~fdtvlit)v[it + rj). •.••: (2) 

which are connected by the equation: • 

' ' - • - : ; ' (3) 

• ' -. (4) 

[••:•'"•:••: (5) 

G*= j drj e*in) = j dn e*in)- 1' . (6) 

3.32. Alternative method of calculating the new mean values 
The value of G^,, given by formula 3.3(1), must be independent of 

T, as long as T is at least equal to 7? and on the other hand is not 
increased in such a way that it becomes large in comparison to ^. 
This also follows from the assumption mentioned at the end of sec
tion 3.3, as indeed the mean value G,̂  with sufficient approximation 

We further have: 

.... 

With these quantities 

, . -

S*in) = o^ir,) + iv.,)^ 

- o'*(o) 

we define: 

Q*in) 

• 06-

= (O*-
_, ., -

o-*(»?) 
o*io) 

» 
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can be considered as a constant, when the value of tg is changed by 
amounts of the order of ê. 

B u r g e r s has suggested therefore that we might calculate G^^ 
also by means of the formula: . 

G.,=^ZG,itg+T), - - (1) 

provided T > ??. If this .suggestion is right the mean value of any 
quantity can be derived from the instantaneous values of this quan
tity at the instant tg-\- T (if desired, at the instant tg -\- ^) for the 
particles which at the instant ô all started from the same element of 
the field. 

We can apply this procedure to the calculation of the mean velo
city and obtain: 

- . ' r v^=^Y.^v^itg^T). : . ; -• . . (2) 

Comparison of this result with the formulae of Chapter 1 shows 
that the mean value calculated in this way is identical with the 
quantity v as defined by 1.7(7) provided we take T = x.\n this way 
we arrive at a connection between mean values originally defined as 
time mean values, and the mean values investigated in Chapter 1. 

In general it cannot be assumed that equation (1) will remain 
valid when T is reduced below ^, e.g. until zero. The result arrived 
at in section 1.71, where a difference was found between the two 
quantities ' 

V (average velocity of the particles present in a given element 
of volume at the instant t^, 

and V (average velocity of the same group of particles at the in
stant < -(- T, after they have suffered displacements individu
ally different for the various particles), 

brings to light a case where (1) does not hold with T = 0 (this diffe
rence between v and v is also found in the example treated in Chapter 
2, section 2.43). 

Such differences are to be expected in particular when v and v are 
small, being in fact only residual effects connected with inhomo-
geneity of turbulence. 

It seems probable that m the calculation of mean square values 
and of correlations similar differences will not occur, or at any rate 
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will be much .smaller. (In particular this may be the case when the 
mean velocity ŵ  is small in comparison to -y/(v^),^). It will be assumed 
therefore that the equation: 

S„ir,)=j;^'Lviito+T)Viito+T + rj) (3) 

will hold for all positive and negative values of T (which are not too 
large) including r ^ 0. " • , , 

3.33. Formulae containing the displacement of the particles 
We write: • ' ; ' 

( -
- ;: V . ; ' hit) ̂ Idt,v,it,), , ; (1) 

«. 

where t = tg -\- T. and define: ' • 

. . . ^ * = 4 7 S / , • • . ' - • : (2) 

: V ' ; -' *̂ = 1 ^ ^ ' - • . . :̂  '̂ (2) 
These quantities are simple group mean values and are quite 

distinct from the time mean values for / and P considered in 3.2— 
3.23. Provisionally we make no restrictions on the values of T. 

Differentiation of (2) with respect to T gives: 

•^=~^v,ito+T)=v.,.:- •. . . -• ; (4) 

It will be seen that wheri T> ê the quantity ŵ  introduced here is 
identical with v.,, as defined by 3.32(2). In that case also l^:jT gives 
the same value according to form. 3.3(1). Hence; 

- . • ' -dT = T='* - . .; :• f̂ ) 

provided T > &. , - - ' 
Differentiation of (3) with respect to T gives: 

' - . ^ . • ^ == ^^vtito + T)h = 2iv^,,. •;:•:-':-i6) 
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Here ivl)i^ can be written: 
T 

ivl)^ = - ^ S Jdt, vSo + T) vSo + t,) = 
0 

T 

= •;^S j rfjy Viitg -I- T, Vfitg -\- T-^rjj. ' 
0 

When we make use of the assumption contained in 3.32(3;, we 
can write: 

T 

ivl)^--=[driS^irj). '• (7) 
o" 

Application of 3.31(3) then leads to: 
T 

ivl)* = i^')*ldri Q^irj) + iv^)^ T = («"̂ )„ 0,, + (^J^ T, (8) 
0 

rhe latter expression being valid only for T > •&. 
Comparison with the formula of Chapter 1 shows that ivl)^^ is 

I 1 

identical with vl. 
Integration of eq. (6) next gives: 

T t • 

II = 2i~^,^ Jdt I dfj e^irj) + (̂ *)2 T^ = 
0 0 

T 

= 2 ( 0 * Td^ + (y*)2 7^ - 2iv'^)^ j drj rj Q^irj). 
0 

provided again T > ê. Hence: 
T 

^ = 2(~2)* e* + iv^)^T -Y i'^'i*'ldn n e*in)- (9) 
0 

It follows that the relation 
dll^ll . 
df T 

cannot_be exact [compare 3.22(8)]. It is approximated, however, 
when iv^)^ <̂  (j''̂ )* in such a degree that T still can be taken suffi
ciently large to make the last term of (9) negligible. 

In making a comparison with the equations of Chapter 1, we must 
write: ' ~ 

/* = 7; II = P: ivlj* = vl. (10) 
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In that Chapter we had deduced: ' _ -

dP_¥ ' \ 
dx X 

[compare 1.7(10).], assuming that T was large in comparison with the 
duration of correlation •&, while terms of the order T* in the formulae 
for / and P had been neglected. In the example given in Chapter 2, 
where the value of v^ had been calculated for a special dispersion 
function, it had been found indeed that v^ was large compared to 
(w)̂ , being of the order iv)'^jx or even much larger. In such a case the 
term iv'^)^dif in (9) above will largely surpass the term (z;,„)^r. 

3.34. Comparison of the new mean values with the „long 
range" t ime mean values of section 3.1—3.23 

Although some of the results have already been mentioned, it may 
be useful to summarize the main points as follows : 

I. On the assumptions of 3.3 and 3.32 the mean value iv)i^ defined 
either by means of 3.3(1) or by 3.32(1) will be considered as identical 
for our purposes with v as defined by means of 3.11 (1). In the same 
sense (î '*),„ is identical to v'^. -.' -

II . Equations 3.33(5) and 3.33(10) consequently give: 

" = ^ = r f r = r- = "* = "- :- (') 

I I I . The quantity 5:„(»/) defined either by 3.31(1) or by3.32(3j will 
be considered as identical with Sirj) as defined by 3.12(1;. The same 
applies to the quantities a^^. Q^ and Ö„, derived from 5:„, which are 
identified resp. with a. Q and 6 as derived from S. 

IV. Equation 3.23(2) gives: 

\vl = V^d^ iv)'^~, - '• (2) 

while from 3.33(8) 

ivi)^ = (~^)* Ö* + (^*)2 r . (3) 

The difference in the second term on the right hand member is 
due to the fact that vl is a time mean value over the whole interval 
from 0 to T, whereas ivl)^ exclusively refers to the instant T. Under 
such conditions where [v)^ is sufficiently small and T not too large 
in order that this term can be neglected, we shall have: . 

• ivl)* ^ ^ . - ." (4) 
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V. Under the same conditions we have: 

^ = §^2ivl)^^2Vl. . (5) 

VI. Comparison of 3.33(9) with eq. (2) above shows that: 

2vl-^^fdr,rjQ^irj). (6) 1 
T 

0 

where the last term can be neglected provided we can take T suffi
ciently large in comparison with the correlation measure ^. Under 
this condition we arrive at: - - . , , • . . • ; ' 

• . ..-- | = f = ̂ -̂ ••' ' ^'^ 
Equations (1) and (7) show that the quantities v and Pjx. which 

occur in the diffusion equations of Chapter 1, upon the assumptions 
mentioned can be calculated from the „long range" time mean 
values v and vl. This result will be of importance in the developments 
of Chapters 5 and 6. 

VII. Nevertheless we should not lose sight of the possibility that 
the substitution of (7) for (6) in certain cases may not be legitimate, 
as it is not certain that we can always choose T large in comparison 
with §. It is not to be excluded that this circumstance may have 
consequences which could invalidate certain results of Chapter 5. 
It seems difficult, however, to obtain a better approximation than (7) 
which at the same time is sufficiently definite for use in further work. 



•~ CHAPTER 4 

EQUATION OF MOTION FOR A PARTICLE SUSPENDED IN A 
HOMOGENEOUS FIELD 

4.1.'Equation of B a s s e t , B o u s s i n e s q and O s e e n 
for the motion of a particle in a fluid at rest 

In Chapter 1 we have .seen that the equation characterizing the 
diffusion of suspended particles contains terms Ijx. Pj2x referring 
to the motion of a particle. We shall now investigate how these 
values can be related to the state of motion of the liquid in which 
the particles are embedded, by using data concerning the action of 
the moving fluid upon the particles. In order to do this we must 
study the motion of a solid particle under the combined action of the 
force of gravity and of the field of fluid motion. The particles for 
simplicity will be considered as spherical and rigid, while the field 
in spatial respect is assumed to be homogeneous, which means that 
the velocity vector in this field shall be a function of the time t only, 
and is independent of the coordinates of the point of application. 
We shall be concerned only with the motion in the direction of y-axis, 
which is the direction of gravity. The mutual action between the 
solid particles, rotation of the particles, and wall effects are left out 
of consideration. 

It is useful to begin by defining the quantities which v ill occur in 
the calculations: 

uit) velocity of the fluid surrounding the moving solid particle; 
u,u 1st and 2nd derivatives of u with respect to the time t; 
vit) velocity of the solid particle under the action of gravity and 

the action of the moving fluid; 
v.v 1st and 2nd derivatives of v with respect to the time t; 

g. Q' resp. density of the fluid and density of the particle; 
V = jujg kinematic viscosity of the fluid; 

a radius of the spherical particle; 
g acceleration of gravity. . . . : 
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The problem of the slow motion of a spherical particle under the 
influence of gravity in a fluid at rest has been studied by A. B. B a s 
s e t , J. B o u s s i n e s q and C. W. O s e e n ^ ) . The equation of 
motion in the direction of the axis Oy i-\-y being directed vertically 
upwards) is: 

^na^ ,• . . ' . . • • " 

2na^ • , ( , <^ f J, ""ih) \ ^na^ ', 

=—r^"-^^^n"+^7= / *'7Pi;/—r (̂  ~^^^' ('̂  
In deriving this equation it has been assumed that both the 

spherical particle and the fluid have been at rest until the instant 
t = tg. When tg is taken further and further away in the past, the 
influence of what may have been the state of motion before tg will 
more and more vanish. Hence in the following formulae we shall 
usually take — oo as the lower limit of the integral. 

In the second member, the term — i2na^j3) QV has the meaning of 
a surplus of inertia added to the particle, due to the pressures con
nected with the accelerated motion. In the classical problem of non 
viscous flow we find the same inertia term — i2na^j3) QV in the 
second member. The term — bnfiav is the resistance as given by 
S t o k e s ' formula for a sphere moving steadily m a viscous fluid 
at rest; the term 

bnfia^ f J w( î) 
/— / ^t, , 

Vnv ' Vt — t. -. » . 

is a resistance due to the accelerated motion of the particle in a 
viscous fluid. The last term simply is the force of gravity. 

4.2. Equation of motion of the particle in a moving fluid 

We can transform the equation of B a s s e t and B o u s s i-
n e s q-0 s e e n for the motion of a particle in a fluid at rest into an 
equation of motion for a particle in a fluid moving with a variable 
velocity by considering the following two cases: 

{a} First we take the case of a particle moving with a velocity 
-j- (w — Mj in a fluid at rest; 

') A. B. B a s s e t , A treatise on hydrodynamics (Cambridge 1888), Vol, 2, Ch. V. 
J. B o u s s i n e s q , Theorie analytique de la chaleur (Paris, 1903), VoL 2, p. 224. 
C. W. O s e e n , Hydrodynamik (Leipzig 1927), p. 132. - ., 
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(6) Secondly We assume that the whole system (particle + fluid) 
is endowed with a velocity -f- uit). 

In the first case the forces acting upon the particle have the .same 
expression as that given in the second member of 4.1(1), provided 
everywhere v is changed into iv — u): 

t . '- .• •- .'' 

2na^ ,• •, ^ c N , « r ,, t ' (^i)—w(fi)^ 
- p(i' —; u) — 67r/*a < iv — u) -\- I dt, 

4na^ 
iQ' 

VT-

Q)g-

u 

(1) 

When next we superpose a rectilinear velocity u upon the whole 
system (fluid -|- particle), which is a function of the time, there will 
be an acceleration u of the fluid, which requires the presence of a 
pressure gradient: 

dp • —• . 

throughout the whole field. This pressure gradient gives a resultant 
force upon the spherical particle of magnitude: 

R, = (volume of the particle). (pressure gradient) = 

, Ana^ • 
(2) 

By combining we arrive at the case of the motion of a sphere with 
a velocty î  in a fluid moving with a velocity u. The forces acting 
upon this sphere are the sum of the forces given by (1) and (2) 
respectively. Consequently, the equation of motion of a spherical 
particle, moving under gravity in a fluid moving with a velocity u, 
i s : ^ •: , j * 

Ana^ 
Q V 

Ana^ 
QU 

27ta^ 
giv — u) 

— 671/ua iv 
•VTTV J V / — t. 

In the place of 
Ana^ 

vT 

-gu 
2na^ 

giv 
3 '̂  3 

in the right hand member, we can write 

27ia^ • 
Ina^ gu -QV. 

