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Abstract
Reinforcement learning agents are trained in well-defined environments and evaluated un-
der the assumption that the test time conditions match those encountered during training.
However, even small changes in the environment’s dynamics can degrade the policy’s perfor-
mance, even more so in safety critical domains. This work investigates the use of Quantile
Regression Deep-Q Networks (QR-DQN) to detect environment shifts by analyzing the un-
certainty in return predictions. QR-DQN extends Deep-Q learning by estimating the entire
distribution of future returns through quantile regression. We hypothesize that under deter-
ministic settings, the spread of the return distribution, quantified by the inter-quantile range,
can determine whether environmental changes took place. The RL agent learns low spread
predictions for familiar dynamics, but when deployed in changed environments, the quantile
distribution becomes wider. We conduct experiments on the deterministic CartPole-v1 en-
vironment by the pole length. We show that the quantile spread is low under small changes,
but drastically increases as the dynamics’ shifts diverge more from the training setting. Our
results indicate the potential of distributional reinforcement learning to enhance reliability
and awareness in deployment scenarios.

1 Introduction
Reinforcement learning is the process of learning what to do - how to map situations to
actions - to maximize a numerical reward signal [11].Reinforcement learning (RL) is a frame-
work in which agents learn to make decisions by interacting with an environment in order
to maximize cumulative reward over time. Agents receive observations and rewards from
the environment and learn a policy that maps states to actions based on expected out-
comes. In recent years, deep RL approaches have emerged, with Deep Q-Networks (DQN)
[7] achieving strong performance by approximating value functions using neural networks.
However, standard DQN methods focus solely on estimating the expected return, providing
a point estimate that fails to capture uncertainty about outcomes. This can be a limitation
in practice, especially when the agent encounters scenarios that differ from those seen during
training.

Distributional reinforcement learning (DRL) addresses this weak point by modeling the
complete distribution of possible returns. By learning a full distribution, DRL offers richer
information that contains insights about variability and uncertainty in returns. One such
method is Quantile Regression Deep Q-Networks (QR-DQN) [4] and works by approximating
the return distribution using quantile regression. This leads to an expressive representation
of uncertainty, which has been shown to improve performance and stability in consistent
conditions between training and evaluation.

However, in real-life applications, the training environment of the agent may differ from
the one in which it is deployed. Even small changes in the dynamics and physics of the
environment such as: object mass, friction coefficient or gravitational force, can impact the
agent’s performance if the policy has not been exposed to these variations in the training
setting. Detecting such environment shifts between training and testing environments is
critical, even more so in sensitive environments such as finance and health care. Most RL
algorithms do not offer built-in mechanisms to recognize such mismatches.

This work explores whether the quantile spread learned by QR-DQN can serve as a signal
for identifying environment shifts and aims to answer the question: Can changes of deter-
ministic environments of reinforcement learning agents be detected by the quantile spread
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of QR-DQN? In deterministic environments, the agent learns to expect consistent returns,
resulting in tightly clustered quantile predictions. If the environment dynamics change at
test time, the agent may encounter new state transitions or outcomes, leading to increased
uncertainty and a wider predicted distribution. By tracking the inter-quantile range (IQR)
across time steps and episodes, we aim to determine whether consistent deviations from
the trainin time spread can reveal environment level changes. Our goal is not to improve
decision making with this signal, but to assess its potential as a passive detection mechanism
for unseen or altered deployment conditions.

The rest of this paper is organized as follows. Chapter 2 presents background knowledge
about the topic, followed by Chapter 3 that describes related work in distributional RL
and uncertainty estimation. Chapter 4 describes the experimental methodology. Chapter
5 presents the results, and Chapter 6 concludes with key findings and potential directions
for future work. Chapter 7 notes the guidelines to adhere to for responsible research and
Chapter 8 addresses the conclusion.

2 Background
RL problems are typically formalized as a Markov Decision Process (MDP), defined as a
tuple (S,A, P,R, γ), where:

• S is the set of possible states,

• A is the set of possible actions,

• P (s′|s, a) is the transition probability from state s to s′ under action a,

• R(s, a) is the expected immediate reward after taking action a in state s,

• γ ∈ [0, 1) is the discount factor that balances immediate and future rewards.

The agent’s objective is to learn a policy π(a|s) that maximizes the expected cumulative
discounted return:

Gt =

∞∑
k=0

γkR(st+k, at+k).

A very important part of RL is the action value function (Q-function), defined as:

Qπ(s, a) = E [Gt | st = s, at = a] ,

which represents the expected return after taking action a in state s and following policy π.
In DQN [7], the Q-function is approximated using a neural network. This network

typically has two components: a feature extractor shared across actions, and an output
layer that provides Q-values for all available actions. However, it captures only the expected
return and offers no information about variability or uncertainty in the outcomes. Such a
limitation becomes problematic when the agent is deployed in environments that differ from
the training distribution.

DRL addresses this by learning the full return distribution Zπ(s, a) instead of its expec-
tation Qπ(s, a). The goal becomes approximating the distributional Bellman equation:

Zπ(s, a)
D
= R(s, a) + γZπ(s′, a′),
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where a′ ∼ π(·|s′) and s′ ∼ P (·|s, a). This formulation enables the agent to capture return
uncertainty better, offering robustness.

QR-DQN [4] is a practical and widely used DRL algorithm. It approximates the return
distribution by directly learning N quantiles {Ẑi(s, a)}Ni=1 corresponding to fixed probability
levels τi ∈ (0, 1). Instead of learning a single expected value, the QR-DQN policy network
outputs N × |A| quantile estimates, giving a rich description of possible future returns.

As in DQN, QR-DQN uses a two-network architecture: a main network (online) and
a target network, which is periodically synchronized with the main network to stabilize
learning. The quantile outputs are trained using the Quantile Huber loss [6, 4], which
combines the robustness of quantile regression with the numerical stability of the Huber
loss. The loss function is defined as:

ρκ(u) =

{
1
2u

2 if |u| ≤ κ

κ(|u| − 1
2κ) otherwise

where u = Ẑi(s, a)− zj is the quantile regression target error with Ẑi(s, a) as the predicted
i-th quantile of the return distribution for state-action pair (s,a), zj the target quantile value,
computed using the Bellman update and κ is a tunable threshold controlling the transition
between the quadratic and linear regions. The complete quantile Huber loss is then weighted
based on the target quantile level τ as:

Lτ (u) = |τ − I{u < 0}| · ρκ(u).

To measure the agent’s uncertainty about its q-value prediction, we compute the In-
terquantile Range (IQR) for the selected action. The IQR is defined as:

IQR = Q0.75 −Q0.25,

the difference between the 75th and 25th percentile of the quantile outputs. This is a robust
measure of spread that reflects the central variability of the predicted return distribution
while being less sensitive to outliers.

The transitions and rewards of deterministic environments are always predictable. Thus,
after sufficient training, QR-DQN tends to produce a low IQR distribution, indicating a a
high confidence. However, in test environments that deviate from the training environment,
the agent may encounter unfamiliar states. In these states, the model’s quantile estimates
are less confident, therefore a larger IQR.

This motivates our hypothesis: persistent increases in IQR across episodes and time
steps may serve as a reliable indicator of environment level distributional shifts. Unlike
methods that require direct access to environment parameters, this approach is model free
and grounded in the output of the learned quantile distribution.

We apply this method in the classic CartPole-v1 environment from OpenAI Gym. Cart-
Pole is a benchmark that consists of a pole attached to a cart that moves along the track.
The agent must learn to balance the pole by applying forces left or right to the cart. The
state is defined by four continuous variables: cart position, cart velocity, pole angle, and
pole angular velocity. The episode terminates when the pole angle or cart position exceeds
a predefined threshold or stays in place for a sufficient amount of time.