Ana^-
giQ'-Q)- (3) 
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Here 27ia^ gu = resultant of the pressures which appear in conse
quence of the acceleration u of the fluid; while — (27ta^/3) gv = 
surplus in inertia caused by the pressures resulting from the accelera-
t'on V of the particle (equivalent to the inertia of a virtual mass 
{27ia^j3) Q attached to the particle). 

The other terms in the right hand member of (3) have the follow
ing meanings: 

— 6n/uaiv — u) = S t o k e s ' linear resistance due to the relative 
velocity (w — u); 

t . 

— Snua , / dt, ^ , =j-^ = resistance due to the relative 
Vnv •' Vt—t, 

— o o 

n (t; — u); ' ' - . 

ig' — g) g = gravitational force. 

acceleration (w — u); 

Ana^ 

3 

In order to simplify the notation, we write eq. (3) in the form: 
t 

iit)-fiuit)+a[vit)-uit)+c]+ ]/^-^ldt, }ÊA^B- =0 (4) 
— o o *• 

with: 
2v 2:g 

* ~ ~2 / I— (dimension: I -^) 
a^ 2Q' -\- Q 

3Q 

2e' + Q 
( » ' : 1) 

9 V g 

(5) 

It is easjt to verify that c is the limiting velocity of a sphere falling 
in a fluid at rest, when the velocity of the fall is slow. 

In order to have an idea concerning the order of magnitude of 
these coefficients, we take the following numerical examples: 

(«) Sand particles suspended in water with 

a = 10-* — 10-2 cm, e = 1, g' = 2.5. v = 0,013 cm^/sec; u 

then: a = 2.10«—2. lO^sec-^ fi = 0.5. c = 2,5.10-* — 2,5 cm/sec. 

ib) Water particles suspended in air with 

a = 10-* cm, e = 1,2. lO-^, g' = ]. v = 0,145'cmVsec; 

then: a = 7,8.10* s e c - \ fi ^ 1.8.10-», c = 0,012 cm/sec. 
L. 
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4.3. Equation of motion in the simplified form 

The integral term in equation 4.2(3) is a small quantity; in order 
to estimate its magnitude we consider a periodic motion such as: 

V — u = w = WgSin cot. 
In this case: . , 

V — u = w = Wg (0 COS cot; ' 

hence, when we take tg = — oo: 
t . . i - ' 

vit,) — uit,) __ awo Oi f cos cot, _ 
T, Vnv -' ^ Vt—t, 

dt, 
VT 

VTI 
Wo CO dt, 

coscoit — t^ 

VT,. -'i~^2 (cos cot -\- sin Oit). 

Hence the integral term is of the order a Voijv with respect to 
iv — u); it is a small quantity and will be negligible in certain cir
cumstances. By way of approximation in many cases in its place we 
may write two correction terms, respectively proportional to (w — u) 
and to iv — u), so that the equation of motion 4.2(3) is brought into 
th'e form: 

Ana^ 
• Q V 

Ana^ 
• QU 

2na^ 

3 ^ 3 «̂  3 

— 6nfj,a i 1 -\- Ö") iv — 

or in contracted form: 

V -\- ocv = f 

Qil +d')iv — u) — 

Ana^ 
u) • 

with: 

SiQ-Q) (1) 

(2) 

/ fiu -\- xu — ac 

3»̂  3(1 -H ê")g 

«2 2Q' + i] -i-d')Q 

(3 + d')g 
2g' 

2 s 

(1 + d')Q 

iQ-Q) 
9 1' (1 -f d")Q 

(3) 

Equation (1) is the simplified form of the equation of motion, while 
equation 4.2(4) is the complete form. In our investigation we shall 
apply both forms: the former for a preliminary study and the latter 
for a definite study. 
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The equation of motion in its simplified form 

V -\- ocv =^ f 

can easily be integrated. With the condition Vg —- Ug at the initial 
instalnt tg its solution is: 

• v = 2io«^='"~'°' + I dt, fit,) e-°"'-«'), " , (4) 

or in function of w: t 

u = (1 — ft £-««-<«) ug + fiu + ail —fi) I dt, £-="'-*•)«< (üi) — 

— c{l—e-'' '»-'»'}. (5) 

When we put tg = —̂  oo in order to eliminate the influence of 
what may have been the state of motion before tg, as stated in 4.1, 
we can write: < 

.̂ , vit)=^ldt,fit,)e-^^-''K , • (6) 
OO 

or • t 

vit) = fiuit) + xil —fi) [dt, £-«(«-'.) uit,) — c. (7) 
' • . V — o o 

4.4. Integration of the equation of motion in its complete 
form 4.2(4) 

The equation of motion to be integrated is the integro-differential 
equation 4.2(4): . • j 

iit) - fiuit) + oilvit) - uit) +c]+ l / M [ dt, ^(^i)zl^^i) =_- 0. 

to ^ 

Here we have retained tg as the lower limit of integration instead 
of oo. 

To .simplify the writing, we put : , 

W = V — u 

cp = — (1 — fi) u — ac 

'=̂ ¥ ^ 
then at the instant t the motion fulfils the equation: 

t 

(1) 

/

Wit 1 

dt, YjzZJ ^ "̂ '̂̂ ^ ^̂ ^ 
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The integro-differential equation with derivatives of the first 
order will be reduced to a linear differential equation of the second 
order, the integral being eliminated by this operation. In outline the 
procedure is as follows: we differentiate (2) once with respect to t; 
as will be shown below, we then obtain at the instant t: 

t 

wit) + xwit) + b - | M ^ + b ƒ dt, - - | M = = ^(0, (3) 

and at the instant <2' ' •. - '• 

-w{t,) + a.wit,) + b -^M= + b I dt, - ^ M = = cpit,). (4) 
yt^ — t, ^ Vt^—t, 

Taking the value of the following integral as basis: ; 

i 

ƒ' din —. = at, 

i^ Vit-t,)it,-t,) 

and applying the following operation to the integral term of equa
tion (4;: 

t «2 

[ dt, -j^== [ dt, -^== = 7t [wit) — witg)], 

i "^t—t,^ vt,—t, 
we can reduce equation (4), which contains an integral over w^ 
into an equation which contains an integral over w. By comparing 
this new equation with (2) it becomes possible to eliminate the inte
gral term, so that we obtain an ordinary linear differential equation 
of the 2nd order. Let us now study this process in detail. 

Before effectuating the differentiation we put t — t, = z^ in order 
to prevent the singularity which would occur when t, =J. The deri
vative with respect to t of the integral in the left hand member 
of (2) is: 

d 
dt I 

to 

dt, wit,) 
Vt — t, 

- 2 ^ 
~ dt . 

0 

^t—to 

f , • ,, 2\ Wit — Z^) 
I dz wU — z^) = , 

Vt-tg 
_ + 

- •^t-u 

+ 2 [dzwit-z^)=4^+ i dt,^M^ 
J ^^-^0 I VT^. 
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By applying this rule we obtain: 
t 

wit) + xwit) + b -^M= +b ( dt, -^M= ='cp{t). (3) 
Vt~tg I Vt—t^ 

This formula is fulfilled by the motion at the instant t. The motion 
at the instant t, will fulfil: 

«2 

wit,)+xwit,) + b -^M= + è [ dt, - ^ ^ = ;pit,). (4)' 
Vt^-to / Vt, — t, 

Multiply every term of (4) by dt, .bit — t,) -*, integrate with respect 
to t, between the limits tg and t and substract from (3); we then 
obtain: 

wit)+Mt) + b-^Ë^-.b [ dt^J^-^' 
Vt-tg I ' VT^^, 

• \ 

t t ti .. 

-b^Witg)fdt,^-— ' ^.^—b^[dt, [dt,-^=^M== = 
'y Wit-t,)it,-to) 7 vit,-t,)it-t,) 

iQ to to t 

=. -^it) - Ö [ dt, -^2L= (5) 
^it-t2) 

The second integral of the left hand member of this equation has 
the value n. In the double integral the order of the integration can 
be inverted: 

t t 

. , „.J , dt, , 

Vit,-t,)it-t,) I I Vit,-t,)it-t,) 
[dt, [dt,-==lM==- [dt, [ 
J 'J ' Vit.-t,)it-t,) I 'J 

t t 

= I dt, wit,) j dt. 

wit,) 
'•2 

to Vit,-t,)it-t, 
The last integral with respect to t, has the value :7i;. Hence the value 
of the double integral becomes: 

t «2 

to to Vit, — t,)it — t,) 
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Substituting this into (5) we obtain: 
t . 

^(t) -f xwit) + b^0É=-«.b [ dt, -^M 
^^t^^o . i Vt-i 

nb^ wit) = 

,' "" =i>it)-b [ 
to 

het us replace the integral 

dt, fitj) 

Vt — t,' 
(6) 

j dt, wit,) 
Vt — t, 

in this equation by its value derived from (2). Then (6) becomes: 

witg) 
wit) -\- 2xwit) + x^wit) — ixcpit) — Tib^ wit) -[- b 

= cpit) —bj dt 
to 

Vt-tg 

W2) 
' Vt — t, 

(7) 

o r wi th 0̂ = 00: 
t 

wit) + 2x(\-^-)wit)+c,^wit)=fit)+xcpit)-bjdt, - ^ . (8) 
-- — 0 0 

This is the second order differential equation for w. 
We replace why iv —-u). and cp by its value — (1 —rfi)u — ac; 

for the sake of brevity we introduce a function F and the following 
coefficients: „o 

Fit) = — aoC 4- «OM(0 + «-Mt) + x,üit) — as / dt^ ^^^ ~ ^' (9) 
. ' 0 

Vtz 

«2 = ^ 

2ft 

i / 3 a / /5 
( 1 Ö - I ) 

«2 = a^—A2 = 3a2/3 (1 — ^ 

Solving for v, we finally obtain the equation of motion in the 
form: 

(10) 

V + 2kv + ik^ + co^)v = F. (11) 
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In this equation F is a known function of the time t. determined by 
the field M. Equation (11) is the equation of motion in the form of a 
linear differential equation of the 2nd order with a variable second 
member. We can now obtain the velocity v of the particle explicitly 
by writing down the solution of this differential equation: 

t 

vit) = — / dt, e-*(«-«.) sin w (i! — t,) Fit,) (12) 

—oo 

or putting iqior t — / j : 
oo • , 

vit) ^ — [ drj e-^'^ sin corj Fit —rj). . , -, (13) 

0 

This is the solution of the equation of motion in its complete form, 
the function F and the coefficients k. co being given by (10). 

4.5. Periodic motion 
In order to investigate the motion of a spherical particle in a 

periodic field, we start from the equation of motion in the complete 
form 4.2(4); for the sake of simplicity we shall omit the gravitational 
force. When a spherical partilpe is under the action of a given 
periodic field u = A e^'. it will vibrate with the same frequency. 
Let its velocity be represented hy v = B e""', A and B being two 
coefficients which can be real or complex. The phase difference 
between v and u is determined by the argument of BjA. and the 
ratio of the amplitudes is determined by the magnitude of | BjA |. 

Before replacing u. v in the left hand member of 4.2(4) by A e""' 
and B e*^* respectively, let us first pay attention to the integral 
term. Substituting coit — t,) = z. we find: 

t oo oo 
. fe^^^dt, . , /", e^^-'' . , .,r^ COS2—tsin^ 

ICO I =i\/oi \ dz. — = i-\/co e""' \ dz. — 
VT=t, "^ J ' V^ ^ J ' V^ 

—oo 0 0 

= is/oi e* '̂ (1 — i) 1/-^ = e^Wmm. 

Hence eq. 4.2(4) becomes: 

icoB — icofiA + oLiB — A) + Vsiafico iB — A) = 0, 

from which: 
_B __ a -t- itofi + VSixfico 

•̂  OL -{- ioi + VZiccfico 
(1) 
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which also can be written as: 

5 _ , M l - f t _ , •' 2ie'-g) 

X -{- ico -\- V3ixfioi i2Q'+Q)~9g(^+i]/4 
\a^co \ an 

= 7 (2) 

From this expression we see that : 
a) in a viscous fluid, BjA = 1 for co = 0 (frequency tending to 

zero) and BjA = fi for co = oo (frequency infinitely great), where 
fi% 1 according tog'^g; ' ' • - .^ 

b) in a non-viscous fluid (r = 0), we have: BjA = fi; 
c) for liquid particles suspended in air ig' > g) we have: for very 

coarse particles (a ^oo) , B / ^ J = fi = 3gji2g' + g) -^0. and for very 
fine particles (a -^0) , BjA -^ 1. 

The present investigation of the motion of spherical particles in a 
viscous periodic field is related to the investigation of the influence 
of sound waves on scattering particles suspended in a viscous 
medium. In this connection H. L a m D has obtained the following 
formula for the ratio of the displacement of a spherical particle to 
that of the air ^): 

• - ^ — 1 e' —3g ip,ika) 
k g'—g — g ka.f[ ika) A,' 

We will show that starting from this equation we can again arrive 
at equation (2). We have from L a m b , p. 655, eq. (8), for great 
values of the velocity of sound, which is represented by c in L a m b's 
formula: 

, „ ft)* «>2 . coa • ' 

C^ -\- */3 IVOi C^ C 

Also from art. 292, p. 504, eq. (7): - ' , -

1 ƒ C^ 1 
^"^^^^" l . 3 . . . . ( 2M4-Ty r " ~ 2 ( 2 w - f - 3 ) + • • • • ) 

so that ipxika) = ^. 
Further from p. 660, eq. (37): - ' 

-kaf',ika) ^ - ^ , - , , 

and from p. 657, eq. (4): • • -. j 
• . • ' ^ ^ (3 -f- 3ih — h^a'^) k^a^ 

.4, 5^ — ^— 
\ - , . 2AV ... 