CartPole is a deterministic environment and thus given a state and action, the transi-
tion to the next state will always yield the same result. This makes it ideal for studying
distributional methods like QR-DQN, as any uncertainty in the return predictions can be
attributed to policy uncertainty or environmental shifts rather than stochasticity.
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Figure 1: CartPole Environment

By perturbing a single parameter pole length, we alter the test environment’s dynamics.
These changes serve as systematic deviations from the training distribution, enabling us
to evaluate whether increases in the predicted quantile spread can reliably signal an envi-
ronment shift. Since all randomness is removed, any observed increase in spread strongly
suggests that the agent is operating in states or dynamics it has not experienced during
training.

3 Related Work
Deep Q-Networks (DQN). Value based methods have been at the core of reinforce-
ment learning (RL), with Deep Q-Networks (DQN) emerging as one of the most influential
advancements [7]. DQN combines Q-learning with deep neural networks to handle high-
dimensional input spaces such as raw pixels, and has demonstrated human level perfor-
mance in Atari games. Despite its success, standard DQN only models the expected return,
discarding potentially useful information about the return distribution. This makes it less
robust under distributional shifts or uncertainty.

Distributional Reinforcement Learning. To address this limitation, distributional re-
inforcement learning (DRL) has been proposed, where the full distribution over returns is
modeled instead of just the expectation. Bellemare et al. introduced the Categorical DQN
(C51) algorithm [1], which approximates the value distribution using a fixed support and a
categorical distribution. Other DRL approaches include Implicit Quantile Networks (IQN)
[3] and Full Quantile Functions [12], which offer more flexible distribution approximations.
These methods have shown improved sample efficiency and stability, especially in determin-
istic settings.

Quantile Regression Deep Q-Networks (QR-DQN). Building on the benefits of
DRL, QR-DQN [4] learns to approximate the quantile function of the return distribution us-
ing quantile regression and Huber loss. Unlike C51, which uses fixed bins, QR-DQN directly
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estimates quantiles, offering greater expressiveness and robustness while maintaining the ar-
chitectural efficiency of DQN. The spread between quantiles, such as the interquartile range
(IQR), provides a built-in measure of uncertainty, which can be valuable in downstream
applications like risk aware decision making [10] and robustness assessment [2]. QR-DQN
thus merges the scalability of DQN with the flexibility of distributional RL, making it a
better fit for evaluating distributional shifts.

Environment Shift Detection. Detecting changes between training and deployment
environments is critical for building reliable RL systems. Prior work has studied domain
adaptation and meta-learning for adapting to new tasks [9], and bootstrapped ensembles like
Bootstrapped DQN [8] provide uncertainty estimates through multiple Q-heads. Bayesian
methods [5] decompose uncertainty into epistemic and aleatoric components, but they often
require architectural changes. Unlike these approaches, we focus on an unsupervised signal:
the quantile spread. This makes our approach lightweight, interpretable, and applicable to
deterministic environments where return uncertainty is tightly coupled with familiarity of
the encountered states.

4 Methodology
We aim to evaluate whether quantile spread produced by QR-DQN can serve as an indicator
for environmental shifts in deterministic reinforcement learning tasks. We perform controlled
experiments in the CartPole-v1 environment by changing the most significant parameter
(pole length in this case) and analyzing the resulting spread of predicted return over time
steps.

4.1 Training Setup
We start by training the QR-DQN agent on the default version of the CartPole-v1 environ-
ment, where the pole length parameter has a length of 0.5, and use the Stable Baselines3
Contrib library and the following hyper-parameters: During training, we can also visualize

Parameter Value
policy MlpPolicy
env env
learning_rate 0.0023
buffer_size 100,000
learning_starts 1,000
batch_size 64
gamma 0.99
train_freq 256
gradient_steps 128
exploration_fraction 0.16
exploration_final_eps 0.04
target_update_interval 10
policy_kwargs net_arch=[256, 256], n_quantiles=10
verbose 1

Table 1: Hyper-parameters used for training the agent.
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the environment and we leave the agent to train until convergence to ensure performance
and high confidence in the predicted return distributions.