') H. L a rn b , Hydrodynamics (Cambridge 1932), Art., 363, form. (36). 
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Hence: 

_ ^ ^ , Q' — Q 
k , . 3 +3ih — h^a^ 

Q-Q--2Q ^ « 1 

e'-e 

(̂ ' + ̂ /2 ) - | . (^ + i 
As we have: 

h^ = -r- , 
IV 

we find: 

^ _ 1 2 ( e ' - g ) 

i2g' + g)-9g(^-^i 

which is identical with our expression (2) for BjA. 

4.6. Motion with non linear resistance 
The resistances due to the velocity and to the acceleration, as 

expressed by the two terms between [ ] in equation 4.2(3), are exact 
only when the R e y n o 1 d's number R^ = 2(v— u) ajv is small. 
They are not valid for large i?<,. As is well known the resistance due 
to the velocity becomes proportional to (v — M)^ when R^ is large. 
The resistance due to the acceleration likewise will change for 
large R^. 

From dimensional analysis we can deduce some conceptions con
cerning the law of resistance, which must have the form: 

„ „ „ ,l2wa wa\ ... 
R = QU,^a\f[-^,-^). ^ , . (1) 

Here fi2wajv, wajw^) is a function of 2wajv and wajw^, both quanti
ties being dimensionless. The second factor indicates the effects of 
the acceleration. The differential quotient of second order of w and 
those of higher orders have been neglected. It is often assumed that 
the above expression for R can be developed into a series of the form: 

« = ,»v/.(?=) + .».„«5/,(H=i)-f.... 

^,„.„./,(?^) + j ,V / , (^") . , : ' (2) 
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Tt 4. '•• ' r, 2wa If we put: Re — , 

. • • ' C , ( ^ , ) = l / . ( ^ 

where the functions C,, C, depend on the shape of the suspended 
particle, the expression for the resistance can be reduced to a more 
familiar form: 

R = C,iR,).na\^QW^ + C,iR,). ^gw. 

When w changes sign, the resistance figuring in the first term must 
also change sign; hence it is more correct to write: 

ATia^ • 
R = C,iR,).na^.^g \w\w -^ C,iR,). —^gw. ; • ; (3) 

In order to obtain the equation of motion of the particle, we add 
to this expression the terms due to the acceleration of the liquid, 
and the gravitational force: 

Ana^ ,• Ana^ • Ana^ , , s ' 
—3—?w = ^ — e « « 3 — ( e — e ) ? — 

— C,iR^).^na^.g \v — u\ iv — u) — C,iR^). -^—Q iv — u). (4) 

Assembling similar terms, and dividing by 4na^j3, the equation 
becomes: 

HQ' + QC,) = ig + QC,) u — IC,-^\v — u\iv — u) — iQ' — g)g. 

or: 

v - ' ~ , ^ u + ^^-^^Uv-u\iv-u)+4^S-0. (5) 
Q + QC, 8(e -I- gC,) a' Q + QC, 

Let us introduce the coefficients: 
^ e -I- gC,. ^ 3eCi i_ ^ e' — Q 

'^ g' + gC,'^ dig'+ gC,) a ' "^ g'+ gC,^' 
It is to be noted that in the case of non-spherical bodies, the coef
ficient 

^ 8(e' + gC,) a . 
must be replaced by • . 

, ., ,\ gC, F (= area of master section) 
2(e' -|- gC^ ' volume 

or some similar expression. » 
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The equation of motion can now be written: 

i; — /3'M -h y' I w — M I (w — M) -I- C = 0. (6) 

The solution of this differential equation of quadratic form pre
sents excessive mathematical difficulties. I t is usually replaced by a 
linear one: 

V — fi'ii + x'iv — M) -I- C = 0, (7) 

by choosing conveniently the coefficient a'. 
For simplicity we write again v — u = w. We will define a' so that 

the resistances a.'w and y' \w\w give the same negative work during 
the period T used for the calculation of mean values. This gives: 

to+T -

j \w\w^dt 

• - « ' = / - ^ ^ T T . • > . ' (8) to+T 

w^ dt 

to 
ƒ 

or: 
• , . ^^y'M^. : r: • (9) 

Hence the ratio a'/y' depends on the amplitude of w and also on 
the form of the w-curve (e.g. whether the curve is rectangular, more 
or less harmonic or sharp pointed). ' 

For harmonic periodic motion with: - • 

2nV 
w = A sin , 

-* 1 
we find: -

• —r = ^A =-^~yw^. . (10) 
Y 3n 3n ' 

By want of detailed data this formula can be used to determine 
approximately the order of magnitude of a'. 

The identification between the equation (4) and the simplified 
equation of motion studied in 4.3(1) would be complete if we might 
put : ' - " - . 

I + Ó' • 
Q = 2 - -

Q = ^ ( l +d"),with:R,^^^ 
Kf V 

(11) 



CHAPTER 5 -

MEAN VALUES CONNECTED WITH THE MOTION OF A 
PARTICLE, CALCULATED FROM T H E EQUATION OF 
MOTION, BOTH IN THE SIMPLIFIED AND IN THE COM

PLETE FORM 

5.1. Calculation of mean values based upon the simplified 
equation of motion 

As already done we indicate the velocity of a particle by vit), and 
write uit) for the velocity of the surrounding element of volume of 
the liquid, which velocity we assume to have been given. When 
particles should wander from one element of volume into another 
with a different velocity, the course of the function uit) will depend 
both on the nature of the field of motion of the liquid and on the 
motion of the particles. We evade difficulties by assuming that the 
elements of the liquid which can be considered as moving with a 
practically homogeneous velocity, are large not only compared with 
the dimensions of the suspended particles, but also compared with 
the paths described by the particles relatively to the liquid. 

We shall base the calculations both on the simplified and the 
complete equation of motion, as deduced in the preceding chapter. 

Starting with the first case we take the equation of motion in the 
form: 

i + xv = fit), . ^ (1) 

where f{t) is considered as a known function of the time. Later on we 
shall relate / to the velocity u of the liquid by means of the equation: 

•: • • f = fiü + xiu — c). ,. ^ . . (2) 

It is assumed that u and / present a stationary character in the 
statistical sense. The values of the constants a and fi have been 



5.1] C A L C U L A T I O N OF MEAN VALUES 87 

given in 4.3(3). The solution of (1) can be written: 
t oo 

V = jdt, «-«<'-'«' fit,) = jdC e-̂ 'f fit - C). (3) 
—oo 0 

Denote the „long range" time mean value of / by /, so that 

• ';^-.-..: l=YJdtfit) :'\:'J- ' -: 
0 

(to shorten notation we replace tg by zero, as no derivatives with 
respect to tg will occur in the following pages). We then write: 

' • / = / ' + A ' .' (4) 
Equation (3) then gives: 

CO 

v = [dCe-'-^ fit-:)+-!-. (5) 
•J . • * . , 

0 . ., , 

When calculating the time mean value of v, we find that the first 
term on the right hand member does not give a contribution (as 
f= 0 itself), so tha t : 

Writing: - .- _ . 
••' • '. , v = v' -^v, '• (7) 

we have: 

• ^ v'=ldCe~''^f'it-C). •••• . (8) 
0 .. • : : .^^ 

We shall mainly be concerned with the consequences of this rela
tion between v' and / ' , both of which have mean values equal to zero. 

The displacement of a particle is given by 

t • . ' 

y^[dt,vit,) • (9) 1' 
(to simplify notation we write y instead of / for the pa th ; moreover 
tg has again been taken equal to zero). We can resolve y into two 
parts, as follows: 

y = y' + Vt, _ _"- (10) 
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where ~ 

y '= jdt, v'it,). • • _ (11) 
0 • -

When <pio)cpirj) as before denotes the correlation for a function 
cpit): " T 

1 
cpio)cpirj) = YJ dt cpit) cpit -h rj), 

we write: 

and when 

Further 

9 

we 

0 

t 

^ f <PVt=J drjcpio) cpirj), 

= 0 and the integral is convergent: 
oo 

(pep = 1 drj cpio) cpirj). 

0 

introduce: 
oo 

cpcp=j drje ""^ cpio) cpirj). 

(12) 

(13) 

(14) 
0 - I ' • 

The latter integral is convergent independently of the circum
stance whether cp is equal to zero or not. 

5.11. Calculation of y'(o)5y'(>;) and related'quantities in terms 
of/' 

In the sections 5.11—5.21 we shall temporarily drop the accents 
and assume that v, y, f and u respectively denote the fluctuating 
parts of these quantities, so that in particular v — f = u = 0. A 
return to the original notation will be made in 5.3. 

In order to calculate vio) virj) we write: 

vio) virj) =-j^ j dt vit) vit + rj) = -

0 
oo oo T 

. =ldC,ldC,e--<i'+i'^^fdtfit-C,)fit+v~C,) = 
0 0 0 

r • • OO OO *^^ , ' ' -

= JdC,ldC, .-«'f-+f'' fio) fir, + !:,- Q. •' (1) 
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given in 4.3(3). The solution of (1) can be written: 
t oo 

v^jdt, «-"«-«•' fit,) =fd^ e-«« fit - C). (3) 
—oo 0 

Denote the „long range" time mean value of / by /, so that 

. • ''•:•-'•[ l=^\dtfit) •; : ' ' 
0 

(to shorten notation we replace tg by zero, as no derivatives with 
respect to tg will occur in the following pages). We then write: 

' • ' t = r + l " .-•; (4) 
Equation (3) then gives: 

OO •' ^ • . ' 

z , = | ^ C e - « f / ' ( / - C ) + l . • (5) 

0 

When calculating the time mean value of v, we find that the first 
term on the right hand member does not give a contribution (as 
f= 0 itself), so that: 

- , v=l: ;•- , • (6) 

Writing: ; 
•':,,. ' . v = v' + v. ; • • • • : (7) 

we have:' "'.' , . ' 

: • ^ . , v'=jdCe-''^f'it — C). • •' (8) 

We shall mainly be concerned with the consequences of this rela
tion between v' and /', both of which have mean values equal to zero. 

The displacement of a particle is given by 
t 

_ ' y= [dt,vit,) (9) 

• ' ' • ' ' ' ' . - ' • « : 

(to simplify notation we write y instead of / for the path; moreover 
tg has again been taken equal to zero). We can resolve y into two 
parts, as follows: 

y = y' + vt, ': ' (10) 
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where : ' . -
t • .• • -

y'= j dt,v'it,). ; • .- : (11) 
0 

When cpio)cpirj) as before denotes the correlation for a function 

<pit)-- T 

(pio)<fin) = ^ l dt cpit) cpit + rj). 
TJ 

0 
we write: 

cpcpt= j dri cpio) cpirj), (12) 

0 

and when ^ = 0 and the integral is convergent: 

oo 

cpcp = I drj cpio) cpirj). ' (13) 
- 0 

Further we introduce: 
oo 

• • • J J =jdrj e-'^v <pio) cpir,). (14) 

0 - 1 _ ' 

The latter integral is convergent independently of the circum
stance whether cp is equal to zero or not. 

5.11. Calculation of v'io)v'irj) and related'quantities in terms 
of/' 

In the sections 5.11—5.21 we shall temporarily drop the accents 
and assume that v. y. f and u respectively denote the fluctuating 
parts of these quantities, so that in particular v = f = u = 0. A 
return to the original notation will be made in 5.3. 

In order to calculate i;(o) z;(>;) we write: 
T ' -

vio) vir,) = YJ dt vit) vit + ri)= : 
0 

oo oo T 

=jdc,jdi:, .-«<«.+«.) ̂ fdt fit - c) fit + r,- c) = 
0 0 0 

oo oo ' •'•»>t • : • • • • • 

•• =|rff^|ic,e-«<f-+^.)7(^y7(?+17=^). • (1) 
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We make a change of variables b-y means of the formulae: 

C2 + Ci = a; C a - C i - ( 5 , ' . (2) 
.so that 

^o. <3) _ o • ' ^ • 

•• ' : 3(Ci,C2) -
Having regard to fig. 5.11 the double integral then is transformed 
into: , 

oo +(T 

vio) vir,) = hjdaj dd e-'"' {fio) fir, — Ö)} = '. ' 

0 — C T 

OO a 

= ^1 da I do e-^" {fio) firj + d) + fio) fir, - d)} = 

' 0 0 

OO OO 

= ^jddjda e-""- {fio) firj + <5) + /(o) fir, - d)) = 

8 
OO 

- ƒ do e-«8 {fio) fir, + d) + / ( o ) / ( , ? - ó ) ) . (3) 

0 8 

~2x. 
0 

This integral cannot be reduced to a more simple form as long as 
nothing is given about the function /. 

As a special case we take »/ = 0, which gives: 

v^ = -[dde-^^fio)fid)=^lf 
a. J a 

0 

(4) 
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The mean square of the velocity consequently depends both upon 
the correlation existing in the function fit) and upon the damping 
coefficient a. As two extreme cases we may take: 

a) a so small, that ar <^ 1, where x is the upper measure of correla
tion in /. In this case we can omit the factor e~^^ in the integral and 
obtain: -; ..' „ • ' .' ." 

V'^^l ddfwm=~7f. •• (5«) 
0 

b) a so large that the integration in (4) practi'cally extends only 
over such small values of d, that we may replace /(o) /(d) by /^. In 
this case: ' . . 