Moreover, all experiments are seeded for reproducibility: environment initialization, ac-
tion sampling and model loading. Thus, consistency is ensured across repeated runs and
eliminates variance due to randomness.

4.2 Evaluation Protocol
Once trained, the QR-DQN agent is evaluated across multiple cart pole lengths. More
specifically, we test it on 0.1, 0.45, 0.55, 1.0, 2.0, 3.0, 10, 20. The length of 0.5 is the default
pole, and longer and shorter aim to simulate increasingly different versions of the task. Each
configuration is evaluated on 100 episodes with at most steps per episodes.

4.3 Quantile Spread Analysis
During evaluation, we extract the predicted quantiles for the chosen action at each time
step. We then compute the interquantile range (IQR), defined as the difference between the
75th quantile and 25th quantile. This spread plays the role of a proxy for uncertainty in the
agent’s return prediction.

To also account for the variation found in episode length, we focus our analysis on the
second half of the episode, where the agent usually deviates more from known behavior.
Then we compute the average quantile spread over the second half and aggregate the results
across episodes to create the mean spread for each pole length.

4.4 Environment Shift Detection
We consider the default pole length (0.5) as a baseline. Then, for each configuration we
compare the average second half spread to this baseline. If the difference exceeds a threshold
(∆ > 0.01), we classify the environment as different, otherwise we consider it similar.

This rule is used to assess the capability of QRDQN’s quantile spread to detect subtle
or significant environment changes without retraining or parameter inspection.

4.5 Visualization
We generate plots of the mean spread trajectory over time for each test environment. We also
include standard deviation bands and allow for a visual comparison of how the uncertainty
evolves as the agent interacts with the environments.

5 Results
The table below summarizes the results:
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Pole Length Mean Spread
0.10 0.5991
0.45 0.1855
0.50 0.1853
0.55 0.1853
1.00 2.1801
2.00 2.6374
3.00 2.1947
10.00 1.4493
20.00 1.0339

Table 2: Mean quantile spread for different pole lengths

5.1 Environment Shift Detection
To test our detection hypothesis, we calculated the difference between the average spread of
each environment and the baseline (pole length 0.5). Using a simple decision rule: flag as
“DIFFERENT” if the increase in spread exceeded 0.01; we obtained the following classifica-
tion:

Pole Length ∆ Spread (vs. 0.50) Shift Detected
0.10 0.4137 DIFFERENT
0.45 0.0002 SAME
0.55 -0.0000 SAME
1.00 1.9948 DIFFERENT
2.00 2.4521 DIFFERENT
3.00 2.0093 DIFFERENT
10.00 1.2640 DIFFERENT
20.00 0.8486 DIFFERENT

Table 3: Environment shift detection based on change in quantile spread relative to pole
length 0.50

5.2 Analysis
The quantile spread behaved as hypothesized: as the environment’s pole length deviated
to a greater extent from the training length of 0.5, the spread increased, reflecting rising
uncertainty in the learned value estimates. Figure 2 shows environments where the agent
performs reliably, reaching the episode length limit of 500 steps. In these environments, the
spread remains small, with negligible differences across neighboring lengths like 0.45 and
0.55. This supports the idea that minor changes in dynamics do not meaningfully affect the
learned policy’s confidence.
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Figure 2: Quantile spread over time for environments where the agent reaches the maximum
episode length

On the other hand, Figure 3 visualizes environments in which the agent fails to maintain
balance consistently. These unknown conditions (pole lengths 2.0 and above) favor early
termination and are associated with a higher spread. The distribution of Q-values becomes
wider across steps, compared to the training environment’s distribution, indicating increased
disagreement among quantiles, and hence indicating a bigger possibility for suboptimal
actions being taken.