^ ^ ^ / a . / ^^ '•' (56) 

We next consider: , . ' -
oo * -foo 

vv = I drj vio) virj) = i I drj vio) vir,). 
Ó —oo 

Inserting formula (3) the integration with regard to rj can be 
carried out: 

vv = = ^ j do e-^^jdrj ifio) firj + d) + fio) firj - d)) 

0 — 
oo 

4a 
döe-'^KAff = -ff. \ \ : / (6) 

a 
0 ' '.'^ - - . . . ' ' • '.. ' • 

If we introduce the quantities: 

ö„ = i ; e, = l ••• ' - • -: (7) 

[compare equation 3.13(7)], then from equation (6) and (4) we derive 
the relation: 

As we have: 

it follows tha t : 

^1 \n 
m fid) < f\ 

.—' ,2 



5,11 ;5.12; 5.13] CALCULATION OF MEAN VALUES 91 

consequently: _ .| 

B,>d,. : ' ' • (9) 

Hence the ,,duration of correlation" of the function vit) is usually 
larger than that of the function fit), an interesting result. In the 
extreme cases to which refer equations (5a), (5è) we find: 

( a T < l ) d^m-. (10a) 
a 

( a T > 1) e^^Bf. . • (106) 

5.12. Calculation of w/ 
We have immediately: 

3" oo oo 

^ = -^jdtj dC e-^^ fit)fit -C)=fdC e-^^TmC) = /7- (1) 
0 0 0 

Comparison with formula 5.11 (4) shows tha t : ' 

vf = xv^. (2) 

5.13. Expressions which depend upon the displacement y 

With y (which stands for y') given by 5.1 (11) we have: 

T t T t ' 

y = Y dt dt, vit,) or / ^ i — / dt, vit,). -
0 0 0 0 

As the limits of the integral with respect to t, are 0 and t. instead 
of 0 and T. we cannot exactly replace it by v. which would be zero. 
It will be evident, however, that when T is sufficiently large, the 

t 

contribution to y derived from (l/F) ƒ dt, vit,) will be, at most, of the 
0 

order 1 jT. Hence with a certain approximation we may assume: 

y = 0. • ^ • (1) 

In the second place: 

t t 
vy = jdt, vit) vit,) = j dt, vit) vit — t,). 
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Hence: 
T t ' T T 

vy = -^ dt dt, vit) vit ^t,)= dt, -^ j dt vit) vit — t^. 

"\ 0 0 0 t. 

In consequence of the corollary given in section 3.122, this can 
be approximated by: y 

. vy = dt, vio) vit,) = vv. • (2) 

0 

Hence by 5.11(6): 
— 1 - ^ • * - ' 

' ' • . • ' vy=-,ff. (3) 

It is useful to prove this result in a different way. From 5.1(8) 
we have: 

T < oo oo •; 

~^ ^ ^jdtjdt,jdi:,jdi:,,-«(«.+«.) fit - c) fit, - c) = 
0 0 0 0 

oo oo T t . . ' - ' " • - . 

^fd^,fdC,e-''^^^+i^^^ldtldt,fit-:,)fit,-C,). (4) 
0 0 0 0 

The .second double integral can be written: . 

7' t 

-^Jdtjdt,fit — i:,)fit-t, — Q = 
0 0 

T T 

= -^jdt,jdt fit — Ci) fit - t , —!:,). •• 
0 «2 

In consequence of the presence of the factor g—"'fi+̂ "> in the com
plete expression (4) the important domain of values of Ci and C2 is 
limited and is of the order 1/a. When T can be chosen such that 
xT is a large quantity we may again apply corollary 3.122, and the 
double integraTreduces to : 

00 

jdt,fio)fii:,-ü,-t,). - -̂  \, 
0 

Now by applying the same transformation as was used in t h e 
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reduction of 5.11 (1) we find: 
oo oo oo 

^=. I dC,l dC, e-="«'+f'' / dt,fio)fiC,-C2 — t2) = 
0 0 0 -

OO 4-0' OO 

dafdd e-""! dt, fio) fid — t,) = . 
—CT 0 

OO a oo 

= i j d a I dd e-^" I dt, {fio) fid + t,) + fio) f id —t,)} = 
0 0 0 

oo (J + 0 0 

= i / dal dd e-°"'[dt, fio) fid + t,) = - ;. 
0 0 — o o 

oo CT 

^fdaldde-^ff^^n. • . (5) 

1 0 -

0 0 

5.14. Calculation of fy 
We finally consider the quantity: 

T « oo 

ly = ̂ j dtjdt,[d!: .-='« fit, - c) fit) = 
0 0 0 

oo 7' t 

^JdCe-^'^—jdtl dt,fit)fit — t, — C). 
0 0 0 

By means of the argument already used we have: 
T t 00 

, Jdt jdt, fit) fit — t, — C) =jdt, fio) fit, + f). r. 
0 0 0 

H e n c e : oo oo 

fv=J dCe-''^ldt,fio,fit, + C), . m 
0 0 

We write t, + C == t,; then: 
oo oo 

fy=jdCe-''^jdt,fio)fit,). 
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Applying partial integration with respect to f we find: 
oo oo y^ r^.j 

ly = - [dt, fio) fit,) -^[dC e-^^ fïöÜÏÖ = ^ - ^ . (2) 
X J X J X X 

0 0 

Comparison with formulae 5.11 (4) and 5.13(3) leads to the result: 
fy = xvy — «2. (3) 

This latter relation can be obtained directly from equation 5.1 (1) 
by multiplying this equation by y and observing that 

yv = - ^ M — '"^ -. - •. ' 

the mean value of i/rf< (vyj being zero. "' ' 
It may be remarked that for very small values of a (ar < 1) we 

obtain from (1): 
oo oo 

• • ; fy ^Jd^ [at,fio) fit, + 0= • • ' • • • ' : ;: 
' . 0 0 > . , , " . . ' 

oo oo . 00 ' 

^Jdcjdt, fio) fit,) - jdC C fio) fiC) (4«) 
.. ., 0 J 0 V \ ' ' /-' ... 

For very large values of a on the other hand: > 
/ s • • . . " • " • ' • 

- • - /y ^ — . ' • iAb) 

Both values will become small when the duration of correlation x 
in the function / is small. Considering equation (3) it is of importance 
to observe, that whereas for small x all terms in this equation will 
decrease, nevertheless for small values of x we have: 

• order of wy : -^f^ according to 5.13(3); 

. ' order of v^ : —-/̂  according to 5.11(4); 

:' order of fy : x^ f^ according to (4») above. 
Hence in this case the terms on the right hand member of equa
tion (3) are much more important than the left hand term, and we 
find: _ _ 

(ar ^ 1) xvy^v^. (5) 

This also foUows directlj' from a comparison between 5.11(4) and 

5.13(3), as for ar -^0 we have ff m ff. 
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5.2. Introduction of the expression for / in function of u 
The relation between the full values of / and u has been given by 

formula 5.1(2). As at present we use the letters / and u to denote 
the variable parts of these quantities exclusively, we must replace 
this formula temporarily by: 

f = fiü + xu. .: • - (1) 

We then h a v e : . - • • 

fio) fin) =/S^M(O) iuin) + xfifuid) uirj) + M(O) uir,) \+ x^uio) uir,). 

Now: - . . 

-•' M(O) «(>;)-f-j<(o) M(?y) = 0, 

while 
-• : — -•— t/2 

M(O) uir,)=—uio) uir,) = — - ^ M ( O ) uirj). 

Hence: ' 

drj 

For ?; = 0 we find: 

fio) firj) = n^ uio) uir,) -fi^^^-^ M(O) uir,). (2) 

/2 = «2 „2 + 2̂ 2̂_ . . (3) 

either from (2), or directly from (1). Further we can write: 

^ = - ^ = - . ó » = 2 1 i m i ^ | 2 M , 
«2 Qiin) r,=o n^ 

where gg is the correlation function for u. and g, for u. We write: 

then C is the intercept on the ry-axis of the parabola osculating the 
ggirj) curve at its vertex; it is a quantity of the dimension of a time 
fulfilling the relation: : • , • 

J? being the upper measure of correlation in the j^-curve. With the 
aid of (4) equation (3) can be written: 
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From (2) we deduce: ' 
oo 

ff — i dn fio) fin) = *^ "w — f^^ ~T~ '^io) w(>?) I = a^ MM, (6) 
J "'n 0 

and: 

]f = j dr, e-^Vio) fin) = •' / 
0 

oo 
~ ' /- £/2 

= a^ uu — fi'^ i dr, e^*' --5-^ M(O) M(»;) 

>c/?2 i dr, e ^'^ -j— uio)uir,) a" uu — x[ 

6 

= a* w« 4- xfi^ «2 — 5(2^2 J^^ — 

Introducing: 

= xfi^ u^ + x^ i\ — fi^) uu. (7) 

^/ "" 75 ' ^« "= ^ = ¥ ' ' ^ ^ 
/ ŵ  

[compare 5.11 (7j], we have: 
/^ 

''f — = =;= — 9ö2~ • y^l 
X^ «2 4 . ^2 j^2 1 + ^P 

a^C' 
Hence: 

e, <e„. ; ; (lo) 

5.21. Relation between v and u 
Making use of the results obtained in 5.2, equation 5.11 (4) gives: 

^ = fi^^^ +ocil—fi^)uu. • " (1) 

As uu < u^jx (compare the similar formula in /, mentioned in 
section 5.11), we have: 

. • . ï^ < ^^ • . " (2) 

which result holds good for all values of a and fi. 
Further from 5.11 (6): 

vv = uu. (3) 
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Referring to 5.11(9) and 5.2(10) we find: .- . . - ' . 

ö „ > e „ > 9 , . (4) 

Having regard to 5.13(2; and to the circumstance that an analogous 
formula will hold good for u, as in the derivation of 5.13(2) no con
nection with any other function plays a part, we obtain the relation: 

vy = ux. (5) 

In view of the importance of this result it is useful to give a direct 
demonstration, without passing through the function /. As: 

V -\- XV = fiu -\- xu . (6) 
we have: 

oo 

vit) = fdC e-""^ {fiuit — C) -F xuit — 0} = 
0 

oo 

= uit) — i\-fi)[di:e-''^üit-i:), (7) 
0 , 

and further by integration with respect to t (limits 0 and t) 
oo 

yit) = xit) - (1 - ft [dl: ^-"« {uit - C) - ui- 0} = 
0 
oo 

= xit) — il—fi) [dC e-"« uit — C)+b. (8) 
0 

where è is a constant. Hence: 
OÖ oo oo 

'^ = ^x+bü—il—fi) [d^ e-'"^k, + (1 —fi)^[dC, [dC, e-°" '̂+f.) k, (9) 
' 0 0 0 - • 

where k, and k, are given bj ' : 

k, = uit — C) xit) + uit) uit — O + b uit — C).. 

k, = uit — C,)uit — !:,) 

Now u = 0; likewise: uit — C) = 0; further: 

d 
uit — C) xit) + uit) uit — f) = -^ M(i — f) x(t) = 0. 

Hence Aj = 0. 
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Finally: 

k, = uiC, — Ci) uio) = — uid) uio), 

when C2 — Ci = <5. Writing at the same time C2 -|- fi = <f. the last 
term of (8) — leaving apart the factor (I — ft72 — reduces to: 

00 +0 00 

[da [dd e-"" -^ uid) uio) = [da e-'^" {M(<T) M(O) — M(—CT)«(O))= 0. 

0 —CT 0 

Consequently there remains: . . \ 

.:' vy = ux. ' . , -. ' (10) 

5.3. Relations between the full values of v and u and derived 
quantities 

We return to our original notation, so that again -

V = V -j- v'. e tc . - . • ••; 

From 5.1(2) we deduce: . , 

J=xiu — c), • ;. . 

so that 5.1(6) gives: ;̂  ' : ' • 

V =^ u — c, , . -. _ , (I) 

Further with 

y = y' -\- vt; X = x' -\- ut 
we find: ' - y . .; \ ;, 

- ' • vy = v'y' 4- vy' -\- v'vt -{- iv)H, ,' 

ux = u'x' -|- ux' -f- u'ut -\- iu)H. 

When we make use of the relations ' • 

• ' / = 0, F = 0 

(compare the beginning of section 5.13), we obtain: 

vy = v'y' + I iv)H. 

ux = u'x' -f- J iu)H, 
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and hence on account of 5.21 (5), which referred to v'y' and u'x': 

^ = i ^ -^ J {(^)2 _ (^)a) t = ^ — ^ {2ÜC — c2) t. (2) 

Under the assumptions made in Chapter 1, where quantities of 
the order x have been neglected in calculating v and vl, (reference 
to these assumptions has again been made in sections 3.33 and 3.34), 
the second term on the right hand member will be of small import
ance in comparison with ux. Hence in dealing with diffusion pro
blems by means of the equations deduced in Chapter 1, we may take: 

vy ^ ux. ''.'".• ' (3) 

By means of equations (1) and (3) used together with equation 
3.34(1) and 3.34(7) we now are able to connect the equation govern
ing the diffusion of suspended particles with the equation for the 
diffusion of the elements of volume of the liquid. 

5.4. Calculation of the coefficient of diffusion vy for the 
motion regulated by the complete linear equation 

As in 5.11—5.21 we consider only the variable parts of v. u and y, 
and drop the accents. Instead of starting from the simplified equa
tion of motion for the calculation of vy. as was done in 5.1, we will 
now start from the complete linear equation of motion studied in 4.4. 
Its solution has been given in 4.4(13): 

• - ' • oo . . ^ * 
1 /• 

vit) = — j dr] e""*'' sin cor. Fit — r,) 

0 

the coefficients co. k. F having been defined in 4.4(9) and 4.4(10). 
Hence the mean value vy can be written as follows: 

oo 

vy = jdr, vio) vir,) = 

0 . • • ' •. • •',.' ' . :.... 

o o OO OO 

= —2 dr, / dr,, / drj, g—*<'?•+'?•) sin cor,, sin cor,, Fio) Fir, -f r,,—r,^. 