Figure 3: Quantile spread over time for environments where episodes terminate early due
to failure

Interestingly, the pole length 0.1 stands out. Even though the agent consistently com-
pletes the full 500 steps, the average quantile spread is higher than in other environments
that reach the maximum steps. This could be related to the altered dynamics at very short
pole lengths, where the system becomes highly responsive to small control inputs. Therefore,
even if the agent can balance the pole, the predictions have greater uncertainty.
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As a whole, the results align with our initial hypothesis that the spread in QR-DQN
conveys meaningful information about changes in environment dynamics. When the envi-
ronment changes drastically, as with longer pole lengths, the spread increases accordingly.
Moreover, the method remains stable under small changes, such as those near the training
pole length (0.45 and 0.55). This ability to distinguish between impactful and negligible
changes makes it a promising tool for identifying distributional shifts in deterministic envi-
ronments without overreacting to noise or irrelevant variation.

5.3 Future Work
Even though our paper focuses on deterministic environments, we expect that the use of
quantile spread to capture environmental shifts to extend to non-deterministic settings as
well. In these types of stochastic environments transitions include an intrinsic randomness,
thus making it harder to know if the increased IQR is caused by environment shifts or the
variance of the setting. Future work will need to explore how to calibrate and adapt the
thresholds in the presence of noise in the environment.

Despite this challenge, being able to interpret quantile spread has great potential for the
improvement of agent’s robustness in dynamic and safety critical domains. One direction is
to use the IQR increases to fall back on a more conservative policy that prioritizes safety
while the agent is retrained or adapts in the background. This type of policy can be pre-
trained on a variety of conditions, but also using heuristics until the agent regains confidence
could work. This approach allows the system to work even under environmental shifts and
without causing failures.

On top of this, the quantile spread increase could be used as a way to trigger human
intervention for the systems. In the event the agent encounters a region where the IQR
increases, the system may ask for confirmation or overseeing from a human operator before
taking action. This could improve human intervention and make it more scalable by reducing
constant monitoring and focusing only on times where spread is anomalous.

Considering the above mentioned, the quantile spread over time of the quantile distribu-
tion is not only an indicator of uncertainty in a model, but also a key gateway in providing
safety in reinforcement learning systems.

6 Responsible Research
This study is concerned with the analysis of deterministic environmental shift detection in
RL using simulated environments such as CartPole. Therefore, it does not involve human
subjects, real data or interactions with the physical world, thus minimizing the direct ethical
risks.

Nevertheless, we must acknowledge the implications of environmental change detection
in RL systems. As more reinforcement learning agents are deployed in different domains,
including safety critical ones, the system’s ability to detect when agents are operating outside
their training distribution is critical for avoiding unsafe decisions.

Another critical aspect is reproducibility. All of the experiments in this work were seeded
to ensure that the results were consistent across multiple runs. This includes seeding the
environment, model initialization, and seeding during training and testing (seed 420). Seed-
ing was explicitly used to minimize randomness and the setup and parameters used are
documented, which helps others replicate the work. All code used for training and evalu-
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ation is available at: https://github.com/Tdr13/research_project_25/tree/paul/rp_
paulstan

Additionally, while writing this report, LLMs were used to selectively rephrase and clarify
pieces of information via prompts such as "Rephrase the following part:". However, AI was
not involved in designing the experiment or interpreting the results. Prompts were limited to
writing support only and all implementations, conclusions and technical ideas were developed
independently by the author of the paper.

7 Conclusion
In this work, we investigated the use of quantile spread in QR-DQN as a signal for detect-
ing environment changes. The experiments conducted indicated that the spread reliably
increases with shifts in the dynamics and physics of the environment, but also that it re-
mains stable under minor and inconsequential changes. Therefore, this may allow the agent
to assess the reliability of its predictions without external validation or access to the en-
vironment’s parameters. The results support our hypothesis that quantile spread captures
uncertainty in an interpretable and useful way.
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