0 o" 0 » 
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By interchanging rj,. r,, we arrive a t : 
oo 

vy =^ drj vio)virj) = . • 

0 

oo oo oo 

^ dr, dr,, / dr,, e *''';«+')''sin cor,, sin cor,, Fio) Fir, + rj, — rj,) 

0 0 0 

By putting r,, — rj, = rj' and adding the two expressions for vy, 
we can write: 

oo « o • • -- • 

j dr} F{o)F{r} + rji — nè +\ ^n F(o)F{r] + ^3 —>?i) = 
' 0 0 

0 0 00 -

• =jdr,Fio)Fir,) + j dr, Fio)Fir,) = ,\ 

v' — '̂ -• 
00 TJ' 

= [drj Fio)Firj) + [drj" F(o)F(— rj") = 

"q' — c « 

00 00 

= idrj Fio)Firj) = 2 [drj F(o)F(»?) =2FF. ' . V " „:. 

—oo 0 ' • , 

Hence: 

J / drj, / drj, e~''*'ïi+'ï'' sin cor], sin cujjj F.F = 

0 0 

oo oo 

r / drj, e"'''^'- sin oirj, / drj, e~'''^' sin coj/g -FF. 

oo oo 

1 
wy 

C O ' 

0 0 

ft)' 
0 

As 

/ drj, e ''^^ sin corj, = —^ , 

. 0 

with â  = ft;^ -f- k^. we obtain: 

vy = l^FF.- . " \ ~ -,- ' (1) 
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5.41. Calculation of F F =/ i?; .F(o)F(»?) 

d 
The function F is defined by 4.4(9): =' 

oo 

Fit) = a2 uit) + X, uit) + X, uit) — «3 ƒ : ^ uit — t,). 

o 
/'S 

Hence the expression FF has the following form i): 

FF = X* dr] uio) uir,) + ' . J^ 

+ x^a,l dr, [u(o) uir,) + uio) uir,)] + . . • J, 

xl j dl] uio) uirj) + x( drj uio) uirj) + I •3 

+ x^x, jdr] [uio)uir,) + uio)uirj)] + I^ 

+ x,x, j dr, [uio) uir,) -f- M(O) uir,)] -f I5 

+ xl j dr] uio) uir,) , ' Ig 

— a^ag / dr, —;ƒ- [uir,) ui— t,) + uio)"uir, — t,)] — • I7 

— x,x, / dr] / - ^ [uirj) ui— t,) + uio) uirj -~ t,)] ~ I , 

— a^ag J drj J —j- [uir]) ui— t,) + uio) uirj— t,)] + Ig 

+ « i / ^ ^ / : ^ / : ^ ^ ( - ^ 3 ) ü i n ~ t , ) . . iio 

These 10 integrals can be calculated by using the properties of 
correlation, and we shall see that they all vanish except the first one-

a) I,: Integral I^ is a known integral: 

I, = X* drj M(O)M(?J) = a* ux-

p. _^^ 
b) I,. Ig: We can write: — [u^'^Ht) é'^^t -f- r,)] = 0. 

After differentiation it can be changed into the form: 

M(™+I>(0 «(»'(< + »y) = (—!)«""'('') w(»+i'(< + rj). 

') The following integrals have their limits of integration (0, oo) 
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^^^^"•' • - | - [M(»+1' (^) «(»)(<-+ 7?)] = 0. 

from which: 

M"» + 2)(if) «<»)(/-H>?)=(-l)M"»+l)(/)M(» + l)(i-h»?)=(-I)^M""'(0«'" + ̂ '('! + 'y) 
Continuation of this process leads to the formula: 

M('»+*"(i;) MW(/ -[-»?) = (—1)" M"»'(0 w'"+*"(i! -I- ??)• (1) 
Hence I j and Ig vanish. 

c) Ig, I4, Ig: The mean products in these integrals can be changed 
into the following form: 

^2(m-l-») 

(̂m)(̂ ) ,,(m+2»)(^ + »?) = (-l)'"^^2(m-f»)^WM< + ^)-

Integration with respect to rj gives: 
T 

T I drj U^-^\t) U^rn+2r.)(t + ^) = ( _ ] ) « _ _ _ _ R^yj) 
^2{m+n)—l 

0 
0 

Now on account of the symmetry of Rir,) with respect to >; = 0 it 
foUows that its derivatives of uneven order will vanish at >; = 0, 
provided of course that Rir,) remains analytic at ?; = 0. This latter 
property, however, can safely be assumed, as we may obtain a 
development of Rir,) into a power series in rj by developing uit+r,) 
into a T a y l o r series. On the other hand we have assumed that 
the correlation function vanishes for all ?; > ^ ; hence all its deriva
tives must vanish too. It seems natural to assume that they will 
vanish without passing through discontinuities. Hence the integrated 
term on the right hand member of (1) vanishes at both limits, and so 

h = 0, ƒ4 = 0, /g = 0. 

d) I7, Ig, I9: The mean products in these integrals can be written 
in the following form: 

00 00 

Q=J dr, u^'^^t) u^"''^v^t+r] — t,) + i—l)P idrjU^'^^t) u^"'+v\t+r,+t,) = 
0 '0 

00 00 

= / ĉ »7«(""(/;) w""+P)(/ -I- J?) -f- (—l)*» [dr, u^'^^t) u'^'+P^t + rj) = 

—ta +t3 
0 0 0 0 

= jdr,-pjU^'^\t) u^'^'^it + rj) + (—1)̂  [drj-^u^^'^t) u^^'^t+rj) = 
-ta , ' + t3 , 

^p—1 00 dV—^ °° 

= JT=T"""'W"'""(^+'?) +(-l)'';r^=ï«^""'(Ow'™'(^+'?) • "^n .: .^ ... l—i,. - • ar, +t, 
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In consequence of the fact that M<'"'(^) «'"'(^ -|- r,) is an even func
tion of f], the derivative has the same absolute value both for 
7, = — t , and for j ; = -|-1„ while for p uneven the signs are equal, and 
for p even they are opposite. Hence the terms referring to the 
limits — 3̂ and + t, cancel. As the terms referring to the limits <» 
will vanish according to what has been explained already in c). it 
follows that Q wiU be zero. Hence integrals I,, Ig, Ig vanish. 

e) Ijo: Write: 

I* = dr, ui-— 3̂) uir, — t^) = ƒ drj uio) uit, — t^ + rj) = 

= uio) uit, — ti + r,) 

Now we have: 

= — M(O) uit, — t^). 

uio) uid) = M(— d) uio) = — M(— d) uio). 

Hence / * is an odd function in d = t, — t^. and the integration 
of / * symmetrically over the plane it,, t^) will give zero: 

I _ «2 [ ^ / ' i k I* - 0 

^'^^''y vtj vt.^ -°-
Returning to the expression: \ - ' 

0 0 \ . ' ' ' ~' 

FF =jdrj.Fio)Fir,) ^ I^ + I , + . . + I,„, 
0 . . . 

we conclude that among the 10 integrals it contains, the first one 
only remains, hence: 

As from 5.4(1): 

we finally obtain: 

FF 

vy = FFjx*, 

vy = ux. (1) 

We see that for a homogeneous field as defined in 4.1 the coeffi
cient of diffusoin vy for the particles, is equal to the coefficient of 
diffusion ux for the field. This is true when the motion of the particles 
is regulated by the simplified equation of motion as well as when it 
is regulated by the complete equation of motion. 
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5.5. Remarks on \ Einstein's formula for the Brownian 
motion 

The phenomenon of diffusion of solid particles suspended in a 
fluid in turbulent motion presents great similarity to the behaviour 
of colloidal particles in Brownian motion. In the two cases we have 
to do with a system which is described by statistical laws, and 
certain methods of reasoning find their application to both of them. 
In particular this applies to the concept of correlation. Nevertheless 
certain results seem to come out differently. The usual formula for 
the Brownian motion is: ,, 

~ ^ _ RB 1 ":: '; 
. . / . . . . • ^ ~'' N 3nfia' . : . ' . ' .,.; ^ ' 

where; 

y2 = mean square path, ,, . 
T = interval of time of observation, . -

i? = gas constant, . • ' , ' •-
6 = absolute temperature, 

A7̂  = A v o g a d r o ' s number, . ' • 
ju = coefficient of absolute viscosity, ' ' 
a = radius of the spherical particle. 

This formula, originally given by E i n s t e i n i), has been con
firmed by other authors, as v o n S m o l u c h o w s k i , L a n g e 
v i n, O r n s t e i n , etc. L a n g e v i n ' s deduction is particularly 
simple. He starts from the equation:. ' 

V + XV = f. •-- — ^ :̂ (2) 
where: .. , 

V = velocity of the particle; 
a = a damping coefficient due to the friction of the liquid oppo

sing the motion of the particle; 
/ = action of the field surrounding the particle, as a con.sequence 

- of the impacts of the molecules of the liquid upon the 
particle. Hence/will be a highly irregular function of the time. 

We multiply both members of this equation by y. the coordinate 
of the particle at the instant t, and take the mean value. This gives: 

vy -\- X vy ^= fy. • • (3) 

') E i n s t e i n , Ann. d. Physik., 19, 371, (1906), V o n S m o l u c h o w s k i , Attn. 
d. Physik., 21, 756, (1906); L a n g e v i n, Compt.rend., 148,530, (1908); O r n s t e i n , 
Versl. Kon. Akad. V. Wet., A'dam, 26, 1005, (1917). 
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A s : •• • • ' 

• vy ^ — v^. 
we may also write: 

xvy = v^ + fy. ':.- (4) 
This equation has the same form as 5.14(3). -

Now L a n g e V i n takes: ^ - ' , 

/ y = o , •" • (5) 

assuming that there is no correlation between the rapidly and 
irregularly fluctuating value of / and the coordinate y. Equation (4) 
then reduces to a relation between vy and the mean square velocity 
v^. The latter is calculated from the assumption that the law of the 
equipartition of energy can be applied to the particles, so tha t : 

^m'v^ = ^ , • . (6) 

where m' is the mass of the particle. Finally a is deduced from 
S t o k e s ' formula for the resistance, so that we have: 

a = ^ . (7) 
m 

(A surplus of inertia due to the acceleration of the liquid .surround
ing the particle is supposed to be contained in m'). 

Now the point open to criticism is the assumption (5). Indeed the 
path of a particle is determined by the forces acting upon it, so that 
it is not allowed to consider / and y as independent variables. The 
proper expression for fy has been given in 5.14(4a). 

L a n g e v i n's assumption can be justified, however, for the case 
of the Brownian motion when we have regard to the estimates given 
in .section 5.14 for the orders of magnitude of the terms occurring in 
equation 5.14(3). From these estimates it follows that as soon as 

a T < l , '(8) 

we may neglect fy in comparison with the other terms of the equa
tion. The relation (8) will be satisfied for particles of dimensions 
many times exceeding those of molecules, as then the duration of 
correlation in the motion of these particles (determined by 1 jx) will 
be much larger than the duration of correlation x in the forces / 
which are due to molecular collisions. 

On the other hand in our case of particles whose motion is due to 
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turbulence of the fluid, 1/a and x will be of the same order and (8) 
does not hold good. In this case we must keep to 5.14(2) 

. - • fy^ïL-^A, . :. . (9) 
a a 

from which, by means of 5.2(6j and 5.2(7^, we ootain: 

fy = —fihP-\-x'uu — xi\—fi^)uu. no) 

Equation (4) above then gives 
/ \ • • ' " " ^ 

9.vy = v^ — fi^u^ -\- xuu — a(l — fi^) uu. 

which in consequence of 5.21(1) reduces to 
.«̂  

xvy = X uu, ^ ... . 
or: .-• , . ^ :' • .V • 

• v 
' vy = uu =: ux. 



CHAPTER 6 -

APPLICATION OF THE RESULTS TO THE PROBLEM OF 
T H E DIFFUSION OF PARTICLES SUSPENDED IN A LIQUID 

IN TURBULENT MOTION 

6.1. Introduction 

It IS the object of this last chapter to illustrate the theoretical 
formulae by means of some simple examples. Although a full deve
lopment of the practical aspect of the problem of the transportation 
of small particles by a current of liquid or by a gas, with a discussion 
of the results of experimental investigations, falls outside the scope 
of this thesis, we will make an application to a case of homogeneous 
turbulence and to that of particles suspended by the turbulent 
motion of a stream running horizontally. 

The diffusion of the particles suspended in the liquid according to 
the views adopted in this work, is governed by the equation 1.4(4), 
deduced in Chapter 1: . . • 

dn 9 / 7 \ ?̂  / 'PX^ 

We suppose the particles to experience the influence of gravity, 
which in the absence of turbulence would give them a constant velo
city of fall —c. In the sense indicated in section 1.6 this velocity —c 
is a „peculiar motion", and in calculating the quantity Ijx we must 
add —c to the amount deduced from the irregular motion alone-
These irregular motions are due to the influence of the turbulence 
of the liquid. As the development of the method to be applied for the 
calculation of Ijx and Pj2x is dispersed over various parts of the 
previous Chapters, it seems useful to summarize it shortly, as this 
will give an opportunity of indicating the most important links of 
the reasoning and also some points where difficulties have been met 
and hypotheses had to be introduced to bridge gaps that could not 
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be done away with by exact calculation. These difficulties are con
nected with the circumstance that mean value theorems had to be 
applied to phenomena which are essentially of a non-stationary 
character; hence they are inherent to the subject treated. 

The underlying idea is that in order to calculate Ijx and Pj2x for 
the particles we must find a connection between these quantities 
and similar quantities referring to the motion of the elements of 
volume of the liquid. The basis for obtaining such a connection has 
been developed in Chapters 4 and 5, where it has been shown how 
time mean values for a single particle can be related to time mean 
values for the surrounding liquid. This result is not yet sufficient for 
the purpose in view, as the quantities Ijx and Pj2x occurring in equa
tion (1) above are group mean values (or ,,ensemble" mean values) 
referring to the lengths of the paths described (in the same time 
interval T) by a number of particles, simultaneously starting from 
the same spot. 

The problem of connecting such group mean values with time 
mean values for a single partich has been considered in the second 
part of Chapter 3 (section 3.3). It is there that the most serious diffi
culty is met with, which concerns the duration to be assigned to the 
interval T (we come back to this point in 6.13). 

When we take for granted that group mean values can be replaced 
by time mean values; when further from Chapter 5, equation 5.3(1) 
and 5.3(3), we deduce that the time mean values of the velocity v and 
those of the product vy or vl for the particles in the absence of a pecu
liar motion due to exterior forces are equal to the corresponding 
quantities u and ux or u^ for the liquid; and when finally we make 
use of equations 1.7(11) in order to pass from v and vl to Ijx and Pj2x, 
we arrive at the result that the quantities Ijx and Pj2x for the 
particle must be equal respectively to the corresponding quantities 
I /T and i^j2x for the elements of volume of the liquid. This is the 
point of view that we shall adopt in constructing the illustrating 
examples (sections 6.2, 6.3). 

Now the dispersion of the elements of volume of an incompressible 
liquid necessarily must be isomeric (see the definition given in section 
1.2); hence, according to 1.21(11): 
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The value of | ^ / 2 T = u^ for the elements of the liquid can be 
calculated from the turbulent friction. According to the mixture 
length theory of turbulence "•), the turbulent stress experienced 
between adjacent layers of a moving liquid is given by: 

; •• . :. \ stress = givl')-^ ' ' (3) 

where the quantity ivl') is the analogue of our quantity ui^). As the 
stress can be calculated from the total resistance experienced by the 
moving liquid, and as usually sufficient empirical or semi-empirical 
data will be available concerning the velocity gradient dUjdy, we 
perceive the possibility of obtaining the numerical data necessary 
for the application of equation (1). Although here we have given 
attention, in the first place, to the case without peculiar motion, the 
extension to the case where such a motion is produced by gravity 
will not bring any serious difficulty (compare what has been said in 
section 1.6). . ' ' 

Hence it appears possible in this way to reduce the dispersion 
problem for the particles to the solution of a partial differential 
equation with fully known coefficients. • -

At the same time it follows that the dispersion of the particles will 
be isomeric, like that of the elements of volume of the liquid. This 
would settle a problem raised in .section 1.72, 7nz. whether inequali
ties in the field of turbulence could produce an unequal distribution 
of the particle density, by driving particles from regions of strong 
turbulence towards regions of weak turbulence. The answer would be 
negative. • • • • " ' ' . . ' . ' ' . ' ' 

It may seem that this result is an immediate consequence of an 
assumption introduced in the first paragraph of Chapter 5 (section 
5.1), viz. that the elements of volume of the liquid which can be 
considered as moving with a practically homogeneous velocity, are 
large in comparison with the paths described by the particles relati
vely to the liquid. It looks as if this assumption already implicitly 
contains the final result, as it implies that the suspended particles 
should never leave the elements of volume of the liquid in which they 

') Compare; S. G o l d s t e i n , Modern Developments in Fluid Dynamics, (Oxford 
1938), vol. I, p. 205-206. 

") S. G o l d s t e i n , i.e., p. 206, eq. (20). , • •„ 
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happen to be embedded, and thus could not have a dispersion diffe
rent from that of these elements. The question presents itself: is this 
the only conclusion that can be drawn from the preceding chapters ? 

On closer inspection a number of points call for attention. These 
will be considered in the following subsections. , 

6.11. Influence of an inhomogeneous' field ôf motion of 
the liquid surrounding a particle 

The question can be raised whether the equation for the motion 
of a single particle in a moving fluid-, given in section 4.2 for the case 
of a homogeneous field, can be extended to cases where the field of 
motion of the liquid is not homogeneous over the whole region to 
be considered. In equation 4.2(3) occur two terms in which the time 
variation u of the velocity u of the liquid plays a par t : an inertia 
term (rather two terms, which can be combined into a single term 
2jiga^u), and the term expressing the frictional resistance. It is not 
difficult to deduce that in the case of a field where M is a function 
both of the time and of the coordinate x, the term 27iga^u must be 
replaced by: 

_ , I du , du'' 
. . - 2̂ ^̂  l ^ + -̂a^ 

A more intricate problem is the influence of the variation of the 
velocity in the viscous resistance; no exact calculation has been 
made, but it is supposed that here must be introduced the change of 
u with time as experienced by an observer moving with the 
particle, so that u will have to be expressed as 

du du 
dt dx 

Let us retain the notation u for this quantity; then it will be possible 
to write the inertia term in the form: , • ; 

2;zga^ u-\-27iga^-^ iu — v). •'•.•'• 

In this way we come to the conclusion that to the right hand 
member of equation 4.2(3) there must be added a term: 

27iga^-^iu — v). 

When in this term dujdx is considered as a given quantity, which 
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in a first approximation perhaps even may be considered as a con
stant, the new term can be combined with the term — bn/xa (w — u) 
expressing the ordinary resistance according to S t o k e s ' law: We 
thus arrive at the result that the presence of the additional term will 
have a similar influence as a change in the coefficient of viscosity in 
the expression for the S t o k e s ' resistance; and both equation 
4.2(4) and the simplified equation 4.3(1) will retain their respective 
general forms. Hence in this there is no reason to expect that in
homogenity of the field surrounding a particle will materially alter 
the conclusions of Chapter 5. . ' 

6.12. Mean value of the velocity of the particles 
The equality between group mean value and time mean value of 

the particle velocity has been proclaimed in equation 3.34(1). A 
similar relation will hold good for the velocity of the elements of the 
liquid. The equality of v and u in the absence of a peculiar motion 
of the particles is laid down in equation 5.3(1). There seems to be no 
reason to suspect these relations. 

We must observe that a systematic velocity u different from zero 
for the elements of the liquid is obtained only in the case of inhomo
geneous turbulence, in consequence of the condition that the disper
sion process for these elements must be isomeric. From equation 
1.21 (11) we see that in general the value of I will be of a smaller order 
of magnitude than that of P. unless the turbulence changes consider
ably over distances of the order of the paths of the elements. (We 
must exclude, however, such a case, as then the applicability of most 
of our formulae will be greatly impaired). The relation expressed by 
1.21(11) means that particles starting from a given level on the 
average will move over greater distances in the direction of increa
sing turbulence, than in the opposite direction. The mean value of 
the velocities of the element, at the instant they pass the given 
level, on the other hand is zero. Hence there is no reason to expect 
a systematic deviation between v and u; consequently neither is 
there any reason to expect a systematic difference between v and u, 
or between / and f. 

6.13. The relation between the mean values P and P. 
As these quantities are of a more important order of magnitude 

than I and f they deserve extra attention. 



112 • • MEAN SQUARE D I S P L A C E M E N T [6.13 

According to 3.33(6) we have: • 

.''-- '^ = 2^=2Jdr]{vitg+.T)vito+T-rj)%. •-:• (1) 

Ó . - ' 

A similar formula can be given for 1^. 
Now from 5.21 (2) we know that jŷ  < M*; and from 5.2(4) we have: 

öc > ö„. We may expect that also ê^> •&„• When T exceeds both 
these two quantities we .shall have: 

T T 

j drj {vito+T) vito+T — r,)}^ == j dr, («(i„+ T) uito+T — r,)}^. (2) 
0 0 

in analogy to 5.21 (5). For values of T smaller than i9 ,̂ however, the 
first integral will be smaller than the second one. Hence: 

/J2 fjti 

so that in general: • , 
P<i^. (4) 

The difference will be the more marked as T is smaller; it is only 
when T is large compared with ê^ that the difference becomes rela
tively unimportant. It is at this point that the duration of the inter
val T and that of x. used in forming the quantities l/x and PI2x. 
become of significance. Our formulae are valid when these intervals 
can be chosen large in comparison with the duration of correlation 
ê^; in that case we may use the sign of equality in (4). On the other 
hand, x must still remain small enough in order that quantities like 
Ijx and Pj2x are not influenced by the fact that the particles under 
consideration should have wandered into regions where the state of 
turbulence is different from that in the region from where they 
started. It is not certain that we can always choose T and x in a way 
fulfilling both requirements. -

When it is necessary to take T and x rather short, we must expect 
that in (4) there will be inequality between the two quantities, in 
such a way that (for short intervals of time) the mean square dis
placement for the particles appears to be somewhat less than that 
for the elements of volume of the liquid. This is the consequence of 
the retardation suffered by the particles, which is effective in short 
intervals of time (in long intervals it makes that they keep a certain 
course for a longer time than an element of the liquid will do). The 
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consequence of this circumstance seems to be that the dispersion 
of the particles will remain somewhat less than that of the elements 
of the liquid. This might result in a smaller tendency for the particles 
to be driven away from the regions of intensive turbulence, so that, 
in consequence of the restoring motion expressed by the mean value 
V or by the value of Ijx. they can show a tendency to concentrate 
slightly towards the regions of intense turbulence. This is contrary 
to what originally had been expected, and we do not venture to give 
the result as certain. . ' , 

6.2. Application of the diffusion equation to the case of ho -
mogeneous turbulence 

We return to equation 6.1 (1; and keep to the assumption that the 
quantities Ijx. Pj2x for the particles, in the absence of a peculiar 
motion produced by exterior forces, are equal to the quantities | / T , 
I 7 2 T characterizing the turbulent motion of the elements of volume 
of the liquid. For the latter we write: 

£2 

fc = ^' ('̂  
and we consider cp as the quantity charatcteristic for the turbulence 
of the liquid. According to 6.1 (2) we then have: 

The corresponding quantities for the particles, when from now 
onward we purposely introduce a peculiar motion with velocity —c, 
as it will be produced by gravity, are given by: 

P T dcp ,„. 
Yx = f' 7 = ^ - ^ - , • , . . •". (̂ ^ 

The diffusion equation can then be written: 

dn d ( dn\ , dn . -. ,^, 
;•• , -dt=l^['P^I + '-d^'.' • • - ' (̂ ) 

When we consider a state of equilibrium where there is no varia
tion of the concentration with the time, (4) leads to the following 
equation: 

cp~ \- nc = q = constant, (5) 

q being the current of transportation of the particles. When moreover 
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we assume that particles are not introduced into the field, neither 
are taken away, q must obviously be zero. Hence: 

• ' ' ' • ' dn , „ ' '• ,„ , 
OJ-T—\-nc = 0. • . , (5a) 

• \ dy • - • , - • ^ ' 
The solution of this equation is: 

(6) 
1/ 

n —c f d)/i<p 
— = e y„ . 
no 

where ng is the concentration at the level yo. 
In a reservoir where the coefficient of diffusion cp of the turbulent 

field is artificially kept constant by stirring, the distribution of the 
particles will follow the exponential law: 

n 
— = g-c()/—yo)/?> • " , (7) 

• • « 0 ' - , ^ ' 

Such homogeneous turbulence in water can be realized by means 
of periodic agitation with a system of parallel grids, as was applied 
in the experiments of H u n t e r R o u s e ^). The spacing between 
the grids is kept constant over the whole depth of the reservoir, in 
order to maintain a uniform field of turbulence, and thus a constant 
value of cp. The distribution of the concentration measured in these 
experiments appeared to be in good agreement with the exponential 
law. 

It would be worth while to know the relation between the mecha
nical and geometrical factors characterizing the agitation and the 
diffusive power of the turbulence produced by it. We can presume 
that the following quantities will be important in this respect: 

d: diameter of the bars of a grid; 
B: horizontal spacing of the bars in a grid (the grid being 

supposed to be quadratic); 
A : vertical distance between the grids; , - , -
5 : amplitude of the agitation; ^ . \ ' 

/ = COJ271: frequency of the motion; ' ~ 
c„: coefficient of resistance of a bar, (which quantity will be 

dependent upon the form of the bar). 
Consider the motion of a portion of unit length of a single bar. Its 

vertical displacement can be written: y = 5 sin cot. and its velocity 

') H u n t e r R o u s e , Fifth Intern. Congres of Applied Mechanics (Cambridge, Mass., 
U.S.A., 1938). 



6.2; 6.3] DIFFUSION IN HOMOGENEOUS TURBULENCE 115 

will be: y = Sco cos cot. At any instant t this portion experiences a 
resistance: 

F = ic„gy^d, 

and the momentum communicated to the liquid in one half period 
will be: 

• • Ibar=-TCwQS^Old. ' %• :.: 

We imagine that this momentum originates an eddy of diameter d 
in the water, moving with an average velocity 2jn Sco. Such an eddy 
per unit length will require a momentum: 

' • ' '• '' 2 „ nd'^ ' 

Laay=-RSco-^. 

By equating /(.„r = I eddy, we obtain the eddy diameter: 

' . - < 5 = l / | ^ » 5 ^ - . _ . - - . \ - ; • . ' - : 

As the mixing length will be proportional to the eddy diameter, 
and the velocity has been assumed to be proportional to Sto, the 
coefficient of diffusion for the region occupied by the eddy can be 
written as: • . . . ' . 

cpo = X ScoVc^jSd, -/. 

where A is a numerical constant. In order to find the average value 
of cp over the whole region of the reservoir, we multiply this expres
sion by the factor 2BdSjB^A, so that we obtain: 

. ^ _ cp = XV2^.c.„co^^. • ƒ • (8) 

H u n t e r R o u s e's experiments, however, do not provide data 
for testing this relation. Some experiments had b-en undertaken 
with this object in the Laboratorium voor Aero- en Hydrodynamica 
der Technische Hogeschool te Delft by J . J. B o u w m a n , but 
owing to war conditions they have not been finished. 

6.3. Application of the diffusion equation to particles s u s 
pended in a current of water flowing horizontally 

We .suppose that the state of motion, both of the water and of the 
particles, is a function of the vertical coordinate y alone. The slight 
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inclination of the streamlines in a actual river with a free surface 
can be neglected in our equations, although, of course, the slope of 
the surface determines the driving force which must overcome the 
frictional resistance of the bed and thus at the same time regulates 
the intensity of the turbulence. 

The frictional stress x acting between two layers of the stream is 
a linear function of the depth: 

where x^ is the maximum value of the stress, which is experienced 
at the bottom; h is the total depth of the channel, and y is the 
distance above the bottom. The value of T ^ is connected with the 
inclination I of the surface by the relation: 

rm = Qghl. (2) 

In the case of a stream heavily loaded with suspended material it 
will be necessary to multiply the right hand member with the factor 
(1 -|- ns). where n is the average number of particles per unit volume, 
while 

Ana^ g'-p 

^ Q 

Q and g' being respectively the density of the liquid and that of the 
particles (which are supposed to be spherical and have a radius a). 

In virtue of equation 6.1 (3) we have: 

dU . 
T = e 9 > ^ , (3) 

from which: 

^ g dUjdy .-. • ^ ' 

Equation 6.2(7) then gives: 

-yIM 
1/0 

Let us take, by way of example, v o n K a r m a n's formula 
for the distribution of the velocity: . . . . 

..•• , v V j i k ["' 1 — V l —yjh 
In —Vl—yjh^. (6) 
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where A is a numerical constant approximately equal to 0,36. The 
coefficient of diffusion cp then comes out as : 

2kh ^^i\-yjh)i\-VY= yjh). (7) 

which expression presents a maximum at yjh = 5/9. Substituting 
this into (5) the following result is obtained: 

'l — V l —ygjhY \ V\ — yjh ""̂  

V l —ygih .1 — V l —yjh. 

where: 

"-in, 

(8) 

(8«) 

A somewhat simpler formula for the velocity distribution has been 
given by P r a n d 11: - . 

Umax f^^ 1 ]jj(2A/y— 1) 
Vxjg 

This gives: 

cp = kh [/-''^.yjhi\—yjh)i\—yj2h). 
Q 

which expression presents a maximum at 

y/A = 1 - ^ ^ - 3 . 

The formula for n then becomes: ' . < 

\yolhi\~yol2h)]^ 

(9) 

(10) 

n 
nc, i^~yolh)' 

i\-yjh)^ IE' 

yjhi\-yj2h)\ 

I t is to be remarked that , as formulae (6), (9j for the velocity 
distribution cannot be applied in the regions near the bottom and 
near the surface of the water, the formulae for the concentration 
will not hold good at these regions. 

A full theory of the distribution of particles in a channel will 
request the knowledge of the boundary concentration ng. especially 
the concentration at the bottom. For this purpose it will be necessary 
to study the motion of the particles and of the water in the transition 
layer where the transportation of materials by traction is ended and 
the transportation by suspension begins. This forms a special subject 
of investigation which we must leave aside. 



SAMENVATTING 

Deze dissertatie „Problemen betreffende gemiddelden en cor
relaties bij de beweging van kleine deeltjes welke in een tur
bulente vloeistof gesuspendeerd zijn" is ontstaan uit de behoefte 
om een basis te verkrijgen voor de theoretische behandeling van de 
diffusie als gevolg van turbulente bewegingen. Wegens de grote om
vang van het onderwerp moest worden volstaan met een behandeling 
van enkele onderdelen. Als zodanig werden van het meeste belang 
geacht: een analyse van de betrekkingen die ten grondslag liggen aan 
de diffusievergelijking en de berekening van enige grootheden welke 
in deze vergelijking optreden en voor de beweging der gesuspendeer
de deeltjes karakteristiek zijn, uit grootheden die kenmerkend zijn 
voor de turbulentie van de vloeistof. Andere problemen, zoals de 
terugwerking van de deeltjes op het turbulente gedrag van de vloei
stof en de randvoorwaarden die in aanmerking zouden moeten wor
den genomen wanneer de gesuspendeerde materie bv. afkomstig is 
uit bodemmateriaal van de stroming, moesten daarnaast terzijde 
worden gelaten. Ter vereenvoudiging is de behandeling overal be
perkt tot verplaatsingen in één dimensie, waarvoor gewoonlijk de 
y-richting is gekozen. 

Als grondslag voor de afleiding van de differentiaalvergelijking 
voor de diffusie der gesuspendeerde deeltjes, is gekozen de theorie 
van K o l m o g o r o f f . Hierbij wordt uitgegaan van een waar-
schijnlijkheidsfunctie voor de verplaatsing van een deeltje, in het 
verdere betoog als ,,dispersiefunctie" aangeduid. Deze functie: 

Pito.yo;t.y)dy i.i(2)») 

drukt de waarschijnlijkheid uit dat een deeltje, hetwelk zich ten tijde 

•) Voor de hoofdstukken en de onderafdelingen daarvan (secties en subsecties) is een 
decimale nummering toegepast, waarbij het cijfer vóór het punt het betrokken hoofdscuk 
aangeeft. Vergelijkingen worden geciteerd met het nummer van de betreffende sectie of 
subsectie, tussen haakjes gevolgd door het nummer der vergelijking in die sectie (of sub
sectie). 
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0̂ bevond in het gebied tussen yo en yo -f dyg, ten tijde t zich zal be
vinden in het gebied tussen y en y -|- dy. De functie moet daarbij vol
doen aan de voorwaarde: 

[dyPitg,yg;t.y) = \. 1.1(3) 

waarbij de integratie uitgestrekt is te denken over het gehele gebied 
van waarden, dat voor y is toegelaten. Wanneer w(<o. yo) dyg het aan
tal der deeltjes voorstelt, die zich op het ogenblik tg bevinden in het 
gebied tussen yo en yo -f dyg. dan wordt het aantal deeltjes nit. y) dy 
welke zich ten tijde t zullen bevinden in het gebied tussen y en y -f ̂ ŷ 
verkregen uit: 

nit. y) = [dyg nitg, yg) pitg, yo:t,y). 1.1 (4) 

De dispersiefunctie moet voldoen aan de volgende integraalvoor-
waarde : 

Pito. yo :t,y)= [dy" Pito. yg; t". y") pit". y";t.y) 1.11 (3) 

welke verzekert dat men de verdeling van de deeltjes op het tijdstip t 
even goed rechtstreeks kan berekenen door middel van de dispersie
functie Pitg. yo ;t.y). als in stappen door eerst de diffusie te beschou
wen in het tijdsinterval (<, t") met behulp van de dispersiefunctie 
Pitg. yg; t", y"), om vervolgens te bezien de diffusie van uit de situa
tie y" gedurende het tijdsinterval it", t), met behulp van de dispersie
functie Pit", y"; t, y); hierbij is /" een willekeurig tijdstip tussen tg 
en t gelegen. 

Voorts worden gedefinieerd de grootheden: 

l^ = Idy iy — yg)"' Pitg,yo:t.y). 1.12(1) 

K o l m o g o r o f f beperkt zich nu in zijn theorie tot dispersie
functies, waarvoor bij onbepaalde afname van het tijdsinterval 
/ — ̂ 0 • (̂ ) ^6 grenswaarde Ijit — tg) hetzij tot nul, hetzij tot een ein
dig bedrag nadert *); (è) de grenswaarde Pit — tg) tot een eindig be
drag nadert; en (c) alle grenswaarden /"/(i — ̂ o) "iet m> 2 tot nul 
naderen. Dergelijke dispersiefuncties bezitten een aantal eigenschap
pen, die hen geschikt doen zijn voor de behandeling van fysische 
vraagstukken, en die het mogelijk maken een partiële differentiaal
vergelijking van de 2de orde voor de verdelingsfunctie n af te leiden, 

') / is de verplaatsing y — y„. 
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welke dan vervolgens kan dienen voor de behandeling van het diffu
sieprobleem. I _ 

De onderstelling van K o l m o g o r o f f omtrent het bestaan 
van zekere limieten wanneer t — ô tot nul nadert, moet evenwel van 
fysisch standpunt uit als een abstractie worden gezien, welke haar 
nut heeft omdat zij het afleiden van tal van betrekkingen mogelijk 
maakt, doch die zich in de werkelijkheid nooit geheel laat realiseren. 
Bij alle problemen van onregelmatige bewegingen van deeltjes treedt 
een zg. „correlatieduur" op, welke kan worden beschouwd als een 
maat voor de tijd, gedurende welke een deeltje een bepaalde bewe
ging als het ware nog enigermate vasthoudt. De beweging gaat eerst 
haar echt onregelmatig karakter vertonen, wanneer men tijdsinter
vallen invoert, welke groter zijn, liefst flink wat groter, dan deze cor
relatieduur. Doet men dit niet, dan zal men tot de conclusie 
moeten komen dat lim Pj2x = O wanneer x streng naar nul gaat. 
Vandaar dat men bij de fysische toepassing der theorie zich dient af 
te vragen of de door K o l m o g o r o f f ingevoerde limietwaarden 
reeds met een redelijke graad van nauwkeurigheid worden bereikt, 
wanneer het tijdsinterval t — i!o nog niet beneden de correlatieduur 
is gedaald. Op dit probleem wordt in Hoofdstuk 3 nader ingegaan. 
Het is bij turbulente bewegingen van een vloeistof niet steeds moge
lijk er voor zorg te dragen dat aan de eis omtrent de intervalgrootte 
wordt voldaan. Dit punt vormt een moeilijkheid in de theorie, die in 
verschillende gedeelten van de dissertatie telkens weer naar voren 
treedt. 

De behandeling van de eigenschappen der dispersiefunctie en de 
daaruit afgeleide differentiaalvergelijking voor n vormen het onder
werp van Hoofdstuk 1 i). Daarbij is gebleken dat een bepaald type 
van dispersiefuncties bizondere aandacht verdient. Dit betreft func
ties welke een verdeling met constante waarde van n onveranderd 
laten. Hiertoe moet voldaan zijn aan de volgende integraalvoor-
waarde: u . : .. •. -• • i , 

. •:. • : . .. . • , jdygPitg. yo; t.y) = \. . . . . . .. 1.2(1) 

De bedoelde dispersiefuncties zijn in Hoofdstuk 1 ..isomere disper
siefuncties" genoemd, daar zij slechts een plaatsverwisseling van 
deeltjes teweegbrengen, zonder dat de aantallen per volume-eenheid 

') Zie ook de publicatie, genoemd in noot 1), blz. 1 van Chapter 1. 
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veranderen. Bij isomere dispersie blijkt de eigenschap te bestaan: 

7 = ^ 1 , , . 2 , ( 1 6 ) 

welke in vele formules een belangrijke rol speelt. 
In Hoofdstuk 1 is voorts aandacht geschonken aan het samengaan 

van diffusie tengevolge van onregelmatige bewegingen met een bizon
dere, gerichte beweging tengevolge van de werking van uitwendige 
krachten, zoals bv. de zwaartekracht, welke de deeltjes wil doen zin
ken. Waar uit de hierboven vermelde betrekking 1.21(16) volgt dat 
bij isomere dispersie een systematische verplaatsing van deeltjes, 
gekenmerkt door een van nul verschillende gemiddelde waarde l, 
reeds optreedt zodra de turbulentie niet homogeen is iP een functie 
van y), blijkt het onmogelijk de aanwezigheid van een bizondere be
weging ten gevolge van een uitwendige kracht te constateren uit
sluitend uit waarnemingen over de beweging der deeltjes. Im
mers, beschikt men alleen over fenomenologische gegevens, dan kan 
men een dergelijke beweging niet scheiden van een systematische 
beweging als gevolg van inhomogene turbulentie. 

Wegens het eigenaardige karakter van de isomere dispersie en de 
betekenis welke haar analyse heeft voor het onderwerp van de disser
tatie, zijn in Hoofdstuk 2 enkele voorbeelden van dispersiefuncties 
behandeld, waaraan de in Hoofdstuk 1 ter sprake gekomen eigen
schappen konden worden gedemonstreerd. Met enige uitvoerigheid 
is daarbij in secties 2.3—2.44 een voorbeeld ontwikkeld van een 
isomere dispersiefunctie van een algemener type, welke behalve de 
waarschijnlijkheid voor een bepaalde verplaatsing, tevens de waar-
.schijnlijkheid geeft voor het bezitten van een bepaalde snelheid aan 
het einde der beschouwde periode. Dit maakt het mogelijk belang
rijke eigenschappen der dispersiefunctie op vollediger wijze te illustre
ren, dan het geval is met functies waarin de snelheid geen rol speelt. 

De diffusievergelijking, welke in Hoofdstuk 1 is verkregen, heeft 
de vorm 

dn d ( 7\ , d^ ( P \ 
i — dt- a y v % j + a / l ' ^ 2 ^ j - - ' • '-^('^ 

Om haar op een bepaald geval te kunnen toepassen, dienen bekend 
te zijn de grootheden Ijr en Pj2x voor de deeltjes welke men wil be
schouwen. In het geval van deeltjes gesuspendeerd in een turbulente 
vloeistof, moeten deze grootheden worden afgeleid uit hetgeen be-
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kend is omtrent de beweging van een enkel deeltje. Daartoe is in 
Hoofdstuk 3 een algemene analyse gegeven van de eigenschappen 
van tijdsgemiddelden welke bij de beweging van een deeltje optre
den, terwijl in Hoofdstuk 4 de bewegingsvergelijking voor een enkel 
deeltje, in verband met de beweging van de omgevende vloeistof, is 
opgesteld en geïntegreerd. Het blijkt in Hoofdstuk 3 dat men bij het 
analyseren van tijdsgemiddelden voor de beweging van een enkel 
deeltje onmiddellijk stoot op de zg. ,,correlatieduur" (welk begrip 
reeds ter sprake is gekomen in verband met K o l m o g o r o f f ' s 
theorie in Hoofdstuk 1); thans kunnen formules worden opgesteld 
waardoor deze correlatieduur wordt gedefinieerd (zie sectie 3.121). 
Men vindt dan dat tijdsgemiddelden voor de beweging van een enkel 
deeltje, willen zij een veilige basis vormen voor verdere beschouwin
gen, moeten worden genomen over een periode, groot ten opzichte 
van de correlatieduur. Daar echter de aard van de turbulentie het 
veelal niet mogelijk maakt voldoende lange perioden toe te passen — 
immers, wanneer men te doen heeft met een veld met inhomogene 
turbulentie, kan in een dergelijke periode een deeltje gemakkelijk 
van uit een bepaald gebied verplaatst zijn naar een gebied, waar de 
turbulentie een andere intensiteit heeft — moet gezocht worden of 
men met kortere tijdsduren kan volstaan, wanneer men zich niet tot 
één deeltje beperkt, doch een groep beschouwt van zich gelijktijdig, 
zoveel mogelijk onder dezelfde omstandigheden bewegende, deeltjes. 
Dit probleem is in beschouwing genomen in sectie 3.3—3.34; hierbij 
wordt een brug geslagen van de zuivere tijdsgemiddelden naar de 
,,groepsgemiddelden", welke optraden in de analyse van Hoofdstuk 1. 

Van bizondere betekenis is hierbij nu de betrekking 

§ = 2 ivl),,, 3.33(6) 

waarbij het sterretje aanduidt dat groepsgemiddelden zijn bedoeld. 
Deze betrekking was reeds in Hoofdstuk 1 gevonden in de vorm: 

I 1 I 1 

^ = L = 2vl. 1.7(10) en 1.7(11) 
dx X 

terwijl zij bij het in Hoofdstuk 2 uitvoerig behandelde voorbeeld een 
illustratie kon vinden in 2.43(2). De beschouwingen van 3.3—3.34 
maken het mogelijk duidelijker aan te geven waardoor de geldigheid 
van deze formule wordt begrensd. 
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De in Hoofdstuk 4 opgestelde bewegingsvergelijking voor een 
enkel deeltje is gevonden door middel van een uitbreiding van een 
vergelijking, die werd afgeleid door B a s s e t , B o u s s i n e s q , 
en O s e e n voor de niet-stationaire beweging van een bol in een 
vloeistof bij kleine waarden van het getal van R e y n o l d s . Deze 
vergelijking blijkt een integrodifferentiaalvergelijking van de eerste 
orde te zijn: . -

^ +2 

2na^gu — 67tfj,a iv-u) + -^ dt,'^'^^-''^'^^ Ana^ , , , 
• - ^ g ( e — e ) . Vnvj Vt — t, . 

-oo 4.2(3) 
waarin: 

a: straal van het bolvormige deelt je; -i 
g': dichtheid van het deeltje; 
g: dichtheid van de vloeistof; 
fx: viscositeit van de vloeistof; 
v: pjg; 
v: snelheid van het deeltje; 
u: snelheid van de vloeistof; 
g: versnelling van de zwaartekracht. 
Het is gelukt deze vergelijking te transformeren in de volgende 

gewone differentiaalvergelijking van de 2e orde: 
V -h 2kv + ik^ + co^)v = F. 4.4(11) 

waarin k en co bepaalde constante coëfficiënten zijn, terwijl F eeri 
functie van t is, welke kan worden berekend uit u en de afgeleiden 
van u naar t. 

Uit de volledige vergelijking is ook een vereenvoudigde vergelij
king van de eerste orde geconstrueerd: 

V + XV = f. 4.3(2) 

waarin de grootheid / optreedt als een. op het deeltje werkende 
kracht, bepaald door: 

f = fiu -\- xu — xc. 4.3(3) 

met c = valsnelheid; terwijl xen fi bepaalde coëfficiënten zijn. Aan
gegeven is door welke benaderingen deze vergelijking uit de volledige 
vergelijking wordt verkregen. Voor de discussie van een aantal eigen
schappen der beweging kan de vereenvoudigde vergelijking een 
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eerste aanloop geven, welke in vele gevallen reeds tot een genoeg
zaam inzicht voert. 

Zowel voor de volledige als voor de vereenvoudigde vergelijking 
zijn de oplossingen gegeven. Bij de volledige vergelijking is ook het 
probleem van de periodieke beweging behandeld. 

In Hoofdstuk 5 is met behulp van deze oplossingen berekend welk 
verband bestaat tussen de in Hoofdstuk 3 gedefinieerde tijdsgemid
delden voor de beweging van een deeltje, en overeenkomstige tijds
gemiddelden voor de beweging van de vloeistof welke het deeltje 
omringt. Deze berekeningen zijn in hoofdzaak uitgevoerd met be
hulp van de vereenvoudigde vergelijking. Duidt men de verplaatsing 
van het deeltje aan met y, die van de vloeistof met x. en schrijft 
men voor de correlatieduur, kenmerkend voor de beweging van 
het deeltje 6^, voor de correlatieduur kenmerkend voor de bewe
ging van de vloeistof 0„, dan is onder meer gevonden: 

. , .. . „ ,. -, v^ < ü^. 5.21(2) 

' ' . - • ; : ' ^\}'y\ Ö „ > 0 ^ , 5.21(4) 
vy = ux. 5.21(5) 

De laatste dezer betrekkingen is voor het onderwerp van de disser
tatie van uitermate groot belang, in verband met de in Hoofdstuk
ken. 1 en 3 afgeleide formule: 

^^L^2vli=2vy). 
dx X 

Met het oog daarop is de genoemde betrekking ook bewezen met be
hulp van de oplossing der volledige bewegingsvergelijking. 

Bij de afleiding der betrekkingen 5.21 (2), 5.21 (4) en 5.21 (5) uit de 
vereenvoudigde vergelijking 4.3(2) is als intermediair opgetreden de 
op het deeltje werkende kracht /. Incidenteel werd daarbij de vol
gende formule verkregen: 

f^^H-ïl,: :rV ' 5.14(2) 
X X • , • ' . -

waar a - j d n fio) fin). . ' " vgl. 5.1(13) 
'• . 0 . . " '" . 

' 0 0 

ÏÏ=ldne-^^fio)fin). V vgl. 5.1(14) 
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zie sectie 5.1. De betrekking 5.14(2) is van betekenis, omdat een met 
fy analoge grootheid in L a n g e v i n ' s theorie van de Brownse 
beweging gelijk aan nul wordt gesteld. In sectie 5.5 is aangetoond dat 
dit bij de Brownse beweging geoorloofd is op grond van de om
standigheid dat de correlatieduur voor de moleculaire krachten 
waarvan het deeltje de werking ondervindt (de botsingen der mole
culen tegen het deeltje) uitermate klein is tegenover de grootheid 
1/a, welke maatgevend is voor de correlatieduur van de beweging 
van het deeltje. Bij de diffusie van deeltjes door turbulentie zal men 
echter in het algemeen een dergelijk verschil tussen de correlatie-
duren niet mogen verwachten, zodat dan L a n g e v i n ' s onder
stelling niet kan worden toegepast. 

Tenslotte zijn in Hoofdstuk 6 als voorbeeld een paar zeer elemen
taire toepassingen gegeven ter illustratie van de wijze waarop men 
de voor de turbulentie van de vloeistof kenmerkende grootheid ux kan 
berekenen uit gegevens omtrent de schuifspanning en de verdeling 
van de gemiddelde snelheid; en voorts van het principe volgens het
welk uit deze grootheid de waarden van Ijx en Pj2x voor de beweging 
van de deeltjes worden afgeleid. Hierbij deed zich tevens de gelegen
heid voor om nog kort terug te komen op enkele principes, die aan de 
theorie ten grondslag zijn gelegd en op de moeilijkheden welke zich 
daarbij hadden voorgedaan. 

Gaarne moge ik hier vermelden dat het verblijf in Nederland en de 
studie aan de Technische Hoogeschool te Delft mij is mogelijk ge
maakt door een studiebeurs van de Academia Sinica, verleend in 
1939, waarvoor ik hier mijn oprechte dank uitspreek. 



STELLINGEN 

I 

De onderstelhng van K o l m o g o r o f f dat de verhoudingen 
Ijx en PI2x waarin 

ï = j dllPit.y;x.l) 

P = j'dll^Pit.y;x,l) 

resp. constante waarden zullen benaderen wanneer T naar nul daalt, 
is voor fysische verschijnselen niet algemeen juist. 

A. K o l m o g o r o f f , Math. Ann., 104, 45-458, 
(1931). 

II 

De onderstelling gemaakt door B u r g e r s , in een artikel over 
het onderscheid tussen onregelmatige en systematische beweging 
bij diffusie problemen, dat bij afwezigheid van uitwendige krachten 
geen systematische beweging zal optreden, is niet juist. 

J. M. B u r g e r s, Proc. Acad., Amsterdam, 44, 
344, (1941). 

III 

De beschouwingen uitgesproken door B u r g e r s in een discus
sieopmerking bij een voordracht van P r a n d 11, over de ver
schillende diffusie-coëfficiënten zijn niet geheel juist. 

J . M . B u r g e r s , in: Vortrdge aus dem Gebiete 
der Aerodynamik u. verwandter Gebiete, (Aachen 
1929), p. 3. 
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M i 1 a t z leidt de formule voor het verband tussen de methodes 
van O r n s t e i n en S c h o 11 k 3' in de theorie der Brownse be
weging af door een bijzondere vorm van de spectrale functie te on
derstellen. Deze onderstelling is willekeurig. Het is echter mogelijk 
deze formule algemeen af te leiden zonder een onderstelhng in te 
voeren, en wel op 2 verschillende manieren: a) door de berekening 
van een integraal van D i r i c h l e t , oi b) door middel van een 
F o u r i e r-transformatie van de uitdrukking voor de correlatie
functie. De afgeleide formule is van belang in de theorie van de 
mechanische interpretatie van onregelmatige of pseudo-onregel-
matige bewegingen. 

J. M. W. M i l a t z , Ned. T. Natuurk., 8, 27, 
(1941). 

.-....' y.''' 

In een vloeistof met inhomogeen verdeelde turbulentie, moge 
de gemiddelde snelheid gemeten op een vast punt (b.v. door middel 
van een hittedraad-anemometer) worden aangeduid als het E u-
1 e r-gemiddelde u^ en de gemiddelde snelheid gemeten wanneer 
men een bepaald volume-element van de vloeistof in zijn beweging 
volgt, als het L a g r a n g e-gemiddelde Ujy Het zoeken naar hun 
verband moet beschouwd worden als een moeilijk, doch belangrijk 
probleem in de studie van de turbulente beweging. Dit verband 
moet als volgt luiden: 

M^ = Mj5 -1- 2 drpjdx " -

waarin 9 de diffusie-coëfficiënt van het turbulente veld is. 

- ' v i . . • [ . " • . _ 

In de theorie van de diffusie als gevolg van continue onregel
matige bewegingen heeft T a y l o r enige betrekkingen tussen 
correlatie-functies onderzocht. Ter uitbreiding van zijn werk kunnen 
wij ook opgeven: 

uip)^ • -

Ri^P)(rj) = i-\)''-==^R^irj) . ,._; 



waarin: Rg = de correlatiecoëfficient voor u: 

: , , uit)uit + rj). - : .,, , 
Roin)=' = — - ' ; .- .• • 

iï^f"' = de afgeleide van Rgirj) t.o.v. Y) van de orde 2p, 

2?p = de correlatiecoëfficient voor d^ujdt^. 

G. I. T a y l o r , ,,Diffusion by continuous mo
vements", Proc. London Math. Soc. (2), 20, 196-
212, (1922). 

- - VII 

In tegenstelling tot de vorming van loess in Europa door het 
water, is de loess in Noord-China meegevoerd door de wind van uit 
Mongolië en het bekken van Lop Nor, hoewel tussen Noord-China 
en die gebieden hoge bergen gelegen zijn.' 

VIII 

De Gobi onderscheidt zich van andere woestijnen onder meer 
doordat de overheersende bewerker van erosie in de Gobi het water 
is en niet de wind. 

IX 

Het klimaat van de Gobi vertoont een zekere fluctuatie, waarbij de 
tegenwoordige tijd een periode van toenf.mende droogte is, althans 
tot voor kort was. 

• , : . X , - . . ".. 

De oude Chinese geschriften over khmaatveranderingen in China 
vanaf ca. 2000 jaar geleden wijzen op een vrij nauw verband van 
de klimaatfluctuaties met de perioden van de zonnevlekken. 
Een periode van ongeveer 300 jaren uit deze twee pulsaties afgeleid, 
kan ook aangetoond worden uit de boomgroei van verschillende tij
den. 

XI 

In Zuid-Californië zijn experimenten uitgevoerd over het verband 
tussen ontbossing en waterafvoer. Daarbij is gevonden dat de water-



afvoer ten dienste van watervoorziening en bevloeiing, door ont
bossing kan worden bevorderd. De toepassing hiervan is echter niet 
altijd juist en ongevaarlijk. 

' . tïl ' ..•. " '" '• _,^ • ' 

De Amerikaanse hulp in de economische opbouw van China is niet 
altijd zonder gevaar. 

XIII 

Een democratische coördinatie in de programma's van wederop
bouw in de verschillende landen is noodzakelijk om conflicten te 
voorkomen. 

XIV • . 

De wetenschappelijke werkers moeten mede strijden tegen het 
opkomen van een totalitaire macht, om zich niet te laten gebruiken 
ten behoeve van doeleinden die zij niet kunnen aanvaarden. 

' X V • 

Uit de fysiologie en de leer der evolutie van den mens volgen 
afdoende bewijzen tegen het dogma van rtis-superioriteit. 

Bloedmenging is goed voor de cultuur van een land. 

: ' XVII 

A n d e r s s o n onderstelt dat de cultuur van het roodkleurige 
aardewerk van China afkomstig is uit het Westen of uit Centraal 
Azië. Na het bekend worden van vondsten van een cultuur van 
zwartkleurig aardewerk heeft deze onderstelling veel van haar waar
schijnlijkheid verloren. 

J. G. A n d e r s s o n , ,,An Early Chinese Cul-
*' ' ture" . Buil. Geolog. Survey of China, no. 5, part I, 

1-68, (1923). 


